机械加工介绍(中英文)
机械加工方式作文英语
![机械加工方式作文英语](https://img.taocdn.com/s3/m/3a5e531ac950ad02de80d4d8d15abe23492f031e.png)
机械加工方式作文英语Mechanical Processing。
Mechanical processing, also known as machining, is a process of removing material from a workpiece to achieve the desired shape and size. It is an important manufacturing process that is widely used in various industries, such as automotive, aerospace, and electronics. In this essay, we will discuss the various aspects of mechanical processing, including its history, techniques, and applications.The history of mechanical processing can be traced back to ancient times when primitive tools were used to shape and cut materials. Over the centuries, the process has evolved significantly, with the development of new techniques and technologies. Today, mechanical processingis a highly advanced and precise method of manufacturing, thanks to the use of computer-aided design (CAD) and computer-aided manufacturing (CAM) software.There are several techniques used in mechanical processing, including turning, milling, drilling, and grinding. Turning is a process in which a workpiece is rotated while a cutting tool is used to remove material from the surface. This technique is commonly used to produce cylindrical parts, such as shafts and bushings. Milling, on the other hand, involves the use of a rotating cutting tool to remove material from a workpiece. This technique is used to create complex shapes and features, such as slots and pockets. Drilling is a process in which a rotating cutting tool is used to create holes in a workpiece, while grinding is a process in which a grinding wheel is used to remove material from the surface of a workpiece.Mechanical processing has a wide range of applications, from the production of small, intricate parts to the manufacturing of large, heavy-duty components. In the automotive industry, for example, mechanical processing is used to produce engine components, such as pistons and crankshafts. In the aerospace industry, it is used tomanufacture aircraft parts, such as landing gear and wing components. In the electronics industry, it is used to produce precision components, such as connectors and housings.In conclusion, mechanical processing is a vital manufacturing process that is used in a wide range of industries. It has a long history of development and has evolved into a highly advanced and precise method of manufacturing. With the use of modern techniques and technologies, mechanical processing continues to play a crucial role in the production of a wide variety of components and parts.。
机械加工简要英文介绍
![机械加工简要英文介绍](https://img.taocdn.com/s3/m/fe17029950e2524de5187e48.png)
Machining: An IntroductionIn terms of annual dollars spent, machining is the most important of the manufacturing processes. Machining can be defined as the process of removing material from a workpiece in the form of chips. The term metal cutting is used when the material is metallic. Most machining has very low set-up cost compared to forming, molding, and casting processes. However, machining is much more expensive for high volumes. Machining is necessary where tight tolerances on dimensions and finishes are required.The Machining section is divided into the following categories:Drilling: IntroductionDrilling is easily the most common machining process. One estimate is that 75% of all metal-cutting material removed comes from drilling operations.Drilling involves the creation of holes that are right circular cylinders. This is accomplished most typically by using a twist drill, something most readers will have seen before. The figure below illustrates a cross section of a hole being cut by a common twistdrill:The chips must exit through the flutes to the outside of the tool. As can be seen in the figure, the cutting front is embedded within the workpiece, making cooling difficult. The cutting area can be flooded, coolant spray mist can be applied, or coolant can be delivered through the drill bit shaft. For an overview of the chip-formation process, see the Chip Formation Section.Drilling CharacteristicsThe characteristics of drilling that set it apart from other powered metal cutting operations are: •The chips must exit out of the hole created by the cutting.•Chip exit can cause problems when chips are large and/or continuous.•For deep holes in large workpieces, coolant may need to be delivered through the drill shaft to the cutting front.•Of the powered metal cutting processes, drilling on a drill press is the most likely to be performed by someone who is not a machinist.Drill Press Work AreaA view of the metal-cutting area of a drill press is shown below. The workpiece is held in place by a clamp since cutting forces can be quite large. It is dangerous to hold a workpiece by hand during drilling since cutting forces can unpredictably get quite large and wrench the part away. Wood is often used underneath the part so that the drill bit can overshoot without damaging the table. The table also has holes for drill overshoot as well as weight reduction. A three-jaw chuck is used since three points determine a circle in two dimensions. Four-jaw chucks are rarely seen since offset of the bit is not necessary. The next section contains illustrations of drill bit chucks. To get an idea of the differing configurations of three and four-jaw chucks, please see the equivalent lathe chucks.Turning: Engine LatheTurning is another of the basic machining processes. Information in this section is organized according to the subcategory links in the menu bar to the left.ÂTurning produces solids of revolution which can be tightly toleranced because of the specialized nature of the operation. Turning is performed on a machine called a lathe in which the tool is stationary and the part is rotated. The figure below illustrates an engine lathe. Lathes are designed solely for turning operations, so that precise control of the cutting results in tight tolerances. The work piece is mounted on the chuck, which rotates relative to the stationary tool.TurningTurning refers to cutting as shown below.The term "facing" is used to describe removal of material from the flat end of a cylindrical part, as shown below. Facing is often used to improve the finish of surfaces that have been parted.Milling: IntroductionMilling is as fundamental as drilling among powered metal cutting processes.Milling is versatile for a basic machining process, but because the milling set up has so many degrees of freedom, milling is usually less accurate than turning or grinding unless especially rigid fixturing is implemented.For manual machining, milling is essential to fabricate any object that is not axially symmetric. There is a wide range of different milling machines, ranging from manual light-duty Bridgeportsâ…¢ to huge CNC machines for milling parts hundreds of feet long. Below is illustrated the process at the cutting area.Milling: Column-and-Knee Manual MillBelow is illustrated a typical column-and-knee type manual mill. Such manual mills are common in job shops that specialize in parts that are low volume and quickly fabricated. Such job shops are often termed "model shops" because of the prototyping nature of the work.The parts of the manual mill are separated below. The knee moves up and down the column on guideways