一元一次方程方程组测试题

合集下载

一元一次方程组20道及答案

一元一次方程组20道及答案

一元一次方程组20道及答案
一、题目
1.求解方程组: \[ \begin{cases} x+2y=5 \\ 3x-2y=8 \end{cases} \]
2.解方程组: \[ \begin{cases} 2x-y=7 \\ 3x+4y=24 \end{cases} \]
3.求解下列方程组: \[ \begin{cases} 4x-3y=2 \\ 6x-5y=1 \end{cases} \] …
二、答案
1.第一题答案: $ x=2, y=1 $
2.第二题答案: $ x=4, y=1 $
3.第三题答案: $ x=1, y=2 $

三、解答
1.第一题解答:
方程组为: \[ \begin{cases} x+2y=5 \\ 3x-2y=8 \end{cases} \]
解方程可得: $ x=2, y=1 $
2.第二题解答:
方程组为: \[ \begin{cases} 2x-y=7 \\ 3x+4y=24 \end{cases} \]
求解可得: $ x=4, y=1 $
3.第三题解答:
方程组为: \[ \begin{cases} 4x-3y=2 \\ 6x-5y=1 \end{cases} \]
解得: $ x=1, y=2 $

四、总结
通过解这20道一元一次方程组题目,我们可以加深对于方程组解的理解。

这些题目的解答过程中,可以运用代入法、消元法等数学方法来求解方程组,希望此练习对大家的数学能力有所提升。

一元一次方程和二元一次方程组试题及参考答案

一元一次方程和二元一次方程组试题及参考答案

一元一次方程和二元一次方程组专题训练一、选择1、(2009年福州)二元一次方程组2,0x y x y +=⎧⎨-=⎩的解是 ( ) A .0,2.x y =⎧⎨=⎩ B .2,0.x y =⎧⎨=⎩ C .1,1.x y =⎧⎨=⎩ D .1,1.x y =-⎧⎨=-⎩2、(2009青海)已知代数式133m x y --与52n m n x y +是同类项,那么m n 、的值分别是( ) A .21m n =⎧⎨=-⎩ B .21m n =-⎧⎨=-⎩ C .21m n =⎧⎨=⎩ D .21m n =-⎧⎨=⎩ 3、(2009年四川省内江市)若关于x ,y 的方程组⎩⎨⎧=+=-n my x m y x 2的解是⎩⎨⎧==12y x ,则n m -为( ) A .1 B .3 C .5 D .24、(2009年桂林市、百色市)已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( ).A .1B .-1C . 2D .35、(2009年淄博市)家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x 元,以下方程正确的是 ( )A .2013%2340x ⋅=B .20234013%x =⨯C .20(113%)2340x -=D .13%2340x ⋅=6、(2009年齐齐哈尔市)一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有( )A .4种B .3种C .2种D .1种6、(2009年吉林省)A 种饮料B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(1)313x x -+=B .2(1)313x x ++=C .23(1)13x x ++=D .23(1)13x x +-=7、(2009年深圳市)班长去文具店买毕业留言卡50张,每张标价2元,店老板说可以按标价九折优惠,则班长应付 ( )A .45元B .90元C .10元D .100元8、(2009年日照)若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为 ( ) A.43- B.43 C.34 D.34- 9、(2009年长沙)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是 ( )A .4cmB .5cmC .6cmD .13cm10、(2009年台湾)已知有10包相同数量的饼干,若将其中1包饼干平分给23名学生,最少剩3片。

初一数学一元一次方程测试题及答案

初一数学一元一次方程测试题及答案

初一数学一元一次方程测试题及答案一元一次方程测试题一、填空题1、若2a与1-a互为相反数,则a等于-1/3.2、y=1是方程2-3(m-y)=2y的解,则m=5/3.3、如果3x-4=是关于x的一元一次方程,那么a=5.4、在等式S=(a+b)h/2中,已知S=800,a=30,h=20,则b=40.5、甲、乙两人在相距10千米的A、B两地相向而行,甲每小时走x千米,乙每小时走2x千米,两人同时出发1.5小时后相遇,列方程可得x=20/3.6、有两桶水,甲桶有水180升,乙桶有水150升,要使甲桶水的体积是乙桶水的体积的两倍,则应由乙桶向甲桶倒75升水。

二、选择题1、下列方程中,是一元一次方程的是(。

)A、x2+x-3=x(x+2)B、x+(4-x)=5C、x+y=1D、3x-2(x+1)=x+1答案:B2、与方程x-1=2x的解相同的方程是()A、x-2=1+2xB、x=2x+1C、x=2x-1D、x-(m-2)/3=x/(x+1)答案:C3、若关于x的方程mx-2x+3=mx/(x+1)的解为x=2,则m=3/2.答案:D4、一队师生共328人,乘车外出旅行,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租用多少辆客车?在这个问题中,如果还要租x辆客车,可列方程为44x+64(328-64)=328,解得x=4.答案:B5、XXX在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:2y-(115/y)=y-。

怎么呢?XXX想了一想,便翻看书后答案,此方程的解是y=5,很快补好了这个223常数,并迅速地完成了作业,同学们,你们能补出这个常数吗?它应是4.答案:D6、(2x-1)/(x-1)-1=1,去分母后,正确的是3x-2(x-1)=1.答案:A7、某商品连续两次9折降价销售,降价后每件商品的售价为a元,该产品原价为(10/9)^2a元。

答案:C三、解答题1、3-(x/(x-8))-1/(x+3)=12,化简得到x=11.2、3(x+1)-2(x+2)=2x+3,化简得到x=-1.3、x-(1/x)=4,移项得到x^2-4x-1=0,解得x=2+√5或x=2-√5.4、解方程(x+1)/(x-2)+(x-1)/(x+3)=5/3,化简得到3x^2+9x-10=0,解得x=-5/3或x=2/3,但由题目可知x必须是正数,因此x=2/3.四、解答题1、已知 $y_1=6-x,y_2=2+7x$,若① $y_1=2y_2$,求$x$ 的值;②当 $x$ 取何值时,$y_1$ 比 $y_2$ 小 $3$;③当$x$ 取何值时,$y_1$ 与 $y_2$ 互为相反数?① $y_1=2y_2 \Rightarrow 6-x=2(2+7x) \Rightarrow x=-\frac{10}{15}=-\frac{2}{3}$② $y_1\frac{5}{8}$ 或 $x<-2$③ $y_1=-y_2 \Rightarrow 6-x=-(2+7x) \Rightarrowx=\frac{8}{15}$2、已知 $ax+a+3-8=4$ 是关于 $x$ 的一元一次方程,试求$a$ 的值,并解这个方程。

一元一次方程组练习题及答案(经典)

一元一次方程组练习题及答案(经典)

一元一次方程组练习题及答案(经典)以下是一些一元一次方程组的练题和答案,希望对您有所帮助:练题1. 某地区2019年5月份销售的某种特产糖葫芦比糖葫芦节销售增长了20%,销售量达到每日销售400份。

而在6月份,由于天气原因,销售量下降了10%,平均每日销售360份。

根据以上数据,请问5月份该地区销售该特产糖葫芦的每日销售量为多少?6月份该地区销售该特产糖葫芦的每日销售量为多少?2. 某地区有两家工厂,它们生产同一种产品,并向不同市场销售。

已知这两家工厂2019年1月份各销售3000件和5000件该产品,2月份各销售3500件和4500件该产品,3月份各销售2000件和6000件该产品。

已知1月份这种产品的单价是10元,2月份的单价是8元,3月份的单价是12元。

请问这两家工厂的产能和在3个月内每个月销售的单价是多少?3. 有一家毛衣厂,投入了A、B两种线材的混合纱线,生产成人毛衣。

不同线材的比例不能过高或过低。

经过多次试验,发现纯A、纯B线材制成的毛衣售价相同,其混合比例是A线材1000克、B线材400克,可以使制成的毛衣售价达到140元,而线材比例是A线材2000克、B线材200克,售价也是140元。

请问该毛衣厂用多少成本材料能生产一件售价为160元的毛衣?答案1. 过程:设5月份该特产糖葫芦的每日销售量为x,则6月份该特产糖葫芦的每日销售量为0.9x根据题目,可列出一个一元一次方程组:x * 1.2 = 4000.9x = 360解得:5月份该地区销售该特产糖葫芦的每日销售量为: \( 400 ÷ 1.2 = 333.33\)6月份该地区销售该特产糖葫芦的每日销售量为:\( 360 ÷ 0.9 = 400\)2. 过程:设A厂三个月的产量为x,B厂三个月的产量为y根据题目,可列出一个二元一次方程组:3000 + 3500 + 2000 = 10x + 8y5000 + 4500 + 6000 = 8x + 12y3000 * 10 = x * 103500 * 8 = x * 82000 * 12 = x * 125000 * 10 = y * 104500 * 8 = y * 86000 * 12 = y * 12解得:A厂三个月的产量为:x=8250B厂三个月的产量为:y=一月份的单价是:\( (3000 * 10 + 5000 * 10) ÷ (3000 + 5000) = 10 \)元二月份的单价是:\( (3500 * 8 + 4500 * 8) ÷ (3500 + 4500) = 8 \)元三月份的单价是:\( (2000 * 12 + 6000 * 12) ÷ (2000 + 6000) = 12 \)元3. 过程:设纯A、纯B各生产了x克,混合线材生产了y克。

