《线性代数》教案设计

合集下载

线性代数教案同济版

线性代数教案同济版

线性代数教案同济版第一章线性代数基本概念1.1 向量空间教学目标:1. 理解向量空间的概念及其性质;2. 掌握向量空间中的线性组合和线性关系;3. 了解向量空间的基和维数。

教学内容:1. 向量空间的概念;2. 向量空间的性质;3. 线性组合和线性关系;4. 基和维数的概念及计算。

教学方法:1. 通过具体例子引入向量空间的概念,引导学生理解向量空间的基本性质;2. 通过练习题,让学生掌握线性组合和线性关系的计算方法;3. 通过案例分析,让学生了解基和维数的概念及计算方法。

教学资源:1. 教材《线性代数》(同济版);2. 教学PPT;3. 练习题及答案。

教学步骤:1. 引入向量空间的概念,讲解向量空间的基本性质;2. 讲解线性组合和线性关系的计算方法,举例说明;3. 介绍基和维数的概念,讲解计算方法,举例说明;4. 布置练习题,让学生巩固所学知识。

教学评估:1. 课堂问答,检查学生对向量空间概念的理解;2. 练习题,检查学生对线性组合和线性关系计算方法的掌握;3. 案例分析,检查学生对基和维数概念及计算方法的掌握。

1.2 线性变换教学目标:1. 理解线性变换的概念及其性质;2. 掌握线性变换的矩阵表示;3. 了解线性变换的图像和核。

教学内容:1. 线性变换的概念;2. 线性变换的性质;3. 线性变换的矩阵表示;4. 线性变换的图像和核的概念及计算。

教学方法:1. 通过具体例子引入线性变换的概念,引导学生理解线性变换的基本性质;2. 通过练习题,让学生掌握线性变换的矩阵表示方法;3. 通过案例分析,让学生了解线性变换的图像和核的概念及计算方法。

教学资源:1. 教材《线性代数》(同济版);2. 教学PPT;3. 练习题及答案。

教学步骤:1. 引入线性变换的概念,讲解线性变换的基本性质;2. 讲解线性变换的矩阵表示方法,举例说明;3. 介绍线性变换的图像和核的概念,讲解计算方法,举例说明;4. 布置练习题,让学生巩固所学知识。

线性代数试讲教案

线性代数试讲教案

线性代数试讲教案一、教学目标1. 知识与技能:使学生掌握线性代数的基本概念、理论和方法,能够运用线性代数解决实际问题。

2. 过程与方法:通过试讲,培养学生的逻辑思维能力、表达能力和合作能力。

3. 情感态度与价值观:激发学生对线性代数的兴趣,提高学生对数学学科的认识和尊重。

二、教学内容1. 第一章:矩阵及其运算1.1 矩阵的概念与性质1.2 矩阵的运算规则1.3 矩阵的逆2. 第二章:线性方程组2.1 线性方程组的定义2.2 高斯消元法解线性方程组2.3 克莱姆法则3. 第三章:向量空间与线性变换3.1 向量空间的概念与性质3.2 线性变换的概念与性质3.3 线性变换的矩阵表示4. 第四章:特征值与特征向量4.1 特征值与特征向量的定义4.2 特征值与特征向量的求解方法4.3 矩阵的对角化5. 第五章:二次型5.1 二次型的概念与性质5.2 二次型的标准形5.3 二次型的判定定理三、教学方法1. 采用试讲的形式,让学生自主学习、合作探讨,教师进行指导与点评。

2. 通过举例、解决问题,引导学生理解和掌握线性代数的基本概念和方法。

3. 利用数学软件或板书,展示线性代数运算过程,提高学生的直观理解能力。

四、教学评价1. 课堂表现:观察学生在试讲过程中的表达、思考和合作能力。

2. 作业与练习:检查学生对线性代数概念、方法和应用的掌握程度。

3. 阶段性测试:评估学生在一段时间内对线性代数的总体掌握情况。

五、教学资源1. 教材:线性代数教材,如《线性代数及其应用》等。

2. 课件:制作与教学内容相关的课件,辅助学生理解和记忆。

3. 数学软件:如MATLAB、Mathematica等,用于展示线性代数运算过程。

4. 板书:用于在课堂上展示线性代数运算步骤和关键公式。

六、第六章:线性空间与线性映射6.1 线性空间的概念与性质6.2 线性映射的概念与性质6.3 线性映射的例子与性质七、第七章:内积与正交性7.1 内积的概念与性质7.2 正交性的概念与性质7.3 施密特正交化与格拉姆-施密特正交化八、第八章:特征值与特征向量的应用8.1 特征值与特征向量的应用概述8.2 矩阵的对角化与应用8.3 二次型与应用九、第九章:线性代数在工程与科学中的应用9.1 线性代数在工程中的应用9.2 线性代数在科学研究中的应用9.3 线性代数在其他领域的应用10.2 线性代数在实际问题中的应用案例分析10.3 线性代数的进一步学习与研究建议六、教学方法1. 采用试讲的形式,让学生自主学习、合作探讨,教师进行指导与点评。

