浙江省绍兴市嵊州市2017-2018学年七年级(上)期末数学试卷 含解析

合集下载

绍兴七年级(上)期末数学试卷含答案

绍兴七年级(上)期末数学试卷含答案

七年级(上)期末数学试卷一、选择题(本大题共10小题,共20.0分)1.如果向东走2m记为,则向西走3m可记为A. B. C. D.2.在,,,,,中,无理数的个数是A. 1B. 2C. 3D. 43.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达个核苷酸用科学记数法表示为A. B. C. D.4.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是A. 垂线段最短B. 经过一点有无数条直线C. 经过两点,有且仅有一条直线D. 两点之间,线段最短5.下列化简正确的是A. B.C. D.6.下列算式中,运算结果为负数的是A. B. C. D.7.如图,甲从A点出发向北偏东方向走到点B,乙从点A出发向南偏西方向走到点C,则的度数是A.B.C.D.8.2018年宁波市中考新增英语口语听力自动化考试,考试需要耳麦,已知甲耳麦比乙耳麦贵20元,某校购买了甲耳麦40个、乙耳麦60个,共花费了6000元,假设甲耳麦每个x元,由题意得A. B.C. D.9.已知a,b,c在数轴上的位置如图所示,化简的结果是A. 0B. 4bC.D.10.某校组织了一次数学测试,试卷的计分规则如下:如果某考生考了82分及以下,他的分数就是实际分数,如果考了82分以上,超过82分的部分按一半计算例如小明同学考了90分,按这个规则得分,全部答对的学生按照这个规则得100分.如果某一个同学按照这个规则的最后分数是93分,他实际考试被扣了分.A. 11B. 14C. 16D. 18二、填空题(本大题共10小题,共30.0分)11.单项式的系数是______,次数是______.12.的立方根是____,9的算术平方根是____.13.近似数万精确到______位.14.用度表示为______.15.已知和是同类项,则的值是______.16.已知a,b为有理数,定义一种运算:,若,则x值为______.17.若a、b互为相反数,m、n互为倒数,则的值为______.18.如图,AB,CD相交于点O,,有以下结论:与互为余角;与互为余角;;与互为补角;与互为补角;其中错误的有______填序号.19.计算机利用的是二进制数,它共有两个数码0、1,将一个十进制数转化为二进制数,只需要把该数写成若干个数的和,依次写出1或0即可.如十进制数,转化为二进制数就是10011,所以19是二进制下的5位数.问:365是二进制下的______位数.20.在1,3,5,,2017,2019,2021这1011数的前面任意添加一个正号或一个负号,其代数和的绝对值最小值是______.三、计算题(本大题共2小题,共12.0分)21.计算:22.解下列方程.四、解答题(本大题共6小题,共38.0分)23.先化简,再求值:,其中.24.如题,平面上四个点A,B,C,D,按要求完成下列问题:连接线段AD,BC;画射线AB与直线CD相交于E点;在直线CD上找一点M,使线段AM最短,并说明理由.25.如图点C在线段AB上,点M、N分别是AC、BC的中点,且满足,.若cm,cm,求线段MN的长;若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图中画出图形,写出你的猜想并说明理由.26.观察下列两个等式:,,给出定义如下:我们称使等式成立的一对有理数a,b为“有趣数对”,记为如:数对,都是“有趣数对”.数对,中是“有趣数对”的是______;若是“有趣数对”,求a的值;请再写出一对符合条件的“有趣数对”______;注意:不能与题目中已有的“有趣数对”重复若是“有趣数对”求的值.27.公共自行车的普及给市民的出行带来了方便.现有两个公共自行车投放点A地、B地.要从甲、乙两厂家向A、B两地运送自行车.已知甲厂家可运出20辆自行车,乙厂家可运出60辆自行车;A地需30辆自行车,B地需50辆自行车.甲、乙两厂A B地的自行车的量数为x,则甲厂家运往B地的自行车的量数为______;则乙厂家运往A地的自行车的量数为______;则乙厂家运往B地的自行车的量数为______;当甲、乙两厂家各运往A、B两地多少辆自行车时,总运费等于470元?28.请阅读下列材料,并解答相应的问题:将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”中国古代称“幻方”为“河图“、“洛书“等,例如,下面是三个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到的方格中得到的,其每行、每列、每条对角线上的三个数之和相等.设图1的三阶幻方中间的数字是x,用x的代数式表示幻方中9个数的和为______;请你将下列九个数:、、、、、0、2、4、6分别填入图2方格中,使得每行、每列、每条对角线上的三个数之和都相等;图3是一个三阶幻方,那么标有x的方格中所填的数是______;如图4所示的每一个圆中分别填写了1、2、中的一个数字不同的圆中填写的数字各不相同,使得图中每一个横或斜方向的线段上几个圆内的数之和都相等,现在已知该图中七个圆内的数字,则图中的______,______.答案和解析1.【答案】C【解析】解:若向东走2m记作,则向西走3m记作,故选:C.根据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2.【答案】B【解析】解:在所列6个数中无理数有、这两个,故选:B.分别根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像,等有这样规律的数.3.【答案】A【解析】解:.故选:A.先确定出a和n的值,然后再用科学记数法的性质表示即可.本题主要考查的是科学记数法,熟练掌握用科学记数法表示较大数的方法是解题的关键.4.【答案】D【解析】解:因为两点之间线段最短.故选:D.根据两点之间,线段最短解答即可.本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.5.【答案】C【解析】解:A、无法计算,故此选项不合题意;B、,故计算错误,不合题意;C、,正确,符合题意;D、,故计算错误,不合题意;故选:C.直接利用合并同类项法则分别计算得出答案.此题主要考查了合并同类项,正确掌握运算法则是解题关键.6.【答案】C【解析】解:,故A错误;B.,故B错误;C.,故C正确;D.,故D错误;故选:C.根据在一个数的前面机上负号就是这个数的相反数,负数的绝对值是它的相反数,负数的奇数次幂是负数,负数的偶数次幂是正数,可得答案.本题考查了正数和负数,小于零的数是负数,化简各数是解题关键.7.【答案】D【解析】解:如图,由题意,可知:,,,,故选:D.等于三个角的和,求出各角的度数,相加即可.本题主要考查方向角,解决此题时,能准确找到方向角是解题的关键.8.【答案】A【解析】【分析】根据题意可以列出相应的方程,从而可以解答本题.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.【解答】解:由题意可得,,故选:A.9.【答案】B【解析】解:由数轴上点的位置得:,且,,,,则原式.故选:B.根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.此题考查了整式的加减,以及数轴,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.10.【答案】B【解析】解:由题意可得,这次考试总分为:分,如果某一个同学按照这个规则的最后分数是93分,则这个同学的实际考试被扣了:分,故选:B.根据题意可以得到本次考试的实际满分是多少,从而可以计算出某一个同学按照这个规则的最后分数是93分,他实际考试被扣了多少分,本题得以解决.本题考查有理数的混合运算,解答本题的关键是明确题意,计算出某同学的实际被扣的分数.11.【答案】;4【解析】解:单项式的系数是,次数是4;故答案为:;4.根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数可得答案.此题主要考查了单项式,关键是掌握单项式的相关定义.12.【答案】;3【解析】解:的立方根是,9的算术平方根是3,故答案为:、3.根据立方根和算术平方根的定义求解可得.本题主要考查立方根与算术平方根,掌握算术平方根与立方根的定义是解题的关键.13.【答案】千【解析】解:近似数万精确到千位.故答案为千.根据近似数的精确度求解.本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.14.【答案】【解析】解:,故答案为:根据度分秒的进率为60,再进行换算即可.本题考查了度分秒的换算,从大单位到小单位要乘以进率,而从小单位到达单位要除以进率.15.【答案】0【解析】解:根据题意知,即、,所以,故答案为:0.根据同类项得定义得出m、n的值,继而代入计算可得.本题主要考查同类项,解题的关键是熟练掌握同类项得定义.16.【答案】2【解析】解:由题意得,,,,,故答案为:2.根据新定义列出关于x的方程,解之可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.17.【答案】0【解析】解:、b互为相反数,m、n互为倒数,,,,故答案为:0.根据a、b互为相反数,m、n互为倒数,可以求得和mn的值,从而可以求得所求式子的值.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.18.【答案】【解析】解:,CD相交于点O,,与互为余角,正确;与互为余角,正确;,正确;与互为补角,正确;与互为补角,正确;,错误;故答案为:.根据垂线的定义、对顶角、邻补角的性质解答即可.本题主要考查的是垂线的定义、对顶角、邻补角的性质,掌握相关定义是解题的关键.19.【答案】9【解析】解:,,且,最高位应是,则共有位数,故答案为:9.根据题意得,,根据规律可知最高位应是,故可求共由有9位数.考查了有理数的乘方,此题只需分析是几位数,所以只需估计最高位是乘以2的几次方即可分析出共有几位数,此题也可以用除以2取余的方法写出对应的二进制的数.20.【答案】1【解析】解:根据题意,要求出其代数和的绝对值最小值,相邻两位做差,差值都为2,则其中1010个数做差的绝对值最小值为:如果剩余的一个数取或,整个代数和最小,即或所以其代数和的绝对值最小值是:1故答案为:1从题目中可见这是一组奇数的排列,求一共有1011个数的代数和的绝对值,根据奇数做差可求出最小值.此题考查了数字变化类,要根据奇数做差其差值总是2找到突破口,因为奇数的数目是奇数,所以可用剩余的数来减小绝对值.21.【答案】解:原式;原式.【解析】直接利用有理数的混合运算法则计算得出答案;直接利用立方根以及绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.22.【答案】解:去括号得:,移项合并得:,解得:;去分母得:,移项合并得:,解得:.【解析】方程去括号,移项合并,把x系数化为1,即可求出解;方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.23.【答案】解:原式,当时,原式.【解析】原式去括号合并得到最简结果,把m的值代入计算即可求出值.此题考查了整式的加减化简求值,熟练掌握运算法则是解本题的关键.24.【答案】解:如图所示:如图所示:如图所示:理由是垂线段最短.【解析】画线段AD,BC即可;画射线AB与直线CD,交点记为E点;根据垂线段最短作出垂线段即可求解.此题主要考查了直线、射线、线段,以及垂线段,关键是掌握直线、射线、线段的性质.25.【答案】解:、N分别是AC、BC的中点,,,,所以MN的长为5cm.同,.图如右,.理由:由图知.【解析】根据M、N分别是AC、BC的中点,求出MC、CN的长度,;根据的方法求出;作出图形,,,所以.本题主要考查线段中点的定义,线段的中点把线段分成两条相等的线段.26.【答案】【解析】解:,数对是“有趣数对”;,,不是“有趣数对”,故答案为:;是“有趣数对”,,解得:;符合条件的“有趣数对”如;故答案为:;是“有趣数对”,解得:,,.根据“有趣数对”的定义即可得到结论;根据“有趣数对”的定义列方程即可得到结论;根据根据“有趣数对”的定义即可得到结论;根据“有趣数对”的定义列方程即可得到结论.本题考查了一元二次方程的解,正确的理解题意是解题的关键.27.【答案】【解析】解:若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为;则乙厂家运往A地的自行车的量数为;则乙厂家运往B地的自行车的量数为;故答案是:;;.根据题意,得解得则辆辆辆答:甲厂家运往B地的自行车的量数为10辆,则甲厂向B运算自行车的数量是10辆;乙厂家运往A地的自行车的量数为20辆;乙厂家运往B地的自行车的量数为40辆.根据表格中的数据填空;根据总运费是470元列出方程并解答.考查了一元一次方程的应用,解题的关键是找到等量关系,列出方程并解答.28.【答案】9x21 1 19【解析】解:三阶幻方如图所示:用x的代数式表示幻方中9个数的和;故答案为9x;三阶幻方如图所示:故答案为21;如图所示:,;故答案气为1,19;观察数字之间的关系,根据每行、每列、每条对角线上的三个数之和相等;、、、、、0、2、4、6将数从小到大排序,最中间的数填入中心位置,大小匹配填的两侧;三个数之和,2边填16,以此为突破口;设第一行最后一个数是m,则每一个横或斜方向的线段的和是,以此展开推理;本题考查数的特点,抓住每行、每列、每条对角线上的三个数之和相等,数的对称性是解题的关键.。

2017-2018学年浙教版七年级数学上册期末考试试题及答案

2017-2018学年浙教版七年级数学上册期末考试试题及答案

2017-2018学年七年级数学上册期末测试卷一.单选题(共10题;共30分)1.现有四种说法:①-a表示负数;②若|x|=-x,则x<0;③绝对值最小的有理数是0;④3×102x2y是5次单项式;其中正确的是( )A. ①B. ②C. ③D. ④2.已知|3x|﹣y=0,|x|=1,则y的值等于()A. 3或﹣3B. 1或﹣1C. -3D. 33.给出条件:①两条直线相交成直角;②两条直线互相垂直;②一条直线是另一直线的垂线,并且能否以上述任何一个为条件得出另外两个为内容的结论,正确的是()A. 能B. 不能C. 有的能有的不能D. 无法确定4.若(a+1)2+|b﹣2|=0,化简a(x2y+xy2)﹣b(x2y﹣xy2)的结果为()A. 3x2yB. ﹣3x2y+xy2C. ﹣3x2y+3xy2D. 3x2y﹣xy25.如果向右走5步记为+5,那么向左走3步记为()A. +3B. ﹣3C. +D. ﹣6.下列四种运算中,结果最大的是()A. 1+(﹣2)B. 1﹣(﹣2)C. 1×(﹣2)D. 1÷(﹣2)7.一个长为19cm,宽为18cm的长方形,如果把这个长方形分成若干个正方形要求正方形的边长为正整数,那么该长方形最少可分成正方形的个数()A. 5个B. 6个C. 7个D. 8个8.在解方程3x+时,去分母正确的是()A. 18x+2(2x-1)=18-3(x+1)B. 3x+(2x-1)=3x-(x+1)C. 18x+(2x-1)=18-(x+1)D. 3x+2(2x-1)=3-3(x+1)9.在数轴上,点A表示的数是﹣5,点C表示的数是4,若AB=2BC,则点B在数轴上表示的数是()A. 1或13B. 1C. 9D. ﹣2或1010.如图,AC⊥BC于点C,CD⊥AB于点D,其中长度能表示点到直线(或线段)的距离的线段有()A. 1条B. 2条C. 3条D. 5条二.填空题(共8题;共24分)11.若|m﹣3|+(n+2)2=0,则m+2n的值为________ .12.一列单项式:﹣x2,3x3,﹣5x4,7x5,…,按此规律排列,则第7个单项式为 ________。

2017-2018学年第一学期期末测试七年级数学试题及答案

2017-2018学年第一学期期末测试七年级数学试题及答案

2017—2018学年第一学期期末测试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分为120分。

考试用时100分钟。

考试结束后,只上交答题卡。

2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。

3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案不能答在试题卷上。

24.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下列算式:(1) (2)--;(2) 2- ;(3) 3(2)-;(4) 2(2)-. 其中运算结果为正数的个数为(A ) 1 (B ) 2 (C ) 3 (D ) 4【 2.若a 与b 互为相反数,则a-b 等于(A )2a (B )-2a (C ) 0 (D )-2 3.下列变形符合等式基本性质的是(A )如果2a -b =7,那么b =7-2a (B )如果mk =nk ,那么m =n (C )如果-3x =5,那么x =5+3 (D )如果-13a =2,那么a =-64.下列去括号的过程(1)c b a c b a --=--)(; (2)c b a c b a ++=--)(; (3)c b a c b a +-=+-)(; (4)c b a c b a --=+-)(.其中运算结果错误的个数为(A ) 1 (B ) 2 (C ) 3 (D ) 4【 5.下列说法正确的是(A )1-x 是一次单项式 (B)单项式a 的系数和次数都是1 (C )单项式-π2x 2y 2的次数是6 (D)单项式24102x ⨯的系数是26.下列方程:(1)2x -1=x -7 ,(2)12x =13x -1 ,(3)2(x +5)=-4-x , (4)23x =x -2.其中解为x =-6的方程的个数为 (A ) 4 (B ) 3 (C ) 2 (D ) 1 7.把方程5.07.01.023.012.0-=--x x 的分母化为整数的方程是 (A )57203102-=--x x (B )5723102-=--x x (C )572312-=--x x (D )5720312-=--x x 8.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物,28.3亿吨用科学记数法表示为(A ) 28.3×107(B ) 2.83×108(C )0.283×1010(D )2.83×1099.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是 (A )用两个钉子就可以把木条固定在墙上(B )利用圆规可以比较两条线段的大小关系 (C )把弯曲的公路改直,就能缩短路程(D )植树时,只要定出两棵树的位置,就能确定同一行树所在的直线10.一个两位数,个位数字为a ,十位数字为b ,把这个两位数的个位数字与十位数字 交换,得到一个新的两位数,则新两位数与原两位数的和为 (A )b a 99+ (B )ab 2 (C )ab ba + (D )b a 1111+ 11.已知表示有理数a 、b 的点在数轴上的位置如图所示:则下列结论正确的是(A )|a|<1<|b| (B )1<a<b (C )1<|a|<b (D ) -b<-a<-1 12.定义符号“*”表示的运算法则为a*b =ab +3a ,若(3*x)+(x*3)=-27,则x = (A )29-(B )29(C )4 (D )-4 第Ⅱ卷(非选择题)(第11题图)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.若把45.58°化成以度、分、秒的形式,则结果为 . 14.若xm-1y 3与2xyn的和仍是单项式,则(m-n )2018的值等于______ .15. 若031)2(2=++-y x ,则y x -= . 16.某同学在计算10+2x 的值时,误将“+”看成了“﹣”,计算结果为20, 那么10+2x 的值应为 . 17.如图,数轴上相邻刻度之间的距离是51,若BC=52,A 点在数轴上对应的数值是53-,则B 点在数轴上对应的数值是 .218.我们知道,钟表的时针与分针每隔一定的时间就会重合一次,请利用所学知识确定,时针与分针从上一次重合到下一次重合,间隔的时间是______ 小时.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题分5分,本小题满分10分)计算: (1)11(0.5)06(7)( 4.75)42-+--+-- (2)[(﹣5)2×]×(﹣2)3÷7.20.(每小题分5分,本小题满分10分)先化简,再求值: (1)3x 2-[5x-(6x-4)-2x 2],其中x=3(2)(8mn-3m 2)-5mn-2(3mn-2m 2),其中m=-1,n=2. 21.(每小题分5分,本小题满分10分)解方程:53-(1)6322-41--=x x . (2)3125121103--=+x x . 22.(本小题满分8分)一个角的余角比这个角的补角的 13还小10°,求这个角的度数.23.(本大题满分10分)列方程解应用题:A 车和B 车分别从甲,乙两地同时出发,沿同一路线相向匀速而行.出发后1.5小时两车相距75公里,之后再行驶2.5小时A 车到达乙地,而B 车还差40公里才能到达甲地.求甲地和乙地相距多少公里?24.(本小题满分12分)如图,∠AOB 是直角,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线. (1)当∠AOC =40°,求出∠MON 的大小,并写出解答过程理由; (2)当∠AOC =50°,求出∠MON 的大小,并写出解答过程理由; (3)当锐角∠AOC=α时,求出∠MON 的大小,并写出解答过程理由.2017—2018学年第一学期期末测试七年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CADCBCBDCDCD二、填空题(本大题6个小题,每小题4分,共24分)(第24题图)13.45°34'48"; 14.1; 15.37; 16. 0 ; 17.0或54 ; 18.1112 . 三、解答题(本大题6个小题,共60分) 19.(每小题分5分,本小题满分10分)计算: 解:(1)11(0.5)06(7)( 4.75)42-+--+-- =130.567.5444-+-+ ………………………………………………2分 =13(0.57.5)(64)44--++ ………………………………………………4分 =3. ………………………………………………5分(2)[(﹣5)2×]×(﹣2)3÷7=[25×]×(﹣8)÷7……………………………………1分=[﹣15+8]×(﹣8)÷7………………………………………………2分=﹣7×(﹣8)÷7………………………………………………………3分=56÷7…………………………………………………………4分=8.…………………………………………………………5分20.(每小题分5分,本小题满分10分)先化简,再求值: 解:(1)原式, ………………………3分当时,原式; ………………………5分(2)原式,………………………3分当时,原式. ………………………5分21.(每小题分5分,本小题满分10分)解方程: 解:(1)去分母得:, …………3分移项合并得:; …………5分(2)解:原方程可化为312253--=+x x . …………1分 去分母,得)12(2)53(3--=+x x . …………2分去括号,得24159+-=+x x . …………3分 移项,得215-49+=+x x . …………4分 合并同类项,得1313-=x .系数化为1,得1-=x . …………5分22.(本小题满分8分)解:设这个角的度数为x °, …………1分 根据题意,得90-x =13(180-x)-10, …………5分解得x =60. …………7分 答:这个角的度数为60°. …………8分 23.(本大题满分10分)解:设甲地和乙地相距x 公里,根据题意,列出方程752401.5 1.52.5x x --=+ ………………………………………5分 解方程,得4300360x x -=- ………………………………………7分240x = ………………………………………9分答:甲地和乙地相距240公里. ……………………………10分 24.(本小题满分12分) 解:(1)∠AOC =40°时,∠MON =∠MOC -∠CON ………………………………………1分 =12(∠BOC -∠AOC) ………………………………………3分=12∠AOB ………………………………………5分=45°. ………………………………………6分 (2)当∠AOC =50°,∠MON =45°.理由同(1).………………………9分 (3)当∠AOC=α时,∠MON =45°. 理由同(1).………………………12分注意:评分标准仅做参考,只要学生作答正确,均可得分。