in the column. The table can move in x and y on the knee, and the milling head can move up and down.Grinding: IntroductionGrinding is a finishing process used to improve surface finish, abrade hard materials, and tighten the tolerance on flat and cylindrical surfaces by removing a small amount of material. Information in this section is organized according to the subcategory links in the menu bar to the left.In grinding, an abrasive material rubs against the metal part and removes tiny pieces of material. The abrasive material is typically on the surface of a wheel or belt and abrades material in a way similar to sanding. On a microscopic scale, the chip formation in grinding is the same as thatfound in other machining processes. The abrasive action of grinding generates excessive heat so that flooding of the cutting area with fluid is necessary.Reasons for GrindingReasons for grinding are:1. The material is too hard to be machined economically. (The material may havebeen hardened in order to produce a low-wear finish, such as that in a bearing raceway.2. Tolerances required preclude machining. Grinding can produce flatnesstolerances of less than ±0.0025 mm (±0.0001 in) on a 127 x 127 mm (5 x 5 in) steel surface if the surface is adequately supported.3. Machining removes excessive material.Chip Formation: IntroductionBecause of the importance of machining for any industrial economy, Machining Theory has been extensively studied.ÂThe chip formation process is the same for most machining processes, and it has been researched in order to determine closed-form solutions for speeds, feeds, and other parameters which have in the past been determined by the "feel" of the machinist.ÂWith CNC machine tools producing parts at ever-faster rates, it has become important to provide automatic algorithms for determining speeds and feeds. The information presented in this section are some of the more important aspects of chip formation. Reasons for machining being difficult to analyze and characterize can be summarized as follows:•The strain rate is extremely high compared to that of other fabrication processes.•The process varies considerably depending on the part material, temperature, cutting fluids, etc.•The process varies considerably depending on the tool material, temperature, chatter and vibration, etc.•The process is only constrained by the tool cutter. Unlike other processes such as molding and cold forming which are contained, a lot of variation can occur even with the same configuration.For all types of machining, including grinding, honing, lapping, planing, turning, or milling, the phenomenon of chip formation is similar at the point where the tool meets the work.Below are illustrated categories of chip types.。
常用机械加工英语
![常用机械加工英语](https://img.taocdn.com/s3/m/6d8f30f13968011ca2009187.png)
第1章切削加工基础知识1.1切削加工概述切削cutting;力口工machining;金属切肖U metal cutting (metal removal); 金属切削工艺meta-removal process; 金属工艺学tech no logy of metals;机器制造machin&building;机械加工machining;冷加工cold machining;热加工hot worki ng;工件workpiece;切屑chip;常见的加工方法universal machining method;钻削drilling;镗肖U boring;车削I turning;磨削I grinding;铣削milling;刨肖U planning;插削slotting ;锂filing ;划线lineation;錾切carving;锯sawing;刮削facing;令占孑L boring;攻丝tap;1.2零件表面构成及成形方法变形力deforming force;变形deformation;几何形状geometrical; 尺寸dimension;精度precision;表面光洁度surface fin ish;共轭曲线conjugate curve; 范成法gen eratio n method;轴shaft;1.3机床的切削运动及切削要素主运动main movement;主运动方向directi on of mai n moveme nt; 进给方向directi on of feed;进给运动feed movement;合成进给运动resultant movement of feed; 合成切肖U 运动resultant movement of cutt in g;合成切削运动方向directi on of resulta nt moveme nt of cutt ing ;切肖U速度cutting speed;传动drive/transmission;切削用量cutting parameters;切肖U速度cutting speed;切削深度depth of cut; 进给速度feed force;切肖U功率cutting power;1.4金属切削刀具合金工具钢alloy tool steel; 高速钢high-speed steel; 硬质合金hard alloy;易加工ease of manufacturing ;切削刀具cutting tool;刀具cutter;车刀lathe tool;主切肖U刃main cutting edge;副」切肖U刃assistant cutting edge;刀体tool body ;刀柄tool shank; 前刀面rake face;主后刀面major flank;刀尖nose of tool;主咅U面系tool orthogonal plane system; 切肖U平面tool cutting edge plane;主咅"面tool orthogonal plane;切削宽度width of the uncut chip;进给平面系assumed working plane system;力口工表面transient surface;前角rake angle;后角clearanee angle;主偏角tool cutting edge angle;刀尖角nose angle;1.5刀具切削过程及磨削机理塑性变形plastic distortion;微观组织,显微结构microstructure ; 切肖U力cutting force;切削温度cutting temperature; 积屑瘤built-up edge;刀尖磨损nose wear;月牙洼crater;残留应力residual stress;应力stress;硬度rigidity;磨削I grinding;砂轮grinding wheel;磨粒grain;剪切shear;摩擦friction;内力internal force; 1.6~1.8切削加工质量、材料的切削加工性、切削液的选择力口工精度machining accuracy;表面质量surface finish;工艺性能tech no logical performa nee; 材料切削加工性指标machinability in dex of material;切削液cutting fluid ; 切削油cutting oil;1.9件的装夹及夹具定位梢dowel;定位allocation;机床夹具jig;组装线Assembly line;机械零件mechanical parts;钳工locksmith;精加工finish machining;粗加工rough machining;气动夹紧pneumaJock;同心,同心度concentricity ;垂直度perpendicular;基准benchmark;基准线referenee line;夹具fixture;通用夹具universal fixture;专用夹具Fixture for special purpose;可调夹具adjustable fixture;组合夹具modular fixture;工序process;设计基准designing datum;工艺基准datum features in process;1.10金属切削机床机床machine tool;机床运动motion of machine;机床型号machine tool model;机床加工精度machining accuracy of mach ine tool;车床lathe;普通车床engine lathe;卧式车床horizontal lathe;立式车床vertical lathe;钻床drill press;镗床boring machine;铣床milling machine;磨床grinder(grinding machine);牛头刨床shaper;龙门刨床planer;插床slotting machine (slotter);第2章常用加工方法综述及加工方案选择一、车削车削turning;车刀lathe tool ;车床lathe ;普通车床engine lathe;卧式车床horizontal lathe;立式车床vertical lathe;仿形车床duplicating lathe (copy lathe); 转塔车床turret lathe;细长车由long slender shaft纵向车削straight turning;锥体车肖U taper turning;仿形车肖U con tour tur ning; 端面车削facing;回转表面surface of revolution; 平面flat surface;圆面round surface ;仿形表面con toured surface ; 退刀槽recess ;卡盘chuck;尾架tailstock;床头箱,主轴箱headstock; 销pin;卡箍bar clasp;花盘faceplate;主车由spindle;二、钻削钻削drilling;钻床drill press;钻头drill;锪孑L counter boring; 内表面internal surface ;铰孑L、扩孑L reaming; 攻丝tapping;孑L加工spot facing machining; 铰ream; 铰刀reamer; 盲孑L blind hole;麻花钻twist drill; 埋头孑L countersink;锥柄taper shank;三、镗削镗削bore; 镗床boring machine;镗杆boring bar ;纵向镗肖U straight boring;表面光洁度surface fin ish;卧式镗孑L机horiz on tai bori ng mach ine;四、铣削铣削mill;铣床milling machine ;铣刀milling cutter;缝Slot ;槽groove;平面flat surface;圆面round surface ;仿形表面con toured surface;周铣Peripheral milling ;端铣face milling; multi model miller; 靠模铣床;copy milling machine;仿形铣床;contouring machine;五、磨削磨削I grinding;磨床grinder (grinding machine);夕卜圆磨肖U external grinding;内圆磨肖U internal grinding(cylindrical grin di ng);平面磨肖U plane grinding abrasive;夕卜圆磨床cylindrical grinding machine; 平面磨床surface grinder;夕卜圆磨床cylindrical grinding machine ; 内圆磨床in ter nal cyli ndrical machi ne; 成形磨床form grinding machine; 仿形磨床copy grinding machine ; 万能工具磨床universal tool grinding mach ine;六、拉削拉肖U broaching;拉床broaching machine;拉刀broaching tool;夕卜表面拉肖U e xter nal surface broach ing;内表面拉削internal surface broaching; 多功能机床multifunction machine;多齿刀具multitooth tool; 切屑槽chip gullet;七、刨削刨肖U planning;牛头刨床shaper;龙门刨床planer;龙门刨削planning;旋臂刨床radial drilli ng machi ne ;仿形刨床copy shaping machine;八、齿轮加工齿轮加工gear machining;齿轮gear;滚齿gear hobbing;滚齿刀hobbing cutter;直齿圆柱齿轮straight toothed spur gear; 斜齿圆柱齿轮helical-spur gear; 直齿锥齿轮straight bevel gear ;齿轮齿条pinion and rack;蜗杆蜗轮worm and worm gear;九、螺纹加工螺纹加工thread machining;螺纹切削thread cutting;攻丝tapping;丝锥tap;板牙die;螺钉screw;标准件standard