专题:二次函数中的动点问题

合集下载

中考数学中二次函数常考常新的18种命题方式

中考数学中二次函数常考常新的18种命题方式

专题01 二次函数中的动点问题1、如图①,已知抛物线y =ax 2﹣4amx +3am 2(a 、m 为参数,且a >0,m >0)与x 轴交于A 、B 两点(A 在B 的左边),与y 轴交于点C .(1)求点B 的坐标(结果可以含参数m );(2)连接CA 、CB ,若C (0,3m ),求tan ∠ACB 的值;(3)如图①,在(2)的条件下,抛物线的对称轴为直线l :x =2,点P 是抛物线上的一个动点,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P ,使△POF 成为以点P 为直角顶点的的等腰直角三角形.若存在,求出所有符合条件的点P 的坐标,若不存在,请说明理由.【解析】(1)令y =0,则有ax 2﹣4amx +3am 2=0,解得:x 1=m ,x 2=3m , ①m >0,A 在B 的左边,①B (3m ,0); (2)如图1,过点A 作AD ⊥BC ,垂足为点D ,由(1)可知B (3m ,0),则△BOC 为等腰直角三角形,①OC =OB =3m ,①BC =m ,又①∠ABC =45°,①∠DAB =45°,①AD =BD ,①AB =2m ,①AD =,CD =m ,①tan ∠ACB =AD 1CD 2==;(3)①由题意知x =2为对称轴,①2m =2,即m =1, ①在(2)的条件下有(0,3m ),①3m =3am 2,解得m =1a,即a =1,①抛物线的解析式为y =x 2﹣4x +3, ①当P 在对称轴的左边,如图2,过P 作MN ⊥y 轴,交y 轴于M ,交l 于N ,①△OPF 是等腰直角三角形,且OP =PF ,易得△OMP ≌△PNF ,①OM =PN ,①P (m ,m 2﹣4m +3),则﹣m 2+4m ﹣3=2﹣m ,解得:m①P ); ①当P 在对称轴的右边,如图3,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP ≌△PMF ,①PN =FM ,则﹣m 2+4m ﹣3=m ﹣2,解得:x 35;P 的坐标为(3122+)或(3122);综上所述,点P )或)或)或)2、如图1,在平面直角坐标系xOy 中,抛物线y =−(x −a )(x −4)(a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,点D 为抛物线的顶点.(1)若D 点坐标为(32,254),求抛物线的解析式和点C 的坐标;(2)若点M 为抛物线对称轴上一点,且点M 的纵坐标为a ,点N 为抛物线在x 轴上方一点,若以C 、B 、M 、N 为顶点的四边形为平行四边形时,求a 的值;(3)直线y =2x +b 与(1)中的抛物线交于点D 、E (如图2),将(1)中的抛物线沿着该直线方向进行平移,平移后抛物线的顶点为D ′,与直线的另一个交点为E ,与x 轴的交点为B ′,在平移的过程中,求D ′E ′的长度;当∠E ′D ′B ′=90°时,求点B ′的坐标.【解析】(1)依题意得:254=−(32−a)(32−4),解得a =−1,①y =-(x +1)(x -4)或y =−x 2+3x +4,①C (0,4) (2)由题意可知A (a,0)、B (4,0)、C (0,−4a ),对称轴为直线x =a+42,则M (a+42,a)①MN//BC ,且MN =BC ,根据点的平移特征可知N (a−42,−3a)则−3a =−(a−42−a)⋅(a−42−4),解得:a =−2±2√13(舍去正值);①当BC 为对角线时,设N (x,y ),根据平行四边形的对角线互相平分可得{a+42+x =4a +y =−4a ,解得{x =4−a2y =−5a , 则−5a =−(4−a 2−a)⋅(4−a 2−4),解得:a =6±2√213,①a 1=−2−2√13,a 2=6−2√213(3)联立{y =2x +134y =−x 2+3x +4 ,解得:{x 1=32y 1=254 (舍去),{x 2=−12y 2=94 则DE =2√5,根据抛物线的平移规律,则平移后的线段D ′E ′始终等于2√5 设平移后的D ′(m,2m +134),则E ′(m −2,2m −34),平移后的抛物线解析式为:y =−(x −m )2+2m +134则D ′B ′:y =−12x +n 过(m,2m +134),①y =−12x +52m +134,则B ′(5m +132,0)抛物线y =−(x −m )2+2m +134过B ′(5m +132,0),解得m 1=−32,m 2=−138①B 1′(−1,0),B 2′(−138,0)(与D ′重合,舍去),①B ′(−1,0)3、如图,抛物线y=x2+bx+c与直线y=12x﹣3交于,B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线对应的函数解析式;(2)以O,A,P,D为顶点的平行四边形是否存在若存在,求点P的坐标;若不存在,说明理由.【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)PD=|m²+4m|,①PD∥A O,则当PD=O A=3时,存在以O,A,P,D为顶点的平行四边形,即PD=|m²+4m|=3,即可求解.【解析】(1)将点A、B的坐标代入抛物线表达式得:16453b cc-+=-⎧⎨=-⎩,解得:923bc⎧=⎪⎨⎪=-⎩,故抛物线的表达式为:y=x2+92x﹣3;(2)存在,理由:同理直线AB的表达式为:y=12x﹣3,设点P(m,m2+92m﹣3),点D(m,12m﹣3)(m<0),则PD=|m2+4m|,①PD∥A O,则当PD=O A=3时,存在以O,A,P,D为顶点的平行四边形,即PD=|m2+4m|=3,①当m2+4m=3时,解得:m=﹣(舍去正值),即m2+92m﹣3=1﹣2,故点P(﹣21﹣2),①当m2+4m=﹣3时,解得:m=﹣1或﹣3,同理可得:点P(﹣1,﹣132)或(﹣3,﹣152);综上,点P(﹣2,﹣1﹣2)或(﹣1,﹣132)或(﹣3,﹣152).【小结】本题考查的是二次函数综合运用,涉及到待定系数法求函数解析式、平行四边形性质等,要注意分类讨论思想的运用.4、在平面直角坐标系中,点O 为坐标原点,抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),B (3,0),与y 轴交于点C (0,3),顶点为G .(1)求抛物线和直线AC 的解析式;(2)如图1,设E (m ,0)为x 正半轴上的一个动点,若△CGE 和△CG O 的面积满足S △CGE =43S △CG O ,求点E 的坐标;(3)如图2,设点P 从点A 出发,以每秒1个单位长度的速度沿x 轴向右运动,运动时间为t s ,点M 为射线AC 上一动点,过点M 作MN ∥x 轴交抛物线对称轴右侧部分于点N .试探究点P 在运动过程中,是否存在以P ,M ,N 为顶点的三角形为等腰直角三角形,若存在,求出t 的值;若不存在,请说明理由. 【分析】(1)用待定系数法即能求出抛物线和直线AC 解析式.(2)△CGE 与△CG O 虽然有公共底边CG ,但高不好求,故把△CGE 构造在比较好求的三角形内计算.延长GC 交x 轴于点F ,则△FGE 与△FCE 的差即为△CGE .(3)设M 的坐标(e ,3e +3),分别以M 、N 、P 为直角顶点作分类讨论,利用等腰直角三角形的特殊线段长度关系,用e 表示相关线段并列方程求解,再根据e 与AP 的关系求t 的值. 【解析】(1)将点A (-1,0),B (3,0),点C (0,3)代入抛物线y =ax 2+bx +c 得,09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得123a b c =-⎧⎪=-⎨⎪=⎩,①2y x 2x 3=-++,设直线AC 的解析式为y =kx +n , 将点A (-1,0),点C (0,3)代入得:03k n n -+=⎧⎨=⎩,解得:k =3,n =3,①直线AC 的解析式为:y =3x +3(2)延长GC 交x 轴于点F ,过点G 作GH ⊥x 轴于点H , ①2(1)4y x =--+,①G (1,4),GH =4,①11331222CGOG S OC x =⨯=⨯⨯=, 若S △CGE =43S △CG O ,则S △CGE =43S △CG O =43232⨯=, ①若点E 在x 轴的正半轴,设直线CG 为13y k x =+,将G (1,4)代入得134k +=,①11k =,①直线CG 的解析式为y =x +3,①当y =0时,x =-3,即F (-3,0),又①E (m ,0),①EF =m -(-3)=m +3 ①CGEFGEFCE S SS=-=1122EF GH EF OC ⋅-⋅= 1()2EF GH OC ⋅-=1(3)(43)2m +⋅-=1(3)2m + ①1(3)22m +=,解得:m =1,①E 的坐标为(1,0)①若点E 在x 轴的负半轴上,则点E 到直线CG 的距离与点(1,0)到直线CG 的距离相等, 即点E 到点F 的距离等于点(1,0)到点F 的距离,①EF =-3-m =1-(-3)=4,①m =-7,即E (-7,0) 综上所述,点E 的坐标为:(1,0)或(-7,0)(3)存在以P ,M ,N 为顶点的三角形为等腰直角三角形, 设M (e ,3e +3),e >-1,则33N M y y e ==+,①如图2,若∠MPN =90°,PM =PN ,过点M 作MQ ⊥x 轴于点Q ,过N 作NR ⊥x 轴于点R , ①MN ∥x 轴,①MQ =NR =3e +3①Rt △MQP ≌Rt △NRP (HL ),①PQ =PR ,∠MPQ =∠NPR =45° ①MQ =PQ =PR =NR =3e +3①x N =x M +3e +3+3e +3=7e +6,即N (7e +6,3e +3)①N 在抛物线上,①−(7e +6)2+2(7e +6)+3=3e +3,解得:11e =-(舍去),22449e =- ①AP =t ,O P =t −1,O P +O Q =PQ ,①t −1−e =3e +3,①t =4e +4=10049,①如图3,若∠PMN=90°,PM=MN,①MN=PM=3e+3①x N=x M+3e+3=4e+3,即N(4e+3,3e+3)①−(4e+3)2+2(4e+3)+3=3e+3,解得:e1=−1(舍去),e2=3 16 -,①t=AP=e−(−1)=31311616 -+=,①如图4,若∠PNM=90°,PN=MN,①MN=PN=3e+3,N(4e+3,3e+3),解得:e=3 16 -①t=AP=O A+O P=1+4e+3=13 4综上所述,存在以P,M,N为顶点的三角形为等腰直角三角形,t的值为10049或1316或134.【小结】本题考查了待定系数法求函数解析式,坐标系中三角形面积计算,等腰直角三角形的性质,解一元二次方程,考查了分类讨论和方程思想.第(3)题根据等腰直角三角形的性质找到相关线段长的关系是解题关键,灵活运用因式分解法解一元二次方程能简便运算.5、如图,已知直线AB 与抛物线C :y =ax 2+2x +c 相交于点A (﹣1,0)和点B (2,3)两点. (1)求抛物线C 函数表达式;(2)若点M 是位于直线AB 上方抛物线上的一动点,当MAB △的面积最大时,求此时MAB △的面积S 及点M 的坐标.【解析】(1)由题意把点(﹣1,0)、(2,3)代入y =ax 2+2x +c ,得20443a c a c -+=⎧⎨++=⎩,解得1,3,a c =-⎧⎨=⎩,①此抛物线C 函数表达式为:y =﹣x 2+2x +3; (2)如图,过点M 作MH ⊥x 轴于H ,交直线AB 于K ,将点(﹣1,0)、(2,3)代入y =kx +b 中,得023k b k b -+=⎧⎨+=⎩,解得1,1,k b =⎧⎨=⎩,①y AB =x +1,设点M (x ,﹣x 2+2x +3),则K (x ,x +1), 则MK =﹣x 2+2x +3﹣(x +1)=﹣x 2+x +2, ①S △MAB =S △AMK +S △BMK =12MK •(x M ﹣x A )+ 12MK •(x B ﹣x M )=12MK •(x B ﹣x A )=12×(-x 2+x +2)×3 =23127()228x --+, ①302-<,当x =12时,S △MAB 最大=278,此时21115()23224M y =-+⨯+=,①△MAB 的面积最大值是278,M (12,154).6、如图,直线y =34x +a 与x 轴交于点A (4,0),与y 轴交于点B ,抛物线y =34x 2+bx +c 经过点A ,B .点M(m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线分别交直线AB 及抛物线于点P ,N . (1)填空:点B 的坐标为 ,抛物线的解析式为 ; (2)当点M 在线段OA 上运动时(不与点O ,A 重合), ①当m 为何值时,线段PN 最大值,并求出PN 的最大值; ①求出使△BPN 为直角三角形时m 的值;(3)若抛物线上有且只有三个点N 到直线AB 的距离是h ,请直接写出此时由点O ,B ,N ,P 构成的四边形的面积.【解析】(1)把点A 坐标代入直线表达式y =34x +a ,解得:a =﹣3,则:直线表达式为:y ═34x ﹣3, 令x =0,则:y =﹣3,则点B 坐标为(0,﹣3),将点B 的坐标代入二次函数表达式得:c =﹣3,把点A 的坐标代入二次函数表达式得:34×16+4b ﹣3=0, 解得:b =﹣94,故抛物线的解析式为:y =34x 2﹣94x ﹣3, (2)①①M (m ,0)在线段O A 上,且MN ⊥x 轴, ①点P (m ,34m ﹣3),N (m ,34m 2﹣94m ﹣3),①PN =34m ﹣3﹣(34m 2﹣94m ﹣3)=﹣34(m ﹣2)2+3,①a =﹣34<0,①抛物线开口向下,①当m =2时,PN 有最大值是3, ①当∠BNP =90°时,点N 的纵坐标为﹣3,把y =﹣3代入抛物线的表达式得:﹣3=34m 2﹣94m ﹣3,解得:m =3或0(舍去m =0),①m =3; 当∠NBP =90°时,①BN ⊥AB ,两直线垂直,其k 值相乘为﹣1, 设:直线BN 的表达式为:y =﹣43x +n ,把点B 的坐标代入上式,解得:n =﹣3,则:直线BN 的表达式为:y =﹣43x ﹣3,将上式与抛物线的表达式联立并解得:m =119或0(舍去m =0),当∠BPN =90°时,不合题意舍去,故:使△BPN 为直角三角形时m 的值为3或43;(3)①O A =4,O B =3,在Rt △A O B 中,tan α=43,则:c osα=35,si n α=45, ①PM ∥y 轴,①∠BPN =∠AB O =α,若抛物线上有且只有三个点N 到直线AB 的距离是h ,则只能出现:在AB 直线下方抛物线与过点N 的直线与抛物线有一个交点N ,在直线AB 上方的交点有两个. 当过点N 的直线与抛物线有一个交点N ,点M 的坐标为(m ,0),设:点N 坐标为:(m ,n ),则:n =34m 2﹣94m ﹣3,过点N 作AB 的平行线, 则点N 所在的直线表达式为:y =34x +b ,将点N 坐标代入,解得:过N 点直线表达式为:y =34x +(n ﹣34m ),将抛物线的表达式与上式联立并整理得:3x 2﹣12x ﹣12+3m ﹣4n =0,△=144﹣3×4×(﹣12+3m ﹣4n )=0, 将n =34m 2﹣94m ﹣3代入上式并整理得:m 2﹣4m +4=0,解得:m =2,则点N 的坐标为(2,﹣92), 则:点P 坐标为(2,﹣32),则:PN =3,①O B =3,PN ∥O B ,①四边形O BNP 为平行四边形,则点O 到直线AB 的距离等于点N 到直线AB 的距离, 即:过点O 与AB 平行的直线与抛物线的交点为另外两个N 点,即:N ′、N ″, 直线O N 的表达式为:y =34x ,将该表达式与二次函数表达式联立并整理得:x 2﹣4x ﹣4=0,解得:x =2±2√2,则点N ′、N ″的横坐标分别为2+2√2,2﹣2√2, 作NH ⊥AB 交直线AB 于点H ,则h =NH =NP si n α=125,作N ′P ′⊥x 轴,交x 轴于点P ′,则:∠O N ′P ′=α,O N ′=OP ′sinα=54(2+2√2), S 四边形O BPN =BP •h =52×125=6,则:S 四边形O BP ′N ′=S △O P ′N ′+S △O BP ′=6+6√2,同理:S 四边形O BN ″P ″=6√2﹣6,故:点O ,B ,N ,P 构成的四边形的面积为:6或6+6√2或6√2﹣67、在平面直角坐标系xOy 中,直线1(0)y kx k =+≠经过点23A (,),与y 轴交于点B ,与抛物线2y ax bx a =++的对称轴交于点C m 2(,).(1)求m 的值;(2)求抛物线的顶点坐标;(3)11N x y (,)是线段AB 上一动点,过点N 作垂直于y 轴的直线与抛物线交于点22P x y (,),33Q x y (,)(点P 在点Q 的左侧).若213x x x <<恒成立,结合函数的图象,求a 的取值范围. 【解析】(1)①()10y kx k =+≠ 经过点23A (,), ①将点A 的坐标代入1y kx =+ ,即321k =+ ,得1k =.①直线1y x =+ 与抛物线2y ax bx a =++ 的对称轴交于点(,2)C m , ①将点(,2)C m 代入1y x =+,得1m = . (2)①抛物线2y ax bx a =++ 的对称轴为1x =, ①12ba-= ,即2b a =-. ①22y ax ax a =-+()21a x =-①抛物线的顶点坐标为()10, . (3)当0a >时,如图,若拋物线过点01B (,) ,则1a = . 结合函数图象可得01a << . 当0a <时,不符合题意.综上所述,a 的取值范围是01a <<.8、如图①,在平面直角坐标系中,二次函数y=13-x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段O B上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=,c=;(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;(3)点M在抛物线上,且△A O M的面积与△A O C的面积相等,求出点M的坐标。