2017-2018学年浙江省绍兴市越城区七年级(上)期末数学试卷(解析版)

2017-2018学年浙江省绍兴市越城区七年级(上)期末数学试卷(解析版)

2017-2018学年浙江省绍兴市越城区七年级(上)期末数学试卷一、选择题(每小题3分,共30分)1. ﹣2018的绝对值是()A. ±2018B. ﹣2018C. ﹣D. 2018【答案】D【解析】﹣2018的绝对值是2018.故选:D.2. 十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A. 8×1012B. 8×1013C. 8×1014D. 0.8×1013【答案】B【解析】80万亿用科学记数法表示为8×1013.故选:B.3. 下列各对数中,互为相反数的是()A. ﹣23与﹣32B. (﹣2)3与﹣23C. (﹣3)2与﹣32D. ﹣与【答案】C【解析】A、1个﹣8,1个﹣9,不是互为相反数,故A错误;B、都等于﹣8,故B错误;C、只有符号不同的两个数互为相反数,故C正确;D、1个﹣,1个,不是互为相反数,故D错误.故选:C.4. 在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为A. 69°B. 111°C. 141°D. 159°【答案】C【解析】试题分析:首先计算出∠3的度数,再计算∠AOB的度数即可.解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.考点:方向角.5. 下列说法中正确的是()A. ﹣|a|一定是负数B. 近似数2.400万精确到千分位C. 0.5与﹣2互为相反数D. 立方根是它本身的数是0和±1【答案】D【解析】A.﹣|a|一定是负数,错误,例如a=0;B.近似数2.400万精确到千分,错误,近似数2.400万精确到十位;C.0.5与﹣2互为相反数,错误,2与﹣2互为相反数;D.正确;故选:D.6. 下列说法正确的是()A. 射线PA和射线AP是同一条射线B. 射线OA的长度是12cmC. 直线ab、cd相交于点MD. 两点确定一条直线【解析】A、射线PA和射线AP是同一条射线,说法错误;B、射线OA的长度是12cm,说法错误;C、直线ab、cd相交于点M,说法错误;D、两点确定一条直线,说法正确.故选:D.7. 已知某三角形的周长为3m﹣n,其中两边的和为m+n﹣4,则此三角形第三边的长为()A. 2m﹣4B. 2m﹣2n﹣4C. 2m﹣2n+4D. 4m﹣2n+4【答案】C【解析】由题意得3m-n- (m+n-4)=2m-2n+4.故选C.8. 一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为()A. 40°B. 45°C. 50°D. 10°【答案】D【解析】由图可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:D.点睛:先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.9. 填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是()A. 38B. 52C. 66D. 74【答案】D【解析】试题分析:先找到前面三个图4个数的规律,即左下数和右上数是第一个数依次加2,第四个数是左下数和右上数的乘积再减去第一个数,所以m=8×10-6=74,故选D.考点:探索一列数的规律.10. 扑克牌游戏中,小明背对小亮,让小亮按下列四个步骤操作:①第一步:分发左、中、右三堆牌,每堆牌不少于三张,且各堆牌的张数相同;②第二步:从左边一堆拿出三张,放入中间一堆;③第三步:从右边一堆拿出两张,放入中间一堆;④第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数,你认为中间一堆的张数是()A. 3B. 5C. 7D. 8【答案】D【解析】解:设第一步时候,每堆牌的数量都是x(x≥2);第二步时候:左边x-3,中间x+3,右边x;第三步时候:左边x-3,中级x+5,右边x-2;第四步开始时候,左边有(x-3)张牌,则从中间拿走(x-3)张,则中间所剩牌数为(x+5)-(x-3)=x+5-x+3=8.所以中间一堆牌此时有8张牌.故选D。

浙江省绍兴市七年级(上)期末数学试卷

浙江省绍兴市七年级(上)期末数学试卷

浙江省绍兴市七年级(上)期末数学试卷七年级(上)期末数学试卷⼀、选择题(本⼤题共10⼩题,共20.0分)1.9的相反数是()A. ?9B. 9C. 19D. ?192.嵊州新城吾悦⼴场,总建筑⾯积58万平⽅⽶,西临剡溪⼤桥,南接环城南路,东为⾼丰路,北临剡溪,占据城南新区核⼼地段,已成为嵊州城市新中⼼,将数58万⽤科学记数法表⽰为()A. 5.8×105B. 5.8×106C. 58×104D. 0.58×1063.把⼀根⽊条固定在墙⾯上,⾄少需要两枚钉⼦,这样做的数学依据是()A. 两点之间线段最短B. 两点确定⼀条直线C. 垂线段最短D. 两点之间直线最短4.将⽅程x3-x?26=1去分母得()A. 2x?(x?2)=6B. 2x?x?2=6C. 2x?(x?2)=1D. 2x?x?2=15.中国⼈最先使⽤负数,魏晋时期的数学家刘徽在“正正放表⽰正数,斜放表⽰负数,如图,根据刘徽的这种表⽰法,观察图1,可推算图2中所得的数值为()A. ?1B. ?2C. ?3D. ?46.下列各题中的两项是同类项的是()A. 3x2y与?3x2yB. 2a2b与0.2ab2C. 11abc与9bcD. 62与x27.将四个数-3,2,3,5表⽰在数轴上,被如图所⽰的墨迹覆盖的数是()A. ?3B. 2C. 3D. 58.某款服装进价120元/件,标价x元/件,商店对这款服装推出“买两件,第⼀件原价,第⼆件打六折”的促销活动,按促销⽅式销售两件该款服装,商店仍获利48元,则x的值为()A. 185B. 190C. 180D. 1959.若x=1时,ax3+bx+7式⼦的值为2033,则当x=-1时,式⼦ax3+bx+7的值为()A. 2018B. 2019C. ?2019D. ?201810.如图,在纸⾯所在的平⾯内,⼀只电⼦蚂蚁从数轴上表⽰原点的位置O点出发,按向上、向右、向下、向右的⽅向依次不断移动,每次移动1个单位,其移动路线如图所⽰,第1次移动到A1,第2次移动到A2,第3次移动到A3,……,第n次移动到A n,则△OA2A2019的⾯积是()A. 504B. 10092C. 10112D. 1009⼆、填空题(本⼤题共12⼩题,共38.0分)11.计算:2×(-3)=______.12.“x的2倍与1的差”⽤代数式可表⽰为______.13.9的算术平⽅根是______.14.在实数:1,-4,39,227,π,3.1313313331…(两个1之间⼀次多⼀个3)中,⽆理数有______个.15.钟表上的时间指⽰为两点半,此时时针与分针所成的⾓(⼩于平⾓)的度数为______.16.如图,已知点O在直线AB上,∠COE=90°,OD平分∠AOE,∠COD=25°,则∠BOD的度数为______.17.某校建⽴了⼀个⾝份识别系统,图1是某个学⽣的识别图案,⿊⾊⼩正⽅形表⽰1,⽩⾊⼩正⽅形表⽰0,将第⼀⾏数字从左往右依次记为a,b,c,d,那么可以转换为该⽣所在的班级序号,其序号为a×23+b×22+c×23+d,如图1,第⼀⾏数字从左往右依次为0,1,0,1,序号为0×23+1×22+0×21+1=5,表⽰该⽣为5班学⽣,则图2识别图案的学⽣所在班级为______班.18.如图,点A、B为数轴上的两点,O为原点,A、B表⽰的数分别是x、x+2,B、O两点之间的距离等于A、B两点间的距离,则x的值是______.19.按下⾯的程序计算:如果输⼊x的值是正整数,输出结果是150,那么满⾜条件的x的值有______个.20.⽗亲带着两个⼉⼦向离家33千⽶的奶奶家出发,⽗亲有⼀辆摩托车,速度为25千奶家,并⽴即返回接步⾏的第⼆个⼉⼦,结果与第⼀个⼉⼦同时到达奶奶家,则在路上共计⽤的时间为______⼩时.21.已知a、b、c为⾮零实数,请你探究以下问题:(1)当a>0时,a|a|=______;当ab<0时,ab|ab|=______.(2)若a+b+c=0.那么a|a|+b|b|+c|c|+abc|abc|的值为______.22.如图1,OP为⼀条拉直的细线,长为7cm,A,B两点在OP上,若先握住点B,将OB折向BP,使得OB重叠在BP上,如图2.再从图2的A点及与A点重叠处⼀起剪开,使得细线分成三段.若这三段的长度由短到长之⽐为1:2:4,其中以点P为⼀端的那段细线最长,则OB的长为______cm.三、计算题(本⼤题共1⼩题,共6.0分)23.先化简,再求值.2(x2y+xy)-3(x2y-xy)-5xy,其中x=-1,y=13.四、解答题(本⼤题共7⼩题,共56.0分)24.计算(1)9-(-4)-2(2)(-2)2+(-32)-3825.解⽅程(1)10x+7=12x-5(2)3x?14-1=5x?7626.有⼀个⽔库某天8:00的⽔位为-0.1m(以警戒线为基准,记⾼于警戒线的⽔位为正)在以后的6个时刻测得的⽔位升降情况如下(记上升为正,单位:m):0.5,-0.8,0,-0.2,-0.3,0.1经过6次⽔位升降后,⽔库的⽔位超过警戒线了吗?27.如图,4×4⽅格中每个⼩正⽅形的边长都为1.(1)直接写出图(1)中正⽅形ABCD的⾯积及边长;(2)在图(2)的4×4⽅格中,画⼀个⾯积为8的格点正⽅形(四个顶点都在⽅格的顶点上);并把图(2)中的数轴补充完整,然后⽤圆规在数轴上表⽰实数8.28.某校学⽣会主席换届选举,经初选、复选后,共有甲,⼄,丙三⼈进⼊最后的竞选,最后决定⽤投票⽅式进⾏选举,共发出1800张选票,得票数最⾼者为当选⼈,且废票不计⼊任何⼀位候选⼈的得票数内,全校设有四个投票箱,⽬前第⼀、第⼆、第三投票箱已开完所有选票,剩下第四投票箱尚未开票,结果如表所⽰:(单位:票)()若第⼆投票箱候选⼈甲的得票数⽐⼄的倍还多票,请分别求出第⼆投票箱甲、⼄两名候选⼈的得票数.(2)根据(1)题的数据分析,请判断⼄侯选⼈是否还有机会当选,并详细解释或完整写出你的解题过程.29.如果两个⾓的差的绝对值等于90°,就称这两个⾓互为反余⾓,其中⼀个⾓叫做另⼀个⾓的反余⾓,例如,∠1=120°,∠2=30°,|∠1-∠2|=90°,则∠1和∠2互为反余⾓,其中∠1是∠2的反余⾓,∠2也是∠1的反余⾓.(1)如图1.O为直线AB上⼀点,OC⊥AB于点O,OE⊥OD于点O,则∠AOE的反余⾓是______,∠BOE的反余⾓是______;(2)若⼀个⾓的反余⾓等于它的补⾓的23,求这个⾓.(3)如图2,O为直线AB上⼀点,∠AOC=30°,将∠BOC绕着点O以每秒1°⾓的速度逆时针旋转得∠DOE,同时射线OP从射线OA的位置出发绕点O以每秒4°⾓的速度逆时针旋转,当射线OP与射线OB重合时旋转同时停⽌,若设旋转时间为t秒,求当t 为何值时,∠POD与∠POE互为反余⾓(图中所指的⾓均为⼩于平⾓的⾓).30.观察下列等式:11×2=1-12,12×3=12-13,13×4=13-14,则以上三个等式两边分别相加得:11×2+12×3+13×4=1-12+12-13+13-14=34.(1)观察发现1n(n+1)=______;11×2+12×3+13×4+…+1n(n+1)=______.(2)拓展应⽤有⼀个圆,第⼀次⽤⼀条直径将圆周分成两个半圆(如图1),在每个分点标上质数m,记2个数的和为a1;第⼆次再将两个半圆周都分成14圆周(如图2),在新产⽣的分点标上相邻的已标的两数之和的12,记4个数的和为a2;第三次将四个14圆周分成18圆周(如图3),在新产⽣的分点标上相邻的已标的两数之和的13,记8个数的和为a3;第四次将⼋个18圆周分成116圆周,在新产⽣的分点标上相邻的已标的两个数的和的14,记16个数的和为a4;……如此进⾏了n次.①a n=______(⽤含m、n的代数式表⽰);②当a n=6188时,求1a1+1a2+1a3+……+1an的值.答案和解析【解析】解:9的相反数是-9,故选:A.根据相反数的定义即可求解.此题主要考查相反数的定义,⽐较简单.2.【答案】A【解析】解:数58万⽤科学记数法表⽰为5.8×105,故选:A.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a 的值以及n的值.3.【答案】B【解析】解:把⼀根⽊条固定在墙⾯上,⾄少需要两枚钉⼦,是因为两点确定⼀条直线.故选:B.根据两点确定⼀条直线进⾏解答.本题主要考查了两点确定⼀条直线的性质,熟练掌握直线的性质是解题关键.4.【答案】A【解析】解:⽅程两边同时乘以6得:6×-6×=6×1,整理得:2x-(x-2)=6,去括号得:2x-x+2=6,故选:A.根据等式的性质,⽅程两边同时乘以两个分母的最⼩公倍数,整理后即可得到答案.本题考查了解⼀元⼀次⽅程,正确掌握等式的性质是解题的关键.5.【答案】C【解析】解:由题意可知:图2中算筹正放两根,斜放5根,则可表⽰为(+2)+(-5)=-3;故选:C.抓住⽰例图形,区别正放与斜放的意义即可列出算式.本题考查了有理数的加法运算,正确理解图例算筹正放与斜放的意义是关键.6.【答案】A解:解:A、3x2y和-3x2y符合同类项的定义,是同类项;B、2a2b与0.2ab2不符合同类项的定义,不是同类项;C、-11abc与9bc不符合同类项的定义,不是同类项;D、62与x2不符合同类项的定义,不是同类项.故选:A.根据同类项是字母相同且相同字母的指数也相同,可得答案.本题考查了同类项,同类项是字母相同且相同字母的指数也相同.7.【答案】D【解析】解:,,,,因为盖住的数⼤于2⼩于3,故选:D.盖住的数⼤于2⼩于3,估计,,的值可确定答案.本题考查⽆理数值的⼤⼩估计.确定⽆理数在哪两个整数之间是解答的关键.8.【答案】C【解析】解:设标价x元/件,依题意有x+0.6x-120×2=48,解得x=180.故选:C.根据等量关系:第⼀件的售价+第⼆件打六折的售价-2件的成本=48,依此列出⽅程求解即可.考查了⼀元⼀次⽅程的应⽤,利⽤⽅程解决实际问题的基本思路如下:⾸先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设⼀关键的未知量为x,然后⽤含x的式⼦表⽰相关的量,找出之间的相等关系列⽅程、求解、作答,即设、列、解、答.9.【答案】C【解析】解:∵x=1时,ax3+bx+7=2033,∴a+b+7=2033,∴a+b=2026,∴当x=-1时,ax3+bx+7=-(a+b)+7=-2026+7⾸先把x=1代⼊ax3+bx+7,求出a+b的值是多少;然后把x=-1代⼊ax3+bx+7,求出算式的值是多少即可.此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代⼊、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.10.【答案】B【解析】解:观察图形可知:点A2n在数轴上,OA2n=n,∵OA2016=1008,∴OA2019=1009,点A2019在数轴上,∴=×1009×1=,故选:B.观察图形可知:OA2n=n,由OA2016=1008,推出OA2019=1009,由此即可解决问题.本题考查三⾓形的⾯积,数轴等知识,解题的关键是学会探究规律,利⽤规律解决问题,属于中考常考题型.11.【答案】-6【解析】解:2×(-3)=-(2×3)=-6.故答案为:-6.根据有理数的乘法法则:两数相乘.同号得正,异号得负,再把绝对值相乘,即可得到答案.此题主要考查了有理数的乘法,关键是熟练掌握法则,正确判断符号.12.【答案】2x-1【解析】解:“x的2倍与1的差”⽤代数式可表⽰为:2x-1;故答案为:2x-1.先表⽰出x的2倍,再表⽰出与1的差即可.本题考查了列代数式,主要是对⽂字语⾔转化为数学语⾔的能⼒的考查,关键是根据题⽬给出的数量关系列出式⼦.13.【答案】3【解析】解:∵(±3)2=9,∴9的算术平⽅根是|±3|=3.故答案为:3.9的平⽅根为±3,算术平⽅根为⾮负,从⽽得出结论.本题考查了数的算式平⽅根,解题的关键是牢记算术平⽅根为⾮负.14.【答案】3【解析】解:-=-2,故答案为:3.根据⽆理数的三种形式求解.本题考查了⽆理数的知识,解答本题的关键是掌握⽆理数的三种形式:①开⽅开不尽的数,②⽆限不循环⼩数,③含有π的数.15.【答案】105°【解析】解:∵时针在钟⾯上每分钟转0.5°,分针每分钟转6°,∴钟表上2点30分,时针与分针的夹⾓可以看成3×30°+0.5°×30=105°,故答案为:105°.因为钟表上的刻度是把⼀个圆平均分成了12等份,每⼀份是30°,借助图形,找出时针和分针之间相差的⼤格数,⽤⼤格数乘30°即可.本题考查钟表时针与分针的夹⾓.在钟表问题中,常利⽤时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利⽤起点时间时针和分针的位置关系建⽴⾓的图形.16.【答案】115°【解析】解:∵∠COE=90°,∠COD=25°,∴∠DOE=90°-25°=65°,∵OD平分∠AOE,∴∠AOD=∠DOE=65°,∴∠BOD=180°-∠AOD=115°.故答案为:115°.先根据∠COE=90°,∠COD=25°,由⾓的和差关系求得∠DOE=90°-25°=65°,再根据OD平分∠AOE,由⾓平分线的定义得出∠AOD=∠DOE=65°,最后根据邻补⾓的定义得出∠BOD=180°-∠AOD=115°.本题主要考查了⾓的计算以及⾓平分线的定义的综合应⽤,解决问题的关键是运⽤⾓平分线以及直⾓的定义,求得∠AOD的度数,再根据邻补⾓进⾏计算.17.【答案】12【解析】解:由题得图2的学⽣班级号为:0×23+1×22+1×23+0=12故答案为:12根据题意图2第⼀⾏的数字从左往右依次是:0,1,1,0,根据计算班级的公式:a×23+b×22+c×23+d,把0,1,1,0分别换成a,b,c,d即可算出图2所表⽰的班级.此题是有理数的乘法,解答本题的关键是认真读题,根据图1的案例弄清楚计算班级的⽅式.考查了学⽣的阅读能⼒和⽤数字表⽰事件.18.【答案】-4【解析】解得:x=-4.故答案为:-4.由B,O两点之间的距离等于A,B两点间的距离,可得出关于x的⼀元⼀次⽅程,解之即可得出结论.本题考查了⼀元⼀次⽅程的应⽤,找准等量关系,正确列出⼀元⼀次⽅程是解题的关键.19.【答案】3【解析】解:当4x-2=150时,x=38;当4x-2=38时,x=10;当4x-2=10时,x=3,由于4x-2=3,x不是正整数,不合题意.即当x=3、10、38时,输出的结果都是150.故答案为:3由程序图,可以得到输出结果和x的关系:输出结果=4x-2,当输出结果是150时,可求出x的值.若计算结果与x的值相等且<149时,需重新确定输⼊新的数值,反复直到x不能满⾜正整数为⽌.本题考查了⼀元⼀次⽅程的解法.解答本题的关键就是弄清楚题图给出的计算程序.注意可反复输⼊.20.【答案】3【解析】解:设第⼀个⼉⼦搭乘摩托车的路程为x千⽶,即AC=x,则BC=33-x,AD=×5=x,对于DC段的相遇问题,可设⽗亲与第⼆个⼉⼦相遇的时间为t⼩时,于是得⽅程(5+25)t=33-x-(33-x)∴t=x∴AE=(+x)×5=x∴BE=33-AE=33-x由时间关系,可得⽅程x+=解⽅程得x=24则在路上共计⽤的时间为+=3故答案为3.对于过程复杂的⾏程问题,⽤图形表⽰⾏程就能使问题简化.如图1中,AB=33千⽶,第⼀个⼉⼦在C点下车后步⾏到奶奶家,此时⽗亲在C点,第⼆个⼉⼦步⾏到D点,DC段存在⼀个⽗亲与第⼆个⼉⼦之间的相遇问题.从时间上产⽣等量关系,即:⽗亲从C点单车返回到E点的时间+带第⼆个⼉⼦从E点到B点的时间=第⼀个⼉⼦从C点步⾏到B点的时间.若设AC=x千⽶,则BC=33-x,⽤含x 的代数式表⽰出该等量关系,即可得⽅程解出问题.本题考查的⽤⼀元⼀次⽅程解决应⽤题中的⾏程问题,包含相遇与追及问题,⽤线段图来表⽰⾏程问题中的变化,可以使过程变得更清晰,是解决本题的关键.21.【答案】1 -1 0【解析】解:(1)当a>0时,==1;当ab<0时,==-1.故答案为:1;-1.(2)∵a+b+c=0,a、b、c均不为0,∴a、b、c两正⼀负或两负⼀正.当a、b、c两正⼀负时,abc<0,+++=1+1-1-1=0;当a、b、c两负⼀正时,abc>0,+++=-1-1+1+1=0故答案为:0.(1)由给出条件和绝对值的意义,易得结论;(2)由条件先确定a、b、c及abc的正负,再计算代数式的值.本题主要考察了绝对值的意义及代数式的化简,解决(2)需分类讨论,需掌握互为相反数的两数(0除外)的商是-1,相等两数的商为1.22.【答案】2或2.5【解析】解:由题意可知剪断后的三段可以表⽰为OA、2AB、PB-AB,⽽这三段的长度由短到长之⽐为1:2:4,于是可设三段分别为m,2m,4m ∵OA+2AB+PB-AB=OP=7即m+2m+4m=7∴m=1∴剪断后的三条线段的长分别为1cm,2cm,4cm⼜∵以点P为⼀端的那段细线最长∴PB-AB=4,于是分类①若OA=1,则2AB=2,PB-AB=4∴OA=AB=1,PB=5此时OB=2②若2AB=1,则OA=2,PB-AB=4∴OA=2,AB=0.5,PB=4.5此时OB=2.5故答案为2或2.5.根据题意可知剪断后的三段可以表⽰为OA、2AB、PB-AB,⽽根据题设可设三段分别为m,2m,4m,由总长度为7cm求出m 的值,再分两种情况讨论OA=m或OA=2m,从⽽求出各线段的长.本题考查的线段的长度之间的运算,根据图形对线段进⾏和、差、倍、分的运算是解题的关键.23.【答案】解:原式=2x2y+2xy-3x2y+3xy-5xy=-x2y,当x=-1,y=13时,原式=-1×13=-13.【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运⽤整式的运算法则,本题属于基础题型.24.【答案】解:(1)9-(-4)-2=9+4-2=11;(2)(-2)2+(-32)-38=4-32-2=12.【解析】(1)直接利⽤有理数的加减运算法则计算得出答案;(2)直接利⽤⽴⽅根的性质以及有理数的加减运算法则分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.25.【答案】解:(1)10x+7=12x-5,10x-12x=-5-7,-2x=-12,x=6;(2)3x?14-1=5x?76,3(3x-1)-12=2(5x-7),9x-3-12=10x-14,9x-10x=-14+3+12,-x=1,x=-1.【解析】(1)移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.考查了解⼀元⼀次⽅程,解⼀元⼀次⽅程的⼀般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解⼀元⼀次⽅程的⼀般步骤,针对⽅程的特点,灵活应⽤,各种步骤都是为使⽅程逐渐向x=a形式转化.26.【答案】解:-0.1+0.5-0.8+0-0.2-0.3+0.1=-0.8.答:⽔库的⽔位没有超过警戒线.【解析】求得上述各数的和,然后根据结果与0的⼤⼩关系即可做出判断.此题主要考查正负数在实际⽣活中的应⽤,根据题意列出算式是解题的关键.27.【答案】解:(1)正⽅形的边长是:12+22=5,⾯积为:5×5=5.(2)见图:在数轴上表⽰实数8,【解析】(1)根据勾股定理求出正⽅形的边长,再根据边长的长和⾯积公式即可求出答案;(2)根据勾股定理和正⽅形的⾯积公式即可画出图形,利⽤圆规,以O为圆⼼,正⽅形的边长为半径画弧可得实数的位置.本题考查了三⾓形的⾯积,实数与数轴,⽤到的知识点是勾股定理,以及勾股定理的应⽤,在直⾓三⾓形中,两直⾓边的平⽅和等于斜边的平⽅.28.【答案】解:(1)设⼄的得票数为x张,则甲的得票数为(3x+31)张,根据题意得,x+3x+31+244=630,解得x=85,3x+31=286;答:第⼆投票箱甲、⼄两名候选⼈的得票数分别为286张,85张;(2)∵第⼀、第⼆、第三投票箱甲得票数为:200+286+97=583;⼄得票数为:211+85+41=337;丙得票数为:147+244+205=596:∴596-583=13,即丙⽬前领先甲13票,所以第四投票所甲赢丙14票以上,则甲当选,故甲可能当选;596-337=259>250,若第四投票所250票皆给⼄,⼄的总票数仍然⽐丙低,故⼄不可能当选.【解析】(1)根据题意列⽅程即可得到结论;(2)根据题意将三个投票箱所得所有票数相加得出甲、⼄、丙三名候选⼈的得票,进⽽分别分析得票的张数得出答案.此题主要考查了推理与论证,正确利⽤表格中数据分析得票情况是解题关键.29.【答案】∠EOD∠BOD【解析】(1)解:∠AOE的反余⾓是∠EOD,∠BOE的反余⾓是∠BOD;(2):解:设这个⾓为x°,则补交为(180-x)°,反余⾓为(x+90)°或者(x-90)°①:当反余⾓为(x+90)°时∴x+90=解得:x=18°②:当反余⾓为(x+90)°时∴x-90=解得:x=126°答:这个⾓为18°或者126°(3):解:设当旋转时间为t时,∠POD与∠POE互为反余⾓.∵射线OP从射线OA的位置出发绕点O以每秒4°⾓的速度逆时针旋转,当射线OP与射线OB重合时旋转同时停⽌,此时:t==45s∴t≤45.∴∠POD=30-t+4t=3t+30∠POE=180-4t+t=180-3t∴|3x+30-(180-3t)|=90解得:t=40或者t=10答:当t为40或者10时,∠POD与∠POE互为反余⾓.(1)根据题⽬中反余⾓的概念求出:∠AOE和,∠BOE的反余⾓.(2)通过设未知数表⽰⾓,在表⽰这个⾓的补⾓和反余⾓,最后根据反余⾓和补⾓之间的关系列出⽅程,解出未知数即可.(3)通过时间t把∠POD与∠POE表⽰出来,有因为这两个⾓互为反余⾓,列出⽅程,解出时间t.本题属于新概念题,关键是对于新概念的理解和应⽤,在结合⽅程的思想来解答.30.【答案】1n-1n+1nn+1(n+1)(n+2)3m【解析】解:(1)观察发现:=;+++…+,=1-+-+-+…+-,=1-,=,=;故答案为:,.(2)拓展应⽤①∵a1=2m=m,a2=4m=m,a3=m,a4=10m=m,……∴a n=m,故答案为:m.②∵a n=m=6188,且m为质数,对6188分解质因数可知6188=2×2×7×13×17,∴m=2×2×7×13×17,∴m(n+1)(n+2)=2×2×3×7×13×17=7×51×52,∴m=7,n=50,。

