蜗轮蜗杆文献翻译
涡轮增压器英文文献2
1. INTRODUCTIONThe requirements of modern truck engines increase with each step of the emissionlegislation. In the same way the charging system as a part of the air management system has to be improved. This leads to more and more complicated solutions such as Regulated – Two – Stage (R2S), combinations of super- and turbochargers (e.g. eBooster) and turbos with Variable Turbine Geometry (VTG).In particular the VTG is a solution of highest interest because it is able to fulfil most of the required development objectives for commercial diesel engines as• Higher torque (boost pressure) at low engine speeds • Better transient response (drivability) • BSFC improvement• Drive EGR at part and full load to reduce emissionsAn additional advantage compared to other systems is that the installation dimensions are nearly the same as the standard (waste-gated) turbocharger.Never the less this excellent tool for a controllable air management system, even after two decades of development never found access to the large truck fleets world wide! During all steps of emission legislation many customers showed interest and made tests with the product, but in the end nearly always a maybe less comfortable but cheaper solution was introduced to series production because VTG was a … nice to have“ and not a …must“.To launch the VTG, an additional feature to increase the benefit for the customers was required. As a new objective, the use of the VTG for engine braking was defined. The prospects of additional benefits for the customers were:• Replacement of state-of-the-art engine brake systems (brake flap, Jake Brake) • Reduction of total system weight• Increase of brake power at low engine speeds • Increase of maximum brake power• Option of replacing retarders at high engine speedsThe requirements of several customers are summarised in the following charts:0%20%40%60%80%100%120%140%40%60%80%100%120%140%Engine speed / max speed under fired conditionsB r a k i n g (e n g i n e ) p o w e r / r a t e d p o w e rFigure 1a: Comparison of braking performance and rated power0%20%40%60%80%100%120%-55101520253035Time [s]B r a k i n g T o r q u e / B r a k i n g T o r q u e m a xFigure 1b: Time to build up braking powerThis means in figures: • Ratio rated power / maximum brake power 1,00 (1,30) • Increase of brake power at 60% - 90% 50 % (80%)of maximum engine speed• Time to achieve 80% of brake power at 5 sec (3 sec)40% - 100% of maximum engine speed• Share of braking cycle to total operating time 10% (20%)The first values show the average requirement, those in brackets the peak targets.To achieve these target values for the engine, the turbocharger has to fulfil the following requirements under braking conditions:• Mean back pressure of the turbine 5 bar (7 bar) • Peak back pressure of the turbine 8 bar (11 bar) • Time for one full stroke of the actuator 0,3 s (0,2 s) • Number of actuations in life of engine (millions)- full strokes 0,6 (1,0) - part strokes 4,5 (9,0)For this a new development was started in 1996.2. DESIGN CONCEPT OF BORG WARNER’S VTG FOR CDThe VTG described below is based on a Standard turbocharger. The compressor side (1) is practically the same; the only difference in the core assembly (2) is the additional speed sensor (3), which is fitted to the center housing for permanent control of the turbocharger speed.The actual VTG is based on a swing – vane design, where the performance and the mass flow of the turbine is influenced by changes of the flow angle to the wheel by means of moving the vanes.6731813121928Figure 2: Exploded view to VTG turbochargerThe design features are as follows:• Single flow turbine housing (4) for maximal flow• Vane ring assembly (5) consisting of 13 dual – axis curved vanes (6), pivoted between an inner and outer vane ring (7). Three spacers (8) make sure that minimal axial clearances can be achieved.• Vane levers (9) for moving the vanes designed as a fork. Adjustment is done by pivoted sliding blocks (10), which are positioned in the fork.• Adjustment ring assembly (11) having 13 small sliding blocks for actuating the vanes anda large one on the opposite side to actuate the whole ring. The adjustment ring iscentered by six rollers (12), which are equally spaced by a cage (13).• Adjustment shaft (14), which transmits the actuating forces via adjustment lever (15) to the actuator rod (16). The fork connection to the large sliding block is similar to the small sliding block / vane fork interface. Two flats situated between a pair of bearing bushes accommodate the action of the adjustment lever.• Adjustment lever connected to the actuator rod with a bolt and two curved areas to define the contact to the adjustable fixing screws (17) which define the stop for maximal and minimal vane position.• Actuator flange (18) which closes the turbine stage and allows fixing of the core assembly. The flange also includes a mounting bracket for the actuator (19) and contains the bearing of the adjustment shaft and the stops.3. TURBINE HOUSING / ACTUATOR FLANGE3.1 Technical ChallengesThe turbine housing and the actuator flange contain the whole VTG mechanism. Therefore, the prime task for these two parts is to avoid sticking of any of the moving parts. This must be assured at low and high temperatures and at transient temperature changes combined with extremely high back pressures, which occur simultaniously under braking conditions. Under the same conditions a second task is also important and difficult to achieve: To avoid losses by leakage, the two parts have to keep sealed at all contact areas.If the design of the housing and the flange is not correct, a damage mechanism will occur as follows: Due to the high temperature changes between fired and braking mode the turbine housing will extend extremely. If the temperature distribution is inhomogeneous because the material distribution is, then high stress will occur at locations with high mass concentration. Additionally due to the high back pressure under braking conditions the parts will extend. A weak actuator flange could move like a diaphragm.Under these cyclic stress conditions cracks will emerge and increase until the stress is released. This leads to distorsion of the turbine housing and also of the vane ring assembly. In consequence of this either the vanes will stick or, if the actuator force (> 1000 N) can keep them moving against the resistance force, all parts of the whole mechanism will be rapidly worn out.The distorsion of turbine housing and actuator flange will also lead to high leakage and hence braking power will decline.3.2 Technical SolutionsBased on a measured temperature field a FEA analysis was done. The result showed that the expansion from the tongue area of the turbine housing to the opposite volute area was about 2.3 mm larger than in the perpendicular direction! Similar effects in axial direction could be shown at the tongue area compared to the free volute. The bending of the actuator flange from inner to outer diameter could be more than 1 mm.The design of the turbine housing was optimized by reducing the material concentration in the tongue / inlet flange area and decoupling it from the volute. Radial arranged ribs stiffened the actuator flange. The simulation for the final design showed a maximal difference in expansion of 0.5 (0.8) mm.Both parts have to be treated with a special annealed heat process to eliminate residual stress of the casting.An additional option is the use of chromium – nickel based alloy.Thermal expansion X + 2 mmThermal expansion X mm Figure 3a: Main expansion directions Cracks after thermal shock testFigure 3b: Optimized design of turbine housing and actuator flange3.3 Validation Programs and ResultsTo validate the improvement an accelerated durability test was defined. Two units were arranged as a tandem on a gas stand. A swing flap produced a cyclic load of 700 °C hot gas and 20 °C cold air alternately to both VTGs.The result was outstanding: While the first design after only 150 hours testing had cracks in several areas up to 30 mm length and still growing, the final design had no cracks in the critical areas after 500 hours testing.4. VANE RING ASSEMBLY4.1 Technical ChallengesThe vane ring assembly is the central component of the VTG. It has to create good performance both under fired and under braking conditions. The vanes are directly confronted with the exhaust flow, so they see the highest temperatures and the highest pressures including pulsation. Under these conditions the following critical items have to be considered:• Fret on the axle of the vanes due to static gas forces• Wear on the axle of the vanes due to dynamic gas forces• High-frequent vibration-friction-wear caused by fast direction changes of the force in torque free vane positionsFor the design of the vane will also basically generate the forces to all the other parts of the mechanism, it has to be considered very exactly.4.2 Technical SolutionsThe static forces are not a real problem, as long as the vane is freely movable in the vane rings and there is no enforced contact. This can be achieved if the positions of holes for the two axles of each vane are concentric. For this the inner and outer vane ring are machined in one operation.The dynamic forces, especially for the first two or three vane downstream the tongue, are very critical. Combined with very hard sedimentations of adhesives of the fuel in the bore of the vane ring, abrasive wear can occur. There are two ways to improve this situation:• Change the design of the tongue in such a way that the exiting forces are lower. This can be achieved by changing the distance to the vanes, the flow angle to the vanes or by distributing the forces in circumferential direction.• Change the combination of material to better tribological features. So a material, which creates an oxide film on the surface will reduce sedimentations, and a partner with sulphur as a solid lubricant gives an additional improvement.Both measures can be combined.High-frequency vibration-friction-wear cannot be solved by tribological improvements. This will only decelerate the wear. To avoid wear, the high-frequency vibration has to be eliminated. This can be solved by a design where in every vane position the torque of the flow forces operates in one direction. For the fail-safe mode requires an open vane position, the pivot axle has to be positioned in front of the balance axle.4.3 Validation Programs and ResultsIn this case the validation had to be done on the engine under real (braking) conditions. A high cyclic program with a share of more than 30 % braking was run for 750 hours. The first design showed in this test wear of up to 1 mm on the axis of the vanes. The results were satisfying with a unit, which included all above mentioned measures and a vane design shown in figure 4b. The position of the pivot axle made sure that there is no change in force direction, but the actuating forces got very high. Figure 4c shows the design that gives the best compromise between direction and magnitude of the force.Overlapping of next vaneL1 = L2 L1 >> L2L1 > L24a 4b 4cFigure 4a – 4c: Comparison of vane designs5. ADJUSTMENT RING ASSEMBLY5.1 Technical ChallengesThe adjustment ring assembly is the link between the vane ring assembly and the adjustment shaft. It has to make sure that the actuating forces are transmitted with low hysteresis and no wear and that the vanes all have exactly the same position especially in nearly closed positions for braking mode.This results in two main challenges:• To achieve low hysteresis and no wear the adjustment ring has to be as weight reduced as possible.• To ensure exact vane positions the ring has to keep its flat and circular shape even after welding of the pins for the sliding blocks.5.2 Technical SolutionsIt is clear that both challenges can only be solved together. It is easy to reduce the area of the full ring disc to the minimum of the required contact areas. Also the manufacturability is no real problem.But the welding of the pivot pins is tricky. Since hot spots cause distorsion, a low energy welding process is required. Even with electron beam welding the required flatness and roundness is not easily achievable. Only in a very close collaboration with the manufacturer of the ring and the welding company the process and the design can be advanced to the target.5.3 Validation Programs and ResultsThe mass optimized adjustment ring design is shown in figure 5. The weight reduction was about 40 % compared to the basic full disc version.With an electron beam process which includes compensation spots on the opposite side of the welding of the large sliding block, flatness and roundness of < 0.35 mm is achievable.In the validation process the adjustment ring assembly passed the same engine test as the vane ring assembly successfully.Shape of full discFigure 5: Optimized design of adjustment ring6. ACTUATOR6.1 Technical ChallengesThe actuator of a VTG has to fulfil a much more demanding specification compared to wastegated turbochargers in commercial diesel:Feature VTG Wastegate • actuation stroke 24 mm 4-5 mm • control pressures 6,5 bar 3 bar • spring forces 2000 N 450 N • full strokes 1 million 20.000 • part strokes 8 million 700.0001234567City cycleCountry roadHighway10% City cycle 20% Country road 70% HighwayN u m b e r o f s t r o k e s [m i l l i o n s ]Figure 6: Measured actuator cycle for heavy-duty truck6.2 Technical SolutionsThe higher pressure and the higher spring forces require a more solid design. This is achievable with a similar design as for wastegate but with a thicker metal sheet for the cover.The real challenge is the lifetime of the diaphragm with strokes of up to 24 mm. The production process with the fabric on top of the silicon (lay up) as used for the standard wastegates gives only a lifetime of 500.000 up to 800.000 full strokes. To increase the lifetime by a factor of about 10, a totally new manufacturing process for the diaphragm is required. The cloth diaphragm consists of a special fabric, which is positioned in the middle of the elastomer, which allows homogeneous stress behaviour. Pleats, which are the basic reasons for failures of the diaphragm, are postponed fundamentally.Hence life is increased! 6.3 Validation Programs and ResultsTo validate the improvement an accelerated durability test was defined. Several complete actuators were arranged in a test rig and operated under the following conditions:• test pressure 0 – 7 bar• test frequency 0.8 Hz• test temperature 120 °C• actuation stroke 24 mmA lifetime of minimum 4.5 million full strokes was achieved. A conversion to a mixed cycle as shown in figure 6 gave a safety factor of 1.3. An option is a linear operating actuator, which gives additional 20% of lifetime.7. PROSPECTS OF THE MARKET/FUTURE DEVELOPMENT STEPSThe above described development features are part of a comprehensive validation program which exceeded 15.000 hours of gas stand and engine testing and 2.000.000 km on trucks. Currently more than 300 trucks increase field experience day by day. A series application will be launched in Europe early in 2002; SOP for a matching with EGR that fulfils EPA 02 in the US will be October 2002.Concerning the prospects of the market for the VTG in the view of the upcoming emission limits Euro 4 and Euro 5, the following statements can be made:• None of the engine manufacturers knows today which will be the main route to fulfil these legislations: EGR, SCR or PM-filter• All of these possibilities could be well supported by VTGEGR: VTG generates sufficient back pressure to drive EGR at full loadSCR: VTG enables conversion at part load by increasing exhausttemperaturePM filter: VTG enables regeneration of filter by increasing exhaust temperature • The drivability will be improved fundamentally in all casesThis means that the VTG is an interesting tool also for future applications. Now the durability issues have been solved, to increase its attraction future development steps will focus on cost reduction and efficiency increases. Cost reduction items are simplified designs and new production processes as for example metal injection moulding (MIM). Efficiency can be increased primary by reduction of the losses caused by all the clearances of the mechanism and especially of the vanes. Besides a reduced BSFC, an increased braking performance at medium engine speed would allow a replacement of existing large and permanent operatingretarders by smaller, discontinuous working units which would be a huge cost reduction of the system.8. SUMMARY• VTG for Commercial Diesel is now a well developed charging system• Durability under braking conditions has been validated• VTG is also an interesting tool to fulfil the next emission legislation steps• There is a big potential in further development steps to increase the benefit to the customerLiterature:[1] Engels, B.; Hemer, H.-J.Turbolader mit verstellbarer Turbinengeometrie für Nutzfahrzeugmotoren6. Aufladetechnische Konferenz, Dresden, 1. – 2. Oktober 1997[2] Oelschlegel, H.; Schäfer, A.Exhaust Aftertreatment Strategies for Commercial Vehicle Diesel Engines toFulfill EURO 4/5 Exhaust Emissions Limits10. Aachener Kolloquium Fahrzeug- und Motorentechnik 2001B.[3] Engels,Titanium Compressor Wheels for Vehicle Applications7th Intern. Conference on Turbochargers and Turbocharging, 14 -15 May 200210BorgWarner Turbo SystemsWorlwide Headquarters GmbHMarnheimer Strasse 8867292 Kirchheimbolanden / GermanyPhone: ++49 (0)6352 75 33 0Fax: ++49 (0)6352 75 33 993K-Warner Turbosystems GmbHMarnheimer Strasse 85/8767292 Kirchheimbolanden / GermanyPhone: ++49 (0)6352 403 0Fax: ++49 (0)6352 403 1866BorgWarner Turbo Systems Ltd.Euroway Industrial EstateBradford BD4 6SEWest Yorkshire / UKPhone: ++44 1274 684 915Fax: ++44 1274 689 671BorgWarner Turbo SystemsPO Box 15075Asheville, NC 28813/USAPhone: 001 828 684 4000Fax: 001 828 684 4114BorgWarner Automotive Brasil Ltda.Estrada da Rhodia Km 15P.O. Box 654013084-970 Campinas-SP / BrasilPhone: ++55 19 3787 5700Fax: ++55 19 3787 5701Hitachi Warner Turbo Systems Ltd.3085-5 Higashi Ishikawa Saikouchi, Hitachinaka-shi Ibaraki-ken312-0052, JapanPhone: +81 (0) 29-276-9388Fax: +81 (0) 29-276-9397。
蜗轮蜗杆减速机外文文献翻译、中英文翻译
外文原文Worm gear reducer:Worm gear reducer is a power transmission mechanism, the gear speed converter, the motor ( motor) mechanism reducer to rotation number, and get greater torque mechanism. In the present is used to transmit power and movement of the body, reducer application scope is quite widespread, in almost all kinds of mechanical drive system can see traces of it, from the transport ship, automobile, locomotive, used in construction of heavy machinery, industrial machinery used in the processing equipment and automated production equipment, daily the common life of the household electrical appliances, watches and so on. Its application from the large power transmission, small load, accurate angle transmission can see reducer application, and in industrial applications, with speed and increase torque of reducer function. It is widely used in speed and torque conversion equipment. The role of main reducer:1) Speed down while increasing the output torque, output torque in the proportion of motor output by reduction ratio, but should not be beyond the rated torque of reducer.2) speed while reducing the load inertia, inertia is reduced as the ratio of square. We can look at general motors have a inertia mathematical.Worm gear reducer classification:Main models: WP series worm gear reducer, WH series worm gear reducer and CW series worm gear reducer.WP series worm gear reducer including WPA/WPS/WPW/WPE/WPZ/WPDWH series worm gear reducer including WHT/WHX/WHS/WHCCW series worm gear reducer including CWU/CWS/CWORV series worm gear reducer including RV/NMRV/NRVWorm gear reducer and analysis of common problems:1、Reducer heating and oil.2、Worm gear wear.3、The small drive gear wear.4、Worm bearing damage.Reducer heating and oilIn order to improve the efficiency, the worm gear reducer are commonly used nonferrous metals do worm, worm is a hard steel. Due to sliding friction transmission, operation will produce more heat, so that the reducer parts and sealed between thermal expansion differences, resulting in the mating surface to form a gap, lubricating oil temperature due to the increase of thinning, easy leakage. The reasons for this are four points, one is a material with unreasonable; two is the meshing friction surface of poor quality; three is a lubricating oil additive amount of choice is incorrect; four is the assembly quality and the use of poor environment.Worm gear wearWorm gear generally use the tin bronze, paired worm material45 steel hardened to HRC4555, or 40Cr hardened HRC5055after worm grinder grinding to the roughness Ra0.8μ M. Reducer when normal operation wear very slow, some speed reducer can be used for more than 10 years. If wear faster, it is necessary to consider the selection is correct, whether overload operation, as well as the worm gear materials, assembly quality or environment of use and other reasons.The small drive gear wearGenerally occurs in the vertical installed speed reducer, the main and the lubricating oil quantity and oil varieties. Vertical installation, easy to cause inadequate lubrication, reducer stops running, the motor and the speed reducer transmission gear oil gear loss, due to lack of lubrication and protection. Starting gear reducer, due to the lack of effective lubrication cause mechanical wear or damage.Worm bearing damageWhen a failure occurs, even if the reduction box has good sealing, is often found inside the reducer gear oil to be emulsified, bearing rust, corrosion, damage. This is because the reducer after running for a period of time, gear oil temperature andcooling of the condensation of water mixed with water. Of course, also with the quality of bearing and assembly process is closely related to.Solution method:1、ensure the assembly quality. Can be purchased or made some special tools, removing and installing reducer parts, try to avoid using a hammer and other tools percussion; replacement gears, worm gear, try to use the original accessories and replaced in pairs; the assembly when the output shaft, attention should be paid to tolerance; to use anti-sticking agent or red lead oil protection hollow shaft, to prevent wear rust or scale with the area to remove, repair.2、the selection of lubricating oils and additives. The worm gear reducer is generally used on220# gear oil, heavy load, frequent start, use of the environment of poor reducer, and can use a number of lubricating oil additives, so that the speed reducer in stops running gear oil is still attached to the gear surface, forming a protection film, prevent the