二次函数动点问题的解题技巧

二次函数动点问题的解题技巧

二次函数动点问题的解题技巧
以下是 8 条关于二次函数动点问题的解题技巧:
1. 大胆设未知数呀!比如在一个直角坐标系里,有个二次函数图像上有个动点 P,那咱就大大方方设它的坐标为(x,y),这样不就能更好地分析啦!就像给这个动点取了个名字,好指挥它呀!
2. 把条件都用上呀!可别漏了,像找到某个线段长度与动点坐标的关系,哎呀呀,这可是关键呢!比如已知一个线段的长度是 5,和动点 P 的横坐标有关,那可不能放过这个线索,得好好挖掘挖掘!
3. 找等量关系呀!这就好比寻宝,到处去找那些能关联起来的等量哦。

比如说一个三角形面积和另一个图形面积相等,这不就找到宝贝线索啦!
4. 注意特殊位置呀!嘿,动点有时候会跑到一些特殊的点呢,那可有意思啦。

比如它跑到对称轴上时,那说不定会有惊喜发现呢!像突然发现一些对称关系,多神奇呀!
5. 画画图呀!通过图形能更直观地看到动点的运动呀,这就像给你一双眼睛看着它怎么跑。

看看它跑到不同地方时整个图形发生的变化,多好玩呀!
6. 多试试分类讨论呀!有时候动点的情况不唯一呢,那咱就别怕麻烦,一种一种来。

难道还能被它难住不成?像动点在不同区间时可能有不同的结果,咱就一个个算清楚嘛!
7. 利用函数解析式呀!这可是个好宝贝,通过它能知道很多信息呢。

比如知道了二次函数的解析式,那动点在上面的一些性质不就清楚啦?
8. 要敢想敢做呀!别犹豫,大胆去尝试各种方法。

不试试看怎么知道行不行呢?就像冒险一样,多刺激呀!
总之,面对二次函数动点问题,别怕!勇敢地去探索,一定能找到答案的!。

二次函数动点专项练习30题(有答案)

二次函数动点专项练习30题(有答案)