2024年度(完整word版)线性代数教案

2024年度(完整word版)线性代数教案

2024/3/23
32
07 数值计算与误差分析
2024/3/23
33
数值计算方法简介
迭代法
通过逐步逼近的方式求解 方程的近似解,如雅可比 迭代、高斯-赛德尔迭代等 。
2024/3/23
插值法
利用已知数据点构造一个 函数,通过该函数求解未 知点的近似值,如拉格朗 日插值、牛顿插值等。
拟合与回归
通过构造一个数学模型来 描述一组数据的统计规律 ,如最小二乘法、多元线 性回归等。
10
矩阵概念及运算规则
矩阵的概念:由m×n个数排成m行n列的数表称为m行 n列的矩阵,简称m×n矩阵。记作:A = (aij)m×n,其 中aij为矩阵A中第i行第j列的元素。 矩阵的加法:两个矩阵只有当它们的行数相等且列数也 相等时才能进行加法运算。
矩阵的乘法:两个矩阵只有当第一个矩阵的列数与第二 个矩阵的行数相等时才能进行乘法运算。
向量空间性质
向量空间具有8条基本性质,包括加法交换律、加法结合律、零元存在性、负元存在性、数乘分配律、数乘结合 律、数乘单位元存在性以及数乘零元存在性。
2024/3/23
18
线性变换定义及性质
2024/3/23
线性变换定义
设V和W是数域P上的两个线性空间,σ是V到W的一个映射,若对V中任意元素α 、β和P中任意数k,都有σ(α+β)=σ(α)+σ(β),σ(kα)=kσ(α),则称σ是V到W的 一个线性映射或线性变换。
向量空间基
设V是数域P上的线性空间,若V中存在n个线性无关的向量 α1,α2,...,αn,使得V中任意向量α都可以由它们线性表示出来 ,即存在一组数k1,k2,...,kn∈P,使得 α=k1α1+k2α2+...+knαn,则称向量组α1,α2,...,αn为V的一 个基。

《线性代数》教案

《线性代数》教案

《线性代数》教案一、前言1. 教学目标:使学生理解线性代数的基本概念、理论和方法,培养学生运用线性代数解决实际问题的能力。

2. 适用对象:本教案适用于大学本科生线性代数课程的教学。

3. 教学方式:采用讲授、讨论、练习相结合的方式进行教学。

二、教学内容1. 第一章:线性代数基本概念1.1 向量及其运算1.2 线性方程组1.3 矩阵及其运算1.4 行列式2. 第二章:线性空间与线性变换2.1 线性空间2.2 线性变换2.3 矩阵与线性变换2.4 特征值与特征向量3. 第三章:特征值与特征向量3.1 特征值与特征向量的定义3.2 矩阵的特征值与特征向量3.3 矩阵的对角化3.4 二次型4. 第四章:线性方程组的求解方法4.1 高斯消元法4.2 克莱姆法则4.3 矩阵的逆4.4 最小二乘法5. 第五章:线性代数在实际应用中的案例分析5.1 线性规划5.2 最小二乘法在数据分析中的应用5.3 线性代数在工程中的应用5.4 线性代数在计算机科学中的应用三、教学方法1. 讲授:通过讲解线性代数的基本概念、理论和方法,使学生掌握线性代数的基础知识。

2. 讨论:组织学生就线性代数中的重点、难点问题进行讨论,提高学生的思维能力和解决问题的能力。

3. 练习:布置适量的练习题,让学生通过自主练习巩固所学知识,提高解题能力。

四、教学评价1. 平时成绩:考察学生的出勤、作业、课堂表现等方面,占总评的30%。

2. 期中考试:考察学生对线性代数知识的掌握程度,占总评的40%。

3. 期末考试:全面测试学生的线性代数知识水平和应用能力,占总评的30%。

五、教学资源1. 教材:推荐使用《线性代数》(高等教育出版社,同济大学数学系编)。

2. 辅助教材:可参考《线性代数教程》(清华大学出版社,谢乃明编著)。

3. 网络资源:推荐学生浏览线性代数相关网站、论坛,拓展知识面。

4. 软件工具:推荐使用MATLAB、Mathematica等数学软件,辅助学习线性代数。

《线性代数》教案

《线性代数》教案

《线性代数》教案一、引言1. 课程目标:使学生理解线性代数的基本概念,掌握线性方程组的求解方法,了解矩阵和行列式的基本性质,培养学生的数学思维能力和解决问题的能力。

2. 教学内容:本章主要介绍线性代数的基本概念、线性方程组的求解方法、矩阵和行列式的基本性质。

3. 教学方法:采用讲授法、案例分析法、讨论法等多种教学方法,引导学生主动探究、积极思考。

二、线性方程组1. 教学目标:使学生理解线性方程组的含义,掌握线性方程组的求解方法,能够运用线性方程组解决实际问题。

2. 教学内容:(1)线性方程组的概念及其解的含义;(2)线性方程组的求解方法(高斯消元法、矩阵法等);(3)线性方程组在实际问题中的应用。

3. 教学方法:通过具体案例分析,引导学生理解线性方程组的概念,运用高斯消元法和矩阵法求解线性方程组,并讨论线性方程组在实际问题中的应用。

三、矩阵及其运算1. 教学目标:使学生理解矩阵的概念,掌握矩阵的运算方法,了解矩阵在数学和实际中的应用。

2. 教学内容:(1)矩阵的概念及其表示方法;(2)矩阵的运算(加法、数乘、乘法);(3)矩阵的其他相关概念(逆矩阵、转置矩阵等);(4)矩阵在数学和实际中的应用。

3. 教学方法:通过具体的例子,引导学生理解矩阵的概念,掌握矩阵的运算方法,探讨矩阵在其他相关概念中的应用,并了解矩阵在数学和实际中的重要作用。

四、行列式1. 教学目标:使学生理解行列式的概念,掌握行列式的计算方法,了解行列式在线性方程组求解中的应用。

2. 教学内容:(1)行列式的概念及其表示方法;(2)行列式的计算方法(按行(列)展开、性质的应用等);(3)行列式在线性方程组求解中的应用。

3. 教学方法:通过具体的例子,引导学生理解行列式的概念,掌握行列式的计算方法,并了解行列式在线性方程组求解中的应用。

五、线性空间与线性变换1. 教学目标:使学生了解线性空间的概念,掌握线性变换的定义和性质,了解线性变换在数学和实际中的应用。

(完整word版)线性代数教案

(完整word版)线性代数教案

线性代数课程教案学院、部系、所授课教师课程名称线性代数课程学时45学时实验学时教材名称年月日线性代数课程教案授课类型 理论课 授课时间 3 节授课题目(教学章节或主题):第一章 行列式§1 二阶与三阶行列式 §2 全排列及其逆序数 §3 n 阶行列式的定义 §4 对换本授课单元教学目标或要求:1. 会用对角线法则计算2阶和3阶行列式。