heavy load, low speed, high torque and at the start of direct contact between the metal. Additives containing ring modulators and a leak resistant agent, so that the seal ring to maintain soft and elastic, effectively reduce the oil leakage.3、reducer installation position selection. Location permits, try not to adopt vertical installation. Vertical installation, lubricants added more than horizontal installation, easy cause reducer heating and oil.4、establishment of lubricating maintenance system. According to the lubrication work" Five " principle to the reducer maintenance, do each and a reducer are responsible for regular inspections, found that rising temperatures significantly, over 40 ℃ or temperature exceed 80 ℃, oil quality decline or oil found in more copper and to produce abnormal noise and other phenomena, should immediately stop using the, timely maintenance, troubleshooting, replacement of lubricating oil. Come on, should pay attention to oil, ensure the reducer to get the correct lubrication.Worm gear reducer of national standards:TP type planar enveloping hourglass worm gear reducer ( JB/T9051-1999)CW series worm gear reducer ( JB/T7935-1999)ZC1 type two stage worm and gear - worm reducer ( JB/T7008-1993)SCW shaft mounted circular cylindrical worm reducer ( JB/T6387-1992)RV series worm gear reducer ( Q/MD1-2000)WD cylindrical worm reducer ( JB/ZQ4390-79)CW series worm gear reducer ( GB9147-88)WH series worm gear reducer ( JB2318-79)The planar enveloping hourglass worm gear reducer ( ZBJ19021-89)Circular cylindrical worm gear reducer ( GB9147-88)Cylindrical worm gear reducer ( JB/ZQ4390-86)Worm gear reducer common problem analysis: gear - worm gear reducer is a kind of compact structure, large transmission ratio, under certain conditions, the mechanical transmission with self-locking function. Convenient installation, reasonable structure, have been more and more widely applied. It is in the worm gear reducer input to add a bevel gear reducer, constitute the multistage reducer can obtain very low output speed, than the single stage worm reducer has higher efficiency, and small vibration, low noise and can.The new repair method for worm gear reducer:Aiming at the problem of traditional wear, enterprise solution is welding or brush machine repair, but there are some drawbacks: welding high temperature thermal stress can not be completely eliminated, causing material damage, resulting in part to bend or break; and brush plating by coating thickness limit, easy peeling, and above two method is with metal repair metal, can not change the " hard on hard" relations of cooperation, in the comprehensive role, will cause wear again. For some large enterprises are often unable to the scene to solve the bearing, but also rely on outside repair. Contemporary western countries to solve the above problem using polymer composite materials repair method, which is widely used in the United States for technology products, it has strong adhesion, excellent comprehensive properties such as compressive strength. Application of polymer materials to repair, can be disassembled for machine processing. Welding thermal stress thickness effects, repair is not limited, at the same time products with metal materials do not have concessions, can absorb the shock and vibration equipment, avoid to wear again possible, andgreatly prolong the service life of the parts of equipment, for the enterprise to save a large amount of downtime, create enormous economic value. While the leakage problem, traditional methods to remove and open gear reducer, replacing the gasket or sealant has been applied, not only time-consuming and laborious, and difficult to guarantee the sealing effect, the operation will be again leakage. The polymeric material can be on-site management leakage, material has excellent adhesion, resistance to oil and350% of the tensile strength, overcome the vibration impact, very good for enterprises to solve the leakage problem of reducer.Installation notes:Mounted on the worm gear reducer must be firmly installed on the machine, not to loosen the phenomenon. This process must confirm the reducer turning right or not, then can continue the installation operation. Reducer can not be placed too long, more than 3to 6 months, but oil is not immersed in lubricating oil in it, that user to replace the oil seal reducer. Please follow the speed reducer using codes, standard working environment temperature is -5degrees to 10 degrees, if it exceeds the rated value, please contact the Dongguan city machine reducer Limited company technology department. Reducer is usually associated with a deceleration motor or motor supporting the use of, so we must improve the radiating device and ventilation device, and to maintain the normal operation of. After installation, use, must first check lubrication oil level, not to get the load to the highest, propose a gradual increase, recommended in the worm gear reducer installed around the periphery of the protection device.HW series worm gear reducer1、Overview:HW type straight outline hourglass worm reducer ( JB / T79361999) because of the Toroid Worm, the worm axial profile is straight, it called for Globoid Worm ( also known as spherical worm ), and various other worm reducer for the same space, crossed-axes gear drive, bearing capacity and transmission high efficiency, suitable for heavy load, large power, large torque transmission, such as metallurgy, mining, lifting, transportation, petroleum, chemical, construction and other machinery andequipment drive. Including HWT, HWB type two types. Working conditions: input, output shaft turn angles for the 90*, worm speed not exceeding 1500r ' / min, worm intermediate plane circle sliding speed of not more than 16m / SL worm shaft can be positive, reverse running t working environment temperature for40℃ - 40 ℃. When the environment temperature below0℃, before the start of the lubricating oil must be heated to 0℃, or using low solidification point of the lubricating oil; higher than 40℃, the cooling measures must be taken to.Model1、A worm in the worm gear on type HWT casting machine body and a machine cover straight outline hourglass worm reducer.2, HWB type a worm in the worm gear casting machine body and a machine cover under the hourglass worm gear reducer.RV series worm gear reducer1、OverviewRV series worm gear reducer is according to Q/MD1-2000quality standards of design and manufacture technology. RV series worm gear reducer in accord with the national standard GB10085-88cylindrical worm gear parameter foundation, absorbing domestic and foreign advanced technology, unique novel" square box type" box shape structure, beautiful appearance, with high-quality aluminum die-casting alloy. RV series worm gear reducer has been widely used in all kinds of industry production process equipment mechanical speed reducer, is the modern industrial equipment realize high torque, low noise, high speed stable mechanical drive control device is the best choice.2、Technical parametersPower: 0.06KW ~ 7.5KW torque:2.6N ·m~2379N ·MTransmission ratio:7.5-1003、features1, the advantages of compact structure, small volume, high efficiency small shape; 2, good heat exchange performance, fast heat dissipation;3, simple installation, flexible and nimble, superior performance, easy maintenance;4, stable running, small noise, durable;5, the use of strong, high safety and reliability,4、The use of maintenance requirements1、when installed on the output member please do not exert pressure, box, please meet the mechanical and the speed reducer is connected between the concentricity and verticality requirement.2、Reducer initial run to 400 hours should replace oil, later changing period of approximately 4000 hours.3、the reducer box body should retain sufficient amount of lubricating oil, and regularly check.4、pay attention to maintaining the speed reducer with clean appearance, the timely removal of dust, dirt to facilitate heat dissipation.中文译文蜗轮蜗杆减速机:蜗轮蜗杆减速机是一种动力传达机构,利用齿轮的速度转换器,将电机(马达)的回转数减速到所要的回转数,并得到较大转矩的机构。
机械零件齿轮中英文对照外文翻译文献
(文档含英文原文和中文翻译)中英文资料对照外文翻译Machine Parts (I)GearsGears are direct contact bodies, operating in pairs, that transmit motion and force from one rotating shaft to another or from a shaft to a slide (rack), by means of successively engaging projections called teeth.Tooth profiles. The contacting surfaces of gear teeth must be aligned in such a way that the drive is positive; i.e., the load transmitted must not depend on frictional contact. As shown in the treatment of direct contact bodies, this requires that thecommon normal to the surfaces not to pass through the pivotal axis of either the driver or the follower.As it is known as direct contact bodies, cycloidal and involute profiles profiles provide both a positive drive and a uniform velocity ratio;i.e., conjugate action.Basic relations. The smaller of a gear pair is called the pinion and the larger is the gear. When the pinion is on the driving shaft the pair is called the pinion and the larger is the gear. When the pinion is on the driving shaft the pair acts as a speed reducer; When the gear drives, the pair is a speed incrreaser. Gears are more frequently used to reduce speed than to increase it.If a gear having N teeth rotates at n revolutions per minute, the product N*n has the dimension “teeth per minute”. This product must be the same for both members of a mating pair if each tooth acquires a partner from the mating gear as it passes through the region of tooth engagement.For conjugate gears of all types, the gear ratio and the speed ratio are both given by the ratio of the number of teeth on the gear to the number of teeth on the pinion. If a gear has 100 teeth and a mating pinion has 20, the ratio is 100/20=5. Thus the pinion rotates five times as fast as the gear, regardless of the gear. Their point of tangency is called the pitch point, and since it lies on the line of centers, it is the only point at which the profiles have pure roling contact. Gears on nonparallel, non-intersecting shafts also have pitch circles, but the rolling-pitch –circle concept is not valid.Gear types are determined largely by the disposition of the shafts; in addition, certain types are better suited than others for large speed changes. This means that if a specific disposition of the shafts is required, the type of gear will more or less be fixed. On the other hand, if a required speed change demands a certain type, the shaft positions will also be fixed.Spur gears and helical gears. A gear having tooth elements that are straight and parallel to its axis is known as a spur gear. A spur pair can be used to connect parallel shafts only.If an involute spur pinion were made of rubber and twisted uniformly so that the ends rotated about the axis relative to one another, the elements of the teeth, initially straight and parallel to the axis, would become helices. The pinion then in effect would become a helical gear.Worm and bevel gears. In order to achieve line contact and improve the load carrying capacity of the crossed axis helical gears, the gear can be made to curvepartially around the pinion, in somewhat the same way that a nut envelops a screw. The result would be a cylindrical worm and gear. Worms are also made in the shape of an hourglass, instead of cylindrical, so that they partially envelop the gear. This results in a further increase in load-carrying capacity.Worm gears provide the simplest means of obtaining large ratios in a single pair. They are usually less efficient than parallel-shaft gears, however, because of an additional sliding movement along the teeth.V-beltThe rayon and rubber V-belt are widely used for power transmission. Such belts are made in two series: the standard V-belt and the high capacity V-belt. The belts can be used with short center distances and are made endless so that difficulty with splicing devices is avoided.First, cost is low, and power output may be increased by operating several belts side by side. All belts in the drive should stretch at the same rate in order to keep the load equally divided among them. When one of the belts breaks, the group must usually be replaced. The drive may be inclined at any angle with tight side either top or bottom. Since belts can operate on relatively small pulleys, large reductions of speed in a single drive are possible.Second,the included angle for the belt groove is usually from 34°to 38°.The wedging action of the belt in the groove gives a large increase in the tractive force developed by the belt.Third,pulley may be made of cast iron, sheet steel, or die-cast metal. Sufficient clearance must be provided at the bottom of the groove to prevent the belt from bottoming as it becomes narrower from wear. Sometimes the larger pulley is not grooved when it is possible to develop the required tractive force by running on the inner surface of the belt. The cost of cutting the grooves is thereby eliminated. Pulleys are on the market that permit an adjustment in the width of the groove. The effective pitch diameter of the pulley is thus varied, and moderate changes in the speed ratio can be secured.Chain DrivesThe first chain-driven or “safety” bicycle appeared in 1874, and chains were used for driving the rear wheels on early automobiles. Today, as the result of modern design and production methods, chain drives that are much superior to their prototypes are available, and these have contributed greatly to thedevelopment of efficient agricultural machinery, well-drilling equipment, and mining and construction machinery. Since about 1930 chain drives have become increasingly popular, especially for power saws, motorcycle, and escalators etc.There are at least six types of power-transmission chains; three of these will be covered in this article, namely the roller chain, the inverted tooth, or silent chain, and the bead chain. The essential elements in a roller-chain drive are a chain with side plates, pins, bushings (sleeves), and rollers, and two or more sprocket wheels with teeth that look like gear teeth. Roller chains are assembled from pin links and roller links. A pin link consists of two side plates connected by two pins inserted into holes in the side plates. The pins fit tightly into the holes, forming what is known as a press fit. A roller link consists of two side plates connected by two press-fitted bushings, on which two hardened steel rollers are free to rotate. When assembled, the pins are a free fit in the bushings and rotate slightly, relative to the bushings when the chain goes on and leaves a sprocket.Standard roller chains are available in single strands or in multiple strands, In the latter type, two or more chains are joined by common pins that keep the rollers in the separate strands in proper alignment. The speed ratio for a single drive should be limited to about 10∶1; the preferred shaft center distance is from 30 to 35 times the distance between the rollers and chain speeds greater than about 2500 feet (800 meters) per minute are not recommended. Where several parallel shafts are to be driven without slip from a single shaft, roller chains are particularly well suited.An inverted tooth, or silent chain is essentially an assemblage of gear racks, each with two teeth, pivotally connected to form a closed chain with the teeth on the inside, and meshing with conjugate teeth on the sprocket wheels. The links are pin-connected flat steel plates usually having straight-sided teeth with an included angle of 60 degrees. As many links are necessary to transmit the power and are connected side by side. Compared with roller-chain drives, silent-chain drives are quieter, operate successfully at higher speeds, and can transmit more load for the same width. Some automobiles have silent-chain camshaft drives.Bead chains provide an inexpensive and versatile means for connecting parallel or nonparallel shafts when the speed and power transmitted are low. The sprocket wheels contain hemispherical or conical recesses into which the beads fit. The chains look like key chains and are available in plain carbon and stainless steel and also in the form of solid plastic beads molded on a cord. Bead chains are used oncomputers, air conditioners, television tuners, and Venetian blinds. The sprockets may be steel, die-cast zinc or aluminum, or molded nylon.Machine Parts (II)FastenerFasteners are devices which permit one part to be joined to a second part and, hence, they are involved in almost all designs.There are three main classifications of fasteners, which are described as follows:(1) Removable. This type permits the parts to be readily disconnected without damaging the fastener. An example is the ordinary nut-and-bolt fastener.(2) Semi permanent. For this type, the parts can be disconnected, but some damage usually occurs to the fastener. One such example is a cotter pin.(3) Permanent. When this type of fastener is used, it is intended that the parts will never be disassembled. Examples are riveted joints and welded joints.The importance of fasteners can be realized when referring to any complex product. In the case of the automobile, there are literally thousands of parts which are fastened together to produce the total product. The failure or loosening of a single fastener could result in a simple nuisance such as a door rattle or in a serious situation such as a wheel coming off. Such possibilities must be taken into account in the selection of the type of fastener for the specific application.Nuts, bolts, and screws are undoubtedly the most common means of joining materials. Since they are so widely used, it is essential that these fasteners attain maximum effectiveness at the lowest possible cost. Bolts are, in reality, carefully engineered products with a practically infinite use over a wide range of services.An ordinary nut loosens when the forces of vibration overcome those of friction. In a nut and lock washer combination, the lock washer supplies an independent locking feature preventing the nut from loosening. The lock washer is useful only when the bolt might loosen because of a relative change between the length of the bolt and the parts assembled by it. This change in the length of the bolt can be caused by a number of factors-creep in the bolt, loss of resilience, difference in thermal expansion between the bolt and the bolted members, or wear. In the above static cases, the expanding lock washer holds the nut under axial load and keeps the assembly tight. When relative changes are caused by vibration forces, the lock washer is not nearly as effective.Rivets are permanent fasteners. They depend on deformation of their structure for their holding action. Rivets are usually stronger than the thread-type fastener and are more economical on a first-cost basis. Rivets are driven either hot or cold,depending upon the mechanical properties of the rivet material. Aluminum rivets, for instance, are cold-driven, since cold working improves the strength of aluminum. Most large rivets are hot-driven, however.ShaftVirtually all machines contain shafts. The most common shape for shafts is circular and the cross section can be either solid or hollow (hollow shafts can result in weight savings).Shafts are mounted in bearings and transmit power through such devices as gears, pulleys, cams and clutches. These devices introduce forces which attempt to bend the shaft; hence, the shaft must be rigid enough to prevent overloading of the supporting bearings. In general, the bending deflection of a shaft should not exceed 0.01 in. per ft. of length between bearing supports.For diameters less than 3 in., the usual shaft material is cold-rolled steel containing about 0.4 percent carbon. Shafts are either cold-rolled or forged in sizes from 3 in. to 5 in. .For sizes above 5 in. , shafts are forged and machined to size. Plastic shafts are widely used for light load applications. One advantage of using plastic is safety in electrical applications, since plastic is a poor conductor of electricity.Another important aspect of shaft design is the method of directly connecting one shaft to another. This is accomplished by devices such as rigid and flexible couplings.BearingA bearing can be defined as a member specifically designed to support moving machine components. The most common bearing application is the support of a rotating shaft that is transmitting power from one location to another. Since there is always relative motion between a bearing and its mating surface, friction is involved. In many instances, such as the design of pulleys, brakes, and clutches, friction is desirable. However, in the case of bearings, the reduction of friction is one of the prime considerations:Friction results in loss of power, the generation of heat, and increased wear of mating surfaces.The concern of a machine designer with ball bearings and roller bearings is fivefold as follows:(1) Life in relation to load; (2) stiffness, i.e. deflections under load;(3) friction; (4) wear; (5) noise. For moderate loads and speeds the correct selection ofa standard bearing on the basis of load rating will usually secure satisfactoryperformance. The deflection of the bearing elements will become important where loads are high, although this is usually of less magnitude than that of the shafts or other components associated with the bearing. Where speeds are high special cooling arrangements become necessary which may increase frictional drag. Wear is primarily associated with the introduction of contaminants, and sealing arrangements must be chosen with regard to the hostility of the environment.Notwithstanding the fact that responsibility for the basic design of ball bearings and roller bearings rests with the bearing manufacturer, the machine designer must form a correct appreciation of the duty to be performed by the bearing and be concerned not only with bearing selection but with the conditions for correct installation.The fit of the bearing races onto the shaft or onto the housings is of critical importance because of their combined effect on the internal clearance of the bearing as well as preserving the desired degree of interference fit. Inadequate interference can induce serious trouble from fretting corrosion. The inner race is frequently located axially by abutting against a shoulder. A radius at this point is essential for the avoidance of stress concentration and ball races are provided with a radius or chamfer to allow space for this.A journal bearing, in its simplest form, is a cylindrical bushing made of a suitable material and containing properly machined inside and outside diameters. The journal is usually the part of a shaft or pin that rotates inside the bearing.Journal bearings operate with sliding contact, to reduce the