Short-term effects of nitrate,nitrite and ammonium assimilation on
双波长分光光度法同时测定溶液中的硝酸根和碘离子
双波长分光光度法同时测定溶液中的硝酸根和碘离子张慧芳;郭探;李权;叶秀深;吴志坚【摘要】食品和环境样品中往往同时含有硝酸根和碘离子,用紫外分光光度法直接测定硝酸根或碘离子时,二者相互干扰.为此建立了主、次波长分别为220.0、231.5 nm的等吸收点双波长紫外分光光度法测定溶液中的硝酸根和共存的碘离子.当溶液中硝酸根的浓度范围在0~0.12 mmol/L,碘离子的浓度在0~0.10 mmol/L时,主、次波长下的吸光度差值A220-231.5与溶液中硝酸根的浓度CNO3-呈良好线性关系,线性方程为A220-231.5=2.9958 CNO3-+0.0016(R2=0.99994);其中A220( NO3-)=3.6099 CNO3-+0.0084(R2=0.99994),利用吸光度的加和性:A220 (I-)=A220-A220 (NO3-)=10.7394 CI-+0.0029(R2=0.99994),间接得到碘离子含量CI-.硝酸根和碘离子的平均相对标准偏差分别为0.6%、0.2%,回收率分别为99.5%~102%、99.9%~100%.方法简便快捷,可用于溶液中微量硝酸根和碘离子的同时测定.【期刊名称】《中国无机分析化学》【年(卷),期】2011(001)004【总页数】5页(P24-28)【关键词】硝酸根;碘离子;双波长分光光度法【作者】张慧芳;郭探;李权;叶秀深;吴志坚【作者单位】中国科学院青海盐湖研究所,西宁810008;中国科学院研究生院,北京100049;中国科学院青海盐湖研究所,西宁810008;中国科学院研究生院,北京100049;中国科学院青海盐湖研究所,西宁810008;中国科学院青海盐湖研究所,西宁810008;中国科学院青海盐湖研究所,西宁810008【正文语种】中文【中图分类】O657.32;TH744.12+21 引言工业废水、农田排水的不合理排放以及化肥使用量的不断增加,致使大量硝酸盐进入地下水[1-4],也导致很多蔬菜中的硝酸盐含量超标[5]。
碧云天-总一氧化氮检测试剂盒说明书
总一氧化氮检测试剂盒产品简介:总一氧化氮检测试剂盒(Total Nitric Oxide Assay Kit, 即Nitrate/Nitrite Assay Kit)采用了硝酸盐还原酶(Nitrate reductase)还原硝酸盐(nitrate)为亚硝酸盐(nitrite),然后通过经典的Griess reagent检测亚硝酸盐,从而测定出总一氧化氮。
一氧化氮本身极不稳定,在细胞内很快代谢为硝酸盐(Nitrate)和亚硝酸盐(Nitrite),通过上述方法检测出硝酸盐和亚硝酸盐的总量,就可以推算出总的一氧化氮的量。
本试剂盒采用了NADPH依赖性硝酸盐还原酶(NADPH dependent nitrate reductase)。
高浓度的NADPH会干扰后续的检测,消除NADPH的一种常用方法就是使用Lactate dehydrogenase (LDH)清除NADPH。
本试剂盒采用了LDH清除NADPH的方法,使检测结果更加准确。
对亚硝酸盐的检测下限达到2微摩尔/升,在2-80微摩尔/升的范围内有很好的线性关系。
浓度过高的样品可以适当稀释后再进行检测。
样品范围广,可以检测细胞裂解液、组织裂解液、细胞或组织的培养液、血清、血浆或尿液等中一氧化氮的含量。
酚红和10%血清对测定无明显干扰。
样品需要量少。
根据样品中一氧化氮的浓度不同,仅需0-60微升样品。
检测速度快,仅需约80分钟即可完成检测。
本试剂盒采用了间接的一氧化氮检测方法,如需检测细胞内实际的一氧化氮水平,可以采用碧云天生产的DAF-FM DA (NO荧光探针)(S0019)。
保存条件:-20℃保存,一年有效。
NADPH,Nitrate Reductase,NaNO2 (1M),Griess Reagent I 和Griess Reagent II需避光保存。
NADPH配制成溶液后必须分装并-70℃保存。
注意事项:RPMI 1640等含有较高浓度硝酸盐的培养液容易对本试剂盒的检测产生干扰,请尽量避免。
应用化学专业英语课文翻译(精选篇)
元素周期表随着对原子的描述越来越详尽,我们发现自己处于进退两难之地。
涉及着100种元素,我们怎样使这些元素保持连续性。
一种方法是用元素周期表,周期表巧妙地把原子信息列成表。
它记录着一种元素含有多少质子和电子,它使我们可以计算出大多数元素同位素的中子数。
周期表也存有每种元素的电子排列情况。
周期表最不寻常的是它的发展是在人们还不知道原子中含有质子和中子之前。
道尔顿提出了他的原子模型后不久(一种不可再分的粒子,它的质量取决于它的性质),化学家开始根据原子质量来排列元素。
当得出这种元素表,科学家们观测到元素的规律。
例如,那些出现在特定的位置的元素有某些相似性,这一观点已经越来越明显。
当时已知的约60种元素中,第二种和第九种元素表现出相似性,第三种与第十种元素,第四种与第十一种元素也都具有相似的性质。
1869年,门捷列夫,一个俄国化学家,提出了他们的元素周期表。
他列表时考虑到原子质量和元素某种特性的周期性。
这些元素主要是按原子质量递增的顺序排列的。
在特别情况下,门捷列夫把较重的元素放在较轻元素之前。
他这样做是为了在相同列上的元素有相似的化学性质。
比如,他把蹄(原子质量=128)放在碘(原子质量=127)之前,因为蹄的性质和硫及硒相似,而碘的性质和氯及溴相似。
门捷列夫在他的周期表中列了许多气体,在他的周期表中留下了一些空格,他非但没有将那些空格看成缺憾,反而大胆地预测还存在着未被发现的元素。
而且,他还预测了许多未知元素的性质。
在接下来的几年里,许多气体被填充在新发现的元素中。
这些元素的性质通常和门捷列夫预测的非常接近。
这些伟大创新的预测使门捷列夫的元素周期表被广泛接受。
众所周知,一种元素的性质主要取决于原子最外层能级上的电子数。
Na在它的最外层能级(第三层)有一个电子,Li原子在它的最外层(第二层)有一个单独的电子。
Na和Li的化学性质相似。
He和Ne原子已将所有能级排满,它们性质也相似,就是不容易发生化学反应。
QuEChERS-_超高效液相色谱串联质谱法测定鸡蛋中甲硝唑和地美硝唑药物残留量
QuEChERS-超高效液相色谱串联质谱法测定 鸡蛋中甲硝唑和地美硝唑药物残留量王 易(广东省惠州市质量计量监督检测所,广东惠州 516000)摘 要:建立了QuEChERS结合超高效液相色谱串联质谱法测定鸡蛋中甲硝唑和地美硝唑残留量的方法。
样品经乙腈提取,QuEChERS净化后,使用Agilent Eclipse Plus C18柱分离,以乙腈和0.1%甲酸水溶液为流动相进行洗脱,多反应监测模式下检测,外标法定量。
结果表明,甲硝唑和地美硝唑的质量浓度在0~50 ng·mL-1时线性关系良好(r2>0.999),检出限分别为0.002 μg·kg-1、0.007 μg·kg-1;在低、中、高3个添加水平下甲硝唑和地美硝唑的加标回收率分别为95.79%~97.80%、95.66%~100.10%。
该方法前处理简单、重现性好、灵敏度高,适用于鸡蛋中甲硝唑、地美硝唑的测定。
关键词:鸡蛋;甲硝唑;地美硝唑;QuEChERS;超高效液相色谱串联质谱法Determination of Metronidazole and Dimetridazole Residues in Eggs by QuEChERS Combined with Ultra-High Performance Liquid Chromatography Tandem-Mass SpectrometryWANG Yi(Guangdong Huizhou Quality and Measuring Supervision Testing Institute, Huizhou 516000, China) Abstract: A QuEChERS combined with ultra-high performance liquid chromatography tandem mass spectrometry method was established to determine the residues of metronidazole and dimetridazole in eggs. The sample was extracted with acetonitrile, purified with QuEChERS, and separated using an Agilent Eclipse Plus C18 column. The mobile phase was eluted with acetonitrile and 0.1% formic acid aqueous solution, and detected under multiple reaction monitoring mode. The external standard method was used for quantification. The results showed that the mass concentrations of metronidazole and dimetridazole were linear in the range of 0~50 ng·mL-1 (r2>0.999), and the detection limits were 0.002 μg·kg-1 and 0.007 μg·kg-1; under low, medium and high addition levels, the recoveries were 95.79%~97.80%, 95.66%~100.10% respectively. The method is simple, reproducible and sensitive, and is suitable for the determination of metronidazole and dimetridazole in eggs.Keywords: eggs; metronidazole; dimetridazole; QuEChERS; ultra-high performance liquid chromatography tandem-mass spectrometry鸡蛋含有非常丰富的卵磷脂、脂肪、蛋白质、微生物、矿物质、微量元素等营养成分,被誉为“全营养”食品[1],现已成为日常饮食中的重要组成部分。
硝态氮和亚硝态氮英文文章
硝态氮和亚硝态氮英文文章Nitrate and Nitrite: A Comprehensive OverviewNitrate (NO3-) and Nitrite (NO2-) are two important forms of nitrogen compounds found in various natural and man-made environments. In this article, we will delve into the properties, sources, and potential impacts of nitrate and nitrite.Properties:Nitrate is a polyatomic ion composed of one nitrogen atom bonded to three oxygen atoms. It carries a negative charge and is highly soluble in water. Nitrate is commonly found in fertilizers and is a major component of agricultural runoff. It can also be formed through the oxidation of nitrogen gas in the atmosphere. Nitrite, on the other hand, is a compound consisting of one nitrogen atom bonded to two oxygen atoms. It can exist in both organic and inorganic forms. Nitrite is often used as a food additive to preserve the color and flavor of cured meats. It can be converted to nitrate through microbial processes in the environment.Sources:Nitrate can be found naturally in soil, water, and plants. It is an essential nutrient for plant growth and is taken up by plants through their root systems. However, excessive use of fertilizers and poor agricultural practices can lead to the accumulation of nitrate in water bodies, causing water pollution.Nitrite can be formed through the microbial breakdown of organic matter, suchas animal waste and decaying plants. It can also be produced during the nitrification