一元一次方程和二元一次方程组试题及参考答案

一元一次方程和二元一次方程组试题及参考答案

一元一次方程和二元一次方程组试题及参考答案Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT一元一次方程和二元一次方程组专题训练一、选择1、(2009年福州)二元一次方程组2,0x y x y +=⎧⎨-=⎩的解是 ( )A .0,2.x y =⎧⎨=⎩B .2,0.x y =⎧⎨=⎩C .1,1.x y =⎧⎨=⎩D .1,1.x y =-⎧⎨=-⎩ 2、(2009青海)已知代数式133m x y --与52n m n x y +是同类项,那么m n 、的值分别是( ) A .21m n =⎧⎨=-⎩ B .21m n =-⎧⎨=-⎩ C .21m n =⎧⎨=⎩ D .21m n =-⎧⎨=⎩ 3、(2009年四川省内江市)若关于x ,y 的方程组⎩⎨⎧=+=-n my x m y x 2的解是⎩⎨⎧==12y x ,则n m -为( ) A .1 B .3 C .5 D .24、(2009年桂林市、百色市)已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为 ( ).A .1B .-1C . 2D .35、(2009年淄博市)家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x 元,以下方程正确的是 ( )A .2013%2340x ⋅=B .20234013%x =⨯C .20(113%)2340x -=D .13%2340x ⋅=6、(2009年齐齐哈尔市)一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A .4种B .3种C .2种D .1种 6、(2009年吉林省)A 种饮料B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是()A .2(1)313x x -+=B .2(1)313x x ++=C .23(1)13x x ++=D .23(1)13x x +-= 7、(2009年深圳市)班长去文具店买毕业留言卡50张,每张标价2元,店老板说可以按标价九折优惠,则班长应付 () A .45元 B .90元 C .10元 D .100元8、(2009年日照)若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为 ( ) A.43- B.43 C.34 D.34- 9、(2009年长沙)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是 ( )A .4cmB .5cmC .6cmD .13cm10、(2009年台湾)已知有10包相同数量的饼干,若将其中1包饼干平分给23名学生,最少剩3片。

初中数学方程与不等式之一元一次方程基础测试题附答案(1)

初中数学方程与不等式之一元一次方程基础测试题附答案(1)

初中数学方程与不等式之一元一次方程基础测试题附答案(1)一、选择题1.下列方程的变形中正确的是( )A .由567x x +=-得675x x -=-B .由2(1)3x --=得223x --=C .由310.7x -=得1030107x -= D .由139322x x +=--得212x =- 【答案】D【解析】【分析】根据解一元一次方程的一般步骤对各选项进行逐一分析即可.【详解】A .由567x x +=-得675x x -=--,故错误;B .由2(1)3x --=得223x -+=,故错误;C .由310.7x -=得103017x -=,故错误; D .正确.故选:D .【点睛】 本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.2.甲、乙两人环湖竞走,环湖一周为400米,乙的速度是80米/分,甲的速度是乙的54倍,且甲在乙前100米处,多少分钟后,两人第一次相遇?设经过x 分钟两人第一次相遇,所列方程为( )A .580100804x x +=⨯ B .580300804x x +=⨯ C .580100804x x -=⨯ D .580300804x x -=⨯ 【答案】B【解析】【分析】根据题意表示出甲的速度为80×54米/分,然后根据题意可得等量关系:甲x 分钟的路程-乙x 分钟的路程=400-100,根据等量关系列出方程即可.【详解】解:设经过x 分钟两人第一次相遇,由题意得:80×54x-80x=400-100, 变形得:80x+300=54×80x , 故选:B .【点睛】本题主要考查由实际问题抽象出一元一次方程,解题的关键是正确理解题意,找出题目中等量关系,列出方程.3.一船由甲地开往乙地,顺水航行要4小时,逆水航行比顺水航行多用40分钟,已知船在静水中的速度为16千米/时,求水流速度. 解题时,若设水流速度为x 千米/时,那么下列方程中正确的是( )A .()()24164163x x ⎛⎫+=+- ⎪⎝⎭ B .()24164163x ⎛⎫⨯=+- ⎪⎝⎭C .()()()41640.416x x +=+-D .()24164163x ⎛⎫+=+⨯ ⎪⎝⎭ 【答案】A【解析】【分析】 由已知条件得到顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时,根据时间关系列方程即可.【详解】由题意得到:顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时,∴()()24164163x x ⎛⎫+=+- ⎪⎝⎭, 故选:A.【点睛】此题考查一元一次方程的实际应用,正确理解顺水航行和逆水航行的速度是解题的关键.4.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=-C .()322x -+=D .()()3221x x ++=- 【答案】A【解析】【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x 互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【详解】方程两边都乘以x-1,得:3-(x+2)=2(x-1).故答案选A .【点睛】本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.5.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为( )A .5B .4C .3D .2 【答案】B【解析】分析:可设两人相遇的次数为x ,根据每次相遇的时间100254⨯+,总共时间为100s ,列出方程求解即可.详解:设两人相遇的次数为x ,依题意有 100254⨯+x=100, 解得x=4.5,∵x 为整数,∴x 取4.故选B .点睛:考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.6.某商品打七折后价格为a 元,则原价为( )A .a 元B .107a 元C .30%a 元D .710a 元 【答案】B【解析】【分析】直接利用打折的意义表示出价格即可得出答案.【详解】设该商品原价为x 元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=107a(元),故选B.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.7.已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为()A.B.4 C.3 D.不能确定【答案】C【解析】试题分析:根据三角形全等可得:3x-2=5且2x-1=7或3x-2=7且2x-1=5;第一个无解,第二个解得:x=3.考点:三角形全等的性质8.如图所示是边长分别为60cm和80cm的两种正方形地砖,这两种地砖每平方厘米的造价相同,若边长为60cm的地砖的造价为90元,则边长为80cm的正方形地砖的造价为()A.120元B.160元C.180元D.270元【答案】B【解析】【分析】设边长为80cm的正方形地砖的造价为x,根据每平方厘米的造价相同列方程求出x的值即可得答案.【详解】设边长为80cm的正方形地砖的造价为x元,∵两种地砖每平方厘米的造价相同,∴9060608080x=⨯⨯,解得:x=160,故选:B.【点睛】本题考查一元一次方程的应用,正确得出等量关系列出方程是解题关键.9.下列方程中,是一元一次方程的是( )A .x 2﹣4x =3B .x =0C .x +2y =1D .x ﹣1=1x【答案】B【解析】【分析】一元一次方程的一般式为ax+b=0(a≠0),根据该定义进行判断即可.【详解】解:x 2﹣4x =3,未知数x 的最高次数为2,故A 不是一元一次方程;x =0,符合一元一次方程的定义,故B 是一元一次方程;x +2y =1,方程含有两个未知数,故C 不是一元一次方程; x ﹣1=1x,分母上含有未知数,故D 不是一元一次方程. 故选择B.【点睛】本题考查了一元一次方程的定义.10.对于方程5112232x x -+-=,去分母后,得到方程正确的是( ) A .51212x x --=+ B .()51312x x -=+C .()()2516312x x --=+D .()()25112312x x --=+ 【答案】D【解析】【分析】方程的两边同时乘以各分母的最小公倍数.【详解】解:方程的两边同时乘以6,得2(5x-1)-12=3(1+2x).故选D .【点睛】本题考查了解一元一次方程.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.11.小明和小亮两人在长为50m 的直道AB(A 、B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B点……若小明跑步速度为5m/s ,小亮跑步速度为4m/s ,则起跑后60s 内,两人相遇的次数为( )A .3B .4C .5D .6 【答案】C【解析】【分析】设在60s 内两人相遇x 次,根据每次相遇的时间50254⨯+,一共是60s ,列出方程求解即可. 【详解】设两人起跑后60s 内相遇x 次,依题意得:5026054x ⨯=+, 解得x=5.4,∵x 为整数,∴x 取5,故选:C.【点睛】 此题考查一元一次方程的实际应用,解题的关键一是求出两人每一次相遇间隔的实际,二是找到隐含的等量关系:每一次相遇时间乘以次数等于总时间,由此构建一元一次方程.12.若关于x 的不等式组12246x k x k k -⎧≥⎪⎨⎪-≤+⎩有解,且关于x 的方程()()2232kx x x =--+有非负整数....解,则符合条件的所有整数k 的和为( ) A .-5 B .-9 C .-12D .-16【答案】B【解析】【分析】先根据不等式组有解得k 的取值,利用方程有非负整数解,将k 的取值代入,找出符合条件的k 值,并相加.【详解】 12246x k x k k -⎧≥⎪⎨⎪-≤+⎩①②, 解①得:x≥1+4k ,解②得:x≤6+5k ,∴不等式组的解集为:1+4k≤x≤6+5k ,1+4k≤6+5k ,k≥-5,解关于x的方程kx=2(x-2)-(3x+2)得,x=-61k,因为关于x的方程kx=2(x-2)-(3x+2)有非负整数解,当k=-4时,x=2,当k=-3时,x=3,当k=-2时,x=6,∴-4-3-2=-9;故选B.【点睛】本题考查了解一元一次不等式组、方程的解,有难度,熟练掌握不等式组的解法是解题的关键.13.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD 边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.4次B.3次C.2次D.1次【答案】B【解析】【分析】【详解】试题解析:∵四边形ABCD 是平行四边形,∴BC=AD=12,AD∥BC,∵四边形PDQB是平行四边形,∴PD=BQ,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,第一次PD=QB时,12-t=12-4t,解得t=0,不合题意,舍去;第二次PD=QB时,Q从B到C的过程中,12-t=4t-12,解得t=4.8;第三次PD=QB时,Q运动一个来回后从C到B,12-t=36-4t,解得t=8;第四次PD=QB时,Q在BC上运动3次后从B到C,12-t=4t-36,解得t=9.6.∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,故选:B.考点:平行四边形的判定与性质14.商家出售的一种自行车的标价比进价高45%,实际销售这种自行车时按标价八折优惠,每辆获利80元,设这种自行车的进价是每辆x元,下列方程正确的是()A.45%(1+80%)x﹣x=80 B.x+45%﹣80%=80C.80%(1+45%)x﹣x=80 D.(1+80%)(1+45%)x﹣x=80【答案】C【解析】【分析】设这种自行车的进价是每辆x元,根据利润=卖价-进价,列方程即可.【详解】设这种自行车的进价是每辆x元,由题意得,80%(1+45%)x-x=80.故选:C.【点睛】本题考查了一元一次方程的应用-销售问题,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.15.足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了A.3场B.4场C.5场D.6场【答案】C【解析】【分析】设共胜了x场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.【详解】设共胜了x场,则平了(14-5-x)场,由题意得:3x+(14-5-x)=19,解得:x=5,即这个队胜了5场.故选C.【点睛】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.16.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72【答案】D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选D.“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.17.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A1B1C1D1,第2次平移长方形A1B1C1D1沿A1B1的方向向右平移5个单位长度,得到长方形A2B2C2D2,…,第n次平移长方形A n-1B n-1C n-1D n-1沿A n-1B n-1的方向向右平移5个单位长度,得到长方形A n B n C n D n(n>2),若AB n的长度为2 026,则n的值为().A.407 B.406 C.405 D.404【答案】D【解析】【分析】根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,进而求出AB1和AB2的长,由此得出ABn=5(n+1)×5+1,将2026代入求出n即可.【详解】∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,∴AB1=AA1+A1A2+A2B1=5+5+1==2×5+1=11,∴AB2的长为:5+5+6=3×5+1=16,……∴ABn=5(n+1)+15(n+1)+1=2026,解得:n=404,故选D.【点睛】本题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA1=5,A1A2=5是解题关键.18.若方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,则a的值为()A.0B.7C.7-D.8【答案】B【解析】【分析】先利用加减消元法解方程组得到37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a的方程,然后解一元一次方程即可得解.【详解】解:∵51 33 x y ax y a-=+⎧⎨+=-⎩①②②-①×3得,38ay+ =-①+②×5得,378ax-=∴方程组的解为:37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,即3x y-=∴373388a a -+⎛⎫--= ⎪⎝⎭∴7a =.故选:B【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a 的方程是解决问题的关键.19.某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润由n %提高到(n +6)%,则n 的值为( ).A .10B .12C .14D .17【答案】C【解析】【分析】设原进价为x ,根据等量关系:原进价+原来利润=进价降低后的进价+降价后的利润列方程求解即可.【详解】解:设原进价为x ,则:x+n%•x=95%•x+95%•x•(n+6)%,∴1+n%=95%+95%(n+6)%,∴100+n=95+0.95(n+6),∴0.05n=0.7解得:n=14.故选C .【点睛】本题考查了一元一次方程的应用,此类题常用到得数量关系是:售价=进价+利润,进价×利润率=利润.20.下列等式变形正确的是( )A .如果0.58x =,那么x=4B .如果x y =,那么-2-2x y =C .如果a b =,那么a b c c= D .如果x y =,那么x y = 【答案】B【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时除以一个不为0的数,等式依然成立;两个数的绝对值相等,其本身不一定相等,据此逐一判断即可.【详解】A :如果0.58x =,那么16x =,故选项错误;B :如果x y =,那么22x y -=-,故选项正确;C :如果a b =,当0c ≠时,那么a b c c=,故选项错误; D :如果x y =,那么x y =±,故选项错误;故选:B.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.。