problems associated with sliding friction in journal bearings, a lubricant is used in conjunction with compatible mating materials. When selecting the lubricant and mating materials, one must take into account bearing pressures, temperatures and also rubbing velocities. The principle function of the lubricant in sliding contact bearings is to prevent physical contact between the rubbing surfaces. Thus the maintenance of an oil film under varying loads, speeds and temperature is the prime consideration in sliding contact bearings.Introduction to Machinery DesignMachinery design is either to formulate an engineering plan for the satisfaction of a specified need or to solve an engineering problem. It involves a range of disciplines in materials, mechanics, heat, flow, control, electronics and production.Machinery design may be simple or enormously complex, easy or difficult, mathematical or nonmathematical, it may involve a trivial problem or one of great importance. Good design is the orderly and interesting arrangement of an idea to provide certain results or effects. A well-designed product is functional, efficient, and dependable. Such a product is less expensive than a similar poorly designed product that does not function properly and must constantly be repaired.People who perform the various functions of machinery design are typically called industrial designers. He or she must first carefully define the problem, using an engineering approach, to ensure that any proposed solution will solve the right problem. It is important that the designer begins by identifying exactly how he or she will recognize a satisfactory alternative, and how to distinguish between two satisfactory alternatives in order to identify the better. So industrial designers must have creative imagination, knowledge of engineering, production techniques, tools, machines, and materials to design a new product for manufacture, or to improve an existing product.In the modern industrialized world, the wealth and living standards of a nation are closely linked with their capabilities to design and manufacture engineering products. It can be claimed that the advancement of machinery design and manufacturing can remarkably promote the overall level of a country’s industrization. Our country is playing a more and more vital role in the global manufacturing industry. To accelerate such an industrializing process, highly skilled design engineers having extensive knowledge and expertises are needed.Machinery ComponentsThe major part of a machine is the mechanical system. And the mechanical system is decomposed into mechanisms, which can be further decomposed into mechanical components. In this sense, the mechanical components are the fundamental elements of machinery. On the whole, mechanical components can be classified as universal and special components. Bolts, gear, and chains are the typical examples of the universal components, which can be used extensively in different machines across various industrial sectors. Turbine blades, crankshaft and aircraftpropeller are the examples of the special components, which are designed for some specific purposes.Mechanical Design ProcessProduct design requires much research and development. Many concepts of an idea must be studied, tried, refined, and then either used or discarded. Although the content of each engineering problem is unique, the designers follow the similar process to solve the problems.Recognition of NeedSometimes, design begins when a designer recognizes a need and decides to do something about it. The need is often not evident at, all; recognition is usually triggered by a particular adverse circumstance or a set of random circumstances, which arise almost simultaneously. Identification of need usually consists of an undefined and vague problem statement.Definition of ProblemDefinition of problem is necessary to fully define and understand the problem, after which it is possible to restate the goal in a more reasonable and realistic way than the original problem statement. Definition of the problem must include all the specifications for the thing that is to be designed. Obvious items in the specifications are the speeds, feeds, temperature limitations, maximum range, expected variation in the variables, and dimensional and weight limitations.SynthesisThe synthesis is one in which as many alternative possible design approaches are sought, usually without regard for their value or quality. This is also sometimes called the ideation and invention step in which the largest possible number of creative solutions is generated. The synthesis activity includes the specification of material, addition of geometric features, and inclusion of greater dimensional detail to the aggregate design.AnalysisAnalysis is a method of determining or describing the nature of something by separating it into its parts. In the process the elements, or nature of the design, are analyzed to determine the fit between the proposed design and the original design goals.EvaluationEvaluation is the final proof of a successful design and usually involves thetesting of a prototype in the laboratory. Here we wish to discover if the design really satisfies the needs.The above description may give an erroneous impression that this process can be accomplished in a linear fashion as listed. On the contrary, iteration is required within the entire process, moving from any step back to any previous step, in all possible combinations, and doing this repeatedly.PresentationCommunicating the design to others is the finial, vital presentation step in the design process. Basically, there are only three means of communication. These are the written, the oral, and the graphical forms. A successful engineer will be technically competent and versatile in all three forms of communication. The competent engineer should not be afraid of the possibility of not succeeding in a presentation. In fact, the greatest gains are obtained by those willing to risk defeat.Contents of Machinery DesignMachinery design is an important technological basic course in mechanical engineering education. Its objective is to provide the concepts, procedures, data, and decision analysis techniques necessary to design machine elements commonly found in mechanical devices and systems; to develop engineering students’ competence of machine design that is the primary concern of machinery manufacturing and the key to manufacture good products.Machinery design covers the following contents:Provides an introduction to the design process, problem formulation, safety factors.Reviews the material properties and static and dynamic loading analysis, including beam, vibration and impact loading.Reviews the fundamentals of stress and defection analysis.Introduces static failure theories and fracture-mechanics analysis for static loads.Introduces fatigue-failure theory with the emphasis on stress-life approaches to high-cycle fatigue design, which is commonly used in the design of rotation machinery.Discusses thoroughly the phenomena of wear mechanisms, surface contact stresses, and surface fatigue.Investigates shaft design using the fatigue-analysis techniques.Discusses fluid-film and rolling-element bearing theory and application.Gives a thorough introduction to the kinematics, design and stress analysis of spur gears, and a simple introduction to helical, bevel, and worm gearing.Discusses spring design including helical compression, extension and torsion springs.Deals with screws and fasteners including power screw and preload fasteners.Introduces the design and specification of disk and drum clutches and brakes.机械零件(I)齿轮齿轮是直接接触,成对工作的实体,在称为齿的凸出物的连续啮合作用下,齿轮能将运动和力从一个旋转轴传递到另一个旋转轴,或从一个轴传递到一个滑块(齿条)。
中英文文献翻译-螺杆压缩机
英文原文Screw CompressorThe Symmetric profile has a huge blow-hole area which excludes it from any compressor applicat -ion where a high or even moderate pressure ratio is involved. However, the symmetric profile per -forms surprisingly well in low pressure compressor applications.More details about the circular p -rofile can be found in Margolis, 1978.2.4.8 SRM “A” ProfileThe SRM “A” profile is shown in Fig. 2.11. It retains all the favourable features of the symmetric profile like its simplicity while avoiding its main disadvantage,namely, the large blow-hole area. The main goal of reducing the blow hole area was achieved by allowing the tip points of the main and gate rotors to generate their counterparts, trochoids on the gate and main rotor respectively. T -he “A” profile consists mainly of circles on the gate rotor and one line which passes through the gate rotor axis.The set of primary curves consists of: D2C2, which is a circle on the gate rotor with the centre on the gate pitch circle, and C2B2, which is a circle on the gate rotor, the centre of whi ch lies outside the pitch circle region.This was a new feature which imposed some problems in the generation of its main rotor counterpart, because the mathematics used for profile generation at tha -t time was insufficient for general gearing. This eccentricity ensured that the pressure angles on th -e rotor pitches differ from zero, resulting in its ease of manufacture. Segment BA is a circle on th -e gate rotor with its centre on the pitch circle. The flat lobe sides on the main and gate rotors weregenerated as epi/hypocycloids by points G on the gate and H on the main rotor respectively. GF2 is a radial line at the gate rotor. This brought the same benefits to manufacturing as the previously mentioned circle eccentricity onFig. 2.11 SRM “A” Profile2.4 Review of Most Popular Rotor Profiles 31 the opposite lobe side. F2E2 is a circle with the cent -re on the gate pitch and finally, E2D2 is a circle with the centre on the gate axis.More details on t -he “A” profile are published by Amosov et al., 1977 and by Rinder, 1979.The “A” profile is a go od example of how a good and simple idea evolved into a complicated result. Thus the “A” pro file was continuously subjected to changes which resulted in the “C” profile. This was mainly gen erated to improve the profile manufacturability. Finally, a completely new profile, the“D” profile was generated to introduce a new development in profile gearing and to increase the gate rotor tor -que.Despite the complexity o f its final form the “A” profile emerged to be the most popular scre -w compressor profile, especially after its patent expired.2.4.9 SRM “D” ProfileThe SRM “D” profile, shown in Fig. 2.12, is generated exclusively by circles with the centres off the rotor pitch circles.Similar to the Demonstrator, C2D2 is an eccentric circle of radius r3 onthe gate rotor. B1C1 is an eccentric circle of radius r1, which, together withthe small circular arc A1J1 of radius r2, is positioned on the main rotor. G2H2is a small circular arc on the gate rotor and E2F2 is a circular arc on the gaterotor. F2G2 is a relatively large circular arc on the gate rotor which produces a corresponding curve of the smallest possible curvature on the main rotor.Both circular arc, B2C2 and F2G2 ensure a large radius of curvature in the pitch circle area. This avoids high stresses in the rotor contact region.Fig. 2.12 SRM “D” ProfileThe “G” profile was introduced by SRM in the late nineteen nineties as a replacement for the “D” rotor and is shown in Fig. 2.13. Compared with the“D” rotor, the “G” rotor has the unique feature of two additional circles in the addendum area on both lobes of the main rotor, close to the pitch circle.This feature improves the rotor contact and, additionally, generates shorter sealing lines. This can be seen in Fig. 2.13, where a rotor featuring “G” profile characteristics only on its flat side through segment H1I1 is presented.Fig. 2.13 SRM “G” Profile2.4.11 City “N” Rack Generated Rotor Profile“N” rotors are calculated by a rack generation procedure. This distinguishes them from any others. In this case, the large blow-hole area, which is a characteristic of rack generated rotors, is overcome by generating the high pressure side of the rack by means of a rotor conjugate procedure. This undercuts the single appropriate curve on the rack. Such a rack is then used for profiling both the main and the gate rotors. The method and its extensions were used by the authors to create a number of different rotor profiles, some of them used by Stosic et al., 1986, and Hanjalic and Stosic, 1994. One of the applications of the rack generation procedure is described in Stosic, 1996.The following is a brief description of a rack generated “N” rotor profile,typical of a family of rotor profiles designed for the efficient compression of air,common refrigerants and a number of process gases. The rotors are generated by the combined rack-rotor generation procedure whose features are such that it may be readily modified further to optimize performance for any specific application.2.4 Review of Most Popular Rotor Profiles 33The coordinates of all primary arcs on the rack are summarized here relative to the rack coordinate system. The lobe of the rack is divided into several arcs. The divisions between the profile arcs are denoted by capital letters and each arc is defined separately, as shown in the Figs.2.14 and 2.15 where the rack and the rotors are shown.Fig. 2.14 Rack generated “N” ProfileFig. 2.15 “N” rotor primary curves g iven on rack34 2 Screw Compressor GeometryAll curves are given as a “general arc” expressed as: axp + byq = 1. Thus straight lines, circles, parabolae, ellipses and hyperbolae are all easily described by selecting appropriate values for parameters a, b, p and q.Segment DE is a straight line on the rack, EF is a circular arc of radius r4,segment FG is a straight line for the upper involute, p = q = 1, while segment GH on the rack is a meshing curve generated by the circular arc G2H2 on the gate rotor. Segment HJ on the rack is a meshing curve generated by the circular arc H1J1 of radius r2 on the main rotor. Segment JA is a circular arc of radius r on the rack, AB is an arc which can be either a circle or a parabola, a hyperbola or an ellipse, segment BC is a straight line on the rack matching the involute on the rotor round lobe and CD is a circular arc on the rack, radius r3.More details of the “N” profile can be found in Stosic, 1994.2.4.12 Characteristics of “N” ProfileSample illustrations of the “N” profile in 2-3, 3-5, 4-5, 4-6, 5-6, 5-7 and 6-7 configurations are given in Figs. 2.16 to Fig. 2.23. It should be noted that all rotors considered were obtained automatically from a computer code by simply specifying the number of lobes in the main and gate rotors, and the lobe curves in the general form.A variety of modified profiles is possible. The “N” profile design is a compromise between full tightness, small blow-hole area, large displacement.Fig. 2.16 “N” Rotors in 2-3 configurationFig. 2.17 “N” Rotors in 3-5 configurationFig. 2.18 “N” Rotors in 4-5 configurationFig. 2.19 “N” Rotors in 4-6 configurationFig. 2.20 “N” Rotors compared with “Sigma”, SRM “D” and “Cyclon” rotorsFig. 2.21 “N” Rotors in 5-6 configurationFig. 2.22 “N” Rotors in 5-7 configurationFig. 2.23 “N” rotors in 6/7 configurationsealing lines, small confined volumes, involute rotor contact and proper gate rotor torque distribution together with high rotor mechanical rigidity.The number of lobes required varies according to the designated compressor duty. The 3/5 arrangement is most suited for dry air compression, the 4/5 and 5/6 for oil flooded compressors with a moderate pressure difference and the 6/7 for high pressure and large built-in volume ratio refrigeration applications.Although the full evaluation of a rotor profile requires more than just a geometric assessment, some of the key features of the “N” profile may be readily appreciated by comparing it with three of the most popular screw rotor profiles already described here, (a) The “Sigma” profile by Bammert,1979, (b) the SRM “D” profile by Astberg 1982, and (c) the “Cyclon” profile by Hough and Morris, 1984. All these rotors are shown in Fig. 2.20 where it can be seen that the “N” profiles have a grea ter throughput and a stiffer gate rotor for all cases when other characteristics such as the blow-hole area, confined volume and high pressure sealing line lengths are identical.Also, the low pressure sealing lines are shorter, but this is less important because the corresponding clearance can be kept small.The blow-hole area may be controlled by adjustment of the tip radii on both the main and gate rotors and also by making the gate outer diameter equal to or less than the pitch diameter. Also the sealing lines can be kept very short by constructing most of the rotor profile from circles whose centres are close to the pitch circle. But, any decrease in the blow-hole area will increasethe length of the sealing line on the flat rotor side. A compromise betweenthese trends is therefore required to obtain the best result.2.4 Review of Most Popular Rotor Profiles 39Rotor instability is often caused by the torque distribution in the gate rotor changing direction during a complete cycle. The profile generation procedure described in this paper makes itpossible to control the torque on the gate rotor and thus avoid such effects. Furthermore, full involute contact between the “N” rotors enables any additional contact load to be absorbed more easily than with any other type of rotor. Two rotor pairs are shown in Fig. 2.24 the first exhibits what is described as “negative” gate rotor torque while the second shows the more usual “positive” torque.Fig. 2.24 “N” with negative torque, left and positive torque, right2.4.13 Blower Rotor ProfileThe blower profile, shown in Fig. 2.25 is symmetrical. Therefore only one quarter of it needs to be specified in order to define the whole rotor. It consists of two segments, a very small circle on the rotor lobe tip and a straight line. The circle slides and generates cycloids, while the straight line generates involutes.Fig. 2.25 Blower profile中文译文螺杆压缩机螺杆压缩机的几何形状对称分布有一个巨大的吹孔面积不包括它任何压缩机应用在高或中等压力比参与。
斜齿轮、蜗杆蜗轮和锥齿轮外文文献翻译、中英文翻译、外文翻译
外文文献原文Helical,Worm and Bevel GearsIn the force analysis of spur gars, the forces are assumed to act in a single plain. In this lesson we shall study gears in which the forces have three dimensions. The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are not parallel to each other. There are other reasons, as we shall learn.Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear must have a right—hand helix and the other a left—hand helix. The shape of the tooth is an involute helicoids. If a piece of paper cut in the shape of a parallclogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each point on the angular edge generates an involute curve. The surface obtained when every point on the edge generates an involute is called an involute helicoids.The initial contact of spur—gear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point,which changes into a line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth.It is this gradual engagement of the teeth and the smooth transfer of load from one tooth to another ,which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double helical gear(herringbone)is equivalent to two helical gears of opposite hand, mounted side by side on the same shaft. They develop opposite thrust reaction and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft, the hand of the gears should be selected so as to produce the minimum thrust load.Crossed—helical, or spiral, gears are those in which the shaft centerlines are neitherparallel nor intersecting. The teeth of crossed-helical gears have point contact with each other, which changes to line contact as the gears wear in. For this reason they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission of power. There is no difference between a crossed helical gear and a helical gear until they are mounted in mesh with each other. They are manufactured in the same way. A pair of meshed crossed helical gears usually have the same hand; that is, a right-hand driver goes with a right hand driven. In the design of crossed-helical gears, the minimum sliding velocity is obtained when the helix angle are equal. However, when the helix angle are not equal, the gear with the larger helix angle should he used as the driver if both gears have the same hand.Worm gears are similar to crossed helical gears. The pinion or worm has a small number of teeth, usually one to four, and since they completely wrap around the pitch cylinder they are called threads. Its mating gear is called a worm gear, which is not a true helical gear. A worm and worm gear are used to provide a high angular-velocity reduction between nonintersecting shafts which are usually at right angle. The worm gear is not a helical gear because its face is made concave to fit the curvature, nature of the worm in order to provide line contact instead of point contact. However, a disadvantage of worm gearing is the high sliding velocities across the teeth, the same as with crossed helical gears.Worn gearing are either single or double enveloping. A single enveloping gearing is one in which the gear wraps around or partially encloses the worm, A gearing in which each element partially encloses the other is, of course, a double enveloping worm gearing. The important difference between the two is that area contact exists between the teeth of double enveloping gears while only line contact between those of single-enveloping gears. The worm and worm gear of a set have the same hand of helix as for crossed helical gears, but the helix angles are usually quite different. The helix angle on the worm is generally quite large, and that on the gear very small. Because of this, it is usual to specify the lead angle on the worm, which is the complement of the worm helix angle, and the helix angle on the gear; the two angles are equal for a 9O deg.shaft angle.When gears are to be used to transmit motion between intersecting shafts, some form of bevel gear is required. Although bevel gears are usually made for a shaft angle of 9O deg., they may be produced for almost any shaft angle. The teeth may be east, milled, or generated. Only the generated teeth may be classed as accurate. In a typical bevel gear mounting, one of the gear is often mounted outboard of the bearing. This means that shaft deflection can be more pronounced and have a greater effect on the contact of the teeth. Another difficulty, which occurs in predicting the stress in bevel gear teeth, is the fact that the teeth are tapered.Straight bevel gears are easy to design and simple to manufacture and give very good results in service if they are mounted accurately and positively. As in the case of spur gears, however, they become noisy at higher values of the pitch-line