process, where ammonia is converted to nitrate by bacteria. In addition, nitrite can be introduced into the environment through industrial activities and wastewater discharge.Impacts:High levels of nitrate in drinking water can pose health risks, especially for infants and pregnant women. Nitrate can interfere with the blood's ability to carry oxygen, leading to a condition called methemoglobinemia or "blue baby syndrome." Nitrate can also contribute to the formation of harmful algal blooms in aquatic ecosystems, which can deplete oxygen levels and harm fish and other aquatic organisms.Nitrite, when present in excessive amounts, can react with compounds in the stomach to form nitrosamines, which are known carcinogens. This is why there are strict regulations on the use of nitrite as a food preservative. Additionally, nitrite can react with hemoglobin in the blood to form methemoglobin, which impairs its oxygen-carrying capacity.In conclusion, nitrate and nitrite are important nitrogen compounds that have both natural and anthropogenic sources. While they play crucial roles in plant growth and food preservation, their excessive presence can have detrimental effects on human health and the environment. Proper management and regulation of nitrate and nitrite levels are essential to ensure water and food safety.。
固相萃取技术及其在N-亚硝胺分析中的应用
固相萃取技术及其在N-亚硝胺分析中的应用摘要:固相萃取(SOILD PHASE EXTRACTION,简称SPE)是近年来快速发展的样品前处理技术,由液固萃取和柱液相色谱技术相结合发展而来,其原理是根据萃取组分、样品基质及其它成分在固定相填料上作用力强弱的不同而使它们彼此分离,达到样品分离富集的目的。
与液液萃取法(Liquid-Liquid Extraction, LLE)相比,处理水样量大、使用有机溶剂量少,是水中痕量富集的理想途径。
本文介绍了固相萃取技术的原理、操作过程并综述了固相萃取技术在N-亚硝胺分析中的研究进展及应用。
关键词:固相萃取;N-亚硝胺;分析方法N-亚硝胺是亚硝基化合物中的一种,其一般结构为R2(R1)N-N=O。
N-亚硝胺在通常条件下不易分解。
在中性和碱性环境中较稳定,但在特定条件下也发生反应,如N-亚硝基二甲胺在盐酸溶液中加热70~110℃即可分解,除了盐酸外,Br2、H2SO4加KMnO4、HBr 加冰乙酸都可作为去亚硝化剂[1]。
N-亚硝胺在紫外光照射下,N=O基可以裂解,紫外光解反应在酸性水溶液或有机溶媒中都能进行。
此外,某些N-亚硝胺具有挥发性。
这样一种在温和的条件下极稳定的物质,具有高致癌性。
迄今为止,已发现的N-亚硝胺中90%左右可诱发动物不同器官的肿瘤。
此外,这类物质还具有致畸,致突变以及神经毒性等生物毒害。
人群中流行病学调查表明,人类某些癌症,如胃癌、食道癌、肝癌、结肠癌和膀胱癌等可能与N-亚硝胺有关[2]。
从理论上讲,由于大多数食品都含有蛋白质,以及氮氧化物在环境中的分布广泛,这两点使得几乎所有的食品都有产生N-亚硝胺的可能,但是胺类物质只有在蛋白质腐败分解时才会产生,所以蛋白质丰富且容易腐烂的食品是高含量N-亚硝胺的主要风险,肉制品和水产品中N-亚硝胺的含量就成为人们关注的焦点。
已有报道,在奶酪[3] [4]、鱼肉制品[5]、烘烤肉制品[6-9]和火腿[10]等食品中都检测到至少一种N-亚硝胺存在。
硝酸盐还原英语
硝酸盐还原英语Nitrate Reduction in EnglishNitrates are a class of chemical compounds that consist of a nitrogen atom bonded to three oxygen atoms. They are ubiquitous in the environment, playing a crucial role in various natural and anthropogenic processes. One of the most significant aspects of nitrates is their ability to undergo reduction, a process in which the nitrogen atom in the nitrate molecule is converted to a different form, often with important implications for environmental and industrial applications.The reduction of nitrates is a complex and multifaceted process that can occur through both biological and chemical pathways. In the natural environment, the reduction of nitrates is primarily driven by the activities of various microorganisms, such as bacteria and archaea, which utilize nitrates as an electron acceptor in their metabolic processes. This process, known as denitrification, is a crucial component of the global nitrogen cycle, as it helps to remove excess nitrates from aquatic and terrestrial ecosystems.The denitrification process involves a series of enzymatic reactions inwhich nitrates are sequentially reduced to nitrites, nitric oxide, nitrous oxide, and finally, molecular nitrogen. The enzymes responsible for these reactions are collectively known as nitrate reductases, and they are produced by a diverse array of microorganisms, including both heterotrophic and autotrophic species.The reduction of nitrates can also occur through chemical pathways, particularly in industrial and agricultural settings. In these contexts, the reduction of nitrates is often employed as a means of mitigating the environmental impact of nitrate-rich waste streams or as a method of producing valuable chemical products.One of the most prominent examples of the chemical reduction of nitrates is the production of nitric oxide (NO), a highly reactive gas that has a wide range of applications in both the industrial and medical fields. Nitric oxide is produced through the reduction of nitrates using various reducing agents, such as hydrogen gas or organic compounds. This process is particularly important in the production of fertilizers, as nitric oxide is a key precursor to the synthesis of ammonia, a critical component of many agricultural fertilizers.Another important application of nitrate reduction is the treatment of wastewater and the removal of excess nitrates from aquaticenvironments. In this context, the reduction of nitrates is often coupled with the use of biological denitrification processes, in which microorganisms are used to convert nitrates into harmless nitrogen gas. This approach is particularly valuable in addressing the problem of eutrophication, a phenomenon in which excessive nutrient inputs, including nitrates, can lead to the overgrowth of algae and the depletion of dissolved oxygen in aquatic ecosystems.The reduction of nitrates also plays a role in the production of certain pharmaceutical and industrial chemicals. For example, the reduction of nitrates can be used to synthesize various organic compounds, such as amines and nitriles, which are important building blocks for a wide range of chemical products.Despite the numerous benefits of nitrate reduction, there are also some potential drawbacks and challenges associated with this process. One of the most significant concerns is the potential for the formation of nitrite, a compound that can be toxic to both humans and the environment. Additionally, the reduction of nitrates can also lead to the production of other potentially harmful compounds, such as nitric oxide and nitrous oxide, which can contribute to air pollution and climate change.To address these challenges, researchers and industry professionals are continually working to develop more efficient andenvironmentally-friendly methods of nitrate reduction. This includes the development of new catalysts and enzymatic systems, as well as the optimization of existing processes to minimize the formation of unwanted byproducts.In conclusion, the reduction of nitrates is a complex and multifaceted process with a wide range of applications in both the natural and industrial realms. From the removal of excess nitrates in aquatic environments to the production of valuable chemical products, the reduction of nitrates plays a crucial role in shaping the world around us. As our understanding of this process continues to evolve, it is likely that we will see even more innovative and sustainable approaches to nitrate reduction in the years to come.。