2017-2018学年浙教版初一年级上册数学期末测试题及答案

2017-2018学年浙教版初一年级上册数学期末测试题及答案

2017-2018学年度第一学期期末测试七年级数学说明:1.考试时间为100分钟,满分120分;2.各题均在答题卷指定位置上作答,否则无效;考试结束时,只交回答题卷.一、选择题(本大题共10小题,每小题3分,共30分)每小题给出的4个选项中,只有一个是正确的,请将所选选项的字母填写在答题卷相应的位置上.1、6-的相反数是()A、6B、6-C、61D、61-2、下面几个有理数中,最小的数是()A、1B、2-C、0 D、5.2-3、计算3)3(-的结果是()A、6B、9C、27D、-274、下列各组代数式中,不是同类项的是()A、yx2-和yx25B、32和2 C、xy2和23xyD、2ax和2a x5、下列等式中正确的是()A、abba-=--)(B、baba+-=+-)(C、12)1(2+=+aa D、xx+=--3)3(6、如图是由6个大小相同的正方形组成的几何体,它的左视图是()7、若ba=,则下列式子不正确的是()A、11+=+ba B、55-=+ba C、ba-=-D、0=-ba8、下列等式中,不是整式的是()A、yx21-B、x73C、11-xD、0A B C D9、若0<a ,下列式子正确的是( )A 、0<-aB 、02>a C 、22a a -= D 、33a a -=10、把弯曲的道路改直,就能缩短两点之间的距离,其中蕴含的数学原理是( )A 、两点确定一条直线B 、两点之间线段最短C 、过一点有无数条直线D 、线段是直线的一部分二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷相应的位置上.11、=- 5 . 12、︒20的补角是 . 13、方程0121=+x 的解为 . 14、地球与太阳之间的距离为150 000 000km ,用记数法表示为 km .15、某种商品原价为每件b 元,第一次降价打八折,第二次降价每件又减10元,两次降价后,该商品每件的售价是 元.16、点A ,B ,C 在同一条直线上,6= AB cm ,2=BC cm ,则=AC . 三、解答题(一)(本大题共3小题,每小题6分,共18分) 17、计算:(1)15)7()18(12--+--; (2))3(9)216()3()2(3-÷-+⨯-+-. 18、计算:(1)222243234b a ab b a --++; (2))43()42(b a b a +--.19、已知平面内有A ,B ,C 三个点,按要求完成下列问题. (1)作直线AB ,连结BC 和AC ;(2)用适当的语句表述点C 与直线AB 的关系.四、解答题(二)(本大题共3小题,每小题7分,共21分)20、解方程:42321xx -+=+. 21、x 为何值时,式子65+-x x 的值比31-x 的值大3?BAA22、(1)已知()2210x y +++=,求x ,y 的值; (2)化简:)]921(3121[4322xy y x xy y x -+-.五、解答题(三)(本大题共3小题,每小题9分,共27分)23、某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价和售价如下表:(1)求甲,乙两种节能灯各进货多少时,使进货款恰好为46 000元;(2)应如何进货,使销售完节能灯时,商场获得的利润恰好是进货价的30%,此时利润为多少?24、如图,点O 在直线AB 上,OD 是AOC ∠的平分线,射线OE 在BOC ∠内. (1)图中有多少个小于︒180的角?(2)若OE 平分BOC ∠,求DOE ∠的度数;(3)若BOE COE ∠=∠2,︒=∠108 DOE ,求COE ∠的度数.25、如图,点O 是数轴的原点,点A 是数轴上的一个定点,点A 表示的数为-15,点B 在数轴上,且OA OB 3=,数轴上的两个动点M ,N 分别从点A 和点O 同时出发,向右移动,点M 的运动速度为每秒3个单位,点N 的运动速度为每秒2个单位.(1)求点B 和线段AB 的中点P 对应的有理数;(2)若点B 对应的数为正数,点M 移动到线段AB 的中点P 时,求点N 对应的有理数; (3)求点M ,N 运动多少秒时,点M ,N 与原点的距离相等.N M OAC BE AD2017-2018学年度第一学期期末测试七年级数学答案及评分标准一、选择题:A D D D A A B C B B 二、填空题:11、5 12、︒160 13、2-=x 14、8105.1⨯ 15、108.0-b 16、4cm . 三、解答题:17、解:(1)2222015)7()18(12-=-=--+--; (2)593548)3(9)216()3()2(3-=+--=-÷-+⨯-+-.评分说明:每小题3分.(1)答案正确就给3分;(2)计算3)2(-,)216()3(+⨯-,)3(9-÷-各占1分,答案错误扣1分.18、解:(1)222b ab a -+;(2)b a 8--.评分说明:每小题3分.第(1)小题中,合并同类项每项占1分;第(2)小题中,去括号,每个括号占1分,计算答案占1分.19、(1)作直线AB ,线段BC ,线段AC 各占1分,共3分;(2)点C 在直线AB 外,3分. 20、解:去分母,得)2(12)1(2x x -+=+, 2分 去括号,得x x -+=+21222, 4分 移项,合并,得123=x , 6分 系数化1,得4=x 7分21去分母,得)1(218)5(6->++-x x x , 2分 去括号,得221856->+--x x x , 4分 移项,合并得153->x , 5分 系数化1,得5->x , 6分21、 去分母,得18)1(2)5(6=--+-x x x 2分去括号,得182256=+---x x x 4分 移项,合并得213=x 5分 系数化1,得7=x , 6分 ∴当7=x 时,式子65+-x x 的值比31-x 的值大3. 7分22、(1)∵()2210x y +++=,∴02=+x ,01=+y 2分 ∴2=x ,1-=y ; 3分(2))]921(2121[4322xy y x xy y x -+- ]294121[4322xy y x xy y x -+-= 4分 )441(4322xy y x y x --= 5分 xy y x y x 4414322+-= 6分 xy y x 4212+= 7分 评分说明:(1)中x ,y 答对1个给1分,答对2个给满分,共3分,没写出过程不扣分;(2)去小括号占1分,中括号内合并占1分,去中括号占1分,计算答案占1分,共4分.23、(1)设甲种节能灯购进x 只,乙种节能灯购进)1200(x -只, 1分 依题意得,46000)1200(4525=-+x x , 3分 解得400=x ,8001200=-x , 4分 即甲种节能灯购进400只,乙种节能灯购进800只,进货款恰好为46 000元; 5分 (2)进货款为x x x 2054000)1200(4525-=-+, 销售款为x x x 3072000)1200(6030-=-+利润为x x x 1018000)2054000()3072000(-=---,依题意有x x 3072000%)301)(2054000(-=+-, 7分解得450=x ,7501200=-x , 135001018000=-x ,即甲种节能灯购进450只,乙种节能灯购进750只时,商场获得的利润恰好是进货价的30%,此时利润为13500元. 9分24、(1)9个; 2分 (2)∵OD 平分AOC ∠,OE 平分BOC ∠, ∴AOC COD ∠=∠21,BOC COE ∠=∠21, 3分 ∵︒=∠+∠180BOC AOC , ∴︒=∠+∠=∠+∠=∠+∠90)(212121BOC AOC BOC AOC COE COD , ∴︒=∠+∠=∠90COE COD DOE ; 5分 (3)设x BOE =∠,∵BOE COE ∠=∠2,∴x COE 2=∠ ∴x AOC 3180-︒=∠, ∵OD 平分AOC ∠,∴AOC COD ∠=∠21, ∵︒=∠=∠+∠108DOE COE COD , 7分 ∴︒=+-︒1082)3180(21x x ,︒=36x , 8分 ∴︒=∠72 COE . 9分 25、(1)∵15=OA ,OA OB 3=,∴45=OB , 若点B 在原点的右边,60= AB ,∴点B 对应的有理数为45,线段AB 的中点P 对应的有理数为15, 若点B 在原点的左边,30= AB ,∴点B 对应的有理数为-45;线段AB 的中点P 对应的有理数为-30;(2)当点B 对应的数为正数时,则点M 移动30个单位到达线段AB 的中点P ,点M 移动的时间为10330= 秒,此时点N 移动的距离为20102=⨯,∴点N 对应的有理数为20; (3)设经过x 秒点有ON OM =,若点B 在原点的右边,则1523=-x x ,15=x , 若点B 在原点的左边,则153245-=-x x ,12=x .C BE AD。

浙江省绍兴市七年级数学2017-2018学年上学期期末试卷

浙江省绍兴市七年级数学2017-2018学年上学期期末试卷

2017-2018学年浙江省绍兴市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数.则下面4个足球中,质量最接近标准的是()A.B.C.D.【考点】11:正数和负数.【解答】解:∵|+0.8|=0.8,|﹣3.5|=3.5,|﹣0.7|=0.7,|+2.1|=2.1,0.7<0.8<2.1<3.5,∴从轻重的角度看,最接近标准的是﹣0.7.故选:C.2.(3分)光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013km B.9.5×1012km C.95×1011km D.950×1010km【考点】1I:科学记数法—表示较大的数.【解答】解:将9500 000 000 000km用科学记数法表示为:9.5×1012km.故选:B.3.(3分)有理数(﹣1)2,(﹣1)3,﹣12,|﹣1|,﹣(﹣1),﹣1−1中,其中等于1的个数是()A.3个 B.4个 C.5个 D.6个【考点】14:相反数;15:绝对值;1E:有理数的乘方.【解答】解:(﹣1)2=1;(﹣1)3=﹣1;﹣12=﹣1;|﹣1|=1;﹣(﹣1)=1;﹣1−1=1.故选:B.4.(3分)下列各组数中互为相反数的一组是()A.﹣3与√(−3)2B.√(−3)2与﹣13C.﹣3与√−273 D.√273与|﹣3|【考点】14:相反数;24:立方根.【解答】解:∵﹣3与√(−3)2互为相反数,∴选项A正确;∵﹣√(−3)2与3互为相反数,∴选项B不正确;∵﹣3=√−273,∴选项C不正确;∵√273=3,|﹣3|=3,∴√273=|﹣3|,∴选项D不正确.故选:A.5.(3分)若A和B都是3次多项式,则A+B一定是()A.6次多项式B.3次多项式C.次数不高于3次的多项式D.次数不低于3次的多项式【考点】44:整式的加减.【解答】解:∵A和B都是3次多项式,∴A +B 一定3次或2次,或1次或0次的整式, 即A +B 的次数不高于3. 故选:C .6.(3分)方程2x +1=﹣3和方程2﹣a−x3=0的解相同,则a 的值是( )A .8B .4C .3D .5【考点】88:同解方程. 【解答】解:2x +1=﹣3, 解得:x=﹣2, 将x=﹣2代入2﹣a−x 3=0,得:2﹣a+23=0, 解得:a=4. 故选:B .7.(3分)∠1与∠2是内错角,∠1=40°,则( ) A .∠2=40° B .∠2=140°C .∠2=40°或∠2=140°D .∠2的大小不确定 【考点】J6:同位角、内错角、同旁内角.【解答】解:内错角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,内错角才相等. 故选:D .8.(3分)如图,直线AB ∥CD ,∠C=44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138° 【考点】JA :平行线的性质.【解答】解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选:B.9.(3分)如图,OA⊥OC,OB⊥OD,①∠AOB=∠COD;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个()A.1个 B.2个 C.3个 D.4个【考点】IL:余角和补角.【解答】解:∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确;∠AOB+∠COD不一定等于90°,故③错误;图中小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD一共6个,故④正确;综上所述,说法正确的是①②④.故选:C.10.(3分)一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a、b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+5【考点】38:规律型:图形的变化类.【解答】解:结合图形,不难发现:每剪一次,绳子多4段,推而广之,则剪n 次时,绳子的段数是(4n+1)段.故选:A.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)如果盈利200元记做+200元,那么亏损80元记做﹣80元.【考点】11:正数和负数.【解答】解:“正”和“负”相对,把盈利200元记作+200元,则亏损80元记作﹣80元.故答案为﹣80.12.(3分)x的2倍与y的平方和可表示为2x+y2.【考点】32:列代数式.【解答】解:x的2倍与y的平方和可表示为2x+y2,故答案为:2x+y2.13.(3分)若单项式57ax2y n+1与﹣75ax m y4的差仍是单项式,则m﹣2n=﹣4.【考点】35:合并同类项.【解答】解:∵单项式57ax2y n+1与−75ax m y4的差仍是单项式,∴单项式57ax2y n+1与−75ax m y4是同类项,m=2,n+1=4,n=3,m﹣2n=2﹣2×3=﹣4,故答案为:﹣4.14.(3分)已知多项式x2+3x=3,可求得另一个多项式3x2+9x﹣4的值为5.【考点】33:代数式求值.【解答】解:∵x2+3x=3,∴3x2+9x=9.∴3x2+9x﹣4=9﹣4=5.故答案为:5.15.(3分)若|a|=3,|b|=2,且a﹣b<0,则a+b=﹣1或﹣5.【考点】15:绝对值;19:有理数的加法;1A:有理数的减法.【解答】解:∵|a|=3,|b|=2,∴a=±3,b=±2,∵a﹣b<0,∴a<b,∴a=﹣3,b=±2,∴a+b=﹣3+2=﹣1,或a+b=﹣3﹣2=﹣5.综上所述,a+b=﹣1或﹣5.故答案为:﹣1或﹣5.16.(3分)如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=65度.【考点】JA:平行线的性质;PB:翻折变换(折叠问题).【解答】解:根据题意得2∠1与130°角相等,即2∠1=130°,解得∠1=65°.故填65.17.(3分)某小区有一块长方形的草地(如图),长18米,宽10米,空白部分为两条宽度均为2米的小路,则草地的实际面积128m2.【考点】Q1:生活中的平移现象.【解答】解:由题意,得草地的实际面积为:(18﹣2)×(10﹣2)=16×8=128(m2).故答案为128.18.(3分)上午9点钟的时候,时针和分针成直角,则下一次时针和分针成直角的时间是9时32811分.【考点】IG:钟面角.【解答】解:设再次转成直角的时间间隔为x,则(6﹣12)x=90×2,(6﹣12)x=180,∴x=328 11.所以下一次时针与分针成直角的时间为9时32811分,故答案为:9时32811分.三、解答题(本大题共5小题,共46分)19.(12分)计算与解方程:(1)﹣32+(﹣3)2+3×(﹣2)+|﹣4|;(2)12°24′17″×4﹣30°27′8″;(3)4−x2−2x+13=1.【考点】1G:有理数的混合运算;86:解一元一次方程;II:度分秒的换算.【解答】解:(1)原式=﹣9÷9﹣6+4=﹣3;(2)原式=48°96′68″﹣30°27′8″=18°69′60″=19°10′;(3)3(4﹣x)﹣2(2x+1)=612﹣3x﹣4x﹣2=6﹣7x=﹣4x=4 7.20.(8分)先化简,再求值:已知2(3xy﹣x2)﹣3(xy﹣2x2)﹣xy,其中x,y 满足|x+2|+(y﹣3)2=0.【考点】16:非负数的性质:绝对值;1F:非负数的性质:偶次方;45:整式的加减—化简求值.【解答】解:原式=6xy﹣2x2﹣3xy+6x2﹣xy=2xy+4x2,∵|x+2|+(y﹣3)2=0,∴x+2=0且y﹣3=0,解得:x=﹣2、y=3,则原式=2×(﹣2)×3+4×(﹣2)2=﹣12+16=421.(8分)如图①,将一个由五个边长为1的小正方形组成的图形剪开可以拼成一个正方形.(1)拼成的正方形的面积与边长分别是多少?(2)你能在图②中连结四个格点(每一个小正方形的顶点叫做格点),画出一个面积为10的正方形吗?如果不能,请说明理由;如果能,请在图②中画出这个正方形.【考点】PC:图形的剪拼.【解答】解:(1)5个小正方形拼成一个大正方形后,面积不变,所以拼成的正方形的面积是:5×1×1=5;边长=√5(2)能,如图所示:边长=√10.22.(8分)小明爸爸给小明出了一道题,说明他本月炒股的盈亏情况(单位:元)请你也来计算一下,小明爸爸本月投资炒股到底是赔了还是赚了?赔了或赚了多少元?【考点】11:正数和负数;1E:有理数的乘方.【解答】解:天河:500×23 +2.8×1000﹣1.5×1500﹣1.8×2000=4000+2800﹣2250﹣3600=950(元)答:赚了,赚了950元.23.(10分)【阅读理解】若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A 的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.【知识运用】如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数2或10所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?【考点】13:数轴;8A:一元一次方程的应用;ID:两点间的距离.【解答】解:(1)设所求数为x,当优点在M、N之间时,由题意得x﹣(﹣2)=2(4﹣x),解得x=2;当优点在点N右边时,由题意得x﹣(﹣2)=2(x﹣4),解得:x=10;故答案为:2或10;(2)设点P表示的数为x,则PA=x+20,PB=40﹣x,AB=40﹣(﹣20)=60,分三种情况:①P为(A,B)的优点.由题意,得PA=2PB,即x﹣(﹣20)=2(40﹣x),解得x=20,∴t=(40﹣20)÷4=5(秒);②P为(B,A)的优点.由题意,得PB=2PA,即40﹣x=2(x+20),解得x=0,∴t=(40﹣0)÷4=10(秒);③B为(A,P)的优点.由题意,得AB=2PA,即60=2(x+20)解得x=10,此时,点P为AB的中点,即A也为(B,P)的优点,∴t=30÷4=7.5(秒);综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.第11页(共11页)。