component;位移displacement ;截面section;十、光整加工光整加工micro finishing;研磨mull (lapp in g);研磨剂lapping compound;研磨膏paste;研磨机床lapping machine抛光polish ing ;抛光膏buffing cream;抛光轮polishi ng wheel;抛光机polisher ;珩磨honing ;珩磨轮honing wheel;珩磨机床honing machine;超精加工机床superfinishing machine; 超精加工superfinish;第3章机械加工工艺过程机械加工工艺过程mach ining process;工步step of an operation;工位work station;工序process;工艺文件manufacturing process docume nt;工艺卡片tech no logical card;工艺规程process plan;机械加工工艺卡machining process sheet;工艺设计tech no logical desig n;设计基准designing datum;工艺基准datum features in process; 基准重合consistency of datum feature; 基面统一原贝S uni fied datum prin ciple;机械加工工序卡machining operation sheet;工艺过程设计process planning;;工艺路线process route; 工艺过程卡process sheet;产品规格product specification;产品用途product use;产品责任product liability;生产线production line;生产进度计戈U production schedule; 生产率productivity;批量生产batch production;第4章切削加工零件结构工艺性切削cutting;力口工machining;工件workpiece;零件part;毛坯rough;工艺性能processing property;装配结构的合理性rationality of assembly structure;零件结构合理性rati on ality of detail structure;标准化standardization;第5章先进制造技术先进制造技术Adva need Manu facturi ng Tech no logy;信息技术in formatio n Tech no logy;产品product;设计design;力口工machining;检测check;管理manage;销售sell;使用use;月服务serve;回收reclaim;计算机集成制造系统Computer Integrated Manufacturing Syste(CIMS); 智能制造系统Intelligent Manufacturing System (IMS);精密工程precise engineering;成组技术group tech no logy;方式(法)methodology;柔性制造系统Flexible Manufacturing System(FMS);数控机床nu merically con trolled mach ine tool;加工中心Machining Center (MC);计算机数字控制computerized nu merical con trol (CNC);自动换刀装置automatic tool changer (ATC);直接数字控制Direct numerical control (DNC);分布式数字控制Distributed numerical control (DNC);群控DNC;单机自动化stanc-alone automatization ; 自动机床Automatic machine;组合机床comb in ati on mach ine;专用机床special machine; NC 钻床NC drilling machine ;NC 磨床NC grinding machine ;NC 车床NC lathe ;卧式加工制造中心horizontal machine cen ter;立式加工制造中心vertical machine cen ter;车「间shop floor;库存inventory;工艺process;分类classification;编码系统coding system;零件外型part configuration;工艺规戈U process planning;单元式制造cellular manufacturing; 小车维修站Cart maintenance station; 零件清洗站Parts wash station;装卸站Un load statio n;回收系统Recovery system;小车转弯站Cart turnaround station 集成化integration ;协调tradeoff;成族零件family-of-part;换刀装置Tool changer;机床控制装置machine control unit; 组装线Assembly line;第6章先进制造运行模式先进制造运行模式Advaneed Manu facturi ng Operati on Model;计算机集成制造系统Computer In tegratedManu facturi ng Systems (CIMS);精益生产(LP亦称精良生产)LeanProducti on;敏捷制造Agile Manufacturing (AM );绿色制造Green Manufacturing;计算机辅助设计Computer Aided Design( CAD);计算机辅助制造Computer Aided Manu facturi ng(CAM);计算机辅助工艺过程设计ComputerAided process pla nnin g(CAPP);物料需求计划Material Requirements Planning( MRP);计算机辅助教育Computer Aided Education (CAE);虚拟制造Virtual Manufacturing(VM);并行工程Concurrent Engineering (CE); 面向装配的设计Design For Assembly(DFA);面向制造的设计Design For Man ufacturi ng(DFM);第7章特种加工特种加工 (NTM ) NontraditionalManu facturi ng;一、电火花加工电火花加工spark-erosion machining;电火花线切割加工electrical discharge wire - cutting;电火花穿孑L spark-erosion drilling;电火花雕刻spark-erosion carving;二、电解加工电解加工Electrolytic machining;三、超声波加工超声波加工Ultrasonic machining;变幅杆Transducer nose ;铜垫圈Copper washer;放大刀具夹持器Amplifying tool holder ; 超声波振动Ultrasonic vibration;银钎焊Sliver braze;仿形刀具Shaped tool;蜡焊缝Wax weld ;支持材料Backup material;磨料悬浮液Abrasive slurry; 吸入管Suction line ;四、激光加工激光加工Laser processing;激光束加工Laser beam machining ; 激光切割laser cutting ;激光打孔laser drilling;激光焊接laser welding;。
机械加工——机械类外文翻译、中英文翻译
![机械加工——机械类外文翻译、中英文翻译](https://img.taocdn.com/s3/m/f13ecee4e009581b6bd9eb8d.png)
TOOL WEAR MECHANISMS ON THE FLANK SURFACE OF CUTTINGINSERTSFOR HIGH SPEED WET MACHINING5.1 IntroductionAlmost every type of machining such as turning, milling, drilling, grinding..., uses a cutting fluid to assist in the cost effective production of pa rts as set up standard required by the producer [1]. Using coolant with some cutting tools material causes severe failure due to the lack of their resistance to thermal shock (like AL2O3 ceramics), used to turn steel. Other cutting tools materials like cubic boron nitride (CBN) can be used without coolant, due to the type of their function. The aim of using CBN is to raise the temperature of the workpice to high so it locally softens and can be easily machined.The reasons behind using cutting fluids can be summarized as follows.® Extending the cutting tool life achieved by reducing heat generated and as a result less wear rate is achieved. It will also eliminate the heat from theshear zone and the formed chips.® Cooling the work piece of high quality materia l under operation plays an important role since thermal distortion of the surface and subsurfacedamage is a result of excessive heat that must be eliminated or largelyreduced to produce a high quality product.Reducing cutting forces by its lubricating e ffect at the contact interface region and washing and cleaning the cutting region during machining from small chips. The two main reasons for using cutting fluids are cooling and lubrication.Cutting Fluid as a Coolant:The fluid characteristics and condition of use determine the coolant action of the cutting fluid, which improves the heat transfer at the shear zone between the cutting edge, work piece, and cutting fluid. The properties of the coolant in this case must include a high heat capacity to carry away heat and good thermal conductivity to absorb the heat from the cutting region. The water-based coolant emulsion with its excellent high heat capacity is able to reduce tool wear [44]. Cutting Fluid as a Lubricant:The purpose is to reduce friction bet ween the cutting edge, rake face and the work piece material or reducing the cutting forces (tangential component). As the friction drops the heat generated isdropped. As a result, the cutting tool wear rate is reduced and the surface finish is improved.Cutting Fluid PropertiesFree of perceivable odorPreserve clarity throughout lifeKind and unirritated to skin and eyes.Corrosion protection to the machine parts and work piece.Cost effective in terms off tool life, safety, dilution ratio, and fluid lif e.[1]5.1.1 Cutting Fluid TypesThere are two major categories of cutting fluidsNeat Cutting OilsNeat cutting oils are poor in their coolant characteristics but have an excellent lubricity. They are applied by flooding the work area by a pump and re-circulated through a filter, tank and nozzles. This type is not diluted by water, and may contain lubricity and extreme-pressure additives to enhance their cutting performance properties. The usage of this type has been declining for their poor cooling ability, causing fire risk, proven to cause health and safety risk to the operator [1].