UMTS LTE网络优化最关键的几个参数

合集下载

LTE无线网络优化工程优化指导书

LTE无线网络优化工程优化指导书

LTE无线网络优化工程优化指导书
内容充实,有一定的参考价值
一、简介
LTE(Long Term Evolution)无线网络是由3GPP(Third
Generation Partnership Project)组织提出的无线网络技术标准,该标
准决定了新一代蜂窝移动通信技术的技术要求和发展方向。

LTE网络的优
化主要侧重于改善用户体验,提高无线网络的性能,改善网络的整体结构,以及提升网络的服务质量和安全性。

二、优化准则
1、建立覆盖优先指标
准则:重视覆盖质量,为用户提供更好的服务,以保证无线网络服务
的稳定可靠。

2、建立容量优先指标
准则:优化网络组网,提高网络的容量,以满足用户更大的流量需求。

3、建立质量优先指标
准则:优先优化用户的下行速率,保证QoS(Quality of Service)
的持续稳定,以满足用户良好的网络体验。

4、建立传输保障指标
准则:优化发射机的参数,保证传输稳定,减少传输过程中的干扰和
衰减,以保证传输的安全性。

三、优化监测工具
1、室外覆盖优先监测工具
主要用于检测室外覆盖,优先监测覆盖质量,包括检测RSSI (Received Signal Strength Indication)、RxLev(Received Level)、IPER(Interference Power)、CINR(Carrier to Interference Noise Ratio)。

2、室内覆盖优先监测工具。

网络性能优化的关键指标与方法

网络性能优化的关键指标与方法

网络性能优化的关键指标与方法网络性能的优化是在网络应用和系统开发中非常重要的一环,它关注的是如何提高网络传输的速度、可靠性以及用户体验。

本文将介绍网络性能优化的关键指标和方法,旨在帮助读者更好地理解和应用于实际开发中。

一、关键指标1. 延迟(Latency):延迟是指从发送数据开始到接收到响应数据所需的时间。

它是衡量网络性能的重要指标之一,常用单位是毫秒(ms)。

较低的延迟意味着网络传输速度快,用户可以更快地获取到所需的数据。

2. 带宽(Bandwidth):带宽是指单位时间内网络传输的数据量,常用单位是千兆字节每秒(Gbps)。

较高的带宽意味着网络能够更快地传输数据,提供更好的用户体验。

3. 丢包率(Packet Loss):丢包率是指在网络传输过程中丢失的数据包的比例。

通常用百分比表示,较低的丢包率意味着网络传输的可靠性更高。

4. 吞吐量(Throughput):吞吐量是指单位时间内通过网络传输的数据量。

较高的吞吐量代表网络能够更快地传输大量数据,提供更高的效率。

二、优化方法1. CDN技术(Content Delivery Network):CDN是通过分布式网络将静态资源缓存到离用户较近的服务器上,从而提供更快的访问速度。