2017-2018七年级上学期数学试卷答案

2017-2018七年级上学期数学试卷答案

2017—2018学年上学期期末考试 模拟卷(1)七年级数学·参考答案3 9.420.53-<-<< 10.4 11.①②③④⑦,③⑦ 12.113.2 14.45 1516.(本题8分)【解析】(1)原式=348)7(-++=;(2分)(2)原式(5分)(3)原式(8分) 17.(本题9分)【解析】如图所示:(9分)18.(本题9分)【解析】原式=22223566136411ab b ab a b b b +---+--+=,(6分) 当1a =,2b =-时,原式=7.(9分) 19.(本题9分)【解析】(1)852x x -=+,移项,得528x x --=-,合并同类项,得66x -=-,解得1x =.(4分)(2)12225y y y -+-=-,去分母,得10510(2(2)2)y y y --=-+,即1055202y y y -+=--,移项,得10522045y y y -+=--,合并同类项,得711y =,解得117y =.(9分)20.(本题9分)【解析】由题意得2222134)12)2((B x x x x x ----=+-=+.(4分) 则222214(3(5)2)2A x x B x x x +=+++-=+-.(9分) 21.(本题10分)【解析】(1)109715614421076491514213()-+-+-+-=+++----=-千米.答:A 在岗亭南方,距岗亭13千米.(5分)(2)10971561442380(1)++++++++=千米,(8分)0.5(801)0)4(⨯÷=升.答:这时摩托车共耗油4升.(10分) 22.(本题10分)【解析】(1)∵OE ⊥AB ,∴∠AOE =90°,∵∠EOD =20°,∴180902070AOC ∠=︒-︒-︒=︒.(4分)(2)设∠AOC =x ,则∠BOC =2x ,∵∠AOC +∠BOC =180°,∴x +2x =180°,解得x =60°.(8分)∴∠AOC =60°,∴180906030EOD ∠=︒-︒-︒=︒.(10分) 23.(本题11分)【解析】(1)设出发后x 小时相遇,根据题意,可得80120600x x +=,解得x =3. 答:若相向而行,出发后3小时相遇.(2分)(2)设y 小时后两车相距800千米,根据题意,可得80120800600y y +=-,解得y =1.答:若相背而行,1小时后,两车相距800千米.(5分)(3)设z 小时后快车追上慢车,根据题意,可得12080600z z =+,解得z =15. 答:若两车同向而行,快车在慢车后面,15小时后,快车追上慢车.(8分)(4)设t 小时后两车相距760千米,根据题意,可得12080760600t t -=-,解得t =4.答:若两车同向而行,慢车在快车后面,4小时后,两车相距760千米.(11分)。

2017-2018学年浙江省绍兴市七年级(上)期末数学试卷-普通用卷

2017-2018学年浙江省绍兴市七年级(上)期末数学试卷-普通用卷

2017-2018学年浙江省绍兴市七年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数.则下面4个足球中,质量最接近标准的是()A. B. C. D.2.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A. 0.95×1013kmB. 9.5×1012kmC. 95×1011kmD. 950×1010km3.有理数(−1)2,(−1)3,−12,|−1|,−(−1),−1−1中,其中等于1的个数是()A. 3个B. 4个C. 5个D. 6个4.下列各组数中互为相反数的一组是()A. −3与√(−3)2B. √(−3)2与−13C. −3与√−273 D. √273与|−3|5.若A和B都是3次多项式,则A+B一定是()A. 6次多项式B. 3次多项式C. 次数不高于3次的多项式D. 次数不低于3次的多项式6.方程2x+1=−3和方程2−a−x3=0的解相同,则a的值是()A. 8B. 4C. 3D. 57.∠1与∠2是内错角,∠1=40∘,则()A. ∠2=40∘B. ∠2=140∘C. ∠2=40∘或∠2=140∘D. ∠2的大小不确定8.如图,直线AB//CD,∠C=44∘,∠E为直角,则∠1等于()A. 132∘B. 134∘C. 136∘D. 138∘9.如图,OA⊥OC,OB⊥OD,①∠AOB=∠COD;②∠BOC+∠AOD=180∘;③∠AOB+∠COD=90∘;④图中小于平角的角有6个;其中正确的结论有几个()A. 1个B. 2个C. 3个D. 4个10.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b(b//a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a、b之间把绳子再剪(n−2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A. 4n+1B. 4n+2C. 4n+3D. 4n+5二、填空题(本大题共8小题,共24.0分)11.如果盈利200元记做+200元,那么亏损80元记做______元.12.x的2倍与y的平方和可表示为______.13.若单项式57ax2y n+1与−75ax m y4的差仍是单项式,则m−2n=______.14.已知多项式x2+3x=3,可求得另一个多项式3x2+9x−4的值为______.15.若|a|=3,|b|=2,且a−b<0,则a+b=______.16.如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=______度.17.某小区有一块长方形的草地(如图),长18米,宽10米,空白部分为两条宽度均为2米的小路,则草地的实际面积______m2.18.上午9点钟的时候,时针和分针成直角,则下一次时针和分针成直角的时间是______.三、计算题(本大题共2小题,共12.0分)19.计算与解方程:(1)−32+(−3)2+3×(−2)+|−4|;(2)12∘24′17″×4−30∘27′8″;(3)4−x2−2x+13=1.20.先化简,再求值:已知2(3xy−x2)−3(xy−2x2)−xy,其中x,y满足|x+2|+(y−3)2=0.四、解答题(本大题共3小题,共24.0分)21.如图①,将一个由五个边长为1的小正方形组成的图形剪开可以拼成一个正方形.(1)拼成的正方形的面积与边长分别是多少?(2)你能在图②中连结四个格点(每一个小正方形的顶点叫做格点),画出一个面积为10的正方形吗?如果不能,请说明理由;如果能,请在图②中画出这个正方形.22.(单位:元)股票每股净赚(元)股票招商银行+23500浙江医药−(−2.8)1000晨光文具−1.51500金龙汽车−1452000请你也来计算一下,小明爸爸本月投资炒股到底是赔了还是赚了?赔了或赚了多少元?23.【阅读理解】若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为−1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A 的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.【知识运用】如图②,M、N为数轴上两点,点M所表示的数为−2,点N所表示的数为4.(1)数______所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为−20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?答案和解析【答案】1. C2. B3. B4. A5. C6. B7. D8. B9. C10. A11. −8012. 2x+y213. −414. 515. −1或−516. 6517. 12818. 9时328分1119. 解:(1)原式=−9÷9−6+4=−3;(2)原式=48∘96′68″−30∘27′8″=18∘69′60″=19∘10′;(3)3(4−x)−2(2x+1)=612−3x−4x−2=6−7x=−4x=4.720. 解:原式=6xy−2x2−3xy+6x2−xy=2xy+4x2,∵|x+2|+(y−3)2=0,∴x+2=0且y−3=0,解得:x=−2、y=3,则原式=2×(−2)×3+4×(−2)2=−12+16=421. 解:(1)5个小正方形拼成一个大正方形后,面积不变,所以拼成的正方形的面积是:5×1×1=5;边长=√5(2)能,如图所示:边长=√10.22. 解:天河:500×23+2.8×1000−1.5×1500−1.8×2000=4000+2800−2250−3600=950(元)答:赚了,赚了950元.23. 2或10【解析】1. 解:∵|+0.8|=0.8,|−3.5|=3.5,|−0.7|=0.7,|+2.1|=2.1,0.7<0.8<2.1<3.5,∴从轻重的角度看,最接近标准的是−0.7.故选:C.求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.本题考查了绝对值和正数和负数的应用,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.2. 解:将9500 000 000000km用科学记数法表示为:9.5×1012km.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 解:(−1)2=1;(−1)3=−1;−12=−1;|−1|=1;−(−1)=1;=1.−1−1故选:B.依据有理数的乘方法则,绝对值、相反数、有理数的除法法则进行计算即可.本题主要考查的是有理数的乘方,熟练掌握有理数的乘方法则是解题的关键.4. 解:∵−3与√(−3)2互为相反数,∴选项A正确;∵−√(−3)2与3互为相反数,∴选项B不正确;3,∵−3=√−27∴选项C不正确;3=3,|−3|=3,∵√273=|−3|,∴√27∴选项D不正确.故选:A.根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“−”,据此判断即可.此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“−”.5. 解:∵A和B都是3次多项式,∴A+B一定3次或2次,或1次或0次的整式,即A+B的次数不高于3.故选:C.根据合并同类项的法则和已知可以得出A+B的次数是3或2或1或0次,即可得出答案.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.注意:合并同类项时,三次项的系数可能为0.6. 解:2x+1=−3,解得:x=−2,将x=−2代入2−a−x3=0,得:2−a+23=0,解得:a=4.故选:B.先求出2x+1=−3的解,代入2−a−x3=0,可得关于a的方程,解出即可.本题考查了同解方程的知识,解答本题的关键是掌握方程解得定义.7. 解:内错角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,内错角才相等.故选:D.两直线平行时内错角相等,不平行时无法确定内错角的大小关系.特别注意,内错角相等的条件是两直线平行.8. 解:过E作EF//AB,∵AB//CD,∴AB//CD//EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44∘,∠AEC为直角,∴∠FEC=44∘,∠BAE=∠AEF=90∘−44∘=46∘,∴∠1=180∘−∠BAE=180∘−46∘=134∘,故选:B.过E作EF//AB,求出AB//CD//EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.9. 解:∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90∘,∴∠AOB+∠BOC=∠COD+∠BOC=90∘,∴∠AOB=∠COD,故①正确;∠BOC+∠AOD=90∘−∠AOB+90∘+∠AOB=180∘,故②正确;∠AOB+∠COD不一定等于90∘,故③错误;图中小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD一共6个,故④正确;综上所述,说法正确的是①②④.故选:C.根据垂直的定义和同角的余角相等分别计算,然后对各小题分析判断即可得解.本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.10. 解:结合图形,不难发现:每剪一次,绳子多4段,推而广之,则剪n次时,绳子的段数是(4n+1)段.故选:A.结合图形,发现:当用剪刀像图②那样沿虚线a把绳子剪断时,绳子被剪为5段,即5= 1+4;当用剪刀像图③那样沿虚线b(b//a)把绳子再剪一次时,绳子就被剪为9段,即9=1+4×2;若用剪刀在虚线a、b之间把绳子再剪1次,则绳子就被剪为13段,即13=1+4×3,即每剪一次,绳子多4段,从而推广.此题考查了图形的变化,通过观察找到规律,同时总结出规律,即用代数式表示.11. 解:“正”和“负”相对,把盈利200元记作+200元,则亏损80元记作−80元.故答案为−80.此题主要用正负数来表示具有意义相反的两种量:盈利记为正,则亏损记为负,直接得出结论即可.此题主要考察正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一方为正,则和它意义相反的就为负.12. 解:x的2倍与y的平方和可表示为2x+y2,故答案为:2x+y2.x的2倍即2x,y的平方即为y2,再相加即可得.此题主要考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.13. 解:∵单项式57ax2y n+1与−75ax m y4的差仍是单项式,∴单项式57ax2y n+1与−75ax m y4是同类项,m=2,n+1=4,n=3,m−2n=2−2×3=−4,故答案为:−4.根据差是单项式,可得它们是同类项,在根据同类项,可得m、n的值,根据有理数的减法,可得答案.本题考查了合并同类项,先根据差是单项式,得出它们是同类项,求出m、n的值,再求出答案.14. 解:∵x2+3x=3,∴3x2+9x=9.∴3x2+9x−4=9−4=5.故答案为:5.等式x2+3x=3两边同时乘3得:3x2+9x=9,然后代入计算即可.本题主要考查的是求代数式的值,利用等式的性质得到3x2+9x=9是解题的关键.15. 解:∵|a|=3,|b|=2,∴a=±3,b=±2,∵a−b<0,∴a<b,∴a=−3,b=±2,∴a+b=−3+2=−1,或a+b=−3−2=−5.综上所述,a+b=−1或−5.故答案为:−1或−5.根据绝对值的性质求出a、b的值,再根据有理数的减法确定出a、b的对应情况,然后根据有理数的加法运算法则进行计算即可得解.本题考查了有理数的减法,有理数的加法,绝对值的性质,熟记运算法则并准确判断出a、b的值是解题的关键.16. 解:根据题意得2∠1与130∘角相等,即2∠1=130∘,解得∠1=65∘.故填65.根据两直线平行内错角相等,以及折叠关系列出方程求解则可.本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.17. 解:由题意,得草地的实际面积为:(18−2)×(10−2)=16×8=128(m2).故答案为128.将小路两旁部分向中间平移,直到小路消失,发现草地是一个长为(18−2)米、宽为(10−2)米的长方形,根据长方形面积=长×宽列式计算即可.此题考查生活中的平移现象,化曲为直是解决此题的关键思路.18. 解:设再次转成直角的时间间隔为x,则(6−12)x=90×2,(6−12)x=180,∴x=32811.所以下一次时针与分针成直角的时间为9时32811分,故答案为:9时32811分.根据实际问题,时针转动速度为36012×60=12(度/分钟),分钟转动速度为36060=6(度/分钟),设再次转成直角的时间间隔为x,可以列出方程,从而求解下一次时针与分针成直角的时间.本题考查了一元一次方程的应用和钟面角问题,此类题目贴近生活,有利于培养学生应用数学解决生活中实际问题的能力.19. (1)根据有理数的混合计算解答即可;(2)根据度分秒的计算解答即可;(3)根据去分母、去括号、移项,系数化为1解答即可.此题考查度分秒的计算,关键是根据有理数的混合计算、度分秒的计算以及一元一次方程的解法解答.20. 原式合并同类项得到最简结果,利用非负数的性质求出x、y的值,代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.21. (1)一共有5个小正方形,那么组成的大正方形的面积为5,边长为5的算术平方根;(2)根据题意即可得到结论.本题考查了勾股定理,正方形的面积和正方形的有关画图,巧妙地根据网格的特点画出正方形是解此题的关键.正方形的面积是由组成正方形的面积的小正方形的个数决定的;边长为面积的算术平方根.22. 首先分别求出招商银行、浙江医药、晨光文具、金龙汽车这4种股票分别赚了多少钱;然后把它们相加,判断出投资者到底是赔了还是赚了,赔了或赚了多少元即可.此题主要考查了有理数的乘方的含义和求法,以及有理数的加减法的运算方法,要熟练掌握.23. 解:(1)设所求数为x,当优点在M、N之间时,由题意得x−(−2)=2(4−x),解得x=2;当优点在点N右边时,由题意得x−(−2)=2(x−4),解得:x=10;故答案为:2或10;(2)设点P表示的数为x,则PA=x+20,PB=40−x,AB=40−(−20)=60,分三种情况:①P为(A,B)的优点.由题意,得PA=2PB,即x−(−20)=2(40−x),解得x=20,∴t=(40−20)÷4=5(秒);②P为(B,A)的优点.由题意,得PB=2PA,即40−x=2(x+20),解得x=0,∴t=(40−0)÷4=10(秒);③B为(A,P)的优点.由题意,得AB=2PA,即60=2(x+20)解得x=10,此时,点P为AB的中点,即A也为(B,P)的优点,∴t=30÷4=7.5(秒);综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.(1)设所求数为x,根据优点的定义分优点在M、N之间和优点在点N右边,列出方程解方程即可;(2)根据优点的定义可知分两种情况:①P为(A,B)的优点;②P为(B,A)的优点;③B为(A,P)的优点.设点P表示的数为x,根据优点的定义列出方程,进而得出t的值.本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.。

浙江绍兴市2018学年第一学期期末教学质量检测七年级数学答案

浙江绍兴市2018学年第一学期期末教学质量检测七年级数学答案

2018学年第一学期期末教学质量检测参考答案初一数学一、仔细选一选(每小题3分,共30分)二、细心填一填:(每小题3分,共18分)11、 0 12、_52__°_25__′__12__″ 13、 -2 14、 100 15、 3 16、 16 三、认真解一解:(8小题,共52分) 17、(1)原式=-9+4+18=13 (3分) (2)原式=-1-6-9=-16 (3分) 18、x=-3 (5分)19、化简得9x 2+6y 2+1 (3分)当31-=x ,2-=y 时, 结果=26 (2分) 20、(1) (2.4x+2.8 ) (3分)(2)当x=9时,2.4x+2.8=24.4元<25元,所以小华由学校乘出租车到博物馆钱够了.(3分) 21、(1)723513+=-x x 解得x=-8, (2分) 再将x=-8代入()a a x a -+=-283,解得a=-4 (2分) (2)a=-4,b=4,c=±1,()2018c b a -+=(0±1)2018=1 (2分)22、(1)∠DOM ,∠FOM ,∠CON (2分) (2)∵FO ⊥BO ∴∠AOF=90°∴∠AOC+∠DOF=90° (1分) ∵OM 平分∠DOF ∴∠DOF=2∠DOM ∵∠AOC:∠FOM=5:2∴∠AOC=50°,∠DOM=20° (1分) ∵∠B0D=∠AOC=50°∴∠BOM=∠B0D +∠M0D =50°+20°=70° (1分) ∴∠A0N=∠BOM=70° (1分)23、(1)(100×5-32+27-25+32+38)×2=1080(人) (3分) (2)设卖出女装x 套,男装(50-x )套 15x+30(50-x)=1080 解得x=28所以卖出女装28套,男装22套 (3分) 这天营业额=120×28+180×22=7320元 (2分) 24、(1)B 点表示的数是30,AC=120 (2分) (2)①BP= 30-3t (1分)②当P 点是A ,B 两个点的中点时,30-3t=15, t=5 (2分) 当B 点是A ,P 两个点的中点时,3t-30=30, t=20 (2分)③2次相遇 (1分)第一次相遇时P 点表示的数为-15 第二次相遇时P 点表示的数为4348 (2分)。

2017-2018学年度七年级上学期期末数学试题(含答案)

2017-2018学年度七年级上学期期末数学试题(含答案)