一元一次方程和二元一次方程组试题及参考答案

一元一次方程和二元一次方程组试题及参考答案

、选择 C . 52009年齐齐哈尔市) 人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有(A . 4种B . 3种C . 2种D . 1种6(2009年吉林省)A 种饮料B 种饮料单价少1元,小峰买了 2瓶A 种饮料和3瓶B 种饮料, 共花了 13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( ) 次方程和次方程组专题训练1、 (2009年福州)二元一次方程组x y x y o 的解是 2、 (2009青海) 3、 A x0,已知代数式 2, 0. 心3与2x C .(2009年四川省内江市)若关于x , y 的方程组x 1, y 1. 是同类项,那么 D . m 、2x yx my m 的解是 x 1, y 1. n 的值分别是( ,则m n 为( )4、 (2009年桂林市、百色市)已知2 是二元一次方程组 1ax ax by by 7的解,贝U a b 的值为 1 (A . 5). 1B . — 1C .(2009年淄博市)家电下乡是我国应对当前国际金融危机,惠农强带动工业生产,促进消 费, 拉动内需的一项重要举措•国家规定,农民购买家电下乡产品将得到销售价格 13%的补贴资 金.今年5月 1 日,甲商场向农民销售某种家电下乡手机 20部.已知从甲商场售出的这20部手机 国家共发放了 2340元的补贴,若设该手机的销售价格为 x 元,以下方程正确的是20x 13% 2340B . 20x 2340 13%C . 20x(1 13%) 2340D . 13% x 2340 一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20 )2(x 1) 3x 13B . 2(x 1) 3x 13 2x 3(x 1) 13 D . 2x 3(x 1)13 2009年深圳市)班长去文具店买毕业留言卡 折优惠,则班长应付 A . 45 元 B . 90 元7、 50张, C . 10 元 每张标价2元,店老板说可以按标价九 ()D . 100 元 6、() D.- 3 3cm 和8cm 则此三角形的第三边的长可能是D. 13cm(A ) 0 (B ) 3 (C ) 7 (D ) 1011、( 2009年台湾)如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为 80 cm 2、100 cm 2,且甲容器装满水,乙容器是空的。

一元一次方程和一元一次方程组练习题

一元一次方程和一元一次方程组练习题

一元一次方程和一元一次方程组练习题一元一次方程练题1. 求解方程:4x + 3 = 19解:首先将3移到方程的右边,得到:4x = 19 - 3 = 16然后将方程两边同时除以4,得到:x = 16 ÷ 4 = 4所以方程的解为:x = 42. 求解方程:5(x - 2) = 15解:首先将5乘以括号里的(x - 2),得到:5x - 10 = 15然后将-10移到方程的右边,得到:5x = 15 + 10 = 25最后将方程两边同时除以5,得到:x = 25 ÷ 5 = 5所以方程的解为:x = 53. 求解方程:2(x + 3) - 4 = 8解:首先将2乘以括号里的(x + 3),得到:2x + 6 - 4 = 8然后将6和-4相加,得到:2x + 2 = 8然后将2移到方程的右边,得到:2x = 8 - 2 = 6最后将方程两边同时除以2,得到:x = 6 ÷ 2 = 3所以方程的解为:x = 34. 求解方程:7 - 3x = 4 + x解:首先将-3x和x相加,得到:7 - 2x = 4然后将7移到方程的右边,得到:-2x = 4 - 7 = -3最后将方程两边同时除以-2,注意负数的运算规则,得到:x = -3 ÷ -2 = 1.5所以方程的解为:x = 1.5一元一次方程组练题1. 求解方程组:2x - 3y = 84x + y = 1解:联立两个方程,我们可以使用消元法来求解。

首先将第二个方程中的y的系数乘以-3,得到:-3y = -12 - 3x。

然后将它与第一个方程相加,得到:2x - 3y + (-3x) = 8 + (-12)。

化简后得到:-x = -4,即x = 4。

将求得的x带入到第二个方程中,得到:4x + y = 1,将x=4代入得到:4(4) + y = 1,化简后得到:16 + y = 1,即y = 1 - 16,即y = -15。