能源化学工程专业英语资料
摘要:本文用沉淀法制备了新型氧化铜-氧化锌的催化剂并将其用于水煤气变换反应。
详细考察了焙烧温度、铜含量对催化剂活性的影响。
应用XRD、BET、TPR技术分析了催化剂的比表面积。
结果表明:随着铜含量的增加,催化剂活性提高。
而催化剂活性与氧化锌面积无关,纳米铜晶粒是催化剂高活性的原因。
Abstract:in the work,the novel CuO-ZnO catalysts have been prepared by precipitation method for water gas shift reaction. The effect of temperature and copper content on the performance of catalysts has been investigated in detail. The XRD BET and TPR technology has been employed to analyze the specific surface area of catalysts. The results indicate: the activity of catalysts increase with increasing of copper content. However the activity of catalysts is independent of surface area of ZnO. The highly activity of catalysts can be attributed to nano- copper crystalline.摘要:本文用两步法制备了新型光电聚合物材料并测试了其光电转化效率等性能。
典型的制备过程如下:首先将10mL的乙醇和50mL的甲酸加入到反应器中,然后在剧烈搅拌下将氢氧化钠溶解于上述体系中,在催化剂存在下70摄氏度下搅拌三小时。
碧云天-总一氧化氮检测试剂盒说明书
总一氧化氮检测试剂盒产品简介:总一氧化氮检测试剂盒(Total Nitric Oxide Assay Kit, 即Nitrate/Nitrite Assay Kit)采用了硝酸盐还原酶(Nitrate reductase)还原硝酸盐(nitrate)为亚硝酸盐(nitrite),然后通过经典的Griess reagent检测亚硝酸盐,从而测定出总一氧化氮。
一氧化氮本身极不稳定,在细胞内很快代谢为硝酸盐(Nitrate)和亚硝酸盐(Nitrite),通过上述方法检测出硝酸盐和亚硝酸盐的总量,就可以推算出总的一氧化氮的量。
本试剂盒采用了NADPH依赖性硝酸盐还原酶(NADPH dependent nitrate reductase)。
高浓度的NADPH会干扰后续的检测,消除NADPH的一种常用方法就是使用Lactate dehydrogenase (LDH)清除NADPH。
本试剂盒采用了LDH清除NADPH的方法,使检测结果更加准确。
对亚硝酸盐的检测下限达到2微摩尔/升,在2-80微摩尔/升的范围内有很好的线性关系。
浓度过高的样品可以适当稀释后再进行检测。
样品范围广,可以检测细胞裂解液、组织裂解液、细胞或组织的培养液、血清、血浆或尿液等中一氧化氮的含量。
酚红和10%血清对测定无明显干扰。
样品需要量少。
根据样品中一氧化氮的浓度不同,仅需0-60微升样品。
检测速度快,仅需约80分钟即可完成检测。
本试剂盒采用了间接的一氧化氮检测方法,如需检测细胞内实际的一氧化氮水平,可以采用碧云天生产的DAF-FM DA (NO荧光探针)(S0019)。
保存条件:-20℃保存,一年有效。
NADPH,Nitrate Reductase,NaNO2 (1M),Griess Reagent I 和Griess Reagent II需避光保存。
NADPH配制成溶液后必须分装并-70℃保存。
注意事项:RPMI 1640等含有较高浓度硝酸盐的培养液容易对本试剂盒的检测产生干扰,请尽量避免。
常见化学物质中英文
表一常见无机物英文名319表二常见有机物英文名(Fill in the blanks for practice.)320321常用工业化学品中英名硝酸钙Calcium nitrate冰醋酸Glacial acetic acid对苯二酚Hydroquinone氢氧化钠Sodium Hydroxide叔丁基胺Tert-butylamine丙烯酸树脂Acrylic resin十六烷醇Cetyl alcohol乙二醇Ethylene glycol甘油Glycerine or glycerol过硫酸铵Ammonium persulfate硫酸铵Ammonium sulfate三聚磷酸钠Sodium tripolyphosphate氧化镁Magnesium oxide磷酸三钠Trisodium Phosphate对苯二酚Hydroquinone月桂醇硫酸钠sldium lauryl sulfate对羟基苯甲酸para-hydroxybenzoic acid苯甲酸钠Sodium benzoate过氧化氢Hydrogen Peroxide邻苯二甲酸酐Phthalic Anhydride2,3-二氨基甲苯2,3-diamino toluene三苯基硼Triphenyl borane松油精Dipentine高锰酸钾Potassium Permanganate二环戊二烯Dicyclopentadiene (DCPD)金红石型氧化钛Titanium Dioxide (Rutile)硼酸Boric acid氧化铅Lead Oxide邻苯二甲酸酐0-Phthalic Anhydride碳黑Carbon Black粒状活性炭Granular activated carbon粉状活性炭Powered activated carbon磷酸Phosphoric acid次硫酸钠Sodium Hydrosulfite磷酸二氢铵Ammonium Dihydrogen Phosphate水合肼Hydrazine Hydrate干酪素Casein (food grade)柠檬酸Citric acid硫代硫酸钠Sodium thiosulfate硝酸钙Calcium nitrate322硫酸钾Potassium sulfate氯化钠Sodium chloride丙烯酰氯Acrylyl chloride苏打灰Soda ash间氯苯胺m-chloroaniline尿素Urea氧化铁黄Iron oxide yellow氧化铁红Iron oxide red1,1,1-三氯乙烷1,1,1-Trichloroethane氯化铵Ammonium chloride苯酚Phenol磷酸三钙Tricalcium phosphate碳酸氢钠Sodium bicarbonate碳酸钠Sodium carbonate山梨糖醇Sorbitol一水葡萄糖Dextrose monohydrate碳化钙Calcium carbide酒石酸盐Tartrate鉻酸銨Ammonium chromate甲酸铵Ammonium formate聚丙烯薄膜Polypropylene (PP ) Sheet表三323表四环境科学英语重要单词定义表Term DefinitionAcid rain Precipitation (rain,snow, sleet, etc) that is more acidic than normalcaused by air pollutants; also known as acid precipitation.Acid-base titration The determination of acid or base concentration by a titration method. Acidity The amount of acid in water which requires certain amount of alkali toneutralize to a given pH, often pH 8.3 as defined in water chemistry. Acoustical materials Sound-absorbing materials that can be used to reduce noise. Activated carbon Specially produced carbon particles or granules which possess largeinner surface area, effective in adsorbing solutes in water, or gaseousmaterial.Activated sludge process A controlled aerobic biological treatment process which can oxidize organic materials (BOD) and ammonia, etc, and makes the water more acceptable to discharge or reuse.Aeration Exposing water to the air; often results in the release into theatmosphere of gaseous impurities found in polluted water.Agricultural waste, or residue Large quantity of unused products such as rice straw, corn stalk, etc. Often can be converted to compost or other useful products.Agricultural chemicals Chemicals used for agricultural purpose, such as fertilizers,insecticides, herbicides, etc.Alkaline The opposite of acidic; basic. Alkaline oil or rock may neutralize acid324325326327328329330331表五能源环境中英文名称对照表332333334335336337表六能源相关中英文名词表338339340。
熔盐的英文MSDS