2017-2018学年度七年级上学期期末数学试卷(考试时间为90分钟,满分120分)一、选择题(本题共12个小题,每小题3分,共36分.) 1.2-等于( ) A .-2B .12- C .2 D .122.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是 ( ) A .1枚 B .2枚 C .3枚 D .任意枚 3.下列方程为一元一次方程的是( )A .y +3= 0B .x +2y =3C .x 2=2xD .21=+y y4.下列各组数中,互为相反数的是( )A .)1(--与1B .(-1)2与1C .1-与1D .-12与1 5.下列各组单项式中,为同类项的是( ) A .a 3与a 2 B .12a 2与2a 2 C .2xy 与2x D .-3与a 6.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是( )A .a +b>0B .ab >0C .110a b -<D .110a b +>7.下列各图中,可以是一个正方体的平面展开图的是( )8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B .90° C .105° D .120°9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为 ( )A .69°B .111°C .141°D .159°ABCD第8题图第9题图10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获 利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A .(1+50%)x×80%=x -28 B .(1+50%)x×80%=x +28 C .(1+50%x)×80%=x -28 D .(1+50%x)×80%=x +28 11.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( ) A .32428-=x x B .32428+=xx C .3262262+-=+x x D .3262262-+=-x x 12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 13.-3的倒数是________.14.单项式12-xy 2的系数是_________.15.若x =2是方程8-2x =ax 的解,则a =_________. 16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500000用科学记数法表示应为_________________平方千米. 18.已知,a -b =2,那么2a -2b +5=_________.19.已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5. 20.根据图中提供的信息,可知一个杯子的价格是________元.6222 4 20 4 884446……共43元共94元三、解答题(本大题共8个小题;共60分)21.(本小题满分6分)计算:(-1)3-14×[2-(-3)2] .22.(本小题满分6分) 一个角的余角比这个角的21少30°,请你计算出这个角的大小.23.(本小题满分7分) 先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x =21.24.(本小题满分7分) 解方程:513x +-216x -=1.25.(本小题满分7分)一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数为 ; (2)写出第二次移动结果这个点在数轴上表示的数为 ; (3)写出第五次移动后这个点在数轴上表示的数为 ; (4)写出第n 次移动结果这个点在数轴上表示的数为 ; (5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值.26.(本小题满分8分)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE求:∠COE的度数.27.(本小题满分8分)如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB、CD的中点E、F之间距离是10cm,求AB、CD的长.28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为元.A E DB F C数学试题参考答案一、选择题(每小题3分,共36分)1.C ;2.B ;3.A ;4.D ;5.B ;6. D ;7.C ;8.D ;9.C ;10. B ;11.A ;12.B .二、填空题(每题3分,共24分)13.31-;14.21-;15.2;16.58°28′;17.2.5×106;18.9;19.2;20.8.三、解答题(共60分) 21.解:原式= -1-14×(2-9)…3分 =-1+ 47…5分 =43…6分 22.解:设这个角的度数为x . ………1分由题意得: 30)90(21=--x x …3分 解得:x =80……5分答:这个角的度数是80° ………6分23.解:原式 =1212212+--+-x x x ……3分 =12--x …4分 把x =21代入原式: 原式=12--x =1)21(2--…5分 =45- 7分24.解:6)12()15(2=--+x x . …2分 612210=+-+x x .……4分8x =3. ……6分 83=x .……7分 25.解:(1)第一次移动后这个点在数轴上表示的数是3; ………1分 (2)第二次移动后这个点在数轴上表示的数是4; …………2分 (3)第五次移动后这个点在数轴上表示的数是7; ……………3分 (4)第n 次移动后这个点在数轴上表示的数是n +2; …………5分 (5)54. ………………………………7分26.解:∵∠AOB =90°,OC 平分∠AOB ∴∠BOC =12∠AOB =45°,…2分∵∠BOD =∠COD -∠BOC =90°-45°=45°, ……4分∠BOD =3∠DOE ∴∠DOE =15, ……7分∴∠COE =∠COD -∠DOE =90°-15°=75° ………8分 27.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm . ………1分∵点E 、点F 分别为AB 、CD 的中点, ∴AE =12AB =1.5x cm ,CF =12CD =2x cm .……3分∴EF=AC-AE-CF=2.5x cm.……4分∵EF=10cm,∴2.5x=10,解得:x=4.……6分∴AB=12c,CD=16cm.……………8分28.解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元. ……1分由题意得:30x+45(x+4)=1755 ……3分解得:x=21 则x+4=25. ………4分答:钢笔的单价为21元,毛笔的单价为25元. ……………5分(2)设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105-y)支. …6分根据题意,得21y+25(105-y)=2447.…7分解之得:y=44.5 (不符合题意) .…8分所以王老师肯定搞错了.…9分(3)2或6. …………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z支,签字笔的单价为a元则根据题意,得21z+25(105-z)=2447-a.即:4z=178+a,因为a、z都是整数,且178+a应被4整除,所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗。

初一上期末质量数学试题附含答案

初一上期末质量数学试题附含答案

2017—2018学年度第一学期期末教学质量检测七年级数学科试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种解法供参考,如果考生的解法与参考答案不同可比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.2-1-c-n-j-y3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题共10小题,每小题3分,共30分。

1.A 2.A 3.C 4.B 5.D6.B 7.C 8.C 9.A 10.D二、填空题:本大题共6小题,每小题4分,共24分。

11.1.18×105 12.11 13.= -714.39 15.75 16.18cm三、解答题(一):本大题共3小题,每小题6分,共18分。

17.解:原式=3-2×25 ………………(3分)=3-50 ……………(5分)=-47 …………(6分)18.解:原式=10-1+a-1+a+a2+1+a-a2-a3…………………(2分)=9+3a-a3…………………(4分)1 8=3108……………(6分)19.解:∵m2-mn=7,mn-n2=-2 ……………………(2分)∴m2-n2= m2-mn+mn-n2 =5 …………………(4分)m2-2mn+n2= m2-mn-(mn –n2)=7+2=9 ……………(6分)四、解答题(二):本大题共3小题,每小题7分,共21分。

20.解: 2x+2-4=8+2-x ……(3分)∴2x+x=8+2+4-2 …………(4分)∴3x=12 …………(6分)∴x =4 ………………(7分)21.解:设这种服装每件成本是x 元,依题意得……………(1分)∴(1+40%)×0.8x - x=12 ……………………(3分) ∴1.12x - x=120.12x =12 ………………(5分)=100………………(6分)答:设这种服装每件成本是100元 …………………(7分)22.解:设∠AOB 的度数是x 0 ……………(1分)x+36………………(3分)x+36 ……(4分) 32x=144+36 32x=180 ……(5分) =120 ……(6分)答:∠AOB 的度数是1200 ……………… (7分)五、解答题(三):本大题共3小题,每小题9分,共27分。

绍兴市七年级上学期期末数学试题题及答案

绍兴市七年级上学期期末数学试题题及答案

绍兴市七年级上学期期末数学试题题及答案一、选择题1.当x 取2时,代数式(1)2x x -的值是( ) A .0B .1C .2D .3 2.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13B .﹣(﹣1)2和12C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)33.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或54.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28 B .30 C .32 D .345.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°6.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°7.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A .6cmB .3cmC .3cm 或6cmD .4cm8.化简(2x -3y )-3(4x -2y )的结果为( )A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y9.下列式子中,是一元一次方程的是( )A .3x+1=4xB .x+2>1C .x 2-9=0D .2x -3y=010.若a<b,则下列式子一定成立的是( )A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 11.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( )A .2或2.5B .2或10C .2.5D .212.下列图形中,哪一个是正方体的展开图( )A .B .C .D .二、填空题13.若|x |=3,|y |=2,则|x +y |=_____.14.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.15.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______.16.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.17.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.18.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.19.8点30分时刻,钟表上时针与分针所组成的角为_____度.20.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.21.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.22.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.23.已知7635a ∠=︒',则a ∠的补角为______°______′.24.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).三、压轴题25.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD .(1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.26.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.27.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6 a b x -1 -2 ... (1)可求得 x =______,第 2021 个格子中的数为______;(2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.28.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠.(1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数.(2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.29.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d(d≥0),则称d 为点P到点Q 的d 追随值,记作d[PQ].例如,在数轴上点P 表示的数是2,点Q 表示的数是5,则点P 到点Q 的d 追随值为d[PQ]=3.问题解决:(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2;②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.30.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q 同时出发,问点P运动多少秒时追上Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.31.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).32.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数x的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】把x 等于2代入代数式即可得出答案.【详解】解:根据题意可得:把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B.【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.2.A解析:A【解析】【分析】根据乘方和绝对值的性质对各个选项进行判断即可.【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故选A.3.D解析:D【解析】【分析】如图,根据点A 、B 表示的数互为相反数可确定原点,即可得出点B 表示的数,根据两点间的距离公式即可得答案.【详解】如图,设点C 表示的数为m ,∵点A、B表示的数互为相反数,∴AB的中点O为原点,∴点B表示的数为3,∵点C到点B的距离为2个单位,=2,∴3m∴3-m=±2,解得:m=1或m=5,∴m的值为1或5,故选:D.【点睛】本题考查了数轴,熟练掌握数轴上两点间的距离公式是解题关键.4.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.5.A解析:A【解析】【分析】延长CD交直线a于E.由∠ADC=∠AED+∠DAE,判断出∠ADC>70°即可解决问题.【详解】解:延长CD交直线a于E.∵a∥b,∴∠AED=∠DCF,∵AB∥CD,∴∠DCF=∠ABC=70°,∴∠AED=70°∵∠ADC=∠AED+∠DAE,∴∠ADC>70°,故选A.【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.7.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC-BC+12BC,=12 AB,=4,同理,当点C在线段AB上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4,,故选:D.【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.8.B解析:B【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.详解:原式=2x﹣3y﹣12x+6y=﹣10x+3y.故选B.点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.9.A解析:A【解析】A. 3x+1=4x是一元一次方程,故本选项正确;B. x+2>1是一元一次不等式,故本选项错误;C. x2−9=0是一元二次方程,故本选项错误;D. 2x−3y=0是二元一次方程,故本选项错误。

2017-2018学年浙教版七年级数学上期末检测试题含答案

2017-2018学年浙教版七年级数学上期末检测试题含答案

2017-2018九年级(上)第二次月考数学试卷一. 选择题(每题2分共16分)1、如图,已知菱形ABCD 的边长为3,∠ABC =60°,则对角线AC 的长是 ( )A .12B .9C .6D .32、将一元二次方程5x 2-1=4x 化成一般形式后,二次项的系数和一次项系数分别是 ( ) A 、5,-1 B 、5,4 C 、5,-4 D 、5,13、如图,转盘中四个扇形的面积都相等.小明随意转动转盘2次,当转盘停止转动时,二次指针所指向数字的积为偶数的概率为 ( )A .B .C .D .1题 3题 4题 6题 8题 4.如图,在△ABC 中,若DE ∥BC ,AD=5,BD=10,DE=4,则BC 的值为 ( ) A .8 B .9 C .10 D .125.如图所示几何体的左视图是 ( )A .B .C .D .6、如图,反比例函数y =(k ≠0)的图象上有一点A ,AB 平行于x 轴交y 轴于点B ,△ABO 的面积是1,则反比例函数的解析式是 ( )A. y =B. y =C. y =D. y =7、在Rt △ABC 中,∠C =90°,sin A =35,BC =6,则AB = ( )A .4B .6C .8D .108、如图,在菱形ABCD 中,AB=4cm ,∠ADC=120°,点E ,F 同时由A ,C 两点出发,分别沿AB ,CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm/s ,点F 的速度为2cm/s ,经过t 秒△DEF 为等边三角形,则t 的值为 ( )A .1B .C .D .二、填空题(每题3分共24分)9.方程x 2﹣5x=0的解是 .10.方程2x ﹣4=0的解也是关于x 的方程x 2+mx+2=0的一个解,则m 的值为 .11.把一袋黑豆中放入100粒黄豆,搅匀后取出100粒豆子,其中有黄豆4粒,则该袋中约有黑豆 . 12.如图,AD 是△ABC 的中线,E 是AD 上的一点,且AE=AD ,CE 交AB 于点F 。

绍兴市七年级上学期期末数学试题题及答案

绍兴市七年级上学期期末数学试题题及答案

绍兴市七年级上学期期末数学试题题及答案 一、选择题 1.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .12 2.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+=C .6352x x -+=D .6352x x --= 3.下列分式中,与2x y x y---的值相等的是() A .2x y y x +- B .2x y x y +- C .2x y x y -- D .2x y y x-+ 4.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM 的长( )A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm5.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120206.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式7.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .8.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( )A .∠AOC=∠BOCB .∠AOB=2∠BOCC .∠AOC=12∠AOBD .∠AOC+∠BOC=∠AOB9.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠4 10.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( )A .两点确定一条直线B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离11.下列图形中,哪一个是正方体的展开图( )A .B .C .D .12.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( )A .45010⨯B .5510⨯C .6510⨯D .510⨯二、填空题13.已知方程22x a ax +=+的解为3x =,则a 的值为__________.14.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.15.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.16.在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为______.17.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.18.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________. 19.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;20.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.21.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.22.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm .23.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.24.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .三、解答题 25.计算:(1)23(1)27|2|--+-(2)2311(6)()232-⨯--26.(1)已知∠AOB =25°42′,则∠AOB 的余角为 ,∠AOB 的补角为 ; (2)已知∠AOB =α,∠BOC =β,OM 平分∠AOB ,ON 平分∠BOC ,用含α,β的代数式表示∠MON 的大小;(3)如图,若线段OA 与OB 分别为同一钟表上某一时刻的时针与分针,且∠AOB =25°,则经过多少时间后,△AOB 的面积第一次达到最大值.27.计算:|﹣2|+(﹣1)2019+19×(﹣3)2 28.用尺规作图按下列语句画图:(1)画射线BC ,连接AC ,AB ;(2)反向延长线段AB 至点D ,使得DA =AB .29.已知,数轴上点A 、C 对应的数分别为a 、c ,且满足()2020710a c ++-=,点B 对应点的数为-3.(1)a =______,c =______;(2)若动点P 、Q 分别从A 、B 同时出发向右运动,点P 的速度为3个单位长度/秒;点Q 的速度为1个单位长度/秒,求经过多长时间P 、Q 两点的距离为43; (3)在(2)的条件下,若点Q 运动到点C 立刻原速返回,到达点B 后停止运动,点P 运动至点C 处又以原速返回,到达点A 后又折返向C 运动,当点Q 停止运动点P 随之停止运动.求在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数.30.如图,O 为直线AB 上一点,OD 平分AOC ∠,90DOE ∠=︒.(1)若50AOC ∠=︒,求COE ∠和∠BOE 的度数;(2)猜想:OE 是否平分BOC ∠?请直接写出你猜想的结论;(3)与COD ∠互余的角有:______.四、压轴题31.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.32.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.33.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可.【详解】解:根据题意可得:设BC x =,则可列出:()223x x +⨯=解得:4x =, 12BC AB =, 28AB x ∴==.故答案为:C.【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.2.C解析:C【解析】【分析】方程两边都乘以2,再去括号即可得解.【详解】3532x x --= 方程两边都乘以2得:6-(3x-5)=2x ,去括号得:6-3x+5=2x ,故选:C.【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.3.A解析:A【解析】【分析】根据分式的基本性质即可求出答案.解:原式=22x y x y x y y x++-=--, 故选:A .【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型. 4.C解析:C【解析】【分析】应考虑到A 、B 、C 三点之间的位置关系的多种可能,即点C 在点A 与B 之间或点C 在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C 在点A 与B 之间时,∵线段AB=10cm ,BC=4cm ,∴AC=10-4=6cm .∵M 是线段AC 的中点,∴AM=12AC=3cm , ②如图2,当点C 在点B 的右侧时,∵BC=4cm ,∴AC=14cmM 是线段AC 的中点,∴AM=12AC=7cm . 综上所述,线段AM 的长为3cm 或7cm .故选C .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.5.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是12020-,【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.6.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A.为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C.为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.C解析:C【解析】【分析】利用棱柱的展开图中两底面的位置对A、D进行判断;根据侧面的个数与底面多边形的边数相同对B、C进行判断.【详解】棱柱的两个底面展开后在侧面展开图相对的两边上,所以A、D选项错误;当底面为三角形时,则棱柱有三个侧面,所以B选项错误,C选项正确.故选:C.【点睛】本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.8.D解析:D【解析】A. ∵∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;B. ∵∠AOB=2∠BOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;C. ∵∠AOC=12∠AOB,∴∠AOB=2∠AOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;D. ∵∠AOC+∠BOC=∠AOB,∴假如∠AOC=30°,∠BOC=40°,∠AOB=70°,符合上式,但是OC不是∠AOB的角平分线,故本选项正确.故选D.点睛:本题考查了角平分线的定义,注意:角平分线的表示方法,①OC是∠AOB的角平分线,②∠AOC=∠BOC,③∠AOB=2∠BOC(或2∠AOC),④∠AOC(或∠BOC)=12∠AOB.9.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.10.A解析:A【解析】【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.故答案为:A.【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.11.D解析:D【解析】【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:A 、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;B 、C 、四个面连在了起不能折成正方体,故不是正方体的展开图;D 、是“141"型,所以D 是正方体的表面展开图.故答案是D.【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键.12.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将50万用科学记数法表示为5510⨯,故B 选项是正确答案.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.二、填空题13.2【解析】【分析】把x=3代入方程计算即可求出a 的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a 的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系. 15.2【解析】解:mx2+5y2﹣2x2+3=(m ﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x 的取值无关,则m ﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx 2+5y 2﹣2x 2+3=(m ﹣2)x 2+5y 2+3,∵代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.16.【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解. 【详解】根据题意可得:∠AOB=(90解析:141【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90-54)+90+15=141°.故答案为141°.【点睛】此题主要考查角度的计算与方位,熟练掌握,即可解题.17.-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3解析:-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.18.3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把代入方程组得:,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【解析:3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把12xy=⎧⎨=⎩代入方程组得:2722a bb a+=⎧⎨+=⎩,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.20.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.21.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.22.5或11【解析】【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+解析:5或11【解析】【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于11cm或5cm.23.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.24.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.解析:5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.三、解答题25.(1)0;(2)-14【解析】【分析】(1)根据平方、立方根及绝对值的运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】(1)2(1)|2|--132=-+0=(2)2311(6)()232-⨯-- 113636832=⨯-⨯- 12188=--14=-【点睛】本题考查实数的运算,熟练掌握运算法则是解题关键.26.(1)64°18′,154°18′;(2)∠MON =2β+a ;(3)15011分 【解析】【分析】(1)依据余角和补角的定义即可求出∠AOB 的余角和补角;(2)依据角平分线的定义表示出∠AOM=∠BOM=12∠AOB=12α,∠CON=∠BON=12∠COB=12β,最后再依据∠MON 与这些角的关系求解即可;(3)当OA ⊥OB 时面积最大,此时∠AOB =90°,根据角的和差关系可得求出三角形OBC 面积第一次达到最大的时间.【详解】解:(1)∵∠AOB =25°42',∴∠AOB 的余角=90°﹣25°42'=64°18′,∠AOB 的补角=180°﹣25°42'=154°18′;故答案为:64°18′,154°18′;(2)①如图1:∵∠AOB=α,∠BOC=β∴∠AOC=∠AOB+∠BOC=90°+30°=120°∵OM平分∠AOB,ON平分∠BOC,∴∠AOM=∠BOM=12∠AOB=12α,∠CON=∠BON=12∠COB=12β,∴∠MON=∠BOM+∠CON=2β+a;②如图2,∠MON=∠BOM﹣∠BON=a2β-;③如图3,∠MON =∠BON ﹣∠BOM =2βα-. ∴∠MON 为2β+a 或a 2β-或2βα-. (3)当OA ⊥OB 时,△AOB 的面积第一次达到最大值,此时∠AOB =90°,设经过x 分钟后,△AOB 的面积第一次达到最大值,根据题意得:6x+25﹣60x ×30=90, 解得x =15011. 【点睛】 此题考查了是角平分线的定义、角的和差、余角和补角的定义、三角形的面积以及角的计算以及钟面角,熟练掌握相关知识是解题的关键,解题时注意:分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.27.2【解析】【分析】直接利用绝对值的性质以及有理数的混合运算法则计算得出答案.【详解】解:原式12199=-+⨯ 11=+2=.【点睛】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.28.(1)见详解;(2)见详解.【解析】【分析】(1)根据尺规作图过程画射线BC ,连接AC ,AB 即可;(2)根据尺规作图过程反向延长线段AB 至点D ,使得DA =AB 即可.【详解】解:如图所示:(1)(1)射线BC ,连接AC ,AB 即为所求作的图形;(2)如图所示即为所求作的图形.【点睛】本题考查了作图−−复杂作图、直线、射线、线段,解决本题的关键是根据语句准确画图.29.(1)-7,1.(2)经过43秒或83秒P ,Q 两点的距离为43.(3)在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数分别是-1,0,-2.【解析】【分析】(1)由绝对值和偶次方的非负性列方程组可解;(2)设经过t 秒两点的距离为43,根据题意列绝对值方程求解即可; (3)分类讨论:点P 未运动到点C 时;点P 运动到点C 返回时;当点P 返回到点A 时.分别求出不同阶段的运动时间,进而求出相关点所表示的数即可.【详解】(1)由非负数的性质可得:7010a c +=⎧⎨-=⎩, ∴7a =-,1c =,故答案为:-7,1;(2)设经过t 秒两点的距离为43, 由题意得:41433t t ⨯+-=, 解得43t =或83, 答:经过43秒或83秒P ,Q 两点的距离为43; (3)点P 未运动到点C 时,设经过x 秒P ,Q 相遇, 由题意得:34x x =+,∴2x =,表示的数为:7321-+⨯=-,点P 运动到点C 返回时,设经过y 秒P ,Q 相過,由题意得:()34217y y ++=--⎡⎤⎣⎦,∴3y =,表示的数是:()331710⨯----=⎡⎤⎣⎦,当点P 返回到点A 时,用时163秒,此时点Q 所在位置表示的数是13-, 设再经过z 秒相遇,由题意得:()1373z z +=---, ∴53z =, 表示的数是:57323-+⨯=-, 答:在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数分别是-1,0,-2.【点睛】本题综合考查了绝对值和偶次方的非负性、利用方程来解决动点问题与行程问题,本题难度较大.30.(1)65COE ∠=︒,65BOE ∠=︒;(2)平分;(3)COE ∠、∠BOE .【解析】【分析】(1)根据角平分线和直角的性质,即可得出∠COE ,然后根据平角的性质即可得出∠BOE ;(2)根据角平分线的性质得出12COD AOD AOC ∠=∠=∠,然后根据余角的性质得出∠COE=∠BOE ,即可得出OE 平分BOC ∠;(3)根据余角的性质,即可判定.【详解】(1)∵OD 平分AOC ∠,50AOC ∠=︒, ∴11502522COD AOD AOC ∠=∠=∠=⨯︒=︒, ∵90DOE ∠=︒.∴902565COE DOE COD ∠=∠-∠=︒-︒=︒, 180180259065BOE AOD DOE ∠=︒-∠-∠=︒-︒-︒=︒;(2)平分∵OD 平分AOC ∠, ∴12COD AOD AOC ∠=∠=∠ ∵90DOE ∠=︒∴∠DOC+∠COE=∠AOD+∠BOE=90°∴∠COE=∠BOE∴OE 平分BOC ∠;(3)由题意,得∠DOE=∠DOC+∠COE=90°∠AOD+∠BOE=90°,∠AOD=∠DOC∴与COD ∠互余的角有:COE ∠、∠BOE【点睛】此题主要考查角平分线以及余角、平角的性质,熟练掌握,即可解题.四、压轴题31.(1)点P在线段AB上的13处;(2)13;(3)②MNAB的值不变.【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的13处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;(3)当点C停止运动时,有CD=12AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM=112AB.【详解】解:(1)由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的13处;(2)如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ=13 AB,∴13 PQ AB(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12 AB,∴CM=14 AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.【点睛】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.32.2+t6-2t或2t-6【解析】分析:(1)、先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B 两点之间的距离;(2)、设BC的长为x,则AC=2x,根据AB的长度得出x的值,从而得出点C所表示的数;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0<t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.详解:(1)、由题意知a=-2,b=6,故AB=8.(2)、设BC的长为x,则AC=2x, ∵BC+AC=AB,∴x+2x=8,解得x=83,∴C点表示的数为6-8 3=103.(3)①2+t;6-2t或2t-6.②当2+t=6-2t时,解得t=43,当2+t=2t-6时,解得t=8.∴t=43或8.点睛:本题考查了非负数的性质,方程的解法,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键.33.(1)1;(2)点P运动5秒时,追上点R;(3)线段MN的长度不发生变化,其长度为5.【解析】试题分析:(1)由已知条件得到AB=10,由PA=PB,于是得到结论;(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.试题解析:解:(1)(1)∵A,B表示的数分别为6,-4,∴AB=10,∵PA=PB,∴点P表示的数是1,(2)设点P运动x秒时,在点C处追上点R(如图)则:AC=6x BC=4x AB=10∵AC-BC=AB∴ 6x-4x=10解得,x=5∴点P运动5秒时,追上点R.(3)线段MN的长度不发生变化,理由如下:分两种情况:点P在A、B之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5点P运动到点B左侧时:MN=MP-NP=AP-BP=(AP-BP)=AB=5综上所述,线段MN的长度不发生变化,其长度为5.点睛:此题主要考查了一元一次方程的应用、数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,要考虑全面各种情况,不要漏解.。