velocity. In these eases it is often good design practice to go to ~he spiral bevel gear, which is the bevel counterpart of the helical gear, as in the case of helical gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, and hence are useful where high speed are encountered.It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset. Such gears are called hypoid gears because their pitch surfaces are hyperboloids of revolution. The tooth action between such gears is a combination of rolling and sliding along a straight line and has much in common with that of worm gearsSAND CASTINGMost metal casting are made by pouring molten metal into a prepared cavity and allowing it to solidify. The process dates from antiquity. The largest bronze statue in existence to-day is the great Sun Buddha in Nara, Japan. Cast in the eighth century, it weighs 551 tons(500 metric tons) and is more than 71 ft (21m) high. Artisans of the Shang Dynasty in China ( 1766 - 1222B. C. ) created art works of bronze with delicate filigree as sophisticated as anything that is designed and produced today.There are many casting processes available today, mid selecting the best one to produced particular part depends on several basic factors, such as cost, size. production rate. finish, tolerance, section thickness, physical-mechanical properties, intricacy ofdesign mach inability, and weld ability.Sand casting. the oldest and still the most widely used casting process. will be presented in more detail than the other processes since many of the concepts carry over into those processes as well.Green SandGreen sand generally consists of silica sand and additives coated by rubbing the sand grains together with clay uniformly wetted with water. More stable and refractory sands have been developed, such as fused silica, zircon, and mullets, which replace lower-cost silica and have only 2% linear expansion at ferrous metal temperatures. Also, relatively un-stable water and clay bonds are being replaced with synthetic resins, which are much mores table at elevated temperatures.Green sand molding is used to produce a wide variety of castings in sizes of less than around to as large as several tons. This versatile process is applicable to both ferrous and nonferrous materials.Green sand can be used to produce intricate molds since it provides for rapid collapsibility: that is, the mold is much less resistant to the contraction of the casting as it solidifies than are other molding processes. This results in less stress and strain in the casting.The sand is rammed or compacted around the pattern high a variety of methods, including hand or pneumatic-tool ramming, jolting (abrupt mechanical shaking), squeezing (com-pressing the top and bottom mold surfaces), and driving the sand into the mold at high velocities (sad slinging). Sand slings are usually resented for use in making very large casting where great volumes of sand are handled.For smaller casting, a two-part metal box or flask referred to as a cope and drag issued. First the pattern is positioned on a mold board. and the drag or lower half of the flask is positioned over it. Parting powder is sprinkled on the paten and the box is filled with sand. A jolt squeeze machine quick]y compacts the sand. The flask is then turned over and again parting powder is dusted on it. The cope is then positioned on the top half of the flask and is filled with sand, and the two-part mold with the patter board sandwiched in between is squeezed.PatternsPatterns for sand casting have traditionally been made of wood or metal. However, it has been found that wood patterns change as much as 3% due to heat and moisture.This factor alone would put many casting out of acceptable tolerance for more exacting specifications. Now, patterns are often made from epoxies and from cold-setting rubber with stabilizing inserts. Patterns of simple design, with one or more flat surface, can be molded in one piece, provided that they can be withdrawn without disturbing the compacted sand. Other patterns may be split into two or more parts to facilitate their removal from the sand when using two-part flasks. The pattern must be tapered to permit easy removal from the sand. The taper is referred to as draft. When a part does not have some natural draft, it must be added. A more recent innovation in patterns for sand casting has been to make them out of foamed polystyrene that is vaporized by the molten metal. This type of casting, known as the full-mold process, does not require pattern draft.Spruces, Runners, and Gates.Access to the mold cavity for entry of the molten metal is provided by sprees, runners, and gates, as shown in Fig. 7 I. A pouring basin can be carved in the sand at the top of the spree, or a pour box, which provides a large opening, may be laid over the spree to facilitate pouring. After the metal is poured, it cools most rapidly in the sand mold. Thus the outer surface forms a shell that permits the still molten metal near the center to flow toward it. As a result, the last portion of the casting to freeze will be deficient in metal and, in the absence oaf supplemental metal-feed source, will result in some form of shrinkage.2 This shrinkage may take the form of gross shrinkage (large cavities) or the more subtle micro shrinkage ( finely dispersed porosity). These porous spots can be avoided by the use of risers, as shown in Fig.7-1, which provide molten metal to make up for shrinkage losses.CoresCores are placed in molds wherever it is necessary to preserve the space it occupies in the mold as a void in the resulting castings. As sown in Fig.7-1, the core will be put in place after the pastern is removed. To ensure its proper location, the pattern has extensions known as core prints that leave cavities in the mold into which the core is seated. Sometimes the core may be molded integrally with the green sand and is then referred to as a green-sand core. Generally, the core is made of sand bonded with core oil, some organic bonding materials, and water. These materials are thoroughly blended and placed in a mold or core box. After forming, they are removed and baked at 350°to 450°F ( 177°to 232°C). Cores that consist of two or more parts are pasted together afterbaking.CO2 CoresCO2 cores are made by ramming up moist sand in a core box. Sodium silicate is used as a binder, which is quickly hardened by blowing CO2 gas over it. The C02 system has the advantage of making the cores immediately available.Pouring the MetalSeveral types of containers are used to move the molten metal from the furnace to the pouring area. Large castings of the floor-and-pit type are poured with a ladle that has a plug in the button, or, as it is called, a bottom-pouring ladle. It is also employed in mechanized operations where the molds are moved along a line and each is poured as it is momentarily stopped beneath the large bottom-pour ladle.ladles used for pouring ferrous metals are lined with a high alumina-content refractory. After long use and oxidation, it can be broken out and replaced. Ladles used in handling ferrous metals most be preheated with gas flames to approximately 2600° to 2700°F ( 1427° to 1482°C) before filling. Once the ladle is filled, it is used constantly until it has been emptied.For nonferrous metals, simple clay-graphite crucibles are used. While they are quite susceptible to breakage, they are very resistant to the metal and will hold up a long time under normal condition. They usually do not require preheating, although care must he taken to avoid moisture pickup. For this reason they are sometimes baked out to assure dryness.The pouring process must he carefully controlled, since the temperature of the melt greatly affects the degree of liquid contraction before solidification, the rate of solidification, which in turn affects the around of columnar growth present at the mold wall, the extent and nature of the dendrite growth, the degree of alloy burnout, and the feeding characteristics of the rise ring system.Finishing OperationsAfter the castings have solidified and cooled somewhat. they are placed on a shakeout table or grating on which the sand mold is broken up, leaving the casting free to be picked out. The casting is then taken to the finishing room where the gates and risers are removed. Small gates and risers may he broken off with a hammer if the material is bride. Larger ones requiem sawing, cutting with a roach, or shearing. Unwanted metal protrusions such as fins, bosses, and small portions of gates and risersneed to be smoothed off to blend with the surface. Most of this work is done with a heavy-duty grinder and the process is known as snagging or snag grinding. On large castings it is easier to move the grinder than the work, so swing-type grinders are used. Smaller castings are brought to stand or bench-type grinders. Hans and pneumatic chisels are also used to trim castings. A more recent method of removing excess metal from famous castings is with a carbon air torch. This consists of a carbon rod and high-amperage current with a stream of compressed air blowing at the base of it. This oxidizes and removes the metal as soon as it is molten, In many foundries this method has replaced nearly all chipping and grinding operation.译文斜齿轮、蜗杆蜗轮和锥齿轮在直齿圆柱齿轮的受力分析中,是假定各力作用在单一平面的。
机械设计专业术语的英语翻译
机械设计专业术语的英语翻译阿基米德蜗杆 archimedes worm安全系数 safety factor; factor of safety安全载荷 safe load凹面、凹度 concavity扳手 wrench板簧 flat leaf spring半圆键 woodruff key变形 deformation摆杆 oscillating bar摆动从动件 oscillating follower摆动从动件凸轮机构 cam with oscillating follower 摆动导杆机构 oscillating guide-bar mechanism 摆线齿轮 cycloidal gear摆线齿形 cycloidal tooth profile摆线运动规律 cycloidal motion摆线针轮 cycloidal-pin wheel包角 angle of contact保持架 cage背对背安装 back-to-back arrangement背锥 back cone ; normal cone背锥角 back angle背锥距 back cone distance比例尺 scale比热容 specific heat capacity闭式链 closed kinematic chain闭链机构 closed chain mechanism臂部 arm变频器 frequency converters变频调速 frequency control of motor speed变速 speed change变速齿轮 change gear ; change wheel变位齿轮 modified gear变位系数 modification coefficient标准齿轮 standard gear标准直齿轮 standard spur gear表面质量系数 superficial mass factor表面传热系数 surface coefficient of heat transfer 表面粗糙度 surface roughness并联式组合 combination in parallel并联机构 parallel mechanism并联组合机构 parallel combined mechanism并行工程 concurrent engineering并行设计 concurred design, cd不平衡相位 phase angle of unbalance不平衡 imbalance (or unbalance)不平衡量 amount of unbalance不完全齿轮机构 intermittent gearing波发生器 wave generator波数 number of waves补偿 compensation参数化设计 parameterization design, pd残余应力 residual stress操纵及控制装置 operation control device槽轮 geneva wheel槽轮机构 geneva mechanism ; maltese cross 槽数 geneva numerate槽凸轮 groove cam侧隙 backlash差动轮系 differential gear train差动螺旋机构 differential screw mechanism差速器 differential常用机构 conventional mechanism; mechanism in common use车床 lathe承载量系数 bearing capacity factor承载能力 bearing capacity成对安装 paired mounting尺寸系列 dimension series齿槽 tooth space齿槽宽 spacewidth齿侧间隙 backlash齿顶高 addendum齿顶圆 addendum circle齿根高 dedendum齿根圆 dedendum circle齿厚 tooth thickness齿距 circular pitch齿宽 face width齿廓 tooth profile齿廓曲线 tooth curve齿轮 gear齿轮变速箱 speed-changing gear boxes齿轮齿条机构 pinion and rack齿轮插刀 pinion cutter; pinion-shaped shaper cutter齿轮滚刀 hob ,hobbing cutter齿轮机构 gear齿轮轮坯 blank齿轮传动系 pinion unit齿轮联轴器 gear coupling齿条传动 rack gear齿数 tooth number齿数比 gear ratio齿条 rack齿条插刀 rack cutter; rack-shaped shaper cutter 齿形链、无声链 silent chain齿形系数 form factor齿式棘轮机构 tooth ratchet mechanism插齿机 gear shaper重合点 coincident points重合度 contact ratio冲床 punch传动比 transmission ratio, speed ratio传动装置 gearing; transmission gear传动系统 driven system传动角 transmission angle传动轴 transmission shaft串联式组合 combination in series串联式组合机构 series combined mechanism串级调速 cascade speed control创新 innovation ; creation创新设计 creation design垂直载荷、法向载荷 normal load唇形橡胶密封 lip rubber seal磁流体轴承 magnetic fluid bearing从动带轮 driven pulley从动件 driven link, follower从动件平底宽度 width of flat-face从动件停歇 follower dwell从动件运动规律 follower motion从动轮 driven gear粗线 bold line粗牙螺纹 coarse thread大齿轮 gear wheel打包机 packer打滑 slipping带传动 belt driving带轮 belt pulley带式制动器 band brake单列轴承 single row bearing单向推力轴承 single-direction thrust bearing单万向联轴节 single universal joint单位矢量 unit vector当量齿轮 equivalent spur gear; virtual gear当量齿数 equivalent teeth number; virtual number of teeth 当量摩擦系数 equivalent coefficient of friction当量载荷 equivalent load刀具 cutter导数 derivative倒角 chamfer导热性 conduction of heat导程 lead导程角 lead angle等加等减速运动规律 parabolic motion; constant acceleration and deceleration motion等速运动规律 uniform motion; constant velocity motion等径凸轮 conjugate yoke radial cam等宽凸轮 constant-breadth cam等效构件 equivalent link等效力 equivalent force等效力矩 equivalent moment of force等效量 equivalent等效质量 equivalent mass等效转动惯量 equivalent moment of inertia等效动力学模型 dynamically equivalent model底座 chassis低副 lower pair点划线 chain dotted line(疲劳)点蚀 pitting垫圈 gasket垫片密封 gasket seal碟形弹簧 belleville spring顶隙 bottom clearance定轴轮系 ordinary gear train; gear train with fixed axes 动力学 dynamics动密封 kinematical seal动能 dynamic energy动力粘度 dynamic viscosity动力润滑 dynamic lubrication动平衡 dynamic balance动平衡机 dynamic balancing machine动态特性 dynamic characteristics动态分析设计 dynamic analysis design动压力 dynamic reaction动载荷 dynamic load端面 transverse plane端面参数 transverse parameters端面齿距 transverse circular pitch端面齿廓 transverse tooth profile端面重合度 transverse contact ratio端面模数 transverse module端面压力角 transverse pressure angle锻造 forge对称循环应力 symmetry circulating stress对心滚子从动件 radial (or in-line ) roller follower对心直动从动件 radial (or in-line ) translating follower对心移动从动件 radial reciprocating follower对心曲柄滑块机构 in-line slider-crank (or crank-slider) mechanism多列轴承 multi-row bearing多楔带 poly v-belt多项式运动规律 polynomial motion多质量转子 rotor with several masses惰轮 idle gear额定寿命 rating life额定载荷 load ratingii 级杆组 dyad发生线 generating line发生面 generating plane法面 normal plane法面参数 normal parameters法面齿距 normal circular pitch法面模数 normal module法面压力角 normal pressure angle法向齿距 normal pitch法向齿廓 normal tooth profile法向直廓蜗杆 straight sided normal worm法向力 normal force反馈式组合 feedback combining反向运动学 inverse ( or backward) kinematics反转法 kinematic inversion反正切 arctan范成法 generating cutting仿形法 form cutting方案设计、概念设计 concept design, cd防振装置 shockproof device飞轮 flywheel飞轮矩 moment of flywheel非标准齿轮 nonstandard gear非接触式密封 non-contact seal非周期性速度波动 aperiodic speed fluctuation非圆齿轮 non-circular gear粉末合金 powder metallurgy分度线 reference line; standard pitch line分度圆 reference circle; standard (cutting) pitch circle 分度圆柱导程角 lead angle at reference cylinder分度圆柱螺旋角 helix angle at reference cylinder分母 denominator分子 numerator分度圆锥 reference cone; standard pitch cone分析法 analytical method封闭差动轮系 planetary differential复合铰链 compound hinge复合式组合 compound combining复合轮系 compound (or combined) gear train复合平带 compound flat belt复合应力 combined stress复式螺旋机构 compound screw mechanism复杂机构 complex mechanism杆组 assur group干涉 interference刚度系数 stiffness coefficient刚轮 rigid circular spline钢丝软轴 wire soft shaft刚体导引机构 body guidance mechanism 刚性冲击 rigid impulse (shock)刚性转子 rigid rotor刚性轴承 rigid bearing刚性联轴器 rigid coupling高度系列 height series高速带 high speed belt高副 higher pair格拉晓夫定理 grashoff`s law根切 undercutting公称直径 nominal diameter高度系列 height series功 work工况系数 application factor工艺设计 technological design工作循环图 working cycle diagram工作机构 operation mechanism工作载荷 external loads工作空间 working space工作应力 working stress工作阻力 effective resistance工作阻力矩 effective resistance moment 公法线 common normal line公共约束 general constraint公制齿轮 metric gears功率 power功能分析设计 function analyses design共轭齿廓 conjugate profiles共轭凸轮 conjugate cam构件 link鼓风机 blower固定构件 fixed link; frame固体润滑剂 solid lubricant关节型操作器 jointed manipulator惯性力 inertia force惯性力矩 moment of inertia ,shaking moment 惯性力平衡 balance of shaking force惯性力完全平衡 full balance of shaking force惯性力部分平衡 partial balance of shaking force 惯性主矩 resultant moment of inertia惯性主失 resultant vector of inertia冠轮 crown gear广义机构 generation mechanism广义坐标 generalized coordinate轨迹生成 path generation轨迹发生器 path generator滚刀 hob滚道 raceway滚动体 rolling element滚动轴承 rolling bearing滚动轴承代号 rolling bearing identification code 滚针 needle roller滚针轴承 needle roller bearing滚子 roller滚子轴承 roller bearing滚子半径 radius of roller滚子从动件 roller follower滚子链 roller chain滚子链联轴器 double roller chain coupling 滚珠丝杆 ball screw滚柱式单向超越离合器 roller clutch过度切割 undercutting函数发生器 function generator函数生成 function generation含油轴承 oil bearing耗油量 oil consumption耗油量系数 oil consumption factor赫兹公式 h. hertz equation合成弯矩 resultant bending moment合力 resultant force合力矩 resultant moment of force黑箱 black box横坐标 abscissa互换性齿轮 interchangeable gears花键 spline滑键、导键 feather key滑动轴承 sliding bearing滑动率 sliding ratio滑块 slider环面蜗杆 toroid helicoids worm环形弹簧 annular spring缓冲装置 shocks; shock-absorber灰铸铁 grey cast iron回程 return回转体平衡 balance of rotors混合轮系 compound gear train积分 integrate机电一体化系统设计 mechanical-electrical integration system design机构 mechanism机构分析 analysis of mechanism机构平衡 balance of mechanism机构学 mechanism机构运动设计 kinematic design of mechanism机构运动简图 kinematic sketch of mechanism机构综合 synthesis of mechanism机构组成 constitution of mechanism机架 frame, fixed link机架变换 kinematic inversion机器 machine机器人 robot机器人操作器 manipulator机器人学 robotics技术过程 technique process技术经济评价 technical and economic evaluation技术系统 technique system机械 machinery机械创新设计 mechanical creation design, mcd机械系统设计 mechanical system design, msd机械动力分析 dynamic analysis of machinery机械动力设计 dynamic design of machinery机械动力学 dynamics of machinery机械的现代设计 modern machine design机械系统 mechanical system机械利益 mechanical advantage机械平衡 balance of machinery机械手 manipulator机械设计 machine design; mechanical design机械特性 mechanical behavior机械调速 mechanical speed governors机械效率 mechanical efficiency机械原理 theory of machines and mechanisms机械运转不均匀系数 coefficient of speed fluctuation机械无级变速 mechanical stepless speed changes基础机构 fundamental mechanism基本额定寿命 basic rating life基于实例设计 case-based design,cbd基圆 base circle基圆半径 radius of base circle基圆齿距 base pitch基圆压力角 pressure angle of base circle基圆柱 base cylinder基圆锥 base cone急回机构 quick-return mechanism急回特性 quick-return characteristics急回系数 advance-to return-time ratio急回运动 quick-return motion棘轮 ratchet棘轮机构 ratchet mechanism棘爪 pawl极限位置 extreme (or limiting) position极位夹角 crank angle between extreme (or limiting) positions 计算机辅助设计 computer aided design, cad计算机辅助制造 computer aided manufacturing, cam计算机集成制造系统 computer integrated manufacturingsystem, cims计算力矩 factored moment; calculation moment 计算弯矩 calculated bending moment加权系数 weighting efficient加速度 acceleration加速度分析 acceleration analysis加速度曲线 acceleration diagram尖点 pointing; cusp尖底从动件 knife-edge follower间隙 backlash间歇运动机构 intermittent motion mechanism减速比 reduction ratio减速齿轮、减速装置 reduction gear减速器 speed reducer减摩性 anti-friction quality渐开螺旋面 involute helicoid渐开线 involute渐开线齿廓 involute profile渐开线齿轮 involute gear渐开线发生线 generating line of involute渐开线方程 involute equation渐开线函数 involute function渐开线蜗杆 involute worm渐开线压力角 pressure angle of involute渐开线花键 involute spline简谐运动 simple harmonic motion键 key键槽 keyway交变应力 repeated stress交变载荷 repeated fluctuating load交叉带传动 cross-belt drive交错轴斜齿轮 crossed helical gears胶合 scoring角加速度 angular acceleration角速度 angular velocity角速比 angular velocity ratio角接触球轴承 angular contact ball bearing角接触推力轴承 angular contact thrust bearing 角接触向心轴承 angular contact radial bearing 角接触轴承 angular contact bearing铰链、枢纽 hinge校正平面 correcting plane接触应力 contact stress接触式密封 contact seal阶梯轴 multi-diameter shaft结构 structure结构设计 structural design截面 section节点 pitch point节距 circular pitch; pitch of teeth节线 pitch line节圆 pitch circle节圆齿厚 thickness on pitch circle节圆直径 pitch diameter节圆锥 pitch cone节圆锥角 pitch cone angle解析设计 analytical design紧边 tight-side紧固件 fastener径节 diametral pitch径向 radial direction径向当量动载荷 dynamic equivalent radial load径向当量静载荷 static equivalent radial load径向基本额定动载荷 basic dynamic radial load rating 径向基本额定静载荷 basic static radial load tating径向接触轴承 radial contact bearing径向平面 radial plane径向游隙 radial internal clearance径向载荷 radial load径向载荷系数 radial load factor径向间隙 clearance静力 static force静平衡 static balance静载荷 static load静密封 static seal局部自由度 passive degree of freedom矩阵 matrix矩形螺纹 square threaded form锯齿形螺纹 buttress thread form矩形牙嵌式离合器 square-jaw positive-contact clutch 绝对尺寸系数 absolute dimensional factor绝对运动 absolute motion绝对速度 absolute velocity均衡装置 load balancing mechanism抗压强度 compression strength开口传动 open-belt drive开式链 open kinematic chain开链机构 open chain mechanism可靠度 degree of reliability可靠性 reliability可靠性设计 reliability design, rd空气弹簧 air spring空间机构 spatial mechanism空间连杆机构 spatial linkage空间凸轮机构 spatial cam空间运动副 spatial kinematic pair空间运动链 spatial kinematic chain空转 idle宽度系列 width series框图 block diagram雷诺方程reynolds‘s equation离心力 centrifugal force离心应力 centrifugal stress离合器 clutch离心密封 centrifugal seal理论廓线 pitch curve理论啮合线 theoretical line of action隶属度 membership力 force力多边形 force polygon力封闭型凸轮机构 force-drive (or force-closed) cam mechanism力矩 moment力平衡 equilibrium力偶 couple力偶矩 moment of couple连杆 connecting rod, coupler连杆机构 linkage连杆曲线 coupler-curve连心线 line of centers链 chain链传动装置 chain gearing链轮 sprocket ; sprocket-wheel ; sprocket gear ; chain wheel 联组 v 带 tight-up v belt联轴器 coupling ; shaft coupling两维凸轮 two-dimensional cam临界转速 critical speed六杆机构 six-bar linkage龙门刨床 double haas planer轮坯 blank轮系 gear train螺杆 screw螺距 thread pitch螺母 screw nut螺旋锥齿轮 helical bevel gear螺钉 screws螺栓 bolts螺纹导程 lead螺纹效率 screw efficiency螺旋传动 power screw螺旋密封 spiral seal螺纹 thread (of a screw)螺旋副 helical pair螺旋机构 screw mechanism螺旋角 helix angle螺旋线 helix ,helical line绿色设计 green design ; design for environment马耳他机构 geneva wheel ; geneva gear马耳他十字 maltese cross脉动无级变速 pulsating stepless speed changes脉动循环应力 fluctuating circulating stress脉动载荷 fluctuating load铆钉 rivet迷宫密封 labyrinth seal密封 seal密封带 seal belt密封胶 seal gum密封元件 potted component密封装置 sealing arrangement面对面安装 face-to-face arrangement面向产品生命周期设计 design for product`s life cycle, dplc 名义应力、公称应力 nominal stress模块化设计 modular design, md模块式传动系统 modular system模幅箱 morphology box模糊集 fuzzy set模糊评价 fuzzy evaluation模数 module摩擦 friction摩擦角 friction angle摩擦力 friction force摩擦学设计 tribology design, td摩擦阻力 frictional resistance摩擦力矩 friction moment摩擦系数 coefficient of friction摩擦圆 friction circle磨损 abrasion ;wear; scratching末端执行器 end-effector目标函数 objective function耐腐蚀性 corrosion resistance耐磨性 wear resistance挠性机构 mechanism with flexible elements 挠性转子 flexible rotor内齿轮 internal gear内齿圈 ring gear内力 internal force内圈 inner ring能量 energy能量指示图 viscosity逆时针 counterclockwise (or anticlockwise) 啮出 engaging-out啮合 engagement, mesh, gearing啮合点 contact points啮合角 working pressure angle啮合线 line of action啮合线长度 length of line of action啮入 engaging-in牛头刨床 shaper凝固点 freezing point; solidifying point扭转应力 torsion stress扭矩 moment of torque扭簧 helical torsion spring诺模图 nomogramo 形密封圈密封 o ring seal盘形凸轮 disk cam盘形转子 disk-like rotor抛物线运动 parabolic motion疲劳极限 fatigue limit疲劳强度 fatigue strength偏置式 offset偏 ( 心 ) 距 offset distance偏心率 eccentricity ratio偏心质量 eccentric mass偏距圆 offset circle偏心盘 eccentric偏置滚子从动件 offset roller follower偏置尖底从动件 offset knife-edge