通过合理地使用CDN,可以减少服务器的负载压力,提高网络应用的性能。

2. 压缩技术:压缩是减少数据传输量的一种常用方法。

可以通过压缩网络传输的数据,减少带宽的占用和传输时间,提高用户访问网页的速度。

3. 缓存技术:缓存是将数据存储在离用户较近的位置,当用户再次请求相同的数据时,可以直接从缓存中获取,避免了网络传输的延迟。

合理使用缓存技术可以显著提高系统的响应速度。

4. 负载均衡技术:负载均衡是将请求均匀地分发到多台服务器上,避免某一台服务器负载过高而导致性能下降。

通过合理配置负载均衡策略,可以提高系统的可靠性和性能。

5. 数据分片技术:对大数据进行分片处理,将大数据分割成多个小数据块进行传输。

LTE无线参数及KPI指标优化

LTE无线参数及KPI指标优化

LTE无线参数及KPI指标优化一、常见的LTE无线参数1.带宽:带宽是指LTE网络中可用的频谱资源,一般可分为10MHz、15MHz和20MHz三种。

增加带宽可以提供更大的数据传输速率,但也需要更大的频谱资源。

在优化过程中,可以根据实际情况适当调整带宽来优化网络性能。

2.调制解调器方案:LTE中常用的调制解调器方案有QPSK、16QAM和64QAM。

QPSK提供较低的数据传输速率,但更适合在较差的信道条件下使用。

16QAM和64QAM提供更高的数据传输速率,但对信道条件要求更高。

在优化过程中,可以根据信道质量和容量需求来选择合适的调制解调器方案。

3.功控方案:LTE中采用功率控制来保持用户与基站之间的信号质量。

常见的功控方案有Open Loop和Closed Loop两种。

Open Loop功控通过测量接收信号水平来调整传输功率。

Closed Loop功控除了测量接收信号水平外,还依靠反馈信息来调整传输功率。

在优化过程中,可以根据信道质量和容量需求来选择合适的功控方案。

4.调度策略:LTE中的调度策略用于决定哪些用户可以使用无线资源来传输数据。

常见的调度策略有Proportional Fair、Round Robin和Max C/I等。

Proportional Fair调度策略根据用户的信道质量和传输需求进行调度,以提供较好的用户体验。

Round Robin调度策略按照时间片轮流为每个用户分配资源。

Max C/I调度策略根据信道质量来分配资源,以提供较高的系统容量。

在优化过程中,可以根据用户需求和网络负载来选择适当的调度策略。

二、常见的LTEKPI指标1.接入成功率:接入成功率是指成功建立与基站的无线连接的用户比例。

良好的接入成功率可以保证用户能够及时接入网络,提供良好的用户体验。

2.切换成功率:切换成功率是指用户在移动过程中成功切换到新的基站的比例。

良好的切换成功率可以确保用户在移动中保持无缝的通信连接。

华为LTE重要指标参数优化方案

华为LTE重要指标参数优化方案

华为LTE重要指标参数优化方案I.引言:随着移动通信技术的快速发展,LTE(Long Term Evolution)已成为第四代移动通信技术的主流标准。

作为领先的通信设备供应商之一,华为致力于提供高质量和高效率的LTE网络。

在LTE网络建设和运维过程中,重要参数的优化对于提高网络性能至关重要。

本文将探讨LTE网络中一些重要的参数优化方案。

1.带宽优化:LTE网络的带宽对于网络性能具有决定性影响。

通过合理规划和配置带宽资源,可以提高网络吞吐量和响应速度。

以下是一些带宽优化方案:-确定最佳信道带宽:根据网络需求和资源状况选择合适的信道带宽,以平衡用户体验和系统负载。

-动态带宽分配:根据网络负载情况,实时分配带宽资源,以确保网络的高效运行。

-小区频段配置:根据网络拓扑和覆盖需求,合理配置小区频段,以避免频段重叠和干扰。

2.小区配置优化:小区配置对于提高信号覆盖和质量至关重要。

以下是一些小区配置优化方案:-小区位置优化:通过合理的小区规划和布局,减少重叠覆盖和盲区,提高整体网络覆盖率。

-射频参数调整:包括功率控制、天线高度和方位角调整等措施,以优化信号覆盖范围和质量。

-频率重用:通过合理配置频率资源,减小频率干扰,提高网络容量和性能。

3.扇区间协作优化:LTE网络中的扇区间协作对于优化网络性能非常重要。

以下是一些扇区间协作优化方案:-小区间干扰抑制:通过合理配置物理层参数,例如邻区关系定义和功率控制策略,减少干扰对用户体验的影响。

-软切换优化:通过合理设置小区切换门限和时延参数,优化用户的切换体验,并减少呼叫掉话率。

4. QoS(Quality of Service)优化:为了提供更好的服务质量,有效的QoS优化方案至关重要。

以下是一些QoS优化方案:-可选业务优先级:根据业务的重要性和用户需求,设置合适的业务优先级,以保证关键业务的服务质量。

-上下行速率调整:根据网络负载和用户需求,动态调整上下行速率参数,以提高网络吞吐量和稳定性。

LTE 网优 27项 核心指标原因分类分解

LTE 网优 27项 核心指标原因分类分解

分子
维护
优化
参数设置不合理
下行10M以上采样 点占比分母详解:
参数设置
邻区漏配 基站功率
通过后台OMC添加邻区; 通过后台OMC提升对应小区 RS功率;
调整PCI或频点 查找干扰源并协调处理 更换其他服务器
分母
总采样点数
总采样点数
干扰 服务器
系统内干扰 系统外干扰 服务器问题
5
下行2M以下采样点占比指标分解
用户是否锁网在23G网络进行业务
1、外部干扰:间干扰(杂散干扰、阻塞干扰、 互调干扰、交叉时隙干扰) 2、重叠覆盖:天馈过高,方位角不合理,功率 类参数设置不合理 用户过多、资源不足 服务器带宽 、服务器稳定性 互操作类参数 天馈系统故障 传输故障 天线高度 天线增益 天线方位、下倾
分子
覆盖正常低电平
1、优化:234G互操作参数设置不合理; 2、优化:邻区漏配;
覆盖异常低电平
1、维护:基站故障; 2、优化:功率配置不合理; 3、综合:室内覆盖不完整;
MR 覆盖率分母详解:
分母
室内小区已建 设数量
1、优化:分公司小区覆盖属性上报及时 性; 2、综合:其他特殊情况导致的室分站点 拆除。
1、优化:234G互操作参 数设置不合理; 建设 2、优化:邻区漏配; 1、规划:无规划站点; 2、建设:已规划未建设; 3、维护:现网站点故障; 4、综合:现网站点覆盖不合理;
维护
无覆盖低电平
硬件故障 通知维护处理硬件故障; 天馈系统故障 通知维护处理天馈故障; 传输故障 通知维护处理传输故障; 天线高度 天线增益 天线方位 建议网优中心对基站进行整改; 建议网优中心更换天线; 现场RF优化调整,必要时可提出天馈整 改; 现场RF优化调整,必要时可提出天馈整 改; 通过后台OMC添加邻区; 通过后台OMC提升对应小区RS功率;

LTE网络优化思路及总结

LTE网络优化思路及总结

LTE网络优化思路及总结随着移动通信技术的快速发展,LTE网络已经成为主流的无线通信网络。

然而,网络性能的不断追求和用户体验的提升要求我们进行LTE网络的优化。

本文将从网络优化思路和总结两个方面进行探讨。

首先,我们需要明确LTE网络的优化目标,包括:提高网络容量,提高网络覆盖,降低网络延迟,优化网络速率和提高信道质量。

在实施LTE 网络优化时,需要采取以下几个方面的思路。

一、网络规划优化网络规划是网络优化的基础,要充分利用现有资源,合理规划网络的基站、频段、天线等资源分布,避免网络拥塞和覆盖不足的问题。

在网络规划的过程中,要确保网络的容量和覆盖能够满足用户的需求。

二、基站参数优化基站参数优化是LTE网络优化的核心内容之一、通过调整LTE网络中的基站参数,如功率控制参数、天线倾斜角度、小区间隔等,可以达到提高网络容量和覆盖的目的。