2017-2018学年七年级(上)数学期末测试(含答案)

2017-2018学年七年级(上)数学期末测试(含答案)

期末测试(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分) 1.-2的绝对值是(C )A .-2B .-12C .2D .122.(湖州中考)当x =1时,代数式4-3x 的值是(A )A .1B .2C .3D .43.(诸暨期末)在实数3,0,0.2,π2,4,3.141 592 6中,无理数的个数是(B )A .1B .2C .3D .44.(湖州模拟)支付宝与“滴滴打车”联合推出优惠,“滴滴打车”一夜之间红遍大江南北,据统计,2016年“滴滴打车”账户流水总金额达到4 730 000 000亿元,用科学记数法表示为(B )A .4.73×108B .4.73×109C .4.73×1010D .4.73×10115.(丽水青田期末)下列计算正确的是(D )A .3a +a =3a 2B .2a +3b =5abC .-3ab -2ab =abD .-3ab +2ab =-ab6.(绍兴上虞区期末)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条这样的墨线,能解释这一实际应用的数学知识是(A )A .两点确定一条直线B .垂线段最短C .在同一平面内,过一点有且只有一条直线与已知直线垂直D .两点之间,线段最短第6题图 第7题图7.如图,点O 在直线AB 上,射线OC 平分∠DOB ,若∠COB =35°,则∠AOD 等于(C )A .35°B .70°C .110°D .145°8.(台州椒江区期末)2016年11月13日,第二届台州国际马拉松在市体育馆开跑,此次比赛分全程马拉松,半程马拉松和迷你马拉松,比赛启动网上报名,规模设计为10 000人,其中全程马拉松1 500名,迷你马拉松设5 000人,与去年第一届马拉松相比,半程马拉松的名额增加了40%,设第一届报名参加半程马拉松的有x 人,则可得方程(D )A .x +40%=3 500B .40%x =3 500C .x ÷(1+40%)=3 500D .x (1+40%)=3 5009.如图,面积为5的正方形ABCD 的顶点A 在数轴上,且表示的数为1,若AD =AE ,则数轴上点E 所表示的数为(B )A .- 5B .1- 5C .-1-52D .32- 510.(绍兴柯桥区期末)将1,2,3,4,…,50这50个自然数,任意分成25组,每组两个数,将每组的两个数中的任意一个数记作a ,另一个数记作b ,代入代数式12(|a -b |+a +b )中进行计算,求出其结果.25组分别代入可求出25个结果,则这25个值的和最大值是(C )A .325B .650C .950D .1 275二、填空题(每小题4分,共24分) 11.-125的立方根是-5. 12.70°的余角为20°.13.单项式-4x 2y 3的系数是-4,次数是5.14.若a 、b 互为相反数,m 、n 互为倒数,则2 017a +2 016b +mnb 的值为0.15.对任意四个有理数a ,b ,c ,d ,定义:⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,已知⎪⎪⎪⎪⎪⎪2x -4x 1=18,则x =3.16.已知一列数:1,-2,3,-4,5,-6,7,…,将这列数排成如下形式:第1行 1 第2行 -2 3 第3行 -4 5 -6 第4行 7 -8 9 -10 第5行 11 -12 13 -14 15 …按照上述规律排下去,那么第10行从左边开始数的第5个数是-50.三、解答题(共66分) 17.(10分)计算:(1)(23-59-712)×(-36); (2)-22+23×116-3-27. 解:原式=17. 解:原式=1.18.(10分)解方程:(1)5x +3(2-x )=8; (2)x -32-4x +15=1.解:x =1. 解:x =-9.19.(8分)(绍兴上虞区期末)先化简,再求值:2(3x 2-x +4)-3(2x 2-2x +3),其中x =-1.解:原式=6x 2-2x +8-(6x 2-6x +9) =6x 2-2x +8-6x 2+6x -9 =4x -1.当x =-1时,原式=4x -1=4×(-1)-1=-5.20.(8分)如图所示,点A 、B 、C 分别代表三个村庄,根据下列条件画图.(1)画射线AC ,画线段AB ;(2)若线段AB 是连结A 村和B 村的一条公路,现C 村庄也要修一条公路与A 、B 两村庄之间的公路连通,为了减少修路开支,C 村庄应该如何修路?请在同一图上用三角板画出示意图,并说明画图理由.解:(1)如图所示.(2)如图所示,由垂线段最短,作出CD ⊥AB 即可.21.(8分)(西湖区期末)如图,O 在直线AC 上,OD 是∠AOB 的平分线,OE 在∠BOC 内.(1)若OE 是∠BOC 的平分线,则有OD ⊥OE ,试说明理由; (2)若∠BOE =12∠EOC ,∠DOE =72°,求∠EOC 的度数.解:(1)∵OD 是∠AOB 的平分线,OE 是∠BOC 的平分线, ∴∠BOD =12∠AOB ,∠BOE =12∠BOC .∴∠DOE =12(∠AOB +∠BOC )=12∠AOC =90°,即OD ⊥OE .(2)设∠EOB =x ,则∠EOC =2x ,则∠BOD =12(180°-3x ),∵∠BOE +∠BOD =∠DOE ,∴x +12(180°-3x )=72°,解得x =36°.故∠EOC =2x =72°.22.(10分)某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)用代数式分别表示购买乒乓球x 盒时,甲、乙两家商店的付款金额; (2)当购买乒乓球多少盒时,两种优惠办法付款一样? 解:(1)设该班购买乒乓球x 盒,则 甲:100×5+(x -5)×25=25x +375, 乙:0.9×100×5+0.9x ×25=22.5x +450. (2)25x +375=22.5x +450,解得x =30.∴当购买乒乓球30盒时,两种优惠办法付款一样.23.(12分)如图,已知数轴上A 、B 两点对应的数分别为-4和2,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A 、点B 的距离相等,写出点P 对应的数;(2)数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为10?若存在,求出x 的值;若不存在,请说明理由;(3)若点A 、点B 和点P (点P 在原点)同时向右运动,它们的速度分别为2、1、1个长度单位/分,问:多少分钟后P 点到点A 、点B 的距离相等?解:(1)∵A 、B 两点对应的数分别为-4和2,∴AB =6. ∵点P 到点A 、点B 的距离相等,∴P 到点A 、点B 的距离为3.∴点P 对应的数是-1. (2)存在.设P 表示的数为x ,①当P在A点左侧时,P A+PB=10,即-4-x+2-x=10,解得x=-6.②当P在B点右侧时,P A+PB=10,即x-2+x-(-4)=10,解得x=4.(3)∵点B和点P的速度分别为1、1个长度单位/分,∴无论运动多少分钟,PB始终距离为2.设运动t分钟后P点到点A、点B的距离相等,则t-(2t-4)=2,解得t=2.∴2分钟后P点到点A、点B的距离相等.。

2017-2018学年七年级(上)期末数学试卷及答案

2017-2018学年七年级(上)期末数学试卷及答案

2017-2018学年七年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.运用等式性质进行的变形,正确的是()A.如果a=b,则a+c=b﹣c B.如果a2=3a,那么a=3C.如果a=b,则=D.如果=,则a=b3.直四棱柱、长方体和正方体之间的包含关系是()A.B.C.D.4.下列说法中,错误的是()A.﹣2a2b与ba2是同类项B.对顶角相等C.过一点有且只有一条直线与已知直线平行D.垂线段最短5.如图,直线a、b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°,其中能判断a∥b的条件有()A.1个 B.2个 C.3个 D.4个6.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍少1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.x=1 B.x+1=xC.x﹣1+1=x D.x+1+1=x二、填空题(本大题共10小题,每小题3分,共30分)7.请写出一个负无理数.8.今年某市参加中考的考生共约11万人,用科学记数法表示11万人是人.9.若2x|m|﹣1=5是一元一次方程,则m的值为.10.某几何体的三视图如图所示,则这个几何体的名称是.11.多项式2a2﹣4a+1与多项式﹣3a2+2a﹣5的差是.12.小明根据方程5x+2=6x﹣8编写了一道应用题,请你把空缺的部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个;,请问手工小组有几人?(设手工小组有x人)13.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是.14.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,则∠ACB的度数为.15.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是.16.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为11,则满足条件的x的不同值分别为.三、解答题(本大题共12小题,共102分)17.计算:(1)[﹣5﹣(﹣11)]÷(﹣÷);(2)﹣22﹣×2+(﹣2)3÷(﹣).18.解方程:(1)6+2x=14﹣3x(写出检验过程);(2)=1.19.如图,点B在线段AD上,C是线段BD的中点,AD=10,BC=3.求线段CD、AB的长度.20.一个角的补角加上10°后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.21.化简求值:(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.22.证明:多项式16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}的值与字母a的取值无关.23.如图,EF⊥BC,AD⊥BC,∠1=∠2,∠B=30°.求∠GDB的度数.请将求∠GDB度数的过程填写完整.解:因为EF⊥BC,AD⊥BC,所以∠BFE=90°,∠BDA=90°,理由是,即∠BFE=∠BDA,所以EF∥,理由是,所以∠2=,理由是.因为∠1=∠2,所以∠1=∠3,所以AB∥,理由是,所以∠B+ =180°,理由是.又因为∠B=30°,所以∠GDB=.24.如图,点P是∠AOB的边OB上的一点过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到的距离,是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是(用“<”号连接)25.周末小明陪爸爸去陶瓷商城购买一些茶壶和茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同:茶壶每把定价30元,茶杯每只定价5元.两家都有优惠:甲店买一送一大酬宾(买一把茶壶赠送茶杯一只);乙店全场9折优惠.小明爸爸需茶壶5把,茶杯x只(x不小于5).(1)若在甲店购买,则总共需要付元;若在乙店购买,则总共需要付元.(用含x的代数式表示并化简.)(2)当需购买15只茶杯时,请你去办这件事,你打算去哪家商店购买?为什么?26.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?请写出你作出这种决策的理由.27.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.28.如图,OB、OC是∠AOD的两条射线,OM和ON分别是∠AOB和∠COD内部的一条射线,且∠AOD=α,∠MON=β.(1)当∠AOM=∠BOM,∠DON=∠CON时,试用含α和β的代数式表示∠BOC;(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∠BOC等于多少?(用含α和β的代数式表示)②当∠AOM=3∠BOM,∠DON=3∠CON时,∠BOC等于多少?(用含α和β的代数式表示)(3)根据上面的结果,请填空:当∠AOM=n∠BOM,∠DON=n∠CON时,∠BOC=.(n是正整数)(用含α和β的代数式表示).2017-2018学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.2.运用等式性质进行的变形,正确的是()A.如果a=b,则a+c=b﹣c B.如果a2=3a,那么a=3C.如果a=b,则=D.如果=,则a=b【考点】等式的性质.【分析】根据等式的性质对每一项分别进行分析,即可得出正确答案.【解答】解:A、根据等式性质1,两边都加c,得到a+c=b+c,故A不正确;B、因为根据等式性质2,a≠0,所以不正确;C、因为c必需不为0,所以不正确;D、根据等式性质2,两边都乘以c,得到a=b,所以D成立;故选D.3.直四棱柱、长方体和正方体之间的包含关系是()A.B.C.D.【考点】认识立体图形.【分析】根据长方体与正方体的关系,可得答案.【解答】解:长方体是特殊的直四棱柱,正方体是特殊的长方体,故选:B.4.下列说法中,错误的是()A.﹣2a2b与ba2是同类项B.对顶角相等C.过一点有且只有一条直线与已知直线平行D.垂线段最短【考点】平行公理及推论;同类项;对顶角、邻补角;垂线段最短.【分析】A、根据同类项的定义进行判断;B、根据对顶角的性质进行判断;C、根据平行公理进行判断;D、根据垂线段的性质进行判断.【解答】解:A、﹣2a2b与ba2是同类项,故本选项错误;B、对顶角相等,故本选项错误;C、过直线外一点有且只有一条直线与已知直线平行,故本选项正确;D、从直线外一点到这条直线所作的垂线段最短,故本选项错误;故选:C.5.如图,直线a、b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°,其中能判断a∥b的条件有()A.1个 B.2个 C.3个 D.4个【考点】平行线的判定.【分析】根据平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行进行分析即可.【解答】解:①∠1=∠2可根据同位角相等,两直线平行得到a∥b;②∠3=∠6可根据内错角相等,两直线平行得到a∥b;③∠4+∠7=180°可得∠6+∠7=180°,可根据同旁内角互补,两直线平行得到a∥b;④∠5+∠8=180°可得∠3+∠2=180°,可根据同旁内角互补,两直线平行得到a∥b;故选:D.6.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍少1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.x=1 B.x+1=xC.x﹣1+1=x D.x+1+1=x【考点】由实际问题抽象出一元一次方程.【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,,故选C.二、填空题(本大题共10小题,每小题3分,共30分)7.请写出一个负无理数﹣(答案不唯一).【考点】无理数.【分析】根据无理数是无限不循环小数进行解答即可.【解答】解:由无理数的定义可知,﹣、﹣…是负无理数.故答案为:﹣(答案不唯一).8.今年某市参加中考的考生共约11万人,用科学记数法表示11万人是 1.1×105人.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:11万=11 0000=1.1×105,故答案为:1.1×105.9.若2x|m|﹣1=5是一元一次方程,则m的值为±2.【考点】一元一次方程的定义.【分析】利用一元一次方程的定义判断即可.【解答】解:∵2x|m|﹣1=5是一元一次方程,∴|m|﹣1=1,即|m|=2,解得:m=±2,故答案为:±210.某几何体的三视图如图所示,则这个几何体的名称是圆柱.【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为长方形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱,故答案为:圆柱.11.多项式2a2﹣4a+1与多项式﹣3a2+2a﹣5的差是5a2﹣6a+6.【考点】整式的加减.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:(2a2﹣4a+1)﹣(﹣3a2+2a﹣5)=2a2﹣4a+1+3a2﹣2a+5=5a2﹣6a+6.故答案为5a2﹣6a+6.12.小明根据方程5x+2=6x﹣8编写了一道应用题,请你把空缺的部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个;如果每人做6个,那么就比计划多8个,请问手工小组有几人?(设手工小组有x人)【考点】一元一次方程的应用.【分析】根据等号左边的式子可以看出,表示实际需要礼物个数,仿照所给题意的前半部分写出所缺部分.【解答】解:等号左边5x+2,表示实际需要礼物个数,那么等号右边也应表示实际需要礼物个数,则6x﹣8表示:如果每人做6个,那么就比计划多8个.13.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是梦.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“梦”是相对面,“们”与“中”是相对面,“的”与“国”是相对面.故答案为:梦.14.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,则∠ACB的度数为80°.【考点】方向角.【分析】根据方向角,可得∠1,∠2,∠3的度数,根据平行线的性质,可得∠5,的度数,根据角的和差,可得∠2,4的度数,根据三角形的内角和定理,可得答案.、【解答】解:如图:,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,∴∠1=45°∠2=85°,∠3=15°,由平行线的性质得∠5=∠1=45°.由角的和差得∠6=∠2﹣∠5=85°﹣45°=40°,∠4=∠1+∠3=45°+15°=60°,由三角形的内角和定理得∠ACB=180°﹣∠6﹣∠4=180°﹣40°﹣60°=80°,故答案为:80°.15.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是20cm.【考点】平移的性质.【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【解答】解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=△ABE的周长+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.故答案为:20cm.16.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为11,则满足条件的x的不同值分别为5,2,0.5.【考点】代数式求值.【分析】解答本题的关键就是弄清楚题图给出的计算程序.由于代入x计算出y 的值是11>10,符合要求,所以x=5即也可以理解成y=5,把y=5代入继续计算,得x=2,依此类推就可求出5,2,0.5.【解答】解:依题可列,y=2x+1,把y=11代入可得:x=5,即也可以理解成y=5,把y=5代入继续计算可得:x=2,把y=2代入继续计算可得:x=0.5,把y=0.5代入继续计算可得:x<0,不符合题意,舍去.∴满足条件的x的不同值分别为5,2,0.5.三、解答题(本大题共12小题,共102分)17.计算:(1)[﹣5﹣(﹣11)]÷(﹣÷);(2)﹣22﹣×2+(﹣2)3÷(﹣).【考点】有理数的混合运算.【分析】(1)原式先计算括号中的运算,再计算除法运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=6÷(﹣×4)=6÷(﹣6)=﹣1;(2)原式=﹣4﹣3+(﹣8)÷(﹣)=﹣4﹣3+16=9.18.解方程:(1)6+2x=14﹣3x(写出检验过程);(2)=1.【考点】解一元一次方程.【分析】(1)方程移项合并,把x系数化为1,求出解,检验即可;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:3x+2x=14﹣6,合并得:5x=8,解得:x=1.6,当x=1.6时,左边=6+3.2=9.2,右边=14﹣4.8=9.2,∵左边=右边,∴x=1.6是方程的解;(2)去分母得:3(x+2)﹣2(2x﹣3)=12,去括号得:3x+6﹣4x+6=12,解得:x=0.19.如图,点B在线段AD上,C是线段BD的中点,AD=10,BC=3.求线段CD、AB的长度.【考点】两点间的距离.【分析】根据线段中点的定义可得BC=CD;再根据AB=AD﹣BC﹣CD,代入数据进行计算即可得解.【解答】解:∵C是线段BD的中点,∴BC=CD,∵BC=3,∴CD=3;由图形可知,AB=AD﹣BC﹣CD,∵AD=10,BC=3,∴AB=10﹣3﹣3=4.20.一个角的补角加上10°后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.【考点】余角和补角.【分析】设这个角为x°,则得出方程180﹣x+10=3(90﹣x),求出即可.【解答】解:设这个角为x°,则180﹣x+10=3(90﹣x),解得:x=40.即这个角的余角是50°,补角是140°.21.化简求值:(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.【考点】整式的加减—化简求值.【分析】先化简,然后将a与b的值代入即可求出答案.【解答】解:原式=3ab2﹣a2b﹣4ab2+2a2b=﹣ab2+a2b,当a=1,b=﹣2时,原式=﹣1×1×4+1×(﹣2)=﹣6;22.证明:多项式16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}的值与字母a的取值无关.【考点】整式的加减.【分析】先将多项式16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}进行化简,化简时去括号,然后合并同类项,以此来判断是否与a的取值无关.【解答】证明:16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}=16+a﹣{8a﹣[a﹣9﹣3+6a]}=16+a﹣{8a﹣a+9+3+6a}=16+a﹣8a+a﹣9﹣3+6a=4.故多项式的值与a的值无关.23.如图,EF⊥BC,AD⊥BC,∠1=∠2,∠B=30°.求∠GDB的度数.请将求∠GDB度数的过程填写完整.解:因为EF⊥BC,AD⊥BC,所以∠BFE=90°,∠BDA=90°,理由是垂直的定义,即∠BFE=∠BDA,所以EF∥AD,理由是同位角相等,两直线平行,所以∠2=∠3,理由是两直线平行,同位角相等.因为∠1=∠2,所以∠1=∠3,所以AB∥DG,理由是内错角相等,两直线平行,所以∠B+ ∠GDB=180°,理由是两直线平行,同旁内角互补.又因为∠B=30°,所以∠GDB=150°.【考点】平行线的判定与性质.【分析】先根据垂直的定义得出∠BFE=90°,∠BDA=90°,故可得出EF∥AD,再由平行线的性质得出∠2=∠3,利用等量代换得出∠1=∠3,故AB∥DG,再由∠B=30°即可得出结论.【解答】解:∵EF⊥BC,AD⊥BC,∴∠BFE=90°,∠BDA=90°(垂直的定义),即∠BFE=∠BDA,∴EF∥AD(同位角相等,两直线平行),∴∠2=∠3(两直线平行,同位角相等).又∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行)∴∠B+∠GDB=180°(两直线平行,同旁内角互补).又∵∠B=30°,∴∠GDB=150°.故答案为:垂直的定义,AD,同位角相等,两直线平行,∠3,两直线平行,同位角相等,DG,内错角相等,两直线平行,∠GDB,两直线平行,同旁内角互补,150°.24.如图,点P是∠AOB的边OB上的一点过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到OA的距离,线段CP的长度是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是PH<PC<OC(用“<”号连接)【考点】点到直线的距离;垂线段最短.【分析】(1)过点P画OA的垂线,即过点P画∠PHO=90°即可,(2)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是PH<PC<OC.【解答】解:(1)如图:(2)线段PH的长度是点P到直线OA的距离,线段CP的长度是点C到直线OB的距离,根据垂线段最短可得:PH<PC<OC,故答案为:OA,线段CP,PH<PC<OC.25.周末小明陪爸爸去陶瓷商城购买一些茶壶和茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同:茶壶每把定价30元,茶杯每只定价5元.两家都有优惠:甲店买一送一大酬宾(买一把茶壶赠送茶杯一只);乙店全场9折优惠.小明爸爸需茶壶5把,茶杯x只(x不小于5).(1)若在甲店购买,则总共需要付5x+125元;若在乙店购买,则总共需要付 4.5x+135元.(用含x的代数式表示并化简.)(2)当需购买15只茶杯时,请你去办这件事,你打算去哪家商店购买?为什么?【考点】列代数式.【分析】(1)由题意可知,在甲店买一把茶壶赠送茶杯一只,故需付5只茶壶的钱和x﹣5只茶杯的钱,已知茶壶和茶杯的钱,可列出付款关于x的式子;在乙店购买全场9折优惠,同理也可列出付款关于x的式子;(2)计算后判断即可.【解答】解:(1)设购买茶杯x只,在甲店买一把茶壶赠送茶杯一只,且茶壶每把定价30元、茶杯每只定价5元,故在甲店购买需付:5×30+5×(x﹣5)=5x+125;在乙店购买全场9折优惠,故在乙店购买需付:30×0.9×5+5×0.9×x=4.5x+135;(2)选择甲店购买,理由:到甲店购买需要200元,到乙店购买需要202.5元.∵200<202.5,∴选择甲店购买,故答案为:(1)(5x+125),(4.5x+135)26.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?请写出你作出这种决策的理由.【考点】一元一次方程的应用.【分析】(1)根据题意设出房间数,进而表示出总人数得出等式方程求出即可;(2)根据已知条件分别列出两种住房方法所用的钱数,进而比较即可.【解答】解:(1)设客房有x间,则根据题意可得:7x+7=9x﹣9,解得x=8;即客人有7×8+7=63(人);答:客人有63人.(2)如果每4人一个房间,需要63÷4=15,需要16间客房,总费用为16×20=320(钱),如果定18间,其中有四个人一起住,有三个人一起住,则总费用=18×20×0.8=288(钱)<320钱,所以他们再次入住定18间房时更合算.答:他们再次入住定18间房时更合算.27.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【考点】直线、射线、线段.【分析】(1)从左向右依次固定一个端点A,C,D找出线段,最后求和即可;(2)根据数线段的特点列出式子化简即可;(3)将实际问题转化成(2)的模型,借助(2)的结论即可得出结论.【解答】解:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2),理由:设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x==m(m﹣1),∴x=;(3)把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,因此一共要进行=28场比赛.28.如图,OB、OC是∠AOD的两条射线,OM和ON分别是∠AOB和∠COD内部的一条射线,且∠AOD=α,∠MON=β.(1)当∠AOM=∠BOM,∠DON=∠CON时,试用含α和β的代数式表示∠BOC;(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∠BOC等于多少?(用含α和β的代数式表示)②当∠AOM=3∠BOM,∠DON=3∠CON时,∠BOC等于多少?(用含α和β的代数式表示)(3)根据上面的结果,请填空:当∠AOM=n∠BOM,∠DON=n∠CON时,∠BOC=β﹣α.(n是正整数)(用含α和β的代数式表示).【考点】角的计算.【分析】(1)根据∠BOC=∠MON﹣∠BOM﹣∠CON,等量代换即可表示出∠BOC的大小;(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,等量代换即可表示出∠BOC的大小;②当∠AOM=3∠BOM,∠DON=3∠CON时,等量代换即可表示出∠BOC 的大小;(3)当∠AOM=n∠BOM,∠DON=n∠CON时,等量代换即可表示出∠BOC的大小;【解答】(1)∵∠AOM=∠BOM=∠AOB,∠CON=∠DON=∠COD,∵∠BOC=∠MON﹣∠BOM﹣∠CON=∠MON﹣∠AOB﹣∠COD=∠MON﹣(∠AOB+∠COD)=∠MON﹣(∠AOD﹣∠BOC)=β﹣(α﹣∠BOC)=β﹣α+∠BOC,则∠BOC=2β﹣α.(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∵∠BOM+∠CON=(∠AOM+∠DON)=(α﹣β),∴∠BOC=∠MON﹣(∠BOM+∠CON)=β﹣(α﹣β)=β﹣α;②当∠AOM=3∠BOM,∠DON=3∠CON时,∵∠BOM+∠CON=(∠AOM+∠DON)=(α﹣β),∴∠BOC=∠MON﹣(∠BOM+∠CON)=β﹣(α﹣β)=β﹣α;(3)当∠AOM=n∠BOM,∠DON=n∠CON时,∵∠BOM+∠CON=(∠AOM+∠DON)=(α﹣β),∴∠BOC=∠MON﹣(∠BOM+∠CON)=β﹣(α﹣β)=β﹣α;故答案为:β﹣α.。