® Water Based or Water Soluble Cutting FluidsThis group is subdivided into three categories:1.Emulsion ` mineral soluble' white-milky color as a result of emulsion of oil inwater. Contain from 40%-80% mineral oil and an emulsifying agent beside corrosion inhibitors, beside biocide to inhibit the bacteria growth.2.Micro emulsion `semi-synthetic' invented in 1980's, has less oil concentrationand/or higher emulsifier ratio 10%-40% oil. Due to the high levels ofemulsifier the oil droplet size in the fluid are smaller which make the fluid more translucent and easy to see the work piece during operation. Otherimportant benefit is in its ability to emulsify any leakage of oil from themachine parts in the cutting fluid, a corrosion inhibitors, and bacteria control.3.Mineral oil free `synthetic' is a mix of chemicals, water, bacteria control,corrosion inhibitors, and dyes. Does not contain any mineral oils, andprovides good visibility.23 to the work piece. bare in mind that the lack of mineral oil in this type of cuttingfluid needs to take more attention to machine parts lubrication since it should not leave an oily film on the machine parts, and might cause seals degradation due the lack of protection.5.1.2 Cutting Fluid SelectionMany factors influence the selection of cutting fluid; mainly work piece material, type of machining operation, machine tool parts, paints, and seals. Table 5-1 prepared at the machine tool industry res earch association [2] provides suggestions on the type of fluid to be used.5.1.3 Coolant ManagementTo achieve a high level of cutting fluids performance and costeffectiveness, a coolant recycling system should be installed in the factory. This system will reduce the amount of new purchased coolant concentrate and coolant disposable, which will reduce manufacturing cost. It either done by the company itself or be rented out, depends on the budget and management policy of the company [1].Table 5-1 Guide to the selection of cutting fluids for general workshop applications.Machining operation Workpiece materialFree machining and low - carbon Medium- Carbon steels High Carbon and alloy steels Stainlessand heattreated GrindingClear type soluble oil, semi synthetic or chemical Turning General purpose, soluble oil, semi synthetic or synthetic fluid Extreme-pressuresoluble oil,semi-synthetic orsyntheticfluid Milling General purpose, soluble oil, semi synthetic or synthetic Extreme- pressure soluble oil, semi- synthetic or synthetic Extreme-pressuresoluble oil,semi-synthetic orsyntheticfluid(neat cutting oilsmay beDrillingExtreme- pressure soluble oil, semi- synthetic or GearShapping Extreme-pressure soluble oil, Neat-cutting oils preferable HobbingExtreme-pressure soluble oil, semi-synthetic or synthetic fluid (neat cutting oils may be Neat-cutti ng oils BratchingExtreme-pressure soluble oil, semi-synthetic or synthetic fluid (neat Tapping Extreme-pressure soluble oil, semi-synthetic or Neat-cuttingpreferableNote: some entreis deliberately extend over two or more columns, indicating awide range of possible applications. Other entries are confined to aspecific class of work material.Adopt ed f rom Edw ard and Wri ght [2]5.2 Wear Mechanisms Under Wet High Speed M achiningIt is a common belief that coolant usage in metal cutting reduces cuttingtemperature and extends tools life. However, this researchshowed that this is not necessarily true to be generalized overcutting inserts materials. Similar research was ca rried out ondifferent cutting inserts materials and cutting conditionssupporting our results. Gu et al [36] have recorded adifference in tool wear mechanisms between dry and wetcutting of C5 milling inserts. Tonshoff et al [44] alsoexhibited different wear mechanisms on AL 2O 3/TiC inserts inmachining ASTM 5115, when using coolants emulsionscompared to dry cutting. In addition, Avila and Abrao [20]experienced difference in wear mechanisms activated at theflank side, when using different coolants in t estingAL 2O 3lTiC tools in machining AISI4340 steel. The wearmechanisms and the behavior of the cutting inserts studied inthis research under wet high speed-machining (WHSM)condition is not fully understood. Therefore, it was theattempt of this research to focus on the contributions incoating development and coating techniques of newlydeveloped materials in order to upgrade their performance attough machining conditions. This valuable research providesinsight into production timesavings and increase inprofitability. Cost reductions are essential in the competitiveglobal economy; thus protecting local markets and consistingin the search of new ones.5.3 Experimental Observations on Wear Mechanisms of Un-CoatedCemented Carbide Cutting Inserts in High Speed WetMachiningIn this section, the observed wear mechanisms are presented of uncoated cemented carbide tool (KC313) in machining ASTM 4140 steel under wet condition. The overall performance of cemented carbide under using emulsion coolant has been improved in terms of extending tool life and reducing machining cost. Different types of wear mechanisms were activated at flank side of cutting inserts as a result of using coolant emulsion during machining processes. This was due to the effect of coolant in reducing the average temperature of the cutting tool edge and shear zone during machining. As a result abrasive wear was reduced leading longer tool life. The materials of cutting tools behave differently to coolant because of their varied resistance to thermal shock. The following observations recorded the behavior of cemented carbide during high speed machining under wet cutting.Figure5-1 shows the flank side of cutting inserts used at a cutting speed of 180m/min. The SEM images were recorded after 7 minutes of machining. It shows micro-abrasion wear, which identified by the narrow grooves along the flank side in the direction of metal flow, supported with similar observations documented by Barnes and Pashby [41] in testing through-coolant-drilling inserts of aluminum/SiC metal matrix composite. Since the cutting edge is the weakest part of the cutting insert geometry, edge fracture started first due to the early non-smooth engagement between the tool and the work piece material. Also, this is due to stress concentrations that might lead to a cohesive failure on the transient filleted flank cutting wedge region [51, 52]. The same image of micro-adhesion wear can be seen at the side and tool indicated by the half cone27 shape on the side of cutting tool. To investigate further, a zoom in view was taken atthe flank side with a magnification of 1000 times and presented in Figure 5-2A. It shows clear micro-abrasion wear aligned in the direction of metal flow, where the cobalt binder was worn first in a hi gher wear rate than WC grains which protruded as big spherical droplets. Figure 5-2B provides a zoom-in view that was taken at another location for the same flank side. Thermal pitting revealed by black spots in different depths and micro-cracks, propagated in multi directions as a result of using coolant. Therefore, theii~ial pitting, micro-adhesion and low levels of micro-abrasion activated under wet cutting; while high levels of micro-abrasion wear is activated under dry cutting (as presented in the prev ious Chapter).Figure 5-3A was taken for a cutting insert machined at 150mlmin. It shows a typical micro-adhesion wear, where quantities of chip metal were adhered at the flank side temporarily. Kopac [53] exhibited similar finding when testing HSS-TiN drill inserts in drilling SAE1045 steel. This adhered metal would later be plucked away taking grains of WC and binder from cutting inserts material and the process continues. In order to explore other types of wear that might exist, a zoom-in view with magnification of 750 times was taken as shown in Figure5-3B. Figure 5-3B show two forms of wears; firstly, micro-thermal cracks indicated by perpendicular cracks located at the right side of the picture, and supported with similar findings of Deamley and Trent [27]. Secondly, micro-abrasion wear at the left side of the image where the WC grains are to be plucked away after the cobalt binder was severely destroyed by micro-abrasion. Cobalt binders are small grains and WC is the big size grains. The severe distort ion of the binder along with the WC grains might be due to the activation of micro-adhesion and micro-abrasionFigure 5-1 SEM image of (KC313) showing micro abrasion and micro-adhesion (wet).SEM micrographs of (KC313) at 180m/min showing micro-abrasion where cobalt binder was worn first leaving protruded WC spherical droplets (wet).