同时,还可以通过调整邻区关系和小区间干扰等参数来优化信号质量,提高网络速率和降低网络延迟。

三、运动台优化运动台是LTE网络中一个重要的优化对象。

通过控制运动台的速度、发送功率和接收敏感度等参数,可以有效降低网络干扰,减少功率消耗,提高网络容量和覆盖。

此外,对于高速移动用户,还可以采用基站切换、载波聚合等技术来提高网络速率和降低延迟。

四、信道质量优化信道质量是决定网络性能的一个关键因素。

通过优化信道质量,可以提高网络速率和降低网络延迟。

优化信道质量的方法包括信道估计、信道编码、信道调制、信道编码率选择等。

通过采用更高效的信道编码算法和调制方式,可以提高网络的吞吐量,同时通过合理选择编码率可以降低网络延迟。

最后,对于LTE网络优化的总结如下:一、网络优化是一个综合性的任务,需要从网络规划、基站参数调整、运动台控制和信道质量优化等多个方面进行思考。

二、在网络优化过程中,需要确保网络的容量和覆盖能够满足用户的需求,同时保证网络的速率和信道质量处于一个较高的水平。

三、通过合理调整基站参数、控制运动台、优化信道质量等手段,可以提高LTE网络的性能,提升用户的体验。

LTE网络优化常见参数介绍

LTE网络优化常见参数介绍

© 2011 WRI Corporation
All rights reserved
内容介绍
第一章 切换参数
第二章 下行功控参数
第三章 传输模式修改
虹信通信 ·无线覆盖解决方案专家
© 2011 WRI Corporation
All rights reserved
传输模式
虹信通信 ·无线覆盖解决方案专家
LTE网络优化常见参数介绍
内容介绍
第一章 切换参数
第二章 下行功控参数
第三章 传输模式修改
虹信通信 ·无线覆盖解决方案专家
© 2011 WRI Corporation
All rights reserved
切换三部曲
虹信通信 ·无线覆盖解决方案专家
© 2011 WRI Corporation
All rights reserved
相关参数-PB
虹信通信 ·无线覆盖解决方案专家
© 2011 WRI Corporation
All rights reserved
参考信号功率
虹信通信 ·无线覆盖解决方案专家
© 2011 WRI Corporation
All rights reserved
参考信号功率(续)
虹信通信 ·无线覆盖解决方案专家
© 2011 WRI Corporation
All rights reserved
切换事件-A1事件(续)
虹信通信 ·无线覆盖解决方案专家
© 2011 WRI Corporation
All rights reserved
切换事件-A2事件(续)
虹信通信 ·无线覆盖解决方案专家
© 2011 WRI Corporation

LTE系统的网络优化

LTE系统的网络优化

LTE系统的网络优化LTE(Long Term Evolution)是第四代移动通信标准,提供了更快的数据传输速度和更低的延迟。

网络优化是确保LTE网络能够提供高质量服务的关键步骤之一,它通过最大化网络资源的利用率、优化数据传输和减少干扰来提高网络性能。

本文将介绍一些关键的LTE网络优化方法。

1.频谱优化:频谱是LTE系统中非常重要的资源,通过优化频谱的利用能够增加网络的容量和效率。

一种常见的频谱优化方法是通过频率重用来减少干扰。

频率重用将频段划分为几个小区域,并且相邻小区域使用不同的频段,以减少同一频段之间的干扰。

2.连接优化:连接优化是改善移动终端连接性能的关键。

一种常见的连接优化方法是通过PDCCH(物理下行控制信道)的频率调度来分配资源。

PDCCH的频率调度可以确保用户终端在下行链路中获得足够的资源,从而提高用户体验。

3.功率控制:功率控制是一种通过调整传输功率来优化网络的方法。

调整传输功率能够减少干扰,提高网络容量。

在LTE系统中,基站通过监测终端传输功率并发送相应的功率控制指令来实施功率控制。

4.小区规划和参数调整:合理的小区规划和参数调整对于优化LTE网络至关重要。

小区规划是指确定基站的布局和覆盖范围。

在小区规划中,需要考虑到用户密度、需求量和地形等因素。

参数调整是指调整小区内的参数设置,如功率、天线倾斜、载干比等,以最大化网络性能。

5.基站部署和扩容:基站的部署和扩容是确保高质量服务的关键。

在LTE网络优化中,需要考虑到合适的基站密度和位置,以满足用户需求并提供稳定的覆盖。

基站的扩容是在需要时增加基站数量,以提高网络容量和可承载用户数。

6.干扰管理:干扰是影响网络性能的一个主要问题。

在LTE网络优化中,需要采取一系列措施来减少干扰。

这包括使用自适应调制解调器、频率选择接入和干扰消除技术等。

7.QoS优化:QoS(Quality of Service)优化是确保网络能够提供满足用户需求的服务质量的关键。

LTE无线网络优化要点及方法

LTE无线网络优化要点及方法

• PCI、PRACH、
TAC等参数优 化
• 基本功能
• 单板告警
• CS性能提升


规划优化建议:PCI规划优化要结合频率、RS位置、小区位 置关系和邻区关系等统一考虑,才能取得合理的结果。

在PCI规划和优化中应满足:

