中考几何满突破 第三讲 对角互补模型 解析版

合集下载

2023学年八年级数学上册高分突破必练专题(人教版)-对角互补模型综合应用(解析版)

2023学年八年级数学上册高分突破必练专题(人教版)-对角互补模型综合应用(解析版)

对角互补模型综合应用应用:通过做垂线或者利用旋转构造全等三角形解决问题。

【类型一:三角形中的互补模型模型】【典例1】(1)如图(1)在△ABC中D是BC边上的中点DE⊥DF DE交AB于点E DF交AC于点F连接EF.若∠A=90°探索线段BE、CF、EF之间的数量关系并加以证明;(2)如图(2)在四边形ABDC中∠B+∠C=180°DB=DC∠BDC=120°以D为顶点作一个60°角角的两边分别交AB、AC于E、F两点连接EF探索线段BE、CF、EF之间的数量关系并加以证明.【解答】证明:(1)EF2=BE2+CF2理由如下:如图(1)延长ED到G使DG=ED连接CG FG在△DCG与△DBE中∴△DCG≌△DBE(SAS)∴DG=DE CG=BE∠B=∠DCG又∵DE⊥DF∴FD垂直平分线段EG∴FG=FE∵∠A=90°∴∠B+∠ACB=90°∴∠FCG=90°在△CFG中CG2+CF2=FG2∴EF2=BE2+CF2(2)如图(2)结论:EF=EB+FC理由如下:延长AB到M使BM=CF∵∠ABD+∠C=180°又∠ABD+∠MBD=180°∴∠MBD=∠C在△BDM和△CDF中∴△BDM≌△CDF(SAS)∴DM=DF∠BDM=∠CDF∴∠EDM=∠EDB+∠BDM=∠EDB+∠CDF=∠CDB﹣∠EDF=120°﹣60°=60°=∠EDF在△DEM和△DEF中∴△DEM≌△DEF(SAS)∴EF=EM∴EF=EM=BE+BM=EB+CF.【变式1】(1)阅读理解:如图①在△ABC中若AB=5 AC=3 求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD再连接BE这样就把AB AC2AD集中在△ABE中利用三角形三边的关系可判断线段AE的取值范围是;则中线AD的取值范围是;(2)问题解决:如图②在△ABC中D是BC边的中点DE⊥DF于点D DE交AB于点E DF交AC于点F连接EF此时:BE+CF EF(填“>”或“=”或“<”);(3)问题拓展:如图③在四边形ABCD中∠B+∠D=180 CB=CD∠BCD=140°以C为顶点作∠ECF=70°边CE CF分别交AB AD于E F两点连接EF此时:BE+DF EF(填“>”或“=”或“<“);(4)若在图③的四边形ABCD中∠ECF=α(0°<α<90°)∠B+∠D=180 CB =CD且(3)中的结论仍然成立则∠BCD=(用含α的代数式表示).【解答】解:(1)在△ADC与△EDB中∴△ADC≌△EDB(SAS)∴BE=AC=3在△ABE中AB﹣BE<AE<AB+BE即2<AE<8∴2<2AD<8∴1<AD<4故答案为:2<AE<8;1<AD<4;(2)如图延长FD至点G使DG=DF连接BG EG∵点D是BC的中点∴DB=DC∵∠BDG=∠CDF DG=DF∴△BDG≌△CDF(SAS)∴BG=CF∵ED⊥FD FD=GD∴EF=EG在△BEG中BE+BG>EG∴BE+CF>EF故答案为:>;(3)BE+DF=EF如图延长AB至点G使BG=DF连接CG∵∠ABC+∠D=180°∠ABC+∠CBG=180°∴∠CBG=∠D又∵CB=CD BG=DF∴△CBG≌△CDF(SAS)∴CG=CF∠BCG=∠DCF∵∠BCD=140°∠ECF=70°∴∠DCF+∠BCE=70°∴∠BCE+∠BCG=70°∴∠ECG=∠ECF=70°又∵CE=CE CG=CF∴△ECG≌△ECF(SAS)∴EG=EF∵BE+BG=EG∴BE+DF=EF故答案为:=;(4)由(3)同理可得△CBG≌△CDF∴CG=CF∠BCG=∠DCF若BE+DF=EF则EG=EF∴△ECF≌△ECG(SSS)∴∠ECG=∠ECF∴∠BCD=2∠ECF=2α故答案为:2α.【类型二:四边形中的互补模型】【典例2】(1)如图1 四边形ABCD是边长为5 cm的正方形E F分别在AD CD边上∠EBF=45°.为了求出△DEF的周长.小南同学的探究方法是:如图2 延长EA到H使AH=CF连接BH先证△ABH≌△CBF再证△EBH≌△EBF得EF=EH从而得到△DEF的周长=cm;(2)如图3 在四边形ABCD中AB=AD∠BAD=100°∠B=∠ADC=90°.E F 分别是线段BC CD上的点.且∠EAF=50°.探究图中线段EF BE FD之间的数量关系;(3)如图4 若在四边形ABCD中AB=AD∠B+∠D=180°E F分别是线段BC CD上的点且2∠EAF=∠BAD(2)中的结论是否仍然成立若成立请证明若不成立请说明理由;(4)若在四边形ABCD中AB=AD∠B+∠D=180°点E、F分别在CB、DC的延长线上且2∠EAF=∠BAD请画出图形并直接写出线段EF、BE、FD之间的数量关系.【解答】解:(1)如图1 延长EA到H使AH=CF连接BH∵四边形ABCD是正方形∴AB=BC=AD=CD=5cm∠BAD=∠BCD=90°∴∠BAH=∠BCF=90°又∵AH=CF AB=BC∴△ABH≌△CBF(SAS)∴BH=BF∠ABH=∠CBF∵∠EBF=45°∴∠CBF+∠ABE=45°=∠HBA+∠ABE=∠EBF∴∠EBH=∠EBF又∵BH=BF BE=BE∴△EBH≌△EBF(SAS)∴EF=EH∴EF=EH=AE+CF∴△DEF的周长=DE+DF+EF=DE+DF+AE+CF=AD+CD=10(cm).故答案为:10.(2)EF=BE+DF.证明:如图2所示延长FD到点G.使DG=BE.连接AG在△ABE和△ADG中∴△ABE≌△ADG(SAS)∴AE=AG∠BAE=∠DAG∵∠BAD=100°∠EAF=50°∴∠BAE+∠F AD=∠DAG+∠F AD=50°∴∠EAF=∠F AG=50°在△EAF和△GAF中∴△EAF≌△GAF(SAS)∴EF=FG=DF+DG∴EF=BE+DF;(3)成立.证明:如图3 延长EB到G使BG=DF连接AG.∵∠ABC+∠D=180°∠ABG+∠ABC=180°∴∠ABG=∠D∵在△ABG与△ADF中∴△ABG≌△ADF(SAS)∴AG=AF∠BAG=∠DAF∵2∠EAF=∠BAD∴∠DAF+∠BAE=∠BAG+∠BAE=∠BAD=∠EAF ∴∠GAE=∠EAF又AE=AE∴△AEG≌△AEF(SAS)∴EG=EF∵EG=BE+BG∴EF=BE+FD;(4)EF=DF﹣BE理由如下:在DF上截取DH使DH=BE∵∠ABC+∠ADC=180°∠ABC+∠ABE=180°∴∠ABE=∠ADH且AB=AD DH=BE∴△ABE≌△ADH(SAS)∴∠BAE=∠DAH AH=AE∵∠EAF=∠BAD∴∠DAH+∠BAF=∠BAD∴∠HAF=∠BAD=∠EAF且AF=AF AE=AH∴△F AH≌△F AE(SAS)∴HF=EF∴EF=HF=DF﹣DH=DF﹣BE【变式2-1】如图在四边形ABCD中AB=AD∠B+∠D=180°E F分别是边BC CD上的点且∠EAF=∠BAD求证:EF=BE+FD.【解答】证明:延长CB至M使BM=FD连接AM如图所示:∵∠ABC+∠D=180°∠ABM+∠ABC=180°∴∠ABM=∠D在△ABM与△ADF中∴△ABM≌△ADF(SAS)∴AF=AM∠BAM=∠DAF∵∠EAF=∠BAD∴∠DAF+∠BAE=∠BAD=∠F AE∴∠BAM+∠BAE=∠EAF即∠MAE=∠EAF在△AME与△AFE中∴△AME≌△AFE(SAS)∴EF=ME∵ME=BE+BM∴EF=BE+FD.【变式2-2】“截长补短法”证明线段的和差问题:先阅读背景材料猜想结论并填空然后做问题探究.背景材料:(1)如图1:在四边形ABCD中AB=AD∠BAD=120°∠B=∠ADC=90°E F 分别是BC CD上的点且∠EAF=60°.探究图中线段BE EF FD之间的数量关系.探究的方法是延长FD到点G.使DG=BE连接AG先证明△ABE≌△ADG再证明△AEF≌△AGF可得出的结论是.探索问题:(2)如图2 若四边形ABCD中AB=AD∠B+∠D=180°E F分别是BC CD 上的点且∠EAF=∠BAD上述结论是否仍然成立?成立的话请写出推理过程.【解答】证明:(1)在△ABE和△ADG中∴△ABE≌△ADG(SAS)∴AE=AG∠BAE=∠DAG∵∠EAF=∠BAD∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF∴∠EAF=∠GAF在△AEF和△GAF中∴△AEF≌△AGF(SAS)∴EF=FG∵FG=DG+DF=BE+DF∴EF=BE+DF;故答案为:EF=BE+DF.(2)解:结论EF=BE+DF仍然成立;理由:延长FD到点G.使DG=BE.连接AG在△ABE和△ADG中∴△ABE≌△ADG(SAS)∴AE=AG∠BAE=∠DAG∵∠EAF=∠BAD∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF ∴∠EAF=∠GAF在△AEF和△GAF中∴△AEF≌△AGF(SAS)∴EF=FG∵FG=DG+DF=BE+DF∴EF=BE+DF.1.阅读理解:课外兴趣小组活动时老师提出了如下问题:如图1 △ABC中若AB=5 AC=3 求BC边上的中线AD的取值范围.小明在组内经过合作交流得到了如下的解决方法:延长AD到E使得DE=AD再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD)把AB、AC、2AD集中在△ABE中利用三角形的三边关系可得2<AE<8 则1<AD<4.感悟:解题时条件中若出现“中点”“中线”字样可以考虑构造以中点为对称中心的中心对称图形把分散的已知条件和所求证的结论集中到同一个三角形中.(1)问题解决:受到(1)的启发请你证明下面命题:如图2 在△ABC中D是BC边上的中点DE ⊥DF DE交AB于点E DF交AC于点F连接EF.①求证:BE+CF>EF;②若∠A=90°探索线段BE、CF、EF之间的等量关系并加以证明;(2)问题拓展:如图3 在四边形ABDC中∠B+∠C=180°DB=DC∠BDC=120°以D为顶点作一个60°角角的两边分别交AB、AC于E、F两点连接EF探索线段BE、CF、EF之间的数量关系并加以证明.【解答】解:①延长FD到G使得DG=DF连接BG、EG.(或把△CFD绕点D逆时针旋转180°得到△BGD)∴CF=BG DF=DG∵DE⊥DF∴EF=EG.在△BEG中BE+BG>EG即BE+CF>EF.(4分)②若∠A=90°则∠EBC+∠FCB=90°由①知∠FCD=∠DBG EF=EG∴∠EBC+∠DBG=90°即∠EBG=90°∴在Rt△EBG中BE2+BG2=EG2∴BE2+CF2=EF2;(3分)(2)将△DCF绕点D逆时针旋转120°得到△DBG.∵∠C+∠ABD=180°∠4=∠C∴∠4+∠ABD=180°∴点E、B、G在同一直线上.∵∠3=∠1 ∠BDC=120°∠EDF=60°∴∠1+∠2=60°故∠2+∠3=60°即∠EDG=60°∴∠EDF=∠EDG=60°∵DE=DE DF=DG∴△DEG≌△DEF∴EF=EG=BE+BG即EF=BE+CF.(4分)2.如图△ABC中AB=AC点D为△ABC内一点其中AD平分∠BAC且∠CBD=30°点E为AC中点EF⊥AC交BD延长线于点F连接AF、CF.(1)求∠ADF的大小;(2)求证:△ACF是等边三角形;(3)猜想AD、BD、DF的数量关系并说明理由.【解答】解:(1)延长AD交BC于点M∵AB=AC AD平分∠BAC∴AM⊥BC∵∠CBD=30°∴∠BDM=90°﹣∠CBD=60°∴∠ADF=∠BDM=60°;(2)由(1)知∠ADC=∠BDC=120°∵∠ADF=60°∴∠CDF=60°过点F作FG⊥AD于点G FH⊥DC于点H∴FG=FH∵EF⊥AC E为AC的中点∴AF=CF在Rt△AGF和Rt△CHF中∴Rt△AGF≌Rt△CHF(HL)∴∠AFG=∠CFH∵∠DGF=∠H=90°∠DGF+∠H+∠GDH+∠GFH=360°∴∠GDH+∠GFH=180°∵∠GDH=120°∴∠GFH=60°∴∠AFC=∠AFG+∠GFC=∠CFH+∠GFC=60°又∵AF=CF∴△ACF为等边三角形;(3)DF=AD+BD.理由:在BF上截取PF=BD连接AP∵△ACF为等边三角形∴AF=AC又∵AF=AC∴AB=AF∴∠ABD=∠AFP∴△ABD≌△AFP(SAS)∴AD=AP又∵∠ADP=60°∴△ADP为等边三角形∴AD=DP∴DF=DP+PF=AD+BD.3.(1)问题背景.如图1 在四边形ABCD中AB=AD∠B+∠D=180°E、F分别是线段BC、线段CD上的点.若∠BAD=2∠EAF试探究线段BE、EF、FD之间的数量关系.小明同学探究此问题的方法是延长FD到点G.使DG=BE.连接AG先证明△ABE ≌△ADG.再证明△AEF≌△AGF可得出结论他的结论应是.(2)猜想论证.如图2 在四边形ABCD中AB=AD∠B+∠ADC=180°E在线段BC上、F在线段CD延长线上.若∠BAD=2∠EAF上述结论是否依然成立?若成立说明理由;若不成立试写出相应的结论并给出你的证明.【解答】解:延长FD到点G.使DG=BE连接AG∵∠B+∠ADF=180°∠ADF+∠ADG=180°∴∠ADG=∠B在△ABE和△ADG中∴△ABE≌△ADG(SAS)∴AE=AG∠BAE=∠DAG∵∠BAD=2∠EAF∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF∴∠EAF=∠GAF在△AEF和△AGF中∴△AEF≌△AGF(SAS)∴EF=FG∵FG=DG+DF=BE+DF∴EF=BE+DF;故答案为:EF=BE+DF.(2)结论EF=BE+FD不成立结论:EF=BE﹣FD.理由如下:证明:如图2中在BE上截取BG使BG=DF连接AG.∵∠B+∠ADC=180°∠ADF+∠ADC=180°∴∠B=∠ADF.∵在△ABG与△ADF中∴△ABG≌△ADF(SAS).∴∠BAG=∠DAF AG=AF.∴∠BAD=∠BAG+∠GAD=∠DAF+∠GAD=∠GAF.∵∠BAD=2∠EAF∴∠GAF=2∠EAF∴∠GAE=∠EAF.∵AE=AE∴△AEG≌△AEF(SAS).∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD4.通过类比联想引申拓展研究典型题目可达到解一题知一类的目的下面是一个案例请补充完整.原题:如图1 点E、F分别在正方形ABCD的边DC、BC上∠EAF=45°连接EF试猜想EF、BF、DE之间的数量关系.(1)思路梳理把△ADE绕点A顺时针旋转90°至△ABG可使AD与AB重合由∠ABG=∠D=90°得∠FBG=180°即点F、B、G共线易证△AFG≌故EF、BF、DE之间的数量关系为.(2)类比引申如图②在四边形ABCD中AB=AD∠ABC=∠ADC=90°.E、F分别是DC、BC 上的点.且∠EAF=∠BAD.猜想图中线段BF、EF、DE之间的数量关系.(3)拓展提高如图③若在四边形ABCD中AB=AD∠B+∠D=180°.E、F分别是BC、CD上的点且∠EAF=∠BAD探究上述结论是否仍然成立?说明理由.【解答】解:(1)思路梳理:如图①把△ADE绕点A顺时针旋转90°至△ABG可使AD与AB重合即AB=AD 由旋转得:∠ABG=∠D=90°DE=BG∠1=∠2 AE=AG∴∠FBG=∠ABF+∠ABG=90°+90°=180°即点F、B、G共线∵四边形ABCD为正方形∴∠BAD=90°∵∠EAF=45°∴∠DAE+∠B=∠F AG=45°∴∠EAF=∠F AG=45°在△AFE和△AFG中∴△AFE≌△AFG(SAS)∴EF=FG∴EF=BF+BG=BF+DE;故答案为:△AFE EF=BF+DE;(2)类比引申如图②把△ADE绕点A顺时针旋转90°至△ABG可使AD与AB重合即AB=AD 由旋转得:∠ABG=∠D=90°DE=BG∠GAB=∠DAE AE=AG∴∠FBG=∠ABF+∠ABG=90°+90°=180°即点F、B、G共线∵∠EAF=∠BAD∴∠DAE+∠BAF=BAD∴∠GAF=∠EAF在△AFE和△AFG中∴△AFE≌△AFG(SAS)∴EF=FG∴EF=BF+BG=BF+DE;(3)拓展提高结论DE+BF=EF仍然成立理由如下:如图③将△ADE绕点A顺时针旋转90°得到△ABH由旋转可得AH=AE BH=DE∠1=∠2∵∠EAF=∠DAB∴∠HAF=∠1+∠3=∠2+∠3=∠BAD∴∠HAF=∠EAF∵∠ABH+∠ABF=∠D+∠ABF=180°∴点H、B、F三点共线在△AEF和△AHF中∴△AEF≌△AHF(SAS)∴EF=HF∵HF=BH+BF∴EF=DE+BF.5.如图1 在四边形ABCD中AB=AD∠BAD=120°∠B=∠ADC=90°EF分别是BC CD上的点且∠EAF=60°探究图中线段BE EF FD之间的数量关系.(1)提示:探究此问题的方法是延长FD到点G使DG=BE连接AG先证明△ABE ≌△ADG再证明△AEF≌△AGF.请根据提示按照提示的方法完成探究求解过程.(2)探索延伸:如图2 若在四边形ABCD中AB=AD∠B+∠D=180°E F分别是BC CD上的点且∠EAF=∠BAD上述结论是否仍然成立?(成立或不成立)(3)实际应用:如图3 在某次军事演习中舰艇甲在指挥中心(O处)北偏西30°的A处舰艇乙在指挥中心南偏东70°的B处并且两舰艇到指挥中心的距离相等.接到行动指令后舰艇甲向正东方向以60海里/小时的速度前进舰艇乙沿北偏东50°的方向以80海里/小时的速度前进 1.5小时后指挥中心观测到甲、乙两舰艇分别到达E F处且两舰艇之间夹角为70°试求此时两舰艇之间的距离.【解答】解:(1)EF=BE+DF.理由如下:如图1 延长FD到G使DG=BE连接AG在△ABE和△ADG中∴△ABE≌△ADG(SAS)∴AE=AG∠BAE=∠DAG∵∠EAF=∠BAD∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF∴∠EAF=∠GAF在△AEF和△GAF中∴△AEF≌△GAF(SAS)∴EF=FG∵FG=DG+DF=BE+DF∴EF=BE+DF;(2)EF=BE+DF仍然成立.证明:如图2 延长FD到G使DG=BE连接AG∵∠B+∠ADC=180°∠ADC+∠ADG=180°∴∠B=∠ADG在△ABE和△ADG中∴△ABE≌△ADG(SAS)∴AE=AG∠BAE=∠DAG∵∠EAF=∠BAD∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF ∴∠EAF=∠GAF在△AEF和△GAF中∴△AEF≌△GAF(SAS)∴EF=FG∵FG=DG+DF=BE+DF∴EF=BE+DF;故答案是:成立;(3)如图3 连接EF延长AE、BF相交于点C∵∠AOB=30°+90°+(90°﹣70°)=140°∠EOF=70°∴∠EOF=∠AOB又∵OA=OB∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°∴符合探索延伸中的条件∴结论EF=AE+BF成立即EF=1.5×(60+80)=210(海里).答:此时两舰艇之间的距离是210海里.6.在四边形ABCD中AB=AD∠B=∠D=90°∠BCD=120°现将一个30°角的顶点落在点A处.(1)如图①当该角的两边分别与BC、CD边相交于E、F时.求证:EF=BE+DF;(2)现在将该角绕点A进行旋转其两边分别与BC、CD边的延长线相交于点F那么(1)中的结论是否仍然成立?若成立说明理由;若不成立试探究线段BE与DF之间的等量关系并加以证明.(利用图②进行探索)【解答】解:(1)如图①延长CB到H点使BH=DF连接AH∵∠B=∠D=90°∠BCD=120°∴∠D+∠B=180°∵∠ABE+∠ABH=180°∴∠ABH=∠D∵AD=AB BH=DF∴在△ABH和△ADF中∴△ABH≌△ADF(SAS)∴AH=AF∠HAB=∠F AD∵∠DAB=60°∠F AE=30°∴∠F AD+∠BAE=30°∴∠BAE+∠HAB=30°即∠HAE=30°在△HAE和△EAF中∴△HAE≌△F AE(SAS)∴HE=EF∵HE=HB+BE=DF+BE∴EF=BE+DF;(2)(1)中的结论不成立如图②在BC上截取BH=DF在△ABH与△ADF中∴△ABH≌△ADF∴∠BAH=∠DAF AH=AF∴∠EAF=30°∴∠BAH+∠EAD=30°∵∠B=∠D=90°∠BCD=120°∴∠BAD=60°∴∠HAE=30°在△HAE与△F AE中∴△HAE≌△F AE∴HE=EF∵BE=BH+HE∴BE=DF+EF.7.【初步探索】(1)如图1:在四边形ABCD中AB=AD∠B=∠ADC=90°E、F分别是BC、CD 上的点且EF=BE+FD探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G使DG=BE.连接AG先证明△ABE ≌△ADG再证明△AEF≌△AGF可得出结论他的结论应是;【灵活运用】(2)如图2 若在四边形ABCD中AB=AD∠B+∠D=180°.E、F分别是BC、CD 上的点且EF=BE+FD上述结论是否仍然成立并说明理由;【拓展延伸】(3)如图3 已知在四边形ABCD中∠ABC+∠ADC=180°AB=AD若点E在CB 的延长线上点F在CD的延长线上如图3所示仍然满足EF=BE+FD请写出∠EAF与∠DAB的数量关系并给出证明过程.【解答】解:(1)∠BAE+∠F AD=∠EAF.理由:如图1 延长FD到点G使DG=BE连接AG根据SAS可判定△ABE≌△ADG进而得出∠BAE=∠DAG AE=AG再根据SSS可判定△AEF≌△AGF可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立理由:如图2 延长FD到点G使DG=BE连接AG∵∠B+∠ADF=180°∠ADG+∠ADF=180°∴∠B=∠ADG又∵AB=AD∴△ABE≌△ADG(SAS)∴∠BAE=∠DAG AE=AG∵EF=BE+FD=DG+FD=GF AF=AF∴△AEF≌△AGF(SSS)∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3 在DC延长线上取一点G使得DG=BE连接AG ∵∠ABC+∠ADC=180°∠ABC+∠ABE=180°∴∠ADC=∠ABE又∵AB=AD∴△ADG≌△ABE(SAS)∴AG=AE∠DAG=∠BAE∵EF=BE+FD=DG+FD=GF AF=AF∴△AEF≌△AGF(SSS)∴∠F AE=∠F AG∵∠F AE+∠F AG+∠GAE=360°∴2∠F AE+(∠GAB+∠BAE)=360°∴2∠F AE+(∠GAB+∠DAG)=360°即2∠F AE+∠DAB=360°∴∠EAF=180°﹣∠DAB.。