浙江省嵊州市浙教版七年级上数学期末试题

浙江省嵊州市浙教版七年级上数学期末试题

七年级上数学期末模拟试题1班级________________姓名_____________总分___________一.选择题(共12小题)1.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()2.绝对值大于2且小于5的所有整数的和是()A.0 B.7 C.14 D.283.若+|2a﹣b+1|=0,则(b﹣a)2016的值为()A.﹣1 B.1 C.52015 D.﹣520154.对代数式a2+b2的意义表达不确切的是()A.a与b的平方和B.a与b的平方的和C.a2与b2的和D.a的平方与b的平方的和5.若(m﹣2)x|2m﹣3|=6是一元一次方程,则m等于()A.1 B.2 C.1或2 D.任何数6.如图,把一条绳子折成3折,用剪刀从中剪断,得到几条绳子?()A.3 B.4 C.5 D.67.2016的相反数是()A.2016 B.﹣2016 C. D.﹣8.下列说法中正确的有()①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积绝对值,等于这两个有理数的绝对值的积.A.1个B.2个C.3个D.4个9.如果代数式x2﹣2x+5的值等于7,则代数式3x2﹣6x﹣1的值为()A.5 B.6 C.7 D.810.已知ax=bx,下列结论错误的是()A.a=b B.ax+c=bx+c C.(a﹣b)x=0 D.11.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短12.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,1二.填空题(共6小题)13.计算:|﹣|=.14.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为.15.比较大小关系:32.16.若3a m+2b4与﹣a5b n﹣1的和仍是一个单项式,则m+n=.17.当x=时,2x﹣3与的值互为倒数.18.如图,OA⊥OB,OC⊥OD.若∠AOD=144°,则∠BOC=.三.解答题(共8小题)19.计算:(1)(2﹣3)﹣(﹣4﹣1)(2)20.如图:(1)用代数式表示阴影部分的面积;(2)当a=10,b=4,π的取值为3时,求阴影部分的面积.21.已知(a2﹣1)x2﹣(a+1)x+8=0是关于x的一元一次方程.(1)求代数式2008(a+x)(x﹣2a)+3a+5的值;(2)求关于y方程a|y|=x的解.22.如图,直线AB.CD相交于点O,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.23.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.24.出租车司机小李某天下午营运全是在东西走向的人民大道上进行的.如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6(1)将最后一名乘客送到目的地时,小李距下午出车时的出发点多远?(2)若汽车耗油量为3升/千米,这天下午小李开车共耗油多少升?25.读一读,想一想:1857年德国统计学家恩思特•恩格尔阐明了一个定律:随着家庭和个人收入增加,收入中用于食品方面的支出比例将逐渐减少,反映这一定律的系数称为恩格尔系数n,计算公式为:n=100%.国际上常常用恩格尔系数来衡量一个国家和地区人民生活水平的状况,根据联合国粮农组织提出的标准,恩格尔系数n在59%以上为贫困,50%≤n<59%为温饱,40%≤n<50%为小康,30%≤n<40%为富裕,n低于30%为最富裕.(摘自:宜昌日报电子版)张伯家庭的所有支出都有详尽的记载.2000年与1997年相比较,总体物价稳定但食品价格下降了7.5%,因而张伯家2000年所购买的食品和在1997年完全相同的情况下人均少支出150元,而人均个人消费支出总额增加了170元;1997年,张伯家人均食品支出总额比其人均个人消费支出总额的一半还少381元.(1)设1997年张伯家人均食品支出总额为x(元),人均个人消费支出总额为y(元).请用含x的代数式表示y;(2)已知1997年和2000年张伯家的恩格尔系数都与宜昌市城区抽样调查得到的恩格尔系数相同,请你计算说明,1997年到2000年宜昌市城区人民生活水平已开始步入由小康型过渡到富裕型的转型期.26.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3,∁….例如:当α=30°时,OA1,OA2,OA3,OA4的位置如图2所示,其中OA3恰好落在ON上,∠A3OA4=120°;当α=20°时,OA1,OA2,OA3,OA4,OA3的位置如图3所示,其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3,OA4并求出α的值;(3)若α<36°,且∠A2OA4=20°,则对应的α值是.(4)(选做题)当OA i所在的射线是∠A i OA k(i,j,k是正整数,且OA j与OA k不重合)的平分线时,旋转停止,请探究:试问对于任意角α(α的度数为正整数,且α=180°),旋转是否可以停止?写出你的探究思路.参考答案与试题解析一.选择题(共12小题)1.分析:求出各足球质量的绝对值,取绝对值最小的即可.解:根据题意得:|﹣0.8|<|+0.9|<|+2.5|<|﹣3.6|,则最接近标准的是﹣0.8g,故选C2.分析:绝对值绝对值大于2且小于5的所有整数就是在数轴上﹣5与﹣2之间和2与5之间的所有整数,即可求得各个数的和.解:绝对值大于2且小于5的所有整数是:﹣4,﹣3,3,4.则﹣4+(﹣3)+3+4=0故选A.3.分析:首先根据非负数的性质,几个非负数的和是0,则每个非负数等于0列方程组求得a和b的值,然后代入求解.解:根据题意得:,解得:,则(b﹣a)2016=(﹣3+2)2016=1.故选B.4.分析:根据代数式的意义可知:a2+b2表示a与b的平方和,而a与b的平方的和表示a+b2.解:代数式a2+b2指的是两个数的平方和,可以说a、b的平方和、a2与b2的和、a的平方与b的平方的和,而a与b的平方的和是a+b2,所以表达不确切的是B.故选B.5.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此列出关于m的等式,继而求出m的值.解:根据一元一次方程的特点可得,解得m=1.故选A.6.分析:根据线段的定义结合图象查出即可.解:由图可知,剪断公共可以得到4条绳子.故选B.7.分析:根据相反数的定义:只有符号不同的两个数互为相反数解答即可.解:2016的相反数是﹣2016,故选:B.8.分析:根据有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,以及利用互为相反数和绝对值的性质,分别判断得出即可.解:①两负数相乘,符号变为正号;此选项错误;②异号两数相乘,积取负号;此选项正确;③互为相反数的两数相乘,积不一定为负可能为0,故此选项错误;④两个有理数的积绝对值,等于这两个有理数的绝对值的积,此选项正确.故正确的有2个.故选:B.9.分析:应将代数式化为:3(x2﹣2x)﹣1,由于代数式x2﹣2x+5的值等于7,那么x2﹣2x=2,将其代入代数式并求出代数式的值.解:∵代数式x2﹣2x+5的值等于7,∴x2﹣2x=2,∴3x2﹣6x﹣1=3(x2﹣2x)﹣1=6﹣1=5.故选:A.10.分析:根据等式的性质性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式可得答案.解:A、ax=bx,两边同时除以x,应说明x≠0,可得a=b,原题计算错误;B、ax=bx两边同时加上c,等式仍然成立,故正确;C、ax=bx,则ax﹣bx=0,(a﹣b)x=0,原题错误;D、ax=bx,两边同时除以π,=,原题计算正确;故选:A.11.分析:根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选D.12.分析:把各项中的数字代入程序中计算得到结果,即可做出判断.解:A、把x=4代入得:=2,把x=2代入得:=1,本选项不合题意;B、把x=2代入得:=1,把x=1代入得:3+1=4,把x=4代入得:=2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得:=2,把x=2代入得:=1,本选项不合题意;D、把x=2代入得:=1,把x=1代入得:3+1=4,把x=4代入得:=2,本选项符合题意,故选D二.填空题(共6小题)13.分析:根据一个负实数的绝对值等于它的相反数求解即可.解:|﹣|=.故答案为:.14.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将9600000用科学记数法表示为9.6×106.故答案为9.6×106.15.分析:因为是两个无理数比较大小,所以应把根号外的数整理到根号内再进行比较.解:∵3=,2=,18>12,∴3>2.故答案为:>.16.分析:两者可以合并说明两式为同类项,根据同类项的字母相同及相同字母的指数相同可得出m 和n的值.解:由题意得,两者可以合并说明两式为同类项,可得m+2=5,n﹣1=4,解得:m=3,n=5,m+n=8.故填:8.17.分析:首先根据倒数的定义列出方程2x﹣3=,然后解方程即可.解:∵2x﹣3与的值互为倒数,∴2x﹣3=,去分母得:5(2x﹣3)=4x+3,去括号得:10x﹣15=4x+3,移项、合并得:6x=18,系数化为1得:x=3.所以当x=3时,2x﹣3与的值互为倒数.18.分析:根据垂直的定义知∠AOB=∠COD=90°,然后由周角的定义即可求得∠BOC的度数.解:∵OA⊥OB,OC⊥OD,∴∠AOB=∠COD=90°;又∵∠AOD+∠AOB+∠BOC+∠COD=360°,∠AOD=144°,∴∠BOC=36°;故答案是:36°.三.解答题(共8小题)19.分析:在进行有理数的混合运算时需按以下几个步骤进行:1.细观察式子结构特点;2.合理确定运算顺序;3.活运用各级运算法.(1)注意先算括号里面的,然后再相减;(2)注意逆用分配律.解:(1)(2﹣3)﹣(﹣4﹣1),=﹣1+5,=4;(2),=(﹣5+13﹣3)×(),=5×(),=﹣11.20.分析:(1)根据阴影部分的面积等于长方形的面积减去两个小扇形的面积差,列出代数式,即可求出答案;(2)代入有关数值求解即可.解:(1)长方形的面积是ab,两个扇形的圆心角是90°,∴这两个扇形是半径为b的圆面积的四分之一.∴阴影部分的面积为:ab﹣πb2;(2)当a=10,b=4,π的取值为3时,ab﹣πb2=10×4﹣×3×42=1621.分析:(1)根据一元一次方程的定义列不等式组求得a的值,然后可求得x的值;(2)将a和x的值代入,最后依据绝对值的性质求解即可.解:(1)根据题意得:,解得:a=1,则方程是:﹣2x+8=0,解得:x=4,原式=2008(1+4)(4﹣2)+3+5=20088.(2)当a=1,x=4时,|y|=4,∴y=±4.22.分析:(1)根据角平分线的定义求出∠BOC的度数,根据邻补角的性质求出∠AOC的度数,根据余角的概念计算即可;(2)根据角平分线的定义和邻补角的性质计算即可.解:(1)∵OE平分∠BOC,∠BOE=70°,∴∠BOC=2∠BOE=140°,∴∠AOC=180°﹣140°=40°,又∠COF=90°,∴∠AOF=90°﹣40°=50°;(2)∵∠BOD:∠BOE=1:2,OE平分∠BOC,∴∠BOD:∠BOE:∠EOC=1:2:2,∴∠BOD=36°,∴∠AOC=36°,又∵∠COF=90°,∴∠AOF=90°﹣36°=54°.23.分析:(1)将式子变形为(1000﹣1)×(﹣15),再根据乘法分配律计算即可求解;(2)根据乘法分配律计算即可求解.解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)+15=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×(118﹣﹣18)=999×100=9990024.分析:(1)将所走的路程相加可得出小李距下午出发地点的距离.(2)耗油量=耗油速率×总路程,总路程为所走路程的绝对值的和.解:(1)(+15)+(﹣2)+(+5)+(﹣1)+(+10)+(﹣3)+(﹣2)+(+12)+(+4)+(﹣5)+(+6)=39千米;(2)|+15|+|﹣2|+|+5|+|﹣1|+|+10|+|﹣3|+|﹣2|+|+12|+|+4|+|﹣5|+|+6|=65(千米),则耗油65×3=195升.答:将最后一名乘客送到目的地时,小李距下午出发地点的距离是39千米;若汽车耗油量为3升/千米,这天下午汽车共耗油195升.25.分析:(1)直接把字母代入恩格尔系数计算公式,整理即可解答;(2)设出1997年张伯家人均食品支出总额和其他人均个人消费支出总额,列方程组分别求得2000年与1997年人均食品支出总额和人均个人消费支出总额,进一步代入恩格尔系数计算公式,进行比较找到答案.解:(1)因为n=,所以y=;(2)设1997年张伯家人均食品支出总额为u元,其他人均个人消费支出总额为v元,由题意得,,解得,所以1997年人均食品支出总额和人均个人消费支出总额分别为2000元、4762,则恩格尔系数n=×100%%≈42%,所以2000年人均食品支出总额和人均个人消费支出总额分别为1850元、4932,则恩格尔系数n=×100%≈37.5%,由此可以看出1997年到2000年宜昌市城区人民生活水平已开始步入由小康型过渡到富裕型的转型期.26.分析:(1)根据题意,明确每次旋转的角度,计算即可;(2)根据各角的度数,找出等量关系式,列出方程,求出α的度数即可;(3)类比第(2)小题的算法,分三种情况讨论,求出α的度数即可;(4)无论a为多少度,旋转很多次,总会出一次OA i是∠A i OA K是的角平分线,但当a=120度时,只有两条射线,不会出现OA i是∠A i OA K是的角平分线,所以旋转会中止.解:(1)解:如图所示.aφ=45°,(2)解:如图所示.∵α<30°,∴∠A0OA3<180°,4α<180°.∵OA4平分∠A2OA3,∴2(180°﹣6α)+=4α,解得:.(3),,(4)对于角α=120°不能停止.理由如下:无论a为多少度,旋转过若干次后,一定会出现OA i是∠A i OA K是的角平分线,所以旋转会停止.但特殊的,当a为120°时,第一次旋转120°,∠MOA1=120°,第二次旋转240°时,与OM重合,第三次旋转360°,又与OM重合,第四次旋转480°时,又与OA1重合,…依此类推,旋转的终边只会出现“与OM重合”或“与OA1重合”两种情况,不会出第三条射线,所以不会出现OA i是∠A i OA K是的角平分线这种情况,旋转不会停止.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年七年级(上)期末数学试卷一.选择题(共10小题)1.﹣2的相反数是()A.﹣2 B.2 C.D.﹣2.第十三届全运会于2107年8月在天津举行,其中有一个足球场占地163000平方米,将数163000用科学记数法表示应为()A.16.3×104B.1.63×104C.1.63×105D.0.163×106 3.在,π,,3.,,0,1010010001…(每两个1之间,逐次多一个0)中,无理数的个数有()A.2个B.3个C.4个D.5个4.下列运算正确的是()A.a2+a3=a5B.5a+3b=8abC.5a+3a=8a2D.5ab﹣3ba=2ab5.若∠α=55°,则∠α的补角的度数是()A.35°B.45°C.125°D.135°6.下列说法正确的是()A.对顶角相等B.过一点有且只有一条直线垂直于已知直线C.两点之间直线最短D.垂线最短7.把方程1﹣=去分母后,正确的是()A.1﹣2x﹣3=3x+5 B.1﹣2(x﹣3)=3x+5C.4﹣2(x﹣3)=3x+5 D.4﹣2x﹣3=3x+58.若定义运算a⊗b=|2a﹣b|,则2⊗[(﹣5)⊗(﹣7)]的值是()A.1 B.7 C.13 D.259.实数a,b,c在数轴上的位置如图所示,则下列式子中一定成立的是()A.|a﹣b|=a+b B.|a+c|=a+cC.|b+c|=﹣b﹣c D.|a+b﹣c|=﹣a﹣b+c10.2017年绍兴国际马拉松赛,林华报名参加了7公里小马拉松赛,前两公里是起步阶段,第2公里比第1公里快1分钟,第3公里至第5公里是途中跑阶段,每公里比前一公里快20秒,第6公里至第7公里是冲刺阶段,每公里比前一公里快45秒.已知林华的比赛成绩是47分22秒,则他在第4公里所花的时间为()A.7分11秒B.6分51秒C.6分31秒D.6分11秒二.填空题(共10小题)11.把向东走4米记作+4米,那么向西走6米记作米.12.单项式的系数是.13.若a﹣b=2,则代数式5﹣2a+2b的值是.14.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.15.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=2∠COM,则∠BOD的度数为.16.已知﹣5a2m b和3a4b3﹣n是同类项,则m﹣n的值是.17.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,如滚动第1次后,骰子朝上一面的点数是5,则滚动第2017次后,骰子朝上一面的点数是.18.若关于x一元一次方程x+2018=2x+m的解为x=2018,则关于y的一元一次方程(y+1)+2018=2(y+1)+m的解为.19.对于实数p、q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,若min{,1}=x,则x=.20.已知:如图,点A、点B是直线l上的两点,AB=36厘米,点C在线段AB上,且AC =AB,点P、点Q分别从点C、点B同时朝点A方向运动,且点P、点Q运动的速度分别为2厘米/秒、4厘米/秒,若点M是PQ的中点,则经过秒时线段AM的长为18厘米.三.解答题(共9小题)21.计算(1)(﹣1)2+48×(﹣+)(2)﹣﹣2222.解方程(组)(1)8﹣5x=x+2(2)23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个二次三项式A,形式如下:(1)求所捂的二次三项式A;(2)当x=时,求所捂二次三项式A的值.24.某检修小组乘一辆汽车沿公路东西方向检修线路,约定向东为正.某天从A地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣2,+6.(1)计算收工时检修小组在A地的哪一边?距A地多远?(2)若每千米汽车耗油量为0.4升,求出发到收工汽车耗油多少升.25.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.(1)若∠BOD=70°,求∠AOM和∠CON的度数.(2)若∠BON=50°,求∠AOM和∠CON的度数.26.2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议.某厂准备生产甲、乙、丙三种商品共611万件销往“一带一路”沿线国家和地区,已知甲种商品比乙种商品多25万件,比丙种商品少36万件,则甲种商品有几万件?27.点A,O,B依次在直线MN上,如图1,现将射线OA绕点O顺时针方向以每秒10°的速度旋转,同时射线OB绕着点O按逆时针方向以每秒15°的速度旋转,直线MN保持不动,如图2,设旋转时间为t秒(t≤12).