一元一次方程100道及答案过程

一元一次方程100道及答案过程

一元一次方程100道及答案过程本文精心收集了100道一元一次方程题,且每道题均附上清晰的求解步骤和解答,可供学生们在学习中参考。

一元一次方程是高中一类重要的数学问题,在数学测试中出现的频率也比较高。

下面是一元一次方程100道及解答过程:1. x + 2 = 5解答:x = 32. 2x = 4解答:x = 23. x - 3 = 4解答:x = 74. 4x - 5 = 15解答:x = 45. x - 7 = 3解答:x = 106. 5x + 6 = 36 解答:x = 67. 3x = 9解答:x = 38. 7x - 2 = 12 解答:x = 29. 9x - 4 = 16 解答:x = 210. 6x + 3 = 27 解答:x = 411. 4x + 9 = 25 解答:x = 412. 2x - 7 = -5 解答:x = 413. 2x = 10解答:x = 514. 3x - 4 = 6 解答:x = 415. 8x - 3 = 21 解答:x = 316. x = 8解答:x = 817. 5x + 2 = 27 解答:x = 518. 3x - 7 = 6 解答:x = 519. 8x + 4 = 48 解答:x = 620. 4x - 3 = 7 解答:x = 221. x + 5 = 10 解答:x = 522. 2x = 6解答:x = 323. 8x + 9 = 61 解答:x = 724. 4x + 5 = 21 解答:x = 425. x - 4 = 3 解答:x = 726. 7x + 2 = 20 解答:x = 327. 9x = 27 解答:x = 328. 7x - 4 = 10 解答:x = 229. 9x + 7 = 58 解答:x = 630. 3x - 8 = 14 解答:x = 631. 5x + 9 = 44 解答:x = 732. x = 5解答:x = 533. 6x - 8 = 18 解答:x = 434. 8x + 1 = 65 解答:x = 835. 4x - 7 = 11 解答:x = 336. 5x + 3 = 28解答:x = 537. 2x + 7 = 17 解答:x = 538. 8x - 5 = 47 解答:x = 639. 9x - 1 = 80 解答:x = 940. 7x - 3 = 26 解答:x = 441. 4x + 8 = 28 解答:x = 542. 6x + 9 = 51 解答:x = 743. x + 6 = 9 解答:x = 344. 5x = 10解答:x = 245. 9x - 8 = 28 解答:x = 446. x = 12解答:x = 1247. 8x - 6 = 36 解答:x = 548. 5x + 4 = 24 解答:x = 449. x - 5 = 8 解答:x = 1350. 6x + 2 = 42 解答:x = 751. 2x + 9 = 23 解答:x = 752. 3x - 7 = 12 解答:x = 753. 5x + 6 = 30 解答:x = 554. x = 18解答:x = 1855. 7x + 4 = 46 解答:x = 656. 4x + 3 = 19 解答:x = 457. 8x = 64解答:x = 858. 6x - 5 = 21 解答:x = 459. 3x + 8 = 14解答:x = 260. x - 6 = 11 解答:x = 1761. 7x - 9 = 32 解答:x = 562. 2x + 7 = 17 解答:x = 563. 6x + 4 = 38 解答:x = 664. 5x = 30解答:x = 665. 3x + 5 = 20 解答:x = 566. x + 9 = 16 解答:x = 767. 8x - 7 = 21 解答:x = 368. x = 20解答:x = 2069. 4x + 3 = 19 解答:x = 470. 7x - 5 = 25 解答:x = 471. x - 9 = 5 解答:x = 1472. 2x + 8 = 14 解答:x = 373. 8x + 4 = 68 解答:x = 874. 6x - 7 = 11 解答:x = 375. 3x + 9 = 24 解答:x = 576. 5x - 8 = 33 解答:x = 777. x + 4 = 10 解答:x = 678. 7x + 2 = 64 解答:x = 979. 9x - 5 = 44 解答:x = 580. 4x + 8 = 28 解答:x = 581. 3x + 2 = 5 解答:x = 182. x - 8 = 10解答:x = 1883. 5x = 40解答:x = 884. 7x + 6 = 74 解答:x = 1085. 9x = 63解答:x = 786. x = 24解答:x = 2487. 4x + 1 = 17 解答:x = 488. 2x - 6 = 8 解答:x = 789. 7x - 9 = 16 解答:x = 390. 5x + 7 = 47 解答:x = 891. 3x - 7 = 4 解答:x = 792. 8x + 9 = 73 解答:x = 993. x - 4 = 9 解答:x = 1394. 6x = 48解答:x = 895. 4x + 6 = 22 解答:x = 496. x + 8 = 13 解答:x = 597. 7x + 5 = 43 解答:x = 698. 9x - 3 = 36 解答:x = 499. 3x + 6 = 24 解答:x = 6100. x - 9 = 16 解答:x = 25。

(最新)沪科版七年级数学上册《一元一次方程(组)》单元测试精选全文完整版

(最新)沪科版七年级数学上册《一元一次方程(组)》单元测试精选全文完整版

可编辑修改精选全文完整版《一元一次方程(组)》单元测试一、选择题(每小题3分,共30分)1.方程x -1=4的解是 ( )A .x=5 B. x=-5 C. x=3 D. x=-32.在用加减法解方程组51{=+-=-y x y x 中,消x 时两式相 ,消y 时两式相 . ( )A. 加,加B. 加,减C. 减,加D. 减,减3.下列方程组中,是二元一次方程组的是 ( )A.⎩⎨⎧=-=++14y x z y x B.⎩⎨⎧==+4634x y x C .⎩⎨⎧==+14xy y x D .⎩⎨⎧=+=+251025532y x y x 4.已知等式523+=b a ,则下列等式中不一定...成立的是 ( ) A. b a 253=- B. 6213+=+b a C. 523+=bc ac D. 3532+=b a 5. 方程x+2y=6的正整数解有 ( ) A. 一解 B. 二解 C . 三解 D. 无解 6.把方程831412xx --=-去分母后,正确的结果是 ( ) A. )3(112x x --=- B. )3(1)12(2x x --=- C. x x --=-38)12(2 D. )3(8)12(2x x --=-7.下列方程变形中,正确的是 ( )A.方程1223+=-x x ,移项得2123+-=-x xB.方程()1523--=-x x ,去括号得1523--=-x xC.方程2332=t ,未知数系数化为1得1=tD.方程15.02.01=--xx ,去分母得()1215=--x x 8.某商店有两个进价不同的计数器都卖了64元,其中一个盈利60℅,另一个亏本60℅,在这次买卖中,这家商店 ( ) A. 不赔不赚 B .赚了8元 C. 赔了72元 D. 赚了329.若方程组⎩⎨⎧=++=+ay x a y x 32223的解x 与y 的和为2,则a 的值为 ( )A. 一4B. 4C. 0D. 任意数10.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80 cm 2,100 cm 2,且甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8 cm ,则甲的容积是 ( )A. 1280 cm 3B. 2560 cm 3C. 3200 cm 3D. 4000 cm 3二、填空(每小题3分,共15分)11.若2=x 是方程42=-a x 的解,则=a ___________ .12.已知039=-+y x ,用含有x 的代数式表示y ,得y =_____________.13. 五河某信用社规定存款利息的纳税办法是:利息税=利息×5%,若一年定期储蓄的年利率为4.14%,小王取出一年到期的本金及利息时,缴纳了利息税2.07元,则小王一年前存入银行的钱为 元.14. 如果2 x n-2-y m-2n+3=3是关于x ,y 的二元一次方程,那么m =__________,n =__________. 15. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得新数比原数大9,则原来的两位数是 . 三、解答题:(第16每小题5分,其余每题各7分,共计55分)16.解方程(组) (1) 27133x 21-+=-x (2) 6(y+7)-3 = 4(3-y )+3(3) ⎩⎨⎧=+=+4263x 4y x y (4)⎪⎩⎪⎨⎧=+=+-=++2231222x z x z y x z y17.服装厂有每米12元和10元的两种衣料,总价是3200元;做大衣用第一种衣料的25%和第二种衣料的20%,总价是700元,求工厂有每种衣料各多少米?18.A 、B 两地相距36千米,甲从A 地步行到B 地,乙从B 地步行到A 地,两人同时相向出发,4小时后两人相遇,6小时后,甲剩余的路程是乙剩余路程的2倍,求甲乙二人的速度.19. 在解方程组⎩⎨⎧bx+ay=10x-cy=14时,甲正确地解得⎩⎨⎧x=4y=-2,乙把c 写错而得到⎩⎨⎧x=2y=4,若两人的运算过程均无错误,求a 、b 、c 的值.20. 五河某公路收费站的收费标准是:大客车10元,小客车6元,小轿车3元.某日通过该收费站的大客车和小客车数量之比为5:6,小客车与小轿车数量之比为4:7,共收取过路费470元.分别求这三种车辆通过的数量.21.五河某中学拟组织九年级师生去某地举行毕业联欢活动,下面是年级组长吴老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车去此地参观,一天的租金共计5000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.” 根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?。

专题03 一元一次方程(真题测试)(解析版)

专题03 一元一次方程(真题测试)(解析版)