中考数学考前专题复习对角互补模型

中考数学考前专题复习对角互补模型

中考数学考前专题复习对角互补模型学校:___________姓名:___________班级:___________考生__________评卷人得分一、解答题1.如图,在Rt ABC中,AC=BC,∠ACB=90°,点O在线段AB上(点O不与点A,B重合),且OB=kOA,点M是AC延长线上的一点,作射线OM,将射线OM绕点O逆时针旋转90°,交射线CB于点N.(1)如图1,当k=1时,判断线段OM与ON的数量关系,并说明理由;(2)如图2,当k>1时,判断线段OM与ON的数量关系(用含k的式子表示),并证明;(3)点P在射线BC上,若∠BON=15°,PN=kAM(k≠1),且CMAC<312,请直接写出NCPC的值(用含k的式子表示).2.(1)特例感知:如图1,已知在Rt ABC中,∠BAC=90°,AB=AC,取BC边上中点D,连接AD,点E为AB边上一点,连接DE,作DF∠DE交AC于点F,求证:BE =AF;(2)探索发现:如图2,已知在Rt ABC中,∠BAC=90°,AB=AC=3,取BC边上中点D,连接AD,点E为BA延长线上一点,AE=1,连接DE,作DF∠DE交AC延长线于点F,求AF的长;(3)类比迁移:如图3,已知在ABC中,∠BAC=120°,AB=AC=4,取BC边上中点D,连接AD,点E为射线BA上一点(不与点A、点B重合),连接DE,将射线DE绕点D顺时针旋转30°交射线CA于点F,当AE=4AF时,求AF的长.3.(1)如图,Rt ABC中,∠A=90°,AB=AC,D为BC中点,E、F分别为AB、AC 上的动点,且∠EDF=90°.求证:DE=DF;(2)如图2,Rt ABC中,∠BAC=90°,AC=4,AB=3,AD∠BC,∠EDF=90°.∠求证:DF•DA=DB•DE;∠求EF的最小值.4.如图,矩形ABCD中,AB=4,BC=6,E为线段AD上一动点,连接CE,过点B 作BF∠CE,交射线CD于点F,垂足为P.(1)求证:CED∠BCF;(2)当F为CD的中点时,求tan∠BAP的值;(3)若ABP为等腰三角形时,直接写出DE的长.5.我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB 边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt∠ABC与Rt∠ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt∠ABD 绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt∠AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.参考答案:1.(1)OM=ON,见解析;(2)ON=k•OM,见解析;(3)131NC kPC k+=-【解析】【分析】(1)作OD∠AM,OE∠BC,证明∠DOM∠∠EON;(2)作OD∠AM,OE∠BC,证明∠DOM∠∠EON;(3)设AC=BC=a,解Rt∠EON和斜∠AOM,用含,a k的代数式分别表示,,NC PN再利用比例的性质可得答案.【详解】解:(1)OM=ON,如图1,作OD∠AM于D,OE∠CB于E,∠∠ADO=∠MDO=∠CEO=∠OEN=90°,∠∠DOE=90°,∠AC=BC,∠ACB=90°,∠∠A=∠ABC=45°,在Rt∠AOD中,2sin2OD OA A OA=∠=,同理:OE=22OB,∠OA=OB,∠OD=OE,∠∠DOE=90°,∠∠DOM+∠MOE=90°,∠∠MON=90°,∠∠EON+∠MOE=90°,∠∠DOM=∠EON,在Rt∠DOM和Rt∠EON中,MDO NEOOD OEDOM EON∠=∠⎧⎪=⎨⎪∠=∠⎩,∠∠DOM∠∠EON(ASA),∠OM=ON.(2)如图2,作OD∠AM于D,OE∠BC于E,由(1)知:OD=22OA,OE=22OB,∠1OD OAOE OB k==,由(1)知:∠DOM=∠EON,∠MDO=∠NEO=90°,∠∠DOM∠∠EON,∠1OM ODON OE k==,∠ON=k•OM.(3)如图3,设AC=BC=a,∠AB=2a,∠OB =k •OA ,∠OB =2•1k k +a ,OA =2•11k +a , ∠OE =22OB =1k k +a , ∠∠N =∠ABC ﹣∠BON =45°﹣15°=30°,∠EN =tan OE N ∠=3OE =3•1k k +a , ∠CE =OD =22OA =11k +a , ∠NC =CE +EN =11k +a +3•1k k +a , 由(2)知:1OM OA ON OB k==,∠DOM ∠∠EON , ∠∠AMO =∠N =30°∠1AM PN k =, ∠OM AM ON PN=, ∠∠PON ∠∠AOM ,∠∠P =∠A =45°,∠PE =OE =1k k +a , ∠PN =PE +EN =1k k +a +3•1k k +a , 设AD =OD =x ,∠DM =3x ,由AD +DM =AC +CM 得,(3+1)x =AC +CM ,∠x =312-(AC +CM )<312-(AC +312-AC )=12AC , ∠k >1 ∠1313113311k a a NC k k k k k PN k k a a k k ++++==++++, 31,13PN PC NC PC k k NC NC NC k++∴==+=+1,13PC kNC k-∴=+∠131NC kPC k+=-.【点睛】本题考查了三角形全等和相似,以及解直角三角形,解决问题的关键是作OD∠AC,OE∠BC;本题的难点是条件312CMAC-<得出k>1.2.(1)见解析;(2)4;(3)5212-或3132-+或3132+【解析】【分析】(1)证明∠BDE∠∠ADF(ASA),根据全等三角形的性质即可得到BE=AF;(2)方法同(1),利用全等三角形的性质解决问题;(3)证明∠EBD∠∠DCF,推出BE BDCD CF=,设AF=m,则AE=4m,分三种情形,分别构建方程求解即可.【详解】(1)证明:如图1中,∠∠ABC中,∠BAC=90°,AB=AC,AD是高,∠BD=CD=AD12=BC,∠B=∠C=45°,∠BAD=∠CAD12=∠BAC=45°,∠DF∠DE,∠∠EDF=∠ADB=90°,∠∠BDE=∠ADF=90°﹣∠ADE,在△BDE和△ADF中,45BDE ADFBD ADB CAD∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∠∠BDE ∠∠ADF (ASA ),∠BE =AF ;(2)解:如图2中,由(1)知,BD =CD =AD ,∠B =∠C =∠BAD =∠CAD =45°,∠∠EDF =∠ADB =90°,∠∠BDE =∠ADF =90°+∠ADE ,在△BDE 和△ADF 中,45BDE ADF BD AD B CAD ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∠∠BDE ∠∠ADF (ASA ),∠BE =AF ,∠AB =3,AE =1,∠BE =AB +AE =4,∠AF =4;(3)解:如图3中,∠AB =AC ,BD =CD ,∠AD ∠BC ,∠BAD =∠CAD 12=∠BAC =60°, ∠BD =CD =AB •sin 60°=23,∠AE =4AF ,∠可以假设AF=m,则AE=4m,BE=4﹣4m,CF=4﹣m,∠∠EDC=∠EDF+∠FDC=∠B+∠BED,∠EDF=∠B=30°,∠∠FDC=∠BED,∠∠B=∠C,∠∠EBD∠∠DCF,∠BE BD CD CF=,∠4423423mm-=-,整理得,m2﹣5m+1=0,解得m5212-=或5212+(舍弃),经检验,m5212-=是分式方程的解.当点F在CA的延长线上时,CF=4+m,由△EBD∠∠DCF,可得BE BD CD CF=,∠4423423mm-=+,解得,m3132-+=或3132--(舍弃),经检验,m3132-+=是分式方程的解.当点E在射线BA上时,BE=4+4m,∠∠EBD∠∠DCF,∠BE BD CD CF=,∠4423423mm +=-解得,m3132+=或3132-(舍弃),经检验,m3132+=是分式方程的解.综上所述,满足条件的AF的值为5212-或3132-+或3132+.【点睛】本题属于几何变换综合题,考查了全等三角形的判定与性质、相似三角形的判定与性质,等腰直角三角形的判定与性质等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键,学会用分类讨论的思想思考问题,属于中考常考题型.3.(1)见解析;(2)∠见解析;∠125【解析】【分析】(1)连接AD,根据等腰三角形的性质可得∠ADE=∠BDF,从而得到∠BDF∠∠ADE,即可求证;(2)∠先证得∠BDF=∠ADE,∠B=∠DAE,可证得∠BDF∠∠ADE,即可求证;∠连接EF,根据勾股定理可得BC=5,根据三角形的面积可得AD125AB ACBC⋅==,从而得到DC165=,再由∠ADB∠∠CAB,可得BD ABAD AC=,再根据BD DFAD DE=,可得到DF ABDE AC=,从而得到∠EDF∠∠CAB,进而得到EF54DE=,可得到当DE最小时,EF取最小值,即可求解.【详解】证明:(1)如图1,连接AD,∠AB=AC,∠BAC=90°,BD=CD,∠AD∠BC,AD=BD=DC,∠B=∠DAE=45°,∠∠ADB=∠EDF=90°,∠∠ADB﹣∠ADF=∠EDF﹣∠ADF,即∠ADE=∠BDF,在∠BDF和∠ADE中,B DAEBD ADBDF ADE∠=∠⎧⎪=⎨⎪∠=∠⎩,∠∠BDF∠∠ADE(ASA),∠DE=DF;(2)∠证明:∠AD∠BC,∠∠ADB=90°,∠∠ADB=∠EDF,∠∠ADB﹣∠ADF=∠EDF﹣∠ADF,即∠BDF=∠ADE,∠∠BAD+∠DAE=90°,∠BAD+∠B=90°,∠∠B=∠DAE,∠∠BDF∠∠ADE,∠BD DFAD DE=,∠DF•DA=DB•DE;∠解:如图2,连接EF,在Rt△ABC中,∠BAC=90°,AC=4,AB=3,则BC22AB AC=+=5,∠AD125AB ACBC⋅==,由勾股定理得:DC22165AC AD=-=,∠∠B=∠B,∠ADB=∠CAB=90°,∠∠ADB∠∠CAB,∠DB ADAB AC=,∠BD ABAD AC=,由∠可知,BD DFAD DE=,∠DF AB DE AC=, ∠∠EDF =∠CAB =90°,∠∠EDF ∠∠CAB ,∠EF DE BC AC =,即54EF DE =, ∠EF 54DE =, 当DE 最小时,EF 取最小值,当DE ∠AC 时,DE 最小,此时,DE 12164855425AD DC AC ⨯⋅===, ∠EF 的最小值为:485122545⨯=. 【点睛】本题主要考查了等腰三角形的性质,全等三角形和相似三角形的判定和性质,勾股定理等知识,熟练掌握等腰三角形的性质,全等三角形和相似三角形的判定和性质是解题的关键.4.(1)见解析(2)2711 (3)625-或3或25【解析】【分析】(1)由矩形的四个角都是直角和BF CE ⊥可推出CED ∆和BCF ∆有两组对应角相等,从而证明CED BCF ∆∆∽ ;(2)过点P 作GH CD ⊥于点G ,交AB 于点H ,由四边形BCGH 是矩形,由勾股定理求出BF 的长,再由相似三角形对应边成比例求出PH 、BH 的长,从而求出AH 的长,即可求得tan BAP ∠的值;(3)ABP ∆ 为等腰三角形分为三种情况,按不同情况分类讨论,添加辅助线构造相似三角形,求出DE 的长.(1)∠四边形ABCD 是矩形,BF CE⊥,90BPC︒∴∠=,90.DCE BCP CBF︒∴∠=-∠=∠,CED BCF∴∆∆∽.(2)如图1,过点P作GH CD⊥于点,G,交AB于点H,4CD AB==,122DCF C=∴=,6BC=,2222640BF=+=,40210BF∴==;cosBP BCCBFBC BF==∠,2BP BF CB⋅∴=,22106BP∴=,解得9105=BP,90HBC BCG CGH︒∠=∠=∠=,∠四边形BCGH是矩形,90,//PHA PHB GH BC︒∴∠=∠=,BPH FBC∴∠=∠,cosPH BCFBCBP BF∴==∠,91021065PH∴=⨯,解得275PH=,sinBH CFFBCBP BF==∠,BBF H BP CF⋅=⋅∴,91021025BH∴=⨯,解得95BH=,911455AH∴=-=,272751tan.11115PHBAPAH∴∠===(3)当PA PB=时,如图2,作PH AB⊥于点H,则AH=BH,90,//BHP BAC AD BC︒∠=∠=,APH D BC∴∥∥,1EP AHCP BH∴==,EP CP∴=,BF CE⊥,6BE BC∴==,∠AE226425=-=,∠DE=625-;当P A =AB 时,如图3,作AM ∠BP 于点M ,则12BM PM BP ==, cos BP BC CBF BC BF==∠, 22636BC BF F BP BF B ===∴, 1182B B P BFM =∴= //AB CD ,ABM F ∴∠=∠,cos BM CF F AB BF∴==∠, 184CF BF EF∴=, ∠整理得CF 92=, 90DCE BCP CBF ︒∠=-∠=∠,tan DE CF CBF CD BC∴==∠, 94236CD CF BC DE ⨯⋅=∴==;当BP =AB =4时,如图4,则226425PC =-=,,90,DEC PCB EDC CPB CD AB BP ︒∠=∠∠=∠===,()CDE BPC AAS ∴∆∆≌,25DE PC ∴==.综上所述,DE 的长为625-或3或25.【点睛】此题重点考查矩形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识与方法,解题的关键是正确地作出所需要的辅助线,解第(3)题时要分类讨论,求出所有符合条件的结果,此题难度较大,属于考试压轴题.5.(1)矩形或正方形;(2)AC=BD ,理由见解析;(3)10417 或12﹣372. 【解析】【分析】(1)矩形或正方形邻角相等,满足“等邻角四边形”条件;(2)AC=BD ,理由为:连接PD ,PC ,如图1所示,根据PE 、PF 分别为AD 、BC 的垂直平分线,得到两对角相等,利用等角对等角得到两对角相等,进而确定出∠APC=∠DPB ,利用SAS 得到三角形ACB 与三角形DPB 全等,利用全等三角形对应边相等即可得证;(3)分两种情况考虑:(i )当∠AD′B=∠D′BC 时,延长AD′,CB 交于点E ,如图3(i )所示,由S 四边形ACBD′=S △ACE ﹣S △BED′,求出四边形ACBD′面积;(ii )当∠D′BC=∠ACB=90°时,过点D′作D′E∠AC 于点E ,如图3(ii )所示,由S 四边形ACBD′=S △AED′+S 矩形ECBD′,求出四边形ACBD′面积即可.【详解】(1)矩形或正方形;(2)AC=BD,理由为:连接PD,PC,如图1所示:∠PE是AD的垂直平分线,PF是BC的垂直平分线,∠PA=PD,PC=PB,∠∠PAD=∠PDA,∠PBC=∠PCB,∠∠DPB=2∠PAD,∠APC=2∠PBC,即∠PAD=∠PBC,∠∠APC=∠DPB,∠∠APC∠∠DPB(SAS),∠AC=BD;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,∠∠ED′B=∠EBD′,∠EB=ED′,设EB=ED′=x,由勾股定理得:42+(3+x)2=(4+x)2,解得:x=4.5,过点D′作D′F∠CE于F,∠D′F∠AC,∠∠ED′F∠∠EAC,∠D F ED AC AE''=,即4.544 4.5D F'=+,解得:D′F=36 17,∠S△ACE=12AC×EC=12×4×(3+4.5)=15;S△BED′=12BE×D′F=12×4.5×3617=8117,则S四边形ACBD′=S△ACE﹣S△BED′=15﹣8117=10417;(ii)当∠D′BC=∠ACB=90°时,过点D′作D′E∠AC于点E,如图3(ii)所示,∠四边形ECBD′是矩形,∠ED′=BC=3,在Rt∠AED′中,根据勾股定理得:AE=7,∠S△AED′=12AE×ED′=12×7×3=372,S矩形ECBD′=CE×CB=(4﹣7)×3=12﹣37,则S四边形ACBD′=S△AED′+S矩形ECBD′=372+12﹣37=12﹣372.【点睛】此题是四边形综合题,主要考查了“等邻角四边形”的理解,三角形,四边形的内角和定理,角平分线的意义,勾股定理,旋转的性质,相似三角形的性质和判定,理解“等邻角四边形”的定义是解本题的关键,分类讨论是解本题的难点,是一道中考常考题.。