(a)SEM micrographs of (KC313) at 180m/min showing thermal pitting (wet).Figure 5-2 Magnified views of (KC313) under wet cutting: (a) SEM micrographs of (KC313) at 180mlmin showing micro-abrasion where cobalt binderwas worn first leaving protruded WC spherical droplets (wet ), (b) SEMmicrographs of (KC313) at 180.m/min showing thermal pitting (wet ).SEM image showing micro-adhesion wear mechanism under 150m/min (wet).(a)SEM image showing micro-thermal cracks, and micro-abrasion.Figure 5-3 Magnified views of (KC313) at 150m/min (wet): (a) SEM image showing micro-adhesion wear mechanism under 150m/min (wet), (b) SEM image showing micro-fatigue cracks, and micro-abrasion (wet).Wear at the time of cutting conditions of speed and coolant introduction. Therefore, micro-fatigue, micro-abrasion, and micro-adhesion wear mechanisms are activated under wet condition, while high levels of micro-abrasion were observed under dry one.Next, Figure 5-4A was taken at the next lower speed (120m/min). It shows build up edge (BUE) that has sustained its existence throughout the life of the cutting tool, similar to Huang [13], Gu et al [36] and Venkatsh et al [55]. This BUE has protected the tool edge and extended its life. Under dry cutting BUE has appeared at lower speeds (90 and 60 m/min), but when introducing coolant BUE started to develop at higher speeds, This is due to the drop in shear zone temperature that affected the chip metal fl ow over the cutting tool edge, by reducing the ductility to a level higher than the one existing at dry condition cutting. As a result, chip metal starts accumulating easier at the interface between metal chip flow, cutting tool edge and crater surface to form a BUE. In addition to BUE formation, micro-abrasion wear was activated at this speed indicated by narrow grooves.To explore the possibility of other wear mechanisms a zoom-in view with a magnification of 3500 times was taken and shown in Figure 5-4B. Micro- fatigue is evident by propagated cracks in the image similar to Deamley and Trent [27] finding. Furthermore, Figure 5-4B shows indications of micro-abrasion wear, revealed by the abrasion of cobalt binder and the remains of big protruded WC grains. However, the micro-abrasion appeared at this speed of 120m/min is less severe than the same type of micro-wear observed at 150m/min speed, supported with Barnes [41] similar findings. Therefore, micro-abrasion, BUE and micro-fatigue were activated under wet condition while, adhesion, high levels micro-abrasion, and no BUE were under dry cutting.SEM i m a g e o f(KC313) showing build up e d g e under 120m/min (wet).(a)SEM i m a g e o f(KC3 13) showing micro-fatigue, and micro-abrasion (wet). Figure 5-4 SEM images of (KC313) at 120m/min (wet), (a) SEM image of (KC313). showing build up edge, (b) SEM image of(K C313) showing micro-fatigue and micro-abrasion33 Figure 5-5 is for a cutting tool machined at 90m/min, that presents a goodcapture of one stage of tool life after the BUE has been plucked away. The bottom part of the flank side shows massive metal adhesion from the work piece material. The upper part of the figure at the edge shows edge fracture. To stand over the reason of edge fracture, the zoom-in view with magnification of 2000 times is presented in Figure 5-6A. The micro-fatigue crack image can be seen as well as micro-attrition revealed by numerous holes, and supported with Lim et al [31] observations on HSS-TiN inserts. As a result of BUE fracture from the cutting tool edge, small quantities from the cutting tool material is plucked away leaving behind numerous holes. Figure 5-6B is another zoom-in view of the upper part of flank side with a magnification of 1000 times and shows micro-abrasion wear indicated by the narrow grooves. Furthermore, the exact type of micro-wear mechanism appeared at the flank side under 60 m/min. Therefore, in comparison with dry cutting at the cutting speed of 90 m/min and 60 m/min, less micro-abrasion, bigger BUE formation, and higher micro-attrition rate were activated.Figure 5-5 SEM image showing tool edge after buildup edge was plucked away.SEM image showing micro-fatigue crack, and micro-attrition.(a)SEM image showing micro-abrasion.Figure 5-6 SEM images of (KC313) at 90m/min:(a) SEM image showing micro-fatigue crack, and micro-attrition, (b) SEM image showingmicro-abrasion.5.4 Experimental Observations on Wear Mechanisms of Coated CementedCarbide with TiN-TiCN-TiN Coating in High Speed WetMachiningInvestigating the wear mechanisms of sandwich coating under wet cutting is presented in this section starting from early stages of wear. Figure 5-7 shows early tool wear starting at the cutting edge when cutting at 410m/min. Edge fracture can be seen, it has started at cutting edge due to non-smooth contact between tool, work piece, micro-abrasion and stress concentrations. To investigate further the other possible reasons behind edge fracture that leads to coating spalling, a zoom-in view with magnification of 2000 ti mes was taken and presented at Figure 5-8A. Coating fracture can be seen where fragments of TiN (upper coating) had been plucked away by metal chips. This took place as result of micro-abrasion that led to coating spalling. On the other hand, the edge is t he weakest part of the cutting insert geometry and works as a stress concentrator might lead to a cohesive failure on the transient filleted flank cutting wedge region [51, 52].Both abrasion wear and stress concentration factor leave a non-uniform edge configuration at the micro scale after machining starts. Later small metal fragments started to adhere at the developed gaps to be later plucked away by the continuous chip movement as shown in Figure 5-8A. Another view of edge fracture was taken of the same cutting tool with a magnification of 2000 times as shown in Figure 5-8B. It presents fracture and crack at the honed tool edge. A schematic figure indicated by Figure 5-9, presented the progressive coated cutting inserts failure starting at the insert edge. It was also noticed during the inserts test that failure takes place first at the inserts edge then progressed toward the flank side. Consequently, a study on optimizing the cutting edgeFigure 5-7 SEM image of (KC732) at 410m/min showing edge fractur e and micro-abrasion (wet).SEM image showing edge fracture.