专题03 一元一次方程(真题测试)一、单选题1.(2019 四川南充)关于x的一元一次方程2x a−2+m=4的解为x=1,则a+m的值为()A. 9B. 8C. 5D. 4【答案】C【考点】一元一次方程的定义,一元一次方程的解【解析】解:因为关于x的一元一次方程2x a-2+m=4的解为x=1,可得:a-2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故答案为:C.【分析】先根据一元一次方程的定义求出a的值,再根据一元一次方程的解的定义求出m 的值,即可求出a+m.2.(2019 安徽)已知三个实数a,b,c满足a-2b+c=0,a+2b+c<0,则()A. b>0,b2-ac≤0B. b<0,b2-ac≤0C. b>0,b2-ac≥0D. b<0,b2-ac≥0【答案】D【考点】等式的性质【解析】∵a-2b+c=0,∵a+c=2b,∵a+2b+c=4b<0,∵b<0,∵a2+2ac+c2=4b2,即b2=a2+2ac+c24∵b2-ac= a2+2ac+c24−ac=a2−2ac+c24=(a−c)24≥0,故答案为:D.【分析】由a-2b+c=0,可得a+c=2b,即得a+2b+c=4b<0,根据等式性质可得a2+2ac+c2=4b2,从而求出b2-ac≥0,据此判断即可.3.(2017 滨州)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A. 22x=16(27﹣x)B. 16x=22(27﹣x)C. 2×16x=22(27﹣x)D. 2×22x=16(27﹣x)【答案】D【考点】一元一次方程的实际应用-配套问题【解析】【解答】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∵可得2×22x=16(27﹣x).故选D.【分析】设分配x名工人生产螺栓,则(27﹣x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.4.(2019 浙江杭州)已知九年级某班30位学生种树72株,男生每人种3棵树,女生每人种2棵树.设男生有e人,则()A. 2x+3(72-x)=30B. 3x+2(72-x)=30C. 2x+3(30-x)=72D. 3x+2(30-x)=72【答案】D【考点】一元一次方程的其他应用【解析】解:依题可得,3x+2(30-x)=72.故答案为:D.【分析】男生种树棵数+女生种树棵数=72,依此列出一元一次方程即可.二、填空题5.(2019 内蒙古呼和浩特)关于x的方程mx2m﹣1+(m﹣1)x-2=0如果是一元一次方程,则其解为________.【答案】x=2或x=−2或x=-3【考点】一元一次方程的定义【解析】解:∵关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,∴2m﹣1=1,即m=1或m=0,方程为x﹣2=0或−x−2=0,解得:x=2或x=−2,当2m-1=0,即m= 12时,方程为12−12x−2=0解得:x=-3,故答案为:x=2或x=-2或x=-3.【分析】一元一次方程:只含有一个未知数,未知数最高次数是1且两边都为整式的等式。

第3章一次方程与方程组测试卷

第3章一次方程与方程组测试卷

第3章一次方程与方程组时间:120分钟满分:150分一、选择题(每小题4分,共40分)1.下列方程中,是一元一次方程的是()A.x+4y=1 B.x2-2x=3 C.2x-x3=1-3x2D.xy+6=3z2.下列等式变形错误的是()A.若x-1=3,则x=4 B.若12x-1=x,则x-2=2xC.若x-3=y-3,则x-y=0 D.若mx=my,则x=y3.下列各对数中,满足方程组5x-2y=3,x+y=2)的是()A.x=2,y=0)B.x=1,y=1)C.x=3,y=6)D.x=3,y=-1)4.用加减法解方程组4x+3y=7①,6x-5y=-1②)时,若要求消去y,则应() A.①×3+②×2 B.①×3-②×2C.①×5+②×3 D.①×5-②×35.若代数式18+a3比a-1的值大1,则a的值为()A.9 B.-9 C.10 D.-106.方程2y-12=12y-中被阴影盖住的是一个常数,此方程的解是y=-73.这个常数应是()A.1 B.2 C.3 D.47.甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队?如果设应从乙队调x人到甲队,列出的方程正确的是() A.272+x=13(196-x) B.13(272-x)=196-xC.13(272+x)=196-xD.13×272+x=196-x8.已知方程组ax+by=2,bx+ay=4)的解为x=2,y=1)则a+b的值为()A.1 B.2 C.3 D.49.一只方形容器,底面是边长为5dm的正方形,容器内盛水,水深4dm.现把一个棱长为3dm的正方体沉入容器底,水面的高度将变为()A.5.08dm B.7dm C.5.4dm D.6.67dm10.一艘轮船在甲、乙两地之间航行,已知水流速度是5千米/时,顺水航行需要6小时,逆水航行需要8小时,则甲、乙两地间的距离是()A.220千米B.240千米C.260千米D.350千米二、填空题(每小题5分,共20分)11.如果x5-2k+2k=5是关于x的一元一次方程,则k=________.12.已知(x+y+3)2+|2x-y-1|=0,则xy 的值是________.13.甲、乙、丙三种商品单价的比是6∶5∶4,已知甲商品比丙商品的单价多12元,则三种商品共________元.14.关于x,y的二元一次方程组2x+y=10,kx+(k-1)y=16)的解满足x=2y,则k =________.三、解答题(共90分)15.(8分)解下列方程:(1)2(x+3)=-3(x-1)+2; (2)1-2+y6=y-1-2y4.16.(8分)解方程组:(1)x+y=5,2x+3y=11;)(2)4x-3y=9,2x+6y=12.)17.(8分)4月23日“世界读书日”期间,玲玲和小雨通过某图书微信群网购图书,请根据她们的微信聊天对话,求《英汉词典》和《读者》杂志的单价.18.(8分)已知方程组7x+3y=4,5x-2y=m-1)的解能使等式4x-3y=7成立.(1)求原方程组的解;(2)求代数式m2-2m+1的值.19.(10分)小李在解方程3x+52-2x-m3=1去分母时方程右边的1没有乘以6,因而得到方程的解为x=-4,求出m的值并正确解方程.20.(10分)某车间有技术工85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?21.(12分)某班组织了一次法律知识竞赛,共有30道题,答对一题得4分,不答或答错一题扣2分.(1)小明同学参加了竞赛,成绩是84分,请问小明在竞赛中答对了多少道题?(2)小颖也参加了竞赛,考完后她说:“这次竞赛我一定能拿到100分.”请问小颖有没有可能拿到100分?试用方程的知识来说明理由.22.(12分)如图所示是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完成收缩后,鱼竿长度即为第1节套管的长度(如图①所示);使用时,可将鱼竿的每一节套管都完全拉伸(如图②所示).图③是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图,已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm,完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.23.(14分)小林在某商店购买商品A,B共三次,只有其中一次购买时,商品A,B同(1)在这三次购物中,第________次购物打了折扣;(2)求出商品A,B的标价;(3)若商品A,B的折扣相同,问商店是打几折出售这两种商品的?。

人教版第3章 一元一次方程 测试卷(1)

人教版第3章 一元一次方程 测试卷(1)