follower偏置曲柄滑块机构 offset slider-crank mechanism 拼接 matching评价与决策 evaluation and decision频率 frequency平带 flat belt平带传动 flat belt driving平底从动件 flat-face follower平底宽度 face width平分线 bisector平均应力 average stress平均中径 mean screw diameter平均速度 average velocity平衡 balance平衡机 balancing machine平衡品质 balancing quality平衡平面 correcting plane平衡质量 balancing mass平衡重 counterweight平衡转速 balancing speed平面副 planar pair, flat pair平面机构 planar mechanism平面运动副 planar kinematic pair平面连杆机构 planar linkage平面凸轮 planar cam平面凸轮机构 planar cam mechanism平面轴斜齿轮 parallel helical gears普通平键 parallel key其他常用机构 other mechanism in common use起动阶段 starting period启动力矩 starting torque气动机构 pneumatic mechanism奇异位置 singular position起始啮合点 initial contact , beginning of contact气体轴承 gas bearing千斤顶 jack嵌入键 sunk key强迫振动 forced vibration切齿深度 depth of cut曲柄 crank曲柄存在条件 grashoff`s law曲柄导杆机构 crank shaper (guide-bar) mechanism曲柄滑块机构 slider-crank (or crank-slider) mechanism 曲柄摇杆机构 crank-rocker mechanism曲齿锥齿轮 spiral bevel gear曲率 curvature曲率半径 radius of curvature曲面从动件 curved-shoe follower曲线拼接 curve matching曲线运动 curvilinear motion曲轴 crank shaft驱动力 driving force驱动力矩 driving moment (torque)全齿高 whole depth权重集 weight sets球 ball球面滚子 convex roller球轴承 ball bearing球面副 spheric pair球面渐开线 spherical involute球面运动 spherical motion球销副 sphere-pin pair球坐标操作器 polar coordinate manipulator燃点 spontaneous ignition热平衡 heat balance; thermal equilibrium人字齿轮 herringbone gear冗余自由度 redundant degree of freedom柔轮 flexspline柔性冲击 flexible impulse; soft shock柔性制造系统 flexible manufacturing system; fms柔性自动化 flexible automation润滑油膜 lubricant film润滑装置 lubrication device润滑 lubrication润滑剂 lubricant三角形花键 serration spline三角形螺纹 v thread screw三维凸轮 three-dimensional cam三心定理 kennedy`s theorem砂轮越程槽 grinding wheel groove砂漏 hour-glass少齿差行星传动 planetary drive with small teeth difference 设计方法学 design methodology设计变量 design variable设计约束 design constraints深沟球轴承 deep groove ball bearing生产阻力 productive resistance升程 rise升距 lift实际廓线 cam profile十字滑块联轴器double slider coupling; oldham‘s coupling 矢量 vector输出功 output work输出构件 output link输出机构 output mechanism输出力矩 output torque输出轴 output shaft输入构件 input link数学模型 mathematic model实际啮合线 actual line of action双滑块机构 double-slider mechanism, ellipsograph双曲柄机构 double crank mechanism双曲面齿轮 hyperboloid gear双头螺柱 studs双万向联轴节 constant-velocity (or double) universal joint 双摇杆机构 double rocker mechanism双转块机构 oldham coupling双列轴承 double row bearing双向推力轴承 double-direction thrust bearing松边 slack-side顺时针 clockwise瞬心 instantaneous center死点 dead point四杆机构 four-bar linkage速度 velocity速度不均匀 ( 波动 ) 系数 coefficient of speed fluctuation速度波动 speed fluctuation速度曲线 velocity diagram速度瞬心 instantaneous center of velocity塔轮 step pulley踏板 pedal台钳、虎钳 vice太阳轮 sun gear弹性滑动 elasticity sliding motion弹性联轴器 elastic coupling ; flexible coupling弹性套柱销联轴器 rubber-cushioned sleeve bearing coupling 套筒 sleeve梯形螺纹 acme thread form特殊运动链 special kinematic chain特性 characteristics替代机构 equivalent mechanism调节 modulation, regulation调心滚子轴承 self-aligning roller bearing调心球轴承 self-aligning ball bearing调心轴承 self-aligning bearing调速 speed governing调速电动机 adjustable speed motors调速系统 speed control system调压调速 variable voltage control调速器 regulator, governor铁磁流体密封 ferrofluid seal停车阶段 stopping phase停歇 dwell同步带 synchronous belt同步带传动 synchronous belt drive凸的,凸面体 convex凸轮 cam凸轮倒置机构 inverse cam mechanism凸轮机构 cam , cam mechanism凸轮廓线 cam profile凸轮廓线绘制 layout of cam profile凸轮理论廓线 pitch curve凸缘联轴器 flange coupling图册、图谱 atlas图解法 graphical method推程 rise推力球轴承 thrust ball bearing推力轴承 thrust bearing退刀槽 tool withdrawal groove退火 anneal陀螺仪 gyroscopev 带 v belt外力 external force外圈 outer ring外形尺寸 boundary dimension万向联轴器 hooks coupling ; universal coupling 外齿轮 external gear弯曲应力 beading stress弯矩 bending moment腕部 wrist往复移动 reciprocating motion往复式密封 reciprocating seal网上设计 on-net design, ond微动螺旋机构 differential screw mechanism位移 displacement位移曲线 displacement diagram位姿 pose , position and orientation稳定运转阶段 steady motion period稳健设计 robust design蜗杆 worm蜗杆传动机构 worm gearing蜗杆头数 number of threads蜗杆直径系数 diametral quotient蜗杆蜗轮机构 worm and worm gear蜗杆形凸轮步进机构 worm cam interval mechanism 蜗杆旋向 hands of worm蜗轮 worm gear涡圈形盘簧 power spring无级变速装置 stepless speed changes devices无穷大 infinite系杆 crank arm, planet carrier现场平衡 field balancing向心轴承 radial bearing向心力 centrifugal force相对速度 relative velocity相对运动 relative motion相对间隙 relative gap象限 quadrant橡皮泥 plasticine细牙螺纹 fine threads销 pin消耗 consumption小齿轮 pinion小径 minor diameter橡胶弹簧 balata spring修正梯形加速度运动规律 modified trapezoidal acceleration motion修正正弦加速度运动规律 modified sine acceleration motion斜齿圆柱齿轮 helical gear斜键、钩头楔键 taper key泄漏 leakage谐波齿轮 harmonic gear谐波传动 harmonic driving谐波发生器 harmonic generator斜齿轮的当量直齿轮 equivalent spur gear of the helical gear 心轴 spindle行程速度变化系数 coefficient of travel speed variation行程速比系数 advance-to return-time ratio行星齿轮装置 planetary transmission行星轮 planet gear行星轮变速装置 planetary speed changing devices行星轮系 planetary gear train形封闭凸轮机构 positive-drive (or form-closed) cam mechanism虚拟现实 virtual reality虚拟现实技术 virtual reality technology, vrt虚拟现实设计 virtual reality design, vrd虚约束 redundant (or passive) constraint许用不平衡量 allowable amount of unbalance许用压力角 allowable pressure angle许用应力 allowable stress; permissible stress悬臂结构 cantilever structure悬臂梁 cantilever beam循环功率流 circulating power load旋转力矩 running torque旋转式密封 rotating seal旋转运动 rotary motion选型 type selection压力 pressure压力中心 center of pressure压缩机 compressor压应力 compressive stress压力角 pressure angle牙嵌式联轴器 jaw (teeth) positive-contact coupling 雅可比矩阵 jacobi matrix摇杆 rocker液力传动 hydrodynamic drive液力耦合器 hydraulic couplers液体弹簧 liquid spring液压无级变速 hydraulic stepless speed changes液压机构 hydraulic mechanism一般化运动链 generalized kinematic chain移动从动件 reciprocating follower移动副 prismatic pair, sliding pair移动关节 prismatic joint移动凸轮 wedge cam盈亏功 increment or decrement work应力幅 stress amplitude应力集中 stress concentration应力集中系数 factor of stress concentration应力图 stress diagram应力—应变图 stress-strain diagram优化设计 optimal design油杯 oil bottle油壶 oil can油沟密封 oily ditch seal有害阻力 useless resistance有益阻力 useful resistance有效拉力 effective tension有效圆周力 effective circle force有害阻力 detrimental resistance余弦加速度运动 cosine acceleration (or simple harmonic) motion预紧力 preload原动机 primer mover圆带 round belt圆带传动 round belt drive圆弧齿厚 circular thickness圆弧圆柱蜗杆 hollow flank worm圆角半径 fillet radius圆盘摩擦离合器 disc friction clutch圆盘制动器 disc brake原动机 prime mover原始机构 original mechanism圆形齿轮 circular gear圆柱滚子 cylindrical roller圆柱滚子轴承 cylindrical roller bearing圆柱副 cylindric pair圆柱式凸轮步进运动机构 barrel (cylindric) cam圆柱螺旋拉伸弹簧 cylindroid helical-coil extension spring圆柱螺旋扭转弹簧 cylindroid helical-coil torsion spring圆柱螺旋压缩弹簧 cylindroid helical-coil compression spring 圆柱凸轮 cylindrical cam圆柱蜗杆 cylindrical worm圆柱坐标操作器 cylindrical coordinate manipulator圆锥螺旋扭转弹簧 conoid helical-coil compression spring 圆锥滚子 tapered roller圆锥滚子轴承 tapered roller bearing圆锥齿轮机构 bevel gears圆锥角 cone angle原动件 driving link约束 constraint约束条件 constraint condition约束反力 constraining force跃度 jerk跃度曲线 jerk diagram运动倒置 kinematic inversion运动方案设计 kinematic precept design运动分析 kinematic analysis运动副 kinematic pair运动构件 moving link运动简图 kinematic sketch运动链 kinematic chain运动失真 undercutting运动设计 kinematic design运动周期 cycle of motion运动综合 kinematic synthesis运转不均匀系数 coefficient of velocity fluctuation运动粘度 kenematic viscosity载荷 load载荷—变形曲线 load—deformation curve载荷—变形图 load—deformation diagram窄 v 带 narrow v belt毡圈密封 felt ring seal展成法 generating张紧力 tension张紧轮 tension pulley振动 vibration振动力矩 shaking couple振动频率 frequency of vibration振幅 amplitude of vibration正切机构 tangent mechanism正向运动学 direct (forward) kinematics正弦机构 sine generator, scotch yoke织布机 loom正应力、法向应力 normal stress制动器 brake直齿圆柱齿轮 spur gear直齿锥齿轮 straight bevel gear直角三角形 right triangle直角坐标操作器 cartesian coordinate manipulator 直径系数 diametral quotient直径系列 diameter series直廓环面蜗杆 hindley worm直线运动 linear motion直轴 straight shaft质量 mass质心 center of mass执行构件 executive link; working link质径积 mass-radius product智能化设计 intelligent design, id中间平面 mid-plane中心距 center distance中心距变动 center distance change中心轮 central gear中径 mean diameter终止啮合点 final contact, end of contact周节 pitch周期性速度波动 periodic speed fluctuation周转轮系 epicyclic gear train肘形机构 toggle mechanism轴 shaft轴承盖 bearing cup轴承合金 bearing alloy轴承座 bearing block轴承高度 bearing height轴承宽度 bearing width轴承内径 bearing bore diameter轴承寿命 bearing life轴承套圈 bearing ring轴承外径 bearing outside diameter轴颈 journal轴瓦、轴承衬 bearing bush轴端挡圈 shaft end ring轴环 shaft collar轴肩 shaft shoulder轴角 shaft angle轴向 axial direction轴向齿廓 axial tooth profile轴向当量动载荷 dynamic equivalent axial load轴向当量静载荷 static equivalent axial load轴向基本额定动载荷 basic dynamic axial load rating 轴向基本额定静载荷 basic static axial load rating轴向接触轴承 axial contact bearing轴向平面 axial plane轴向游隙 axial internal clearance轴向载荷 axial load轴向载荷系数 axial load factor轴向分力 axial thrust load主动件 driving link主动齿轮 driving gear主动带轮 driving pulley转动导杆机构 whitworth mechanism转动副 revolute (turning) pair转速 swiveling speed ; rotating speed转动关节 revolute joint转轴 revolving shaft转子 rotor转子平衡 balance of rotor装配条件 assembly condition锥齿轮 bevel gear锥顶 common apex of cone锥距 cone distance锥轮 bevel pulley; bevel wheel锥齿轮的当量直齿轮 equivalent spur gear of the bevel gear 锥面包络圆柱蜗杆 milled helicoids worm准双曲面齿轮 hypoid gear子程序 subroutine子机构 sub-mechanism自动化 automation自锁 self-locking自锁条件 condition of self-locking自由度 degree of freedom, mobility总重合度 total contact ratio总反力 resultant force总效率 combined efficiency; overall efficiency组成原理 theory of constitution组合齿形 composite tooth form组合安装 stack mounting组合机构 combined mechanism阻抗力 resistance最大盈亏功 maximum difference work between plus and minus work纵向重合度 overlap contact ratio纵坐标 ordinate组合机构 combined mechanism最少齿数 minimum teeth number最小向径 minimum radius作用力 applied force坐标系 coordinate frame。
机械制造 毕业设计 外文英文文献 翻译 齿轮和齿轮传动
机械制造毕业设计外文英文文献翻译齿轮和齿轮传动Gears and gear driveGears are the most durable and rugged of all mechanical drives. They can transmit high power at efficiencies up to 98% and with long service lives. For this reason, gears rather than belts or chains are found in automotive transmissions and most heavy-duty machine drives. On the other hand, gears are more expensive than other drives, especially if they are machined and not made from power metal or plastic.Gear cost increases sharply with demands for high precision and accuracy. So it is important to establish tolerance requirements appropriate for the application. Gears that transmit heavy loads or than operate at high speeds are not particularly expensive, but gears that must do both are costly.Silent gears also are expensive. Instrument and computer gears tend to be costly because speed or displacement ratios must be exact. At the other extreme, gears operating at low speed in exposed locations are normally termed no critical and are made to minimum quality standards.For tooth forms, size, and quality, industrial practice is to follow standards set up by the American Gear Manufactures AssociationAGMA.Tooth formStandards published by AGMA establish gear proportions and tooth profiles. Tooth geometry is determined primarily by pitch, depth, and pressure angle.Pitch:Standards pitches are usually whole numbers when measured as diametral pitch P. Coarse-pitch gearing has teeth larger than 20 diametral pitch ?usually 0.5 to 19.99. Fine-pitch gearing usually has teeth of diametral pitch 20 to 200.Depth: Standardized in terms of pitch. Standard full-depth have working depth of 2/p. If the teeth have equal addendaas in standard interchangeable gears the addendum is 1/p. Stub teeth have a working depth usually 20% less than full-depth teeth. Full-depth teeth have a larger contract ratio than stub teeth. Gears with small numbers of teeth may have undercut so than they do not interfere with one another during engagement. Undercutting reduce active profile and weakens the tooth.Mating gears with long and short addendum have larger load-carrying capacity than standard gears. The addendum of the smaller gear pinion is increased while that of larger gear is decreased, leaving the whole depth the same. This form is know as recess-action gearing.Pressure Angle: Standard angles are and . Earlier standards include a 14-pressure angle that is still used. Pressure angle affectsthe force that tends to separate mating gears. High pressure angle decreases the contact ratio ratio of the number of teeth in contact but provides a tooth of higher capacity and allows gears to have fewer teeth without undercutting.Backlash: Shortest distances between the non-contacting surfaces of adjacent teeth .Gears are commonly specified according to AGMA Class Number, which is a code denoting important quality characteristics. Quality number denote tooth-element tolerances. The higher the number, the closer the tolerance. Number 8 to 16 apply to fine-pitch gearing.Gears are heat-treated by case-hardening, through-hardening, nitriding, or precipitation hardening. In general, harder gears are stronger and last longer than soft ones. Thus, hardening is a device that cuts the weight and size of gears. Some processes, such as flame-hardening, improve service life but do not necessarily improve strength.Design checklistThe larger in a pair is called the gear, the smaller is called the pinion.Gear Ratio: The number of teeth in the gear divide by the number of teeth in the pinion. Also, ratio of the speed of the pinion to the speed of the gear. In reduction gears, the ratio of input to output speeds.Gear Efficiency: Ratio of output power to input power. includesconsideration of power losses in the gears, in bearings, and from windage and churning of lubricant.Speed: In a given gear normally limited to some specific pitchline velocity. Speed capabilities can be increased by improving accuracy of the gear teeth and by improving balance of the rotating parts.Power: Load and speed capacity is determined by gear dimensions and by type of gear. Helical and helical-type gears have the greatest capacity to approximately 30,000 hp. Spiral bevel gear are normally limited to 5,000 hp, and worm gears are usually limited to about 750 hp.Special requirementsMatched-Set Gearing: In applications requiring extremely high accuracy, it may be necessary to match pinion and gear profiles and leads so that mismatch does not exceed the tolerance on profile or lead for the intended application.Tooth Spacing: Some gears require high accuracy in the circular of teeth. Thus, specification of pitch may be required in addition to an accuracy class specification.Backlash: The AMGA standards recommend backlash ranges to provide proper running clearances for mating gears. An overly tight mesh may produce overload. However, zero backlash is required in some applications.Quiet Gears: To make gears as quit as possible, specify thefinest pitch allowable for load conditions. In some instances, however, pitch is coarsened to change mesh frequency to produce a more pleasant, lower-pitch sound. Use a low pressure angle. Use a modified profile to include root and tip relief. Allow enough backlash. Use high quality numbers. Specify a surface finish of 20 in. or better. Balance the gear set. Use a nonintegral ratio so that the same teeth do not repeatedly engage if both gear and pinion are hardened steel. If the gear is made of a soft material, an integral ratio allows the gear to cold-work and conform to the pinion, thereby promoting quiet operation. Make sure critical are at least 20% apart from operating speeding or speed multiples and from frequency of tooth mesh.Multiple mesh gearMultiple mesh refers to move than one pair of gear operating in a train. Can be on parallel or nonparallel axes and on intersection or nonintersecting shafts. They permit higer speed ratios than are feasible with a single pair of gears .Series trains:Overall ratio is input shaft speed divided by output speed ,also the product of individual ratios at each mesh ,except in planetary gears .Ratio is most easily found by dividing the product of numbers of teeth of driven gears by the product of numbers of teeth of driving gears.Speed increasers with step-up rather than step-down ratios mayrequire special care in manufacturing and design. They often involve high speeds and may creste problems in gear dynamics. Also, frictional and drag forces are magnified which, in extreme cases , may lead to operational problems.Epicyclic Gearing:Normally, a gear axis remains fixed and only the gears rotates. But in an epicyclic gear train, various gears axes rotate about one anther to provide specialized output motions. With suitable clutchse and brakes, an epicyclic train serves as the planetary gear commonly found in automatic transmissions.Epicyclic trains may use spur or helical gears, external or internal, or bevel gears. In transmissions, the epicyclic or planetary gears usually have multiple planets to increase load capacity.In most cases, improved kinematic accuracy in a gearset decreases gear mesh excitation and results in lower drive noise. Gearset accuracy can be increased by modifying the tooth involute profile, by substituting higher quality gearing with tighter manufacturing tolerances, and by improving tooth surface finish. However, if gear mesh excitation generaters resonance somewhere in the drive system, nothing short of a “perfect” gearset will substantially reduce vibration and noise.Tooth profiles are modified to avoid interferences which can result from deflections in the gears, shafts, and housing as teeth engageand disendgage. If these tooth interferences are not compensated for by profile modifications, gears load capacity can be seriously reduced. In addition, the drive will be noisier because tooth interferences generate high dynamic loads. Interferences typically are eliminated by reliving the tooth tip, the tooth flank, or both. Such profile modifications are especially important for high-load , high-speed drives. The graph of sound pressure levelvs tip relief illustrates how tooth profile modifications can affect overall drive noise. If the tip relief is less than this optimum value, drive noise increases because of greater tooth interference; a greater amount of tip relief also increase noise because the contact ratio is decreased.Tighter manufacturing tolerances also produce quietier gears. Tolerances for such parameters as profile error, pitch AGMA quality level. For instance, the graph depicting SPL vs both speed and gear quality shows how noise decreases example, noise is reduced significantly by an increase in accuracy from an AGMA Qn 11 quality to an AGNA Qn 15 quality. However, for most commercial drive applications, it is doubtful that the resulting substantial cost increase for such an accuracy improvement can be justified simply on the basis of reduced drive noise.Previously, it was mentioned that gears must have adequate clearance when loaded to prevent tooth interference during the course of meshing. Tip and flank relief are common profile modifications thatcontrol such interference. Gears also require adequate backlash and root clearance. Noise considerations make backlash an important parameter to evaluate during drive design. Sufficient backlash must be provided under all load and temperature conditions to avoid a tight mesh, which creates excessively high noise level. A tight mesh due to insufficient backlash occurs when the drive and coast side of a tooth are in contact simultaneously. On the other hand, gears with excessive backlash also are noisy because of impacting teeth during periods of no load or reversing load. Adequate backlash should be provided by tooth thinning rather than by increase in center distance. Tooth thinning dose not decrease the contact ratio, whereas an increase in center distance does. However, tooth thinning does reduce the bending fatigue, a reduction which is small for most gearing systems.齿轮和齿轮传动在所有的机械传动形式中,齿轮传动是一种最结实耐用的传动方式。
有关齿轮的相关文献中英文翻译
齿轮齿轮(Gear) 是依靠齿的啮合传递扭矩的轮状机械零件。
齿轮通过与其它齿状机械零件(如另一齿轮、齿条、蜗杆)传动,可实现改变转速与扭矩、改变运动方向和改变运动形式等功能。
由于传动效率高、传动比准确、功率范围大等优点,齿轮机构在工业产品中广泛应用,其设计与制造水平直接影响到工业产品的质量。
齿轮轮齿相互扣住齿轮会带动另一个齿轮转动来传送动力。
将两个齿轮分开,也可以应用链条、履带、皮带来带动两边的齿轮而传送动力。
基本介绍.齿轮在传动中的应用很早就出现了。
公元前三百多年,古希腊哲学家亚里士多德在《机械问题》中,就阐述了用青铜或铸铁齿轮传递旋转运动的问题。
中国古代发明的指南车中已应用了整套的轮系。
不过,古代的齿轮是用木料制造或用金属铸成的,只能传递轴间的回转运动,不能保证传动的平稳性,齿轮的承载能力也很小。
据史料记载,远在公元前400~200年的中国古代就巳开始使用齿轮,在我国山西出土的青铜齿轮是迄今已发现的最古老齿轮,作为反映古代科学技术成就的指南车就是以齿轮机构为核心的机械装置。
17世纪末,人们才开始研究,能正确传递运动的轮齿形状。
18世纪,欧洲工业革命以后,齿轮传动的应用日益广泛;先是发展摆线齿轮,而后是渐开线齿轮,一直到20世纪初,渐开线齿轮已在应用中占了优势。
早在1694年,法国学者Philippe De La Hire首先提出渐开线可作为齿形曲线。
1733年,法国人M.Camus提出轮齿接触点的公法线必须通过中心连线上的节点。
一条辅助瞬心线分别沿大轮和小轮的瞬心线(节圆)纯滚动时,与辅助瞬心线固联的辅助齿形在大轮和小轮上所包络形成的两齿廓曲线是彼此共轭的,这就是Camus定理。
它考虑了两齿面的啮合状态;明确建立了现代关于接触点轨迹的概念。
1765年,瑞士的L.Euler提出渐开线齿形解析研究的数学基础,阐明了相啮合的一对齿轮,其齿形曲线的曲率半径和曲率中心位置的关系。
后来,Savary进一步完成这一方法,成为现在的Eu-let-Savary方程。
蜗轮蜗杆文献翻译
6.9平行轴斜齿轮6.9.1生成和螺旋齿的特点直至现在,齿轮已经只在横向平面中讨论。
实际上,齿轮总是有一定的齿宽。
平面齿轮的轮廓上不滑倒在基筒上的生成平面作为该平面轧辊形成由直线KK。
在正齿轮的情况下,该直线KK平行于齿轮的轴线。
正齿轮的齿面因此,一渐开线圆柱体,如图所示。
6-32。
两个直齿圆柱齿轮的齿面由直线KK平行相同于齿轮的轴线作为发电所产生平面上滚动两基钢瓶平行轴。
骨刺的齿面齿轮上的直线杆并行到齿轮的,如图轴接触。
6-33。
这意味着,齿形流入和流出沿着整个齿宽接触的同时去。
这将因此导致牙齿突然加载和卸载突如齿廓进入和流出的接触。
其结果,振动和噪声的产生。
这就是为什么由直传输齿轮是不是完全平滑。
斜齿轮生产,克服了直齿圆柱齿轮的缺点重新。
直线KK上产生平面不再是平行的,如图齿轮的轴线旋转。
6-34A。
由于产生平面滚动不打滑的基圆柱,就直奔每一点线K K会产生渐开线。
连接上的渐开线起始点的曲线基筒是一个螺旋线。
螺旋齿轮的表面轮廓在蜗壳因此被称为一个螺旋。
由同一条直线产生的两个螺旋齿轮杆并行轴上的齿面KK线倾斜于齿轮作为两个基地缸产生平面轧辊轴与图。
6-35杆并行轴,如图所示。
6-34B。
齿面对直线倾斜两个咬合斜齿轮接触于齿轮的轴线。
的接触长度线逐渐变化从零到最大,然后从最大到零,如图所示。
6-35。
加载和牙齿的卸载逐渐变得光滑。
这就是为什么斜齿轮能够以更高的速度运行。
6.9.2 斜齿圆柱齿轮的参数有两组对螺旋齿轮的参数。
一组是在横向平面中和在正常的平面上的另一组。
齿轮齿被切断移动或进给垂直于正常平面的标准工具。
该刀具是的那些相同的正齿轮与标准参数。
因此,参数就正常飞机是标准值。
另一方面,它可以从的生成处理可以看出在图中所示的轮廓。
6-34是一个螺旋齿轮的横向轮廓是渐开线,则相同的正齿轮的情况。
利用公式为直齿圆柱齿轮的参数在方程的正齿轮应由那些在螺旋的横向平面代替齿轮。
因此,有必要设置两套参数之间的关系。
机械专业术语英文翻译