2. 知道n 阶行列式的定义。

本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等): 基本内容:行列式的定义 1. 计算排列的逆序数的方法设12n p p p 是1,2,,n 这n 个自然数的任一排列,并规定由小到大为标准次序。

先看有多少个比1p 大的数排在1p 前面,记为1t ; 再看有多少个比2p 大的数排在2p 前面,记为2t ; ……最后看有多少个比n p 大的数排在n p 前面,记为n t ; 则此排列的逆序数为12n t t t t =+++。

2. n 阶行列式1212111212122212()12(1)n n n n t p p np p p p n n nna a a a a a D a a a a a a ==-∑其中12n p p p 为自然数1,2,,n 的一个排列,t 为这个排列的逆序数,求和符号∑是对所有排列12()n p p p 求和。

n 阶行列式D 中所含2n 个数叫做D 的元素,位于第i 行第j 列的元素ij a ,叫做D 的(,)i j 元。

3. 对角线法则:只对2阶和3阶行列式适用1112112212212122a a D a a a a a a ==-111213212223112233122331132132313233132231122133112332a a a D a a a a a a a a a a a a a a a a a a a a a a a a ==++---重点和难点:理解行列式的定义行列式的定义中应注意两点:(1) 和式中的任一项是取自D 中不同行、不同列的n 个元素的乘积。

线性代数教案

线性代数教案

线性代数教案一、教学目标通过本节课的学习,学生应能够:1. 了解线性代数的基本概念和相关术语;2. 理解线性方程组和矩阵的概念、性质和运算规则;3. 掌握矩阵的基本运算,包括矩阵的加法、数乘和矩阵乘法;4. 能够求解线性方程组,并应用到实际问题中。

二、教学重点与难点1. 教学重点:线性方程组和矩阵的概念及其运算规则;2. 教学难点:矩阵乘法的理解和应用。

三、教学过程1. 导入(5分钟)引入线性代数的概念,向学生介绍线性方程组和矩阵的相关背景知识,并激发学生的学习兴趣。

2. 理论讲解(20分钟)2.1 线性方程组的定义和解法- 介绍线性方程组的概念以及线性方程组的解的定义;- 分析线性方程组解的情况:无解、唯一解和无穷解;- 通过实例讲解线性方程组解的求解方法。

2.2 矩阵的定义和性质- 介绍矩阵的基本概念和符号表示方法;- 讲解矩阵的加法、数乘以及矩阵乘法的规则;- 引导学生理解矩阵乘法的几何意义。

3. 实例分析与练习(25分钟)3.1 线性方程组的求解实例- 给出一些线性方程组的实际问题,引导学生运用所学知识解决;- 指导学生使用矩阵运算进行线性方程组的求解。

3.2 矩阵运算实例- 给出一些矩阵的实际运用问题,让学生通过实例进行练习;- 帮助学生熟练掌握矩阵的加法、数乘和矩阵乘法。

4. 拓展延伸(15分钟)通过引导学生思考,结合线性代数在实际问题中的应用,进一步拓展学生的知识面。

5. 归纳总结(10分钟)对本节课所学内容进行总结,强化学生对线性代数的理解和掌握。

四、教学评价1. 在教学过程中,观察学生的学习状态,及时给予指导和帮助;2. 布置相关习题,检验学生对所学知识的掌握情况;3. 根据学生的表现进行评价,及时给予反馈和指导。

五、教学资源准备1. 教材和课件;2. 相关实例分析的教学素材;3. 学生练习题、作业等。

总结:通过本节课的教学,学生能够理解线性代数的基本概念和相关术语,掌握线性方程组和矩阵的运算规则,并能够应用所学知识解决实际问题。

线性代数教案全(同济大学第六版)

线性代数教案全(同济大学第六版)

线性代数教案第(1)次课授课时间()1.教学内容: 二、三阶行列式的定义;全排列及其逆序数;阶行列式的定义2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示.基本内容备注第一节 二、三阶行列式的定义一、二阶行列式的定义从二元方程组的解的公式,引出二阶行列式的概念。

设二元线性方程组 ⎩⎨⎧=+=+22222211212111b x a x a b x a x a用消元法,当021122211≠-a a a a 时,解得211222111212112211222112121221,a a a a b a b a x a a a a b a b a x --=--=令2112221122211211a a a a a a a a -=,称为二阶行列式 ,则如果将D 中第一列的元素11a ,21a 换成常数项1b ,2b ,则可得到另一个行列式,用字母1D 表示,于是有2221211a b a b D =按二阶行列式的定义,它等于两项的代数和: ,这就是公式(2)中 的表达式的分子。

同理将 中第二列的元素a 12,a 22 换成常数项b1,b2 ,可得到另一个行列式,用字母 表示,于是有2121112b a b a D =按二阶行列式的定义,它等于两项的代数和: ,这就是公式(2)中 的表达式的分子。