第3章一元一次方程测试卷(1)一、选择(每小题3分,共30分)1.(3分)下列各方程中,属于一元一次方程的是()A.x+2y=0 B.x2+3x+2=0 C.2x﹣3=+2 D.x+1=02.(3分)某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.不赔不赚B.赚了10元C.赔了10元D.赚了50元3.(3分)天平的左边放2个硬币和10克砝码,右边放6个硬币和5克砝码,天平恰好平衡已知所有硬币的质量都相同,如果设一个硬币的质量为x克,可列出方程为()A.2x+10=6x+5 B.2x﹣10=6x﹣5 C.2x+10=6x﹣5 D.2x﹣10=6x+54.(3分)已知y1=﹣x+1,y2=﹣5,若y1+y2=20,则x=()A.﹣30 B.﹣48 C.48 D.305.(3分)小明存入100元人民币,存期一年,年利率为2%,到期应缴纳所获利息的20%的利息税,那么小明存款到期交利息税后共得款()A.106元B.102元C.101.6元 D.111.6元6.(3分)解方程时,把分母化为整数,得()A.B.C.D.7.(3分)已知A,B两地相距30千米.小王从A地出发,先以5千米/时的速度步行0.5时,然后骑自行车,共花了2.5时后到达B地,则小王骑自行车的速度为()A.13.25千米/时B.7.5千米/时C.11千米/时D.13.75千米/时8.(3分)一项工程甲单独做需要x天完成,乙单独做需要y天完成,两人合做这项工程需要的天数为:A. B.+C.D.9.(3分)一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍多1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.B.C. D.10.(3分)规定=ad﹣bc,若,则x的值是()A.﹣60 B.4.8 C.24 D.﹣12二、填空(每小题3分,共24分)11.(3分)在(1)2x﹣1;(2)2x+1=3x;(3)|π﹣3|=π﹣3;(4)t+1=3中,代数式有,方程有(填入式子的序号).12.(3分)根据条件:“x的2倍与5的差等于15”列出方程为.13.(3分)如果关x的方程与的解相同,那么m的值是.14.(3分)若x=0是方程2010x﹣a=2011x+3的解,那么代数式的值﹣a2+2=.15.(3分)若关于x的方程和有相同的解,则a=.16.(3分)在等式3a﹣5=2a+6的两边同时减去一个多项式可以得到等式a=11,则这个多项式是.17.(3分)一列方程如下排列:+=1的解是x=2;+=1的解是x=3;+=1的解是x=4;…;根据观察得到的规律,写出解是x=7的方程是.三、解答18.(16分)解下列方程(1)=1(2)=3(3)(4)+1.19.(5分)已知关于x的方程3x﹣2m+1=0与2﹣m=2x的解互为相反数,试求这两个方程的解及m的值.20.(5分)若关于x的方程2x﹣3=1和=k﹣3x有相同的解,求k的值.21.(8分)你坐过出租车吗请你帮小明算一算.杭州市出租车收费标准是:起步价(3千米以内)10元,超过3千米的部分每千米1.20元,小明乘坐了x(x >3)千米的路程.(1)请写出他应该去付费用的表达式;(2)若他支付的费用是23.2元,你能算出他乘坐的路程吗?22.(8分)在某年全国足球甲级A组的前11场比赛中,某队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?分析:设该队共胜了x场,根据题意,用含x的式子填空:(1)该队平了场;(2)按比赛规则,该队胜场共得分;(3)按比赛规则,该队平场共得分.23.(8分)为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是多少元?24.(8分)公园门票价格规定如下表:某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?25.(8分)整理一批图书,如果由一个人单独做要用30h,现先安排一部分人用1h整理,随后又增加6人和他们一起又做了2h,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?参考答案与试题解析一、选择(每小题3分,共30分)1.(3分)下列各方程中,属于一元一次方程的是()A.x+2y=0 B.x2+3x+2=0 C.2x﹣3=+2 D.x+1=0【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、是二元一次方程,故A错误;B、是元二次方程,故B错误;C、是分式方程,故C错误;D、是一元一次方程,故D正确;故选:D.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2.(3分)某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.不赔不赚B.赚了10元C.赔了10元D.赚了50元【考点】一元一次方程的应用.【专题】销售问题.【分析】设盈利的进价是x元,亏本的是y元,根据某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,可列方程求解.【解答】解:设盈利的进价是x元,80﹣x=60%xx=50设亏本的进价是y元y﹣80=20%yy=10080+80﹣100﹣50=10元.故赚了10元.故选B.【点评】本题考查理解题意的能力,关键是根据利润=售价﹣进价,求出两个商品的进价,从而得解.3.(3分)天平的左边放2个硬币和10克砝码,右边放6个硬币和5克砝码,天平恰好平衡已知所有硬币的质量都相同,如果设一个硬币的质量为x克,可列出方程为()A.2x+10=6x+5 B.2x﹣10=6x﹣5 C.2x+10=6x﹣5 D.2x﹣10=6x+5【考点】由实际问题抽象出一元一次方程.【专题】应用题.【分析】要列方程,首先要理解题意,找出题中存在的等量关系:天平左边的重量=天平右边的重量,从而根据该等量关系列出方程即可.【解答】解:设一个硬币的质量为x克,根据题意得2个硬币和10克砝码与6个硬币和5克砝码形成了相等关系,即:2x+10等于6x+5由此可列方程2x+10=6x+5故选A.【点评】解决本题的关键是要找出相等关系,以天平恰好平衡确定相等关系.4.(3分)已知y1=﹣x+1,y2=﹣5,若y1+y2=20,则x=()A.﹣30 B.﹣48 C.48 D.30【考点】解一元一次方程.【专题】计算题.【分析】因为y1+y2=20,可把y1=﹣x+1,y2=﹣5代入其中,然后转化为一元一次方程,求得x的解.【解答】解:∵y1+y2=20,即:(﹣x+1)+(﹣5)=20,去括号得:﹣x+1+﹣5=20,移项﹣x+=20﹣1+5,合并同类项得:x=24,系数化1得:x=﹣48;故选B.【点评】解一元一次方程的一般步骤是去分母,去括号,移项,合并同类项,移项时要变号.5.(3分)小明存入100元人民币,存期一年,年利率为2%,到期应缴纳所获利息的20%的利息税,那么小明存款到期交利息税后共得款()A.106元B.102元C.101.6元 D.111.6元【考点】有理数的混合运算.【专题】应用题.【分析】存款到期交利息税后共得款=本金+利息﹣利息×利息税.【解答】解:最后共得款100+100×2%﹣100×2%×20%=101.6元.故选C.【点评】注意记准利率公式:利息=本金×利率×时间.6.(3分)解方程时,把分母化为整数,得()A.B.C.D.【考点】解一元一次方程.【分析】根据分数的基本性质化简即可.【解答】解:根据分数的基本性质,+=0.1.故选B.【点评】本题考查了解一元一次方程,需要注意利用的是分数的基本性质,等号右边的0.1不变.7.(3分)已知A,B两地相距30千米.小王从A地出发,先以5千米/时的速度步行0.5时,然后骑自行车,共花了2.5时后到达B地,则小王骑自行车的速度为()A.13.25千米/时B.7.5千米/时C.11千米/时D.13.75千米/时【考点】一元一次方程的应用.【专题】行程问题.【分析】本题的等量关系为:步行的路程+骑车的路程=30,设未知数,列方程求解即可.【解答】解:设小王骑自行车的速度为x千米/时,则5×0.5+(2.5﹣0.5)x=30解得:x=13.75故选D.【点评】本题的等量关系比较明显,需注意过程中共花了2.5时,实际骑自行车花了2小时.8.(3分)一项工程甲单独做需要x天完成,乙单独做需要y天完成,两人合做这项工程需要的天数为:A. B.+C.D.【考点】列代数式(分式).【专题】工程问题.【分析】工作时间=工作总量÷工作效率.甲、乙一天的工效分别为、,则合作的工效,根据等量关系可直接列代数式得出结果.【解答】解:甲、乙一天的工效分别为、,则合作的工效为,∴两人合做这项工程需要的天数为1÷()=.故选D.【点评】本题只需仔细分析题意,找出等量关系即可解决问题.9.(3分)一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍多1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.B.C. D.【考点】由实际问题抽象出一元一次方程.【专题】应用题.【分析】首先要理解题意,找出题中存在的等量关系:竹竿放入池塘后的长度=竹竿原来的长度,根据此等式列方程即可.【解答】解:设竹竿的长度为x米,则插入池塘淤泥中的部分长米,水中部分长()米.因此可列方程为,故选B.【点评】做此类题的关键是找出题中存在的等量关系.10.(3分)规定=ad﹣bc,若,则x的值是()A.﹣60 B.4.8 C.24 D.﹣12【考点】解一元一次方程.【专题】新定义;一次方程(组)及应用.【分析】已知等式利用题中的新定义化简,计算即可求出x的值.【解答】解:根据题中的新定义化简得:16+2x=﹣3x﹣2﹣42,移项合并得:5x=﹣60,解得:x=﹣12.故选D.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.二、填空(每小题3分,共24分)11.(3分)在(1)2x﹣1;(2)2x+1=3x;(3)|π﹣3|=π﹣3;(4)t+1=3中,代数式有(1)(3),方程有(2)(4)(填入式子的序号).【考点】方程的解;代数式.【分析】根据代数式、方程的定义,即可解答.【解答】解:代数式有(1)(3);方程有(2)(4);故答案为:(1)(3);(2)(4).【点评】本题考查了方程,解决本题的关键是熟记代数式、方程的定义.12.(3分)根据条件:“x的2倍与5的差等于15”列出方程为2x﹣5=15.【考点】由实际问题抽象出一元一次方程.【分析】x的2倍为2x,与5的差即减去5,据此列方程即可.【解答】解:由题意得,2x﹣5=15.故答案为:2x﹣5=15.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,找出合适的等量关系,列方程即可.13.(3分)如果关x的方程与的解相同,那么m的值是±2.【考点】同解方程.【分析】本题中有两个方程,且是同解方程,一般思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.【解答】解:解方程=整理得:15x﹣3=42,解得:x=3,把x=3代入=x+4+2|m|得=3++2|m|解得:|m|=2,则m=±2.故答案为±2.【点评】本题考查了同解方程,使方程左右两边相等的未知数的值是该方程的解,因此检验一个数是否为相应的方程的解,就是把这个数代替方程中的未知数,看左右两边的值是否相等.14.(3分)若x=0是方程2010x﹣a=2011x+3的解,那么代数式的值﹣a2+2=﹣7.【考点】一元一次方程的解.【分析】根据方程的解满足方程,可得关于a的方程,根据解方程,可得a的值,根据代数式求值,可得答案.【解答】解:将x=0代入原方程,得﹣a=3,解得a=﹣3.当a=﹣3时,﹣a2+2=﹣(﹣3)2+2=﹣9+2=﹣7.故答案为:﹣7.【点评】本题考查了一元一次方程的解,利用方程的解满足方程得出关于a的方程是解题关键,注意负数的平方是正数.15.(3分)若关于x的方程和有相同的解,则a=﹣.【考点】同解方程.【分析】先求出方程的解,再把它的解代入中,求出a 的值即可.【解答】解:,3x x=﹣4,解得:x=﹣8,∵x的方程和有相同的解,∴把x=﹣8代入得:×(﹣8)+2a×(﹣8)=×(﹣8)+5,解得:a=﹣.故答案为:﹣.【点评】此题主要考查了同解方程.解答此题的关键是熟知方程组有公共解的含义,考查了学生对题意的理解能力.16.(3分)在等式3a﹣5=2a+6的两边同时减去一个多项式可以得到等式a=11,则这个多项式是2a﹣5.【考点】等式的性质.【分析】根据等式的性质,可得答案.【解答】解:等式两边都减(2a﹣5),得a=11,故答案为:2a﹣5.【点评】本题考查了等式的性质,利用了等式的性质.17.(3分)一列方程如下排列:+=1的解是x=2;+=1的解是x=3;+=1的解是x=4;…;根据观察得到的规律,写出解是x=7的方程是+=1.【考点】一元一次方程的解.【专题】计算题.【分析】根据已知方程及解的特点,归纳总结得到解为x=7的方程即可.【解答】解:根据题意得:+=1.故答案为:+=1.【点评】此题考查了一元一次方程的解,弄清题中的规律是解本题的关键.三、解答18.(16分)解下列方程(1)=1(2)=3(3)(4)+1.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3;(2)方程整理得:﹣=3,即5x+10﹣2x+2=3,移项合并得:3x=﹣9,解得:x=﹣3;(3)去分母得:x﹣2﹣2x﹣4=6+3x﹣3,移项合并得:4x=﹣9,解得:x=﹣2.25;(4)方程整理得:=+1,去分母得:4x+20=5x﹣5+10,移项合并得:x=15.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.(5分)已知关于x的方程3x﹣2m+1=0与2﹣m=2x的解互为相反数,试求这两个方程的解及m的值.【考点】一元一次方程的解.【专题】计算题.【分析】分别表示出两方程的解,根据两解互为相反数即可求出m的值,以及两方程的解.【解答】解:3x﹣2m+1=0,解得:x=,2﹣m=2x,解得:x=,根据题意得:+=0,去分母得:4m﹣2+6﹣3m=0,解得:m=﹣4,两方程的解分别为﹣3,3.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.20.(5分)若关于x的方程2x﹣3=1和=k﹣3x有相同的解,求k的值.【考点】同解方程.【分析】求出方程2x﹣3=1中x的值,再把k当作已知条件求出方程=k﹣3x中x的值,再根据两方程有相同的解列出关于k的方程,求出k的值即可.【解答】解:解方程2x﹣3=1得,x=2,解方程=k﹣3x得,x=k,∵两方成有相同的解,∴k=2,解得k=.【点评】本题考查的是同解方程,熟知如果两个方程的解相同,那么这两个方程叫做同解方程是解答此题的关键.21.(8分)你坐过出租车吗请你帮小明算一算.杭州市出租车收费标准是:起步价(3千米以内)10元,超过3千米的部分每千米1.20元,小明乘坐了x(x >3)千米的路程.(1)请写出他应该去付费用的表达式;(2)若他支付的费用是23.2元,你能算出他乘坐的路程吗?【考点】一元一次方程的应用.【专题】应用题;经济问题.【分析】(1)根据题意可知小明应该去付费用的表达式为:10+1.2(x﹣3);(2)中可套用(1)中的关系式列方程求解即可.【解答】(1)解:根据题意得:10+1.2(x﹣3).(2)解:设他乘坐的路程是x千米.根据题意得:10+1.2(x﹣3)=23.2,解得:x=14答:他乘坐的路程为14千米.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解.22.(8分)在某年全国足球甲级A组的前11场比赛中,某队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?分析:设该队共胜了x场,根据题意,用含x的式子填空:(1)该队平了11﹣x场;(2)按比赛规则,该队胜场共得3x分;(3)按比赛规则,该队平场共得11﹣x分.【考点】一元一次方程的应用.【分析】可设该队胜场为x,根据“11场比赛保持连续不败”,那么该队平场的场数为11﹣x,由题意可得出:3x+(11﹣x)=23,解方程求解.【解答】解:(1)11﹣x;(2)3x;(3)(11﹣x);根据题意可得:3x+(11﹣x)=23,解得:x=6.答:该队共胜了6场.【点评】本题主要考查列一元一次方程解足球比赛得分问题,列一元一次方程解足球赛问题的关键是抓住胜的场数与平的场数的关系,根据积分总数列出方程.23.(8分)为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是多少元?【考点】一元一次方程的应用.【专题】应用题.【分析】设该照相机的原售价是x元,从而得出售价为0.8x,等量关系:实际售价=进价(1+利润率),列方程求解即可.【解答】解:设该照相机的原售价是x元,根据题意得:0.8x=1200×(1+14%),解得:x=1710.答:该照相机的原售价是1710元.【点评】此题考查了一元一次方程的应用,与实际结合,是近几年的热点考题,首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解24.(8分)公园门票价格规定如下表:某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【考点】一元一次方程的应用.【专题】经济问题;图表型.【分析】若设初一(1)班有x人,根据总价钱即可列方程;第二问利用算术方法即可解答;第三问应尽量设计的能够享受优惠.【解答】解:(1)设初一(1)班有x人,则有13x+11(104﹣x)=1240或13x+9(104﹣x)=1240,解得:x=48或x=76(不合题意,舍去).即初一(1)班48人,初一(2)班56人;(2)1240﹣104×9=304,∴可省304元钱;(3)要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561∴48人买51人的票可以更省钱.【点评】在优惠类一类问题中,注意认真理解优惠政策,审题要细心.25.(8分)整理一批图书,如果由一个人单独做要用30h,现先安排一部分人用1h整理,随后又增加6人和他们一起又做了2h,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?【考点】一元一次方程的应用.【分析】安排整理的人员有x人,则随后又(x+6)人,根据题意可得等量关系:开始x人1小时的工作量+后来(x+6)人2小时的工作量=1,把相关数值代入即可求解.【解答】解:设首先安排整理的人员有x人,由题意得:x+(x+6)×2=1,解得:x=6.答:先安排整理的人员有6人.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.此题用到的公式是:工作效率×工作时间=工作量.。