机械专业英语词汇陶瓷ceramics合成纤维synthetic fibre电化学腐蚀electrochemical corrosion车架automotive chassis悬架suspension转向器redirector变速器speed changer板料冲压sheet metal parts孔加工spot facing machining车间workshop工程技术人员engineer气动夹紧pneuma lock数学模型mathematical model画法几何descriptive geometry机械制图Mechanical drawing投影projection视图view剖视图profile chart标准件standard component零件图part drawing装配图assembly drawing尺寸标注size marking技术要求technical requirements刚度rigidity内力internal force位移displacement截面section疲劳极限fatigue limit断裂fracture塑性变形plastic distortion脆性材料brittleness material刚度准则rigidity criterion垫圈washer垫片spacer直齿圆柱齿轮straight toothed spur gear 斜齿圆柱齿轮helical-spur gear直齿锥齿轮straight bevel gear运动简图kinematic sketch齿轮齿条pinion and rack蜗杆蜗轮worm and worm gear虚约束passive constraint曲柄crank摇杆racker凸轮cams共轭曲线conjugate curve范成法generation method定义域definitional domain值域range导数\\微分differential coefficient求导derivation定积分definite integral不定积分indefinite integral曲率curvature偏微分partial differential毛坯rough游标卡尺slide caliper千分尺micrometer calipers攻丝tap二阶行列式second order determinant逆矩阵inverse matrix线性方程组linear equations概率probability随机变量random variable排列组合permutation and combination气体状态方程equation of state of gas动能kinetic energy势能potential energy机械能守恒conservation of mechanical energy动量momentum桁架truss轴线axes余子式cofactor逻辑电路logic circuit触发器flip-flop脉冲波形pulse shape数模digital analogy液压传动机构fluid drive mechanism机械零件mechanical parts淬火冷却quench淬火hardening回火tempering调质hardening and tempering磨粒abrasive grain结合剂bonding agent砂轮grinding wheel后角clearance angle龙门刨削planing主轴spindle主轴箱headstock卡盘chuck加工中心machining center车刀lathe tool车床lathe钻削镗削bore车削turning磨床grinder基准benchmark钳工locksmith锻forge压模stamping焊weld拉床broaching machine拉孔broaching装配assembling铸造found流体动力学fluid dynamics流体力学fluid mechanics加工machining液压hydraulic pressure切线tangent机电一体化mechanotronics mechanical-electrical integration 气压air pressure pneumatic pressure稳定性stability介质medium液压驱动泵fluid clutch液压泵hydraulic pump阀门valve失效invalidation强度intensity载荷load应力stress安全系数safty factor可靠性reliability螺纹thread螺旋helix键spline销pin滚动轴承rolling bearing滑动轴承sliding bearing弹簧spring制动器arrester brake十字结联轴节crosshead联轴器coupling链chain皮带strap精加工finish machining粗加工rough machining变速箱体gearbox casing腐蚀rust氧化oxidation磨损wear耐用度durability随机信号random signal离散信号discrete signal超声传感器ultrasonic sensor集成电路integrate circuit挡板orifice plate残余应力residual stress套筒sleeve扭力torsion冷加工cold machining电动机electromotor汽缸cylinder过盈配合interference fit热加工hotwork摄像头CCD camera倒角rounding chamfer优化设计optimal design工业造型设计industrial moulding design有限元finite element滚齿hobbing插齿gear shaping伺服电机actuating motor铣床milling machine钻床drill machine镗床boring machine步进电机stepper motor丝杠screw rod导轨lead rail组件subassembly可编程序逻辑控制器Programmable Logic Controller PLC 电火花加工electric spark machining电火花线切割加工electrical discharge wire - cutting相图phase diagram热处理heat treatment固态相变solid state phase changes有色金属nonferrous metal陶瓷ceramics合成纤维synthetic fibre电化学腐蚀electrochemical corrosion车架automotive chassis悬架suspension转向器redirector变速器speed changer板料冲压sheet metal parts孔加工spot facing machining车间workshop工程技术人员engineer气动夹紧pneuma lock数学模型mathematical model画法几何descriptive geometry机械制图Mechanical drawing投影projection视图view剖视图profile chart标准件standard component零件图part drawing装配图assembly drawing尺寸标注size marking技术要求technical requirements刚度rigidity内力internal force位移displacement截面section疲劳极限fatigue limit断裂fracture塑性变形plastic distortion脆性材料brittleness material刚度准则rigidity criterion垫圈washer垫片spacer直齿圆柱齿轮straight toothed spur gear 斜齿圆柱齿轮helical-spur gear直齿锥齿轮straight bevel gear运动简图kinematic sketch齿轮齿条pinion and rack蜗杆蜗轮worm and worm gear虚约束passive constraint曲柄crank摇杆racker凸轮cams共轭曲线conjugate curve范成法generation method定义域definitional domain值域range导数\\微分differential coefficient求导derivation定积分definite integral不定积分indefinite integral曲率curvature偏微分partial differential毛坯rough游标卡尺slide caliper千分尺micrometer calipers攻丝tap二阶行列式second order determinant逆矩阵inverse matrix线性方程组linear equations概率probability随机变量random variable排列组合permutation and combination气体状态方程equation of state of gas动能kinetic energy势能potential energy机械能守恒conservation of mechanical energy 动量momentum桁架truss轴线axes余子式cofactor逻辑电路logic circuit触发器flip-flop脉冲波形pulse shape数模digital analogy液压传动机构fluid drive mechanism机械零件mechanical parts淬火冷却quench淬火hardening回火tempering调质hardening and tempering磨粒abrasive grain结合剂bonding agent砂轮grinding wheelAssembly line 组装线Layout 布置图Conveyer 流水线物料板Rivet table 拉钉机Rivet gun 拉钉枪Screw driver 起子Pneumatic screw driver 气动起子worktable 工作桌OOBA 开箱检查fit together 组装在一起fasten 锁紧(螺丝)fixture 夹具(治具)pallet 栈板barcode 条码barcode scanner 条码扫描器fuse together 熔合fuse machine热熔机repair修理operator作业员QC品管supervisor 课长ME 制造工程师MT 制造生技cosmetic inspect 外观检查inner parts inspect 内部检查thumb screw 大头螺丝lbs. inch 镑、英寸EMI gasket 导电条front plate 前板rear plate 后板chassis 基座bezel panel 面板power button 电源按键reset button 重置键Hi-pot test of SPS 高源高压测试Voltage switch of SPS 电源电压接拉键sheet metal parts 冲件plastic parts 塑胶件SOP 制造作业程序material check list 物料检查表work cell 工作间trolley 台车sub-line 支线left fork 叉车personnel resource department 人力资源部production department生产部门planning department企划部QC Section品管科stamping factory冲压厂painting factory烤漆厂molding factory成型厂common equipment常用设备uncoiler and straightener整平机punching machine 冲床robot机械手hydraulic machine油压机lathe车床planer |plein|刨床miller铣床grinder磨床linear cutting线切割electrical sparkle电火花welder电焊机staker=reviting machine铆合机position职务president董事长general manager总经理special assistant manager特助factory director厂长department director部长deputy manager | =vice manager副理section supervisor课长deputy section supervisor =vice section superisor副课长group leader/supervisor组长line supervisor线长assistant manager助理to move, to carry, to handle搬运be put in storage入库pack packing包装to apply oil擦油to file burr 锉毛刺final inspection终检to connect material接料to reverse material 翻料wet station沾湿台cleaning cloth抹布to load material上料to unload material卸料to return material/stock to退料scraped |\\'skr?pid|报废scrape ..v.刮;削deficient purchase来料不良manufacture procedure制程deficient manufacturing procedure制程不良oxidation |\\' ksi\\'dei?n|氧化scratch刮伤dents压痕defective upsiding down抽芽不良defective to staking铆合不良embedded lump镶块feeding is not in place送料不到位stamping-missing漏冲production capacity生产力education and training教育与训练proposal improvement提案改善spare parts=buffer备件forklift叉车trailer=long vehicle拖板车compound die合模die locker锁模器pressure plate=plate pinch压板bolt螺栓administration/general affairs dept总务部automatic screwdriver电动启子thickness gauge厚薄规gauge(or jig)治具power wire电源线buzzle蜂鸣器defective product label不良标签identifying sheet list标示单location地点present members出席人员subject主题conclusion结论decision items决议事项responsible department负责单位pre-fixed finishing date预定完成日approved by / checked by / prepared by核准/审核/承办PCE assembly production schedule sheet PCE组装厂生产排配表model机锺work order工令revision版次remark备注production control confirmation生产确认checked by初审approved by核准department部门stock age analysis sheet 库存货龄分析表on-hand inventory现有库存available material良品可使用obsolete material良品已呆滞to be inspected or reworked 待验或重工total合计cause description原因说明part number/ P/N 料号type形态item/group/class类别quality品质prepared by制表notes说明year-end physical inventory difference analysis sheet 年终盘点差异分析表physical inventory盘点数量physical count quantity帐面数量difference quantity差异量cause analysis原因分析raw materials原料materials物料finished product成品semi-finished product半成品packing materials包材good product/accepted goods/ accepted parts/good parts良品defective product/non-good parts不良品disposed goods处理品warehouse/hub仓库on way location在途仓oversea location海外仓spare parts physical inventory list备品盘点清单spare molds location模具备品仓skid/pallet栈板tox machine自铆机wire EDM线割EDM放电机coil stock卷料sheet stock片料tolerance工差score=groove压线cam block滑块pilot导正筒trim剪外边pierce剪内边drag form压锻差pocket for the punch head挂钩槽slug hole废料孔feature die公母模expansion dwg展开图radius半径shim(wedge)楔子torch-flame cut火焰切割set screw止付螺丝form block折刀stop pin定位销round pierce punch=die button圆冲子shape punch=die insert异形子stock locater block定位块under cut=scrap chopper清角active plate活动板baffle plate挡块cover plate盖板male die公模female die母模groove punch压线冲子air-cushion eject-rod气垫顶杆spring-box eject-plate弹簧箱顶板bushing block衬套insert 入块club car高尔夫球车capability能力parameter参数factor系数phosphate皮膜化成viscosity涂料粘度alkalidipping脱脂main manifold主集流脉bezel斜视规blanking穿落模dejecting顶固模demagnetization去磁;消磁high-speed transmission高速传递heat dissipation热传rack上料degrease脱脂rinse水洗alkaline etch龄咬desmut剥黑膜D.I. rinse纯水次Chromate铬酸处理Anodize阳性处理seal封孔revision版次part number/P/N料号good products良品scraped products报放心品defective products不良品finished products成品disposed products处理品barcode条码flow chart流程表单assembly组装stamping冲压molding成型spare parts=buffer备品coordinate座标dismantle the die折模auxiliary fuction辅助功能poly-line多义线heater band 加热片thermocouple热电偶sand blasting喷沙grit 砂砾derusting machine除锈机degate打浇口dryer烘干机induction感应induction light感应光response=reaction=interaction感应ram连杆edge finder巡边器concave凸convex凹short射料不足nick缺口speck瑕疵splay 银纹gas mark焦痕delamination起鳞cold slug冷块blush 导色gouge沟槽;凿槽satin texture段面咬花witness line证示线patent专利grit沙砾granule=peuet=grain细粒grit maker抽粒机cushion缓冲magnalium镁铝合金magnesium镁金metal plate钣金lathe车mill锉plane刨grind磨drill铝boring镗blinster气泡fillet镶;嵌边through-hole form通孔形式voller pin formality滚针形式cam driver铡楔shank摸柄crank shaft曲柄轴augular offset角度偏差velocity速度production tempo生产进度现状torque扭矩spline=the multiple keys花键quenching淬火tempering回火annealing退火carbonization碳化tungsten high speed steel钨高速的moly high speed steel钼高速的organic solvent有机溶剂bracket小磁导liaison联络单volatile挥发性ion离子titrator滴定仪beacon警示灯coolant冷却液crusher破碎机阿基米德蜗杆Archimedes worm安全系数safety factor; factor of safety安全载荷safe load凹面、凹度concavity扳手wrench板簧flat leaf spring半圆键woodruff key变形deformation摆杆oscillating bar摆动从动件oscillating follower摆动从动件凸轮机构cam with oscillating follower 摆动导杆机构oscillating guide-bar mechanism 摆线齿轮cycloidal gear摆线齿形cycloidal tooth profile摆线运动规律cycloidal motion摆线针轮cycloidal-pin wheel包角angle of contact保持架cage背对背安装back-to-back arrangement背锥back cone ;normal cone背锥角back angle背锥距back cone distance比例尺scale比热容specific heat capacity闭式链closed kinematic chain闭链机构closed chain mechanism臂部arm变频器frequency converters变频调速frequency control of motor speed变速speed change变速齿轮change gear change wheel变位齿轮modified gear变位系数modification coefficient标准齿轮standard gear标准直齿轮standard spur gear表面质量系数superficial mass factor表面传热系数surface coefficient of heat transfer 表面粗糙度surface roughness并联式组合combination in parallel并联机构parallel mechanism并联组合机构parallel combined mechanism并行工程concurrent engineering并行设计concurred design, CD不平衡相位phase angle of unbalance不平衡imbalance (or unbalance)不平衡量amount of unbalance不完全齿轮机构intermittent gearing波发生器wave generator波数number of waves补偿compensation参数化设计parameterization design, PD残余应力residual stress操纵及控制装置operation control device槽轮Geneva wheel槽轮机构Geneva mechanism ;Maltese cross槽数Geneva numerate槽凸轮groove cam侧隙backlash差动轮系differential gear train差动螺旋机构differential screw mechanism差速器differential常用机构conventional mechanism; mechanism in common use 车床lathe承载量系数bearing capacity factor承载能力bearing capacity成对安装paired mounting尺寸系列dimension series齿槽tooth space齿槽宽spacewidth齿侧间隙backlash齿顶高addendum齿顶圆addendum circle齿根高dedendum齿根圆dedendum circle齿厚tooth thickness齿距circular pitch齿宽face width齿廓tooth profile齿廓曲线tooth curve齿轮gear齿轮变速箱speed-changing gear boxes齿轮齿条机构pinion and rack齿轮插刀pinion cutter; pinion-shaped shaper cutter 齿轮滚刀hob ,hobbing cutter齿轮机构gear齿轮轮坯blank齿轮传动系pinion unit齿轮联轴器gear coupling齿条传动rack gear齿数tooth number齿数比gear ratio齿条rack齿条插刀rack cutter; rack-shaped shaper cutter齿形链、无声链silent chain齿形系数form factor齿式棘轮机构tooth ratchet mechanism插齿机gear shaper重合点coincident points重合度contact ratio冲床punch传动比transmission ratio, speed ratio传动装置gearing; transmission gear传动系统driven system传动角transmission angle传动轴transmission shaft串联式组合combination in series串联式组合机构series combined mechanism串级调速cascade speed control创新innovation creation创新设计creation design垂直载荷、法向载荷normal load唇形橡胶密封lip rubber seal磁流体轴承magnetic fluid bearing从动带轮driven pulley从动件driven link, follower从动件平底宽度width of flat-face从动件停歇follower dwell从动件运动规律follower motion从动轮driven gear粗线bold line粗牙螺纹coarse thread大齿轮gear wheel打包机packer打滑slipping带传动belt driving带轮belt pulley带式制动器band brake单列轴承single row bearing单向推力轴承single-direction thrust bearing单万向联轴节single universal joint单位矢量unit vector当量齿轮equivalent spur gear; virtual gear当量齿数equivalent teeth number; virtual number of teeth当量摩擦系数equivalent coefficient of friction当量载荷equivalent load刀具cutter导数derivative倒角chamfer导热性conduction of heat导程lead导程角lead angle等加等减速运动规律parabolic motion; constant acceleration and deceleration motion 等速运动规律uniform motion; constant velocity motion等径凸轮conjugate yoke radial cam等宽凸轮constant-breadth cam等效构件equivalent link等效力equivalent force等效力矩equivalent moment of force等效量equivalent等效质量equivalent mass等效转动惯量equivalent moment of inertia等效动力学模型dynamically equivalent model底座chassis低副lower pair点划线chain dotted line(疲劳)点蚀pitting垫圈gasket垫片密封gasket seal碟形弹簧belleville spring顶隙bottom clearance定轴轮系ordinary gear train; gear train with fixed axes动力学dynamics动密封kinematical seal动能dynamic energy动力粘度dynamic viscosity动力润滑dynamic lubrication动平衡dynamic balance动平衡机dynamic balancing machine动态特性dynamic characteristics动态分析设计dynamic analysis design动压力dynamic reaction动载荷dynamic load端面transverse plane端面参数transverse parameters端面齿距transverse circular pitch端面齿廓transverse tooth profile端面重合度transverse contact ratio端面模数transverse module端面压力角transverse pressure angle锻造forge对称循环应力symmetry circulating stress对心滚子从动件radial (or in-line ) roller follower对心直动从动件radial (or in-line ) translating follower对心移动从动件radial reciprocating follower对心曲柄滑块机构in-line slider-crank (or crank-slider) mechanism 多列轴承multi-row bearing多楔带poly V-belt多项式运动规律polynomial motion多质量转子rotor with several masses惰轮idle gear额定寿命rating life额定载荷load ratingII 级杆组dyad发生线generating line发生面generating plane法面normal plane法面参数normal parameters法面齿距normal circular pitch法面模数normal module法面压力角normal pressure angle法向齿距normal pitch法向齿廓normal tooth profile法向直廓蜗杆straight sided normal worm法向力normal force反馈式组合feedback combining反向运动学inverse ( or backward) kinematics反转法kinematic inversion反正切Arctan范成法generating cutting仿形法form cutting方案设计、概念设计concept design, CD防振装置shockproof device飞轮flywheel飞轮矩moment of flywheel非标准齿轮nonstandard gear非接触式密封non-contact seal非周期性速度波动aperiodic speed fluctuation非圆齿轮non-circular gear粉末合金powder metallurgy分度线reference line; standard pitch line分度圆reference circle; standard (cutting) pitch circle 分度圆柱导程角lead angle at reference cylinder分度圆柱螺旋角helix angle at reference cylinder分母denominator分子numerator分度圆锥reference cone; standard pitch cone分析法analytical method封闭差动轮系planetary differential复合铰链compound hinge复合式组合compound combining复合轮系compound (or combined) gear train复合平带compound flat belt复合应力combined stress复式螺旋机构Compound screw mechanism复杂机构complex mechanism杆组Assur group干涉interference刚度系数stiffness coefficient刚轮rigid circular spline钢丝软轴wire soft shaft刚体导引机构body guidance mechanism刚性冲击rigid impulse (shock)刚性转子rigid rotor刚性轴承rigid bearing刚性联轴器rigid coupling高度系列height series高速带high speed belt高副higher pair格拉晓夫定理Grashoff`s law根切undercutting公称直径nominal diameter高度系列height series功work工况系数application factor工艺设计technological design工作循环图working cycle diagram工作机构operation mechanism工作载荷external loads工作空间working space工作应力working stress工作阻力effective resistance工作阻力矩effective resistance moment公法线common normal line公共约束general constraint公制齿轮metric gears功率power功能分析设计function analyses design共轭齿廓conjugate profiles共轭凸轮conjugate cam构件link鼓风机blower固定构件fixed link; frame固体润滑剂solid lubricant关节型操作器jointed manipulator惯性力inertia force惯性力矩moment of inertia ,shaking moment 惯性力平衡balance of shaking force惯性力完全平衡full balance of shaking force惯性力部分平衡partial balance of shaking force 惯性主矩resultant moment of inertia惯性主失resultant vector of inertia冠轮crown gear广义机构generation mechanism广义坐标generalized coordinate轨迹生成path generation轨迹发生器path generator滚刀hob滚道raceway滚动体rolling element滚动轴承rolling bearing滚动轴承代号rolling bearing identification code 滚针needle roller滚针轴承needle roller bearing滚子roller滚子轴承roller bearing滚子半径radius of roller滚子从动件roller follower滚子链roller chain滚子链联轴器double roller chain coupling滚珠丝杆ball screw滚柱式单向超越离合器roller clutch过度切割undercutting函数发生器function generator函数生成function generation含油轴承oil bearing耗油量oil consumption耗油量系数oil consumption factor赫兹公式H. Hertz equation合成弯矩resultant bending moment合力resultant force合力矩resultant moment of force黑箱black box横坐标abscissa互换性齿轮interchangeable gears花键spline滑键、导键feather key滑动轴承sliding bearing滑动率sliding ratio滑块slider环面蜗杆toroid helicoids worm环形弹簧annular spring缓冲装置shocks; shock-absorber灰铸铁grey cast iron回程return回转体平衡balance of rotors混合轮系compound gear train积分integrate机电一体化系统设计mechanical-electrical integration system design 机构mechanism机构分析analysis of mechanism机构平衡balance of mechanism机构学mechanism机构运动设计kinematic design of mechanism机构运动简图kinematic sketch of mechanism机构综合synthesis of mechanism机构组成constitution of mechanism机架frame, fixed link机架变换kinematic inversion机器machine机器人robot机器人操作器manipulator机器人学robotics技术过程technique process技术经济评价technical and economic evaluation技术系统technique system机械machinery机械创新设计mechanical creation design, MCD机械系统设计mechanical system design, MSD机械动力分析dynamic analysis of machinery机械动力设计dynamic design of machinery机械动力学dynamics of machinery机械的现代设计modern machine design机械系统mechanical system机械利益mechanical advantage机械平衡balance of machinery机械手manipulator机械设计machine design; mechanical design机械特性mechanical behavior机械调速mechanical speed governors机械效率mechanical efficiency机械原理theory of machines and mechanisms机械运转不均匀系数coefficient of speed fluctuation机械无级变速mechanical stepless speed changes基础机构fundamental mechanism基本额定寿命basic rating life基于实例设计case-based design,CBD基圆base circle基圆半径radius of base circle基圆齿距base pitch基圆压力角pressure angle of base circle基圆柱base cylinder基圆锥base cone急回机构quick-return mechanism急回特性quick-return characteristics急回系数advance-to return-time ratio急回运动quick-return motion棘轮ratchet棘轮机构ratchet mechanism棘爪pawl极限位置extreme (or limiting) position极位夹角crank angle between extreme (or limiting) positions计算机辅助设计computer aided design, CAD计算机辅助制造computer aided manufacturing, CAM计算机集成制造系统computer integrated manufacturing system, CIMS 计算力矩factored moment; calculation moment计算弯矩calculated bending moment加权系数weighting efficient加速度acceleration加速度分析acceleration analysis加速度曲线acceleration diagram尖底从动件knife-edge follower间隙backlash间歇运动机构intermittent motion mechanism 减速比reduction ratio减速齿轮、减速装置reduction gear减速器speed reducer减摩性anti-friction quality渐开螺旋面involute helicoid渐开线involute渐开线齿廓involute profile渐开线齿轮involute gear渐开线发生线generating line of involute渐开线方程involute equation渐开线函数involute function渐开线蜗杆involute worm渐开线压力角pressure angle of involute渐开线花键involute spline简谐运动simple harmonic motion键key键槽keyway交变应力repeated stress交变载荷repeated fluctuating load交叉带传动cross-belt drive交错轴斜齿轮crossed helical gears胶合scoring角加速度angular acceleration角速度angular velocity角速比angular velocity ratio角接触球轴承angular contact ball bearing角接触推力轴承angular contact thrust bearing 角接触向心轴承angular contact radial bearing 角接触轴承angular contact bearing铰链、枢纽hinge校正平面correcting plane接触应力contact stress接触式密封contact seal阶梯轴multi-diameter shaft结构structure结构设计structural design截面section节点pitch point节距circular pitch; pitch of teeth节线pitch line节圆齿厚thickness on pitch circle节圆直径pitch diameter节圆锥pitch cone节圆锥角pitch cone angle解析设计analytical design紧边tight-side紧固件fastener径节diametral pitch径向radial direction径向当量动载荷dynamic equivalent radial load径向当量静载荷static equivalent radial load径向基本额定动载荷basic dynamic radial load rating 径向基本额定静载荷basic static radial load tating径向接触轴承radial contact bearing径向平面radial plane径向游隙radial internal clearance径向载荷radial load径向载荷系数radial load factor径向间隙clearance静力static force静平衡static balance静载荷static load静密封static seal局部自由度passive degree of freedom矩阵matrix矩形螺纹square threaded form锯齿形螺纹buttress thread form矩形牙嵌式离合器square-jaw positive-contact clutch 绝对尺寸系数absolute dimensional factor绝对运动absolute motion绝对速度absolute velocity均衡装置load balancing mechanism抗压强度compression strength开口传动open-belt drive开式链open kinematic chain开链机构open chain mechanism可靠度degree of reliability可靠性reliability可靠性设计reliability design, RD空气弹簧air spring空间机构spatial mechanism空间连杆机构spatial linkage空间凸轮机构spatial cam空间运动副spatial kinematic pair空间运动链spatial kinematic chain空转idle宽度系列width series框图block diagram雷诺方程Reynolds‘s equation离心力centrifugal force离心应力centrifugal stress离合器clutch离心密封centrifugal seal理论廓线pitch curve理论啮合线theoretical line of action隶属度membership力force力多边形force polygon力封闭型凸轮机构force-drive (or force-closed) cam mechanism 力矩moment力平衡equilibrium力偶couple力偶矩moment of couple连杆connecting rod, coupler连杆机构linkage连杆曲线coupler-curve连心线line of centers链chain链传动装置chain gearing链轮sprocket sprocket-wheel sprocket gear chain wheel联组V 带tight-up V belt联轴器coupling shaft coupling两维凸轮two-dimensional cam临界转速critical speed六杆机构six-bar linkage龙门刨床double Haas planer轮坯blank轮系gear train螺杆screw螺距thread pitch螺母screw nut螺旋锥齿轮helical bevel gear螺钉screws螺栓bolts螺纹导程lead螺纹效率screw efficiency螺旋传动power screw螺纹thread (of a screw)螺旋副helical pair螺旋机构screw mechanism螺旋角helix angle螺旋线helix ,helical line绿色设计green design design for environment马耳他机构Geneva wheel Geneva gear马耳他十字Maltese cross脉动无级变速pulsating stepless speed changes脉动循环应力fluctuating circulating stress脉动载荷fluctuating load铆钉rivet迷宫密封labyrinth seal密封seal密封带seal belt密封胶seal gum密封元件potted component密封装置sealing arrangement面对面安装face-to-face arrangement面向产品生命周期设计design for product`s life cycle, DPLC 名义应力、公称应力nominal stress模块化设计modular design, MD模块式传动系统modular system模幅箱morphology box模糊集fuzzy set模糊评价fuzzy evaluation模数module摩擦friction摩擦角friction angle摩擦力friction force摩擦学设计tribology design, TD摩擦阻力frictional resistance摩擦力矩friction moment摩擦系数coefficient of friction摩擦圆friction circle磨损abrasion wear; scratching末端执行器end-effector目标函数objective function耐腐蚀性corrosion resistance耐磨性wear resistance挠性机构mechanism with flexible elements挠性转子flexible rotor内齿轮internal gear内力internal force内圈inner ring能量energy能量指示图viscosity逆时针counterclockwise (or anticlockwise)啮出engaging-out啮合engagement, mesh, gearing啮合点contact points啮合角working pressure angle啮合线line of action啮合线长度length of line of action啮入engaging-in牛头刨床shaper凝固点freezing point; solidifying point扭转应力torsion stress扭矩moment of torque扭簧helical torsion spring诺模图NomogramO 形密封圈密封O ring seal盘形凸轮disk cam盘形转子disk-like rotor抛物线运动parabolic motion疲劳极限fatigue limit疲劳强度fatigue strength偏置式offset偏( 心) 距offset distance偏心率eccentricity ratio偏心质量eccentric mass偏距圆offset circle偏心盘eccentric偏置滚子从动件offset roller follower偏置尖底从动件offset knife-edge follower偏置曲柄滑块机构offset slider-crank mechanism 拼接matching评价与决策evaluation and decision频率frequency平带flat belt平带传动flat belt driving平底从动件flat-face follower平底宽度face width平分线bisector平均应力average stress平均中径mean screw diameter平均速度average velocity平衡balance平衡机balancing machine平衡品质balancing quality平衡平面correcting plane平衡质量balancing mass平衡重counterweight平衡转速balancing speed平面副planar pair, flat pair平面机构planar mechanism平面运动副planar kinematic pair平面连杆机构planar linkage平面凸轮planar cam平面凸轮机构planar cam mechanism平面轴斜齿轮parallel helical gears普通平键parallel key其他常用机构other mechanism in common use起动阶段starting period启动力矩starting torque气动机构pneumatic mechanism奇异位置singular position起始啮合点initial contact , beginning of contact气体轴承gas bearing千斤顶jack嵌入键sunk key强迫振动forced vibration切齿深度depth of cut曲柄crank曲柄存在条件Grashoff`s law曲柄导杆机构crank shaper (guide-bar) mechanism曲柄滑块机构slider-crank (or crank-slider) mechanism 曲柄摇杆机构crank-rocker mechanism曲齿锥齿轮spiral bevel gear曲率curvature曲率半径radius of curvature曲面从动件curved-shoe follower曲线拼接curve matching曲线运动curvilinear motion曲轴crank shaft驱动力driving force驱动力矩driving moment (torque)全齿高whole depth权重集weight sets球ball。
蜗杆蜗轮基于AutoCAD的参数化三维建模外文翻译
蜗杆蜗轮基于AutoCAD的参数化三维建模ANG Xue—ye,GUO Yong—kun(1.College ofArchitecture and Civil Engineering,Dalian Nationalities University,Dalian 1 16600,China;2.School ofMechanical Engineering,Dalian University ofTechnology,Dalian 1 16023,China)文摘:蜗杆蜗轮建模在发展环境AutoCAD的原则基础上,对普通圆柱蜗杆激励等绘制命令,可见AutoCAD是用于开发蜗杆毛坯和刀具实体模型的蜗杆与涡轮装置,是通过使用命令、移动、旋转和减速、拟生成切割运动齿轮的切削机器。
Autolisp语言用于编程参数建模的蜗杆和齿轮的程序调用,自动得出蜗杆和蜗轮的图纸。
当用户加载wlwg程序,输入模数和线程的数量、性质、与其它参数,操作简单和准确,加快产品设计过程的潜力和提高效率。
关键词:计算机辅助设计,参数化建模;蜗杆,蜗轮,生成;AutoCAD1:引言蜗杆齿轮传动用于传输运动和动力的驱动轴,也方是广泛应用于传输系统的机械装置,因此它更有很大的传动比,结构紧凑、可靠等等。
蜗轮和蜗杆的磨损在结构和形状上是十分复杂的,所以应用程序创建的常见的图形软件都是二位和三维的。
CAD技术的发展在近些年是有一些成就的【1 - 31,主要基于Pro / E、UG和SolidWorks和其他专业软件】。
其中autocad在图形设计师中是应用最广泛的设计软件,用户可以利用AutoCAD创建参数开发新的绘图工具,来获得二维或三维的图纸。
这个论述可以实现三维建模方法基于蜗杆蜗轮的参数化设计,使用开发工具AutoCAD和Autolisp语言,实现参数化建模。
2 蜗杆建模的参数化设计2.1 参数建模原理的蜗杆圆柱蜗杆传动类似于螺旋齿轮传动,两者之间的轴线夹角是90度,他们之间的主要差异是螺旋角,蜗轮的螺旋角愈大,蜗杆直径越小。
Worm Gearing(蜗杆传动)
lefthanded
righthanded
左右旋、单双头蜗杆
Direction of 1?