二次函数动点专项练习30题(有答案)1.在平面直角坐标系xOy中,二次函数y=﹣x2+x+2的图象与x轴交于点A,B(点B在点A的左侧),与y 轴交于点C.过动点H(0,m)作平行于x轴的直线l,直线l与二次函数y=﹣x2+x+2的图象相交于点D,E.(1)写出点A,点B的坐标;(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求m的值;(3)直线l上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,请说明理由.2.如图,已知抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点.(1)求抛物线的解析式;(2)若C(m,m﹣1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D 分别作DE∥BC交AC于E,DF∥AC交BC于F.①求证:四边形DECF是矩形;②连接EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.3.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.4.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.5.如图,已知二次函数图象的顶点坐标为M(2,0),直线y=x+2与该二次函数的图象交于A、B两点,其中点A 在y轴上,P为线段AB上一动点(除A,B两端点外),过P作x轴的垂线与二次函数的图象交于点Q设线段PQ 的长为l,点P的横坐标为x.(1)求二次函数的解析式;(2)求l与x之间的函数关系式,并求出l的取值范围;(3)线段AB上是否存在一点P,使四边形PQMA为梯形?若存在,求出点P的坐标;若不存在,请说明理由.6.如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2 与x轴交于点C,直线y=﹣2x+7经过抛物线上一点B(5,m),且与直线x=2交于点E.(1)求m的值及该抛物线的函数关系式;(2)若点D是x轴上一动点,当△DCB∽△ECB时,求点D的坐标;(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PC?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.7.矩形OABC在平面直角坐标系中的位置如图所示,其中OA=5,AB=2,抛物线y=﹣x 2+3x的图象与BC交于D、E两点.(1)求DE的长_________;(2)M是BC上的动点,若OM⊥AM,求点M的坐标;(3)在抛物线上是否存在点Q,使以D、O、Q、M为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.8.如图,已知抛物线与x轴交于A(﹣4,0)和B(1,0)两点,与y轴交于C(0,﹣2)点.(1)求此抛物线的解析式;(2)设G是线段BC上的动点,作GH∥AC交AB于H,连接CH,当△BGH的面积是△CGH面积的3倍时,求H点的坐标;(3)若M为抛物线上A、C两点间的一个动点,过M作y轴的平行线,交AC于N,当M点运动到什么位置时,线段MN的值最大,并求此时M点的坐标.9.如图,抛物线y=ax 2+bx+3(a≠0)的图象经过A(3,0),B(4,1)两点,且与y轴交于点C.(1)直接写出点C的坐标;(2)试求抛物线y=ax2+bx+3(a≠0)的函数关系式;(3)连接AC,点E为线段AC上的动点(不与A、C重合),经过A、E、O三点的圆交直线AB于点F.当△OEF 的面积取得最小值时,请求出点E的坐标.10.抛物线y=a(x+6)2﹣3与x轴相交于A,B两点,与y轴相交于C,D为抛物线的顶点,直线DE⊥x轴,垂足为E,AE2=3DE.(1)求这个抛物线的解析式;(2)P为直线DE上的一动点,以PC为斜边构造直角三角形,使直角顶点落在x轴上.若在x轴上的直角顶点只有一个时,求点P的坐标;(3)M为抛物线上的一动点,过M作直线MN⊥DM,交直线DE于N,当M点在抛物线的第二象限的部分上运动时,是否存在使点E三等分线段DN的情况?若存在,请求出所有符合条件的M的坐标;若不存在,请说明理由.11.如图,已知抛物线y=ax 2+bx+c经过点A(2,3),B(6,1),C(0,﹣2).(1)求此抛物线的解析式,并用配方法把解析式化为顶点式;(2)点P是抛物线对称轴上的动点,当AP⊥CP时,求点P的坐标;(3)设直线BC与x轴交于点D,点H是抛物线与x轴的一个交点,点E(t,n)是抛物线上的动点,四边形OEDC 的面积为S.当S取何值时,满足条件的点E只有一个?当S取何值时,满足条件的点E有两个?12.如图,抛物线的对称轴是直线x=1,它与x轴交于A、B两点,与y轴交于C点,点A、C的坐标分别是(﹣1,0)、(0,3)(1)求此抛物线对应的函数解析式;(2)若点P是抛物线上位于x轴上方的一个动点,求△ABP面积的最大值;(3)若过点A(﹣1,0)的直线AD与抛物线的对称轴和x轴围成的三角形的面积为6,求此直线的解析式.13.已知抛物线y=ax 2+bx+c的对称轴为直线x=2,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P在抛物线上运动(点P异于点A).①如图1.当△PBC面积与△ABC面积相等时.求点P的坐标;②如图2.当∠PCB=∠BCA时,求直线CP的解析式.14.如图,平面直角坐标系xOy中,点A的坐标为(﹣2,2),点B的坐标为(6,6),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点E.(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当点F在线段OB上运动时,求△BON面积的最大值,并求出此时点N的坐标;(4)连接AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN相似(点B、O、P分别与点O、A、N对应)的点P的坐标.15.如图,抛物线y=ax2+bx+(a≠0)经过A(﹣3,0)、C(5,0)两点,点B为抛物线的顶点,抛物线的对称轴与x轴交于点D.(1)求此抛物线的解析式;(2)动点P从点B出发,沿线段BD向终点D作匀速运动,速度为每秒1个单位长度,运动时间为ts,过点P作PM⊥BD交BC于点M,过点M作MN∥BD,交抛物线于点N.①当t为何值时,线段MN最长;②在点P运动的过程中,是否有某一时刻,使得以O、P、M、C为顶点的四边形为等腰梯形?若存在,求出此刻的t值;若不存在,请说明理由.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是.16.如图,抛物线y=ax2+2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A(﹣4,0)和B.(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CEQ的面积最大时,求点Q 的坐标;(3)平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(﹣2,0).问是否有直线l,使△ODF是等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.17.在平面直角坐标系xOy中,抛物线y=ax2++c与x轴交于点(﹣1,0)和点B,与y轴交于点C(0,4).(1)求抛物线的解析式;(2)若P是抛物线上一点,且△ABP的面积是,求P点的坐标;(3)若D是线段BC上的一个动点,过点D作DE⊥BC,交OC于E点.设CD的长为t,四边形DEOB的周长为l,求l与t之间的函数关系式,并写出t的取值范围.18.(2011?宝安区三模)如图,在直角坐标系中,点A(2,0),点B(0,4),AB的垂直平分线交AB于C,交x 轴于D,(1)求点C、D的坐标;(2)求过点B、C、D的抛物线的解析式;(3)点P为CD间的抛物线上一点,求当点P在何处时,以P,C,D,B为顶点的四边形的面积最大?19.(2010?菏泽)如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于B(1,m)、C(2,2)两点.(1)求直线与抛物线的解析式;(2)若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=α,求当△PON的面积最大时tanα的值;(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△PON面积的?若存在,请求出点P的坐标;若不存在,请说明理由.20.已知抛物线y=ax 2+bx+c的顶点为A(3,﹣3),与x轴的一个交点为B(1,0).(1)求抛物线的解析式.(2)P是y轴上一个动点,求使P到A、B两点的距离之和最小的点P0的坐标.(3)设抛物线与x轴的另一个交点为C.在抛物线上是否存在点M,使得△MBC的面积等于以点A、P0、B、C 为顶点的四边形面积的三分之一?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.21.如图,已知抛物线y=+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,﹣1).(1)求抛物线的解析式;(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连接DC,当△DCE的面积最大时,求点D的坐标;(3)在直线BC上是否存在一点P,使△ACP为等腰三角形?若存在,求点P的坐标;若不存在,说明理由.22.如图,已知抛物线y=ax 2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.23.如图,在直角坐标系xOy中,正方形OCBA的顶点A,C分别在y轴,x轴上,点B坐标为(6,6),抛物线y=ax2+bx+c经过点A,B两点,且3a﹣b=﹣1.(1)求a,b,c的值;(2)如果动点E,F同时分别从点A,点B出发,分别沿A→B,B→C运动,速度都是每秒1个单位长度,当点E 到达终点B时,点E,F随之停止运动,设运动时间为t秒,△EBF的面积为S.①试求出S与t之间的函数关系式,并求出S的最大值;②当S取得最大值时,在抛物线上是否存在点R,使得以E,B,R,F为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.24.如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求出抛物线的解析式;(2)P是(1)中抛物线AB段上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△ACO相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.25.在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.26.如图1,在平面直角坐标系xOy中,已知A、B两点的坐标分别为(4,0)、(0,2),将△OAB绕点O逆时针旋转90°后得到△OCD,抛物线y=ax2﹣2ax+4经过点A.(1)求抛物线的函数表达式,并判断点D是否在该抛物线上;(2)如图2,若点P是抛物线对称轴上的一个动点,求使|PC﹣PD|的值最大时点P的坐标;(3)设抛物线上是否存在点E,使△CDE是以CD为直角边的直角三角形?若存在,请求出所有点E的坐标;若不存在,请说明理由.27.已知抛物线y=x2+bx+1的顶点在x轴上,且与y轴交于A点.直线y=kx+m经过A、B两点,点B的坐标为(3,4).(1)求抛物线的解析式,并判断点B是否在抛物线上;(2)如果点B在抛物线上,P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长h,点P的横坐标为x,当x为何值时,h取得最大值,求出这时的h值.28.如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求该抛物线的解析式;(2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P;(3)在抛物线的对称轴上找一点M,使|AM﹣MC|的值最大,求出点M的坐标.29.阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB;(3)是否存在抛物线上一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.30.如图,抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1,x2是方程x2﹣2x﹣8=0的两个根.(1)求这条抛物线的解析式;(2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.二次函数动点30题参考答案:1.解:(1)当y=0时,有,解得:x1=4,x2=﹣1,∴A、B两点的坐标分别为(4,0)和(﹣1,0).