于是二元方程组的解的公式又可写为⎪⎪⎩⎪⎪⎨⎧==D D x D D x 2211 其中0≠D例1. 解线性方程组 .1212232121⎪⎩⎪⎨⎧=+=-x x x x 同样,在解三元一次方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a 时,要用到“三阶行列式”,这里可采用如下的定义.二、三阶行列式的定义设三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a用消元法解得定义 设有9个数排成3行3列的数表333231232221131211a a a a a a a a a 记 333231232221131211a a a a a a a a a D =322113312312332211a a a a a a a a a ++=332112322311312213a a a a a a a a a ---,称为三阶行列式,则三阶行列式所表示的6项的代数和,也用对角线法则来记忆: 从左上角到右下角三个元素相乘取正号,从右上角到左下角三个元素取负号,即例2.计算三阶行列式 .(-14) 例3.求解方程 ( ) 例4.解线性方程组 解 先计算系数行列式573411112--=D 069556371210≠-=----+-= 再计算 321,,D D D515754101121-=--=D ,315534011222=--=D ,55730112123=---=D得 23171==D D x ,69312-==D D y ,6953-==D D z第( 2 )次课授课时间()第( 3 )次课授课时间()1.教学内容: 行列式按行(列)展开;2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;教学手段: 黑板讲解与多媒体演示.基本内容备注第5节 行列式按行(列)展开定义 在 阶行列式中, 把元素 所处的第 行、第 列划去, 剩下的元素按原排列构成的 阶行列式, 称为 的余子式, 记为;而 称为 的代数余子式.引理 如果 阶行列式中的第 行除 外其余元素均为零, 即: .则: .证 先证简单情形:再证一般情形:定理 行列式等于它的任意一行(列)的各元素与对应的代数余子式乘积之和, 即按行: 按列: 证:(此定理称为行列式按行(列)展开定理)nnn n ini i n a a a a a a a a a D212111211000000+++++++++=nnn n in n nnn n i n nn n n i n a a a a a a a a a a a a a a a a a a a a a 21112112121121121111211000000+++=).,2,1(2211n i A a A a A a in in i i i i =+++=例1 : . 解:例2: 21122112----=n D解: 21122112----=n D 211221100121---=+++nr r)()()()()()21331122213311n n n n n n n x x x x x x x x x x x -----, 并提出因子 )()2321111--n n n x x x x x x()1-n 阶范德蒙行列式(1n x x -行列式一行(列)的各元素与另一行(列)对应各元素的代数余子式乘积之和为零第( 4 )次课授课时间()1.教学内容: 克拉默法则;2.时间安排: 2学时;教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示.4.教学手段:黑板讲解与多媒体演示.基本内容备注第(5)次课授课时间()1.教学内容: 矩阵;矩阵的运算;2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示。

大学线性代数教案

大学线性代数教案

教案:大学线性代数课程名称:大学线性代数课程性质:专业基础课程授课对象:管理类专业学生教学目标:1. 掌握线性代数的基本概念、理论和方法。

2. 能够运用线性代数知识解决实际问题。

3. 提高逻辑思维能力和数学素养。

教学内容:1. 线性方程组2. 矩阵及其运算3. 线性空间与线性变换4. 特征值与特征向量5. 二次型教学安排:共48课时,每课时45分钟。

第一章:线性方程组(8课时)1.1 线性方程组的定义及其解法1.2 矩阵的概念及其运算1.3 高斯消元法1.4 克莱姆法则第二章:矩阵及其运算(10课时)2.1 矩阵的概念2.2 矩阵的运算2.3 逆矩阵2.4 矩阵的行列式第三章:线性空间与线性变换(10课时)3.1 线性空间的概念3.2 线性变换的概念3.3 线性变换的性质3.4 线性变换的矩阵表示第四章:特征值与特征向量(8课时)4.1 特征值与特征向量的概念4.2 特征值与特征向量的求解4.3 矩阵的对角化4.4 二次型第五章:二次型(12课时)5.1 二次型的概念5.2 二次型的标准形5.3 二次型的判定定理5.4 二次型的最小值教学方法:1. 讲授法:通过讲解基本概念、理论和方法,使学生掌握线性代数的基本知识。

2. 案例教学法:通过分析实际问题,引导学生运用线性代数知识解决问题。

3. 讨论法:组织学生分组讨论,培养学生的合作精神和沟通能力。

4. 练习法:布置课后习题,巩固所学知识,提高解题能力。

教学评价:1. 平时成绩:考察学生的出勤、作业和课堂表现。

2. 期中考试:检查学生对线性代数知识的掌握程度。

3. 期末考试:全面考察学生的线性代数理论知识和应用能力。

教学资源:1. 教材:选用权威、实用的线性代数教材。

2. 课件:制作精美、清晰的课件,辅助教学。

3. 习题集:提供丰富的习题,帮助学生巩固知识。

4. 网络资源:利用网络平台,提供在线学习资料和交流平台。

课程总结:通过本课程的学习,使学生掌握线性代数的基本概念、理论和方法,能够运用线性代数知识解决实际问题,提高逻辑思维能力和数学素养。

《线性代数》教案

《线性代数》教案

《线性代数》教案一、教学目标1. 知识与技能:(1)理解线性代数的基本概念,如向量、矩阵、行列式等;(2)掌握线性方程组的求解方法,如高斯消元法、矩阵的逆等;(3)熟悉线性代数在实际问题中的应用。

2. 过程与方法:(1)通过实例讲解,培养学生的空间想象能力;(2)运用数学软件或工具,提高学生解决实际问题的能力;(3)引导学生运用线性代数的知识,分析、解决身边的数学问题。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)感受数学在生活中的重要性,培养学生的应用意识;(3)引导学生树立正确的数学观念,克服对数学的恐惧心理。