ω2
Direction of 1?
ω1 ω2
Direction of helix of the worm?
ω2
ω1
Direction of helix of the worm?
ω2
ω1
Worm wheels(蜗轮) are the mating gears of the worms.
n
γ n
2
α
Archimedes spiral
(2) Involute helicoid worms ----ZI-worm渐开线
蜗杆
(3) Arc-contact worms -----ZC-worm圆弧齿蜗 杆 Smaller stress
(4) Enveloping worm(包络蜗杆), more teeth engaged.
The worm wheel should be cut by a cutter with the same shape as those of the mating worm.
λ
d f1 d1 d a1
a
d f2 d2 da2
Furthermore, the relative position between the cutter and the worm wheel at the end of cutting should be the same as that between the worm and worm gear in engagement. 对偶法加工
6.10 Worm Gearing(蜗杆传动)
英文文献翻译-汽车转向系统
The motor turning systemAlong with automobile electronic technology swift and violent development, the people also day by day enhance to the motor turning handling quality request. The motor turning system changed, the hydraulic pressure boost from the traditional machinery changes (Hydraulic Power Steering, is called HPS), the electrically controlled hydraulic pressure boost changes (Elect ric Hydraulic Power Steering, is called EHPS), develops the electrically operated boost steering system (Elect ric Power Steering, is called EPS), finally also will transit to the line controls the steering system (Steer By Wire, will be called SBW).The machinery steering system is refers by pilot's physicalstrength achievement changes the energy, in which all power transmission all is mechanical, the automobile changes the movement is operates the steering wheel by the pilot, transmits through the diverter and a series of members changes the wheel to realize. The mechanical steering system by changes the control mechanism, the diverter and major part changes the gearing 3 to be composed.Usually may divide into according to the mechanical diverter form: The gear rack type, follows round the world -like, the worm bearing adjuster hoop type, the worm bearing adjuster refers sells the type. Is the gear rack type and follows using the broadest two kinds round the world -like (uses in needing time big steering force).In follows round the world -like in the diverter, the input changes the circle and the output steering arm pivot angle is proportional; In the gear rack type diverter, the input changes the turn and the output rack displacement isproportional. Follows round the world -like the diverter because is the rolling friction form, thus the transmission efficiency is very high, the ease of operation also the service life are long, moreover bearing capacity, therefore widely applies on the truck. The gear rack type diverter with follows round the world -like compares, the most major characteristic is the rigidity is big, the structure compact weight is light, also the cost is low. Because this way passes on easily by the wheel the reacting force to thesteering wheel, therefore has to the pavement behavior response keen merit, but simultaneously also easy to have phenomena and so on goon and oscillation, also its load bearing efficiency relative weak, therefore mainly applies on the compact car and the pickup truck, at present the majority of low end passenger vehicle uses is the gear rack type machinery steering system.Along with the vehicles carrying capacity increase as well as the people to the vehicles handling quality request enhancement, the simple mechanical type steering system were already unable to meet the needs, the power steering system arise at the historic moment, it could rotate the steering wheel while the pilot to provide the boost, the power steering system divides into the hydraulic pressure steering system and the electrically operated steering system 2kinds.Hydraulic pressure steering system is at present uses the most widespread steering system.The hydraulic pressure steering system increased the hydraulic system in the mechanical system foundation, including hydraulic pump, V shape band pulley, drill tubing, feed installment, boost installment and control valve. It with the aid of in the motor car engine poweractuation hydraulic pump, the air compressor and the generator and so on, by the fluid strength, the physical strength or the electric power increases the pilot to operate the strength which the front wheel changes, enables the pilot to be possible nimbly to operate motorturning facilely, reduced the labor intensity, enhanced the travel security.The hydraulic pressure boost steering system from invented already had about half century history to the present, might say was one kind of more perfect system, because its work reliable, the technology maturestill widely is applied until now. It takes the power supply by the hydraulic pump, after oil pipe-line control valves to power hydraulic cylinder feed, through the connecting rod impetus rotation gear movement, may changes the boost through the change cylinder bore and the flowing tubing head pressure size the size, from this achieved changes the boost the function. The traditional hydraulic pressure type power steering system may divide into generally according to the liquid flow form: Ordinary flow type and atmosphericpressure type 2 kind of types, also may divide into according tothe control valve form transfers the valve type and the slide-valve type.Along with hydraulic pressure power steering system on automobile daily popularization, the people to operates when the portability andthe road feeling request also day by day enhance, however the hydraulic pressure power steering system has many shortcomings actually: ①Because its itself structure had decided it is unable to guarantee vehiclesrotates the steering wheel when any operating mode, all has the ideal operation stability, namely is unable simultaneously to guarantee timethe low speed changes the portability and the high speed time operation stability;②The automobile changes the characteristic to drive the pilot technical the influence to be serious; ③The steering ratio is fixed, causes the motor turning response characteristic along with changes and so on vehicle speed, transverse acceleration to change, the pilot must aim at the motor turning characteristic peak-to-peak value and the phase change ahead of time carries on certain operation compensation, thus controls the automobile according to its wish travel. Like this increased pilot's operation burden, also causes in the motor turning travel not to have the security hidden danger; But hereafter appeared the electrically controlled hydraulic booster system, it increases the velocity generator in the traditional hydraulic pressure power steering system foundation, enables the automobile along with the vehicle speed change automatic control force size, has to a certain extent relaxed the traditional hydraulic pressure steering system existence question.At present our country produces on the commercial vehicle and the passenger vehicle uses mostly is the electrically controlled hydraulic pressure boost steering system, it is quite mature and the application widespread steering system. Although the electrically controlled hydraulic servo alleviated the traditional hydraulic pressure from certain degree to change between the portability and the road feeling contradiction, however it did not have fundamentally to solve the HPS system existence insufficiency, along with automobile microelectronic technology development, automobile fuel oil energy conservation request as well as global initiative environmental protection, it in aspect and so on arrangement, installment,leak-proof quality, control sensitivity, energy consumption, attrition and noise insufficiencies already more and more obvious, the steering system turned towards the electrically operated boost steering system development.The electrically operated boost steering system is the present motor turning system development direction, its principle of work is: EPS system ECU after comes from the steering wheel torque sensor and the vehicle speed sensor signal carries on analysis processing, controls the electrical machinery to have the suitable boost torque, assists thepilot to complete changes the operation. In the last few years, along with the electronic technology development, reduces EPS the cost to become large scale possibly, Japan sends the car company, Mitsubishi Car company, this field car company, US's Delphi automobile system company, TRW Corporation and Germany's ZF Corporation greatly all one after another developsEPS.Mercedes2Benz 和Siemens Automotive Two big companies invested65,000,000 pounds to use in developing EPS, the goal are together load a car to 2002, yearly produce 300 ten thousand sets, became the global EPS manufacturer. So far, the EPS system in the slight passenger vehicle, on the theater box type vehicle obtains the widespread application, and every year by 300 ten thousand speed development.Steering is the term applied to the collection of components, linkages, etc. which allow for a vessel (ship, boat) or vehicle (car) to follow the desired course. An exception is the case of rail transport bywhich rail tracks combined together with railroad switches provide the steering function.The most conventional steering arrangement is to turn the front wheels using a hand–operated steering wheel which is positioned infront of the driver, via the steering column, which may containuniversal joints to allow it to deviate somewhat from a straight line. Other arrangements are sometimes found on different types of vehicles,for example, a tiller or rear–wheel steering. Tracked vehicles such as tanks usually employ differential steering — that is, the tracks are made to move at different speeds or even in opposite directions to bring about a change of course.Many modern cars use rack and pinion steering mechanisms, where the steering wheel turns the pinion gear; the pinion moves the rack, whichis a sort of linear gear which meshes with the pinion, from side to side. This motion applies steering torque to the kingpins of the steered wheels via tie rods and a short lever arm called the steering arm.Older designs often use the recirculating ball mechanism, which is still found on trucks and utility vehicles. This is a variation on the older worm and sector design; the steering column turns a large screw (the "worm gear") which meshes with a sector of a gear, causing it to rotate about its axis as the worm gear is turned; an arm attached to the axis of the sector moves the pitman arm, which is connected to the steering linkage and thus steers the wheels. The recirculating ball version of this apparatus reduces the considerable friction by placing large ball bearings between the teeth of the worm and those of the screw; at either end of the apparatus the balls exit from between the twopieces into a channel internal to the box which connects them with the other end of the apparatus, thus they are "recirculated".The rack and pinion design has the advantages of a large degree of feedback and direct steering "feel"; it also does not normally have any backlash, or slack. A disadvantage is that it is not adjustable, so that when it does wear and develop lash, the only cure is replacement.The recirculating ball mechanism has the advantage of a muchgreater mechanical advantage, so that it was found on larger, heavier vehicles while the rack and pinion was originally limited to smaller and lighter ones; due to the almost universal adoption of power steering, however, this is no longer an important advantage, leading to the increasing use of rack and pinion on newer cars. The recirculating ball design also has a perceptible lash, or "dead spot" on center, where a minute turn of the steering wheel in either direction does not move the steering apparatus; this is easily adjustable via a screw on the end of the steering box to account for wear, but it cannot be entirely eliminated or the mechanism begins to wear very rapidly. This design is still in use in trucks and other large vehicles, where rapidity of steering and direct feel are less important than robustness, maintainability,and mechanical advantage. The much smaller degree of feedback with this design can also sometimes be an advantage; drivers of vehicles with rack and pinion steering can have their thumbs broken when a front wheel hits a bump, causing the steering wheel to kick to one side suddenly (leading to driving instructors telling students to keep their thumbs on the front of the steering wheel, rather than wrapping around the insideof the rim). This effect is even stronger with a heavy vehicle like a truck; recirculating ball steering prevents this degree of feedback, just as it prevents desirable feedback under normal circumstances.The steering linkage connecting the steering box and the wheels usually conforms to a variation of Ackermann steering geometry, to account for the fact that in a turn, the inner wheel is actually traveling a path of smaller radius than the outer wheel, so that the degree of toe suitable for driving in a straight path is not suitable for turns.As vehicles have become heavier and switched to front wheel drive, the effort to turn the steering wheel manually has increased - often to the point where major physical exertion is required. To alleviate this, auto makers have developed power steering systems. There are two types of power steering systems—hydraulic and electric/electronic. There is also a hydraulic-electric hybrid system possible.A hydraulic power steering (HPS) uses hydraulic pressure supplied by an engine-driven pump to assist the motion of turning the steering wheel. Electric power steering (EPS) is more efficient than the hydraulic power steering, since the electric power steering motor only needs to provide assist when the steering wheel is turned, whereas the hydraulic pump must run constantly. In EPS the assist level is easily tunable to the vehicle type, road speed, and even driver preference. An added benefit is the elimination of environmental hazard posed by leakage and disposal of hydraulic power steering fluid.An outgrowth of power steering is speed adjustable steering, where the steering is heavily assisted at low speed and lightly assisted athigh speed. The auto makers perceive that motorists might need to make large steering inputs while manoeuvering for parking, but not while traveling at high speed. The first vehiclewith this feature was the Citro?n SM with its Diravi layout, although rather than altering the amount of assistance as in modern power steering systems, it altered the pressure on a centring cam which made the steering wheel try to "spring" back to the straight-ahead position. Modern speed-adjustable power steering systems reduce the pressure fed to the ram as the speed increases, giving a more direct feel. This feature is gradually becoming commonplace across all new vehicles.Four-wheel steering (or all wheel steering) is a system employed by some vehicles to increase vehicle stability while maneuvering at high speed, or to decrease turning radius at low speed.In most four-wheel steering systems, the rear wheels are steered by a computer and actuators. The rear wheels generally cannot turn as far as the Alternatively, several systems, including Delphi's Quadrasteer and the system in Honda's Prelude line, allow for the rear wheels to be steered in the opposite direction as the front wheels during low speeds. This allows the vehicle to turn in a significantly smaller radius —sometimes critical for large trucks or vehicles with trailers.汽车转向系统随着汽车电子技术的迅猛发展,人们对汽车转向操纵性能的要求也日益提高。
20外文文献翻译原文及译文参考样式
20外⽂⽂献翻译原⽂及译⽂参考样式华北电⼒⼤学科技学院毕业设计(论⽂)附件外⽂⽂献翻译学号: 0819******** 姓名:宗鹏程所在系别:机械⼯程及⾃动化专业班级:机械08K1指导教师:张超原⽂标题:Development of a High-PerformanceMagnetic Gear年⽉⽇⾼性能磁齿轮的发展1摘要:本⽂提出了⼀个⾼性能永磁齿轮的计算和测量结果。
上述分析的永磁齿轮有5.5的传动⽐,并能够提供27 Nm的⼒矩。
分析表明,由于它的弹簧扭转常数很⼩,因此需要特别重视安装了这种⾼性能永磁齿轮的系统。
上述分析的齿轮也已经被应⽤在实际中,以验证、预测其效率。
经测量,由于较⼤端齿轮传动引起的磁⼒齿轮的扭矩只有16 Nm。
⼀项关于磁齿轮效率损失的系统研究也展⽰了为什么实际⼯作效率只有81%。
⼀⼤部分磁损耗起源于轴承,因为机械故障的存在,此轴承的备⽤轴承在此时是必要的。
如果没有源于轴的少量磁泄漏,我们估计能得到⾼达96%的效率。
与传统的机械齿轮的⽐较表明,磁性齿轮具有更好的效率和单位体积较⼤扭矩。
最后,可以得出结论,本⽂的研究结果可能有助于促进传统机械齿轮向磁性齿轮发展。
关键词:有限元分析(FEA)、变速箱,⾼转矩密度,磁性齿轮。
⼀、导⾔由于永久磁铁能产⽣磁通和磁⼒,虽然⼏个世纪过去了,许多⼈仍然着迷于永久磁铁。
,在过去20年的复兴阶段,正是这些优点已经使得永久磁铁在很多实际中⼴泛的应⽤,包括在起重机,扬声器,接头领域,尤其是在永久磁铁电机⽅⾯。
其中对永磁铁的复兴最常见于效率和转矩密度由于永磁铁的应⽤显著提⾼的⼩型机器的领域。
在永久磁铁没有获取⾼度重视的⼀个领域是传动装置的领域,也就是说,磁⼒联轴器不被⼴泛⽤于传动装置。
磁性联轴器基本上可以被视为以传动⽐为1:1磁⼒齿轮。
相⽐标准电⽓机器有约10kN m/m的扭矩,装有⾼能量永久磁铁的磁耦有⾮常⾼的单位体积密度的扭矩,变化范围⼤约300–400 kN 。
机械设计制造及其自动化专业单级蜗轮蜗杆齿轮减速器的CAE技术毕业论文外文文献翻译及原文
毕业设计(论文)外文文献翻译文献、资料中文题目:单级蜗轮蜗杆齿轮减速器的CAE技术文献、资料英文题目:文献、资料来源:文献、资料发表(出版)日期:院(部):专业:机械设计制造及其自动化班级:姓名:学号:指导教师:翻译日期: 2017.02.14本科毕业设计(外文翻译)题目 _单级蜗轮蜗杆齿轮减速器的CAE技术Predicting spring back in sheet metal forming:an explicit to implicit sequential solution procedure预测回弹成形板材:明确以隐式连续求解过程Abstract摘要The spring back properties of sheet metals make the design of forming dies extremely difficult. In this work a coupled explicit to implicit finite element procedure is outlined for predicting spring back deformations in sheet metal formingprocesses. The explicit method is initially utilized to analyze the contact based forming operation of a production stamping process. Then, an implicit solution is performed to simulate the spring back that develops in a blank after the forming pressure has been removed. Using this simultaneous solution technique on an actual automotive component, numerically predicted spring back deformations are found to be within 1% of production values .The results of the numerical investigation indicate that the coupled finite element procedure described herein can be utilized to significantly reduce the number of die prototype designs that are currently required in sheet metal stamping operations. ( 1999 Elsevier Science B.V. All rights reserved) 金属板的回弹性能使成型模具的设计非常困难。
齿轮外文文献翻译、中英文翻译、外文翻译
齿在轴向的宽度。
齿腹:节圆和齿底之间的表面。
斜齿轮:这些齿轮的齿相对于齿轮轴线由一个角度或螺旋角度,它们比直齿圆柱齿轮的制造更难,造价更昂贵,但是它们传动无噪音并且可靠。
它们可以用来在相同或不同平面中构成一定角度的相两轴之间的力的传递。
人字形齿轮:人字形齿轮是在齿轮两边有相同数量在左旋和右旋形的齿轮。
由于齿轮有角度,齿轮制造时需要考虑轴受到的轴向力,人字形齿轮是用平衡的方法来抵消轴向推力的,固而允许选用轻系列轴承取代重系列轴承,甚至可以完全取消轴承,通常在切削加工中在齿轮的周围有一个中心槽来抵消。
锥齿轮:锥齿轮用作互相不平行的轴之间的连接。
通常轴之间的夹角是90度,但它们比90多或少,相啮合的两齿轮仅改变运动方向,或者为改变速度具有不同的齿数,齿的表面沿着圆锥的表面,圆头齿之间不相互平行,它就使得在机械加工中产生类似的问题及必须要一套夹具。
齿轮的线可能是直的或螺旋的,因此有平直的锥齿和螺旋的锥齿。
蜗杆和蜗轮:蜗杆蜗轮机构主要用作有限空间需较小齿轮的体积的情况。
通常蜗杆为主动件并且不能颠倒,也就是说,蜗轮不能作为主动件。
许多蜗杆能左右移动,转动为顺时针或逆时针。
齿条:齿条是有无穷半径的齿轮或是边缘随着直线扩展的齿轮,它被用来往复运动改变为螺旋运动或反过来,车床齿条和小齿轮是这种机器的最好例子。
各种材料被用于制造齿轮。
通常被选用的材料取决于齿轮的制造与齿轮将来的实现用途,齿轮能被铸,轧或挤压出来。
材料类型包括:铸铁碳素钢,合金钢,铝,青铜,尼龙。