(2)∵⊙Q与x轴相切,且与交于D、E两点,∴圆心Q位于直线与抛物线对称轴的交点处,∵抛物线的对称轴为,⊙Q的半径为H点的纵坐标m(m>0),∴D、E两点的坐标分别为:(﹣m,m),(+m,m)∵E点在二次函数的图象上,∴,解得或(不合题意,舍去).(3)存在.①如图1,当∠ACF=90°,AC=FC时,过点F作FG⊥y轴于G,∴∠AOC=∠CGF=90°,∵∠ACO+∠FCG=90°,∠GFC+∠FCG=90°,∴∠ACO=∠CFG,∴△ACO≌△CFG,∴CG=AO=4,∵CO=2,∴m=OG=2+4=6;反向延长FC,使得CF=CF′,此时△ACF′亦为等腰直角三角形,易得y C﹣y F′=CG=4,∴m=CO﹣4=2﹣4=﹣2.②如图2,当∠CAF=90°,AC=AF时,过点F作FP⊥x轴于P,∵∠AOC=∠APF=90°,∠ACO+∠OAC=90°,∠FAP+∠OAC=90°,∴∠ACO=∠FAP,∴△ACO≌△∠FAP,∴FP=AO=4,∴m=FP=4;反向延长FA,使得AF=AF′,此时△ACF’亦为等腰直角三角形,易得y A﹣y F′=FP=4,∴m=0﹣4=﹣4.③如图3,当∠AFC=90°,FA=FC时,则F点一定在AC的中垂线上,此时存在两个点分别记为F,F′,分别过F,F′两点作x轴、y轴的垂线,分别交于E,G,D,H.∵∠DFC+∠CFE=∠CFE+∠EFA=90°,∴∠DFC=∠EFA,∵∠CDF=∠AEF,CF=AF,∴△CDF≌△AEF,∴CD=AE,DF=EF,∴四边形OEFD为正方形,∴OA=OE+AE=OD+AE=OC+CD+AE=OC+2CD,∴4=2+2?CD,∴CD=1,∴m=OC+CD=2+1=3.∵∠HF′C+∠CGF′=∠CF′G+∠GF′A,∴∠HF′C=∠GF′A,∵∠HF′C=∠GF′A,CF′=AF′,∴△HF′C≌△GF′A,∴HF′=GF′,CH=AG,∴四边形OHF′G为正方形,∴OH=CH﹣CO=AG﹣CO=AO﹣OG﹣CO=AO﹣OH﹣CO=4﹣OH﹣2,∴OH=1,∴m=﹣1.∵y=﹣x2+x+2=﹣(x﹣)2+,∴y的最大值为.∵直线l与抛物线有两个交点,∴m<.∴m可取值为:﹣4、﹣2、﹣1或3.综上所述,直线l上存在一点F,使得△ACF是等腰直角三角形,m的值为﹣4、﹣2、﹣1或3 2.(1)∵抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点,∴根据题意,得,解得,所以抛物线的解析式为:;(2)①证明:∵把C(m,m﹣1)代入得∴,解得:m=3或m=﹣2,∵C(m,m﹣1)位于第一象限,∴,∴m>1,∴m=﹣2舍去,∴m=3,∴点C坐标为(3,2),过C点作CH⊥AB,垂足为H,则∠AHC=∠BHC=90°,由A(﹣1,0)、B(4,0)、C(3,2)得AH=4,CH=2,BH=1,AB=5∵,∠AHC=∠BHC=90°∴△AHC∽△CHB,∴∠ACH=∠CBH,∵∠CBH+∠BCH=90°∴∠ACH+∠BCH=90°∴∠ACB=90°,∵DE∥BC,DF∥AC,∴四边形DECF是平行四边形,∴?DECF是矩形;②存在;连接CD∵四边形DECF是矩形,∴EF=CD,当CD⊥AB时,CD的值最小,∵C(3,2),∴DC的最小值是2,∴EF的最小值是2;3. (1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴CG=OC+OG=+1=,∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.∵AE2+AD2=6+3=9=DE2,∴△ADE为直角三角形,∠EAD=90°.设AE交CD于点F,∵∠AEO+∠EFH=90°,∠ADC+AFD=90°,∠EFH=∠AFD(对顶角相等),∴∠AEO=∠ADC.(3)解:依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2.∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2.∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5当y=1时,EP2有最小值,最小值为5.将y=1代入y=(x﹣3)2﹣1,得(x﹣3)2﹣1=1,解得:x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴P(5,1).此时点Q坐标为(3,1)或(,)4.解:(1)∵该抛物线过点C(0,2),∴可设该抛物线的解析式为y=ax2+bx+2.将A(﹣1,0),B(4,0)代入,得,解得,∴抛物线的解析式为:y=﹣x2+x+2.(2)存在.由图象可知,以A、B为直角顶点的△ABE不存在,所以△ABE只可能是以点E为直角顶点的三角形.在Rt△BOC中,OC=2,OB=4,∴BC==.在Rt△BOC中,设BC边上的高为h,则×h=×2×4,∴h=.∵△BEA∽△COB,设E点坐标为(x,y),∴=,∴y=±2将y=2代入抛物线y=﹣x2+x+2,得x1=0,x2=3.当y=﹣2时,不合题意舍去.∴E点坐标为(0,2),(3,2).(3)如图2,连结AC,作DE⊥x轴于点E,作BF⊥AD于点F,∴∠BED=∠BFD=∠AFB=90°.设BC的解析式为y=kx+b,由图象,得,∴,y BC=﹣x+2.由BC∥AD,设AD的解析式为y=﹣x+n,由图象,得0=﹣×(﹣1)+n∴n=﹣,y AD=﹣x﹣.∴﹣x2+x+2=﹣x﹣,解得:x1=﹣1,x2=5∴D(﹣1,0)与A重合,舍去;∴D(5,﹣3).∵DE⊥x轴,∴DE=3,OE=5.由勾股定理,得BD=.∵A(﹣1,0),B(4,0),C(0,2),∴OA=1,OB=4,OC=2.∴AB=5在Rt△AOC中,Rt△BOC中,由勾股定理,得AC=,BC=2,∴AC2=5,BC2=20,AB2=25,∴AC2+BC2=AB2∴△ACB是直角三角形,∴∠ACB=90°.∵BC∥AD,∴∠CAF+∠ACB=180°,∴∠CAF=90°.∴∠CAF=∠ACB=∠AFB=90°,∴四边形ACBF是矩形,∴AC=BF=,在Rt△BFD中,由勾股定理,得DF=,∴DF=BF,∴∠ADB=45°5.解:(1)依题意,设二次函数的解析式为y=a(x﹣2)2,由于直线y=x+2与y轴交于(0,2),∴x=0,y=2满足y=a(x﹣2)2,于是求得a=,二次函数的解析式为y=(x﹣2)2;(2)∵PQ⊥x轴且横坐标为x,∴l=(x+2)﹣(x﹣2)2=﹣x2+3x,由得点B的坐标为B(6,8),∵点p在线段AB上运动,∴0<x<6.∵,∴当x=3时,.∴0<l<;(3)作MQ∥AP.过M作MD∥PQ,MD交AB于N,则四边形PQMD为平行四边形.∴MD=PQ,∵M(2,0),∴D(2,4),∴MD=4.∴.∴x2﹣6x+8=0,∴x1=2,x2=4.∵2<x<6,∴x=4.∴P(4,6),Q(4,2).即P点的坐标为:(4,6)6.:(1)∵点B(5,m)在直线y=﹣2x+7上,∴m=﹣5×2+7=﹣3,∴B(5,﹣3),∵抛物线经过原点O和点A,对称轴为x=2,∴点A的坐标为(4,0)设所求的抛物线对应函数关系式为y=a(x﹣0)(x﹣4),将点B(5,﹣3)代入上式,得﹣3=a(5﹣0)(5﹣4),∴a=﹣,∴所求的抛物线对应的函数关系式为y=﹣x(x﹣4),即y=﹣x2+x.(2)∵点A(4,0),B(5,﹣3),C(2,0),∴AC=4﹣2=2,BC==3,当点D在直线x=2的右侧时,当△DCB∽△ECB,∴=,即=,解得:CD=9,∴点D的坐标为:(11,0),当点D在直线x=2的左侧时,∵∠ACB=∠CDB+∠CBA,且∠ACB<∠DCB,∴在△DCB中不可能存在与∠DCB相等的角,即此时不存在点使三角形相似;综上所述,存在点D的坐标是(11,0),使三角形相似;(3)存在符合条件的点P使PB=PC,∵C(2,0),B(5,﹣3),∴∠ACB=45°,BC垂直平分线的解析式为:y=x﹣5,∴,∴解得:,,∴符合条件的点P的坐标为(,)或(,).7.解:(1)由图知:点D、E的纵坐标为2,依题意,有:﹣x2+3x=2,解得:x1=1、x2=2∴D(1,2)、E(2,2),DE=1.(2)如右图;矩形OABC中,∠OMA=90°,∴∠CMO=∠MAB=90°﹣∠AMB,又∠OCM=∠MBA=90°,∴△OCM∽△MBA,有:=设点M(m,2),则:CM=m,BM=5﹣m∴=,解得m1=1,m2=4∴点M的坐标为(1,2)或(4,2).(3)若以D、O、Q、M为顶点的四边形是平行四边形,那么点D、M不共点,所以点M取(4,2);①当DM为平行四边形的对角线时,点O、Q关于DM的中点对称,即点Q的纵坐标为4,由图知,点Q必不在抛物线图象上,不合题意;②当DM为平行四边形的边时,OM∥OQ,且OM=OQ;∵D(1,2)、M(4,2)∴OQ=DM=3,即Q(﹣3,0)或(3,0);经验证,点(﹣3,0)不在抛物线图象上;点(3,0)在抛物线图象上;综上,存在符合条件的点Q,且坐标为(3,0)8. 解:(1)设抛物线的解析式:y=a(x+4)(x﹣1),代入C(0,﹣2),得:﹣2=a(0+4)(0﹣1),解得:a=故抛物线的解析式:y=(x+4)(x﹣1)=x2+x﹣2.(2)∵当△BGH的面积是△CGH面积的3倍,∴BG:CG=3:1,即BG:BC=3:4;∵GH∥AC,∴==;易知:BA=OB+OA=5,则BH=AB=,∴OH=BH﹣OB=﹣1=,即H(﹣,0).(3)设直线AC:y=kx+b,代入A(﹣4,0)、C(0,﹣2),得:,解得故直线AC:y=﹣x﹣2;设M(x,x2+x﹣2),则N(x,﹣x﹣2),则:MN=(﹣x﹣2)﹣(x2+x﹣2)=﹣x2﹣2x=﹣(x+2)2+2因此当M运动到OA的中垂线上,即M(﹣2,﹣3)时,线段MN的长最大.9.(1)令x=0,可得y=3,故点C的坐标为(0,3);(2)将点A(3,0),B(4,1)代入可得:,解得:,故函数解析式为y=x2﹣x+3;(3)如图,∵点A(3,0),点B(4,1),∴直线AB的解析式为:y=x﹣3,∵A(3,0),C(0,3),∴OA=3,OC=3,∴tan∠OAC===1,∴∠OAC=45°,∴∠OAC=∠OAF=45°,∵∠OEF=∠OAF=45°,∠OFE=∠OAE=45°,∴OE=OF,∠EOF=180°﹣45°×2=90°,∴△OEF是等腰直角三角形,∴S△OEF=×OE×OF=OE2,当OE最小时,S△FEO最小,根据等腰直角三角形的性质,当OE⊥AC时,OE最小,此时点E为AC的中点,故点E的坐标为(,).10.解:(1)易知抛物线的顶点D(﹣6,﹣3),则DE=3,OE=6;∵AE2=3DE=9,∴AE=3,即A(﹣3,0);将A点坐标代入抛物线的解析式中,得:a(﹣3+6)2﹣3=0,即a=,即抛物线的解析式为:y=(x+6)2﹣3=x2+4x+9.(2)设点P(﹣6,t),易知C(0,9);则PC的中点Q(﹣3,);易知:PC=;若以PC为斜边构造直角三角形,在x轴上的直角顶点只有一个时,以PC为直径的圆与x轴相切,即:||=,解得t=1,故点P(﹣6,1),当点P与点E重合时,由抛物线的解析式可知,A(﹣3,0),B(﹣9,0).所以P(﹣6,0),故点P的坐标为(﹣6,1)或(﹣6,0),(3)设点M(a,b)(a<0,b>0),分两种情况讨论:①当NE=2DE时,NE=6,即N(﹣6,6),已知D(﹣6,﹣3),则有:直线MN的斜率:k1=,直线MD的斜率:k2=;由于MN⊥DM,则k1?k2==﹣1,整理得:a2+b2+12a﹣3b+18=0…(△),由抛物线的解析式得:a2+4a+9=b,整理得:a2+12a﹣3b+27=0…(□);(△)﹣(□)得:b2=9,即b=3(负值舍去),将b=3代入(□)得:a=﹣6+3,a=﹣6﹣3,故点M(﹣6+3,3)或(﹣6﹣3,3);②当2NE=DE时,NE=,即N(﹣6,),已知D(﹣6,﹣3),则有:直线MN的斜率:k1=,直线DM的斜率:k2=;由题意得:k1?k2==﹣1,整理得:a2+b2+b+12a+=0,而a2+12a﹣3b+27=0;两式相减,得:2b2+9b+9=0,解得b=﹣2,b=﹣,(均不符合题意,舍去);综上可知:存在符合条件的M点,且坐标为:M(﹣6+3,3)或(﹣6﹣3,3).11.(1)将A,B,C三点坐标代入y=ax2+bx+c中,得,解得,∴y=﹣x2+x﹣2=﹣(x﹣)2+;(2)设点P(,m),分别过A、C两点作对称轴的垂线,垂足为A′,C′,∵AP⊥CP,∴△AA′P∽△PC′C,可得=,即=,解得m1=,m2=﹣,∴P(,)或(,﹣);(3)①由B(6,1),C(0,﹣2),得直线BC的解析式为y=x﹣2,∴D(4,0),当E点为抛物线顶点时,满足条件的点E只有一个,此时S=×4×2+×4×=,∵S△BOC=×2×6=6,∴当6≤S<时,满足条件的点E有两个.②当4<S<6时,﹣x2+x﹣2=0的△>0,方程有两个不相等的实数根,此时0<n<1,需满足的条件点E只能在点H与点B之间的抛物线上,故此时满足条件的点E只有一个.12. 解:(1)∵抛物线的对称轴是直线x=1,设抛物线的解析式是y=a(x﹣1)2+k,∴解得:,∴y=﹣(x﹣1)2+4即y=﹣x2+2x+3(2)∵y=﹣x2+2x+3,当y=0时,∴x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴B(3,0),A(﹣1,0)∴AB=4.