避免冲突:在复用区域内的PCI是唯一的; 避免混淆:不能存在具有相同PCI的邻区。
8
影响网络性能因素的区别
WCDMA 性能 资源 覆盖 码字、终端类型、无线环境 码资源、功率资源、CE资源等 RSCP、EcIo
Cell2
Primary Scrambling code1
Cell2
Physical Cell Identity 1
Cell1
Channel Code (OVSF)
System Bandwidth
Cell1
Sub-carriers
Scrambling code Signal combine User1 Data User2 Data User3 Data User n Data UMTS DL Data transmission
10
无线网络规划指标
公共参考信号覆盖场强 区域类型 RSRP dBm ≥-100 ≥-100 ≥-105 ≥-110 RS-SINR dB ≥-5 ≥-5 ≥-5 ≥-5 覆盖率 90% 90% 90% 90% 小区边缘速率 Mbps DL/UL:4/1 DL/UL:4/1 DL/UL:4/1 DL/UL:2/0.512 小区平均吞吐率 Mbps DL/UL:35/25 DL/UL:35/25 DL/UL:30/20 DL/UL:25/15

LTE 功能扁平化,去掉RNC的物理实体,把部分功能下移到 eNodeB,以减少时延,增强调度能力。 采用全IP技术,继续实行用户面和控制面分离,部分功能上移到核心网,以加强移动交换管理。

LTE的KPI指标分析及优化

LTE的KPI指标分析及优化

LTE的KPI指标分析及优化LTE的KPI(Key Performance Indicator)指标分析及优化,是对LTE网络性能进行评估和改进的重要工作。

本文将从LTE的关键指标出发,对各项指标进行分析及优化措施,以提高LTE网络的性能。

1. 数据速率(Data Rate):数据速率是衡量LTE网络性能的重要指标之一、提高数据速率可通过以下优化措施实现:-增加基站数量:增加基站的覆盖范围和密度,提高用户的连接质量和数据传输速率。

-频谱优化:合理调配频谱资源,提高频谱利用率,增加数据传输速率。

-天线优化:合理设置天线方向和倾角,增加信号覆盖范围和传输效果,提高数据速率。

2. 接入性能(Access Performance):接入性能主要衡量用户接入LTE网络的效率和成功率。

优化措施包括:-增加小区数量:提高网络容量,缓解网络拥塞,提高用户接入成功率。

-加强手动重选功能:在网络负载高或信号弱的情况下,引导用户手动选择其他小区,提高接入成功率。

-优化小区切换参数:合理设置小区切换的优先级和门限值,减少掉话率和呼叫失败率。

3. 话音质量(Voice Quality):话音质量是衡量通话体验的重要指标。

提高话音质量的措施包括:-提高信道质量:通过天线优化,减少信号干扰和衰减,保证通话质量。

-优化码率和编解码算法:选择更高的编解码算法和合适的码率,提高语音的清晰度和准确性。

-减少呼叫丢失率:通过合理设置小区切换和优化呼叫控制流程,减少呼叫丢失率,提高通话质量。

4. 无线覆盖(Wireless Coverage):无线覆盖是衡量LTE网络覆盖能力的主要指标。

提高无线覆盖的措施包括:-增加基站密度:增加基站数量,提高网络覆盖范围和密度,弥补信号覆盖死角。

-使用辅助覆盖技术:如室内小区、中继站等,弥补室内和远离基站的覆盖缺陷。

-天线优化:调整天线方向和倾角,改善信号传播特性,提高覆盖范围和强度。

5. QoS(Quality of Service):QoS是衡量用户体验和网络服务质量的重要指标。

LTE网络优化相关参数

LTE网络优化相关参数

LTE网络优化相关参数LTE(Long-Term Evolution)是一种高速无线通信技术,是4G通信标准的一种。

为了让LTE网络能够实现更高的速率和更好的覆盖范围,网络优化是非常重要的。

网络优化包括参数优化、邻区优化和干扰优化等。

参数优化是LTE网络优化的基础,通过对各种参数的调整,可以提高网络的性能并减少干扰。

下面将介绍一些与LTE网络优化相关的参数:1. RSRP(Reference Signal Received Power):RSRP用于表示UE (User Equipment)接收到的参考信号的功率水平,是衡量网络覆盖范围的重要参数。