附录:GearsAbstract: Gear is power element in the machine, is used to pass between the shaft and shaft movement and power. They may just was used to relay movement, that is one part to another part of the machine, or be used to change the relative spee d and torque between shaft and shaft, the first to be discovered with gear machine is horological, in fact, the gear of the clock is very small compared with the gear train. As the widely used in the gear in the actual environment, people in the asp ect of the application of the gear for a lot of research and investigation. now, gear drive than ever to have to pass a heavy load, and under the high speed running. The engineers and mechanics are considering the factors that exist in a mechanical.Keywords: Gear,Strength,check.Super Gears:Spur gears will be considered first for several reasons.In the first place ,they are simplest and the least expensive of gears and they may be used to transmit power betw een parallel shafts,also,spur gears definitions are usually applicable to other types .It is imp ortant go understand the following definitions,since they are important factors in the desig n of any equipment utilizing gears. Diametric Pitch The number of teeth per inch of pitch cirle diameter .The diameter pitch is usually an integer .A small number for the pitch imp lies a large tooth size.Meshing spur gears must have the same diameter pitch .The speed rat io is based on the fact that meshing gears may have different-sized pitch circles and henc e different number of teeth.Circular Pitch:The distance from a point on one tooth to the corresponding point on an adjacent tooth ,m easrued along the pitch circle.This is a liner dimension and thus bas liner units.Pitch Circle:The circle on which the ratio of the gear set is based,when two gears are meshing ,the tw o pitch circles must be exactly tangent if the gears are to function properly.The tangency p oint is known as the pitch point.Pressure Angle:The angle between the line of action and a line perpendicular to the centerlines of the tw o gears in mesing .Pressure Angles for spur gears are usually 14.5 or 20 degrees,although o ther values can be used.Meshing gears must have the same pressure angles.In the case of a rack,the teeth have the straight sides inclined at an angle corresponding to the pressure a ngle.Base Circle:A circle tangent to the line of action (or pressure line ) .The base circle is the imaginary cir cle about which an involutes cure is developed .Most spur gears follow an involutes cure fr om the base circle to the top of the tootch,this cure can be visualized by observing a point o n a taut cord an it is unwound from a cylinder .In a gear ,the cylinder is the best circle.Addendum:The radial distance form the pitch circle to the top of the tooth .Dedendum:The radial distance from file pitch circle to the root of the tooth.Clearance:The difference between the addendum and the addendum.Face Width:The width of the tooth measured axially.Face:The surface between the pitch circle and the top of the tooth.Flank:The surface between the pitch circle and the bottom of the tooth.Helical Gears:These gears have their tooth element at an angle or helix to the axis of the gear.The-y are more difficult and expensive to make than spur gears,but are quieter and stronger. They may be used to transmit power between parallel shafts at an angle to each in the same o r different planes.Herringbone Gears:A herringbone gear is equivalent to a right-hand and a left-hand helical gear placed side b y side.Because of the angle of the tooth,helicalgears create considerable side thrust on the shaft. A herringbone gear corrects this thrust b y neutralizing it ,allowing the use of a small thrust bearing instead of a large one and perha ps eliminating one altogether.Often a central groove is made round the gear for ease in mac hining.Bevel Gears:Bevel gears are used to connect shafts, which are not parallel to each ually the sha fts are 90 deg.To each other, but they may be more or less than 90 deg.The two meshing ge ars may have the same number of teeth for the purpose of changing direction of motion onl y,or they may have a different number of teeth for the purpose of changing both speed an d irection .The faces of the teeth lie on the surface of the frustum of a cone,therefore the te eth elements are not parallel to each other it can be seen that this lack of parallelism create s a machining problem so that two passes with a tool must be made.The tooth elements ma y be straight or spiral ,so that we have plain anti spiral evel gears.Worm and Worm Gears:A worm-and-worm-gear combination is used chiefly where it is desired to obtain a high ge ar reduction in a limited space,normally the worm drivers the worm gear and is not reversi ble ,that is to say,the worm gear can not drivethe worm.Most worms can be rotated in either direction,clockwise or counterclockwise. Ra cks A rack is a gear with an infinite radius,or a gear with its perimeter stretched out into a straight line.It is used to change reciprocating motion to rotary motion or vice versa.A l athe rack and pinion is a good example of this mechanism.Various materials are used in manufacturing gears.Usually,the materials selected depends on the method used for making the gear and the ap注:1. 指导教师对译文进行评阅时应注意以下几个方面:①翻译的外文文献与毕业设计(论文)的主题是否高度相关,并作为外文参考文献列入毕业设计(论文)的参考文献;②翻译的外文文献字数是否达到规定数量(3 000字以上);③译文语言是否准确、通顺、具有参考价值。
机械设计 外文翻译 外文文献 英文文献及译文 齿轮和轴的介绍
译文一:译文齿轮和轴的介绍摘要:在传统机械和现代机械中齿轮和轴的重要地位是不可动摇的。
齿轮和轴主要安装在主轴箱来传递力的方向。
通过加工制造它们可以分为许多的型号,分别用于许多的场合。
所以我们对齿轮和轴的了解和认识必须是多层次多方位的。
关键词:齿轮;轴在直齿圆柱齿轮的受力分析中,是假定各力作用在单一平面的。
我们将研究作用力具有三维坐标的齿轮。
因此,在斜齿轮的情况下,其齿向是不平行于回转轴线的。
而在锥齿轮的情况中各回转轴线互相不平行。
像我们要讨论的那样,尚有其他道理需要学习,掌握。
斜齿轮用于传递平行轴之间的运动。
倾斜角度每个齿轮都一样,但一个必须右旋斜齿,而另一个必须是左旋斜齿。
齿的形状是一溅开线螺旋面。
如果一张被剪成平行四边形(矩形)的纸张包围在齿轮圆柱体上,纸上印出齿的角刃边就变成斜线。
如果我展开这张纸,在血角刃边上的每一个点就发生一渐开线曲线。
直齿圆柱齿轮轮齿的初始接触处是跨过整个齿面而伸展开来的线。
斜齿轮轮齿的初始接触是一点,当齿进入更多的啮合时,它就变成线。
在直齿圆柱齿轮中,接触是平行于回转轴线的。
在斜齿轮中,该先是跨过齿面的对角线。
它是齿轮逐渐进行啮合并平稳的从一个齿到另一个齿传递运动,那样就使斜齿轮具有高速重载下平稳传递运动的能力。
斜齿轮使轴的轴承承受径向和轴向力。
当轴向推力变的大了或由于别的原因而产生某些影响时,那就可以使用人字齿轮。
双斜齿轮(人字齿轮)是与反向的并排地装在同一轴上的两个斜齿轮等效。
他们产生相反的轴向推力作用,这样就消除了轴向推力。
当两个或更多个单向齿斜齿轮被在同一轴上时,齿轮的齿向应作选择,以便产生最小的轴向推力。
交错轴斜齿轮或螺旋齿轮,他们是轴中心线既不相交也不平行。
交错轴斜齿轮的齿彼此之间发生点接触,它随着齿轮的磨合而变成线接触。
因此他们只能传递小的载荷和主要用于仪器设备中,而且肯定不能推荐在动力传动中使用。
交错轴斜齿轮与斜齿轮之间在被安装后互相捏合之前是没有任何区别的。
中英文文献翻译—重型车主减速器
附录ATruck Main Reduction Gear The imported technology in steyr 1970s at international level of the early 80s. For the imported technology, steyr heavy CARDS industry of China was up the vacancy of Chinese heavy vehicles, steyr technology group began to absorb, fusion, localization, independent research and development and innovation, etc. In 1986, sinotruk technology development center, successively established after three drawings, organizational culture the digestion and absorption and understood. These drawings of cultural production plan and guarantee the requirements of vehicle, batch steyr technology to quickly radiation of 10 provinces in light of the relevant scientific research units, and will play in domestic advanced steyr heavy-duty vehicle product platform. Since the 1970s, however, since in almost all other automotive supplier technology,'s GKN fundamentally changed its way, in order to adapt to the current conditions, they in the 1980s and 1990s production purpose is to provide complete installation, including the wheel brake, and all of the design and integration, specific design, as well as the car market.For off-road operation, the duty cycles may be entirely different in both torsional and beam loading-denpending on the application. For example, some types of vehicle spend a considerable proportion of their running time at high torque in low gear. In most circumstances, the terrain may be such that the tyres tend to slip more readily than on tarmac; in others, however, for example in fairly firm sandy screes, it may allow tyres to bite into it, and thus lead to torsional fatigue loading significantly greater than on smooth roads. Vertical and lateral loading, too, may be much more severe, though this dose depend to a major extent on speeds. Shock loading can also affect braking and acceleration torques though, again, such effects are speed-dependent.Heavy and general reducer industry products categories include all kinds of gear reducer, planetary gear reducer, the worm and alizarin also includes a special device, such as the growth of devices, including meat device, and flexible transmission device of various composite transmission device etc. Product service involved in metallurgy, non-ferrous, coal, building materials, ship, water conservancy, electric power, engineering machinery andpetrochemical industries. Heavy and general reducer industry manufacturers also coexist in various forms, such as foreign enterprises, sino-foreign joint ventures, state-owned enterprises, share-holding enterprise and individual enterprise, has large scale to hundreds of millions of yuan, annual small to millions of dollars. Good living conditions, and the product quality control system, perfect the enterprise has more than 100, and the whole industry 2005 sales of approximately 200 million yuan, the sales of foreign-funded enterprises accounted for about one fourth.Domestic reducer of key enterprises industry products, specifications and parameters are covered in recent years, the product quality has reached international advanced level, industrial countries similar products can undertake for national economic sectors provides complete responsibility of transmission device, part of our products are exported to Europe and southeast Asia. The speed reducer is used to reduce the speed increases from transmission torque, and rotating torque changes direction, the differential transmission to half axle. The main reducer is mainly based on structure form, reducer gear types and different forms. The main gear reducer of spiral bevel gears and hypoid gear, cylindrical gears and worm and worm wheel etc .Pair of level host reduction gear is compared with single stage , the gap may be 7 ~12 transmission ratio , i0 each other at the same time in swear to be away from a field 12. But the dimension , mass are without exception bigger , cost is higher. It applies to middle, heavy type freight train , go-anywhere vehicle and motor bus mainly go ahead.Dyadic overall pair of level host reduction gear has the various structure scheme: First order is a cone gear wheel , the second stage is a column gear wheel; First order is a cone gear wheel , the second stage is epicyclic gear; First order is epicyclic gear , the second stage is a cone gear wheel; First order is a column gear wheel , the second stage is a cone gear wheel.Horizontal , askew, face and droop over to the three kinds to first order for the cone gear wheel , the second stage are that pair of column gear wheel level betokens reduction gear, but has direction arrangement scheme.Direction level arrangement can use the assembly drooping over to outline dimension diminution , reducing the automobile quality heart altitude thereby, makes the direction dimension increase by but , that the use on long distance between shafts automobile but appropriate diminution transmission shaft length, is harmful for short distance betweenshafts automobile's to put arrangement together but, may make a transmission shaft short , leads to a universal transmission shaft intersection angle enlarge. Droop over to arranging a messenger to drive the bridge direction dimension diminution, may diminish a universal transmission shaft intersection angle, since but host reduction gear shell fixes superjacent in bridge shell , make not only droop over enhance to outline dimension, and have reduced bridge shell stiffness , have been harmful for gear wheel to work. This arrangement but easy to be versed in style driving a bridge arrangement. Arranging bridge shell stiffness and improving to the transmission shaft is slanting to arrangement advantageous.When assigning a transmission ratio in pair of level host reduction gear having the cone gear wheel and the column gear wheel, the column gear wheel is 1.4 ~ like the ratio auxiliary and boring subsidiary gear wheel transmission ratio 2.0, and the cone gear wheel is 1.7 ~ like subsidiary transmission ratio 3.3, such axial loading may diminish a cone when the gear wheel is engaged and effect loading on the driven cone gear wheel and the column gear wheel, may make the active cone gear wheel tooth number appropriate increasing by at the same time , make whose supporting axis neck dimension appropriate enlarge, To improve whose supporting stiffness, improve falling-in stationarity and the job reliability.For modern axles, choice of gear lubricant can be critical. In cars operating at high speeds on motorways, axle oil temperature can ultimately rise even higher than 130℃,so venting of the casing is important. In principle, the oil in the base of the casting is swept around over the crownwheel and then forwards through the two bearings that carry the pinion. Consequently, both the shapes and dimensions of the clearances between the crownwheel and casing can be critical, and adequate drainage has to be provided for the oil to flow, through channels cored in the pinion bearing housings, back to the base of the casing.Within the gear carrier unit, taper roller bearings are employed almost universally for carrying the input pinion. They have a large load capacity within a small envelope, and can be preloaded for accurate and stable positioning of the gears. For pinion flange seals where resistance to high temperatures at relatively high speeds is essential, polyarcylate may be specified, but the abrasive conditions Viton is generally preferred.That the cone gear wheel tooth goes over width face to face can not enhance gear wheel intensity and life-span , is able to lead to tooth ditch unexpected turn of events small end because of cone gear wheel gear teeth on the contrary narrow the cutting knife the topof the head face width arousing is too narrow and the point of a knife round angle is too small. Like this , not only, have diminished the tooth radical circle radius , have enlarged strain all together, life time having reduced a cutter. Besides , when assembling, have location deviation or wait for cause since fabrication , heat treatment are deformable, loading concentrates minor in gear teeth end when making a gear wheel work , is able to arouse gear teeth holding untimely damage and weary loss for a short time. That besides, the tooth goes over width face to face also is able to arouse assembling space diminution. The flank of a tooth is too narrow but , the gear teeth outside abrasion resistance meeting reduces.For the running-in improving the new gear wheel, prevent the person from dying in working to Model T wear appear on initial stage , bruising , gluing together or barking, cone gear wheel bonderizing being 0.005 ~ 0.020 mm in heat treatment and finish machining aftercrop, thickness handles or the copper facing , the tin plating handle. The ball carrying out strain on the flank of a tooth gushing is sold at reduced prices , may improve 25%'s gear wheel life-span. To the high speed gear wheel sliding, may be in progress a sulfur oozing handling to improve abrasion resistance. Rub a factor but notable sulfur queen lessening oozes, even if lubricating condition is relatively poor , also, can prevent the flank of a tooth bruise from facing , barks to die and glue together.附录B重型车主减速器我国引进的斯太尔技术在当时处于国际20世纪70年代末80年代初的水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.9平行轴斜齿轮
6.9.1生成和螺旋齿的特点
直至现在,齿轮已经只在横向平面中讨论。
实际上,齿轮总是有一定的齿宽。
平面齿轮的轮廓上不滑倒在基筒上的生成平面作为该平面轧辊形成由直线KK。
在正齿轮的情况下,该直线KK平行于齿轮的轴线。
正齿轮的齿面因此,一渐开线圆柱体,如图所示。
6-32。
两个直齿圆柱齿轮的齿面由直线KK平行相同于齿轮的轴线作为发电所产生平面上滚动两基钢瓶平行轴。
骨刺的齿面齿轮上的直线杆并行到齿轮的,如图轴接触。
6-33。
这意味着,齿形流入和流出沿着整个齿宽接触的同时去。
这将因此导致牙齿突然加载和卸载突如齿廓进入和流出的接触。
其结果,振动和噪声的产生。
这就是为什么由直传输齿轮是不是完全平滑。
斜齿轮生产,克服了直齿圆柱齿轮的缺点重新。
直线KK上产生平面不再是平行的,如图齿轮的轴线旋转。
6-34A。
由于产生平面滚动不打滑的基圆柱,就直奔每一点线K K会产生渐开线。
连接上的渐开线起始点的曲线基筒是一个螺旋线。
螺旋齿轮的表面轮廓在蜗壳因此被称为一个螺旋。
由同一条直线产生的两个螺旋齿轮杆并行轴上的齿面KK线倾斜于齿轮作为两个基地缸产生平面轧辊轴与图。
6-35杆并行轴,如图所示。
6-34B。
齿面对直线倾斜两个咬合斜齿轮接触于齿轮的轴线。
的接触长度线逐渐变化从零到最大,然后
从最大到零,如图所示。
6-35。
加载和牙齿的卸载逐渐变得光滑。
这就是为什么斜齿轮能够以更高的速度运行。
6.9.2 斜齿圆柱齿轮的参数
有两组对螺旋齿轮的参数。
一组是在横向平面中和在正常的平面上的另一组。
齿轮齿被切断移动或进给垂直于正常平面的标准工具。
该刀具是的那些相同的正齿轮与标准参数。
因此,参数就正常飞机是标准值。
另一方面,它可以从的生成处理可以看出在图中所示的轮廓。
6-34是一个螺旋齿轮的横向轮廓是渐开线,则相同的正齿轮的情况。
利用公式为直齿圆柱齿轮的参数在方程的正齿轮应由那些在螺旋的横向平面代替齿轮。
因此,有必要设置两套参数之间的关系。
6.10.1蜗杆传动及其特点
图中所示的蜗轮传动。
6-8用于传输非相交和非平行轴之间的运动和动力,通常横过成直角。
蜗杆是一种螺杆,通常右手方便切割,如果必要的话也可以左手切割。
蜗轮是蜗杆的配套齿轮。
蜗杆通常都是为驱动器降低速度。
如果不自锁,一个蜗轮也可以是驱动器的所谓的背驱动机构,以提高速度。
以下是蜗轮驱动器的主要特点
(1)平稳安静的操作螺杆驱动器。
(2)大的减速在一个单一的步骤。
这意味着设计紧凑。
(3)如蜗杆的导程角小于摩擦角,背驱动是自锁的。
在这种情况下,只有蜗杆可以是驱动。
这个功能有时需要对安全性。
(4)降低效率,因为蜗杆和蜗轮的齿之间的较大的相对滑动速度。
摩擦损失可能导致过热和严重磨损。
因此,铜通常用作蜗轮的材料,以减少摩擦和磨损。
6.10.2 蜗杆的类型
圆柱形蜗轮是最广泛用于工业。
有直双面轴向蜗轮
(ZA蜗杆,图6-40),渐开线蜗杆(ZI蜗杆,图6-41),电弧接触蜗轮(ZC-蜗杆,图6-42)等。
在横向平面的ZA蜗杆的配置文件是一个阿基米德螺旋线。
在横向平面的ZI蜗杆的配置文件是一个渐开线。
配置文件在轴向平面上的ZC-蜗轮是一个凹弧。
其中,ZA-蜗轮是最简单的蜗轮。
ZC-蜗轮具有更高的功率能,并越来越广泛地应用于蜗轮减速机产品。
在某些特殊情况下,包络蜗轮的使用。
这些新类型的蜗轮的驱动器具有更高的功率容量和效率,但很复杂的制造工艺。
6.10.3蜗轮减速器的正常啮合条件
蜗轮穿过蜗杆的轴线的横向平面称为中间平面。
蜗杆和蜗轮的中间平面对应的啮合该齿条和小齿轮与图1所示的。
6-45。
因此,这些模块和压力角蜗杆和蜗轮的中间平面的应该是彼此相等的。
换句话说,模块mt2和αT2上的横向平面上的蜗轮的压力角应等于该模块的mx1,齿形角分别αX1蠕虫对轴面。
即:
m t2 = m x 1
αt2 = αx1
此外,该蠕虫的导角λ1应等于螺旋角β2,因为它们以直角交叉的情况下蜗轮
λ 1 = β 2
并且两个螺旋的方向应该是相同的。
以上条件仅供蠕虫的必要条件和一个蜗轮网正常。
事实上,蜗轮应该由切之三用同样的参数如待切割
那些配合的蜗杆。
此外,切割器之间的相对位置蜗轮在切削的端部应相同,蜗杆和蜗轮之间在参与。
6.10.4涡轮减速器主要参数和尺寸
(1)蜗轮的压力角。
蜗轮αX1的轴向齿形角规定为20°。
这可提高到电力传输25°或减少,以在分度装置15°或12°。
(2)模数。
蜗轮模数和其他齿轮模数不同。
请见下表6-2。
(4)中间直径蜗杆d1和基准直径d2的蜗轮,由于蜗轮应该由具有相同形状的配合蜗杆刀具进行切割时,蠕虫的中间直径d 1被标准化,以减少刀具的数量。
D1应选择合从表6-3,刚性和蜗杆轴增加强度与模块D1。
蜗轮的参考直径可以由D2 = MZ2计算。
(5)蜗杆的导程角λ1,λ1可以计算如下:
效率随着λ1增加,如果λ1小于当量摩擦角φV,蜗轮副的自锁回驾驶。
(6)蜗轮对的重新百分之一的距离,这可以如下计算。
此处的2倍是蜗轮的修正系数。
蜗轮得到标准中心的距离。
由于蜗杆的形状应该是一样的标准蜗杆砂轮切割机,蜗杆不应该被修改。
6.11锥齿轮
6.11.1类型和锥齿轮的应用
图.6-6所示锥齿轮用于传递交叉之间的运动和动力轴。
锥齿轮分布在锥体的平截头体的重新的齿,其对应在圆柱齿轮气缸成为锥形,如参考锥,锥齿顶和齿根锥。
牙齿上的不同横向平面的尺寸是不同的,为了方便在大端参数和尺寸取为标准值。
压力角度通常为20°和模块应该从表6-3可以选择。
锥齿轮对的轴间角可以是任何需要的值,在大多数情况下,两个轴
相交成直角。
如上面提到的,有直的(图0.6-6a)中,螺旋形(图0.6-6B)和螺旋形(图0.6-6C)锥齿轮,直齿锥齿轮是最广泛使用的,因为它们易于设计和制造。
螺旋锥齿轮是否工作顺畅,并具有更高的承载能力。
对于高速和重负载,螺旋锥齿轮是优选的,例如在飞机,汽车和拖拉机。
这里,然而,只有直齿锥齿轮进行了讨论。
6.11.2背锥和锥齿轮的虚拟齿轮
参考锥体的底部被称为锥齿轮,其半径的基准圆R = MZ,如图.6-46。
参考锥体和锥齿轮的背面有锥同一轴线上和他们的母线垂直相交于
参考圆图.6-46,OPA和OPB是小齿轮1和齿轮2,参考锥分别,而O1PA和O2PB重新齿轮1和齿轮2,分别背面锥体。
图.6-47,OPA 和O1PA一个再参考锥齿轮1背锥。
齿轮2这里基准锥角δ2=90°和参考锥形的表面变成平面。
这样的伞齿轮被称为冠齿轮。
一个冠齿轮的背锥是一个圆柱体。
背锥可以假想地被展开成扇形齿轮其中z齿,如图所示。
6-46,进一步填充到一个完整的齿轮。
这个虚构的齿轮被称为的虚拟齿轮伞齿轮。
虚拟齿轮的齿个数称为的齿ZV的虚拟号码伞齿轮。
虚拟齿轮的齿廓是几乎相同的锥齿轮在大端。
虚拟齿轮的模块和压力角是那些伞齿轮的虚拟齿轮的啮合是等同于锥齿轮。
虚拟齿轮1的基准半径RV1是背锥距O1P如图.6-46对于小齿轮。
即:
锥齿轮的啮合,现在可以理解他们的虚拟齿轮。
对于一个对锥齿轮啮合不当,它们各自的模块和压力角的两端大应该相等。
锥齿轮组的接触比。
齿ZV的虚拟号码应不能小于虚拟齿轮的齿的最小数量。
6.11.3锥齿轮的尺寸和参数
如上所述,斜面的大部分尺寸齿轮的大端测重。
首先
所有的参考地径r为
其中R是外锥的距离和δ基准锥角,如图.6-48。
一个齿轮对的传动比是
当两个齿轮的轴相交于一直角,即。
Σ=δ1+δ2= 90°,则传动比变为
外锥体距离变为
增编及齿根沿背锥的属矩阵测量,因此,增编地径r和标准锥齿轮的齿根直径变为
对于锥齿轮,H* A =1和c*=0.2,而不是0.25
齿根锥和参考锥形相吻合的顶点的齿根角θF与齿根锥角δf的可如下计算。
如果齿顶圆锥体具有相同的顶点作为基准锥,然后底部间隙沿齿宽的变化,在这种情况下,齿顶角θa和齿顶锥角ΔA可以如下计算。
对于齿轮副具有恒定的底部间隙到处沿齿宽,如图。
6-49,齿顶角θa应该是一样的齿根角θF。
这样的设计可避免过小的间隙底部在小端和保证润滑。
齿顶在这种情况下,锥角ΔA为
在这样的设计中,齿顶圆锥体的顶点不与齿根锥和参考锥形的重合。