设P(a,﹣a2+2a+3)∴S△ABP==﹣2(a﹣1)2+8,∴△ABP面积的最大值为8(3)设D的坐标为(1,b),∴=6,∴b=±6,∴D(1,6)或(1,﹣6),设AD的解析式为y=kx+b,得或解得:或∴直线AD的解析式为:y=3x+3或y=﹣3x﹣313. 解:(1)由题意,得,解得∴抛物线的解析式为y=﹣x2+4x﹣3;(2)①令﹣x2+4x﹣3=0,解得x1=1,x2=3,∴B(3,0),当点P在x轴上方时,如图1,过点A作直线BC的平行线交抛物线于点P,易求直线BC的解析式为y=x﹣3,∴设直线AP的解析式为y=x+n,∵直线AP过点A(1,0),代入求得n=﹣1.∴直线AP的解析式为y=x﹣1解方程组,得,∴点P1(2,1)当点P在x轴下方时,如图1:设直线AP1交y轴于点E(0,﹣1),把直线BC向下平移2个单位,交抛物线于点P2,P3,得直线P2P3的解析式为y=x﹣5,解方程组,得,∴P2(,),P3(,),综上所述,点P的坐标为:P1(2,1),P2(,),P3(,),②∵B(3,0),C(0,﹣3)∴OB=OC,∴∠OCB=∠OBC=45°设直线CP的解析式为y=kx﹣3如图2,延长CP交x轴于点Q,设∠OCA=α,则∠ACB=45°﹣α,∵∠PCB=∠BCA,∴∠PCB=45°﹣α,∴∠OQC=∠OBC﹣∠PCB=45°﹣(45°﹣α)=α,∴∠OCA=∠OQC又∵∠AOC=∠COQ=90°∴Rt△AOC∽Rt△COQ∴,∴,∴OQ=9,∴Q(9,0)∵直线CP过点Q(9,0),∴9k﹣3=0∴∴直线CP的解析式为.其它方法略.114.解:(1)设直线AB解析式为y=kx+b,将A(﹣2,2),B(6,6)代入,得,解得,∴y=x+3,令x=0,∴E(0,3);(2)设抛物线解析式为y=ax2+bx+c,将A(﹣2,2),B(6,6),O(0,0)三点坐标代入,得,解得,∴y=x2﹣x(3)依题意,得直线OB的解析式为y=x,设过N点且与直线OB平行的直线解析式为y=x+m,联立,得x2﹣6x﹣4m=0,当△=36+16m=0时,过N点与OB平行的直线与抛物线有唯一的公共点,则点N到BO的距离最大,所以△BON面积最大,解得m=﹣,x=3,y=,即N(3,);此时△BON面积=×6×6﹣(+6)×3﹣××3=;(4)过点A作AS⊥GQ于S,∵A(﹣2,2),B(6,6),N(3,),∵∠AOE=∠OAS=∠BOH=45°,OG=3,NG=,NS=,AS=5,在Rt△SAN和Rt△NOG中,∴tan∠SAN=tan∠NOG=,∴∠SAN=∠NOG,∴∠OAS﹣∠SAN=∠BOG﹣∠NOG,∴∠OAN=∠NOB,∴ON的延长线上存在一点P,使得△BOP∽△OAN,∵A(﹣2,2),N(3,),∵△BOP与△OAN相似(点B、O、P分别与点O、A、N对应),即△BOP∽△OAN,∴BO:OA=OP:AN=BP:ON又∵A(﹣2,2),N(3,),B(6,6),∴BO=6,OA=2,AN=,ON=,∴OP=,BP=,设P点坐标为(4x,x),∴16x2+x2=()2,解得x=,4x=15,∵P、P′关于直线y=x轴对称,∴P点坐标为(15,)或(,15).15.解:(1)∵抛物线y=ax2+bx+与x轴交于点A(﹣3,0),C(5,0)∴解得.∴抛物线的函数关系式为y=﹣x2+x+.(2)①延长NM 交AC 于E ,∵B 为抛物线y=﹣x 2+x+的顶点,∴B (1,8).(5分)∴BD=8,OD=1.∵C (5,0),∴CD=4.∵PM ⊥BD ,BD ⊥AC ,∴PM ∥AC .∴∠BPM=∠BDC=90°,∠BMP=∠BCD .∴△BPM ∽△BDC .∴=.根据题意可得BP=t ,∴=.∴PM=t .∵MN ∥BD ,PM ∥AC ,∠BDC=90°,∴四边形PMED 为矩形.∴DE=PM=t .∴OE=OD+DE=1+t .∴E (1+t ,0).∵点N 在抛物线上,横坐标为1+t ,∴点N 的纵坐标为﹣(1+t )2+(1+t )+.∴NE=﹣(1+t )2+(1+t )+=﹣t 2+8.∵PB=t ,PD=ME ,∴EM=8﹣t .∴MN=NE ﹣EM=﹣t 2+8﹣(8﹣t )=﹣(t ﹣4)2+2.当t=4时,MN 最大=2.②存在符合条件的t 值.连接OP ,如图(2).若四边形OPMC 是等腰梯形,只需OD=EC .∵OD=1,DE=PM=t ,∴EC=5﹣(t+1).∴5﹣(t+1)=1.解得t=6.∴当t=6时,四边形OPMC是等腰梯形16.(1)由题意,得:,解得:,∴所求抛物线的解析式为:y=﹣x2﹣x+4.(2)设点Q的坐标为(m,0),过点E作EG⊥x轴于点G.由﹣x2﹣x+4=0,得x1=2,x2=﹣4,∴点B的坐标为(2,0),∴AB=6,BQ=2﹣m,∵QE∥AC,∴△BQE∽△BAC,∴,即,∴EG=(2﹣m),∴S△CQE=S△CBQ﹣S△EBQ=BQ?CO﹣BQ?EG=(2﹣m)[4﹣(2﹣m)]=﹣(m+1)2+3又∵﹣4≤m≤2,∴当m=﹣1时,S△CQE有最大值3,此时Q(﹣1,0).(3)存在.在△ODF中.(ⅰ)若DO=DF,∵A(﹣4,0),D(﹣2,0)∴AD=OD=DF=2,又在Rt△AOC中,OA=OC=4,∴∠OAC=45°,∴∠DFA=∠OAC=45°,∴∠ADF=90°.此时,点F的坐标为(﹣2,2)(ⅱ)若FO=FD,过点F作FM⊥x轴于点M由等腰三角形的性质得:OM=MD=1,∴AM=3,∴在等腰直角△AMF中,MF=AM=3,∴F(﹣1,3);(ⅲ)若OD=OF,∵OA=OC=4,且∠AOC=90°,∴AC=4,∴点O到AC的距离为2,而OF=OD=2<2,∴此时不存在这样的直线l,使得△ODF是等腰三角形,综上所述,存在这样的直线l,使得△ODF是等腰三角形,所求点F的坐标为:F(﹣2,2)或(﹣1,3).17.解:(1)∵抛物线y=ax2++c与x轴交于点(﹣1,0)和点B,与y轴交于点C(0,4).∴,解得:,∴y=﹣x2++4;(2)令y=0,可得x1=﹣1,x2=3,∴B点坐标为:(3,0),设P点坐标为(x,y),依据题意得出:×4×|y|=,∴|y|=,∵y=﹣x2++4;=﹣(x﹣1)2+,∴抛物线开口向下,顶点坐标为(1,),∴纵坐标最大值为:,∴y=﹣,∴﹣=﹣x2++4;解得:x1=﹣2,x2=4,∴P点的坐标为:(4,﹣),(﹣2,﹣);(3)如图所示:在△ABC中,OB=3,CO=4,∠BOC=90°,由勾股定理得BC=5,∵DE⊥BC,∴∠EDC=∠BOC=90°,∵∠DCE=∠OCB,∴△DCE∽△OCB,∴==,∵CD=t,∴==,∴CE=t,DE=t,∴四边形DEOB的周长为l=EO+BO+DB+DE=4﹣t+3+t+5﹣t=12﹣t,t的取值范围是:0<t<.18.:(1)过C作CD⊥x轴于G,∵点C为线段AB的中点,∴CG是△OAB的中位线,∴点C的坐标是(1,2),┅┅┅┅┅┅┅┅(1分)又∵OA=2,OB=4,∴AB=,AC=,显然△ABO∽△ADC,∴,即,┅┅┅┅┅┅┅┅┅┅┅(2分)∴AD=5OD=AD﹣OA=3,∴点D的坐标是(﹣3,0);┅┅┅┅┅┅┅┅┅(3分)(2)解:设过B(0,4),C(1,2),D(﹣3,0)的抛物线的关系式为y=ax2+bx+c,∴,┅┅┅┅┅┅(4分)解得:,┅┅┅┅┅┅┅┅┅┅┅┅(5分)∴抛物线的关系式为;┅┅┅┅┅┅┅┅┅(6分)(3)解:设点P的坐标为(x,y)连BD,过点P作PH⊥x轴于H,交BD于E,S四边形PBCD=S△BCD+S△PBD,∵S△BCD=S△ACD为定值,∴要使四边形PBCD的面积最大就是使△PBD的面积最大,①当P在BD间的抛物线上时,即﹣3<x<0,S△PBD=S△PBE+S△PED=PE×DH+PE×OH=PE×OD=PE,∵PE=PH﹣EH=y P﹣y E,┅┅┅┅┅┅┅┅(7分)直线BD的关系式为y=,∴PE=,=,当x=时,PE最大为,∴点P的坐标(,),┅┅┅┅┅┅┅┅┅┅(8分)②当P在BC间的抛物线上时,即0<x<1,同理可求出四边形PBCD的面积,很显然,此时四边形PBCD的面积要小于点P在BD间的抛物线上时的四边形PBCD的面积,故P点的坐标是(,).┅┅┅┅┅┅┅┅┅(9分)19.解:(1)将点C(2,2)代入直线y=kx+4,可得k=﹣1所以直线的解析式为y=﹣x+4当x=1时,y=3,所以B点的坐标为(1,3)将B、C、O三点的坐标分别代入抛物线y=ax2+bx+c,可得解得,所以所求的抛物线为y=﹣2x2+5x.(2)因为ON的长是一定值,所以当点P为抛物线的顶点时,△PON的面积最大,又该抛物线的顶点坐标为(),此时tan∠PON=.(3)存在;把x=0代入直线y=﹣x+4得y=4,所以点A(0,4)把y=0代入抛物线y=﹣2x2+5x得x=0或x=,所以点N(,0)设动点P坐标为(x,y),其中y=﹣2x2+5x (0<x<)则得:S△OAP=|OA|?x=2xS△ONP=|ON|?y=?(﹣2x2+5x)=(﹣2x2+5x)由S△OAP=S△ONP,即2x=?(﹣2x2+5x)解得x=0或x=1,舍去x=0得x=1,由此得y=3所以得点P存在,其坐标为(1,3)20.解:(1)设抛物线的解析式为:y=a(x﹣3)2﹣3,依题意有:a(1﹣3)2﹣3=0,a=,∴该抛物线的解析式为:y=(x﹣3)2﹣3=x2﹣x+.(2)设B点关于y轴的对称点为B′,则B′(﹣1,0);设直线AB′的解析式为y=kx+b,则有:,解得;∴y=﹣x﹣;故P0(0,﹣).(3)由(1)的抛物线知:y=x 2﹣x+=(x﹣1)(x﹣5),故C(5,0);∵S四边形AP0BC=S△AB′C﹣S△BB′P0=×6×3﹣×2×=;∴S△BCM=S四边形AP0BC=;易知BC=4,则|y M|=;当M的纵坐标为时,x2﹣x+=,解得x=3+,x=3﹣;当M的纵坐标为﹣时,x2﹣x+=﹣,解得x=3+,x=3﹣;故符合条件的M点有四个,它们的坐标分别是:M1(3+,),M2(3﹣,),M3(3+,﹣),M4(3﹣,﹣).21.:(1)由于抛物线经过A(2,0),C(0,﹣1),则有:,解得;∴抛物线的解析式为:y=﹣x﹣1.(2)∵A(2,0),C(0,﹣1),∴直线AC:y=x﹣1;设D(x,0),则E(x,x﹣1),故DE=0﹣(x﹣1)=1﹣x;∴△DCE的面积:S=DE×|x D|=×(1﹣x)×x=﹣x2+x=﹣(x﹣1)2+,因此当x=1,即D(1,0)时,△DCE的面积最大,且最大值为.(3)由(1)的抛物线解析式易知:B(﹣1,0),可求得直线BC的解析式为:y=﹣x﹣1;设P(x,﹣x﹣1),因为A(2,0),C(0,﹣1),则有:AP2=(x﹣2)2+(﹣x﹣1)2=2x2﹣2x+5,AC2=5,CP2=x2+(﹣x﹣1+1)2=2x2;①当AP=CP时,AP2=CP2,有:2x2﹣2x+5=2x2,解得x=2.5,∴P1(2.5,﹣3.5);②当AP=AC时,AP2=AC2,有:2x2﹣2x+5=5,解得x=0(舍去),x=1,∴P2(1,﹣2);③当CP=AC时,CP2=AC2,有:2x2=5,解得x=±,∴P3(,﹣﹣1),P4(﹣,﹣1);综上所述,存在符合条件的P点,且P点坐标为:P1(2.5,﹣3.5)、P2(1,﹣2)、P3(,﹣﹣1)、P4(﹣,﹣1).22.解:(1)∵抛物线的顶点为Q(2,﹣1),∴设抛物线的解析式为y=a(x﹣2)2﹣1,将C(0,3)代入上式,得:3=a(0﹣2)2﹣1,a=1;∴y=(x﹣2)2﹣1,即y=x2﹣4x+3;(2)分两种情况:①当点P1为直角顶点时,点P1与点B重合;令y=0,得x2﹣4x+3=0,解得x1=1,x2=3;∵点A在点B的右边,∴B(1,0),A(3,0);∴P1(1,0);②当点A为△AP2D2的直角顶点时;∵OA=OC,∠AOC=90°,∴∠OAD2=45°;当∠D2AP2=90°时,∠OAP2=45°,∴AO平分∠D2AP2;又∵P2D2∥y轴,∴P2D2⊥AO,∴P2、D2关于x轴对称;设直线AC的函数关系式为y=kx+b(k≠0).将A(3,0),C(0,3)代入上式得:,解得;∴y=﹣x+3;设D2(x,﹣x+3),P2(x,x2﹣4x+3),则有:(﹣x+3)+(x2﹣4x+3)=0,即x2﹣5x+6=0;解得x1=2,x2=3(舍去);∴当x=2时,y=x2﹣4x+3=22﹣4×2+3=﹣1;∴P2的坐标为P2(2,﹣1)(即为抛物线顶点).∴P点坐标为P1(1,0),P2(2,﹣1);(3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形;当点P的坐标为P2(2,﹣1)(即顶点Q)时,平移直线AP交x轴于点E,交抛物线于F;∵P(2,﹣1),∴可设F(x,1);∴x2﹣4x+3=1,解得x1=2﹣,x2=2+;∴符合条件的F点有两个,即F1(2﹣,1),F2(2+,1).23.解:(1)由已知A(0,6),B(6,6)在抛物线上,得方程组,(1分)解得.(3分)(2)①运动开始t秒时,EB=6﹣t,BF=t,S=EB?BF=(6﹣t)t=﹣t2+3t,(4分)以为S=﹣t2+3t=﹣(t﹣3)2+,所以当t=3时,S有最大值.(5分)②当S取得最大值时,∵由①知t=3,∴BF=3,CF=3,EB=6﹣3=3,若存在某点R,使得以E,B,R,F为顶点的四边形是平行四边形,则FR1=EB且FR1∥EB,。