1. Identification of the substance/mixture and of the company/undertakingProduct identifierCommercial Product Name ASDRelevant identified uses of the substance or mixture and uses advised againstRelevant identified usesHeat transfer salt for the chemical industry.Only for industrial use.Recommended restrictions None known.Details of the supplier of the safety data sheetContact person Product-Safety@ AddressDurferrit GmbH Industriestraße 3D-68169 MannheimTelephone: +49 621 32224-0FAX: +49 621 32224-809Email: info@Responsible DepartmentDUSTelephone: +49 621 / 32224 - 28Fax: +49 621 / 32224 - 800Emergency telephone number Emergency telephone number0049 (0) 6132-844632. Hazards identificationClassification of the substance or mixture Classification according to Regula-tion (EC) No. 1272/2008Ox. Sol. 2; H272 Acute Tox. 3; H301 Eye Irrit. 2; H319 Aquatic Acute 1; H400Classification according to Directive 67/548/EEC / 1999/45/EEC O; R8 T; R25 Xi; R36 R31 N; R50Label elements hazard pictogramGHS03GHS06GHS09signal wordDangerHazardous component(s) to be indi-cated on label Sodium nitriteH-statement(s)H272: May intensify fire; oxidiser.H301: Toxic if swallowed.H319: Causes serious eye irritation.H400: Very toxic to aquatic life.P-statement(s)P220: Keep/Store away from clothing/ combustible materials.P221: Take any precaution to avoid mixing with combustibles P273: Avoid release to the environment.If swallowed If victim is conscious: Rinse mouth. Immediately give large quantities of water to drink. Induce vomiting immediately and call a physician.Notes to physicianFormation of pulmonary oedema after inhaling nitrous gases. Symptoms can be delayed. Patient should be monitored for at least 48 hours.First aid procedures: Inhale metered aerosol (Glucocorticoids for inhalation).The following applies to nitrites in general: risk of methaemoglobin forma-tion.Most important symptoms and effects, both acute and delayed SymptomsThe toxicity is mainly determined by the nitrite content. The absorption of this product into the body may lead to the formation of methaemoglobine that, in sufficient concentration, causes cyanosis. (Methaemoglobinemia).Symptoms: Abdominal pain, Vomiting, Diarrhoea, Lowered blood pressure,Dizziness, headache.5. Firefighting measuresExtinguishing media Suitable extinguishing media In storage areas: Water, Water mist, Dry chemical, Foam In heat treatment shops: Dry chemical, Foam, Water mistExtinguishing measures as for fires involving artificial fertilizers.Extinguishing media which must not be used for safety reasons CO2, Powder extinguishers containing ammonia salts, High volume water jet.Do not direct jets of water into salt melts!!Special hazards arising from the substance or mixtureSpecial exposure hazards arising from the substance or preparation itself, its combustion products, or released gasesNitrous gases can be liberated during a fire. These should be beaten down with water mist.Oxidizing properties. Release of oxygen, exothermic reaction.Advice for firefightersSpecial protective equipment for firefightingDo not stay in dangerous zone without self-contained breathing apparatus.In order to avoid contact with skin, keep a safety distance and wear suitable protective clothing.Additional information on firefight-ingOxidizing properties. The product itself does not burn. In case of fire, pri-marily cooling of salt baths with finely dispersed water. Prevent fire extin-guishing water from contaminating surface water or the ground water system.Fire residues and contaminated fire extinguishing water must be disposed of in accordance with local regulations.6. Accidental release measuresPersonal precautions, protective equipment and emergency procedures Personal precautionsAvoid substance contact. Avoid dust formation. Do not breathe dust. Ensure adequate ventilation, especially in confined areas.Wear suitable protective equipment.Environmental precautions Environmental precautionsThe product should not be allowed to enter drains, water courses or the soil.Nitrite-bearing effluents must be detoxified in accordance with local regula-tions.Methods and material for containment and cleaning up Methods for cleaning upSweep up or vacuum up spillage and collect in suitable container for disposal.Retain and dispose of contaminated wash water. The aqueous medium should be given appropriate treatment as waste water in line with local regulations.Reference to other sections Reference to other sectionsFor personal protection see section 8.Disposal considerations: see section 137. Handling and storagePrecautions for safe handling Advice on safe handlingAvoid dust formation. Keep container tightly closed. Use personal protective equipment.Ensure adequate ventilation, especially in confined areas.Advice on protection against fire and explosionThe product itself does not burn.Oxidizing MaterialConditions for safe storage, including any incompatibilitiesStorage space and container re-quirementsStore in accordance with local regulations. Consider the local regulations.Hints on storage assembly Keep away from combustible material. Do not store together with acids and ammonium salts. Separate from cyanides. Keep away from food, drink and animal feeding stuffs.Storage specifications Keep containers dry and tightly closed to avoid moisture absorption and con-tamination. Unauthorized persons are not allowed to enter the storage area.TRGS 5105.1 B Recommended storage temperature:No Limit8. Exposure controls/personal protectionControl parametersSodium nitriteDNEL2 mg/m³Target group Workers exposure routeInhalationExposure frequency Long term effects, short-term (acute)Sourceexternal safety data sheet PNEC0,0054 mg/L exposure route Fresh waterSourceexternal safety data sheet PNEC0,00616 mg/L exposure route Sea waterSourceexternal safety data sheet PNEC0,0195 mg/kgexposure route Freshwater sedimentSourceexternal safety data sheet PNEC0,0223 mg/kg exposure route Marine sedimentSourceexternal safety data sheet PNEC0,000733 mg/kg exposure route SoilSourceexternal safety data sheetSodium nitrateDNEL20,8 mg/kgTarget group Workersexposure route Skin contactExposure frequency Long term effectsSource external safety data sheet DNEL12,5 mg/kgTarget group Consumersexposure route Skin contactExposure frequency Long term effectsSource external safety data sheet DNEL36,7 mg/m³Target group Workersexposure route InhalationExposure frequency Long term effectsSource external safety data sheet DNEL10,9 mg/m³Target group Consumersexposure route InhalationExposure frequency Long term effectsSource external safety data sheet DNEL12,5 mg/kgTarget group Consumersexposure route IngestionExposure frequency Long term effectsSource external safety data sheet PNEC0,45 mg/Lremarks Fresh waterSource