通过调整天线方向和天线高度,可以优化RSRP值。

2. RSRQ(Reference Signal Received Quality):RSRQ用于表示参考信号接收质量,是衡量网络质量的参数。

通过调整天线方向和天线高度,可以优化RSRQ值。

3. SINR(Signal-to-Interference-plus-Noise Ratio):SINR用于表示信号与干扰加噪声之比,是衡量网络质量的重要参数。

通过减小干扰源或增加信号源功率,可以提高SINR值。

4. PCI(Physical Cell Identifier):PCI用于表示LTE小区的唯一标识符,是用来进行小区切换和干扰管理的重要参数。

通过调整PCI,可以减小小区间的干扰,提高网络性能。

5. TAC(Tracking Area Code):TAC用于表示一个跟踪区域,是UE 在移动过程中的定位信息。

通过合理划分和优化TAC,可以减小信令开销和干扰。

6. RACH(Random Access Channel)参数:RACH参数用于表示随机接入信道的设置,包括前导码配置和接入响应窗口等。

通过调整RACH参数,可以减少接入时延和冲突,提高网络接入效率。

7. QCI(QoS Class Identifier):QCI用于表示业务质量等级,是衡量网络性能的重要指标。

lte网络优化知识点总结

lte网络优化知识点总结

lte网络优化知识点总结LTE(Long Term Evolution)是一种高速数据传输技术,其优化是为了提高网络性能、增强覆盖范围和提供更好的用户体验。

LTE网络优化需要考虑多个方面,包括网络规划、参数调整、邻区优化、干扰管理等。

本文将从这些方面对LTE网络优化知识点进行总结。

一、 LTE网络规划LTE网络规划是整个LTE网络优化的起点,它涉及到基站位置、天线方向、频点规划等方面。

在LTE网络规划中,需要考虑以下几个关键点:1. 基站位置:基站的位置对网络性能有重要影响,应根据覆盖需求、干扰情况和用户分布等因素来确定基站的位置。

2. 天线方向:LTE网络中的MIMO技术可以提高频谱利用率和覆盖范围,因此天线方向的规划对网络性能至关重要。

3. 频点规划:LTE网络中的频点规划需要考虑到频谱资源的利用、干扰管理等因素,以提高网络性能和覆盖范围。

二、 LTE参数调整LTE网络中有许多参数可以调整,如功率控制、资源分配、调度算法等。

通过合理调整这些参数可以提高网络性能,降低干扰,改善用户体验。

1. 功率控制:LTE网络中的功率控制是保证基站覆盖范围和保证用户的数据传输速率的重要手段。

2. 资源分配:LTE网络中的资源分配需要根据不同的业务需求和网络负载情况来调整,以提高网络效率和用户体验。

3. 调度算法:LTE网络中的调度算法可以影响用户的接入速率、传输速率和接入延迟等,合理调整调度算法可以提高网络性能。

三、邻区优化邻区优化是LTE网络优化的重要内容,它涉及到邻区关系的建立、邻区列表的优化、邻区切换的控制等方面。

1. 邻区关系的建立:邻区关系的建立是LTE网络优化的基础,它影响到切换的成功率、数据传输速率等关键指标。

2. 邻区列表的优化:LTE网络中的邻区列表需要根据覆盖范围、干扰情况、负载情况等因素进行优化,以提高网络性能。

3. 邻区切换控制:LTE网络中的邻区切换需要根据用户的移动速度、信号质量等因素进行控制,以提高用户体验。

LTE网络优化相关参数

LTE网络优化相关参数
网络优化基本概念
dB、dBm
无线信号的相对强度用分贝( dB )来衡量
dB=10×lg(比值),即取以10为底的对数的结果
无线信号的绝对强度常用dBm表示
•dBm= 10lg(P/1mW) •例如:1W等于30dBm 速算方法: 1)+3dB,功率乘2倍;-3dB,功率乘1/2 举例:33dBm=30dBm+3dB=1W×2=2W
LTE覆盖和信号质量基本测量
RSRP(Reference Signal Receiving Power)参考信号接收功率(强度),参考信 号平均功率,接收电平
定义:频率带宽上承载参考信号的资源单元(RE)上的 接收功率的线性平均值。主要用来衡量下行参考信号( CRS)的发射功率,是基站的发射功率,用来衡量下行 的覆盖,一定程度上可反映UE与ENB的距离。 常见范 围:-140dbm~-50dbm
27dBm=30dBm-3dB=1W×1/2=0.5W 2)+10dB,功率乘10倍;-10dB,功率乘1/10 举例:40dBm=30dBm+10dB=1W×10=10W
20dBm=30dBm-10dB=1W×0.1=0.1W
BLER(Block Error Ratio) 定义: 有差错的块与数字电路接收的总块数之比。误块率(BLER )用于无线通信系统的性能测试。还有类似参数如:误比特率 (BER),误帧率(FER)等。以上均为统计值,即是在相对长的一段时 间内的统计平均值。BLER<5%
-85~-95 -95~5 -105~-115
<-115
SINR(单位dB) >25
16~24 11~15 3~10
<3
LTE覆盖和信号质量基本测量
SINR (Signal to Interference plus Noise Ratio)信干噪比

LTE网络关键参数及优化配置建议-20140318

LTE网络关键参数及优化配置建议-20140318


用户使用PRACH信道上的Preamble随机接入,协议支持每个小区64个Preamble,由ZC根序列(preambleformat 0~3下,ZC根序列有838个,preambleformat 4有138个可用ZC根序列),通过循环移位产生多个preamble。如 果小区半径较小,一个ZC根序列就可能多个preamble,当半径较大,就需要多个ZC根序列来产生64个 preamble 不同小区配置不同的PRACH ZC根序列,在上行子帧(默认同一个子帧上),通过码域区分发送preamble序列
组号 PCI Mod 3 =0 0 … 96 99 … 195 198 … 297 300 … 420 423 … 447 450 … 474 477 … 501 PCI Mod 3=1 1 … 97 100 … 196 199 … 298 301 … 421 424 … 448 451 … 475 478 … 502 PCI Mod 3=2 2 … 98 101 … 197 200 … 299 302 … 422 425 … 449 452 … 476 479 … 503 省边界C 超远覆盖、高 省边界B 铁、广覆盖预 留、其余预留 省边界A 室分、微站(用于室内 信源)、家庭式基站、 地铁 省内地市 边界C 宏站、微站 省内地市 (用于室外覆 边界B 盖)、灯杆站 省内地市 边界A 预留规划
HUAWEI TECHNOLOGIES CO., LTD. HISILICON SEMICONDUCTOR
Page 12
小区规划参数(三)- PRACH参数规划建议
Prach分组规划如右图所示:
1、Prach采用码域规划的方法,即只需 要规划根序列即可; 2、Prach根序列所需个数与小区的半径 设置相关,其中右上表为推荐的小区半 径设置; 3、Prach跟序列规划优先级:高铁(配置 高速或超高速小区)>地铁>超远覆盖>省 边界>地市边界>剩余广覆盖站点>室分