专题5 全等模型——对角互补模型

专题5  全等模型——对角互补模型

初中数学 ︵ 对角互补模型 ︶培优篇全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就对角互补模型进行梳理及对应试题分析,方便掌握.对角互补模型概念:对角互补模型特指四边形中,存在一对对角互补,而且有一组邻边相等的几何模型. 思想方法:解决此类问题常用的辅助线画法主要有两种: ①过顶点做双垂线,构造全等三角形; ②进行旋转的构造,构造手拉手全等.常见的对角互补模型含90°-90°对角互补模型、120°-60°对角互补模型、2α-(180°-2α)对角互补模型.1)“共斜边等腰直角三角形+直角三角形”模型(异侧型)条件:如图,已知∠AOB =∠DCE =90°,OC 平分∠AOB .结论: ①CD =CE ;②OD +OE OC ;③212ODCE COE COD S S S OC .初中数学 ︵ 对角互补模型 ︶培优篇 2)“斜边等腰直角三角形+直角三角形”模型(同侧型)条件:如图,已知∠DCE 的一边与AO 的延长线交于点D ,∠AOB =∠DCE =90°,OC 平分∠AOB .结论: ①CD=CE ;②OE -OD OC ; ③212COE COD S S OC .例1.在ABC 中,90BAC ,AB AC ,AD BC 于点D :(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ,当30AMN ,2AB 时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ,求证:BE AF ; (3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN,求证:AB AN .初中数学 ︵ 对角互补模型 ︶培优篇 例2.如图1,在R t △ABC 中,∠ABC =90°,BA =BC ,直线MN 是过点A 的直线CD ⊥MN 于点D ,连接BD .(1)观察猜想张老师在课堂上提出问题:线段DC ,AD ,BD 之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B 作BE ⊥BD ,交MN 于点E ,进而得出:DC +AD = BD .(2)探究证明:将直线MN 绕点A 顺时针旋转到图2的位置写出此时线段DC ,AD ,BD 之间的数量关系,并证明.初中数学 ︵ 对角互补模型 ︶培优篇1)“等边三角形对120°模型”(1)条件:如图,已知∠AOB =2∠DCE =120°,OC 平分∠AOB .结论:①CD=CE ;②OD +OE =OC ;③24COD COE S S .2)“等边三角形对120°模型”(2)条件:如图,已知∠AOB =2∠DCE =120°,OC 平分∠AOB ,∠DCE 的一边与BO 的延长线交于点D .结论:①CD=CE ;②OD -OE =OC ;③24COD COE S S .3)“120°等腰三角形对60°模型”条件:△ABC 是等腰三角形,且∠BAC =120°,∠BPC=60°. 结论:①PB+PCA ;初中数学︵ 对角互补模型 ︶培优篇例1.如图1,AOB 90 ,OC 平分AOB ,以C 为顶点作90DCE ,交OA 于点D ,OB 于点E .(1)求证:CD CE ;(2)图1中,若3OC ,求 OD OE 的长;(3)如图2,120AOB ,OC 平分AOB ,以C 为顶点作60DCE ,交OA 于点D ,OB 于点E .若3OC ,求四边形OECD 的面积.例2.如图,已知∠AOB =120°,在∠AOB 的平分线OM 上有一点C ,将一个60°角的顶点与点C 重合,它的两条边分别与直线OA 、OB 相交于点D 、E .(1)当∠DCE 绕点C 旋转到CD 与OA 垂直时(如图1),请猜想OE +OD 与OC 的数量关系,并说明理由;(2)当∠DCE 绕点C 旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;初中数学 ︵ 对角互补模型 ︶培优篇1)“2α对180°-2α模型”条件:四边形ABCD 中,AP =BP ,∠A +∠B =180° 结论:OP 平分∠AOB注意:①AP =BP ;②∠A +∠B =180°;③OP 平分∠AOB ,以上三个条件可知二推一. 2)“蝴蝶型对角互补模型”条件:AP =BP ,∠AOB =∠APB 结论:OP 平分∠AOB 的外角.例1.如图,BN 为∠MBC 的平分线,P 为BN上一点,且PD⊥BC 于点D ,∠APC +∠ABC =180°,给出下列结论:①∠MAP =∠BCP ;②P A =PC ;③AB +BC =2BD ;④四边形BAPC 的面积是△PBD 面积的2倍,其中结论正确的个数有( )初中数学 ︵ 对角互补模型 ︶培优篇A .4个B .3个C .2个D .1个例2.如图,四边形ABCD 中,∠ABC +∠D =180°,AC 平分∠BAD ,CE ⊥AB ,CF ⊥AD .试说明: (1)△CBE ≌△CDF ; (2)AB +DF =AF .初中数学 ︵ 对角互补模型 ︶培优篇1.如图,在四边形ABCD 中,,90,AB BC ABC CDA BE AD 于,10ABCD E S 四边形,则BE 的长为__________.3.如图,在四边形ABCD =180°.4.五边形ABCDE 中,AB AE ,BC DE CD ,180ABC AED ,求证:AD 平分∠CDE .初中数学 ︵ 对角互补模型 ︶培优篇 5.已知,如图,在四边形ABCD 中,BC >BA ,∠A +∠C =180°,DE ⊥BC ,BD 平分∠ABC ,试说明AD =DC .6.如图,正方形ABCD 的边长为6,点E 是边AB 上一点,点P 是对角线BD 上一点,且PE ⊥PC . (1)求证:PC =PE ; (2)若BE =2,求PB 的长.。