external safety data sheet PNEC0,045 mg/Lremarks Sea waterSource external safety data sheet PNEC18 mg/Lremarks Behaviour in waste water treatmentplantsSource external safety data sheetDusts non-specificIreland Long-term exposure value/ mg/m310Note total inhalableSource Code of Practice for the SafetyHealth and Welfare at Work (2011) Exposure controlsRespiratory protection In case of dust: Suitable mask with particle filter P3 (European Norm 143)In case of nitrous gases: Gas filter NO - blue.remarks:The filter class for the respirator must be suitable for the maximum expectedcontaminant concentration (gas/vapour/aerosol/particulates) that may arisewhen handling the product. If this concentration is exceeded, self-containedbreathing apparatus must be used.Hand protection In heat treatment shops: Multi-layered, easily removable mittens with cuff.In storage areas: Impervious glovesSuitable material:Nitrile rubber, Polyvinylchloride, Chloroprene (for example Tricotril 736,Camapren 720; Producer KCL; Break through time ≥ 480 Minutes)Unsuitable material:woven fabricReference substance:The selected protective gloves have to satisfy the specifications of EU Di-rective 89/689/EEC and the standard EN 374 derived from it. Take note of the information given by the producer concerning permeability and break through times, and of special workplace conditions (mechanical strain, dura-tion of contact).Eye protectionIn heat treatment shops: Face shield made from self-extinguishing polycar-bonate.In storage areas: Safety glasses with side-shieldsSkin and body protectionIn heat treatment shops: Multi-layered protective clothing (no synthetic fi-bres): for example cotton fabric impregnated with Proban.Note:Working clothes must not consist of textiles, which show a dangerous melting behaviour in case of fire.In storage areas: Long sleeved clothingNote:Choose body protection according to the amount and concentration of the dangerous substance at the work place.General protective and hygiene measuresHandle in accordance with good industrial hygiene and safety practice. Smok-ing, eating and drinking should be prohibited in the application area. Wash hands before breaks and at the end of workday.Engineering measuresProvide sufficient air exchange and/or exhaust in work rooms.9. Physical and chemical propertiesInformation on basic physical and chemical properties Form solid, crystalline Colour white - light yellow Odour odourlessOdour threshold :no data availablepHapprox. 7,2 (1% aqueous solution; 20 °C)Melting point [°C]approx. 142 - 145 °C Boiling point [°C]no data available Flash point [°C]not applicable Evaporation rate [kg/(s*m²)]not applicable Flammability :does not igniteRisk of explosion.Not explosive Vapour pressure [kPa]Not relevantDensity [g/cm³]1,94 g/cm³ (200 °C)Water solubility [g/l]approx. 1000 g/L (20 °C)approx. 3000 g/L (50 °C)Solubility [g/l]no data availablePartition coefficient n-octanol /wa-ter (log P O/W)Mixture of inorganic salts.Autoinflammabilitynot auto-flammableDecomposition temperature [°C]> 650 °CViscosity, dynamic [kg/(m*s)]no data available OxidationoxidizingOther informationBulk density [kg/m³]approx. 1150 - 1200 kg/m³10. Stability and reactivityReactivityThermal decompositionThermal decomposition starts at temperatures above 650 °C.No decomposition if stored and applied as directed.Chemical stability Chemical stabilityStable under recommended storage conditions.Possibility of hazardous reactions Hazardous reactionsDuring contact with acids or overheating the product (T > 650°C; e.g. in case of fire) nitrous gases could develop.Oxidizing: Risk of fire if brought into contact with slightly oxidizable (com-bustible) substances, e.g. organic compounds, soot. Release of oxygen,exothermic reaction.Conditions to avoid Conditions to avoidHeat, flames and sparks.Exposure to moisture.Incompatible materials Materials to avoidAcids, Reducing agents, Ammonium salts, Amines, Cyanides, Organic materi-alsHazardous decomposition products Hazardous decomposition productsnitrogen oxides (NOx), Na2O11. Toxicological informationInformation on toxicological effects Oral toxicity [mg/kg]LD50/oral/rat = 3430 mg/kg, NaNO3, OECD 401 (external safety data sheet)LD50/oral/rat = 180 mg/kg, NaNO2 (external safety data sheet)LD50/oral/rat = 85 mg/kg, NaNO2 (IUCLID)No data is available on the product itself.Dermal toxicity [mg/kg]LD50/NaNO2: no data availableLD50/dermal/rat > 5000 mg/kg, NaNO3, OECD 402 (external safety data sheet)No data is available on the product itself.Inhalative toxicity [mg/l]no data available Subacute, subchronic, chronic toxi-cityno data availableIrritant effect on skin May cause skin irritation in susceptible persons.Irritant effect on eyesCauses eye irritation.Irritant effect on the respiratory tract no data availableSensitizationno data available. No known effect.。
藻类对氮磷的吸收作用综述
湖南农业大学课程论文学院:资源环境学院班级:08级环境工程一班姓名:潘玲学号:200840408114课程论文题目:藻类对氮磷吸收作用的综述课程名称:课程论文设计(环工)评阅成绩:评阅意见:成绩评定教师签名:日期:年月日藻类对氮磷吸收作用的综述学生:潘玲(资源环境学院环境工程一班,学号200840408114)摘要:利用藻类处理污水具有低成本、高效率、无二次污染等特点,具有广阔的前景。
本文归纳分析国内外利用藻类吸收氮磷的相关研究数据和结果,综述了国内外利用藻类吸收氮磷的现状和发展方向,为以后的研究提供借鉴作用。
关键词:发展及现状藻类发展前景去除前言本文针对各种藻类对氮磷的吸收效果进行总结概括,为以后该方面的研究奠定一定的基础。
随着工业进步和社会发展,水污染现象日趋严重。
目前,废水二级处理后出水的进一步脱氮和除磷问题已成为国内外研究的热点。
传统的生化二级处理除磷工艺使大量的磷从污水中转移到剩余污泥中,不能从根本上消除磷对生态环境的影响。
藻类为自养型生物,其生长对废水中的营养要求较低,主要以光能为能源,利用N、P等营养物质合成复杂的有机质,因此藻类可降低水体中氮磷的含量[1]。
一、藻类技术的发展及现状引用藻类进行水质净化的研究,自20世纪50年代起,至今已有近60年的历史[2],早期主要是应用微型藻悬浮培养技术进行污水处理,相关技术有藻菌氧化塘、高效藻类塘,活性藻[3]等。
由于微型藻悬浮培养技术在实际应用中不易捕捞,仍在水体有残余,更多的焦点集中在固着藻类的研究与应用上,如固定化藻类技术[4]与藻菌生物膜技术。
DaCosta[5] 的研究结果证明,固定化藻类不但能有效去除污水中的氮磷营养,对去除镉和锌等重金属离子也效果显著。
由于受限于固定藻类用载体的成本较高,以致该项技术仅停留在实验室规模的研究和探索阶段,至今未见大规模实际应用的报道。
二、典型性的藻类(一)小球藻小球藻是一种理想的蛋白质资源,富含蛋白质、氨基酸、不饱和脂肪酸、维生素、矿物质和色素等,是一种重要的微藻资源,具有增强免疫力、降血脂和抗原微生物等保健作用。
氮、磷对小球藻生长的影响
氮、磷对⼩球藻⽣长的影响(2012 届)毕业论⽂题⽬氮、磷对⼩球藻⽣长的影响学院化学化⼯学院专业化学⼯程与⼯艺年级2008 级学⽣学号学⽣姓名指导教师2012年5⽉7⽇氮、磷对⼩球藻⽣长的影响摘要:本⽂研究了氮、磷源对⼩球藻⽣长的影响。
实验结果表明,当环境温度为25℃左右,pH在7.0~9.0之间时;⼩球藻最适氮源为硝态氮,且能够利⽤硝态氮、亚硝态氮、铵态氮和尿素进⾏⽣长,⽣长速度快慢为硝态氮>亚硝态氮>尿素>铵态氮。
以硝态氮为氮源时,⼩球藻在氮的浓度为0.16mg·L-1左右,⼩球藻可以快速、⼤量的⽣长。