二、教学内容1. 第一章:向量(1)向量的概念及几何表示;(2)向量的线性运算;(3)向量的数量积与向量垂直;(4)向量的坐标表示与运算。

2. 第二章:矩阵(1)矩阵的概念与运算;(2)矩阵的行列式;(3)矩阵的逆;(4)矩阵的应用。

3. 第三章:线性方程组(1)线性方程组的解法;(2)高斯消元法;(3)矩阵的逆与线性方程组的解;(4)线性方程组的应用。

4. 第四章:矩阵的特征值与特征向量(1)特征值与特征向量的概念;(2)矩阵的特征值与特征向量的求解;(3)矩阵的对角化;(4)矩阵的特征值与特征向量的应用。

5. 第五章:二次型(1)二次型的概念;(2)二次型的标准形;(3)二次型的判定;(4)二次型的应用。

三、教学方法1. 采用启发式教学,引导学生主动探索、思考;2. 结合实例讲解,培养学生的空间想象能力;3. 利用数学软件或工具,提高学生解决实际问题的能力;4. 组织课堂讨论,促进学生交流与合作;5. 注重练习与反馈,巩固所学知识。

四、教学评价1. 平时成绩:课堂表现、作业、小测验等;2. 期中考试:检测学生对线性代数知识的掌握程度;3. 期末考试:全面考察学生的线性代数知识、技能及应用能力。

五、教学资源1. 教材:《线性代数》;2. 辅助教材:《线性代数学习指导》;3. 数学软件:如MATLAB、Mathematica等;4. 网络资源:相关在线课程、教学视频、练习题等。

线性代数教案一例矩阵相乘

线性代数教案一例矩阵相乘

线性代数教案一例矩阵相乘一、教学目标1.理解线性代数中矩阵相乘的概念和运算规则。

2.掌握矩阵相乘的计算方法。

3.能够利用矩阵相乘解决实际问题。

二、教学重点1.矩阵相乘的概念和运算规则。

2.矩阵相乘的计算方法。

三、教学难点1.矩阵相乘的运算规则的理解和应用。

2.利用矩阵相乘解决实际问题。

四、教学准备1.教师:课本、教学工具(黑板、白板、多媒体设备等)。

2.学生:纸、笔。

五、教学过程1.导入(5分钟)教师简单介绍矩阵的概念和基本运算,引出矩阵相乘的概念。

2.知识讲解(10分钟)教师详细讲解矩阵相乘的定义和运算规则,强调矩阵相乘的前提条件是左矩阵的列数等于右矩阵的行数。

3.实例演示(15分钟)教师选取一个简单的例子,通过黑板或多媒体设备展示矩阵相乘的计算过程,让学生了解矩阵相乘的具体操作方法。

4.学生练习(15分钟)学生进行矩阵相乘的练习题,巩固所学知识。

教师辅导学生解答问题,并及时纠正错误。

5.拓展应用(15分钟)教师提供一些与实际问题相关的矩阵相乘应用例题,让学生思考如何利用矩阵相乘解决问题,并引导学生进行讨论和分析,提出解决问题的方法。

6.知识总结(10分钟)教师对本节课所学的知识进行总结,强调矩阵相乘的重要性和运用场景,并提醒学生需要掌握基本的矩阵相乘运算规则。

7.作业布置(5分钟)教师布置一些练习题作为作业,要求学生独立完成,并提醒学生要仔细思考和分析问题。

六、教学反思本节课通过讲解和演示矩阵相乘的概念和运算规则,让学生掌握了矩阵相乘的计算方法,并通过应用实例提高了学生的应用能力。

在教学过程中,教师通过提问、应用实例和讨论等方式增加了学生的参与度,激发了学生的学习兴趣。

同时,教师对学生的答题和错误进行及时指导和纠正,确保学生能够掌握所学知识。

教学效果良好,学生理解力和运算能力有了明显提高。

在今后的教学中,可以进一步加强学生的实践操作和解决实际问题的能力培养。

新高中数学备课教案模板

新高中数学备课教案模板

新高中数学备课教案模板
课程内容:线性代数
教学目标:通过本节课的学习,学生将能够:
1. 理解线性代数的基本概念;
2. 掌握矩阵的运算规则;
3. 熟练解线性方程组。

教学步骤:
一、导入(5分钟)
1. 引入线性代数的概念,让学生了解线性代数的重要性;
2. 通过实际例子引导学生思考线性代数的应用场景。

二、讲解基本概念(15分钟)
1. 介绍向量、矩阵的定义和性质;
2. 解释线性方程组的概念,并举例说明。

三、矩阵运算规则(20分钟)
1. 讲解矩阵的加法、减法、乘法规则;
2. 演示矩阵运算的计算方法,并进行相关习题讲解。

四、解线性方程组(20分钟)
1. 演示如何利用矩阵的运算法则解线性方程组;
2. 给学生练习题目,让他们独立解决线性方程组问题。

五、总结与展望(5分钟)
1. 对本节课的内容进行总结,强调重点和难点;
2. 展望下节课的内容,引导学生为下节课做好准备。

教学方式:结合理论讲解和实例演示,加强学生的动手能力和独立解题能力。

教学工具:黑板、彩色粉笔、投影仪、教辅资料等。

课堂互动:鼓励学生积极提问,与学生互动讨论解题方法,提高学习效率。

课后作业:布置相关练习题,要求学生独立完成,并在下节课上检查。

备注:本教案仅为参考,具体教学内容和方法可根据实际情况灵活调整。

大学数学线性代数教案

大学数学线性代数教案

大学数学线性代数教案一、教学目标1.了解线性代数的基本概念和方法;2.掌握线性方程组和矩阵的运算;3.理解向量空间和线性变换;4.熟悉矩阵的特征值和特征向量;5.学习线性代数在其他学科中的应用。