对角互补模型(解析版)--中考数学满分突破

对角互补模型(解析版)--中考数学满分突破

对角互补模型对角互补模型的特征:外观呈现四边形,且对角和为180°。

主要:含90°对角互补,含120°的对角互补两种类型。

解决此类题型常用到的辅助线画法主要有两种:旋转法和过顶点作两垂线。

模型一:90°的对角互补模型【基础】如图,四边形ABCD 中,∠ABC =∠ADC =90°,BD 平分∠ABC ,则①AD =CD ②AB +BC =2BD ③S △ABD +S △BDC =12BD 2思路:①方法一(基础):过点D 分别作DE ⊥AB 于点E ,DF ⊥BC 于点F∵BD 平分∠ABC ∴DE =DF∵∠ABC =ADC =90°∴∠DAB +∠DCF =∠DAB +∠DAE =180°∴∠DCF =∠DAE ∴∆DAE ≌∆DCF ∴AD =CD方法二(基础):作DE ⊥BD 交BC 延长线于点E ∴∠BDE =90°∵BD 平分∠ABC ∴∠4=∠5=∠6=45°∴DE =BD ∵∠ABC =ADC =90°∴∠1+∠2=∠2+∠3=180°∴∠1=∠3∴∆ABD ≌∆CED ∴AD =CD方法三(进阶):∵四边形ABCD 对角互补∴A 、B 、C 、D 四点共圆∵BD 平分∠ABC∴∠ABD =∠CBD =45°∴AD =CD②③方法一:∵∆DAE ≌∆DCF∴AE =FC S △DAE =S △DCF∵∠ABC =∠ADC =90°,BD 平分∠ABC∴∠EBD =∠DBF =45°∴∆DEB 与∆DFB 为等腰直角三角形∴AB +BC =AB +BF +FC =AB +BF +AE =BE +BF =22BD +22BD =2BD S △ABD +S △BDC =S △ABD +S △BDF +S △DFC =S △ABD +S △BDF +S △AED =S △DEB +S △DFB =S 正方形BFDE =12BD 2方法二:∵∆ABD ≌∆CED∴AB =CE S △ABD =S △CED 而∠BDE =90°∠5=∠6=45°∴∆BDE 为等腰直角三角形则AB +BC =BC +CE =BE =2BDS △ABD +S △BDC =S △DCE +S △BDC =S △BDE =12BD 2【进阶】如图,∠AOB =∠DCE =90°,OC 平分∠AOB ,当∠DCE 的一边与AO 的延长线交于点D 时,有以下结论:①CD =CE ②OE -OD =2OC ③S △OCE -S △OCD =12OC 2思路:①方法一:过点C 分别作CM ⊥AO 于点M , CN ⊥BO 于点N∴∠CMD =∠CNE =90°∵∠AOB =90°∴∠MCN =90°则∠MCD =∠ECN而OC 平分∠AOB ∴CM =CN∴∆CMD ≌∆CNE ∴CD =CE方法二:过点C 作CH ⊥CO 交OB 于点H ∴∠OCH =90°∴∠OCD +∠DCH =∠HCE +∠DCH =90°∴∠OCD =∠HCE∵∠AOB =90°,OC 平分∠AOB∴∠AOC =∠COH =∠CHO =45°∴∆OCH 为等腰直角三角形∴OC =CH∵∠COD =180°-∠AOC ,∠CHE =180°-∠CHO∴∠COD =∠CHE ∴∆COD ≌∆CHE ∴CD =CE方法三:连接DE∵∠AOB =∠DCE =90°∴∠DOE =∠DCE =90°∴O 、C 、E 、D 四点共圆∵OC 平分∠AOB ∴∠CDE =∠COE =∠CED =45°∴CD =CE②③∵∆COD ≌∆CHE ∴OD =HE S △OCD =S △HCE则OE -OD =OE -EH =OH =2OCS△OCE-S△OCD=S△OCE-S△HCE=S△OCH=12OC2模型二:120°的对角互补模型【基础】如图,已知∠AOB=2∠DCE=120°,OC平分∠AOB,则①CD=CE②OD+OE=OC③S△DCO+S△COE=√34OC2思路:①方法一:过点C分别作CM⊥AO于点M,CN⊥OB于点N所以∠CMD=∠CNE=90°由OC平分∠AOB可知CM=CN由∠AOB=2∠DCE=120°,可得∠CDO+∠CEN=180°而∠CDO+∠CDM=180°因此∠CDM=∠CEN所以∆CMD≌∆CNE则CD=CE方法二:作∠OCF=60°交OB于点F由已知条件可知∆COF为等边三角形所以CO=CF∠COD=∠CFE=60°因为∠DCE=∠OCF=60°所以∠DCO=∠ECF所以∆DCO≌∆ECF则CD=CE方法三:∵∠AOB=2∠DCE=120°∴∠DOE+∠DCE=180°∴O、D、C、E四点共圆∵OC平分∠AOB∴∠COD=∠COE=60°∴CD=CE②由于∆DCO≌∆ECF, ∆COF为等边三角形则OD=EF OC=OF所以OD+OE=EF+OE=OF=OC③过点F作FH⊥CO于点H由于∆DCO≌∆ECF所以S△DCO=S△ECF设OC=x,则OH=X2FH=√3X2S△DCO+S△COE=S△ECF+S△COE=S△OCF=12OC•FH=12•x•√3X2=√3 4x2=√34OC2【进阶】如图,∠AOB =2∠DCE =120°,OC 平分∠AOB ,当∠DCE 的一边与BO 的延长线交于点E 时,有以下结论:①CD =CE ②OD -OE =OC ③S △DCO -S △COE =√34OC 2思路:①方法一:过点C 分别作CM ⊥DO 于点M ,CN ⊥EB 于点N所以∠CMD =∠CNB =90°由OC 平分∠AOB ∠AOB =2∠DCE =120°可知CM =CN ∠DCE =∠MCN =60°则∠DCM =∠ECN所以∆CDM ≌∆CEN 则CD =CE方法二:过点C 作∠OCH =60°根据已知条件可知∠DCE =∠OCH =∠COH =60°,∴∆COH 为等边三角形,∠DCO =∠ECH∴∠COD =∠CHE =60°CO =CH所以∆CDO ≌∆CEH 则CD =CE OD =EH S △DCO =S △ECH∴OD -OE =EH -OE =OH =OCS △DCO -S △COE =S △ECH -S △COE =S △COH =√34OC 2方法三:连接DE∵∠AOB =2∠DCE =120°,OC 平分∠AOB∴∠DOE =∠DCE =∠DOC =60°∴O 、C 、D 、E 四点共圆∴∠DEC =∠DOC =∠DCE =60°∴△DEC 是等边三角形∴CD =CE模型三:全等型之任意角如图,∠AOB =2α,∠DCE =180°-2α,OC 平分∠AOB ,则:①CD =CE②OD +OE =2OC •COSα③S △DCO +S △COE =OC 2•sin αCOSα思路:1)过点C作CM⊥AO于点M, 作CN⊥BO于点N易证∆CDM≌∆CEN∴CD=CE则OD+OE=2ON=2OC•COSαS△DCO+S△COE=2S△CON=CN•ON=OC2•sinαCOSα2)作∠OCH=180°-2α,与OB交于点H易证∆CDO≌∆CEH∴CD=CE OD=EH S△DCO=S△ECH则OD+OE=OH=2OC•COSαS△DCO+S△COE=S△COH=OC2•sinαCOSα【进阶】如图,除满足以上条件外,当∠DCE的一边与BO延长线交于点E 时,则:①CD=CE②OD-OE=2OC•COSα③S△DCO-S△COE=OC2•sinαCOSα[自行证明]模型四:内含90°的相似型如图,∠AOB=∠DCE=90°,∠COB=α,则CE=CD•tanα[自行证明]【进阶】如图,当∠DCE的一边与AO的延长线交于点D时,则CE=CD•tanα[自行证明]【过关培优练】1.(2019春·江苏南京·八年级校联考期末)如图,在平面直角坐标系xOy中,A,B两点分别在x轴,y轴的正半轴上,且OA=OB,点C在第一象限,OC=3,连接BC,AC,若∠BCA=90°,则BC+AC的值为.【答案】32【分析】可将△OBC绕着O点顺时针旋转90°,所得的图形与△OAC正好拼成等腰直角三角形BC+ AC等于等腰三角形的斜边CD.【详解】解:将△OBC绕O点旋转90°,∵OB=OA∴点B落在A处,点C落在D处且有OD=OC=3,∠COD=90°,∠OAD=∠OBC,在四边形OACB中∵∠BOA=∠BCA=90°,∴∠OBC+∠OAC=180°,∴∠OAD+∠OAC=180°∴C、A、D三点在同一条直线上,∴△OCD为等要直角三角形,根据勾股定理CD2=OC2+OD2即CD2=32+32=18解得CD=32即BC+AC=3 2.【点睛】本题考查旋转的性质,旋转前后的图形对应边相等,对应角相等.要求两条线段的长,可利用作图的方法将两条线段化成一条线段,再求这条线段的长度即可,本题就是利用旋转的方法做到的,但做本题时需注意,一定要证明C、A、D三点在同一条直线上.本题还有一种化一般为特殊的方法,因为答案一定可考虑CB⊥y轴的情况,此时四边形OACB刚好是正方形,在做选择或填空题时,也可以起到事半功倍的效果.2.如图,四边形ABCD中,已知AB=AD,∠BAD=60°,∠BCD=120°,若四边形ABCD的面积为43,则AC=.【答案】4.【分析】将△ACD绕点A顺时针旋转60°,得到△ABE.证明△AEC是等边三角形,四边形ABCD面积等于△AEC面积,根据等边△AEC面积特征可求解AC长.【详解】解:将△ACD绕点A顺时针旋转60°,得到△ABE.∵四边形内角和360°,∴∠D+∠ABC=180°.∴∠ABE+∠ABC=180°,∴E、B、C三点共线.根据旋转性质可知∠EAC=60度,AE=AC,∴△AEC是等边三角形.四边形ABCD面积等于△AEC面积,等边△AEC面积=34Ac2=43,解得AC=4.故答案为4.【点睛】本题主要考查了等边三角形的判定和性质、旋转的性质,解题的关键是根据AB=AD及∠BAD=60°,对△ACD进行旋转,把四边形转化为等边三角形求解.3.(2021春·福建三明·八年级统考期中)感知:如图①,AD平分∠BAC,∠B+∠C=180°,∠B=90°.判断DB与DC的大小关系并证明.探究:如图②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,DB与DC的大小关系变吗?请说明理由.应用:如图③,四边形ABDC中,∠B=45°,∠C=135°,DB=DC=m,则AB与AC差是多少(用含m的代数式表示)【答案】感知:DB=DC,证明见详解;探究:DB与DC的大小关系不变,理由见详解;应用:AB与AC差是2m.【分析】感知:根据角平分线的性质定理即可求证;探究:过点D作DE⊥AB于点E,DF⊥AC,交AC延长线于点F,根据角平分线的性质定理可得DE=DF,由题意可得∠B=∠DCF,进而可证△DEB≌△DFC,然后问题可求证;应用:过点D作DH⊥AB于点H,DG⊥AC,交AC的延长线于点G,连接AD,由题意易证△DHB≌△DGC,则有DH=DG,进而可得AG=AH,然后根据等腰直角三角形的性质可得DG=CG=DH=BH=22m,则有AG=AH=AC+22m,最后问题可求解.【详解】感知:DB=DC,理由如下:∵∠B+∠C=180°,∠B=90°,∴∠B=∠C=90°,即DB⊥AB,DC⊥AC,∵AD平分∠BAC,∴DB=DC;探究:DB与DC的大小关系不变,还是相等,理由如下:过点D作DE⊥AB于点E,DF⊥AC,交AC延长线于点F,则∠DEB=∠DFC=90°,如图所示:∵AD平分∠BAC,∴DE=DF,∵∠ABD+∠ACD=180°,∠DCF+∠ACD=180°,∴∠B=∠DCF,∴△DEB≌△DFC(AAS),∴DB=DC;应用:过点D作DH⊥AB于点H,DG⊥AC,交AC的延长线于点G,连接AD,如图所示:∵∠B=45°,∠C=135°,∴∠B+∠C=180°,∵∠ACD+∠DCG=180°,∴∠B=∠DCG=45°,∵∠DHB=∠DGC=90°,DB=DC=m,∴△DHB≌△DGC(AAS),且△DHB与△DGC都为等腰直角三角形,∴DG=CG=DH=BH,由勾股定理可得DH2+BH2=DB2,∴2DH2=m2,m,∴DG=CG=DH=BH=22在Rt△AHD和Rt△AGD中,AD=AD,DH=DG,∴Rt△AHD≌Rt△AGD(HL),∴AG=AH=AC+2m,2∴AB=AH+BH=AC+2m,∴AB-AC=2m.【点睛】本题主要考查角平分线的性质定理、全等三角形的性质与判定及勾股定理,熟练掌握角平分线的性质定理、全等三角形的性质与判定及勾股定理是解题的关键.4.(2013秋·江苏盐城·九年级阶段练习)已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,我们可得结论:AB+AD=AC;在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则上面的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(2)在图3中:(只要填空,不需要证明).①若∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=AC(用含α的三角函数表示).【答案】(1)成立,证明如下;(2)3,2cos α2 .【详解】试题分析:(1)作CE⊥AM、CF⊥AN于E、F.根据角平分线的性质,得CE=CF,根据等角的补角相等,得∠CDE=∠ABC,再根据AAS得到△CDE≌△CBF,则DE=BF.再由∠MAN =120°,AC平分∠MAN,得到∠ECA=∠FCA=30°,从而根据30°所对的直角边等于斜边的一半,得到AE=12AC,AF=12AC,等量代换后即可证明AD+AB=AC仍成立.试题解析:(1)仍成立.证明:过点C分别作AM、AN的垂线,垂足分别为E、F∵AC平分∠MAN∴CE=CF∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°∴∠CDE=∠ABC又∠CED=∠CFB=90°,∴△CED≌△CFB(AAS)∵ED=FB,∴AD+AB=AE-ED+AF+FB=AE+AF∴AE+AF=AC∴AD+AB=AC(2)3,2cosα2.考点:(1)角平分线的性质;(2)全等三角形的判定与性质;(3)含30度角的直角三角形.5.(2021·全国·八年级专题练习)已知:∠ABC=∠ADC=90°,AD=DC,求证:BC+AB=2BD.6.(2021·全国·八年级专题练习)已知∠ABC =60°,∠ADC =120°,AB =BC ,求证:AD +DC =BD ,S 四边形ABCD =S △ABD +S △BCD =34BD 2.【答案】见解析【分析】延长DC 至点E 使CE =AD ,先证明△BAD ≌△BCE ,再证明△BDE 是等边三角形,可证结论成立.【详解】证明:延长DC 至点E 使CE =AD ,∵∠ABC =60°,∠ADC =120°,∴∠A +∠BCD =180°,∵∠BCE +∠BCD =180°,∴∠A =∠BCE ,在△BAD 和△BCE 中BA =BC∠A =∠BCE AD =CE,∴△BAD ≌△BCE ,∴BD =BE ,∠ABD =∠CBE ,∵∠ABC =∠ABD +∠CBD =60°,∴∠DBE =∠CBE +∠CBD =60°,∴△BDE 是等边三角形,∴BD =DE ,∵DC +CE =DE ,∴AD +DC =BD ;作BF ⊥DE 于点F ,则∠EBF =30°,EF =DF =12DE =12BE ,∴BF =BE 2-EF 2=32BE ,∴S △DBE =12DE ×BF =12×BE ×32BE =34BE 2,∴S 四边形ABCD =S △ABD +S △BCD =34BD 2.【点睛】此题主要考查了等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的性质,解决问题的关键是正确作出辅助线,证出△BAD≌△BCE,再证出△BDE是等边三角形.7.(2021·贵州黔东南·统考中考真题)在四边形ABCD中,对角线AC平分∠BAD.【探究发现】(1)如图①,若∠BAD=120°,∠ABC=∠ADC=90°.求证:AD+AB=AC;【拓展迁移】(2)如图②,若∠BAD=120°,∠ABC+∠ADC=180°.①猜想AB、AD、AC三条线段的数量关系,并说明理由;②若AC=10,求四边形ABCD的面积.【答案】(1)见解析;(2)①AD+AB=AC,见解析;②253【分析】(1)根据角平分线的性质得到∠DAC=∠BAC=60o,然后根据直角三角形中30o是斜边的一半即可写出数量关系;(2)①根据第一问中的思路,过点C分别作CE⊥AD于E,CF⊥AB于F,构造AAS证明△CFB≅△CED,根据全等的性质得到FB=DE,结合第一问结论即可写出数量关系;②根据题意应用60o的正弦值求得CE的长,然后根据S四边形ABCD=12AD×CE+12AB×CF=1 2AD+AB×CE的数量关系即可求解四边形ABCD的面积.【详解】(1)证明:∵AC平分∠BAD,∠BAD=120o,∴∠DAC=∠BAC=60o,∵∠ADC=∠ABC=90o,∴∠ACD=∠ACB=30o,∴AD=12AC,AB=12AC.∴AD+AB=AC,(2)①AD+AB=AC,理由:过点C分别作CE⊥AD于E,CF⊥AB于F.∵AC平分∠BAD,∴CF=CE,∵∠ABC+∠ADC=180o,∠EDC+∠ADC=180o,∴∠FBC=∠EDC,又∠CFB=∠CED=90o,∴△CFB≅△CED AAS,∴FB=DE,∴AD+AB=AD+FB+AF=AD+DE+AF=AE+AF,在四边形AFCE中,由⑴题知:AE+AF=AC,∴AD+AB=AC;②在Rt△ACE中,∵AC平分∠BAD,∠BAD=120o∴∠DAC=∠BAC=60o,又∵AC=10,∴CE=A sin∠DAC=10sin60o=53,∵CF=CE,AD+AB=AC,∴S四边形ABCD =12AD×CE+12AB×CF=12AD+AB×CE=12AC×CE=12×10×53=253.【点睛】本题考查了全等三角形的判定和性质,角平分线的性质和应用,解直角三角形,关键是辨认出本题属于角平分线类题型,作垂直类辅助线.8.(2017·四川乐山·中考真题)在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)如图1,若∠DAB=120°,且∠B=90°,试探究边AD、AB与对角线AC的数量关系并说明理由.(2)如图2,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若∠DAB=90°,探究边AD、AB与对角线AC的数量关系并说明理由.【答案】(1)AC=AD+AB;(2)成立;(3)AD+AB=2AC.【分析】(1)结论:AC=AD+AB,只要证明AD=12AC,AB=12AC即可解决问题;(2)(1)中的结论成立.以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,只要证明△DAC≌△BEC即可解决问题;(3)结论:AD+AB=2AC.过点C作CE⊥AC交AB的延长线于点E,只要证明△ACE是等腰直角三角形,△DAC≌△BEC即可解决问题;【详解】(1)AC=AD+AB.理由如下:如图1中,在四边形ABCD中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC平分∠DAB,∴∠DAC=∠BAC=60°,∵∠B=90°,∴AB=12AC,同理AD=12 AC,∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,如图2,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AE=AD+AB.(3)结论:AD+AB=2AC.理由如下:过点C作CE⊥AC交AB的延长线于点E,如图3,∵∠D+∠ABC=180°,∠DAB=90°,∴∠DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°,∴AC=CE.又∵∠D+∠ABC=180°,∠ABC+∠CBE=180°,∴∠D=∠CBE,∴△CDA≌△CBE,∴AD=BE,∴AD+AB=AE.在Rt△ACE中,AC=CE,∴AE=AC2+CE2=2AC2=2AC,∴AD+AB=2AC.【点睛】本题是四边形探究的综合题,属于压轴题,考查了全等三角形的判定与性质,等边三角形的判定与性质,等腰三角形的判定与性质,线段的和差倍分关系,对于线段和差问题,常常采用截长法或补短法构造辅助线,通过全等三角形来解决.9.(2022秋·广东惠州·九年级校考期中)在△ABC中,AC=BC=2,∠C=90°.将一块三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交边AC、CB于点D、E.(1)如图①,当PD⊥AC时,则DC+CE的值是.(2)如图②,当PD与AC不垂直时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)如图③,在∠DPE内作∠MPN=45°,使得PM、PN分别交DC、CE于点M、N,连接MN.那么△CMN的周长是否为定值?若是,求出定值;若不是,请说明理由.【答案】(1)2(2)依然成立(3)△CMN的周长为定值,且周长为2【分析】(1)由等腰三角形的性质和P为斜边AB的中点可知DC=1,CE=1,所以DC+CE的值可求;(2)结论成立.连接PC,通过证明△PCD≌△PBE.可得DC=EB,所以DC+CE=EB+CE= BC=2;(3)△CMN的周长为定值,且周长为2.在EB上截取EF=DM,通过证明△PMN≌△PFN,得到MN=NF.所以MC+CN+NM=MC+CN+NE+EF=MC+CE+DM=DC+CE=2.【详解】(1)连PC∵P是AB的中点,AC=BC=2,∠C=90°∴PC=AP=PB∵PD⊥AC,AC=1∴DC=12∠C=∠DPE=90°∴四边形PDCE是矩形,∴PE⊥BC又∵PC=PBBC=1∴EC=12∴DC+CE=2;故答案为:2;(2)结论成立.连接PC,如图②.∵△ABC是等腰直角三角形,P是AB的中点,∠ACB=45°.∴CP=PB,CP⊥AB,∠ACP=12∴∠ACP=∠B=45°,∠CPB=90°.∴∠BPE=90°-∠CPE.又∵∠DPC=90°-∠CPE,∴∠DPC=∠EPB.∴△PCD≌△PBE.∴DC=EB,∴DC+CE=EB+CE=BC=2.(3)△CMN的周长为定值,且周长为2.在EB上截取EF=DM,如图③,由(2)可知:PD=PE,∠PDC=∠PEB,∴△PDM≅△PEF,∴∠DPM=∠EPF,PM=PF.∵∠NPF=∠NPE+∠EPF=∠NPE+∠DPM=∠DPE-∠MPN=45°=∠NPM,又PN=PN,∴△PMN≌△PFN,∴MN=NF.∴MC+CN+NM=MC+CN+NE+EF,=MC+CE+DM,=DC+CE,=2.∴△CMN的周长是2.【点睛】此题比较复杂,综合考查全等三角形的判定与性质、矩形的判定与性质、图形的变换.综合性很强,是一道不错的题目.10.(2021秋·河南漯河·八年级统考期中)在等边△ABC中,点D为AC的中点,点F在BC延长线上,点E在射线AB上,∠EDF=120°.(1)如图1,当点E与点B重合时,则DE与DF的数量关系是;(2)当点E在线段AB上时,(1)中的结论是否仍然成立?请结合图2说明理由;(3)如图3,当点E在AB的延长线上时,BF=8,BE=2,请直接写出BC的长.【答案】(1)DE=DF;(2)DE=DF,理由见解析;(3)4【分析】(1)根据等腰三角形的性质及已知,可得∠DBC =∠F =30゜,从而可得DE =DF ;(2)仍有DE =DF ;过点D 作DG ∥BC 交AB 于点G ,可证明△DGE ≌△DCF ,从而可得DE =DF ;(3)过点D 作DG ∥BC 交AB 于点G ,可证明△DGE ≌△DCF ,从而可得GE =CF ;设BC =a ,则CF =8-a ,GB =12a ,GE =12a +2,则可得方程,解方程即可求得a .【详解】(1)∵△ABC 是等边三角形,D 点为AC 的中点∴∠DBC =30゜∵∠EDF =120゜∴∠F =180゜-∠DBC -∠EDF =30゜∴∠DBC =∠F∴DE =DF故答案为:DE =DF(2)仍有DE =DF ;理由如下:过点D 作DG ∥BC 交AB 于点G ,如图2所示则∠AGD =∠ABC∵△ABC 是等边三角形∴AB =AC ,∠A =∠ABC =∠ACB =60゜∴∠AGD =∠A =60゜∴△AGD 是等边三角形∴∠ADG =∠AGD =60゜,AD =GD∴∠DGE =∠GDC =120゜∴∠EDF =∠GDC =120゜∵∠GDE +∠EDC =∠EDC +∠CDF∴∠GDE =∠CDF∵D 点是AC 的中点∴AD =DC =GD∵∠ACB =60゜∴∠DCF =120゜∴∠DGE =∠DCF在△DGE 和△DCF 中∠DGE =∠DCFGD =DC∠GDE =∠CDF∴△DGE ≌△DCF (ASA )∴DE =DF(3)过点D 作DG ∥BC 交AB 于点G ,如图3所示与(2)同理有:△DGE ≌△DCF∴GE =CF设BC =a ,则CF =8-a ,GB =12a ∴GE =12a +2由GE =CF ,得:12a +2=8-a 解得:a =4【点睛】本题考查了等边三角形的判定与性质,全等三角形的判定与性质,作辅助线构造三角形全等是本题后两问的关键.11.(2017·辽宁葫芦岛·中考真题)如图,∠MAN =60°,AP 平分∠MAN ,点B 是射线AP 上一定点,点C 在直线AN 上运动,连接BC ,将∠ABC (0°<∠ABC <120°)的两边射线BC 和BA 分别绕点B 顺时针旋转120°,旋转后角的两边分别与射线AM 交于点D 和点E .(1)如图1,当点C 在射线AN 上时,①请判断线段BC 与BD 的数量关系,直接写出结论;②请探究线段AC ,AD 和BE 之间的数量关系,写出结论并证明;(2)如图2,当点C 在射线AN 的反向延长线上时,BC 交射线AM 于点F ,若AB =4,AC =3,请直接写出线段AD 和DF 的长.【答案】(1)①BC =BD ;②AD +AC =3BE ;(2)AD =53,DF =3137.【分析】(1)①结论:BC =BD .只要证明△BGD ≌△BHC 即可.②结论:AD +AC =3BE .只要证明AD +AC =2AG =2EG ,再证明EB =32BE 即可解决问题;(2)如图2中,作BG ⊥AM 于G ,BH ⊥AN 于H ,AK ⊥CF 于K .由(1)可知,△ABG ≌△ABH ,△BGD ≌△BHC ,易知BH ,AH ,BC ,CH ,AD 的长,由sin ∠ACH =AK AC=BH BC ,推出AK 的长,设FG =y ,则AF =23-y ,BF =4+y 2,由△AFK ∽△BFG ,可得AF BF =AK BG ,可得关于y 的方程,求出y 即可解决问题.【详解】(1)①结论:BC=BD,理由:如图1中,作BG⊥AM于G,BH⊥AN于H,∵∠MAN=60°,PA平分∠MAN,BG⊥AM于G,BH⊥AN于H,∴BG=BH,∠GBH=∠CBD=120°,∴∠CBH=∠GBD,∵∠BGD=∠BHC=90°,∴△BGD≌△BHC,∴BD=BC;②结论:AD+AC=3BE,∵∠ABE=120°,∠BAE=30°,∴∠BEA=∠BAE=30°,∴BA=BE,∵BG⊥AE,∴AG=GE,EG=BE•cos30°=32BE,∵△BGD≌△BHC,∴DG=CH,∵AB=AB,BG=BH,∴Rt△ABG≌Rt△ABH,∴AG=AH,∴AD+AC=AG+DG+AH-CH=2AG=3BE,∴AD+AC=3BE;(2)如图2中,作BG⊥AM于G,BH⊥AN于H,AK⊥CF于K,由(1)可知,△ABG≌△ABH,△BGD≌△BHC,易知BH=GB=2,AH=AG=EG=23,BC=BD=BH2+CH2=31,CH=DG=33,∴AD=53,∵sin∠ACH=AKAC =BH BC,∴AK3=231,∴AK=2331,设FG=y,则AF=23-y,BF=4+y2,∵∠AFK=∠BFG,∠AKF=∠BGF=90°,∴△AFK∽△BFG,∴AFBF =AKBG,∴23-y4+y2=23312,解得y=1037或310(舍弃),∴DF=GF+DG=1037+33,即DF=3137.12.(2021·重庆·统考中考真题)在等边△ABC中,AB=6,BD⊥AC,垂足为D,点E为AB边上一点,点F为直线BD上一点,连接EF.(1)将线段EF 绕点E 逆时针旋转60°得到线段EG ,连接FG .①如图1,当点E 与点B 重合,且GF 的延长线过点C 时,连接DG ,求线段DG 的长;②如图2,点E 不与点A ,B 重合,GF 的延长线交BC 边于点H ,连接EH ,求证:BE +BH =3BF ;(2)如图3,当点E 为AB 中点时,点M 为BE 中点,点N 在边AC 上,且DN =2NC ,点F 从BD 中点Q 沿射线QD 运动,将线段EF 绕点E 顺时针旋转60°得到线段EP ,连接FP ,当NP +12MP 最小时,直接写出△DPN 的面积.【答案】(1)①21;②见解析;(2)433【分析】(1)①连接AG ,根据题意得出△ABC 和△GEF 均为等边三角形,从而可证明△GBC ≌△GAC ,进一步求出AD =3,AG =BG =23,然后利用勾股定理求解即可;②以点F 为圆心,FB 的长为半径画弧,与BH 的延长线交于点K ,连接KF ,先证明出△BFK 是顶角为120°的等腰三角形,然后推出△FEB ≌△FHK ,从而得出结论即可;(2)利用“胡不归”模型构造出含有30°角的直角三角形,构造出NP +12MP =NP +PJ ,当N 、P 、J 三点共线的时候满足条件,然后利用等边三角形的性质及判定、矩形的判定及性质以及解直角三角形的知识分别计算出PN 与DN 的长度,即可得出结论.【详解】(1)解:①如图所示,连接AG ,由题意可知,△ABC 和△GEF 均为等边三角形,∴∠GFB =60°,∵BD ⊥AC ,∴∠FBC =30°,∴∠FCB =30°,∠ACG =30°,∵AC =BC ,GC =GC ,∴△GBC ≌△GAC (SAS ),∴∠GAC =∠GBC =90°,AG =BG ,∵AB =6,∴AD =3,AG =BG =23,∴在Rt △ADG 中,DG=AD 2+AG 2=23 2+32=21,∴DG =21;②证明:以点F 为圆心,FB 的长为半径画弧,与BH 的延长线交于点K ,连接KF ,如图,∵△ABC 和△GEF 均为等边三角形,∴∠ABC =60°,∠EFH =120°,∴∠BEF +∠BHF =180°,∵∠BHF +∠KHF =180°,∴∠BEF =∠KHF ,由辅助线作法可知,FB =FK ,则∠K =∠FBE ,∵BD 是等边△ABC 的高,∴∠K =∠DBC =∠DBA =30°,∴∠BFK =120°,在△FEB 与△FHK 中,∠FEB =∠FHK∠FBE =∠KFB =FK∴△FEB ≌△FHK (AAS ),∴BE =KH ,∴BE +BH =KH +BH =BK ,∵FB =FK ,∠BFK =120°,∴BK =3BF ,即:BE +BH =3BF ;(2)方法一:以M 为顶点,MP 为一边,作∠PML =30°,ML 交BD 于G ,过P 作PH ⊥ML 于H ,设MP 交BD 于K ,如图:Rt ΔPMH 中,HP =12MP ,∴NP +12MP 最小即是NP +HP 最小,此时N 、P 、H 共线,∵将线段EF 绕点E 顺时针旋转60°得到线段EP ,∴F 在射线QF 上运动,则P 在射线MP 上运动,根据“瓜豆原理”,F 为主动点,P 是从动点,E 为定点,∠FEP =60°,则F 、P 轨迹的夹角∠QKP =∠FEP =60°,∴∠BKM =60°,∵∠ABD =30°,∴∠BMK =90°,∵∠PML =30°,∴∠BML =60°,∴∠BML=∠A,∴ML⎳AC,∴∠HNA=180°-∠PHM=90°,而BD⊥AC,∴∠BDC=∠HNA=∠PHM=90°,∴四边形GHND是矩形,∴DN=GH,∵边ΔABC中,AB=6,BD⊥AC,∴CD=3,又DN=2NC,∴DN=GH=2,∵等边ΔABC中,AB=6,点E为AB中点时,点M为BE中点,∴BM=32,BD=AB⋅sin A=6×sin60°=33,RtΔBGM中,MG=12BM=34,BG=BM⋅cos30°=334,∴MH=MG+GH=114,GD=BD-BG=93 4,RtΔMHP中,HP=MH⋅tan30°=11312,∴PN=HN-HP=GD-HP=433,∴SΔDPN=12PN⋅DN=433.方法二:如图,连接EQ,∵在等边△ABC中,AB=6,BD⊥AC,∴∠A=60°,∠BDA=90°,∠ABD=30°,∵点E、Q分别为AB、BD的中点,∴EQ为△ABD的中位线,∴EQ⎳AD,∴∠BEQ=∠A=60°,∠BQE=∠BDA=90°,∵∠BQE=90°,∠ABD=30°,∴EQ=12BE,∵点M为BE的中点,∴ME=12BE=EQ,∵将线段EF绕点E顺时针旋转60°得到线段EP,∴△EPF 为等边三角形,∠PEF =60°,PE =EF =PF ,∴∠BEQ =∠PEF ,∴∠BEQ -∠PEQ =∠PEF -∠PEQ ,即∠MEP =∠QEF ,在△MEP 与△QEF 中,ME =EQ∠MEP =∠QEF PE =EF,∴△MEP ≌△QEF (SAS )∴∠EMP =∠EQF =90°,∴MP ⊥BE ,∴点P 在射线MP 上运动,如图,以M 为顶点,MP 为一边,作∠PML =30°,ML 交BD 于G ,过P 作PH ⊥ML 于H ,设MP 交BD 于K ,则在Rt △PMH 中,HP =12MP ,∴NP +12MP 最小即是NP +HP 最小,此时N 、P 、H 共线,如图:∵∠EMP =90°,∠PML =30°,∴∠BML =180°-∠EMP -∠PML =60°,∴∠BML =∠A ,∴ML ⎳AC ,∴∠HNA =180°-∠PHM =90°,又∵BD ⊥AC ,∴∠BDC =∠HNA =∠PHM =90°,∴四边形GHND 是矩形,∴DN =GH ,∵在等边△ABC 中,AB =6,BD ⊥AC ,∴CD =3,又DN =2NC ,∴DN =GH =2,∵在等边△ABC 中,AB =6,点E 为AB 中点时,点M 为BE 中点,∴BM =32,BD =AB ⋅sin A =6×sin60°=33,∴在Rt △BGM 中,MG =12BM =34,BG =BM ⋅cos30°=334,∴MH =MG +GH =114,GD =BD -BG =934,∴在Rt△MHP中,HP=MH⋅tan30°=11312,∴PN=HN-HP=GD-HP=433,∴S△DPN=12PN⋅DN=12×433×2=433.【点睛】本题考查等边三角形性质及应用,涉及旋转变换、解直角三角形、三角形全等的判定及性质、矩形的判定及性质等知识,难度较大,解题的关键是构造辅助线.13.(2022·辽宁朝阳·统考中考真题)【思维探究】如图1,在四边形ABCD中,∠BAD=60°,∠BCD=120°,AB=AD,连接AC.求证:BC+CD=AC.(1)小明的思路是:延长CD到点E,使DE=BC,连接AE.根据∠BAD+∠BCD=180°,推得∠B+∠ADC=180°,从而得到∠B=∠ADE,然后证明△ADE≌△ABC,从而可证BC+CD=AC,请你帮助小明写出完整的证明过程.(2)【思维延伸】如图2,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,连接AC,猜想BC,CD,AC之间的数量关系,并说明理由.(3)【思维拓展】在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=6,AC与BD相交于点O.若四边形ABCD中有一个内角是75°,请直接写出线段OD的长.【答案】(1)AC=BC+CD;理由见详解;(2)CB+CD=2AC;理由见详解;(3)33-3或3-3【分析】(1)如图1中,延长CD到点E,使DE=BC,连接AE.证明△ADE≌△ABC(SAS),推出∠DAE=∠BAC,AE=AC,推出△ACE的等边三角形,可得结论;(2)结论:CB+CD=2AC.如图2中,过点A作AM⊥CD于点M,AN⊥CB交CB的延长线于点N.证明△AMD≌△ANB(AAS),推出DM=BN,AM=AN,证明Rt△ACM≌Rt△ACN(HL),推出CM=CN,可得结论;(3)分两种情形:如图3-1中,当∠CDA=75°时,过点O作OP⊥CB于点P,CQ⊥CD于点Q.如图3-2中,当∠CBD=75°时,分别求解即可.【详解】(1)证明:如图1中,延长CD到点E,使DE=BC,连接AE.∵∠BAD +∠BCD =180°,∴∠B +∠ADC =180°,∵∠ADE +∠ADC =180°∴∠B =∠ADE ,在△ADE 和△ABC 中,DA =BA∠ADE =∠B DE =BC,∴△ADE ≌△ABC (SAS ),∴∠DAE =∠BAC ,AE =AC ,∴∠CAE =∠BAD =60°,∴△ACE 的等边三角形,∴CE =AC ,∵CE =DE +CD ,∴AC =BC +CD ;(2)解:结论:CB +CD =2AC .理由:如图2中,过点A 作AM ⊥CD 于点M ,AN ⊥CB 交CB 的延长线于点N .∵∠DAB =∠DCB =90°,∴∠CDA +∠CBA =180°,∵∠ABN +∠ABC =180°,∴∠D =∠ABN ,∵∠AMD =∠N =90°,AD =AB ,∴△AMD ≌△ANB (AAS ),∴DM =BN ,AM =AN ,∵AM ⊥CD ,AN ⊥CN ,∴∠ACD =∠ACB =45°,∴AC =2CM ,∵AC =AC .AM =AN ,∴Rt △ACM ≌Rt △ACN (HL ),∴CM =CN ,∴CB +CD =CN -BN +CM +DM =2CM =2AC ;(3)解:如图3-1中,当∠CDA =75°时,过点O 作OP ⊥CB 于点P ,CQ ⊥CD 于点Q .∵∠CDA =75°,∠ADB =45°,∴∠CDB =30°,∵∠DCB =90°,∴CD =3CB ,∵∠DCO =∠BCO =45°,OP ⊥CB ,OQ ⊥CD ,∴OP =OQ ,∴S ΔCDO S ΔOBC=12CD ·OQ 12BC ·OP =CD BC ,∴ODOB =CD CB=3,∵AB =AD =6,∠DAB =90°,∴BD =2AD =23,∴OD =31+3×23=33-3.如图3-2中,当∠CBD =75°时,同法可证OD OB =13,OD =11+3×23=3-3,综上所述,满足条件的OD 的长为33-3或3-3.【点睛】本题属于四边形综合题,考查了全等三角形的判定和性质,解直角三角形,等边三角形的判定和性质,角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.14.(2020·湖南湘西·中考真题)问题背景:如图1,在四边形ABCD 中,∠BAD =90°,∠BCD =90°,BA =BC ,∠ABC =120°,∠MBN =60°,∠MBN 绕B 点旋转,它的两边分别交AD 、DC 于E 、F .探究图中线段AE ,CF ,EF 之间的数量关系.小李同学探究此问题的方法是:延长FC 到G ,使CG =AE ,连接BG ,先证明△BCG ≌△BAE ,再证明△BFC ≌△BFE ,可得出结论,他的结论就是;探究延伸1:如图2,在四边形ABCD 中,∠BAD =90°,∠BCD =90°,BA =BC ,∠ABC =2∠MBN ,∠MBN 绕B 点旋转,它的两边分别交AD 、DC 于E 、F .上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由.探究延伸2:如图3,在四边形ABCD 中,BA =BC ,∠BAD +∠BCD =180°,∠ABC =2∠MBN ,∠MBN 绕B 点旋转,它的两边分别交AD 、DC 于E 、F .上述结论是否仍然成立?并说明理由.实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E 、F 处,且指挥中心观测两舰艇视线之间的夹角为70°,试求此时两舰艇之间的距离.【答案】EF =AE +CF .探究延伸1:结论EF=AE +CF 成立.探究延伸2:结论EF =AE +CF 仍然成立.实际应用:210海里.【分析】延长FC 到G ,使CG =AE ,连接BG ,先证明△BCG ≌△BAE ,可得BG =BE ,∠CBG =∠ABE ,再证明△BGF ≌△BEF ,可得GF =EF ,即可解题;探究延伸1:延长FC 到G ,使CG =AE ,连接BG ,先证明△BCG ≌△BAE ,可得BG =BE ,∠CBG =∠ABE ,再证明△BGF ≌△BEF ,可得GF =EF ,即可解题;探究延伸2:延长FC 到G ,使CG =AE ,连接BG ,先证明△BCG ≌△BAE ,可得BG =BE ,∠CBG =∠ABE ,再证明△BGF ≌△BEF ,可得GF =EF ,即可解题;实际应用:连接EF ,延长AE ,BF 相交于点C ,然后与探究延伸2同理可得EF =AE +CF ,将AE 和CF 的长代入即可.【详解】解:EF =AE +CF理由:延长FC 到G ,使CG =AE ,连接BG ,在△BCG 和△BAE 中,BC =BA∠BCG =∠BAE =90°CG =AE,∴△BCG ≌△BAE (SAS ),∴BG =BE ,∠CBG =∠ABE ,∵∠ABC =120°,∠MBN =60°,∴∠ABE +∠CBF =60°,∴∠CBG +∠CBF =60°,即∠GBF =60°,在△BGF 和△BEF 中,BG =BE∠GBF =∠EBF BF =BF,∴△BGF ≌△BEF (SAS ),∴GF =EF ,∵GF =CG +CF =AE +CF ,∴EF =AE +CF .探究延伸1:结论EF =AE +CF 成立.理由:延长FC 到G ,使CG =AE ,连接BG,在△BCG 和△BAE 中,BC =BA∠BCG =∠BAE =90°CG =AE,∴△BCG ≌△BAE (SAS ),∴BG =BE ,∠CBG =∠ABE ,∵∠ABC =2∠MBN ,∴∠ABE +∠CBF =12∠ABC ,∴∠CBG +∠CBF =12∠ABC ,即∠GBF =12∠ABC ,在△BGF 和△BEF 中,BG =BE∠GBF =∠EBF BF =BF,∴△BGF ≌△BEF (SAS ),∴GF =EF ,∵GF =CG +CF =AE +CF ,∴EF =AE +CF .探究延伸2:结论EF =AE +CF 仍然成立.理由:延长FC 到G ,使CG =AE ,连接BG ,∵∠BAD +∠BCD =180°,∠BCG +∠BCD =180°,∴∠BCG =∠BAD在△BCG 和△BAE 中,BC =BA∠BCG =∠BAE CG =AE,∴△BCG ≌△BAE (SAS ),∴BG =BE ,∠CBG =∠ABE ,∵∠ABC =2∠MBN ,.。