LTE 无线网络优化关键性能指标

LTE 无线网络优化关键性能指标

LTE 无线网络优化关键性能指标摘要:本文主要从网络接入类指标;等几方面探讨了主题,旨在与同行共同学习、共同进步。

关键词:LTE;无线网络;优化指标;关键性能;分析随着数据业务的快速发展,LTE 网络建设工作进行的如火如荼,网络优化工作越发迫切,如何利用 LTE 网络 KPI 指标进行网络优化是本文的研究重点。

本文根据 LTE 网络架构,接口协议、信令流程并结合目前运营商已有的 LTE 无线网络关键性能指标,提出了根据 LTE 网络 KPI 指标进行网络优化及问题定位方法,为网络的建设和优化提供方法和依据。

一、LTE 网络架构以及 LTE 无线网络结构所具有的特点1.LTE 网络架构LTE采用由eNB构成的单层结构,这种结构有利于简化网络结构和减小延迟,实现了低时延、低复杂度和低成本的要求。

与3G接入网相比,LTE减少了RNC节点。

LTE 的架构也叫E-UTRAN 架构(见图1)。

E-UTRAN 主要由eNB 构成。

eNB 不仅具有原3G 中No⁃deB的功能,还能完成原来RNC的大部分功能,包括物理层、MAC层、RRC、调度、接入控制、承载控制、接入移动性管理和Inter-cell RRM 等。

LTE E-UTRAN侧的接口主要包括S1接口和X2接口。

由于LTE网络架构与2G/3G网络架构在无线侧存在差异,所以LTE的无线网络KPI指标与2G/3G的KPI指标存在不少差别。

本文从多网络运营商运营维护角度考虑,保持LTE无线网络KPI指标分类与2G/3G无线网络KPI指标分类原则一致性,将LTE的无线网络关键性能指标分为网络接入类、接入保持类、传输完整类、移动管理类和资源负荷类五大类指标。

2、LTE 无线网络结构所具有的特点LTE 无线网络具有将网络的系统构成进行简化以及延缓网络延迟的优势,大多是单层架构,还可以降低网络的维护以及运行成本,减少网络的运行时间。

在 RNC 节点方面与 3G通信网络相比,LTE 无线通信网络可以很大程度上进行删减,因此,LTE无线网络结构又被很多专家学者称为E-UTRAN结构,可以释放数据接入、移动管理以及承载控制等等功能,而E-UTRAN的网络结构也是由eNB组成,所以还具有最基本的3G 通信网络中的 deB 特质。

LTE网络优化 无线参数说明

LTE网络优化 无线参数说明

LTE无线参数总结转载▼分类:LTE学习标签:lte1. 本小区无线参数CC:表示主载波,SCC:表示辅载波,目前LTE(R9版本)都是采用单载波的,到4G(R10版本)有多载波联合技术,就有表示辅载波。

PCI:物理小区标识,范围(0-503)共计504个,RSRP:参考信号接收电平,基站的发射功率;RSRQ:参考信号接收质量,是RSRP和RSSI的比值,当然因为两者测量所基于的带宽可能不同,会用一个系数来调整,也就是RSRQ = N*RSRP/RSSI。

RSSI:接收信号强度指示;UE的发射功率:PUSCH(物理上行共享信道)、PUCCH(物理上行控制信道)、RACH( 随机接入信道)SRS:探测参考信号SINR:信噪比,是接收到的有用信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值;可以这样理解为GSM的 C/I(载干比),CDMA的Ec/IoTransmission mode:传送模式,一共有8种,TM1表示单天线传送数据,TM2表示传输分集(2个天线传送相同的数据,在无线环境差(RSRP和SINR差),情况下,适合在边缘地带),TM3表示开环空间复用(2个天线传送不同的数据,速率可以提升1倍),TM4表示闭环空间复用(),TM5表示多用户mimo,TM6表示rank=1的闭环预编码,TM7表示单流BF,TM8表示:双流BFRank indicator:表示层的意思,rank1表示单层,速率较低,rank2表示2层,速率高PDSCH RB number:表示用户使用的该用户使用的RB数。

这个值看出,该扇区下大概有几个用户。

(20M带宽对应100个RB ,15M对应75个RB,10M对应50个RB,5M 对应25个RB,3M对应15个RB,1.4M对应6个RB),多用户可以造成速率低原因之一。