(a)SEM image showing fracture and crack at the honed insert edge.Figure 5-8 SEM of (KC732) at 410m/min and early wear stage (wet): (a) SEM image showing edge fracture, (b) SEM image showing fr acture and crack atthe honed insert edge.radius to improve coating adhesion, and its wear resistance, might be also a topic for future work.Figure 5-1.0A was taken after tool failure at a speed of 410m/min. It shows completely exposed substrate and severe sliding wear at the flank side. The coating exists at the crater surface and faces less wear than the flank side. Therefore it works as an upper protector for the cutting edge and most of the wear will take place at the flank side as sliding wear. Figu re 5-10B is a zoom-in view with magnification of 3500 times, and shows coating remaining at the flank side. Nonetheless, micro-abrasion and a slight tensile fracture in the direction of metalchip flow. Ezugwa et al [28] and Kato [32] have exhibited simila r finding. However, the tensile fracture in this case is less in severity than what had been observed at dry cutting. This is due to the contribution of coolant in dropping the cutting temperature, which has reduced the plastic deformation at high temperature as a result. Hence, in comparison with the dry cutting at the same speed, tensile fracture was available with less severity and micro-abrasion/sliding. However, in dry cutting high levels of micro-abrasion, high levels of tensile fracture and sliding wear occurred.Figure 5-11 was taken at early stages of wear at a speed of 360m/min. It shows sliding wear, coating spalling and a crack starting to develop between TiN and TiCN coating at honed tool edge. Figure5-12A shows nice presentation of what had been described earlier regarding the development of small fragments on the tool edge. The adhered metal fragments work along with micro-abrasion wear to cause coating spalling.SEM image showing sliding wear.(a)SEM image showing micro-abrasion and tensile fracture.Figure 5-10 SEM images of (KC732) at 410m/min after failure (wet): (a) SEM image showing sliding wear, (b) SEM image showing micro-abrasionand tensile fracture.Figure 5-11 SEM image at early stage of wear of 360m/min (wet) showing coating and spalling developing crack between TiN and TiCN layers.The size of the metal chip adhered at the edge is almost 15g. Since it is unstable it will be later plucked away taking some fragments of coatings with it and the process continues. Another zoom in view with a magnification of 5000 times for the same insert is shown in Figure 5-12B indicating a newly developed crack between the coating layers.Figure 5-13A is taken of the same insert after failure when machining at 360m/min and wet condition. Coating spalling, and sliding wear can be seen and indicated by narrow grooves. In addition, initial development of notch wear can be seen at the maximum depth of cut.Further investigation is carried out by taking a zoom in view with a magnification of 2000 times as shown in Figure 5-13B. A clear micro-abrasion wear and micro-fatigue cracks were developed as shown, which extended deeply through out the entire three coating layers deep until the substrate. Therefore, in comparison with dry cutting, micro-fatigue crack, less tensile fracture, less micro-abrasion wear were activated at wet cutting. While micro- fatigue crack, high levels of micro-abrasion, and high levels of tensile fracture are distinguish the type of wear under dry condition at the same cutting spee d.Next, Figure 5-14A is taken for cutting tools machined at 310m/min. The results are similar to the previous inserts machined at 360m/min, where adhesion of metal fragments occurred at the tool edge, sliding wear and coating spalling. In addition, the black spot appeared at the top of the figure on the crater surface is a void resulting from imperfections in the coating process. At this condition, the crater surface will be worn faster than the flank surface.SEM image showing adhered metal fragments at tool edge.(a)SEM image showing developed crack between coating layers.Figure 5-12 SEM image of (KC732) at early wear 360m/min (wet): (a) SEM image showing adhered metal fragments at tool edge, (b) SEM image showingdeveloped crack between coating layers.(a)SEM image showing coating spalling and sliding wear after tool failure(b)SEM image showing micro-abrasion, and micro-fatigue cracks developedbetween coating layersFigure 5-13 SEM image of KC732 after failure machined at 360m/min(b)(wet): (a) SEM image showing coating spalling and sliding wear after toolfailure, (b) SEM image showing micro-abrasion, and micro-fatiguecracks developed between coating layers.翻译:在高速潮湿机械加工条件下后刀面表层磨损机理5.1 介绍几乎每类型用机器制造譬如转动, 碾碎, 钻井, 研..., 使用切口流体协助零件的有效的生产当设定标准由生产商[ 1 ] 需要。
机械专业中英文对照(完整版)
![机械专业中英文对照(完整版)](https://img.taocdn.com/s3/m/c2571148af45b307e87197ac.png)
.机械专业英语词汇陶瓷ceramics合成纤维synthetic fibre电化学腐蚀electrochemical corrosion车架automotive chassis悬架suspension转向器redirector变速器speed changer板料冲压sheet metal parts孔加工spot facing machining车间workshop工程技术人员engineer气动夹紧pneuma lock数学模型mathematical model画法几何descriptive geometry机械制图Mechanical drawing投影projection视图view剖视图profile chart标准件standard component零件图part drawing装配图assembly drawing尺寸标注size marking技术要求technical requirements刚度rigidity内力internal force位移displacement截面section疲劳极限fatigue limit断裂fracture塑性变形plastic distortion脆性材料brittleness material刚度准则rigidity criterion垫圈washer垫片spacer直齿圆柱齿轮straight toothed spur gear 斜齿圆柱齿轮helical-spur gear直齿锥齿轮straight bevel gear运动简图kinematic sketch齿轮齿条pinion and rack蜗杆蜗轮worm and worm gear虚约束passive constraint曲柄crank摇杆racker凸轮cams共轭曲线conjugate curve范成法generation method定义域definitional domain值域range导数\\微分differential coefficient求导derivation定积分definite integral不定积分indefinite integral曲率curvature偏微分partial differential毛坯rough游标卡尺slide caliper千分尺micrometer calipers攻丝tap二阶行列式second order determinant逆矩阵inverse matrix线性方程组linear equations概率probability随机变量random variable排列组合permutation and combination 气体状态方程equation of state of gas动能kinetic energy势能potential energy机械能守恒conservation of mechanical energy动量momentum桁架truss轴线axes余子式cofactor逻辑电路logic circuit触发器flip-flop脉冲波形pulse shape数模digital analogy液压传动机构fluid drive mechanism机械零件mechanical parts淬火冷却quench淬火hardening回火tempering调质hardening and tempering磨粒abrasive grain结合剂bonding agent砂轮grinding wheel后角clearance angle龙门刨削planing主轴spindle.主轴箱headstock卡盘chuck加工中心machining center车刀lathe tool车床lathe钻削镗削bore车削turning磨床grinder基准benchmark钳工locksmith锻forge压模stamping焊weld拉床broaching machine拉孔broaching装配assembling铸造found流体动力学fluid dynamics流体力学fluid mechanics加工machining液压hydraulic pressure切线tangent机电一体化mechanotronics mechanical-electrical integration气压air pressure pneumatic pressure 稳定性stability介质medium液压驱动泵fluid clutch液压泵hydraulic pump阀门valve失效invalidation强度intensity载荷load应力stress安全系数safty factor可靠性reliability螺纹thread螺旋helix键spline销pin滚动轴承rolling bearing滑动轴承sliding bearing弹簧spring制动器arrester brake十字结联轴节crosshead联轴器coupling链chain皮带strap精加工finish machining粗加工rough machining变速箱体gearbox casing腐蚀rust氧化oxidation磨损wear耐用度durability随机信号random signal离散信号discrete signal超声传感器ultrasonic sensor集成电路integrate circuit挡板orifice plate残余应力residual stress套筒sleeve扭力torsion冷加工cold machining电动机electromotor汽缸cylinder过盈配合interference fit热加工hotwork摄像头CCD camera倒角rounding chamfer优化设计optimal design工业造型设计industrial moulding design有限元finite element滚齿hobbing插齿gear shaping伺服电机actuating motor铣床milling machine钻床drill machine镗床boring machine步进电机stepper motor丝杠screw rod导轨lead rail组件subassembly可编程序逻辑控制器Programmable Logic Controller PLC电火花加工electric spark machining电火花线切割加工electrical discharge wire - cutting相图phase diagram热处理heat treatment固态相变solid state phase changes.