中考数学压轴题破解策略专题《对角互补模型》

中考数学压轴题破解策略专题《对角互补模型》

专题16《对角互补模型》破解策略1.全等型之“90°”如图,∠AOB =∠DCE =90°,OC 平分∠AOB ,则 (1)CD =CE ; (2)OD +OEOC ; (3)212OCD OCE S S OC ∆∆+=. 证明 方法一:如图,过点C 分别作CM ⊥OA ,CN ⊥OB ,垂足分别为M ,N . 由角平分线的性质可得CM =CN ,∠MCN =90°. 所以∠MCD =∠NCE , 从而△MCD ≌△NCE (ASA ),故CD =CE .易证四边形MONC 为正方形. 所以OD +OE =OD +ON +NE =2ONC .所以2212OCD OCE MONC S S S ON OC ∆∆+===正方形. 方法二:如图,过C 作CF ⊥OC ,交OB 于点F .易证∠DOC =∠EFC =45°,CO =CF ,∠DCO =∠ECF . 所以△DCO ≌△ECF (ASA ) 所以CD =CE ,OD =FE , 可得OD +OE =OF.所以212OCD OCE OCF S S S OC ∆∆∆+==. 【拓展】如图,当∠DCE 的一边与AO 的延长线交于点D 时,则:(1)CD =CE ; (2)OE -ODOC ; (3)212OCE OCD S S OC ∆∆-=. 如图,证明同上. 2.全等型之“120”如图,∠AOB =2∠DCE =120°,OC 平分∠AOB ,则: (1)CD =CE ;(2)OD +OE =OC ; (3)2OCD OCE S S ∆∆+=.证明 方法一:如图,过点C 分别作CM ⊥OA ,CN ⊥OB ,垂足分别为M ,N .所以22OCD OCE ONC S S S ∆∆∆+==易证△MCD ≌△NCE (ASA ),所以CD =CE ,OD +OE =2ON =O C .方法二:如图,以CO 为一边作∠FCO =60°,交OB 于点F ,则△OCF 为等边三角形. 易证△DCO ≌△ECF (ASA ). 所以CD =CE ,OD +OE =OF =OC , ∴S △OCD +S △OCE =S △OCF =43OC 2 【拓展】如图,当∠DCE 的一边与BO 的延长线交于点E 时,则: (1)CD =CE ;(2)OD -OE =OC ;(3)S △OCD -S △OCE =43OC 2 如图,证明同上.3、全等型之“任意角”如图,∠AOB =2α,∠DCE =180°-2α,OC 平分∠AOB ,则:(1)CD =CE ;(2)OD +OE =2OC ·cos α;(3)S △ODC +S △OEC =OC 2·sin αcos α 证明:方法一:如图,过点C 分别作CM ⊥OA ,CN ⊥OB ,垂足分别为M ,N易证△MCD ≌△NCE (ASA ) ∴CD =CE ,OD +OE =2ON =2OC ·cos α∴S △ODC +S △OEC =2S △ONC =OC 2·sin αcos α方法二:如图,以CO 为一边作∠FCO =180°-2α,交OB 于点F .易证△DCO ≌△ECF (ASA )∴CD =CE ,OD +OE =OF =2OC ·cos α∴S △ODC +S △OEC =S △OCF =OC 2·sin αcos α【拓展】如图,当∠DCE 的一边与BO 的延长线交于点E 时,则:(1)CD =CE ;(2)OD -OE =2OC ·cos α;(3)S △ODC -S △OEC =OC 2·sin αcos α 如图,证明同上4、相似性之“90°”如图,∠AOB =∠DCE =90°,∠COB =α,则CE =CD ·tan α 方法一:如图,过点C 分别作CM ⊥OA ,CN ⊥OB ,垂足分别为M 、N 易证△MCD ∽△NCE ,∴αtan ===CMCNCD CE MD NE ,即CE =CD ·tan α 方法二:如图,过点C 作CF ⊥OC ,交OB 于点F . 易证△DCO ∽△ECF ,∴αtan ===COCFCD CE OD FE ,即CE =CD ·tan α 方法三:如图,连接DE . 易证D 、O 、E 、C 四点共圆∴∠CDE =∠COE =α,故CE =CD ·tan α【拓展】如图,当∠DCE 的一边与AO 的延长线交于点D 时,则CE =CD ·tan α 如图,证明同上.例题讲解例1、已知△ABC 是⊙O 的内接三角形,AB =AC ,在∠BAC 所对弧BC 上任取一点D ,连接AD ,BD ,C D .(1)如图1,若∠BAC =120°,那么BD +CD 与AD 之间的数量关系是什么 (2)如图2,若∠BAC =α,那么BD +CD 与AD 之间的数量关系是什么 解:(1)BD +CD =3AD如图3,过点A 分别向∠BDC 的两边作垂线,垂足分别为E 、F . 由题意可得∠ADB =∠ADC =30° 易证△AEB ≌△AFC ∴BD +CD =2DE =3AD⑵BD +CD =2AD ?sin2α. 如图4,作∠EAD =∠BAC ,交DB 的延长线于点E .则△EBA ≌△DCA ,所以BE =CD ,AE =A D .作AF ⊥DE 于点F ,则∠FAD =2α.所以BD +CD =DE =2DF =2AD ?sin 2α. 例2如图1,将一个直角三角板的直角顶点P 放在正方形ABCD 的对角线BD 上滑动,并使其一条直角边始终经过点A ,另一条直角边与BC 相交于点F . ⑴求证:PA =PE ;⑵如图2,将⑴中的正方形变为矩形,其余不变,且AD =10,CD =8,求AP :PE 的值; ⑶如图3,在⑵的条件下,当P 滑动到BD 的延长线上时,AP :PE 的值是否发生变化解:⑴如图4,过点P 分别作PM ⊥AB ,PN ⊥BC ,垂足分别为M ,N .则PM =PN ,∠MPN =90°,由已知条件可得∠APE =90°,所以∠APM =∠EPN ,所以△APM ≌△EPN. 故AP =PE .A 图4图3ADBEP FC ADBPCE 图2ADPBE C 图1⑵如图5,过点P 分别作PM ⊥AB ,PN ⊥BC ,垂足分别为M ,N .则PM ∥AD ,PN ∥C D .所以△BPM ∽△BDA ,△BNP ∽△BC D .可得PM BP PN AD BD CD ==,所以54PM AD PN CD ==.易证△APM ∽△EPN ,所以54AP PM PE PN ==.⑶AP :PF 的值不变.[如图,理由同⑵]进阶训练1.如图,四边形ABCD 被对角线BD 分为等腰Rt △ABD 和Rt △CBD ,其中∠BAD 和∠BCD 都是直角,另一条对角线AC 的长度为2,则四边形ABCD 的面积为_________.答案:四边形ABCD 的面积为2. 【提示】易证A 、B 、C 、D 四点共圆,则∠BCA =∠BDA =∠ABD =∠ACD ,由“全等型之‘90°’”的结论可得S 四边形ABCD =12AC 2=2.2.在△ABC 中,AB =AC ,∠A =60°,D 是BC 边的中点,∠EDF =120°,DE 与AB 边相交于点E ,DF 与AC 边(或AC 边的延长线)相交于点F .图4A DPBE CN M图5A DBPCE N M图6ADBEP FC M N AB CD第1题图⑴如图1,DF 与AC 边相交于点F ,求证:BE +CF =12AB ; ⑵如图2,将图1中的∠EDF 绕点D 顺时针旋转一定的角度,使DF 与AC 边的延长线交于点F ,作DN ⊥AC 于点N ,若DN =FN ,求证:BE +CFBE -CF ).答案:略.【提示】⑴过点D 作DG ∥AC 交AB 于点G ,证△DEG ≌△DFC ,从而BE +CF =BE +EG =BG =12A B .⑵过点D 作DG ∥AC 交AB 于点G ,同⑴可得BE -CF =12AB =DC,延长AB 至点H ,使得BH =CF ,则DH =DF =DE ,从而BE +CF =HE=2DN ,所以BE +CF(BE -CF ).3.在菱形ABCD 中,两条对角线AC ,BD 相交于点O ,∠MON +∠BCD =180°,∠MON 绕点O 旋转,射线OM 交BC 于点E ,射线ON 交CD 于点F ,连结EF . ⑴如图1,当∠ABC =90°时,△OEF 的形状是____;⑵如图2,当∠ABC =60°时,请判断△OEF 的形状,并说明理由;⑶如图3,在⑴的条件下,将∠MON 的顶点移动到AO 的中点O '处,∠MO 'N 绕点O '旋转,仍满足∠MO 'N +∠BCD =180°,射线O 'M 交直线BC 于点E ,射线O 'N 交直线CD 于点F ,当BC=4,且'98O EF ABCD S S V 四边形时,求CE 的长.第1题图1AEFCD BAEFC D BN第1题图2第1题答图1 AEFC D BG 第1题答图2A EFC DB NHG答案:⑴等腰直角三角形;⑵△OEF 是等边三角形;⑶线段CE 的长为3或3. 【提示】⑵由“全等型之‘120°’”的结论可得OE =OF .⑶两种情况,如图:第3题图1 A DBCOME F N ABC DOF E MN第3题图2BC第3题图3第3题答图'。