以KH2PO4·3H2O为磷源时,磷的浓度控制在0.36mg·L-1左右时,明显促进⼩球藻⽣长。
当N/P在3.2时,⼩球藻的⽣物量达到最⼤,并且⼩球藻对氮和磷的去除率都分别达到33%和89%。
关键词:⼩球藻;氮;磷;⽣长;The Influence of Nitrogen and Phosphorus to the Growth ofChlorella sp.Abstract:The effects of nitrogen and phosphorus on the growth of Chlorella sp. were reported in this paper.Chlorella sp. had grown at the temperature of 25℃,the pH between 7.0 to 9.0.The results showed that the growth of Chlorella sp. was affected by nitrogen with different morphologies,ordered as nitrate nitrogen>nitrite nitrogen>urea nitrogen>ammonium nitrogen.Obviously,nitrate was the optimal nitrogen source for the growth of Chlorella sp..The rate of growth was the highest at the nitrate nitrogen concentration of 0.16mg·L-1.When the content of nitrate was 0.36mg·L-1,the growth of Chlorella sp. increased significantly with KH2PO4 as phosphorus source.When the N/P ratio was 3.2:1,the biomass of Chlorella sp. reached the highest value.And the removal rate of nitrogen and phosphorus could achieve 33% and 89%.Key words:Chlorella sp.;nitrogen;phosphorus;growth⽬录第⼀章⽂献综述 (1)1.1 微藻的概述 (1)1.2 ⼩球藻的应⽤ (2)1.2.1 ⾷品、饲料和饵料上的应⽤ (2)1.2.2 医学上的应⽤ (2)1.2.3 污⽔处理上的应⽤ (3)1.2.4 作为⽣物质能源的应⽤ (3)1.3 影响⼩球藻⽣长的因素 (3)1.3.1 温度 (3)1.3.2 光照 (3)1.3.3 培养基pH (4)1.3.4 培养基营养成分 (4)1.4 本课题的研究意义 (5)第⼆章实验材料与研究⽅法 (7)2.1实验材料与仪器 (7)2.1.1 藻种的来源 (7)2.1.2 ⼩球藻培养基配置材料 (7)2.1.3 主要仪器与试剂 (8)2.2 实验⽅法 (9)2.2.1 藻种的活化 (9)2.2.2 分光光度法测定藻细胞密度 (9)2.2.3 ⽣物量的测定 (10)2.2.4 培养基中氮元素含量的测定 (10)2.2.5 培养基中磷元素含量的测定 (11)2.3 实验设计 (12)2.3.1 不同浓度梯度及不同形态N源的培养基配置 (12)2.3.2 不同P浓度梯度的培养基配置 (12)2.3.3 ⽇常观察记录 (12)2.3.4 数据处理 (13)第三章实验结果与分析 (14)3.1不同氮源及含量对⼩球藻⽣长的影响 (14)3.2 不同浓度的磷源对⼩球藻⽣长的影响 (15)3.3 不同的氮磷⽐对⼩球藻的⽣长及去除氮磷效率的影响 (15)3.4 结论 (16)参考⽂献 (18)致谢 (21)第⼀章⽂献综述随着全球对能源的需求⽇益增长,世界各国对原油的争夺也⽇趋激烈。
分光光度法测定药用辅料中亚硝酸盐的含量
Vol.7 No.2Apr. 2021生物化工Biological Chemical Engineering第 7 卷 第 2 期2021 年 4 月分光光度法测定药用辅料中亚硝酸盐的含量吴兴兴,唐力,朱怡君,伍成祥(常州制药厂有限公司,江苏常州 213000)摘 要:目的:对药用辅料中的亚硝酸盐含量进行定量分析。
方法:对盐酸萘乙二胺分光光度法测定亚硝酸盐含量进行方法学验证,并将该方法用于常规药用辅料中亚硝酸盐含量的检测。
结果:试验方法在硝酸盐浓度为0~7.96 μg/mL 的范围内呈良好的线性关系,回归方程为y =0.257 0x -0.000 2,相关系数R 2=0.999;最大吸收波长为553 nm;精密度结果RSD %=0.68%(n =6),该方法的精密度良好;回收率试验证明高、中、低三个浓度的溶液,回收率均较佳。
结论:盐酸萘乙二胺分光光度法适用于检测药用辅料中的亚硝酸盐含量。
关键词:亚硝酸盐;药用辅料;检测方法中图分类号:O657.3 文献标识码:ANitrite in Pharmaceutical Excipients and the Development of its Analytical MethodWU Xingxing, Tang Li, Zhu Yijun, WU Chengxiang(Changzhou Pharmaceutical Factory Co., Ltd., Workshop Laboratory, Jiangsu Changzhou 213000)Abstract: Objective: To quantitatively analyze the content of nitrite in pharmaceutical excipients. Method: Methodological verification was carried out on the determination of nitrite content by naphthaleneethylenediaminehydrochloride spectrophotometric method, and this method was used for the determination of nitrite content in conventional pharmaceutical excipients. Results: The test method showed a good linear relationship in the range of nitrate concentration of 0~7.96 μg/mL, the regression equation was y = 0.257 0x -0.000 2, the correlation coefficient R 2= 0.999; the maximum absorption wavelength was 553 nm; precision Results RSD %=0.68% (n =6), the precision of the method is good; the recovery rate test proves that the recovery rate of the solution with high, medium and low concentration is better. Conclusion: The naphthylethylenediamine hydrochloride spectrophotometric method is suitable for detecting the content of nitrite in pharmaceutical excipients.Keyword: nitrite; pharmaceutical excipients; detection method药用辅料一般情况下被认为是惰性物料,但药用辅料中所含的活性杂质会间接催化或直接参与药物的降解反应。
淬灭酶对亚硝化-混合自养脱氮系统的影响
化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 7 期淬灭酶对亚硝化-混合自养脱氮系统的影响陈娜,张肖静,张楠,马冰冰,张涵,杨浩洁,张宏忠(郑州轻工业大学材料与化学工程学院,环境污染治理与生态修复河南省协同创新中心,河南 郑州 450001)摘要:群体感应是微生物间的通信机制,群体淬灭则可通过降解群体感应信号分子来调控微生物行为。
本研究通过设置空白对照组R1和实验组R2,探究了群体感应淬灭酶(AHLs 酰基转移酶,2μmol/L )对亚硝化-混合自养脱氮工艺性能及微生物群落的影响。
结果表明,淬灭酶的加入促进了短程内源反硝化过程并抑制了厌氧氨氧化过程。
与R1相比,R2各阶段的总氮去除率平均降低11.1%。
R2出水中氨氮和硝氮浓度略低于R1,但出水亚硝氮整体较R1升高19.0mg/L 。
添加群体淬灭酶使胞外聚合物的含量降低了18.2mg/g ,使溶解性微生物产物升高了17.1mg/L 。
2μmol/L 淬灭酶使羟胺氧化还原酶活性由0.80EU/g 增长为0.99EU/g ,细胞色素c (Heme-c )含量由0.002mmol/g 增至0.004mmol/g ,Nitrosomonas 亚硝化菌和Hyphomicrobium 、Thermomonas 、Truepera 等反硝化菌相对丰度均增加,其中Thermomonas 的相对丰度增长幅度最大,由0.28%增长至9.04%。
实验结果为群体淬灭技术应用于亚硝化-混合自养脱氮过程的调控提供了理论参考。
关键词:亚硝化;自养脱氮;群体感应;淬灭酶;含氮废水中图分类号:X703 文献标志码:A 文章编号:1000-6613(2023)07-3816-08Effect of quenching enzymes on partial nitrification-mixed autotrophicnitrogen removal systemCHEN Na ,ZHANG Xiaojing ,ZHANG Nan ,MA Bingbing ,ZHANG Han ,YANG Haojie ,ZHANG Hongzhong(Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materialand Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, Henan, China)Abstract: Quorum sensing is one kind of communication mechanism between the microorganisms, while quorum quenching can regulate microbial behavior by degrading quorum sensing signaling molecules. In this study, the effects of quorum quenching enzyme (AHLs acyltransferase, 2μmol/L) on the performance and microbial characteristics of partial nitrification-mixed autotrophic nitrogen removal process were investigated by adopting blank control group R1 and experimental R2. The results showed that the addition of quenching enzyme promoted the partial endogenous denitrification process but inhibited the anammox process. Compared with R1, the nitrogen removal in R2 was always around 11.1% or lower. The concentration of ammonia and nitrate in the effluent of R2 was slightly lower than those of R1, but the effluent nitrite was 19.0mg/L higher than that of R1. The addition of quorum quenching enzyme reduced the content of extracellular polymeric substances by 18.2mg/g, and increased the soluble microbial研究开发DOI :10.16085/j.issn.1000-6613.2022-1553收稿日期:2022-08-22;修改稿日期:2022-12-10。
硫酸改性沸石吸附去除水中硝酸盐的特性研究
化工与环保r硫酸改性沸石吸附去除水中硝酸盐的特性研究程婷(太原工业学院,山西太原,030008)摘要用浓硫酸对天然沸石改性,探讨了浓硫酸的浓度、改性时间和改性温度对改性效果的影响,并分析了改性在不同吸附影响因素下对硝酸盐废水的吸。
实验结:浓硫酸浓度为3%、改性时间为2h、改性温度60C,6&62%。
在吸附100mL浓度为10mg/L的硝酸盐废水时测得最佳吸附条件为:投加量为lg,吸附时间为2h,吸附温度为55°C,pH6。
得到吸附后硝酸盐废水的最咼84.16%。
关键词:硫酸沸石硝酸盐1绪论随着我国经济及消费水平的提高和工农业的快速崛起,地下水中硝酸盐的题已经在我国各个地区在,必须加以重视。