2. 服务与邻扇区参数介绍EARFCN:表示下行的中心频点服务扇区与邻扇区的PIC不能mod3值相同,否则有很强的干扰。

LTE基站重要无线参数设置参数位置

LTE基站重要无线参数设置参数位置

LTE基站重要无线参数设置参数位置在LTE基站中,有许多重要的无线参数需要进行设置以确保系统的正常运行和最佳性能。

这些参数涵盖了移动网络的各个方面,包括频段、载波配置、功率控制、调度算法等。

下面将介绍LTE基站中一些重要的无线参数设置以及其位置。

1.频段配置:频段配置是指将可用的频段分配给不同的运营商或服务提供商。

这个参数需要在基站的配置文件中进行设置,通常位于核心网控制器中心设备配置文件中。

2.载波配置:LTE系统支持多载波聚合技术,即将多个不同频段的载波进行组合以增加系统容量和速率。

载波配置通常需要在基站控制器中进行设置,具体位置可能在网络拓扑配置中。

3.功率控制:功率控制参数包括上行功率控制和下行功率控制。

上行功率控制用于控制移动终端设备的发送功率,下行功率控制用于控制基站发送的信号功率。

这些参数通常位于基站配置文件中的射频设备配置中。

4.调度算法:调度算法用于控制无线资源的分配和调度,以实现系统吞吐量最大化和公平性。

调度算法的设置通常在核心网控制器中进行,并通过基站与核心网控制器之间的接口进行传输。

5.带宽配置:带宽配置参数用于设置每个载波的带宽大小。

这个参数可以通过基站控制器进行设置,通常位于网络元素配置中。

6.QoS参数:QoS(服务质量)参数用于对不同类型的流量进行优先级和保障服务。

这些参数通常需要在核心网控制器中进行设置,并通过基站与核心网控制器之间的接口进行传输。

7.支持的频率带宽:由于LTE系统支持不同的频段和带宽,因此需要设置支持的频率带宽参数。

这个参数通常在基站软件中进行设置。

8.MAC参数:MAC(介质访问控制)参数用于控制调度资源的分配和管理。

这些参数通常需要在基站控制器中进行设置,并通过基站与核心网控制器之间的接口进行传输。

以上这些重要的无线参数设置可以提高LTE基站的性能和效率,并确保系统的正常运行。

不同的参数设置会对网络的性能和用户体验产生不同的影响,因此需要经过调试和优化来得到最佳的设置。

LTE无线网络优化的关键性能指标

LTE无线网络优化的关键性能指标
率 , 另 一方 面 还 可 以优 化 区域 边 缘 的 用 户 使 用
两个信令信 号,并在 无线端 这一侧发送 E R AB 释放请求 ,如果用户 已经存在掉话 问题 ,则请 求会主动反馈 给上衣系统 ,并达成 上下文的释
放 请 求 。在 系 统 干 扰 方 面 ,可 以对 参 数 、天 馈 、 设 备 等 方 面 着 手 进 行 优 化 。根 据 系 统 外 干 扰 ,
置 以及 空 间 复 用 的层 数 。
HS P A必 然会遭受 到带宽限制 所形成 的影 响,
L T E 网络 的 应 用 终 将 成 为 现 实 ,并 且 突破 这 些
般在掉话放 生之后 ,系统会主动 向用户 发送
影 响因素 。L T E网络具备非常 多的优 势,一方 面 能够 提高有效 区域 内所有用 户数据 的传 输效
措施
业务数据量 。业务量关键 性能指标的影响 因素
相 对 较 为 复 杂 ,其 主 要 以及 业 务 类 型 等 。 在 性 能 优 化 方
式,主要是优化网络的架构和组 网方式 等。 2 . 5服务完整性类关键性 能指标 这一 类型 的 关键 性能 指标 主要 是应 用住 表征 E — UT R AN 当中终端用户 的服 务质量服务 状况 ,可 以划分为簇级 与小区级 。其 中,最为 重要的便是上行 、下行业 务平 均吞吐率 ,其 主
参考文献
【 1 ]潘 翔 . I E E E 8 0 2 . 1 1 a c无 线 网 络 性 能 分 析 与
优化研 究 【 D 】 .北京邮电大学 , 2 0 1 5 .
[ 2 】 部周军 , 崔雁 松 . L T E 无 线 网络 优化 关键
般 情 况 下 ,传 统 的 完 整 类 指 标 主 要 是