【中考数学考点复习】微专题对角互补模型课件

【中考数学考点复习】微专题对角互补模型课件

微专题 对角互补模型 1.如图,过点C作CM⊥AO于点M,CN⊥OB于点N,则 △CDM∽△CEN
解题 方法 2.如图,过点C作∠OCF=∠DCE,CF交OB于点F,则
△COD∽△CFE
微专题 对角互补模型
3.如图,在Rt△ABC中,∠ABC=90°,∠A=30°,P是线段AC的中
点,点M为线段AB延长线上一点,点N为线段BC延长线上一点,且
微专题 对角互补模型
微专题
模型一 全等对角互补模型
对角互补模型
如图,已知∠AOB+∠DCE=180°,且点C在∠AOB的平
分线上 模型
分析
微专题 对角互补模型
①CD=CE; 结论 ②当∠AOB=90°时,OD+OE= 2OC;
③当∠AOB=120°时,OD+OE=OC 1.如图,过点C作CM⊥AO于点M,CN⊥OB于点N,则 △CDM≌△CEN; 解题 方法
2.如图,△ABC 是等腰直角三角形,∠BAC=90°,AB=AC,点 D 是
BC 下方一点,若∠BDC=90°,求证:AD 平分∠BDC.
证明:如解图,过点 A 作 AE⊥BD 交 DB 的延长线于点 E,
AF⊥CD 于点 F, 则∠AEB=∠AFC=90°. ∵∠BDC=90°, ∴∠EAF=360°-90°-90°-90°=90°. ∵∠BAC=90°, ∴∠EAB=∠FAC.
微专题 对角互补模型
2.如图,过点C作∠OCF=∠DCE,CF交OB于点F,则 △COD≌△CFE 解题 方法
微专题 对角互补模型 1.如图,正方形ABCD对角线AC与BD相交于点O,E、F分别是边AD、 CD上的点,连接EF,若AE=4,CF=3,OE⊥OF,则EF的长为 5 .
第1题图

中考数学对角互补模型专题知识解读

中考数学对角互补模型专题知识解读

对角互补模型专题知识解读【专题说明】共顶点模型,即四边形或构成的几何图形中,相对的角互补。

主要:含90°的对角互补,含120°的对角互补,两种类型,种类不同,得出的个别结论会有所区别。

解决此类题型常用到的辅助线画法主要有两种:旋转法和过顶点作两垂线.【方法技巧】类型一:含90°的对角互补模型(1)如图,∠AOB=∠DCE=90°,OC平分∠AOB,则有以下结论:作法1 作法2;;(2)如图,∠AOB=∠DCE=90°,OC平分∠AOB,当∠DCE的一边与AO的延长线交于点D 时,则有以下结论:作法1 作法2;;类型二:含120°的对角互补模型(1)如图,∠AOB=2∠DCE=120°,OC平分∠AOB,则有以下结论:作法1 作法2;;(2)如图,∠AOB=∠DCE=90°,OC平分∠AOB,当∠DCE的一边与AO的延长线交于点D 时,则有以下结论:作法1 作法2;;【典例分析】【类型一:含90°的对角互补模型】【典例1】(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,线段EF、BE、FD之间的关系是;(不需要证明)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD 上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD 延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.【解答】解:(1)EF=BE+FD,理由如下:如图1,延长CB至G,使BG=DF,连接AG,在△ABG和△ADF中,,∴△ABG≌△ADF(SAS),∴AG=AF,∠BAG=∠DAF,∵∠EAF=∠BAD,∴∠DAF+∠BAE=∠EAF,∴∠GAE=∠BAG+∠BAE=∠DAF+∠BAE=∠EAF,在△GAE和△F AE中,,∴△GAE≌△F AE(SAS),∴EF=EG,∵EG=BG+BE=BE+DF,∴EF=BE+FD,故答案为:EF=BE+FD;(2)(1)中的结论仍然成立,理由如下:如图2,延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠1=180°,∴∠1=∠D,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AM=AF,∠3=∠2,∵∠EAF=∠BAD,∴∠3+∠4=∠EAF,∴∠EAM=∠3+∠4=∠2+∠4=∠EAF,在△MAE和△F AE中,,∴△MAE≌△F AE(SAS),∴EF=EM,∵EM=BM+BE=BE+DF,∴EF=BE+FD;(3)(1)中的结论不成立,EF=BE﹣FD,理由如下:如图3,在EB上截取BH=DF,连接AH,同(2)中证法可得,△ABH≌△ADF,∴AH=AF,∠BAH=∠DAF,∴∠HAE=∠F AE,在△HAE和△F AE中,,∴△HAE≌△F AE(SAS),∴EF=EH,∵EH=BE﹣BH=BE﹣DF,∴EF=BE﹣FD.【变式1-1】如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,连接EF交AP于点G,以下五个结论:①∠B=∠C=45°;②AP =EF;③∠AFP和∠AEP互补;④△EPF是等腰直角三角形;⑤四边形AEPF的面积是△ABC面积的,其中正确的结论是()A.①②③B.①②④⑤C.①③④⑤D.①③④【答案】D【解答】解:∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,故①正确;∵点P为BC的中点,∠BAC=90°,AB=AC,∴AP=CP,∠APC=90°,∠BAP=∠C=45°,∵∠EPF=∠APC,∴∠APE=∠FPC,在△AEP和△CFP中,,∴△AEP≌△CFP(ASA),∴PE=PF,∴△EPF是等腰直角三角形,∴四边形AEPF的面积为S△AEP+S△AFP=S△CPF+S△APF=S△APC=S△ABC,故④正确,⑤不正确;∵∠BAC=∠EPF=90°,∴∠AFP和∠AEP互补,故③正确;∵PE不是定长,故②不正确.∴正确的有:①③④,故选:D.【变式1-2】(1)如图1,在四边形ABCD中,AB=AD,∠BAD=100°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=50°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是EF=BE+DF(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD 上的点,且2∠EAF=∠BAD,上述结论是否仍然成立,若成立,请证明,若不成立,请说明理由;(3)如图3,四边形ABCD是边长为7的正方形,∠EBF=45°,直接写出△DEF的周长.【解答】证明:(1)延长FD到点G.使DG=BE.连接AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠BAD=100°,∠EAF=50°,∴∠BAE+∠F AD=∠DAG+∠F AD=50°,∴∠EAF=∠F AG=50°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=BE+DF,故答案为:EF=BE+DF;(2)结论仍然成立,理由如下:如图2,延长EB到G,使BG=DF,连接AG.∵∠ABC+∠D=180°,∠ABG+∠ABC=180°,∴∠ABG=∠D,∵在△ABG与△ADF中,,∴△ABG≌△ADF(SAS),∴AG=AF,∠BAG=∠DAF,∵2∠EAF=∠BAD,∴∠DAF+∠BAE=∠BAG+∠BAE=∠BAD=∠EAF,∴∠GAE=∠EAF,又AE=AE,∴△AEG≌△AEF(SAS),∴EG=EF.∵EG=BE+BG.∴EF=BE+FD;(3)如图,延长EA到H,使AH=CF,连接BH,∵四边形ABCD是正方形,∴AB=BC=7=AD=CD,∠BAD=∠BCD=90°,∴∠BAH=∠BCF=90°,又∵AH=CF,AB=BC,∴△ABH≌△CBF(SAS),∴BH=BF,∠ABH=∠CBF,∵∠EBF=45°,∴∠CBF+∠ABE=45°=∠HBA+∠ABE=∠EBF,∴∠EBH=∠EBF,又∵BH=BF,BE=BE,∴△EBH≌△EBF(SAS),∴EF=EH,∴EF=EH=AE+CF,∴△DEF的周长=DE+DF+EF=DE+DF+AE+CF=AD+CD=14.【变式1-3】(1)如图①,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF=∠BAD.请直接写出线段EF,BE,FD之间的数量关系:;(2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD 上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?请写出证明过程;(3)在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD所在直线上的点,且∠EAF=∠BAD.请直接写出线段EF,BE,FD之间的数量关系:.【解答】解:(1)如图1,延长EB到G,使BG=DF,连接AG.∵在△ABG与△ADF中,,∴△ABG≌△ADF(SAS).∴AG=AF,∠1=∠2,∴∠1+∠3=∠2+∠3=∠BAD=∠EAF.∴∠GAE=∠EAF.又AE=AE,易证△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.理由是:如图2,延长EB到G,使BG=DF,连接AG.∵∠ABC+∠D=180°,∠ABG+∠ABC=180°,∴∠ABG=∠D,∵在△ABG与△ADF中,,∴△ABG≌△ADF(SAS).∴AG=AF,∠1=∠2,∴∠1+∠3=∠2+∠3=∠BAD=∠EAF.∴∠GAE=∠EAF.又AE=AE,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(3)当(1)结论EF=BE+FD成立,当图三中,EF=BE﹣FD或EF=FD﹣BE.证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵在△ABG与△ADF中,,∴△ABG≌△ADF(SAS).∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF(SAS).∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.同理可得:∴EG=EF∵EG=BG﹣BE∴EF=FD﹣BE.故答案为:(1)EF=BE+FD;(2)成立;(3)EF=BE+FD或EF=BE﹣FD或EF=FD﹣BE.\【变式1-4】问题探究:如图1,在△ABC中,点D是BC的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.①BE、CF与EF之间的关系为:BE+CF EF;(填“>”、“=”或“<”)②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.问题解决:如图2,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=130°,以D为顶点作∠EDF=65°,∠EDF的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.【解答】解:(1)如图1中,延长ED到H,使得DH=DE,连接CH,FH.∵BD=CD,∠BDE=∠CDH,DE=DH,∴△BDE≌△CDH(SAS),∴BE=CH,∵DE=DH,FD⊥EH,∴FE=FH,在△FCH中,∵CH+CF>FH,∴BE+CF>EF.故答案为>.(2)结论:EF2=BE2+CF2.理由:如图2中,延长ED到H,使得DH=DE,连接CH,FH.∵BD=CD,∠BDE=∠CDH,DE=DH,∴△BDE≌△CDH(SAS),∴BE=CH,∠B=∠DCH,∵DE=DH,FD⊥EH,∴FE=FH,∵∠A=90°,∴∠B+∠ACB=90°,∴∠ACB+∠DCH=90°,∴∠FCH=90°,∴FH2=CH2+CF2,∴EF2=BE2+CF2.(3)如图3中,结论:EF=BE+CF.理由:∵DB=DC,∠B+∠ACD=180°,∴可以将△DBE绕点D顺时针旋转得到△DCH,A,C,H共线.∵∠BDC=130°,∠EDF=65°,∴∠CDH+∠CDF=∠BDE+∠CDF=65°,∴∠FDE=∠FDH,∵DF=DF,DE=DH,∴△FDE≌△FDH(SAS),∴EF=FH,∵FH=CF+CH=CF+BE,∴EF=BE+CF.【类型二:含120°的对角互补模型】【典例2】问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC =90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD 之间的数量关系,小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以70海里/小时的速度前进,舰艇乙沿北偏东50°的方向以90海里/小时的速度,前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:由题意:△ABE≌△ADG,△AEF≌△AGF,∴BE=DG,EF=GF,∴EF=FG=DF+DG=BE+FD.故答案为:EF=BE+FD.探索延伸:EF=BE+FD仍然成立.理由:如图2,延长FD到点G,使DG=BE,连接AG∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,又∵AB=AD,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,又∵∠EAF=∠BAD,∴∠F AG=∠F AD+∠DAG=∠F AD+∠BAE=∠BAD﹣∠EAF,=∠BAD﹣∠BAD=∠BAD,∴∠EAF=∠GAF.在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴EF=FG,又∵FG=DG+DF=BE+DF,∴EF=BE+FD.实际应用:如图3,连接EF,延长AE,BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.即,EF=AE+FB=2×(70+90)=320(海里)答:此时两舰艇之间的距离为320海里.【变式2-1】如图,△ABC是边长为6的等边三角形,BD=CD,∠BDC=120°,以点D 为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连结MN,则△AMN 的周长是.【解答】解:∵△BDC是等腰三角形,且∠BDC=120°,∴∠BCD=∠DBC=30°,∵△ABC是边长为4的等边三角形,∴∠ABC=∠BAC=∠BCA=60°,∴∠DBA=∠DCA=90°,延长AB至F,使BF=CN,连接DF,在△BDF和△CND中,,∴△BDF≌△CND(SAS),∴∠BDF=∠CDN,DF=DN,∵∠MDN=60°,∴∠BDM+∠CDN=60°,∴∠BDM+∠BDF=60°,在△DMN和△DMF中,,∴△DMN≌△DMF(SAS),∴MN=MF,∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6+6=12.故答案为:12.【变式2-2】【问题背景】如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE ≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.【探索延伸】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.【学以致用】如图3,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出△DEF的周长.【解答】(1)解:如图1,在△ABE和△ADG中,∵,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为:EF=BE+DF.(2)解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连接AG,在△ABE和△ADG中,∵,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)解:如图3,延长DC到点G,截取CG=AE,连接BG,在△AEB与△CGB中,∵,∴△AEB≌△CGB(SAS),∴BE=BG,∠ABE=∠CBG.∵∠EBF=45°,∠ABC=90°,∴∠ABE+∠CBF=45°,∴∠CBF+∠CBG=45°.在△EBF与△GBF中,∵,∴△EBF≌△GBF(SAS),∴EF=GF,∴△DEF的周长=EF+ED+DF=AE+CF+DE+DF=AD+CD=5+5=10.。

中考数学常见几何模型之对角互补模型综合应用

中考数学常见几何模型之对角互补模型综合应用

对角互补模型综合应用1.如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=∠BAD,求证:EF=BE+FD.【解答】证明:延长CB至M,使BM=FD,连接AM,如图所示:∵∠ABC+∠D=180°,∠ABM+∠ABC=180°,∴∠ABM=∠D,在△ABM与△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠BAM=∠DAF,∵∠EAF=∠BAD,∴∠DAF+∠BAE=∠BAD=∠F AE,∴∠BAM+∠BAE=∠EAF,即∠MAE=∠EAF,在△AME与△AFE中,,∴△AME≌△AFE(SAS),∴EF=ME,∵ME=BE+BM,∴EF=BE+FD.2.如图.在四边形ABCD中,∠B+∠ADC=180°,AB=AD,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,求证:EF=BE﹣FD.【解答】证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.在△ABG和△ADF中,,∴△ABG≌△ADF(SAS),∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.在△AEG和△AEF中,,∴△AEG≌△AEF(SAS).∴EG=EF,∵EG=BE﹣BG∴EF=BE﹣FD.3.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD 上的点,且∠EAF=∠BAD.求证:EF=BE+FD.(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD 上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出线段EF、BE、FD它们之间的数量关系,并证明.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出线段EF、BE、FD它们之间的数量关系,并证明.【解答】证明:(1)如图1,延长EB到G,使BG=DF,连接AG.∵在△ABG与△ADF中,,∴△ABG≌△ADF(SAS).∴AG=AF,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF=∠BAD.∴∠GAE=∠EAF.又AE=AE,易证△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.证明:如图2,延长CB至M,使BM=DF,∵∠ABC+∠D=180°,∠1+∠ABC=180°,∴∠1=∠D,在△ABM与△ADF中,,∴△ABM≌△ADF(SAS).∴AF=AM,∠2=∠3.∵∠EAF=∠BAD,∴∠2+∠4=∠BAD=∠EAF.∴∠3+∠4=∠EAF,即∠MAE=∠EAF.在△AME与△AFE中,,∴△AME≌△AFE(SAS).∴EF=ME,即EF=BE+BM.∴EF=BE+DF.(3)结论EF=BE+FD不成立,应当是EF=BE﹣FD.证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵在△ABG与△ADF中,,∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,易证△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.4.(1)如图1,在正方形ABCD中,E、F分别是BC,CD上的点,且∠EAF=45°.直接写出BE、DF、EF之间的数量关系;(2)如图2,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC,CD 上的点,且∠EAF=∠BAD,求证:EF=BE+DF;(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,延长BC到点E,延长CD到点F,使得∠EAF=∠BAD,则结论EF=BE+DF是否仍然成立?若成立,请证明;不成立,请写出它们的数量关系并证明.【解答】解:(1)EF=BE+DF;如图1,将△ADF绕点A顺时针旋转,使AD与AB重合,得到△ABF′,∵∠EAF=45°,∴∠EAF′=∠EAF=45°,在△AEF和△AEF′中,,∴EF=EF′,又EF′=BE+BF′=BE+DF,∴EF=BE+DF;(2)延长CB到G,使BG=FD,连接AG,∵∠ABG=∠D=90°,AB=AD,∴△ABG≌△ADF(SAS),∴∠BAG=∠DAF,AG=AF,∵∠EAF=∠BAD,∴∠DAF+∠BAE=∠EAF,∴∠EAF=∠GAE,∴△AEF≌△AEG(SAS),∴EF=EG=EB+BG=EB+DF.(3)结论不成立,应为EF=BE﹣DF,证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵AB=AD,∴△ABG≌△ADF(SAS).∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF(SAS).∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.5.(1)方法感悟:如图①,在正方形ABCD中,点E、F分别为DC、BC边上的点,且满足∠EAF=45°,连接EF.将△ADE绕点A顺时针旋转90°得到△ABG,易证△GAF≌△EAF,从而得到结论:DE+BF=EF.根据这个结论,若CD=6,DE=2,求EF的长.(2)方法迁移:如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且∠EAF=∠BAD,试猜想DE,BF,EF之间有何数量关系,证明你的结论.(3)问题拓展:如图③,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,试探究线段EF、BE、FD之间的数量关系,请直接写出你的猜想(不必说明理由).【解答】解:(1)方法感悟:∵将△ADE绕点A顺时针旋转90°得到△ABG,∴GB=DE=2,∵△GAF≌△EAF∴GF=EF,∵CD=6,DE=2∴CE=4,∵EF2=CF2+CE2,∴EF2=(8﹣EF)2+16,∴EF=5;(2)方法迁移:DE+BF=EF,理由如下:如图②,将△ADE绕点A顺时针旋转角度为∠BAD的度数,得到△ABH,由旋转可得,AH=AE,BH=DE,∠1=∠2,∠D=∠ABH,∵∠EAF=∠DAB,∴∠HAF=∠1+∠3=∠2+∠3=∠BAD,∴∠HAF=∠EAF,∵∠ABH+∠ABF=∠D+∠ABF=180°,∴点H、B、F三点共线,在△AEF和△AHF中,∴△AEF≌△AHF(SAS),∴EF=HF,∵HF=BH+BF,∴EF=DE+BF.(3)问题拓展:EF=BE﹣FD,理由如下:在BC上截取BH=DF,∵∠B+∠ADC=180°,∠ADC+∠ADF=180°,∴∠B=∠ADF,且AB=AD,BH=DF,∴△ABH≌△ADF(SAS)∴∠BAH=∠DAF,AH=AF,∵∠EAF=∠BAD,∴∠DAE+∠BAH=∠BAD,∴∠HAE=∠BAD=∠EAF,且AE=AE,AH=AF,∴△HAE≌△F AE(SAS)∴HE=EF,∴EF=HE=BE﹣BH=BE﹣DF.6.(1)阅读理解:如图①,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,这样就把AB,AC,2AD集中在△ABE中,利用三角形三边的关系可判断线段AE的取值范围是;则中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,此时:BE+CF EF(填“>”或“=”或“<”);(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180,CB=CD,∠BCD=140°,以C为顶点作∠ECF=70°,边CE,CF分别交AB,AD于E,F两点,连接EF,此时:BE+DF EF (填“>”或“=”或“<“);(4)若在图③的四边形ABCD中,∠ECF=α(0°<α<90°),∠B+∠D=180,CB =CD,且(3)中的结论仍然成立,则∠BCD=(用含α的代数式表示).【解答】解:(1)在△ADC与△EDB中,,∴△ADC≌△EDB(SAS),∴BE=AC=3,在△ABE中,AB﹣BE<AE<AB+BE,即2<AE<8,∴2<2AD<8,∴1<AD<4,故答案为:2<AE<8;1<AD<4;(2)如图,延长FD至点G,使DG=DF,连接BG,EG,∵点D是BC的中点,∴DB=DC,∵∠BDG=∠CDF,DG=DF,∴△BDG≌△CDF(SAS),∴BG=CF,∵ED⊥FD,FD=GD,∴EF=EG,在△BEG中,BE+BG>EG,∴BE+CF>EF,故答案为:>;(3)BE+DF=EF,如图,延长AB至点G,使BG=DF,连接CG,∵∠ABC+∠D=180°,∠ABC+∠CBG=180°,∴∠CBG=∠D,又∵CB=CD,BG=DF,∴△CBG≌△CDF(SAS),∴CG=CF,∠BCG=∠DCF,∵∠BCD=140°,∠ECF=70°,∴∠DCF+∠BCE=70°,∴∠BCE+∠BCG=70°,∴∠ECG=∠ECF=70°,又∵CE=CE,CG=CF,∴△ECG≌△ECF(SAS),∴EG=EF,∵BE+BG=EG,∴BE+DF=EF,故答案为:=;(4)由(3)同理可得△CBG≌△CDF,∴CG=CF,∠BCG=∠DCF,若BE+DF=EF,则EG=EF,∴△ECF≌△ECG(SSS),∴∠ECG=∠ECF,∴∠BCD=2∠ECF=2α,故答案为:2α.7.【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一长边相等,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,连结DA、DB、DC,且∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,连接AE,根据∠BAC+BDC=180°,则∠ABD+∠ACD=180°,因为∠ACD+∠ACE=180°可证∠ABD=∠ACE,易证得△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.根据上述解题思路,请直接写出DA、DB、DC之间的数量关系是;【拓展延伸】(2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC.若点D是边BC下方一点,∠BDC=90°,探索线段DA、DB、DC之间的数量关系,并说明理由;【知识应用】(3)如图3,两块斜边长都为2cm的三角板,把斜边重叠摆放在一起,已知30°所对直角边等于斜边一半,则PQ的长为cm.(结果无需化简)【解答】解:(1)如图1,延长DC到点E,使CE=BD,连接AE,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BDC=120°,∴∠BAC+BDC=180°,∴∠ABD+∠ACD=180°,∵∠ACD+∠ACE=180°,∴∠ABD=∠ACE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∴∠DAE=∠BAC=60°,∴△ADE是等边三角形,∴AD=DE,∴DA=DE=DC+CE=DB+DC;故答案为:DA=DB+DC;(2)DA=DB+DC,理由如下:延长DC到点E,使CE=BD,连接AE,∵∠BAC=90°,∠BDC=90°,∴∠ABD+∠ACD=180°,∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∵AB=AC,CE=BD,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∴∠DAE=∠BAC=90°,∴DA2+AE2=DE2,∴2DA2=(DB+DC)2,∴DA=DB+DC;(3)如图3,连接PQ,∵MN=2cm,∠QMN=30°,∴QN=MN=1cm,∴MQ==(cm),由(2)可得:PQ=QM+QN,解得:PQ=cm,故答案为:.8.如图,点P(3m﹣1,﹣2m+4)在第一象限的角平分线OC上,AP⊥BP,点A在x轴正半轴上,点B在y轴正半轴上.(1)求点P的坐标.(2)当∠APB绕点P旋转时,①OA+OB的值是否发生变化?若变化,求出其变化范围;若不变,求出这个定值.②请求出OA2+OB2的最小值.【解答】解:(1)∵点P(3m﹣1,﹣2m+4)在第一象限的角平分线OC上,∴3m﹣1=﹣2m+4,∴m=1,∴P(2,2);(2)①不变.过点P作PM⊥y轴于M,PN⊥OA于N.∵∠PMO=∠PNO=∠MON=90°,PM=PN=2,∴四边形QMPN是正方形,∴∠MPN=90°=∠APB,∴∠MPB=∠NP A.在△PMB和△PNA中,,∴△PMB≌△PNA(ASA),∴BM=AN,∴OB+OA=OM﹣BM+ON+AN=2OM=4,②连接AB,∵∠AOB=90°,∴OA2+OB2=AB2,∵∠BP A=90°,∴AB2=P A2+PB2=2P A2,∴OA2+OB2=2P A2,当P A最小时,OA2+OB2也最小.根据垂线段最短原理,P A最小值为2,∴OA2+OB2的最小值为8.。