二次函数动点问题解题技巧

二次函数动点问题解题技巧

二次函数动点问题解题技巧
《二次函数动点问题解题技巧》
一、概述
在数学中,二次函数动点问题是用来求解一个二次函数满足某点移动的情况。

这是一个经典的问题,一般涉及到二次函数的开根号法等技巧,因此在解决动点问题上要有所准备。

本文将介绍二次函数动点问题的解题技巧,指导考生正确解答此类问题。

二、解题技巧
1、把问题转化为动点方程。

首先,我们要把问题转化为一个动点方程:y=ax^2+bx+c。

其中a,b,c代表着不同的变量,它们分别代表着二次函数的三个系数。

2、求解动点方程。

接下来,我们要求解动点方程,首先需要解出各个变量的值,即a,b,c的值。

可以使用开根号法来求解,具体的步骤如下:
①把动点方程化为一元二次方程
②使用开方法求出a、b、c的值
3、求解动点问题。

最后,我们要求解动点问题,就是找到动点移动后的位置。

这时可以使用同样的方法,即把二次函数带入动点方程,使用开根号法求出动点移动后的位置。

三、总结
本文介绍了二次函数动点问题的解题技巧,涉及到动点方程的求解和动点移动后位置的求解。

由此可见,要正确解答二次函数动点问
题,必须具备良好的开根号法的技巧,并熟练掌握求解动点方程和动点问题的解题技巧。

二次函数动点问题解答方法技巧(含例解答案)

二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

二、 抛物线上动点5、(湖北十堰市)如图①, 已知抛物线(a ≠0)与轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;32++=bx ax y x(2) 设抛物线的对称轴与轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标----①C 为顶点时,以C 为圆心CM 为半径画弧,与对称轴交点即为所求点P ,②M 为顶点时,以M 为圆心MC 为半径画弧,与对称轴交点即为所求点P ,③P 为顶点时,线段MC 的垂直平分线与对称轴交点即为所求点P 。

二次函数动点问题类型

二次函数动点问题类型

二次函数动点问题类型一、求解动点坐标问题:1.已知二次函数的图像经过特定点,求该点的坐标。

例如,已知二次函数y=ax^2+bx+c的图像过点(2,5),求a、b、c的值。

解:由于(2,5)是曲线上的一点,所以满足曲线上的点的坐标满足函数的定义关系式,即:y=ax^2+bx+c代入已知点的坐标,得到:5=4a+2b+c再结合二次函数的性质,无论a、b、c取何值,都可以确定一个二次函数,因此需要再提供其他的条件才能完全确定a、b、c的值。

2.已知二次函数的顶点坐标,求顶点坐标与对称轴的方程。

例如,已知二次函数y=ax^2+bx+c的顶点坐标为(2,3),求对称轴的方程和a、b、c的值。

解:根据二次函数的性质,二次函数的顶点坐标位于对称轴上,所以对称轴的方程可以通过已知的顶点坐标得到。

对称轴的方程为x=顶点的横坐标,即x=2然后,再结合二次函数顶点坐标的性质,即顶点坐标(2,3)满足a*(2^2)+b*2+c=3,代入这个关系式,可以求解出a、b、c的值。

3.已知二次函数的零点,求函数的表达式。

例如,已知二次函数y=ax^2+bx+c的零点为x=1和x=3,求函数的表达式。

解:已知x=1和x=3是函数的零点,代入函数的定义关系式,得到a*(1^2)+b*1+c=0和a*(3^2)+b*3+c=0。

进一步整理就可以得到一个由a、b、c构成的方程组,解这个方程组就可以确定a、b、c的值,从而得到二次函数的表达式。

二、研究动点运动规律问题:1.如何通过二次函数的图像研究点的运动规律?二次函数可以表示一个抛物线的图像,通过分析二次函数的各项系数可以得到抛物线的开口方向、顶点坐标等信息,从而研究点的运动规律。

例如,当二次函数的a大于0时,抛物线开口向上,顶点坐标为最低点,点的运动趋势是从下往上;当二次函数的a小于0时,抛物线开口向下,顶点坐标为最高点,点的运动趋势是从上往下。

2.如何通过已知条件研究点的运动规律?已知的条件可以包括点的初始位置、速度、加速度等信息,将这些信息转化成数学问题,从而得到二次函数的各项系数,进而通过研究二次函数的图像研究点的运动规律。

二次函数动点问题专题

二次函数动点问题专题

二次函数动点问题专题一、因动点产生的面积问题1、如图,抛物线与x轴交与A(1,0),B(- 3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由. (3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由.cbxxy++-=2ABC2、如图,抛物线y=12x2+b x-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0)。

(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上一个动点,当CM+DM的值最小时,求m的值;(4)点P为直线BC下方抛物线上一动点,问当P在什么位置时,四边形ACPB 的面积最大,求出此时的P点坐标及最大面积。

3.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B 两点,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方抛物线上的动点.(1)求这个二次函数表达式;(2)连接PO、PC,并将△POC沿y轴对折,得到四边形POP′C,那么是否存在点P,使得四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.4、(2015中大附中一模)如图,已知抛物线c bx ax y ++=2过点A (6,0),B (-2,0),C (0,-3).(1)求此抛物线的解析式;(2)若点H 是该抛物线第四象限的任意一点,求四边形OCHA 的最大面积;(3)若点Q 在y 轴上,点G 为该抛物线的顶点,且∠GQA =45º,求点Q 的坐标.5、(2016•越秀区一模)如图,已知抛物线y=x 2﹣(m +3)x +9的顶点C 在x 轴正半轴上,一次函数y=x +3与抛物线交于A 、B 两点,与x 、y 轴分别交于D 、E 两点.(1)求m 的值;(2)求A 、B 两点的坐标;(3)当﹣3<x <1时,在抛物线上是否存在一点P ,使得△PAB 的面积是△ABC 面积的2倍?若存在,请求出点P 的坐标;若不存在,请说明理由.二、因动点产生的等腰三角形存在性问题1、已知:如图抛物线a x x y +-=421过点A (0,3),抛物线1y 与抛物线2y 关于y 轴对称,抛物线2y 的对称轴交x 轴于点B ,点P 是x 轴上的一个动点,点Q 是第四象限内抛物线1y 上的一点。

二次函数中的动点问题

二次函数中的动点问题

二次函数中的动点问题二次函数是高中数学课程中比较重要的一种函数类型,它的图像是一个开口朝上或朝下的抛物线,可以用来表达很多实际问题中的关系。

其中,二次函数中的动点问题是一个常见的问题,主要涉及到了抛物线上某点的运动轨迹,对于此类问题的讨论可以帮助我们深入理解二次函数以及抛物线的特点和应用。

一、动点问题的形式通过一个具体的例子来展示二次函数中的动点问题。

设有一根长60m、重量为100N的弹性绳悬挂于两个点P、Q 之间,弹性绳呈现一个U形。

现有一质量为m的物体从点P 处自由下落,然后受到弹性绳的支撑反弹,反弹高度为h,再落回原点P处。

此时,假设物体在下落或反弹的任意时刻都在弹性绳的中垂线上,我们可以通过求出物体在任意时刻的高度求解出反弹的高度h与物体的质量m的关系。

初步分析这个问题,可以列出物体所在的位置函数,即h(t)。

我们假设物体下落时时间t=0s,其高度为0m,则有:h(t) = at^2 + bt其中,a和b都是常数,t是时间。

物体在弹性绳上下运动,向下运动的时候速度会不断加快,直到反弹的时候速度为0,然后速度逐渐加快,到达下落的时候又达到最大值。

因此,可以得出物体的速度函数v(t):v(t) = 2at + b而物体的位置函数是速度函数的积分,因此可以解出:h(t) = at^2 + bt + c其中,c是一个常数,其值等于物体下落的初速度的平方除以2g(g为重力加速度,约为9.8m/s^2)。