有色金属nonferrous metal陶瓷ceramics合成纤维synthetic fibre电化学腐蚀electrochemical corrosion车架automotive chassis悬架suspension转向器redirector变速器speed changer板料冲压sheet metal parts孔加工spot facing machining车间workshop工程技术人员engineer气动夹紧pneuma lock数学模型mathematical model画法几何descriptive geometry机械制图Mechanical drawing投影projection视图view剖视图profile chart标准件standard component零件图part drawing装配图assembly drawing尺寸标注size marking技术要求technical requirements刚度rigidity内力internal force位移displacement截面section疲劳极限fatigue limit断裂fracture塑性变形plastic distortion脆性材料brittleness material刚度准则rigidity criterion垫圈washer垫片spacer直齿圆柱齿轮straight toothed spur gear 斜齿圆柱齿轮helical-spur gear直齿锥齿轮straight bevel gear运动简图kinematic sketch齿轮齿条pinion and rack蜗杆蜗轮worm and worm gear虚约束passive constraint曲柄crank摇杆racker凸轮cams共轭曲线conjugate curve范成法generation method定义域definitional domain值域range导数\\微分differential coefficient求导derivation定积分definite integral不定积分indefinite integral曲率curvature偏微分partial differential毛坯rough游标卡尺slide caliper千分尺micrometer calipers攻丝tap二阶行列式second order determinant逆矩阵inverse matrix线性方程组linear equations概率probability随机变量random variable排列组合permutation and combination气体状态方程equation of state of gas动能kinetic energy势能potential energy机械能守恒conservation of mechanical energy 动量momentum桁架truss轴线axes余子式cofactor逻辑电路logic circuit触发器flip-flop脉冲波形pulse shape数模digital analogy液压传动机构fluid drive mechanism机械零件mechanical parts淬火冷却quench淬火hardening回火tempering调质hardening and tempering磨粒abrasive grain结合剂bonding agent砂轮grinding wheelAssembly line 组装线Layout 布置图Conveyer 流水线物料板Rivet table 拉钉机Rivet gun 拉钉枪.Screw driver 起子Pneumatic screw driver 气动起子worktable 工作桌OOBA 开箱检查fit together 组装在一起fasten 锁紧(螺丝)fixture 夹具(治具)pallet 栈板barcode 条码barcode scanner 条码扫描器fuse together 熔合fuse machine热熔机repair修理operator作业员QC品管supervisor 课长ME 制造工程师MT 制造生技cosmetic inspect 外观检查inner parts inspect 内部检查thumb screw 大头螺丝lbs. inch 镑、英寸EMI gasket 导电条front plate 前板rear plate 后板chassis 基座bezel panel 面板power button 电源按键reset button 重置键Hi-pot test of SPS 高源高压测试Voltage switch of SPS 电源电压接拉键sheet metal parts 冲件plastic parts 塑胶件SOP 制造作业程序material check list 物料检查表work cell 工作间trolley 台车carton 纸箱sub-line 支线left fork 叉车personnel resource department 人力资源部production department生产部门planning department企划部QC Section品管科stamping factory冲压厂painting factory烤漆厂molding factory成型厂common equipment常用设备uncoiler and straightener整平机punching machine 冲床robot机械手hydraulic machine油压机lathe车床planer |plein|刨床miller铣床grinder磨床linear cutting线切割electrical sparkle电火花welder电焊机staker=reviting machine铆合机position职务president董事长general manager总经理special assistant manager特助factory director厂长department director部长deputy manager | =vice manager副理section supervisor课长deputy section supervisor =vice section superisor 副课长group leader/supervisor组长line supervisor线长assistant manager助理to move, to carry, to handle搬运be put in storage入库pack packing包装to apply oil擦油to file burr 锉毛刺final inspection终检to connect material接料to reverse material 翻料wet station沾湿台Tiana天那水cleaning cloth抹布to load material上料to unload material卸料to return material/stock to退料scraped |\\'skr?pid|报废scrape ..v.刮;削deficient purchase来料不良manufacture procedure制程deficient manufacturing procedure制程不良.oxidation |\\' ksi\\'dei?n|氧化scratch刮伤dents压痕defective upsiding down抽芽不良defective to staking铆合不良embedded lump镶块feeding is not in place送料不到位stamping-missing漏冲production capacity生产力education and training教育与训练proposal improvement提案改善spare parts=buffer备件forklift叉车trailer=long vehicle拖板车compound die合模die locker锁模器pressure plate=plate pinch压板bolt螺栓administration/general affairs dept总务部automatic screwdriver电动启子thickness gauge厚薄规gauge(or jig)治具power wire电源线buzzle蜂鸣器defective product label不良标签identifying sheet list标示单location地点present members出席人员subject主题conclusion结论decision items决议事项responsible department负责单位pre-fixed finishing date预定完成日approved by / checked by / prepared by核准/审核/承办PCE assembly production schedule sheet PCE组装厂生产排配表model机锺work order工令revision版次remark备注production control confirmation生产确认checked by初审approved by核准department部门stock age analysis sheet 库存货龄分析表on-hand inventory现有库存available material良品可使用obsolete material良品已呆滞to be inspected or reworked 待验或重工total合计cause description原因说明part number/ P/N 料号type形态item/group/class类别quality品质prepared by制表notes说明year-end physical inventory difference analysis sheet 年终盘点差异分析表physical inventory盘点数量physical count quantity帐面数量difference quantity差异量cause analysis原因分析raw materials原料materials物料finished product成品semi-finished product半成品packing materials包材good product/accepted goods/ accepted parts/good parts良品defective product/non-good parts不良品disposed goods处理品warehouse/hub仓库on way location在途仓oversea location海外仓spare parts physical inventory list备品盘点清单spare molds location模具备品仓skid/pallet栈板tox machine自铆机wire EDM线割EDM放电机coil stock卷料sheet stock片料tolerance工差score=groove压线cam block滑块pilot导正筒trim剪外边pierce剪内边drag form压锻差pocket for the punch head挂钩槽slug hole废料孔.feature die公母模expansion dwg展开图radius半径shim(wedge)楔子torch-flame cut火焰切割set screw止付螺丝form block折刀stop pin定位销round pierce punch=die button圆冲子shape punch=die insert异形子stock locater block定位块under cut=scrap chopper清角active plate活动板baffle plate挡块cover plate盖板male die公模female die母模groove punch压线冲子air-cushion eject-rod气垫顶杆spring-box eject-plate弹簧箱顶板bushing block衬套insert 入块club car高尔夫球车capability能力parameter参数factor系数phosphate皮膜化成viscosity涂料粘度alkalidipping脱脂main manifold主集流脉bezel斜视规blanking穿落模dejecting顶固模demagnetization去磁;消磁high-speed transmission高速传递heat dissipation热传rack上料degrease脱脂rinse水洗alkaline etch龄咬desmut剥黑膜D.I. rinse纯水次Chromate铬酸处理Anodize阳性处理seal封孔revision版次part number/P/N料号good products良品scraped products报放心品defective products不良品finished products成品disposed products处理品barcode条码flow chart流程表单assembly组装stamping冲压molding成型spare parts=buffer备品coordinate座标dismantle the die折模auxiliary fuction辅助功能poly-line多义线heater band 加热片thermocouple热电偶sand blasting喷沙grit 砂砾derusting machine除锈机degate打浇口dryer烘干机induction感应induction light感应光response=reaction=interaction感应ram连杆edge finder巡边器concave凸convex凹short射料不足nick缺口speck瑕??shine亮班splay 银纹gas mark焦痕delamination起鳞cold slug冷块blush 导色gouge沟槽;凿槽satin texture段面咬花witness line证示线patent专利grit沙砾granule=peuet=grain细粒grit maker抽粒机cushion缓冲。
机加工专业英语大全
![机加工专业英语大全](https://img.taocdn.com/s3/m/8438400d2f60ddccda38a092.png)
实用机加工专业英语对照【大全】机械加工专用术语中英文对照,金属加工专业词中英对照,机械加工英语怎么说、英语单词怎么写、例句等信息。
1.1切削加工概述切削cutting;加工machining;金属切削metal cutting (metal removal);金属切削工艺metal-removal process;金属工艺学technology of metals;机器制造machine-building;机械加工machining;冷加工cold machining;热加工hot working;工件workpiece;切屑chip;常见的加工方法universal machining method;钻削drilling;镗削boring;车削turning;磨削grinding;铣削milling;刨削planning;插削slotting锉filing划线lineation;錾切carving;锯sawing;刮削facing;钻孔boring;攻丝tap1.2零件表面构成及成形方法变形力deforming force变形deformation;几何形状geometrical;尺寸dimension精度precision;表面光洁度surface finish;共轭曲线conjugate curve;范成法generation method;轴shaft1.3机床的切削运动及切削要素主运动main movement;主运动方向direction of main movement;进给方向direction of feed;进给运动feed movement;合成进给运动resultant movement of feed;合成切削运动resultant movement of cutting;合成切削运动方向direction of resultant movement of cutting 切削速度cutting speed;传动drive/transmission;切削用量cutting parameters;切削速度cutting speed;切削深度depth of cut;进给速度feed force;切削功率cutting power1.4金属切削刀具合金工具钢alloy tool steel;高速钢high-speed steel;硬质合金hard alloy;易加工ease of manufacturing切削刀具cutting tool刀具cutter;车刀lathe tool;主切削刃main cutting edge;副切削刃assistant cutting edge;刀体tool body刀柄tool shank;前刀面rake face;主后刀面major flank;刀尖nose of tool;主剖面系tool