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案测试题:1. 解方程:2x + 3 = 72. 解方程:4(x - 5) = 163. 解方程:3(2x - 1) + 2 = 5(x + 3) - 14. 解方程:5x + 3 = 2 - 4x5. 解方程:2(3x + 4) - 5(x - 2) = 146. 解方程:3(2x - 1) = 4(3x + 2) - 17. 解方程:6x - 7 = 5(x - 3)8. 解方程组:2x + 3y = 74x - 2y = 89. 解方程组:3x + y = 4x - 2y = -110. 解方程组:2x + y = 13x - 2y = 4答案及解析:1. 解方程:2x + 3 = 7解:首先,将方程中的常数项移动到等号的右边,得到2x = 7 - 3。

接着,将式子进行计算,得到2x = 4。

最后,将方程两边同时除以2,得到x = 2。

答案:x = 22. 解方程:4(x - 5) = 16解:首先,将括号内的式子进行计算,得到4x - 20 = 16。

接着,将常数项移动到等号的右边,得到4x = 16 + 20。

最后,将方程两边同时除以4,得到x = 9。

答案:x = 93. 解方程:3(2x - 1) + 2 = 5(x + 3) - 1解:首先,将括号内的式子进行计算,得到6x - 3 + 2 = 5x + 15 - 1。

接着,将常数项移动到等号的右边,得到6x - 1 = 5x + 14。

接着,将方程两边同时减去5x,得到x - 1 = 14。

最后,将方程右边的常数项移动到等号左边,得到x = 15。

答案:x = 154. 解方程:5x + 3 = 2 - 4x解:首先,将方程中的常数项移动到等号的右边,得到5x = 2 - 3 + 4x。

接着,将方程两边同时减去4x,得到x = 2 - 3。

最后,将右边的常数项进行计算,并化简方程,得到x = -1。

答案:x = -15. 解方程:2(3x + 4) - 5(x - 2) = 14解:首先,将括号内的式子进行计算,得到6x + 8 - 5x + 10 = 14。

一元一次方程组题目

一元一次方程组题目

一元一次方程组题目下列哪一组方程构成了一元一次方程组?A. { x + y = 1, x - y = 2 }B. { x2 + x = 1, x - 1 = 0 }C. { x + 1 = 2, 2x - 1 = 3 }D. { x/y = 1, x + y = 2 }对于一元一次方程组 { 2x + y = 5, x - y = 1 },下列哪个选项是其解?A. { x = 2, y = 1 }B. { x = 1, y = 2 }C. { x = 3, y = -1 }D. { x = -1, y = 3 }已知一元一次方程组的解为 { x = 3, y = -2 },则下列哪个方程可能是该方程组中的一个方程?A. x + y = 1B. 2x - y = 5C. x - 2y = 8D. 3x + y = 7对于一元一次方程组,如果其中一个方程的解能使另一个方程的左右两边相等,则称这两个方程为“相容方程”。

下列哪一组方程是相容方程?A. { x + 1 = 2, x - 1 = 3 }B. { 2x = 4, x + 2 = 1 }C. { x/2 = 1, 2x - 1 = 3 }D. { x - 3 = -1, 2x + 1 = 5 }一元一次方程组的解集是满足所有方程的未知数的集合。

下列哪个选项描述了一元一次方程组 { x + y = 3, x - y = 1 } 的解集?A. 所有满足 x + y = 3 的 (x, y) 的集合B. 所有满足 x - y = 1 的 (x, y) 的集合C. 所有同时满足 x + y = 3 和 x - y = 1 的 (x, y) 的集合D. 所有满足 x = 2 和 y = 1 的 (x, y) 的集合已知一元一次方程组的增广矩阵为 \begin{bmatrix} 1 & 1 & 3 \ 1 & -1 & 1 \end{bmatrix},则下列哪个选项是该方程组的解?A. { x = 2, y = 1 }B. { x = 1, y = 2 }C. { x = 3, y = -1 }D. { x = -1, y = 3 }对于一元一次方程组,如果其中一个方程的解不能使另一个方程的左右两边相等,则称这两个方程为“不相容方程”。