由于物体在任意时刻都在弹性绳中垂线上,因此可以确定物体的运动轨迹为抛物线。

在上述问题中,我们可以确定抛物线的顶点V的坐标为(30,hmax),其中hmax即为物体下落时的最大高度。

二、动点问题的解法对于二次函数中的动点问题,主要通过求出抛物线的顶点来解决。

通过求解出顶点的坐标、抛物线的开口方向和方程等,可以确定抛物线的形状和运动轨迹,进而判断动点的位置、速度和加速度等物理量。

具体来说,解决二次函数动点问题的步骤如下:1. 确定抛物线的形状和开口方向。

二次函数动点问题

二次函数动点问题

二次函数动点问题二次函数是数学中的一个重要概念,也有很多实际应用。

在二次函数中,我们经常会遇到一种问题,即动点问题。

该问题要求我们根据给定的二次函数,确定函数图像上某个动点的坐标。

问题描述在二次函数动点问题中,我们通常会给出二次函数的方程和一个动点的初始位置。

我们需要通过计算,确定动点在函数图像上的位置。

具体来说,我们要求解动点的横坐标和纵坐标。

解决方法为了解决二次函数动点问题,我们可以采用以下步骤:1. 首先,我们需要根据二次函数的方程,确定函数的具体形式。

二次函数的一般形式为 $y = ax^2 + bx + c$,其中 $a$、$b$、$c$ 为已知常数。

2. 接下来,我们需要确定动点的初始位置。

动点通常以坐标的形式给出,例如 $(x_0, y_0)$。

我们将动点的初始位置代入二次函数的方程,得到动点的纵坐标 $y_0$。

3. 然后,我们需要计算动点的横坐标。

根据函数图像的对称性,动点的横坐标为二次函数的顶点的横坐标。

顶点的横坐标可以通过以下公式计算:$x_v = -\frac{b}{2a}$。

4. 最后,我们可以得到动点在函数图像上的位置。

动点的横坐标为 $x_v$,纵坐标为 $y_0$。

实例演示以下是一个示例,演示了如何解决二次函数动点问题:已知二次函数的方程为 $y = x^2 + 2x + 1$,动点的初始位置为$(2, y_0)$。

我们可以按照以下步骤求解动点的位置:1. 将动点的横坐标代入二次函数的方程,得到动点的纵坐标:$y_0 = 2^2 + 2 \cdot 2 + 1 = 9$。

2. 计算二次函数的顶点的横坐标:$x_v = -\frac{2}{2 \cdot 1} = -1$。

3. 动点的位置为 $(x_v, y_0) = (-1, 9)$。

通过以上计算,我们得到了动点在函数图像上的位置。

结论二次函数动点问题是一个常见的数学问题。

通过确定二次函数的形式和动点的初始位置,我们可以计算出动点在函数图像上的位置。

二次函数中的动点问题

二次函数中的动点问题
二次函数中的动点问题在物理、工程和经济等领域有着广泛的应用。例如,通过分析动点在时间上的变 化,我们可以预测物体的运动轨迹或市场的趋势等。
动点在二次函数图像上的轨迹
1
起点
动点的初始位置可以是抛物线上的任何一点。
2
移动
动点会按照一定的方式沿着抛物线移动,记录下其轨迹。
ቤተ መጻሕፍቲ ባይዱ
3
终点
动点的终点位置取决于运动方式和二次函数的特性。
动点运动的速度与方向
动点在二次函数图像上的运动速度和方向取决于函数的开口方向和变量的系数设置。通过观察动点的移 动,我们可以推测出函数的特点。
二次函数中的动点问题
二次函数是一种定义在实数范围内的函数,具有特殊的图像特点。通过研究 动点在二次函数图像上的轨迹、速度和方向,我们可以探索其各种实际应用。
二次函数的定义与图像特点
二次函数是由变量的平方项和一次项构成的多项式函数,其图像呈现出抛物线的形状,具有顶点、对称 轴和开口方向等特点。
二次函数的一般式表达
二次函数可以用一般的代数表达式表示:y = ax^2 + bx + c,其中a、b和c是实数常量。这个表达式描 述了二次函数的整体形状和位置。
二次函数中动点的定义
动点是指二次函数图像上的一个移动点,在图像中的位置和运动方式取决于 动点的参数设置和函数的特性。通过调整动点的位置,我们可以探索不同的 情况和现象。
动点在不同参数下的图像变化
变量系数
平移
通过修改二次函数中的变量系 数,我们可以观察到图像形状、 顶点位置和开口方向等方面的 变化。
通过移动二次函数图像,我们 可以研究动点在不同位置下的 轨迹和运动方式的变化。
缩放
通过放大或缩小二次函数图像, 我们可以观察到动点的运动速 度和开口大小等方面的变化。

中考二次函数动点问题

中考二次函数动点问题

中考二次函数动点问题一、背景介绍二次函数是初中数学的重要内容之一,也是中考数学的重要考点之一。

在中考数学中,二次函数往往与动点问题相结合,形成一种综合性较强的题目。

这种题目不仅需要学生掌握二次函数的性质和图像,还需要学生具备一定的数学思维和解决问题的能力。

因此,研究中考二次函数的动点问题对于提高学生的数学成绩和数学能力具有重要的意义。

二、问题建模1. 定义和公式二次函数的一般形式为y=ax^2+bx+c(a、b、c为常数,且a≠0)。

其中,a、b、c分别是二次项系数、一次项系数和常数项。

二次函数的图像是一个抛物线,其顶点坐标是(-b/2a,(4ac-b^2)/4a)。

2. 动点问题动点问题是指在题目中有一个或多个点在运动,通过运动过程中点的位置变化来解决数学问题。

在二次函数中,动点问题通常涉及到点的坐标、函数的图像和图形的性质等方面。

三、解题思路1. 建立数学模型在解决二次函数动点问题时,首先需要建立数学模型。

通常情况下,建立数学模型的方法是根据题目中的条件和问题,选择适当的数学符号和公式来表示问题。

例如,在解决一个动点问题时,可以先根据题目条件建立方程,然后通过对方程进行分析和求解来解决问题。

2. 图像分析图像分析是解决二次函数动点问题的重要方法之一。

通过对图像进行分析,可以直观地了解点的运动轨迹、函数的增减性等问题。

在进行图像分析时,需要注意以下几点:(1)分析图像的开口方向:开口向上表示函数递增,开口向下表示函数递减。

(2)找出对称轴:对称轴是一条垂直于x轴的直线,它把图像分为两个对称的部分。

(3)找出顶点:顶点是图像的最低点或最高点,它代表着函数的最值。

(4)分析增减性:当x增加时,如果函数值也随之增加,则称函数是递增的;当x增加时,如果函数值随之减小,则称函数是递减的。

3. 分类讨论分类讨论是一种重要的数学思想方法,也是解决二次函数动点问题的重要手段之一。

在进行分类讨论时,需要根据题目条件对各种情况进行分类,然后分别进行讨论和求解。

专题二次函数的动点问题三角形的存在性问题

专题二次函数的动点问题三角形的存在性问题

_ Q_ G_P_ O二次函数中的动点问题(一)三角形的存在性问题一、技巧提炼1、利用待定系数法求抛物线解析式的常用三种形式(1)、【一般式】已知抛物线上任意三点时,通常设解析式为 ,然后解三元方程组求解; (2)、【顶点式】已知抛物线的顶点坐标和抛物线上另一点时,通常设解析式为 求解; (3)、【交点式】已知抛物线与轴的交点的坐标时,通常设解析式为 。

2、二次函数y=ax 2+bx+c 与x 轴是否有交点,可以用方程ax 2+bx+c = 0是否有根的情况进行判定;判别式ac b 42-=∆ 二次函数与x 轴的交点情况一元二次方程根的情况△ > 0 与x 轴 交点 方程有 的实数根△ < 0 与x 轴 交点 实数根 △ = 0与x 轴 交点方程有 的实数根3、抛物线上有两个点为A (x 1,y ),B (x 2,y ) (1)对称轴是直线2x 21x x +=(2)两点之间距离公式:已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:221221)()(y y x x PQ -+-=练一练:已知A (0,5)和B (-2,3),则AB = 。

(3)中点公式:已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为⎪⎭⎫⎝⎛++222121y y ,x x 。

练一练:已知A (0,5)和B (-2,3),则线段AB 的中点坐标是 4、 常见考察形式1)已知A (1,0),B (0,2),请在下面的平面直角坐标系 坐标轴上找一点C ,使△ABC 是等腰三角形; 总结:两圆一线2)已知A (-2,0),B (1,3),请在平面直角坐标系中坐标轴 上找一点C ,使△ABC 是直角三角形;总结: 两线一圆 5、求三角形的面积:(1)直接用面积公式计算;(2)割补法;(3)铅垂高法; 如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线, 外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的 这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ). 我们可得出一种计算三角形面积的新方法:S △ABC =12ah ,即三角形面积等于水平宽与铅垂高乘积的一半。

二次函数动点问题解答方法技巧(含例解答案)

二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

二、 抛物线上动点5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。

二次函数动点问题

二次函数动点问题

二次函数动点问题
“二次函数动点问题”是数学中常用的一种问题,它可以用来求解在二次函数图像上的某些特殊点的位置。

它也叫做动点理论,有时也会简称为DPT(Dynamic Point Theory)。

二次函数动点问题的关键思想是,我们可以通过分析一个二次函数的表达式和曲线的形状,来确定它的某些特殊点的位置。

这样就能够同时求出二次函数的极大值、极小值以及它的拐点。

具体来说,二次函数动点问题就是要求解一个二次函数在特定曲线上的某些特殊点的位置。

对于一个二次函数,可以用它的二次项的系数a来决定曲线的形状,如果a>0,曲线会变得曲折,如果a<0,曲线会变得平滑等。

而拐点的位置则可以用它的一次项的系数b来确定,即拐点的横坐标为-b/2a。

此外,我们还可以使用一些其他方法来求解这类问题,比如可以使用微分来求出极值、拐点,也可以使用一元函数的性质来直接求解。

总之,二次函数动点问题是一个比较重要的数学问题,它可以用来求解一个二次函数在特定曲线上的某些特殊点的位置。

我们可以使用微分或一元函数的性质来求
解,也可以根据二次函数的表达式和曲线的形状来确定特定点的位置。

二次函数的动点知识点总结

二次函数的动点知识点总结

二次函数的动点知识点总结一、二次函数的图像特点1. 抛物线方向与a的关系当a大于0时,抛物线开口向上,最低点为顶点;当a小于0时,抛物线开口向下,最高点为顶点。

2. 抛物线的对称轴对称轴的方程是x=-b/2a,对称轴上的点为顶点。

3. 抛物线的顶点顶点坐标为(-b/2a, c-b^2/4a)。

4. 抛物线的焦点焦点坐标为(-b/2a, c-b^2/4a+1/4a)。

5. 抛物线的焦点到顶点的距离距离为1/4|1/a|。

6. 抛物线的开口方向开口向上或者向下。

二、二次函数的性质1. 零点如果f(x)=ax^2+bx+c,则其零点可由一元二次方程ax^2+bx+c=0的解得。

2. 变号区间当a>0时,f(x)在两零点之间为负,两零点外为正;当a<0时,f(x)在两零点之间为正,两零点外为负。

3. 孤立零点函数的零点是孤立的,零点和顶点连接成的抛物线是唯一的。

三、二次函数的平移与缩放1. 平移二次函数y=a(x-h)^2+k经过平移后为y=a(x-p)^2+q,其中p=h,q=k。

2. 压缩与拉伸二次函数y=a(x-h)^2+k与y=b(x-h)^2+k是同一抛物线,只是参数a的变化决定了开口方向,参数b的变化决定了开口的大小。

四、二次函数的相关应用1. 抛物线运动由y=a(x-h)^2+k可以描述小球自由下落和反弹的过程。

2. 抛物线方程的物理意义抛物线的顶点是最高点或最低点,可以用来求抛物线所能达到的最大或最小值。

五、二次函数的相关解题方法1. 求零点可以通过公式法或者配方法求二次函数的零点。

2. 求最值可以通过顶点法或者二次函数的导数法求最值。

3. 求抛物线方程已知顶点和焦点求抛物线方程,可以利用平移和缩放的知识点求解。

总之,二次函数是高中数学中重要的一个知识点,掌握二次函数的图像特点、性质、平移缩放以及相关应用和解题方法,对于学习高中数学和解决现实生活中的问题是非常有帮助的。

希望大家能够认真学习并掌握这一知识点。

二次函数动点问题解答方法技巧(含例解标准答案)