(1)在旋转过程中,当t=2时,求∠AOB的度数.(2)在旋转过程中,当∠AOB=105°时,求t的值.(3)在旋转过程中,当OA或OB是某一个角(小于180°)的角平分线时,求t的值.28.鹿山广场元旦期间搞促销活动,如图.(1)小哲在促销活动时两次购物分别用了135元和481元.①若小哲购物时没有促销活动,则他共需付多少钱?②若你需购这些同样的物品,请问还有更便宜的购物方案吗?若有,请说出购物方案,并算出共需付多少钱;若没有,则说明理由.(2)若小明购了原价为a元的物品,小红购了原价为b元的物品,且a<b,但最后小明所付的钱反而比小红多.①你列举一对a,b的值;②求符合条件的整数a,b共有几对?(直接答案即可).29.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=1:2,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.参考答案与试题解析一.选择题(共10小题)1.﹣2的相反数是()A.﹣2 B.2 C.D.﹣【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选:B.2.第十三届全运会于2107年8月在天津举行,其中有一个足球场占地163000平方米,将数163000用科学记数法表示应为()A.16.3×104B.1.63×104C.1.63×105D.0.163×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:163000=1.63×105,故选:C.3.在,π,,3.,,0,1010010001…(每两个1之间,逐次多一个0)中,无理数的个数有()A.2个B.3个C.4个D.5个【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:,3.,,0是有理数,π,,1010010001…(每两个1之间,逐次多一个0)是无理数,故选:B.4.下列运算正确的是()A.a2+a3=a5B.5a+3b=8abC.5a+3a=8a2D.5ab﹣3ba=2ab【分析】根据同类项和同类项的定义解答.【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、5a与3b不是同类项,不能合并,故本选项错误;C、5a+3a=8a,故本选项错误;D、5ab﹣3ba=2ab,故本选项正确;故选:D.5.若∠α=55°,则∠α的补角的度数是()A.35°B.45°C.125°D.135°【分析】本题考查角互补的概念:和为180度的两个角互为补角.【解答】解:根据定义∠α的补角度数是180°﹣55°=125°.故选:C.6.下列说法正确的是()A.对顶角相等B.过一点有且只有一条直线垂直于已知直线C.两点之间直线最短D.垂线最短【分析】根据对顶角性质、两点之间线段最短的性质,垂线的性质对各选项分析判断后利用排除法求解.【解答】解:A、对顶角相等,正确;B、在同一平面内过一点有且只有一条直线垂直于已知直线,此选项错误;C、两点之间线段最短,此选项错误;D、垂线段最短,此选项错误;故选:A.7.把方程1﹣=去分母后,正确的是()A.1﹣2x﹣3=3x+5 B.1﹣2(x﹣3)=3x+5C.4﹣2(x﹣3)=3x+5 D.4﹣2x﹣3=3x+5【分析】根据方程去分母的法则解答即可.【解答】解:把方程1﹣=去分母后为:4﹣2(x﹣3)=3x+5,故选:C.8.若定义运算a⊗b=|2a﹣b|,则2⊗[(﹣5)⊗(﹣7)]的值是()A.1 B.7 C.13 D.25【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:原式=2⊗3=1,故选:A.9.实数a,b,c在数轴上的位置如图所示,则下列式子中一定成立的是()A.|a﹣b|=a+b B.|a+c|=a+cC.|b+c|=﹣b﹣c D.|a+b﹣c|=﹣a﹣b+c【分析】先由数轴判断a,b,c的正负,根据有理数的加、减法则判断它们的和差的正负,再根据绝对值的意义做出最后的判断.【解答】解:由数轴知:c<b<0<a,|a|<|c|,|b|<|a|∵c<b<0<a,∴|a﹣b>0,∴|a﹣b|=a﹣b,故选项A错误;∵c<b<0<a,|a|<|c|,|∴a+c<0,∴|a+c|=﹣a﹣c,故选项B错误;∵c<b<0,∴b+c<0,∴|b+c|=﹣b﹣c,故选项C正确;∵c<b<0<a,∴a+b﹣c>0,∴|a+b﹣c|=a+b﹣c,故选项D错误;故选:C.10.2017年绍兴国际马拉松赛,林华报名参加了7公里小马拉松赛,前两公里是起步阶段,第2公里比第1公里快1分钟,第3公里至第5公里是途中跑阶段,每公里比前一公里快20秒,第6公里至第7公里是冲刺阶段,每公里比前一公里快45秒.已知林华的比赛成绩是47分22秒,则他在第4公里所花的时间为()A.7分11秒B.6分51秒C.6分31秒D.6分11秒【分析】设第1公里的所需时间为x秒,然后根据题意给出规律以及等量关系即可求出答案.【解答】解:设第1公里的所需时间为x秒,∴第2公里所需时间为(x﹣60)秒,第3公里所需时间为(x﹣80)秒,第4公里所需时间为(x﹣100)秒,第5公里所需时间为(x﹣120)秒,第6公里所需时间为(x﹣165)秒,第7公里所需时间为(x﹣210)秒,由题意可知:x+(x﹣60)+(x﹣80)+(x﹣100)+(x﹣120)+(x﹣165)+(x﹣210)=47×60+22,∴x=511,∴第4公里所需时间为x﹣100=411秒=6分51秒,故选:B.二.填空题(共10小题)11.把向东走4米记作+4米,那么向西走6米记作﹣6 米.【分析】此题主要用正负数来表示具有意义相反的两种量:向西记为负,则向东就记为正,由此解答即可;【解答】解:如果把向东走4米记作+4米,那么向西走6米记作:﹣6米.故答案为:﹣612.单项式的系数是﹣.【分析】根据单项式系数的定义进行解答即可.【解答】解:∵单项式的数字因数是﹣∴此单项式的系数是﹣.故答案为:﹣.13.若a﹣b=2,则代数式5﹣2a+2b的值是 1 .【分析】将a﹣b=2代入原式=5﹣2(a﹣b)计算可得.【解答】解:当a﹣b=2时,原式=5﹣2(a﹣b)=5﹣2×2=5﹣4=1,故答案为:1.14.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.【分析】根据题意可得等量关系:①4个篮球的花费+5个足球的花费=435元,②篮球的单价﹣足球的单价=3元,根据等量关系列出方程组即可.【解答】解:设篮球的单价为x元,足球的单价为y元,由题意得:,故答案为:.15.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=2∠COM,则∠BOD的度数为60°.【分析】根据垂直得出∠NOM=90°,根据角平分线定义得出∠AOM=∠COM,再利用∠CON =2∠COM,即可得出答案.【解答】解:∵ON⊥OM,∴∠NOM=90°,∵∠CON=2∠COM,∴设∠COM=x,则∠CON=2x,故x+2x=90°,解得:x=30°,∵射线OM平分∠AOC,∴∠AOM=∠COM=30°,∴∠AOC=∠BOD=2∠COM=60°,故答案为:60°.16.已知﹣5a2m b和3a4b3﹣n是同类项,则m﹣n的值是﹣1 .【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,列出关于m,n的方程,求出m,n的值,继而可求解.【解答】解:∵﹣5a2m b和3a4b3﹣n是同类项,∴,解得:m=2、n=2,∴m﹣n=×2﹣2=1﹣2=﹣1,故答案为:﹣1.17.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,如滚动第1次后,骰子朝上一面的点数是5,则滚动第2017次后,骰子朝上一面的点数是 5 .【分析】观察图形知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.【解答】解:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2017÷4=504…1,∴滚动第2017次后与第一次相同,∴朝上一面的点数为5,故答案为:5.18.若关于x一元一次方程x+2018=2x+m的解为x=2018,则关于y的一元一次方程(y+1)+2018=2(y+1)+m的解为y=2017 .【分析】设y+1=x,根据题中方程的解确定出y的值即可.【解答】解:设y+1=x,方程变形得:x+2018=2x+m,由x+2018=2x+m的解为x=2018,得到y+1=x=2018,解得:y=2017.故答案为:y=2017.19.对于实数p、q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,若min{,1}=x,则x=﹣或1 .【分析】分类讨论与1的大小,利用题中的新定义求出x的值即可.【解答】解:当>1,即x>时,可得x=1;当<1,即x<时,可得=x,即x=﹣,综上,x=﹣或1,故答案为:﹣或120.已知:如图,点A、点B是直线l上的两点,AB=36厘米,点C在线段AB上,且AC =AB,点P、点Q分别从点C、点B同时朝点A方向运动,且点P、点Q运动的速度分别为2厘米/秒、4厘米/秒,若点M是PQ的中点,则经过4或16 秒时线段AM的长为18厘米.【分析】由于AB=36厘米,点P、Q分别从点C、点B同时朝点A方向运动,当线段AM 的长为18厘米时,可分两种情况进行讨论:①M点位于A点右侧;②M点位于A点左侧;分别解答即可.【解答】解:AC=AB=×36=24(厘米)BC=AB﹣AC=36﹣24=12(厘米)设运动时间为t秒,PM=MQ=x①x+6=2t18﹣x=4t∴t=4s②36+18+x=4t24+18﹣x=2t∴t=16s故答案为:4或16三.解答题(共9小题)21.计算(1)(﹣1)2+48×(﹣+)(2)﹣﹣22【分析】(1)直接利用有理数的混合运算法则进而计算得出答案;(2)直接利用二次根式的性质和立方根的性质进而化简得出答案.【解答】解:(1)(﹣1)2+48×(﹣+)=1﹣48×+48×=1﹣36+8=﹣27;(2)﹣﹣22=2+2﹣4=0.22.解方程(组)(1)8﹣5x=x+2(2)【分析】(1)移项、合并同类项、系数化为1,依此即可求解;(2)根据加减消元法解方程组即可求解.【解答】解:(1)8﹣5x=x+2,﹣5x﹣x=2﹣8,﹣6x=﹣6,x=1;(2),①﹣②×2得11y=22,解得y=2,把y=2代入②得x﹣6=﹣7,解得x=﹣1.故方程组的解为.23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个二次三项式A,形式如下:(1)求所捂的二次三项式A;(2)当x=时,求所捂二次三项式A的值.【分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)把x的值代入计算即可求出值.【解答】解:(1)A=x2﹣5x+1+3x=x2﹣2x+1;(2)当x=时,x2﹣2x+1=()2﹣2×+1=6﹣2+1=7﹣2.24.某检修小组乘一辆汽车沿公路东西方向检修线路,约定向东为正.某天从A地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣2,+6.(1)计算收工时检修小组在A地的哪一边?距A地多远?(2)若每千米汽车耗油量为0.4升,求出发到收工汽车耗油多少升.【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以行驶路程,可得答案.【解答】解:(1)15﹣2+5﹣1+10+3﹣2+12+4﹣2+6=48,答:检修小组在A地东边,距A地48千米;(2)(15+|﹣2|+5+|﹣1|+10+|3|+|﹣2|+12+4+|﹣2|+6)×0.4=62×0.4=24.8(升),答:出发到收工检修小组耗油24.8升.25.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.(1)若∠BOD=70°,求∠AOM和∠CON的度数.(2)若∠BON=50°,求∠AOM和∠CON的度数.【分析】(1)直接直接利用垂线的定义结合角平分线的定义得出答案.(2)利用垂线的定义结合角平分线的定义得出答案.【解答】解:(1)∵∠BOD=70°,∴∠AOC=70°,∵射线OM平分∠AOC,∴∠AOM=∠MOC=35°,∴∠CON=90°﹣35°=55°,(2)∵∠BON=50°,∴∠AOM=180°﹣90°﹣50°=40°,∵射线OM平分∠AOC,∴∠AOM=∠MOC=40°,∴∠CON=90°﹣40°=50°.26.2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议.某厂准备生产甲、乙、丙三种商品共611万件销往“一带一路”沿线国家和地区,已知甲种商品比乙种商品多25万件,比丙种商品少36万件,则甲种商品有几万件?【分析】设甲种商品有x万件,则乙种商品有(x﹣25)万件,丙种商品有(x﹣36)万件,根据“甲、乙、丙三种商品共611万件”列出方程并解答.【解答】解:设甲种商品有x万件,则乙种商品有(x﹣25)万件,丙种商品有(x﹣36)万件,由题意,得x+x﹣25+x+36=611解得x=200.答:甲种商品有200万件.27.点A,O,B依次在直线MN上,如图1,现将射线OA绕点O顺时针方向以每秒10°的速度旋转,同时射线OB绕着点O按逆时针方向以每秒15°的速度旋转,直线MN保持不动,如图2,设旋转时间为t秒(t≤12).(1)在旋转过程中,当t=2时,求∠AOB的度数.(2)在旋转过程中,当∠AOB=105°时,求t的值.(3)在旋转过程中,当OA或OB是某一个角(小于180°)的角平分线时,求t的值.【分析】(1)分别求出∠AOM和∠BON的度数,即可得出答案;(2)分为两种情况,得出方程10t+15t=180﹣105或10t+15t=180+105,求出方程的解即可;(3)分为四种情况,列出方程,求出方程的解即可.【解答】解:(1)当t=2时,∠AOM=10°t=20°,∠BON=15°t=30°,所以∠AOB=180°﹣∠AOM﹣∠BON=130°;(2)当∠AOB=105°时,有两种情况:①10t+15t=180﹣105,解得:t=3;②10t+15t=180+105,解得:t=11.4;(3)①当OB是∠AON的角平分线时,10t+15t+15t=180,解得:t=4.5;②当OA是∠BOM的角平分线时,10t+10t+15t=180,解得:t=;③当OB是∠AOM的角平分线时,10t+15t﹣5t=180,解得:t=9;④当OA是∠BON的角平分线时,10t+7.5t=180,解得:t=.28.鹿山广场元旦期间搞促销活动,如图.(1)小哲在促销活动时两次购物分别用了135元和481元.①若小哲购物时没有促销活动,则他共需付多少钱?②若你需购这些同样的物品,请问还有更便宜的购物方案吗?若有,请说出购物方案,并算出共需付多少钱;若没有,则说明理由.(2)若小明购了原价为a元的物品,小红购了原价为b元的物品,且a<b,但最后小明所付的钱反而比小红多.①你列举一对a,b的值;②求符合条件的整数a,b共有几对?(直接答案即可).【分析】(1)①根据购物不超过200元优惠10%打九折和超过200元而不超过500元全部优惠15%打8.5折可列方程求解即可;②还有更便宜的购物方案,购物方案是两次购物合并成为一次,按照不同购买金额乘以对应的折扣并相加可以得出共需付的钱数;(2)①可选取大小比较接近,但处于不同优惠范围的数值即可;②由题意得:(1﹣15%)b<200×(1﹣10%)而(1﹣10%)a>200×(1﹣15%),且a≤200<b,故200<b≤,<a≤200,从而符合条件的整数a有189~200,整数b有201~211,分别对b和a取值计算,最后把符合条件的整数个数相加即可.【解答】解:(1)①小哲在促销活动时购物用了135元,则原价为135÷(1﹣10%)=150元;小哲在促销活动时购物用了481元,设原价为x元,由题意得:500×(1﹣15%)+(1﹣20%)(x﹣500)=481解得:x=570若小哲购物时没有促销活动,则150+570=720(元)答:若小哲购物时没有促销活动,则他共需付720元;②若我需购买这些同样的物品,则还有更便宜的购物方案,购物方案是两次购物合并成为一次,共需付钱:500×(1﹣15%)+(1﹣20%)×(720﹣500)=425+176=601(元).(2)①若小明购了原价为a元的物品,小红购了原价为b元的物品,且a<b,但最后小明所付的钱反而比小红多.列举一对a、b的值为a=190,b=201,当a=190时,实际付款190×(1﹣10%)=171(元),而b=201时,实际付款201×(1﹣15%)=170.85(元).②由题意得:(1﹣15%)b<200×(1﹣10%)而(1﹣10%)a>200×(1﹣15%),且a≤200<b∴200<b≤,<a≤200∴符合条件的整数a有189~200,整数b有201~211若a=189,则0.85b<189×0.9,b<,没有满足条件的整数b;若a=190,则0.85b<190×0.9,b<,满足条件的整数b为b=201;若a=191,则0.85b<191×0.9,b<,满足条件的整数b有:201,202;若a=192,则0.85b<192×0.9,b<,满足条件的整数b有:201,202,203;若a=193,则0.85b<193×0.9,b<,满足条件的整数b有:201,202,203,204;若a=194,则0.85b<194×0.9,b<,满足条件的整数b有:201,202,203,204,205;…若a=200,则0.85b<200×0.9,b<,满足条件的整数b有:201,202,203,204,205,206,207,208,209,210,211;∴符合条件的整数a、b共有:1+2+3+4+5+6+7+8+9+10+11=66(对).29.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=1:2,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.【分析】(1)分DP=2PE、2DP=PE两种情况考虑:当DP=2PE时,由DP=DE结合DE 的长度即可得出DP的长度;当2DP=PE时,由DP=DE结合DE的长度即可得出DP的长度;(2)①根据A、B两点间的距离=两者速度之和×相遇时间,即可得出关于t的一元一次方程,解之即可得出结论;②分点P、Q相遇前及点P、Q相遇后两种情况考虑.(I)点P、Q重合前分2AP=PQ及AP=2PQ两种情况列出关于t的一元一次方程,解之即可得出结论;(II)点P、Q重合后分2AP=PQ及AP=2PQ两种情况列出关于t的一元一次方程,解之即可得出结论.综上即可得出结论.【解答】解:(1)当DP=2PE时,DP=DE=10cm;当2DP=PE时,DP=DE=5cm.综上所述:DP的长为5cm或10cm.(2)①根据题意得:(1+2)t=15,解得:t=5.答:当t=5秒时,点P与点Q重合.②(I)点P、Q重合前:当2AP=PQ时,有t+2t+2t=15,解得:t=3;当AP=2PQ时,有t+t+2t=15,解得:t=;(II)点P、Q重合后,当AP=2PQ时,有t=2(t﹣5),解得:t=10;当2AP=PQ时,有2t=(t﹣5),解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、秒或10秒时,点P是线段AQ的三等分点.。

相关文档
最新文档