二十世纪末,在对的水结果显示中,绝分城市地区的地下水水于下滑且恶化现象严重,其中最的问题是硝酸盐为主要成分之一的“三氮”(NO厂一N、NO2一一N、氨氮)局口%。
是一种含水的碱金属或碱土金属的铝硅酸矿物,可以用作吸附剂、催化剂和离子交换剂匚?—3%。
但天的并不高,所以其吸附是一。
了提咼其吸,性的,提高其吸4。
2实验材料及方法2.1沸石的预处理将天然沸石用去离子水清洗至上清液澄清,过滤,烘干,备用。
2.2硫酸改性沸石制备在锥形瓶中加入一定体积的硫酸,然后加入一定量的经理后的,用恒温振荡器振荡,进行改性,改性后过滤,用子水清,石2—3次至中性,烘干备用$-6%。
2.3静态吸附实验称取一定量经过上述改性的沸石于锥形瓶中,加入一定的硝酸盐溶液,在室温下振荡一定时间,静止,过滤,测定,计算硝酸盐的。
3结果与讨论3.1标准曲线本实验采用酚二磺酸分光光度法(GB7480—87),对水中所含有的硝酸盐离子进行检测,得出标3.2.1硫酸浓度对改性沸石的影响硫酸浓度为1%、3%、6%、12%、18%时对沸石改性的结图2所示。
65「05101520S4酸浓度/%图?硫酸浓度改性沸石对硝酸盐去除率的影响由图2分析得出,硫酸浓度1%时改性后的沸石对硝酸盐废水的57.46%,且会随着浓度的升高,当硫酸浓度为3%时,改性对硝酸盐的 最高为63.17%,当硫酸浓度超过3%时,改性对硝酸盐的会呈下降趋势,浓度为18%时降至47.60%。
亚硝酸盐在肉制品加工中的作用及其替代品研究发展
摘要肉类制作食品在制作和储藏历程中,会生成一定的多少的含氮化合物,在肉类制作食品制作历程中,含氮化合物作为发颜色剂和防腐剂增添至肉中,赋予肉类制作食品特有的红颜色,同时能改善肉类制作食品的构造组织,遏抑肉毒杆菌的生长。
在肉类制作食品制作中,常用的Nitrite有亚硝酸钾和NAN02,俗称“硝”和“工业盐”,通常为微黄颜色或者白颜色的晶体,外观和食用碱、食盐、味精相类似。
由于含氮化合物特有的功效而广泛的用于肉类制作食品制作中。
述了含氮化合物在肉类制作食品制作中的功效、对身体的损伤以及含氮化合物取代物的探索发展。
随着经济的进步和我们对身体生理机能意识的不断增强,我们对内制品低硝化或无硝化的关注会越来越多,寻找含氮化合物的取代物,尤其是既能够减少含氮化合物在肉类制作食品中的应用的多少、又能够强化肉类制作食品营养的additive agent,将成为肉品工业探索的重要领域,也是功能性肉类制作食品开发的又一途径,是未来肉类制作食品制作的进步走向。
硝盐是肉类制作食品中重要的食品additive agent,其功效是经过发颜色赋予产品良好外观、遏抑放置历程中bacterium的生长和脂肪的失电子反应酸败,以及增强产品味道。
由于硝盐应用不当可能致使的对产品健康性的影响始终存在,寻找可以发挥硝盐功效的代换增添物的探索也长期受到关注,但至今还没能找到更为健康,而又能完全达到硝盐多功能和廉价性的代换物。
各个国家和地区均从法律法规上对硝盐应用的多少、应用范围及其在产品中的残留等标准予以了强制性规定,以保障肉类制作食品的健康性。
未来的进步走向是在严格应用法规和按需应用的同时,积极开发健康高效的代换物。
关键词:含氮化合物肉类制作食品功效取代物abstractin the process of meat production and storage, a certain amount of nitrogen compounds will be generated. In the process of meat production, nitrogen compounds are added to meat as hair color agent and preservative, giving meat a unique red color. At the same time, it can improve the structure of meat products and inhibit the growth of Botulinum toxin. Nitrite is commonly used in meat production, including potassium nitrite and NAN02, commonly known as "nitrate" and "industrial salt". Nitrite is usually a yellowish or white crystal with similar appearance to edible alkali, salt and monosodium glutamate. Nitrogen compounds are widely used in meat production because of their unique functions. The effects of nitrogenous compounds in meat production, the damage to the body and the research progress of substitutes for nitrogenous compounds were reviewed. With the progress of economy and the enhancement of our awareness of body physiological function, more and more attention will be paid to the low nitrification or non-nitrification of domestic products. The search for substitutes for nitrogenous compounds, especially the additive agent, which can reduce the application of nitrogenous compounds in meat-making foods and strengthen the nutrition of meat-making foods, will become the exploration of meat industry. Important areas, but also another way to develop functional meat products, meat production is the future direction of progress in food production. Nitrate is an important food additive agent in meat production. Its effect is to give the product a good appearance by hair color, to restrain the growth of bacterium and the oxidation and acidity of fat during storage, and to enhance the taste of the product. Due to the improper application of nitrate, the impact on the health of products always exists, and the search for substitution additives which can play the role of nitrate has also attracted long-term attention, but so far no more healthy substitutes which can fully achieve the multi-function and low-cost of nitrate have been found. In order to ensure the health of meat products, various countries and regions have made mandatory regulations on the application of nitrate, its scope of application and its residues in products in accordance with laws and regulations. The future trend ofprogress is to actively develop healthy and efficient substitutes while strictly applying laws and regulations and applying them on demand.Key words: nitrogen-containing compounds meat production food efficacy substitute目录摘要 (1)1亚硝酸盐在肉制品加工中的功效 (4)1.1亚硝酸盐的护色作用 (4)1.2亚硝酸盐的抑菌作用 (5)1.3亚硝酸盐的抗氧和增强风味作用 (5)2亚硝酸盐对身体的危害 (5)3 硝盐替代品的研究及应用发展 (6)3.1 发色替代品研究发展 (6)3.2 抑菌防腐替代品研究发展 (8)3.3 抗氧化替代品研究发展 (10)3. 4 增味替代品研究发展 (11)3.5亚硝胺生产阻断剂 (12)4 多组分肉类腌制剂 (12)结论 (14)致谢 (15)参考文献 (16)附件 (18)1亚硝酸盐在肉制品加工中的功效1.1亚硝酸盐的护色作用动物被屠宰后,外界停止供氧,机体在无氧前提下代谢,机体中的血色素和肌红多肽极易发生化学变化,生成高铁血红蛋白和高铁肌红多肽,使肉变成灰红颜色或灰棕颜色⋯。
SBR工艺中短程硝化反硝化的过程控制
SBR工艺中短程硝化反硝化的过程控制简介:实验室中通过DO、pH值、进水CODcr /NH3-N(C/N)等参数的控制实现了SBR工艺中的短程硝化反硝化。
在以人工玉米水为外加碳源、进水氨氮浓度100mg/L、CODcr=800mg/L的条件下,保持pH 8.0~8.2、DO 0.5 mg/L~1.0mg/L,通过对反应周期10小时内氨氮(NH3-N),亚硝基氮(NO2--N),硝基氮(NO3--N)的跟踪以及对反应周期内每小时间隔们内这些氮的不同形态的变化量的数据的分析,证实在整个系统内短程硝化反硝化是占主导地位的脱氮途径。
关键字:SBR 短程硝化反硝化工艺参数Process control of Shortcut nitrification—denitrifiction in SBR processPandeng, Liujun, Wangbin, Wangping (School of Chemical and Environmental Engineering, Beijing Technology and Business University,Beijing 100037)Abstrate: Shortcut nitrification—denitrifiction was achieved in SBR through the control of technologies’ operation parameters such as DO、pH、C/N and so on.The experiment result show that When burthen of ammonia nitrogen is 100mg/L, C/N=8, pH 8.0~8.2、DO 0.5 mg/L~1.0mg/L, we can conform that Shortcut nitrification—denitrifyction is dominating approach of theremoval of ammonia nitrogen by tracing ammonia nitrogen,nitrite and nitrate.Key words: SBR, Shortcut nitrification—denitrifyction, technology parameters与传统的生物脱氮相比,亚硝酸型生物脱氮具有节约能耗,减少外加碳源,提高反应速率,节省基建投资,减少污泥量等特点[1]。
腌制
• 特点
– 腌制速度快,产品得率高;
– 制品易腐败,需冷藏。
肌肉注射针的形状及注射示意
§2.1.3. 注射腌制法
• 手动盐水注射机
• 自动盐水注射机
§2.1.3. 注射腌制法
§2.1.3. 注射腌制法
§2.1.4. 混合腌制法
• 概念
– 混合腌制是采用干腌法和湿腌法或注射法相结合的一种 腌制方法。
• 课程论文题目
• 以自己熟悉、感兴趣或家乡特产农产品(蔬 菜、水果)、水产品等为研究对象,查阅科 技文献,应用课堂教学内容和知识点,撰写 一篇关于该产品在食品罐头加工工艺方面的 综述文章,题目自拟。要求内容丰富,观点 明确,涉及点小而精(切忌论文泛而空洞)。
第四章 食品的腌制保藏技术
课前回顾
• • • • 干制食品 罐藏食品 低温食品 腌制食品 度 降低水分活度 高温杀灭微生物 抑制微生物生长 提高渗透压,降低水分活
由多半乳糖醛酸的长链构成。
OH O OH O COOH OH OH COOCH3 O O COOH OH O OH OH O OH COOCH3 O
• 特点
– 制品色泽好,营养成分流失少,咸度适中,避免了单一 腌制法的缺点; – 生产工艺较复杂,周期长。
• 例:
– 注射滚揉腌制法 真空滚揉机
§2.1.4. 混合腌制法
例:
培根加工工艺
腌制:生坯用混合盐干腌法腌制 12h 以上,然后将原料放入盐水 中腌制,使盐水均匀渗透至生坯 里,肉色全部红透为止。
第四章 食品的腌制保藏技术
•
问题一
–
腌制对食品保藏的作用是什么?