二次函数动点问题解答方法技巧(含例解标准答案)
其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、抛物线上动点
5、(湖北十堰市)如图①,已知抛物线 (a≠0)与 轴交于点A(1,0)和点B(-3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)设抛物线的对称轴与 轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)当 为何值时,四边形 的面积 有最大值,并求出此最大值;
(4)在运动过程中,四边形 能否形成矩形?若能,求出此时 的值;若不能,请说明理由.
[解](1)点 ,点 ,点 关于原点的对称点分别为 , , .
设抛物线 的解析式是


解得
所以所求抛物线的解析式是 .
(2)由(1)可计算得点 .
过点 作 ,垂足为 .
⑶ 根据图象的位置判断二次函数ax²+bx+c=0中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;
⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.
⑸ 与二次函数有关的还有二次三项式,二次三项式ax²+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
当运动到时刻 时, , .
根据中心对称的性质 ,所以四边形 是平行四边形.
所以 .
所以,四边形 的面积 .
因为运动至点 与点 重合为止,据题意可知 .
所以,所求关系式是 , 的取值范围是 .
(3) ,( ).

二次函数动点问题(共9张PPT)

二次函数动点问题(共9张PPT)
•〔2〕在BC上方的抛物线上是否存在一点K,使四边形ABKC的面积最大? 假设存在,求出K点的坐标及最大面积;
•〔3〕连接CP,在第一象限的抛物线上是否存在一点R,使△RPM与△RMB的 面积相等?假设存在,求出点R的坐标;假设不存在,说明理由.
3、二次函数中四边形问题:
①抛物线上的点能否构成平行四边形; ②抛物线上的点能否构成矩形、菱形或正方形。
解二次函数动点问题 解题方法及解题步骤
•解题方法:
•一般的,在二次函数动点问题中应用的解题方法: 待定系数法、数形结合、分类讨论、联系与转化、图像 的平移
变化等思想方法,并且要与平面图形的性质有机结 合,从而使得复 杂的、综合的二次函数动点问题化整为零,逐一击破。
①习抛题物 从线局〔上部3的到〕点整能体求否的构联〔成系平更2行清〕四晰中边,形列面;出相积应的S关〔系平式;方单位〕与t时间〔秒〕的函数关系式及面积S取 〔1〕求最正方大形A值BC时D的P边点长.的坐标.
〔2〕在BC上方的抛物线上是否存在一点K,使四边形ABKC的面积最大?假设存在,求出K点的坐标及最大面积;
x
图① 〔2〕设点P是直线l上的一个动点,当△PAC是以AC为斜边的Rt△时,求点P的坐标;
例1抛物线y=ax2+bx+c经过A〔-1,0〕、B〔3,0〕、C〔0,3〕三点,直线l是抛物线的对称轴.
②习题各个量、未知量的联系,对习题进展解剖,使
〔0,3〕三点,对称轴与抛物线相交于点P、与直线BC相交于点M.
二次函数动点问题
解二次函数动点问题 应用知识点
•二次函数动点问题所包含的知识点及考点:
1、二次函数中最短问题:
①是否存在一点到某两点的距离和为最短;
②是否存在一点使某三角形周长最短;

(word完整版)初中数学二次函数动点问题

(word完整版)初中数学二次函数动点问题

函数性问题专题—动点问题函数及其图象是初中数学中的主要内容之一,也是初中数学与高中数学相联系的纽带.它与代数、几何、三角函数等知识有着密切联系,中考命题中既重点考查函数及其图象的有关基础知识,同时以函数为背景的综合性问题也是命题热点之一,多数省市作压轴题.因此,在中考复习中,关注这一热点显得十分重要.以函数为背景的综合性问题往往都可归结为动点性问题,我们把它归纳为以下七种题型(附例题)一、因动点而产生的面积问题例1:如图10,已知抛物线P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:x …-3 -2 1 2 …y …-52-4 -520 …(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围.若因为时间不够等方面的原因,经过探索、思考仍无法圆满解答本题,请不要轻易放弃,试试将上述(2)、(3)小题换为下列问题解答(已知条件及第(1)小题与上相同,完全正确解答只能得到5分):(2) 若点D的坐标为(1,0),求矩形DEFG的面积.例2:如图1,已知直线12y x=-与抛物线2164y x=-+交于A B,两点.(1)求A B,两点的坐标;(2)求线段AB的垂直平分线的解析式;(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A B,两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A B,构成无数个三角形,这些三角求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.yxOyxOPA图2图1BBA图10例3:如图1,矩形ODEF 的一边落在矩形ABCO 的一边上,并且矩形ODE F ∽矩形ABCO ,其相似比为1 : 4,矩形ABCO 的边AB=4,BC=43.(1)求矩形ODEF 的面积; (2)将图l 中的矩形ODEF 绕点O 逆时针旋转 900,若旋转过程中OF 与OA 的夹角(图2中的∠FOA )的正切的值为x ,两个矩形重叠部分的面积为y ,求 y 与 x 的函数关系式;(3)将图1中的矩形ODEF 绕点O 逆时针旋转一周,连结EC 、EA ,△ACE 的面积是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,请说明理由。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
x O
二次函数中的动点问题(二) 平行四边形的存在性问题
一、技巧提炼
1、二次函数y=ax 2
+bx+c 的图像和性质
a >0
a <0
图 象
开 口 对 称 轴 顶点坐标
最 值
当x = 时,y 有最 值是 当x = 时,y 有最 值是 增减

在对称轴左侧
y 随x 的增大而
y 随x 的增大而
在对称轴右侧
y 随x 的增大而 y 随x 的增大而
2、平行四边形模型探究
如图1,点A ()11,x y 、B ()22,x y 、C ()33,x y 是坐标平面内不在同一直线上的三点。

平面直角坐标系中是否存在点D ,使得以A 、B 、C 、D 四点为顶点的四边形为平行四边形,如果存在,请求出点D 的坐标。

A
B
C x
y
图1 图2
如图2,过A 、B 、C 分别作BC 、AC 、AB 的平行线,则以不在同一直线上的三点为顶点的平行四边形有三个。

由已知的三点坐标可根据图形平移的坐标性质,直接写出第四个顶点的坐标。

3、平面直角坐标系中直线和直线l2:
当l1∥l2时k1= k2;
4、二次函数中平行四边形的存在性问题:
解题思路:(1)先分类(2)再画图(3)后计算
二、精讲精练
1、已知抛物线y=ax2+bx+c与x轴相交于A、B两点(A、B分别在原点的左右两侧),与y轴正半轴相交于C 点,且OA:OB:OC=1:3:3,△ABC的面积为6,(如图1)
(1)求抛物线的解析式;
(2)坐标平面内是否存在点M,使得以点M、A、B、C为顶点四边形是平行四边形若存在,请求出点M的坐标;若不存在,请说明理由;
(3)如图2,在直线BC上方的抛物线上是否存在一动点P,△BCP面积最大如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.
2、(2013•黔西南州)如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C
(1)求抛物线的函数解析式;
(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标。

【变式练习】
(2007•河南)如图,对称轴为直线x=2
7
的抛物线经过点A (6,0)和B (0,4). (1)求抛物线解析式及顶点坐标;
(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围; ①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?
②是否存在点E ,使平行四边形OEAF 为正方形若存在,求出点E 的坐标;若不存在,请说明理由.
四、方法规律
1、平行四边形模型探究
如图1,点A ()11,x y 、B ()22,x y 、C ()33,x y 是坐标平面内不在同一直线上的三点。

平面直角坐标系中是否存在点D ,使得以A 、B 、C 、D 四点为顶点的四边形为平行四边形,如果存在,请求出点D 的坐标。

A
B
C x
y
图1 图2
以不在同一直线上的三点为顶点的平行四边形有三个。

由已知的三点坐标可根据图形平移的坐标性质,直接写出第四个顶点的坐标。

2、平面直角坐标系中直线和直线l 2:
当l 1 ∥l 2时k 1= k 2;
五、实战训练
1、抛物线y =-(x +2)2
-3的顶点坐标是()
(A ) (2,-3); (B ) (-2,3); (C ) (2,3); (D ) (-2,-3)
2、已知抛物线()20y ax bx c a =++≠在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()
A 、a >0
B 、b <0
C 、c <0
D 、a +b +c >0
3、函数()20y ax a =-≠与()20y ax a =≠在同一平面直角坐标系中的图象可能是()
4、如图,一次函数)0(1≠+=k n kx y 与二次函数)0(2
2≠++=a c bx ax y 的图象相交于A (1-,5)、
B (9,2)两点,则关于x 的不等式c bx ax n kx ++≥+2
的解集为( )
A 、91≤≤-x
B 、91<≤-x
C 、91≤<-x
D 、1-≤x 或9≥x
5、出售某种手工艺品,若每个获利x 元,一天可售出(8)x -个,则当x 为多少元,一天出售该种手工艺品的总利润y 最大。

6、(2012•宜宾)如图,抛物线y=x 2
﹣2x+c 的顶点A 在直线l :y=x ﹣5上。

(1)求抛物线顶点A 的坐标;
(2)设抛物线与y 轴交于点B ,与x 轴交于点C .D (C 点在D 点的左侧),试判断△ABD 的形状; (3)在直线l 上是否存在一点P ,使以点P 、A 、B 、D 为顶点的四边形是平行四边形若存在,求点P 的
坐标;若不存在,请说明理由。

7、已知,如图A(-1,0),B(3,0),C(0,-3),抛物线y=ax2+bx+c经过A、B、C三点,点E为x轴上一个动点,过点B作直线CE的垂线,垂足为D,交y轴于N点.
(1)求这条抛物线的解析式;
(2)设点E(t,0),△BEN的面积为S,请求出S与t的函数关系式;
(3)已知点F是抛物线y=ax2+bx+c上的一动点,点G是坐标平面上的一动点,在点E的移动过程中,是否存在以点B、E、F、G四点为顶点的四边形是正方形,若存在,请求出E点的坐标,若不存在,请说明理由.。

相关文档
最新文档