二、教学内容1. 线性代数基础1.1 向量和向量运算•向量的概念和表示•向量的线性运算•向量的模长和方向1.2 线性方程组•线性方程组的定义•线性方程组的解法•列向量和矩阵表示2. 矩阵和矩阵运算2.1 矩阵的定义和性质•矩阵的基本运算•矩阵的转置和逆矩阵2.2 矩阵的乘法和行列式•矩阵的乘法规则•行列式的计算和性质3. 向量空间和线性变换3.1 向量空间的定义和性质•向量空间的基本概念•向量空间的性质和运算规则3.2 线性变换和线性映射•线性变换的定义和表示•线性变换的特征和性质4. 特征值和特征向量4.1 特征值和特征向量的定义•特征值和特征向量的概念•特征值和特征向量的性质4.2 矩阵的对角化•对角化的条件和方法•矩阵的相似和可逆性5. 线性代数的应用5.1 物理学中的向量和矩阵•向量在力学中的应用•线性方程组在电路分析中的应用5.2 计算机图形学中的线性代数•矩阵在图形变换中的应用•线性变换在图像处理中的应用三、教学方法1.理论讲授:通过讲解概念、定义和定理,引导学生掌握基本知识;2.示例分析:通过具体的例子,演示和分析线性代数的应用过程;3.答疑讨论:充分利用课堂时间,解答学生的疑问和困惑;4.实践操作:设计实验和习题,培养学生的动手能力和解决问题的能力。

四、教学评价1.思考题:出示一些思考题目,要求学生用线性代数的知识解决实际问题;2.课堂练习:在课堂上布置一些练习题,检测学生对知识点的掌握情况;3.实验报告:要求学生进行实验操作,并撰写实验报告,评估其实践能力和表达能力;4.期末考试:综合考察学生对整个课程的掌握情况,包括理论知识和应用能力。

五、教学资源1.课本教材:《线性代数》,郑欣蘅著,清华大学出版社;2.课件和讲义:准备相应的电子课件和讲义,供学生预习和复习使用;3.实验设备和材料:针对实验操作的实验设备和材料。

线性代数大学生公开课教案

线性代数大学生公开课教案

课程名称:线性代数授课对象:本科生课时:1课时教学目标:1. 了解线性代数的基本概念和基本运算。

2. 掌握矩阵、向量、线性方程组等基本内容。

3. 培养学生运用线性代数知识解决实际问题的能力。

教学重点:1. 矩阵、向量、线性方程组的基本概念和运算。

2. 矩阵的秩、逆矩阵、特征值和特征向量等概念。

教学难点:1. 矩阵运算的技巧和性质。

2. 线性方程组的解法。

教学过程:一、导入1. 引入线性代数的实际应用背景,如工程、物理、经济等领域。

2. 强调线性代数在各个学科中的重要性。

二、教学内容1. 矩阵的基本概念和运算- 矩阵的定义、表示方法- 矩阵的加法、数乘、乘法- 矩阵的转置、共轭转置- 矩阵的行列式、逆矩阵- 矩阵的秩、性质2. 向量的基本概念和运算- 向量的定义、表示方法- 向量的加法、数乘- 向量的长度、单位向量- 向量的线性相关性、线性无关性3. 线性方程组- 线性方程组的定义、表示方法- 线性方程组的解法(高斯消元法、克莱姆法则)- 线性方程组的解的性质三、课堂练习1. 学生独立完成以下练习题:- 计算矩阵的逆矩阵。

- 判断矩阵的秩。

- 求解线性方程组。

2. 教师巡视指导,解答学生在练习过程中遇到的问题。

四、总结与反馈1. 教师总结本节课的主要内容,强调重点和难点。

2. 学生反馈学习过程中的收获和困惑,教师进行解答和指导。

教学评价:1. 课堂练习的正确率。

2. 学生对线性代数基本概念和运算的掌握程度。

3. 学生运用线性代数知识解决实际问题的能力。

教学反思:1. 教师应根据学生的实际情况调整教学内容和进度。

2. 注重培养学生的逻辑思维能力和解决问题的能力。

3. 加强与学生的互动,提高课堂氛围。

线性代数教案

线性代数教案

线性代数教案课程名称:线性代数课程目标:1. 掌握线性代数的基本概念和基本运算规则;2. 理解向量空间和矩阵的性质;3. 学会解线性方程组和矩阵的运算;4. 掌握线性变换和特征值、特征向量的概念与性质。

教学内容:第一课:向量及其运算1. 向量的概念和表示方法;2. 向量的线性组合、线性相关、线性无关的概念;3. 向量的加法和数乘运算规则;4. 向量空间的定义和基本性质;5. 向量空间的子空间和余子空间。

第二课:矩阵及其运算1. 矩阵的概念和表示方法;2. 矩阵的加法和数乘运算规则;3. 矩阵乘法和矩阵的转置;4. 矩阵的逆和矩阵的行列式;5. 线性方程组的矩阵表示和增广矩阵。

第三课:线性方程组与矩阵的解法1. 线性方程组的概念和表示方法;2. 线性方程组的解集和解的存在定理;3. 齐次线性方程组和非齐次线性方程组的解法;4. 矩阵的秩和线性方程组的解的关系;5. 矩阵的初等行变换及其应用。

第四课:特征值与特征向量1. 线性变换的概念和矩阵表示;2. 特征值和特征向量的定义与性质;3. 特征值和特征向量的计算方法;4. 对称矩阵和正交矩阵的特征值和特征向量;5. 线性变换的对角化和相似矩阵的概念。