初中数学几何-典型问题中的对角互补模型(完整资料).doc

初中数学几何-典型问题中的对角互补模型(完整资料).doc

此文档下载后即可编辑
初中数学几何-典型问题中的对角互补模型
一、等边三角形
1.已知:ABC ∆是等边三角形,12120∠+∠=︒,求证:1260∠=∠=︒.
2.已知:ABC ∆是等边三角形,160∠=︒,求证:260∠=︒.
3.已知:12BAC 60∠=∠=∠=︒,求证:ABC ∆是等边三角形.
4.已知:12360∠=∠=∠=︒,求证:ABC ∆是等边三角形.
二、等腰直角三角形(对直角型)
5.已知:ABC
∠=∠=︒.
∠+∠=︒,求证:1245∆是等腰直角三角形,1290
6.已知:ABC
∠=︒.
∆是等腰直角三角形,145
∠=︒,求证:245
7.已知:1245
∆是等腰直角三角
∠=︒,求证:ABC
∠=∠=︒,BAC90
形.
8.已知:12345
∆是等腰直角三角形.
∠=∠=∠=︒,求证:ABC
三、等腰直角三角形(对45︒角型)
9.已知:ABC
∠=︒.
∠+∠=︒,求证:145∆是等腰直角三角形,12135
10.已知:ABC
∠=︒,求证:290
∠=︒.
∆是等腰直角三角形,145
11.已知:ABC
∠=︒.
∠=︒,求证:145∆是等腰直角三角形,290
12.已知:145
∆是等腰直角三角∠=︒,2BAC90
∠=∠=︒,求证:ABC
形.。

2023年中考数学常见几何模型全归纳之模型 对角互补模型(从全等到相似)(解析版)

2023年中考数学常见几何模型全归纳之模型 对角互补模型(从全等到相似)(解析版)

专题04 对角互补模型(从全等到相似)全等三角形与相似三角形在中考数学几何模块中占据着重要地位。

相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。

如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就对角互补模型进行梳理及对应试题分析,方便掌握。

模型1.对角互补模型(全等模型)【模型解读】四边形或多边形构成的几何图形中,相对的角互补。

常见含90°、120°(60°)及任意角度的三种对角互补类型。

该题型常用到的辅助线主要是顶定点向两边做垂线,从而证明两个三角形全等. 【常见模型及结论】1)全等型—60º和120º:如图1,已知∠AOB =2∠DCE =120º,OC 平分∠AOB . 则可得到如下几个结论:∠CD =CE ,∠OD +OE =OC ,∠234CODCOESS+=. 2)全等型—90º:如图2,已知∠AOB =∠DCE =90º,OC 平分∠AOB . 则可以得到如下几个结论:∠CD =CE ,∠OD +OE =OC ,∠212ODCE OCDCOES SSOC =+=. 3)全等型—2α和1802α︒-:如图3,已知∠AOB =2α,∠DCE =1802α︒-,OC 平分∠AOB . 则可以得到以下结论:∠CD =CE ,∠OD +OE =2OC ·cos ,∠2sin cos OCDCOESSOC αα+=⋅⋅.1.(2021·贵州黔东南·中考真题)在四边形ABCD 中,对角线AC 平分∠BAD .(探究发现)(1)如图①,若∠BAD =120︒,∠ABC =∠ADC =90︒.求证:AD +AB =AC ;(拓展迁移)(2)如图②,若∠BAD =120︒,∠ABC +∠ADC =180︒.①猜想AB 、AD 、AC 三条线段的数量关系,并说明理由;②若AC =10,求四边形ABCD 的面积.【答案】(1)见解析;(2)①AD +AB =AC ,见解析;②【分析】(1)根据角平分线的性质得到∠DAC =∠BAC =60o ,然后根据直角三角形中30o 是斜边的一半即可写出数量关系;(2)①根据第一问中的思路,过点C 分别作CE ∠AD 于E ,CF ∠AB 于F ,构造AAS 证明∠CFB ≅∠CED ,根据全等的性质得到FB =DE ,结合第一问结论即可写出数量关系; ②根据题意应用60o 的正弦值求得CE 的长,然后根据()111222ABCD S AD CE AB CF AD AB CE ⨯⨯⨯四边形=+=+的数量关系即可求解四边形ABCD 的面积.【详解】(1)证明:∠AC 平分∠BAD ,∠BAD =120o ,∠∠DAC =∠BAC =60o , ∠∠ADC =∠ABC =90o ,,∠∠ACD =∠ACB =30o ,∠AD =1122AC AB AC ,=.∠AD +AB =AC , (2)①AD +AB =AC ,理由:过点C 分别作CE ∠AD 于E ,CF ∠AB 于F .∠AC 平分∠BAD ,∠CF =CE ,∠∠ABC +∠ADC =180o ,∠EDC +∠ADC =180o ,∠∠FBC =∠EDC , 又∠CFB =∠CED =90o ,∠∠CFB ≅∠CED ()AAS ,∠FB =DE , ∠AD +AB =AD +FB +AF =AD +DE +AF =AE +AF ,在四边形AFCE 中,由∠题知:AE +AF =AC ,∠AD +AB =AC ; ②在Rt ∠ACE 中,∠AC 平分∠BAD ,∠BAD =120o ∠∠DAC =∠BAC =60o ,又∠AC =10,∠CE =A sin 10sin 60o DAC ∠==∠CF =CE ,AD +AB =AC ,∠()111222ABCD S AD CE AB CF AD AB CE ⨯⨯⨯四边形=+=+=111022AC CE ⨯⨯⨯=. 【点睛】本题考查了全等三角形的判定和性质,角平分线的性质和应用,解直角三角形,关键是辨认出本题属于角平分线类题型,作垂直类辅助线.2.(2022·广东深圳·一模)【问题提出】如图1,在四边形ABCD 中,AD CD =,120ABC ∠=︒,60ADC ∠=︒,2AB =,1BC =,求四边形ABCD 的面积.【尝试解决】旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.(1)如图2,连接BD ,由于AD CD =,所以可将DCB 绕点D 顺时针方向旋转60︒,得到'DAB △,则'BDB △的形状是 .(2)在(1)的基础上,求四边形ABCD 的面积.(3)如图3,等边ABC 的边长为2,BDC 是顶角为120BDC ∠=︒的等腰三角形,以D 为顶点作一个60︒的角,角的两边分别交AB 于点M ,交AC 于点N ,连接MN ,求AMN 的周长. )将BDM 绕点,得到DCP ,则DCP =∠,NPD ≅△,证得AMN 的周长【详解】解:(1)将DCB 绕点顺时针方向旋转60︒,得到'DAB , ∠DCB ∠'DAB △,'BD B D =,60BDB ∠=︒, 'BDB △是等边三角形; 故答案为:等边三角形; (2)过B ′于E ,2224)解:将BDM 绕点,得到DCP , CDP △,,CP BM =PDC ∠, ∠BDC 是等腰三角形,且BD CD =DBC ∠=∠又∠ABC 等边三角形,ABC ACB ∠=∠MBD ACB ∠=∠同理可得NCD ∠PCD NCD =∠DCN NCP +∠在NMD △和NPD 中,MD PD MDN PDN DN DN =⎧⎪∠=⎨⎪=⎩∠()NMD NPD SAS ≅△△, ∠MN PN NC CP NC BM ==+=+,∠AMN 的周长224AM AN MN AM AN NC BM AB AC =++=+++=+=+=.故AMN 的周长为4.【点睛】本题考查三角形全等变换,等边三角形判定,四边形面积转化为三角形面积,图形旋转,直角三角形判定,三点共线,三角形的周长转化为两边之和,特殊角锐角三角函数,掌握三角形全等变换,等边三角形判定,四边形面积转化为三角形面积,图形旋转,直角三角形判定,三点共线,三角形的周长转化为两边之和,特别是利用图形旋转进行图形的转化特殊角锐角三角函数,是解题关键. 3.(2022·河南安阳·二模)【阅读】通过构造恰当的图形,可以对线段长度大小进行比较,直观地得到线段之间的数量关系,这是“数形结合”思想的典型应用.【理解】(1)如图1,120MAN ∠=︒,AC 平分,,MAN CD AM CB AN ∠⊥⊥,求证:AB AD AC +=. 【拓展】(2)如图2,其他条件不变,将图1中的DCB ∠绕点C 逆时针旋转,CD 交MA 的延长线于点D ,CB 交射线AN 于点B ,写出线段AD ,AB ,AC 之间的数量关系,并就图2的情形说明理由.【应用】(3)如图3,ABC 为等边三角形,4AB =,P 为BC 边的中点,120MPN ∠=︒,将MPN ∠绕点P 转动使射线PM 交直线AC 于点M ,射线PN 交直线AB 于点N ,当8AM =时,请直接写出AN 的长. 的结论可得PEM PFN ≌,根据含FN AF EM AF =+=) AC 平分MAN ∠,60DAC BAC ∠=∠=1AC =,∴AB AD +∠MAN ∠=BAD ∠+∠CED ∠=CED CFB ∴≌,ED ∴,AE ED AD AF =-AE AF ED AD ∴+=-又AE AF AC +=,∴(3)①如图,当M P 是BC 的中点,ABC 是等边三角形,∠B =∠C =60°)可得PEM PFN ≌,EM ∴AB 1122CP BC AB ∴===FPB =90°-60°=30°,1,3AE AF ∴==,AM AN AF FN AF ∴=+=模型2.对角互补模型(相似模型)【模型解读】四边形或多边形构成的几何图形中,相对的角互补。

第3讲对角互补模型(解析版)

第3讲对角互补模型(解析版)

第3讲对角互补模型(解析版)第3讲对角互补模型(解析版)对角互补模型是利用几何图形中的对角线互相垂直这一性质来解决问题的数学工具。

它是一种简洁而高效的方法,常用于几何图形的证明和问题求解。

本文将详细介绍对角互补模型的原理和应用。

1. 对角互补模型的原理对角互补模型是基于对角线互相垂直这一几何性质的。

对于一个四边形来说,如果它的两条对角线互相垂直,那么我们可以得到一些有用的结论。

首先,对角线的长相等,即对角线互为等长的线段。

其次,对角线所分割的各个部分的面积之和等于整个四边形的面积。

通过应用这两个规律,我们可以在解决问题时快速获得结果。

2. 对角互补模型的应用举例下面通过几个具体的例子来说明对角互补模型的应用。

例子1:证明正方形的对角线互相垂直对于一个正方形来说,我们可以通过对角互补模型证明其对角线互相垂直的性质。

首先,我们假设正方形的边长为a,连接正方形的对角线,分别为AC和BD。

根据对角互补模型的原理,我们可以得到AC和BD互相垂直,并且它们的长度相等,即AC=BD=a。

因此,我们证明了正方形的对角线互相垂直的性质。

例子2:计算菱形的面积对于一个菱形来说,我们可以利用对角互补模型计算其面积。

假设菱形的对角线分别为AC和BD,AC的长度为d1,BD的长度为d2。

根据对角互补模型的原理,我们知道AC和BD互相垂直,并且长度相等,即AC=BD。

菱形可以看作是两个等腰三角形拼接而成,所以菱形的面积等于两个等腰三角形的面积之和。

每个等腰三角形的底边长度为d1/2,高度为d2/2,所以一个等腰三角形的面积为(d1/2)*(d2/2)/2。

因此,菱形的面积为(d1/2)*(d2/2)/2 + (d1/2)*(d2/2)/2 = (d1*d2)/4。

3. 对角互补模型的优势对角互补模型的优势在于其简洁性和实用性。

通过利用对角线互相垂直的性质,我们可以减少问题求解的步骤,快速获得结果。

对于一些复杂的几何图形问题,对角互补模型可以帮助我们准确地找到关键点,从而简化计算过程,提高解题效率。

第3讲对角互补模型(解析版)

第3讲对角互补模型(解析版)

第3讲对角互补模型(解析版)中考数学几何模型3:对角互补模型共顶点模型中,四边形或其他几何图形中,相对的角互补。

主要有两种类型:含90°的对角互补和含120°的对角互补,得出的结论会有所不同。

解决此类题型常用到的辅助线画法主要有两种:旋转法和过顶点作两垂线。

类型一:含90°的对角互补模型1)如图,∠AOB=∠DCE=90°,OC平分∠AOB,则有以下结论:①CD=CE;②OD+OE=2OC;③S(OCD)+S(OCE)=OC²。

2)如图,∠AOB=∠DCE=90°,OC平分∠AOB,当∠DCE的一边与AO的延长线交于点D时,则有以下结论:①CD=CE;②OE-OD=2OC;③S(OCE)-S(OCD)=OC²。

类型二:含120°的对角互补模型1)如图,∠AOB=2∠DCE=120°,OC平分∠AOB,则有以下结论:①CD=CE;②OD+OE=OC;③S(OCD)+S(OCE)=3OC²/4.2)如图,∠AOB=∠DCE=90°,OC平分∠AOB,当∠DCE的一边与AO的延长线交于点D时,则有以下结论:①CD=CE;②OE-OD=2OC;③S(OCE)-S(OCD)=OC²。

典题探究例题1:如图,正方形ABCD与正方形OMNP的边长均为10,点O是正方形ABCD的中心,正方形OMNP绕O点旋转,证明:无论正方形OMNP旋转到何种位置,这两个正方形重叠部分的面积总是一个定值,并求这个定值。

解答】当OP∥AD或OP经过C点,重叠部分的面积显然为正方形的面积,即25.当OP在如图位置时,过O分别作CD、BC的垂线垂足分别为E、F,在Rt△OEG与Rt△OFH 中,∠EOG=∠HOF,OE=OF=5,所以△OEG≌△OFH,因此S(四边形OHCG)=S(四边形OECF)=25,即两个正方形重叠部分的面积为25.变式练1.角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN。