一元一次方程和一元一次方程组求解题

一元一次方程和一元一次方程组求解题

一元一次方程和一元一次方程组求解题
一元一次方程的解法
一元一次方程是指只有一个变量的一次方程,可以表示为 ax + b = 0。

其中,a和b是已知的常数,x是未知数。

解一元一次方程的关键是通过一些代数运算来求出未知数的值。

具体的解法可以分为如下几步:
1. 把方程变形为0 = ax + b的形式,即把等式移到一边,使得
另一边为0。

2. 利用运算性质和公式,将方程简化为ax = -b的形式,即将
未知数的系数和常数项进行合并。

3. 通过运算,得出未知数的解x = -b/a。

一元一次方程组的解法
一元一次方程组是指一组同时包含多个一元一次方程的方程组,可以表示为如下形式:
a1x + b1y + c1 = 0
a2x + b2y + c2 = 0
其中,a1、b1、c1、a2、b2、c2是已知的常数,x和y是未知数。

解一元一次方程组的关键是找到满足所有方程的x和y的值。

具体的解法可以分为如下几步:
1. 可以通过消元的方法,将方程组化简为只包含一个未知数的
方程。

可以选择先消除x的系数,再消除y的系数。

2. 利用运算性质和公式,将方程组简化为只有一个未知数的方程。

3. 通过运算,得出未知数的解。

4. 将得到的未知数的解代入其他方程,验证是否满足所有方程。

通过这样的步骤,我们可以得到一元一次方程和一元一次方程
组的解。

这些解法在数学和实际问题中都有广泛的应用,可以帮助我们
解决各种类型的方程和方程组求解题。

参考资料:
- 《数学分析》
- 《高等代数学》。

一元一次方程组100道带答案

一元一次方程组100道带答案

一元一次方程组100道带答案一元一次方程是数学中最基础的概念,也是解决复杂数学问题的基础。

它利用一个变量表示一个数学例子,以此来解决某一问题,而它主要包括一元一次方程及一元一次方程组。

今天我们就来讨论一元一次方程组的一些例子及解法,也就是说,我们要解决的是一个或两个方程的未知数。

首先,我们来看一下简单的一元一次方程组,比如:1. 10x+4y=24,4x+3y=14这是一个常见的一元一次方程组,解法是根据题目,我们可以把等号的两边的量化,那么我们就得出答案:x=6,y=2。

2. 3x-2y=1,5x-3y=5同理,把等号的两边量化,可以得出答案:x=2,y=-1。

3. 6x+4y=10,8x+6y=14同样,把等号的两边量化,可得出答案:x=2,y=1。

4. 2x-7y=-1,2x+7y=1同样,把等号的两边量化,可得出答案:x=0,y=-0.5。

这里是几个例子,类似的一元一次方程组还有很多,但解决这些方程所使用的步骤都是一样的,无论是几个变量方程,都可以使用这种方法来解决。

下面我们来看一些更复杂的方法,比如三个变量的方程:5. 2x+y+z=1,3x+2y+3z=3,4x+3y+6z=5这里,我们可以使用代数的概念,化成三元一次方程来解决,那么我们就可以得出答案:x=-1,y=2,z=-3。

6. x+y+z=1,2x+4y-z=-4,3x-y+2z=-2同上,可以把它化成三元一次方程,可以得出答案:x=2,y=-1,z=3。

这就是解决数学一元一次方程组的基本解法,只要搞清楚变量的关系,就能找出结果。

当然了,更多的题目,我们还可以使用矩阵来解决,比如:7. x+2y+3z=1,3x-y+2z=-2,2x+3y+z=3通过矩阵可以得到答案:x=-1,y=-2,z=2。

8. 3x+2y+z=3,2x-3y+z=1,4x-5y-2z=-1也可以通过矩阵得到答案:x=-1,y=-2,z=2。

这些例子都有一定的难度,但只要掌握好一元一次方程和矩阵的解决办法,这些方程,尽管例子有很多,都可以很容易的解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章 一次方程单元检测 姓名--------------
一、选择题(每题3分,共27分)
1.下列等式是一元一次方程的是( ).
A .s =ab
B .2+5=7 C.x 2+1=x -2 D .3x +2y =6
2.方程2x +1=3与2-a -x 3
=0的解相同,则a 的值是( ). A .7 B .0 C .3 D .5
3.把方程0.5x -0.010.2-0.5=0.4x -0.61.2
的分母化为整数,正确的是( ). A.5x -12-0.5=4x -612
B.5x -12-0.5=4x -0.612
C.5x -12-0.5=0.4x -612
D.5x -0.12-0.5=4x -612 4.某项工作,甲单独做要4天完成,乙单独做要6天完成,若甲先做1天后,然后甲、乙合作完成此项工作,若设甲一共做了x 天,所列方程是( ). A.x +14+x 6
=1 B.x 4+x +16=1 C.x 4+x -16=1 D.x 4+14+x 6
=1 5.足球比赛的记分规则:胜一场得3分,平一场得1分,负一场得0分.某队打了14场,负5场,共得19分,那么这个队胜了( ).
A .3场
B .4场
C .5场
D .6场
6.若关于x 的方程(m2-1)x2-(m +1)x +8=0是一元一次方程,有四位学生求得m 的值分别如下:①m =±1;②m =1;③m =-1;④m =0.其中错误的个数是( ).
A .1
B .2
C .3
D .4
7.有下列四种说法:
(1)由5m =6m +2可得m =2;
方程的解就是方程中未知数所取的值;
方程2x -1=3的解是x =2;
(4)方程x =-x 没有解.
其中错误说法的个数是( ).
A .1
B .2
C .3
D .4
8. 若“Δ”是新规定的某种运算符号,设xΔy =xy +x +y ,则2Δm =-16中,m 的值为( ).
A .8
B .-8
C .6
D .-6
9.根据图中给出的信息,可得正确的方程是( ).
π×⎝⎛⎭⎫822x =π×⎝⎛⎭⎫622×(x +5) B .π×⎝⎛⎭⎫822x =π×⎝⎛⎭
⎫622×(x -5)
C .π×82x =π×62×(x -5)
D .π×82x =π×62×5
二、填空题。

(每题5分,共30分)
10..在等式m 2π=n 2π
的两边都乘以______,得m =______.
11.(k -3)x|k|-2=2是关于x 的一元一次方程,则k =______.
12.一个三位数的十位数字比百位数字小4,且十位数字不为0,个位 数字是十位数字的8倍,那么这个三位数是__________.
13.当x =______时,式子3x +12的值比2x -13
的值小2。

14.若出租车起步价是3元(3千米以内为起步价),以后每千米0.50元,某人乘出租车付了8元钱,则该出租车行驶的路程为______千米.
15.已知方程|x +1|=0的解满足关于x 的方程mx +2=2(m -7x),则m 的值是__________.
三、解答题
16.解下列方程或方程组:(每题6分,共30分) (1)15-(7-5x)=2x +(5-3x); (2)y -y -12=2-y +25

x+5y=1
3+0.2x 0.2-0.2+0.03x 0.01
=0.75. (4) 2x+3y=-19
2x-3y=1
(5)
4x-3y=-5
17.(10分)已知|2x+1|+(y-2)2=0,求(xy)2 011的值.
18.(12分)某工厂原计划用26小时生产一批零件,后因每小时多生产5件,用24小时不但完成了任务,而且还比原计划多生产了60个,问原计划生产多少个零件.
19,某人从家里骑自行车到学校。

若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?(11分)
参考答案
1.C
2.A 点拨:由2x +1=3,解得x =1.代入2-a -x 3=0,解得a =7. 3.D 点拨:利用分数的基本性质逐一检验可知.
5.C 点拨:由甲做了x 天,可知乙做了(x -1)天,依题意,得方程x 4+x -16
=1.
6.C 点拨:设胜了x 场,则平(14-5-x)=(9-x)场,依题意,得3x +(9-x)=19.解得x =5.
7.C 点拨:只有当m =1时,方程(m2-1)x2-(m +1)x +8=0是一元一次方程,其他三种情况都不能满足这个方程是一元一次方程.
8.C 点拨:只有“方程2x -1=3的解是x =2”这种说法是正确的,其余都是错误的.
9.D 点拨:2Δm =2m +2+m =-16.解得m =-6.
10.A
11.2π n
12.-3
13.518 点拨:由个位数字是十位数字(不为0)的8倍,可得十位数字为1,个位数字为8,从而可得百位数字为5.
14.-175 点拨:由3x +12+2=2x -13可解得x =-175
. 15.13 点拨:设行驶的路程为x 千米,则有0.5(x -3)+3=8.解得x =13.
17.-4 点拨:由|x +1|=0,解得x =-1.将x =-1代入mx +2=2(m -7x),解得m =-4.
18.4
19.解:(1)去括号,得15-7+5x =2x +5-3x ,
移项,得5x -2x +3x =5-15+7,
合并同类项,得6x =-3,
系数化为1,得,x =-12
. (2)去分母,得10y -5(y -1)=20-2(y +2),
去括号,得10y -5y +5=20-2y -4,
移项,得10y -5y +2y =20-4-5,
合并同类项,得7y =11,
系数化为1,得y =117
.
(3)原方程可化为30+2x 2
-(20+3x)=0.75, 即15+x -20-3x =0.75,
移项、合并同类项,得-2x =5.75
系数化为1,得x =-2.875.
20.解:由题意,得|2x +1|=0,且(y -2)2=0, 则2x +1=0,且y -2=0,
由此得x =-12
,y =2, 故(xy)2 011=(-1)2 011=-1.
21.解:设原计划生产x 个零件,则⎝⎛⎭⎫x 26+5×24=x +60,解得x =780.
答:原计划生产780个零件.。

相关文档
最新文档