•问题二– Nhomakorabea常用的腌制方法有哪些?
概述
全程硝化与短程硝化的特性对比研究
Com par ison of Character istics of Com plete N itr if ica tion and Shortcut N itr if ica tion
PEN G Zhao 2xu , PEN G Yong2zhen
1 1, 2
, ZUO J in 2long
香草酚分光光度法 ; NO2 - N: N - ( 1 - 萘基 ) - 乙二
胺光度法 ; NH4 - N: 纳氏试剂分光光度法 ; MLSS、
SS: 重量法 ; PO4
3-
+
碱度 / (mg・L - 1 ) pH
- P: 钼酸盐分光光度法 ; DO、 pH、
ORP和温度 : 台式溶解氧在线检测仪 。
程硝化和短程硝化的平均do分别为033mgl第24卷第23期中国给水排水wtqwwatergasheatcom主要原因是好氧反应过程中系统的do始终处于很全程硝化与短程硝化在曝气阶段的do变化fig3variationsofmmonianitrogenc0ncen缸don期当do逐渐上升时由于氨氮浓度已经很低亚定数量的硝化菌作用下从曝气的第2o分钟起硝成速率比全程硝化快了许多从第20分钟起短程23总氮浓度的变化全程及短程硝化过程中tn的变化见图5
第 24 卷 第 23 期 中 国 给 水 排 水 www. watergasheat. com
了 15%的曝气量 。试验采用的是平均亚硝酸盐积 累率为 69. 61%的短程硝化污泥和 7. 92%的全程硝 化污泥 ,理论上前者的耗氧量是后者的 84. 27% , 即 短程硝化可比全程硝化节约 15. 73%的曝气量 , 这 与试验值 ( 15% ) 比较吻合 。由氧气在水中的传质 方程可知 ,当液相主体中的 DO 低时 ,氧容易从气相 扩散进入液相 。所以试验中理论值和实际值符合的 主要原因是好氧反应过程中系统的 DO 始终处于很 低的水平 ,氧气在水中的传质效率较高 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Introduction
The hypothesis that the pathways of carbon and nitrogen assimilation compete for carbon skeletons and energy is widely accepted but the mechanisms that co-regulate these pathways are only poorly understood in higher plants. Several lines of evidence suggest that there is "cross-talk" between nitrogen and carbon metabolism which may involve several steps of reciprocal control. Short-term inhibition of NO 3- reduction was observed under conditions of mild water-stress or when turgid spinach leaves were kept in CO2-free air (Kaiser and Forster 1989). The availability of CO2 can thus determine
Abstract. Maize (Zea mays L. cv. Contessa) was grown with a nitrogen supply that was just sufficient to support maximal biomass production. The third leaves from 14to 21-d-old plants were harvested and net photosynthesis allowed to attain steady-state rates at an irradiance of either 250 or 700 gmol.m 2.s 1. Nitrogen in the form of either KNO3, K N O 2 or NH4C1 was then supplied to the leaves through the transpiration stream. In all cases the addition of the nitrogen source resulted in an approximate doubling of the total amino-acid content of the leaves within 1 h. The glutamine pool increased to ten times the level found in control leaves in the light in the absence of added nitrogen. Glutamine accounted for about 21-24% of the total amino-acid content in leaves fed with 40 m M NH4C1. Nitrate caused a rapid, but transient inhibition of the rate of net CO2 assimilation, accompanied by an increase in the activity of phosphoenolpyruvate carboxylase and a decrease in the maximum extractable activity of sucrose-phosphate synthase. This demonstrates that the activities of phosphoenolpyruvate carboxylase and sucrose-phosphate synthase are modulated by N O 3 in the Ca plant maize, in a similar manner to that observed in C3 plants. Nitrite or ammonium feeding resulted in decreased rates of CO2 assimilation for as long as the nitrogen source was supplied. In all cases the degree of inhibition was greatest at high irradiance and least at low irradiance, even though the total amino-acid contents of the leaves were comparable at the time when maximum inhibition of CO2 assimilation occurred. Measurements of chlorophyll-a fluorescence showed that the quantum efficiency of PSII decreased and non-radiative dissipation of excitation energy increased as CO 2 assimilation was inhibited by niAbbreviations and symbol: Chl = chlorophyll; FBPase = fructose-l,6-bisphosphatase; Gln = glutamine; Glu = gluramie acid; KD = index of the rate of thermal energy dissipation within the PSII antenna; LHCII = light-harvesting chlorophyll-a/ b-binding protein; PEPCase = phosphoenolpyruvate carboxylase; PFD = photon flux density; SPS = sucrose-phosphate synthase; ~psn = relative quantum efficiencyfor electron transport by PSII Correspondence to: Christine H. Foyer
Planta (1994)192:2 Nhomakorabea1-220
P l a n t ~ 9 Springer-Verlag 1994
Short-term effects of nitrate, nitrite and ammonium assimilation on photosynthesis, carbon partitioning and protein phosphorylation in maize
212 the rate of N O 3- reduction in C3 leaves (Kaiser and Forster 1989). This co-regulation is facilitated by the reversible inactivation of NO 3 reductase (Kaiser and Forster 1989; Kaiser and Spill 1991; Huber et al. 1992a,b). In addition, when C3 leaves were supplied with NO3, CO2 assimilation was rapidly inhibited in the short-term but CO2-dependent 02 evolution was much less affected (Champigny et al. 1991a) or even enhanced (De LaTorre et al. 1991). This transitory response to high-NO 3 treatment precedes the adaptive changes in enzyme activities that enable the plant to support the increased demand for carbon residues associated with N assimilation (Sugiharto et al. 1990; Sugiharto and Sugiyama 1992). Short-term changes in metabolism precede the stimulatory effect of N availability on growth that is observed when plants are provided with high NO3-. Nitrate-induced regulation of metabolism in wheat leaves involves inhibition of sucrose synthesis. It is related to the covalent modification of specific cytosolic enzyme proteins in response to the presence of NO 3- (Van Quy et al. 1991b; Champigny and Foyer 1992). In the presence of N O 3- the phosphorylation states of wheat leaf sucrose-phosphate synthase (SPS) and phosphoenolpyruvate carboxylase (PEPCase) were increased (Van Quy et al. 1991b; Champigny and Foyer 1992), causing activation of the latter enzyme and inhibition of the former. Glutamine (Gln) and glutamic acid (Glu) are important regulators of PEPCase in leave (Sugiharto and Sugiyama 1992; Sugiharto et al. 1992; Manh et al. 1993). Glutamine acts at the level of gene expression and the Gln: Glu ratio modulates the PEPCase protein kinase (Sugiharto et al. 1992; Manh et al. 1993). In the short term the Gin: Glu ratio determines the phosphorylation level of the PEPCase protein, thereby regulating the flow of carbon through the anapleurotic pathway providing carbon skeletons for the tricarboxylic-acid cycle and for amino-acid synthesis. The mechanism by which NO3modulates phosphorylation of SPS is as yet unknown (Champigny and Foyer 1992). Carbon flow is thus directed away from sucrose synthesis toward amino-acid synthesis (Van Quy et al. 1991a,b; Champigny and Foyer 1992). Growth of the alga Selenastrum minutum under conditions of N limitation leads to a situation where the capacity for N assimilation is potentially greater than that for carbon assimilation (Elrifi and Turpin 1986, 1987; Smith et al. 1989). The addition of NO 3 or NH4 + in the light has been shown to inhibit CO 2 assimilation by 70 and 40%, respectively (Elrifi and Turpin 1986). Thus, the relative fluxes for carbon and N assimilation can be rapidly and drastically altered. The extent to which carbon and N assimilation compete for the products of photosynthetic electron flow, i.e. ATP and reducing equivalents, is unclear. De LaTorre et al. (1991) observed increased light-dependent 02 evolution in both barley and pea leaves fed N O 3 prior to illumination. Light-dependent 02 evolution was increased in leaves pre-fed NO 3 but unchanged in leaves pre-fed NH4 + (Bloom et al. 1989). The extent of the stimulation of 02 evolution by N O 3- was greatest at higher light intensities (Bloom et al. 1989; De LaTorre et al. 1991).