移动通信网络优化的关键参数指标释义

移动通信网络优化的关键参数指标释义

优化关键参数指标释义目录1 功率过载参数 (5)1.1 参数释义 (5)2 切换参数 (7)2.1 软切换过程 (7)2.2 切换参数释义 (8)3 控制信道参数 (9)3.1 参数释义 (9)4 接入参数 (10)4.1 参数释义 (10)5 PN复用、PN混淆 (11)5.1 概念释义 (11)6 搜索窗 (12)6.1 参数释义 (12)7 小区半径 (14)7.1 概念释义 (14)8 覆盖指标 (15)8.1 覆盖关键指标 (15)8.2 覆盖率 (16)8.3 影响覆盖的因素 (16)8.4 覆盖几个指标的分析 (16)8.5 改善覆盖质量的常用优化措施 (17)9 关键性能指标 (18)9.1 呼叫建立成功率 (18)9.2 业务信道掉话率 (18)9.3 软切换成功率 (18)9.4 软切换比例 (18)9.5 话务掉话比 (19)9.6 坏小区 (19)9.7 系统接通率 (19)9.8 寻呼成功率 (19)10 邻区优化 (20)10.1 邻区列表 (20)10.2 邻接小区 (20)10.3 邻区列表配置原则 (20)11 双载频换频切换 (22)11.1 数据库方式实现换频切换 (22)11.2 伪导频方式实现换频切换 (23)11.3 两种换频切换方式比较 (26)12 常见网优问题分析 (27)12.1 业务信道负载率 (27)12.2 越区覆盖问题 (27)12.3 搜索窗设置问题 (27)12.4 ECAM发送消息参数 (28)12.5 影响话务掉话比指标的问题 (30)12.6 掉话相关定时器 (30)12.7 基站资源拥塞问题 (31)12.8 BSC资源拥塞问题 (31)13 常见问题原因分析 (32)13.1 语音呼叫失败原因 (32)13.2 语音异常释放原因 (32)13.3 语音切换失败原因 (33)参考文章 (34)1序言本文针对自己初步的网优工作积累和网优知识学习汇总介绍了网络优化过程中经常涉及到的关键参数和指标,以及常见网优问题分析和问题产生原因分析,希望对网优还不太精通的同事有所帮助,可能难免有些疏漏之处,请批评指正!2功率过载参数前向功率过载控制采用了3级控制,即T_SETUP(限制呼叫建立门限,缺省设为90%)、T_HO(限制软切换加门限,缺省设为95%)、T_PWRUP(限制现有呼叫功率增长门限,缺省设为100%)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SIR(Signal to Interference Ratio)信号干扰比
定义:(RSCP/Interference)×SF。这里针对的下行信号RSCP为DPCH或者 PDSCH信道上接收信号码功率;Interference为在RSCP测量的时隙上不能被接收机 消除的干扰。SIR范围:-11~20dB
RSSI(Received Signal Strength Indicator)
定义:接收到的所有信号(包括导频信号和数据信号,邻区干扰信号,噪音信号等)功率 的平均值,是指接收的信号强度指示。
SIR(Signal to Interference Ratio)信号干扰比
定义:(RSCP/Interference)×SF。这里针对的下行信号RSCP为DPCH或者 PDSCH信道上接收信号码功率;Interference为在RSCP测量的时隙上不能被接收机 消除的干扰
<-115
SINR(单位dB) >25
16~24 11~15 3~10
<3
27dBm=30dBm-3dB=1W×1/2=0.5W 2)+10dB,功率乘10倍;-10dB,功率乘1/10 举例:40dBm=30dBm+10dB=1W×10=10W
20dBm=30dBm-10dB=1W×0.1=0.1W
UMTS覆盖和信号质量基本测量
RSCP (Received Signal Code Power)接收信号码功率
CQI(Channel Quality Indicator )
定义:下行调度中用来反映信道质量的标识。 范围:0-15 0-6 QPSK 7-9 16QAM, 10-15 64QAM
LTE覆盖和信号质量基本测量

极好点 好点 中点 差点
极差点
RSRP(单位dBm) >-85
-85~-95 -95~-105 -105~-115
定义:接收到的所有信号(包括导频信号和数据信号,邻区干扰信号,噪音信号等)功率 的平均值,是指接收的信号强度指示。
RSRQ (ReferenceSignalReceivingQuality)参考信号接收质量
定义:RSRQ = RSRP * RB Number/RSSI 主要衡量下行特定小区参考信号的接收质量。和CDMA中Ec/Io作用类似。二者的定 义也类似,
定义:是指UE接收到的信号经解调、解扰和解扩后,得到的特定码道功率。 WCDMA系统中PCPICH以特定功率发射,发射功率大小与负载无关,因此通过测量 RSCP可对终端和NodeB间的传播损耗进行定量分析。RSCP大小可粗略判断目标区 域覆盖情况。TD-SCMDA系统中RSCP指的是PCCPCH码道的功率
UMTS覆盖和信号质量基本测量
Ec/Io
定义: Ec/Io,是一个衡量接收到的导频(Pilot)信号质量的参数。 Ec 即 Energy per Chip,平均码片能量。 Io 即 the total Interference density,总干扰功率谱密度。
是接收到有用的导频信号与接收到的总信号(含干扰)的比值。 一般而言,Ec/Io >= -12dB
LTE覆盖和信号质量基本测量
SINR (Signal to Interference plus Noise Ratio)信干噪比
定义:指接收到的有用信号的强度与接收到的干扰信号(噪声和干扰)的强度的比 值;可以简单的理解为“信噪比”。 SINR=Signal / (Interference+Noise) S:测量到的有用信号的功率,主要关注的信号和信道包括:RS、PDSCH; I:测量到的信号或信道干扰信号的功率,包括本系统其他小区的干扰,以及异系统 的干扰: N:低噪,与具体测量带宽和接收机噪声系数有关。
BLER(Block Error Ratio)
定义: 有差错的块与数字电路接收的总块数之比。块差错率(BLER)用于无线通信 系统的性能测试。还有类似参数如:误比特率(BER),误帧率(FER)等。以上均为统 计值,即是在相对长的一段时间内的统计平均值。BLER<5%
LTE覆盖和信号质量基本测量
RSRP(Reference Signal Receiving Power)参考信号接收功率
网络优化基本概念
dB、dBW 、dBm
无线信号的相对强度用分贝( dB )来衡量
dB=10×lg(比值),即取以10为底的对数的结果
无线信号的绝对强度常用dBW、dBm表示
•dBW= 10lg(P/1W) •dBm= 10lg(P/1mW) •dBm=dBW+30 •例如:1W等于30dBm,等于0dBW 速算方法: 1)+3dB,功率乘2倍;-3dB,功率乘1/2 举例:33dBm=30dBm+3dB=1W×2=2W
定义:频率带宽上承载参考信号的资源元素(RE)上的接收功 率的线性平均值。 主要用来衡量下行参考信号的功率,用来衡量下行的覆盖。用处和规范都等同于 WCDMA中的RSCP(Received Signal Code Power)接收信号码功率。
RSSI(Received Signal Strength Indicator)
相关文档
最新文档