教学方法:1. 理论讲解,通过示例引导学生理解概念和性质;2. 计算题练习,巩固和应用所学的基本运算规则;3. 探究式学习,鼓励学生自主思考和发现问题的解决方法;4. 课堂讨论,促进学生思维的活跃和合作交流。

教学评价:1. 课堂参与度,包括学生是否积极参与讨论和问题解答;2. 作业完成情况,检查学生对概念和运算规则的掌握程度;3. 期中和期末考试,考查学生综合应用所学知识解决问题的能力;4. 课堂小测验,定期检查学生对重要概念和定理的理解程度。

教学资源:1. 教科书和参考书籍:《线性代数及其应用》、《线性代数教程》等;2. 多媒体教学工具:投影仪、电脑等;3. 练习题集和习题课辅导材料;4. 在线学习资源:相关概念的视频、练习题和解析等。

线性代数大学生讲课教案

线性代数大学生讲课教案

课程名称:线性代数授课对象:大学生授课时间:2课时教学目标:1. 理解线性代数的基本概念,如向量、矩阵、线性方程组等。

2. 掌握线性代数的基本运算,如矩阵的加减、乘法、逆矩阵等。

3. 理解并运用线性代数的理论,解决实际问题。

教学重点:1. 线性代数的基本概念和运算。

2. 线性方程组的求解方法。

教学难点:1. 向量空间和线性变换的理解。

2. 特征值和特征向量的计算。

教学准备:1. 多媒体教学设备,如投影仪、电脑等。

2. 教学课件、习题册、参考书籍。

教学过程:第一课时一、导入1. 介绍线性代数的起源和发展。

2. 简述线性代数在各个领域的应用。

二、基本概念1. 向量:讲解向量的定义、表示方法、运算规则等。

2. 矩阵:讲解矩阵的定义、分类、运算规则等。

3. 线性方程组:讲解线性方程组的定义、求解方法(高斯消元法)。

三、课堂练习1. 让学生练习向量、矩阵的基本运算。

2. 解答学生提出的问题。

四、小结1. 总结本节课所学内容。

2. 强调重点、难点。

第二课时一、向量空间1. 介绍向量空间的概念,包括线性空间、子空间等。

2. 讲解向量空间的性质和运算。

二、线性变换1. 介绍线性变换的概念,包括线性映射、特征值、特征向量等。

2. 讲解线性变换的性质和计算方法。

三、课堂练习1. 让学生练习向量空间和线性变换的运算。

2. 解答学生提出的问题。

四、案例分析1. 通过实际案例,让学生了解线性代数在实际问题中的应用。

2. 引导学生思考如何运用线性代数解决实际问题。

五、小结1. 总结本节课所学内容。

2. 强调重点、难点。

教学反思:1. 课后检查学生的学习情况,了解学生对线性代数知识的掌握程度。

2. 针对学生在学习过程中遇到的问题,及时调整教学内容和方法。

3. 鼓励学生积极参与课堂讨论,提高学习兴趣和主动性。

线性代数教案模板范文

线性代数教案模板范文

一、课程名称:线性代数二、授课对象:XX年级XX专业三、授课时间:XX课时四、教学目标:1. 知识目标:(1)掌握线性代数的基本概念和性质;(2)熟练运用矩阵、向量、行列式等基本工具;(3)理解线性方程组、特征值、特征向量等概念;(4)掌握矩阵的运算、初等变换、矩阵的秩、逆矩阵等基本方法。

2. 能力目标:(1)培养学生分析问题和解决问题的能力;(2)提高学生的逻辑思维和抽象思维能力;(3)锻炼学生的计算能力和计算机应用能力。

3. 情感目标:(1)激发学生学习线性代数的兴趣;(2)培养学生严谨、求实的科学态度;(3)提高学生的团队协作精神。

五、教学内容:1. 第一章:行列式(1)行列式的概念及性质;(2)行列式的计算方法;(3)克莱姆法则。

2. 第二章:矩阵(1)矩阵的概念及性质;(2)矩阵的运算;(3)初等变换及矩阵的秩;(4)逆矩阵。

3. 第三章:向量空间(1)向量空间的概念及性质;(2)线性变换;(3)线性方程组。

4. 第四章:特征值与特征向量(1)特征值与特征向量的概念;(2)特征值与特征向量的性质;(3)相似矩阵。

5. 第五章:二次型(1)二次型的概念及性质;(2)二次型的标准形;(3)二次型的正定性。

六、教学方法:1. 讲授法:系统讲解线性代数的基本概念、性质和运算方法;2. 讨论法:引导学生参与课堂讨论,提高学生的思考能力和团队协作精神;3. 案例分析法:通过实际案例,帮助学生理解和应用所学知识;4. 计算机辅助教学:利用计算机软件进行矩阵运算、线性方程组求解等教学活动。

七、教学手段:1. 教材:选用合适的线性代数教材,如《线性代数》(同济大学数学系编);2. 板书:在黑板上书写清晰的板书,便于学生理解和记忆;3. 多媒体课件:利用多媒体课件展示线性代数的图形、动画等内容,提高学生的学习兴趣;4. 实验教学:开展线性代数的实验课程,提高学生的实践能力。

八、教学评价:1. 课堂表现:观察学生在课堂上的参与度、发言情况等;2. 作业完成情况:检查学生的作业完成质量,了解学生对知识的掌握程度;3. 考试成绩:通过期中、期末考试,检验学生对线性代数的掌握情况。

线性代数第三版教学设计 (2)

线性代数第三版教学设计 (2)