2023年中考数学常见几何模型之对角互补模型

2023年中考数学常见几何模型之对角互补模型

专题17 对角互补模型1.如图,将5个边长为1cm的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则5个正方形重叠形成的重叠部分的面积和为.【解答】解:如图,过正方形ABCD的中心O作OM⊥CD于M,作ON⊥BC于N,则∠EOM=∠FON,OM=ON,在△OEM和△OFN中,,∴△OEM≌△OFN(ASA),则四边形OECF的面积就等于正方形OMCN的面积,如正方形ABCD的边长是1,则OMCN的面积是cm2,∴得阴影部分面积等于正方形面积的cm2,即是cm2,∴5个这样的正方形重叠部分(阴影部分)的面积和为×4=1cm2,故答案为:1cm2.2.如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=4,AB=AC,∠CBD =30°,M,N分别在BD,CD上,∠MAN=45°,则△DMN的周长为2.【解答】解:将△ACN绕点A逆时针旋转,得到△ABE,如图:由旋转得:∠NAE=90°,AN=AE,∠ABE=∠ACD,∠EAB=∠CAN,∵∠BAC=∠D=90°,∴∠ABD+∠ACD=360°﹣90°﹣90°=180°,∴∠ABD+∠ABE=180°,∴E,B,M三点共线,∵∠MAN=45°,∠BAC=90°,∴∠EAM=∠EAB+∠BAM=∠CAN+∠BAM=∠BAC﹣∠MAN=90°﹣45°=45°,∴∠EAM=∠MAN,在△AEM和△ANM中,,∴△AEM≌△ANM(SAS),∴MN=ME,∴MN=CN+BM,∵在Rt△BCD中,∠BDC=90°,∠CBD=30°,BC=4,∴CD=BC=2,BD==2,∴△DMN的周长为DM+DN+MN=DM+DN+BM+CN=BD+DC=2+2,故答案为:2+2.3.(袁州区校级期中)如图,∠AOB=90°,OM是∠AOB的平分线,将三角尺的直角顶点P在射线OM上滑动,两直角边分别与OA,OB交于点C和D,证明:PC=PD.【答案】略【解答】证明:过点P点作PE⊥OA于E,PF⊥OB于F,如图,∴∠PEC=∠PFD=90°,∵OM是∠AOB的平分线,∴PE=PF,∵∠AOB=90°,∠CPD=90°,∴∠PCE+∠PDO=360°﹣90°﹣90°=180°,而∠PDO+∠PDF=180°,∴∠PCE=∠PDF,在△PCE和△PDF中,∴△PCE≌△PDF(AAS),∴PC=PD.4.(2021秋•泉港区期末)如图,在正方形ABCD中,AC交BD于O,F在AC上,连线DF,过F作FE⊥DF交BD于G,交AB于E.(1)求证:DF=EF;(2)若F为OC中点,求证:FG=EG.【答案】(1)略(2)略【解答】证明:(1)如图1,连接BF,∵四边形ABCD是正方形,∴DC=BC,∠DAC=∠BAC=45°,AC⊥BD,在△DAF和△BAF中,,∴△DAF≌△BAF(SAS),∴DF=BF,∠ADF=∠ABF,∵∠DAE=∠DFE=90°,∴∠ADF+∠AEF=180°,∵∠AEF+∠BEF=180°,∴∠ADF=∠BEF,∴∠ABF=∠BEF,∴BF=EF=DF;(2)如图2,过点E作EH⊥AC于H,∴∠EHF=∠DOF=90°,∴∠DFO+∠FDO=90°=∠DFO+∠EFH,∴∠FDO=∠EFH,在△DFO和△FEH中,,∴△DFO≌△FEH(AAS),∴DO=FH,∵F为OC中点,∴FO=CF,∴OH=OF,∵BD∥HE,∴,∴FG=GE.5.(2020•呼伦贝尔)已知:如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F分别是边BC,CD上的点,且∠EOF=90°.求证:CE=DF.【答案】略【解答】证明:∵四边形ABCD为正方形,∴OD=OC,∠ODF=∠OCE=45°,∠COD=90°,∴∠DOF+∠COF=90°,∵∠EOF=90°,即∠COE+∠COF=90°,∴∠COE=∠DOF,∴△COE≌△DOF(ASA),∴CE=DF.6.(2021春•满城区期末)如图,正方形ABCD中,点O为对角线AC的中点,点P为平面内外一点,且BP⊥CP.过点O作OE⊥OP交PB的延长线于E.(1)探究BE与PC之间的数量关系,并说明理由.(2)BP、CP、OP三者之间存在怎样的关系?并说明理由.【答案】(1)BE=PC(2)BP+CP=OP【解答】解:(1)BE=PC,理由如下:如图,连接OB,∵四边形ABCD是正方形,∴OB=OC,OB⊥OC,∵OE⊥OP,∴∠EOP=∠BOC=90°,∴∠EOB+∠BOP=∠POC+∠BOP,即∠EOB=∠POC,∵OE⊥OP,BP⊥CP,∴∠E+∠OPE=∠OPC+∠OPE=90°,∴∠E=∠OPC,在△BOE与△COP中,,∴△BOE≌△COP(AAS),∴BE=PC;(2)BP+CP=OP,理由如下:由(1)知,△BOE≌△COP,∴BE=CP,OE=OP,∴Rt△EOP是等腰直角三角形,∴EP==OP,∵EP=BP+BE=BP+CP,∴BP+CP=OP.7.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD 上的点,若EF=BE+FD.求证:∠EAF=∠BAD(2)如图2,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,试探究线段EF、BE、FD之间的数量关系,证明你的结论.【解答】证明:(1)延长CB至M,使得BM=DF,连接AM,∵∠B=∠D=90°,AB=AD,在△ABM与△ADF中,∴△ABM≌△ADF(SAS),∴AM=AF,∠DAF=∠BAM,∵EF=BE+DF=BE+BM=ME,在△AME与△AFE中,∴△AME≌△AFE(SSS),∴∠MAE=∠EAF,∴∠BAE+∠DAF=∠EAF,即∠EAF=∠BAD;(2)线段EF、BE、FD之间的数量关系是EF+DF=BE,在BE上截取BM=DF,连接AM,∵AB=AD,∠B+∠ADC=180°,∠ADC+∠ADF=180°,∴∠ABM=∠ADF,在△ABM与△ADF中,∴△ABM≌△ADF(SAS),∴AM=AF,∠BAM=∠DAF,∠EAF=∠BAD,∴∠EAF=∠EAM,在△AEM与△AEF中,∴△AEM≌△AEF(SAS),∴EM=EF,即BE﹣BM=EF,即BE﹣DF=EF.8.问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD 上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.【解答】证明:(1)在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为EF=BE+DF.(2)结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连接AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;9.(1)如图(1),在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF 交AC于点F,连接EF.若∠A=90°,探索线段BE、CF、EF之间的数量关系,并加以证明;(2)如图(2),在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.【解答】证明:(1)EF2=BE2+CF2,理由如下:如图(1)延长ED到G,使DG=ED,连接CG,FG,在△DCG与△DBE中,,∴△DCG≌△DBE(SAS),∴DG=DE,CG=BE,∠B=∠DCG,又∵DE⊥DF,∴FD垂直平分线段EG,∴FG=FE,∵∠A=90°,∴∠B+∠ACB=90°,∴∠FCG=90°,在△CFG中,CG2+CF2=FG2,∴EF2=BE2+CF2;(2)如图(2),结论:EF=EB+FC,理由如下:延长AB到M,使BM=CF,∵∠ABD+∠C=180°,又∠ABD+∠MBD=180°,∴∠MBD=∠C,在△BDM和△CDF中,,∴△BDM≌△CDF(SAS),∴DM=DF,∠BDM=∠CDF,∴∠EDM=∠EDB+∠BDM=∠EDB+∠CDF=∠CDB﹣∠EDF=120°﹣60°=60°=∠EDF,在△DEM和△DEF中,,∴△DEM≌△DEF(SAS),∴EF=EM,∴EF=EM=BE+BM=EB+CF.。

全等三角形的对角互补模型解析

全等三角形的对角互补模型解析

全等三角形的对角互补模型解析全等三角形对角互补模型解析1.等腰直角对直角例1:在等腰直角三角形ABC中,AB=AC,∠BAC=90°,∠ADB=45°,证明BD⊥CD。

例2:在等腰直角三角形ABC中,AB=AC,∠BAC=90°,∠ADC=45°,证明∠XXX°。

例3:在等腰直角三角形ABC中,AB=AC,∠ADC=45°,∠ADB=45°,证明XXX。

例4:在直角三角形ABC中,∠BAC=90°,∠ADB=45°,∠ADC=45°,证明AB=AC。

例5:在直角三角形ABC中,AB=AC,∠BAC=90°,∠BDC=90°,证明AD平分∠XXX。

2.等腰直角旁直角例1:在等腰直角三角形ABC中,AB=AC,∠BAC=90°,∠ADB=45°,求∠ADC的度数。

例2:在等腰直角三角形ABC中,AB=AC,∠BAC=90°,∠ADC=135°,证明BD⊥CD。

例3:在等腰直角三角形ABC中,AB=AC,∠ADB=45°,∠ADC=135°,证明∠BAC=90°。

例4:在直角三角形ABC中,∠BAC=90°,∠ADB=45°,BD⊥CD,证明AB=AC。

例5:在直角三角形ABC中,AB=AC,∠BAC=90°,∠XXX°,求∠ADC的度数。

3.等边对120°例1:在等边三角形ABC中,AB=AD,∠BAD=60°,∠ACB=60°,证明∠BCD=120°。

例2:在等边三角形ABC中,AB=AD,∠BAD=60°,∠ACD=60°,证明∠ACB=60°。

例3:在等边三角形ABC中,AB=AD,∠ACB=60°,∠ACD=60°,证明∠BAD=60°。

全等与相似模型-对角互补模型(学生版)-2024年中考数学常见几何模型

全等与相似模型-对角互补模型(学生版)-2024年中考数学常见几何模型

全等与相似模型-对角互补模型全等三角形与相似三角形在中考数学几何模块中占据着重要地位。

相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。

如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就对角互补模型进行梳理及对应试题分析,方便掌握。

模型1、旋转中的对角互补模型对角互补模型概念:对角互补模型特指四边形中,存在一对对角互补,而且有一组邻边相等的几何模型。

思想方法:解决此类问题常用的辅助线画法主要有两种:①过顶点做双垂线,构造全等三角形;②进行旋转的构造,构造手拉手全等。

常见的对角互补模型含90°-90°对角互补模型、120°-60°对角互补模型、2α-(180°-2α)对角互补模型。

1)“共斜边等腰直角三角形+直角三角形”模型(异侧型)条件:如图,已知∠AOB=∠DCE=90°,OC平分∠AOB.结论:①CD=CE,②OD+OE=2OC,③S ODCE=S△COE+S△COD=12OC2.2)“斜边等腰直角三角形+直角三角形”模型(同侧型)条件:如图,已知∠DCE的一边与AO的延长线交于点D,∠AOB=∠DCE=90°,OC平分∠AOB.结论:①CD=CE,②OE-OD=2OC,③S△COE-S△COD=12OC2.3)“等边三角形对120°模型”(1)条件:如图,已知∠AOB=2∠DCE=120°,OC平分∠AOB.结论:①CD=CE,②OD+OE=OC,③S△COD+S△COE=34OC2.4)“等边三角形对120°模型”(2)条件:如图,已知∠AOB=2∠DCE=120°,OC平分∠AOB,∠DCE的一边与BO的延长线交于点D,结论:①CD=CE,②OD-OE=OC,③S△COD-S△COE=34OC2.5)“120°等腰三角形对60°模型”条件:△ABC是等腰三角形,且∠BAC=120°,∠BPC=60°。

最新中考数学教材全册知识点梳理复习 专题9.对角互补模型 课件PPT

最新中考数学教材全册知识点梳理复习 专题9.对角互补模型 课件PPT
通用版中考数学知识点梳理复习
专题9.
对角互补模型
类型一
互补的两个角都是直角
如图,已知∠AOB=∠DCE=90°,OC平分∠AOB,则过点C作CM⊥OA,垂足为
点M,过点C作CN⊥OB,垂足为点N,则可以得到△CMD≌△CNE(ASA),进而得
到下列几个结论:
1
2
①CD=CE,②OD+OE= 2OC,③S△OCD+S△OCE= OC2.
=,
∴△MBD≌△NCD(AAS),
∴BM=CN,DM=DN.
第3题图
∠=∠,
在△EMD和△FND中,ቐ=,
∠=∠,
∴△EMD≌△FND(ASA),∴EM=FN,
∴BE+CF=BM+EM+CF=BM+FN+CF=BM+CN=2BM


=2BD×cos 60°=BD= BC=2.
图1
又∵DE⊥DF,AD⊥DC,
∴∠EDA+∠ADF=∠CDF+∠FDA=90°,
∴∠EDA=∠CDF.
∠=∠,
在△AED与△CFD中,ቐ=,
∠=∠,
∴△AED≌△CFD(ASA),∴AE=CF.
∵BE+CF=4,∴AB=BE+AE=4,



2
∴S四边形AFDE=S△AFD+S△AED=S△AFD+S△CFD=S△ADC= S△ABC= × AB = ×42=4.




(2)如图2,求证:BE2+CF2=EF2.
证明:如图2,延长ED至点G,使得DG=DE,连接FG,CG.
∵DE=DG,DF⊥DE, ∴DF垂直平分EG,∴EF=FG.
∵点D是BC的中点,∴BD=CD.
=,
在△BDE和△CDG中,ቐ∠=∠,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲对角互补模型
知识精讲
1.全等型—90º
如图,已知∠AOB=∠DCE=90º,OC平分∠AOB.
则可以得到如下几个结论:①CD=CE,②OD+OE=OC,③.
证明:如图,过点C作CM⊥OA于点M,CN⊥OB于点N.
∵OC平分∠AOB,∴CM=CN(角平分线上的点到角两边的距离相等),
在正方形MONC中,由题意可得∠MCN=360º-∠CMO-∠AOB-∠CNO=90º,∴∠MCD+∠DCN=90º,又∵∠DCE=90º,∴∠ECN+∠MCD=90º,∴∠MCD=∠ECN,
∴△CDM≌△CEN,∴CD=CE,∴结论①成立;∵四边形MONC为正方形,∴OM=ON=OC,
又∵OD+OE=OD+ON+NE=OD+ON+DM=OM+ON,∴OD+OE=OC,∴结论②成立;
∴.
2.如图,已知∠DCE的一边与AO的延长线交于点D,∠AOB=∠DCE=90º,OC平分∠AOB.
则可得到如下几个结论:①CD=CE,②OE-OD=OC
证明:如图,过点C作CF⊥OA,CG⊥OB,垂足分别为F、G.
由角平分线性质可得CF=CG,∴四边形CFOG为正方形,
∵∠1+∠2=90º,∠3+∠2=90º,∴∠1=∠3,∴△CDF≌△CEG,∴CD=CE,结论①成立;
在正方形CFOG中,OF=OG OC,∵OE-OD=OG+GE-OD=OG+FD-OD=OG+OF,
∴OE-OD=OC=OC,结论②成立;
3.全等型—60º和120º
如图,已知∠AOB=2∠DCE=120º,OC平分∠AOB.
则可得到如下几个结论:①CD=CE,②OD+OE=OC.
证明:如图,过点C作CF⊥OA,CG⊥OB,垂足分别为F、G.由角平分线性质可得CF=CG,在四边形OFCG中,∠FCG=60º,∵∠FCD+∠DCG=∠GCE+∠DCG=60º,∴∠FCD=∠GCE,∴△CDF≌△CEG(ASA),
∴CD=CE,结论①成立;在Rt△COF和Rt△COG中,∠COF=∠COG=60º,∴OF=OG=OC,
又∵OD+OE=OD+OG+EG=OD+OG+DF=OF+OG,∴OD+OE=OC=OC,结论②成立;
,结论③成立.
4.全等型—和
如图,已知∠AOB=,∠DCE=,OC平分∠AOB.
则可以得到以下结论:①CD=CE,②OD+OE=2OC·cos.
证明:如图,过点C作CF⊥OA,CG⊥OB,垂足分别为F、G.
证△CDF≌△CEG可得CD=CE,结论①成立,在Rt△COF和Rt△COG中,∠COF=∠COG=,
∴OF=OG=OC·,又∵OD+OE=OD+OG+EG=OD+OG+DF=OF+OG,
∴OD+OE=2OC·cos,结论②成立,
,结论③成立.
5.相似型—90º
如图,已知∠AOB=∠DCE=90º,∠BOC=.
结论:CE=CD·.
证明【方法一】:如图1,过点C作CF⊥OA,CG⊥OB,垂足分别为F、G.
先证△CEG∽△CDF,即CFOG是矩形,∴CF=DG,
在Rt△COG中,,∴CE=CD·;
证明【方法二】:如图2,过点C作CF⊥OC交OB于点F.
通过证明△CFE∽△COD.
对角互补模型巩固练习(基础)
1.如图,在Rt△ABC中,∠ABC=90º,AB=3,BC=4,在Rt△MPN中,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=PF时,AP=.
【解答】3
【解析】如图,作PQ⊥AB于点Q,PR⊥BC于R.
∵∠PQB=∠QBR=∠BRP=90º,∴四边形PQBR是矩形,
∴∠QPR=90º=∠MPN,∴∠QPE=∠RPE,∴△QPE∽△RPF,,

设,则,,,解得,
.
2.如图,在矩形ABCD中,AB=3,BC=4,点E在对角线AC上,连接BE,作EF⊥BE,垂足为E,直线EF 交线段DC于点F,则=.
【解答】
【解析】如图,过点E G于点H.
∵四边形ABCD是矩形,∴四边形CHEG也是矩形,∴∠GEH=90º,
∴∠BEG+∠GEF=∠GEF+∠FEH=90º,∴∠BEG=∠FEH,
又∵∠BGE=∠FHE=90º,∴△BEG∽△FEH,,
.
3.如图,在平面直角坐标系中,正方形ABCD顶点A(0,2),B点在轴上,对角线AC、BD交于点M,
则点C的坐标为.
【解答】C(6,4)
【解析】如图,过点C E,过点M轴于点F,连接EM.
∠MFO=∠CEO=∠AOB=90º,AO∥MF∥CE,
∵四边形ABCD是正方形,∴AB=BC,∠ABC=90º,AM=CM,
∴∠OAB=∠EBC,OF=EF,∴MF是梯形AOEC的中位线,,
∴OB=CE,AO=BE,,
又∵OF=FE,∴△MOE是直角三角形,∵MO=ME,∴△MOE是等腰直角三角形,
.
4.如图,在正方形外作直线FE并经过正方形的顶点C,分别过点B、D作直线FE的垂线,垂足分别为点E、F,求证:△CBE≌△DCF.
【解答】见解析
【解析】证明:∵四边形ABCD是正方形,∴BC=CD,
∵∠BCE+∠DCF=90º,∠BCE+∠CBE=90º,∴∠CBE=∠DCF,
在Rt△CBE与Rt△DCF中,,
5.如图,正方形ABCD与正方形OMNP的边长均为10,点O是正方形ABCD的中心,正方形OMNP绕点O旋转,求证:无论正方形OMNP旋转到何种位置,这两个重叠部分面积总是一个定值,并求这个定值.
【解答】25
【解析】当OP∥AD或OP经过点C时,重叠部分面积为正方形面积的,即25;
当点P旋转到如图所示位置时,过点O分别作CD、BC的垂线,垂足分别为E、F.
在Rt△OEG与Rt△OFH中,
∠EOG=∠HOF,OE=OF=5,∴△OEG≌△OFH,
.
6.如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别为AD、CD上的点,若AE=4,CF=3,且OE⊥OF,求EF的长.
【解答】5
【解析】如图,连接EF.
∵四边形ABCD是正方形,∴AO=DO,∠OAE=∠ODF=45º,∠ADC=90º,
又∵OE⊥OF,∴∠OFD+∠EDO=180º,
∵∠AEO+DEO=180º,∴∠OFD=∠AEO,∴△AEO≌△DFO(AAS),∴AE=DE=4,
又∵AD=CD,∴DE=CF=3,在Rt△EOF中,.
7.如图,在△ABC中,AB=AC,点D为BC的中点,点E、F分别在AB、AC上,若∠A=60º,∠EDF+∠A
=180º,求证:
【解答】见解析
【解析】取AB的中点G,连接DG,如图所示:
∵AB=AC,∠A=60º,∴△ABC是等边三角形,
∵点D、G分别是AB、BC的中点,∴DG是△ABC的中位线,∴DG=DC=BD,
∵∠B=60º,∴△BDG是等边三角形,∴∠BGD=∠C,
∵∠AED+∠AFD=180º,且∠AFD+∠DFC=180º,∴∠AED=∠DFC,∴△GED≌△CFD,
∴EG=FC,∴BE+CF=BE+EC=BG=.
8.在△ABC中,AD是BC边上的中线,点M在AB边上,点N在AC边上,且∠MDN=90º,若
,求证:.。

相关文档
最新文档