线性代数第三版教学设计1. 教学目标本次教学的主要目标是使学生掌握线性代数的基本概念和算法,并能够灵活应用于实际问题当中。

具体的教学目标包括:1.熟练掌握线性方程组的求解方法,包括高斯消元法和矩阵运算法;2.熟悉向量空间和线性变换的定义及其基本属性;3.熟悉线性代数中的重要概念和理论,包括行列式、特征值和特征向量等。

2. 教学内容本次教学主要内容包括:1.向量与矩阵–向量的概念及其运算–矩阵的概念及其运算2.线性方程组的求解–高斯消元法–矩阵运算法3.向量空间的基本性质–向量空间的概念及其基本性质–线性相关与线性无关4.线性变换及其矩阵表示–线性变换的定义及其基本性质–线性变换的矩阵表示5.特征值与特征向量–特征值、特征向量的定义及其基本性质–对称矩阵的谱分解3. 教学方法在本次教学中,我们将采用以下教学方法:1.讲授与演示相结合的方法,通过具体实例来帮助学生理解和掌握概念和算法;2.组织小组讨论,促进学生之间的交流与合作;3.支持自主学习,提供适当的课外阅读材料和作业练习。

4. 教学评估为了全面评估学生的掌握情况和效果,我们将采用以下方法:1.期中考试:主要考查学生对于基本概念和算法的掌握情况;2.日常作业:包括练习题和实验报告,以检查学生的实际运用能力;3.期末考试:综合考查学生对于整个课程的掌握情况。

5. 教学资源本次教学需要的资源包括:1.线性代数第三版教材及其软件,用于讲授和演示;2.网络资源,包括一些线性代数相关网站、博客等,用于补充教材和作业练习。

3.实验室设备,如计算机等,以支持教师进行相关实验展示和学生实验操作。

6. 教学反思在教学过程中,需要注意以下问题:1.教学重点和难点是哪些,如何让学生更好地理解和掌握?2.学生的思维特点和学习习惯是怎样的,应该如何调整教学方法和手段?3.如何利用好课堂外的资源,如何鼓励学生自主探索和阅读?4.如何认真对待每一个学生的学习,把每一个机会都转化为他们的学习经验?通过教学反思,我们可以更好地改进教学方法,提高教学效果,使学生的学习效果更加优秀。

大学三年级线性代数应用教案

大学三年级线性代数应用教案

大学三年级线性代数应用教案一、教案简介本教案旨在针对大学三年级的线性代数应用课程,提供一套完整的教学计划和教学资源,帮助学生在掌握线性代数基础知识的基础上,能够灵活应用线性代数理论解决实际问题。

通过本教案的学习,学生将能够深入了解线性代数在各个领域的应用,并具备独立解决实际问题的能力。

二、教学目标1. 掌握线性代数的基础知识,包括向量、矩阵、线性变换等概念与性质。

2. 理解线性代数在计算机科学、物理学、经济学等领域中的应用,并能够熟练地运用线性代数方法解决相关问题。

3. 培养学生的逻辑思维、抽象推理、问题分析和解决问题的能力。

4. 培养学生的团队合作精神、沟通能力和创新思维。

三、教学内容1. 第一单元:向量与矩阵a. 向量的基本概念与运算b. 矩阵的基本概念与运算c. 向量空间的性质与判定d. 线性方程组与矩阵的应用2. 第二单元:线性变换a. 线性变换的基本概念与性质b. 线性变换的标准矩阵表示c. 特征值与特征向量的计算与应用d. 线性变换在几何学中的应用3. 第三单元:线性代数的应用a. 线性代数在计算机科学中的应用 i. 图形变换与计算机图形学ii. 矩阵运算与机器学习iii. 数据压缩与加密算法b. 线性代数在物理学中的应用i. 空间向量与力学问题ii. 线性方程组与电路分析iii. 特征值与量子力学c. 线性代数在经济学中的应用i. 供求平衡与线性方程组ii. 线性回归模型与经济预测iii. 投资组合与矩阵运算四、教学方法1. 讲授法:通过系统的课堂讲解,引导学生逐步掌握线性代数的基础理论与方法。

2. 实践法:通过大量的实例分析和解决实际问题的训练,加深学生对线性代数应用的理解与运用能力。

3. 讨论法:组织学生分组进行问题讨论与解决,培养学生的团队合作精神和问题解决能力。

4. 案例法:引入相关领域的实际案例,通过分析和讨论,让学生更好地理解线性代数在实际问题中的应用。

五、教学评估1. 平时作业:布置与课程内容相关的作业,包括计算题、证明题和应用题等,用以检验学生对知识的掌握情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新疆财经大学教案
课程名称:线性代数
任课班级:
任课教师:
应用数学系基础数学教研室
二○一_二○一学年第学期
课程教案概貌
课程单元教案(单元 1 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课 程
单 元 教 案(单元 2 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项课程单元教案(单元 3 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课程单元教案(单元 4 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课程单元教案(单元 5 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课程单元教案(单元 6 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课程单元教案(单元7 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课程单元教案(单元8 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课程单元教案(单元9 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课程单元教案(单元10 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课程单元教案(单元11 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项课程单元教案(单元12 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课程单元教案(单元13 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课程单元教案(单元14 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课程单元教案(单元15 )
注:1
.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课 程 单 元 教 案(单元 16 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课程单元教案(单元17 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课程单元教案(单元18 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课程单元教案(单元19 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课程单元教案(单元20 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课程单元教案(单元21 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课程单元教案(单元22 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课程单元教案(单元23 )
注:1.一单元为2个标准学时。

2.教学设计指在
2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课 程 单 元 教 案(单元 24 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项课程单元教案(单元25 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项
课程单元教案(单元26 )
注:1.一单元为2个标准学时。

2.教学设计指在2个标准学时教学活动的时间安排
3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项。

相关文档
最新文档