orthogonal plane system;切削平面tool cutting edge plane;主剖面tool orthogonal plane;切削宽度width of the uncut chip;进给平面系assumed working plane system;加工表面transient surface;前角rake angle;后角clearance angle;主偏角tool cutting edge angle;刀尖角nose angle1.5刀具切削过程及磨削机理塑性变形plastic distortion;微观组织,显微结构microstructure切削力cutting force;切削温度cutting temperature;积屑瘤built-up edge;刀尖磨损nose wear;月牙洼crater;残留应力residual stress;应力stress;硬度rigidity机加工设备英语CNC bending presses 电脑数控弯折机CNC boring machines 电脑数控镗床CNC drilling machines 电脑数控钻床CNC EDM wire-cutting machines 电脑数控电火花线切削机CNC electric discharge machines 电脑数控电火花机CNC engraving machines 电脑数控雕刻机CNC grinding machines 电脑数控磨床CNC lathes 电脑数控车床CNC machine tool fittings 电脑数控机床配件CNC milling machines 电脑数控铣床CNC shearing machines 电脑数控剪切机CNC toolings CNC刀杆CNC wire-cutting machines 电脑数控线切削机Conveying chains 输送链Coolers 冷却机Coupling 联轴器Crimping tools 卷边工具Cutters 刀具Cutting-off machines 切断机Diamond cutters 钻石刀具Dicing saws 晶圆切割机Die casting dies 压铸冲模Die casting machines 压铸机Dies-progressive 连续冲模Disposable toolholder bits 舍弃式刀头Drawing machines 拔丝机Drilling machines 钻床Drilling machines bench 钻床工作台Drilling machines,high-speed 高速钻床Drilling machines,multi-spindle 多轴钻床Drilling machines,radial 摇臂钻床Drilling machines,vertical 立式钻床drills 钻头Electric discharge machines(EDM) 电火花机Electric power tools 电动刀具Engraving machines 雕刻机Engraving machines,laser 激光雕刻机Etching machines 蚀刻机Finishing machines 修整机Fixture 夹具Forging dies 锻模Forging,aluminium 锻铝Forging,cold 冷锻Forging,copper 铜锻Forging,other 其他锻造Forging,steel 钢锻Foundry equipment 铸造设备Gear cutting machines 齿轮切削机Gears 齿轮Gravity casting machines 重力铸造机Grinder bench 磨床工作台Grinders,thread 螺纹磨床Grinders,tools & cutters 工具磨床Grinders,ultrasonic 超声波打磨机Grinding machines 磨床Grinding machines,centerless 无心磨床Grinding machines,cylindrical 外圆磨床Grinding machines,universal 万能磨床Grinding tools 磨削工具Grinding wheels 磨轮Hand tools 手工具Hard/soft and free expansion sheet making plant 硬(软)板(片)材及自由发泡板机组Heat preserving furnaces 保温炉Heating treatment funaces 熔热处理炉Honing machines 搪磨机Hydraulic components 液压元件Hydraulic power tools 液压工具Hydraulic power units 液压动力元件Hydraulic rotary cylinders 液压回转缸Jigs 钻模Lapping machines 精研机Lapping machines,centerless 无心精研机Laser cutting 激光切割Laser cutting for SMT stensil 激光钢板切割机Lathe bench 车床工作台Lathes,automatic 自动车床Lathes,heavy-duty 重型车床Lathes,high-speed 高速车床Lathes,turret 六角车床Lathes,vertical 立式车床Lubricants 润滑液Lubrication Systems 润滑系统Lubricators 注油机Machining centers,general 通用加工中心Machining centers,horizontal 卧式加工中心Machining centers,horizontal & vertical 卧式及立式加工中心Machining centers,vertical 立式加工中心Machining centers,vertical double-column type 立式双柱加工中心Magnetic tools 磁性工具Manifolds 集合管Milling heads 铣头Milling machines 铣床Milling machines,bed type 床身式铣床Milling machines,duplicating 仿形铣床Milling machines,horizontal 卧式铣床Milling machines,turret vertical 六角立式铣床Milling machines,universal 万能铣床Milling machines,vertical 立式铣床Milling machines,vertical & horizontal 立式及卧式铣床Mold & die components 模具单元Mold changing systems 换模系统Mold core 模芯Mold heaters/chillers 模具加热器/冷却器Mold polishing/texturing 模具打磨/磨纹Mold repair 模具维修Molds 模具Nail making machines 造钉机Oil coolers 油冷却器Overflow cutting machines for aluminium wheels 铝轮冒口切断机P type PVC waterproof rolled sheet making plant P型PVC高分子防水PCB fine piecing systems 印刷电器板油压冲孔脱料系统Pipe & tube making machines 管筒制造机Planing machines 刨床Planing machines vertical 立式刨床Pneumatic hydraulic clamps 气油压虎钳Pneumatic power tools 气动工具Powder metallurgic forming machines 粉末冶金成型机Presses,cold forging 冷锻冲压机presses,crank 曲柄压力机Presses,eccentric 离心压力机Presses,forging 锻压机Presses,hydraulic 液压冲床Presses,knuckle joint 肘杆式压力机Presses,pneumatic 气动冲床Presses,servo 伺服冲床Presses,transfer 自动压力机Pressing dies 压模Punch formers 冲子研磨器Quick die change systems 速换模系统Quick mold change systems 快速换模系统Reverberatory furnaces 反射炉Rollers 滚筒Rolling machines 辗压机Rotary tables 转台Sawing machines 锯床Sawing machines,band 带锯床Saws,band 带锯Saws,hack 弓锯Saws,horizontal band 卧式带锯Saws,vertical band 立式带锯shafts 轴Shapers 牛头刨床Shearing machines 剪切机Sheet metal forming machines 金属板成型机Sheet metal working machines 金属板加工机Slotting machines 插床spindles 主轴Stamping parts 冲压机Straightening machines 矫直机Switches & buttons 开关及按钮Tapping machines 攻螺丝机Transmitted chains 传动链Tube bending machines 弯管机Vertical hydraulic broaching machine 立式油压拉床Vises 虎钳Vises,tool-maker 精密平口钳Wheel dressers 砂轮修整器Woven-Cutting machines 织麦激光切割机内容来源网络,由深圳机械展收集整理!更多相关内容,就在深圳机械展!When you are old and grey and full of sleep,And nodding by the fire, take down this book, And slowly read, and dream of the soft look Your eyes had once, and of their shadows deep; How many loved your moments of glad grace, And loved your beauty with love false or true, But one man loved the pilgrim soul in you,And loved the sorrows of your changing face; And bending down beside the glowing bars, Murmur, a little sadly, how love fledAnd paced upon the mountains overheadAnd hid his face amid a crowd of stars.The furthest distance in the worldIs not between life and deathBut when I stand in front of youYet you don't know thatI love you.The furthest distance in the worldIs not when I stand in front of youYet you can't see my loveBut when undoubtedly knowing the love from both Yet cannot be together.The furthest distance in the worldIs not being apart while being in loveBut when I plainly cannot resist the yearningYet pretending you have never been in my heart. The furthest distance in the worldIs not struggling against the tidesBut using one's indifferent heartTo dig an uncrossable riverFor the one who loves you.。
机械加工专业中英对照
![机械加工专业中英对照](https://img.taocdn.com/s3/m/e40cdf4469eae009581bec01.png)
fine adjustment n. 精调,细调,微调
fine boring n. 精密镗孔
finish v.;n. 精加工,抛光,修整,表面粗糙度,完工,最后加工,最后阶段,涂层,涂料
finish-cutting n. 精加工,最终切削
fixture n. 夹具,夹紧装置,配件,零件,定位器,支架
external grinding n. 外圆磨削
F
face n. 表面,外观,工作面,表盘,屏,幕 v. 面向,朝向,表面加工,把表面弄平
face grinding machine n. 平面磨床
face milling machine n. 端面磨床
feed force n. 进给力
gear cutting machine n. 齿轮加工机床,切齿机
gear generating grinder n. 磨齿机
gear hob n. 齿轮滚刀
grinding cutter n. 磨具
grinding force n. 磨削力
grinding machine n. 磨床
accuracy of position n. 位置精度
accuracy to shape n. 形状精度
active cutting edge n. 主切削刃
adapter flange n. 连接器法兰盘
adjointing flanks n. 共轭齿廓
align n. 找中(心),找正,对中,对准,找平,调直,校直,调整,调准
distance n. 距离,间隔〔隙〕,长度,vt. 隔开
double-column planer-miller n. 双柱龙门铣床
机械行业-机械加工简介英语版 精品
![机械行业-机械加工简介英语版 精品](https://img.taocdn.com/s3/m/18fc00160242a8956aece4c4.png)
Machining: An IntroductionIn terms of annual dollars spent, machining is the most important of the manufacturing processes. Machining can be defined as the process of removing material from a workpiece in the form of chips. The term metal cutting is used when the material is metallic. Most machining has very low set-up cost pared to forming, molding, and casting processes. However, machining is much more expensive for high volumes. Machining is necessary where tight tolerances on dimensions and finishes are required.The Machining section is divided into the following categories:Drilling: IntroductionDrilling is easily the most mon machining process. One estimate is that 75% of all metal-cutting material removed es from drilling operations.Drilling involves the creation of holes that are right circular cylinders. This is acplished most typically by using a twist drill, something most readers will have seen before. The figure belowillustrates a cross section of a hole being cut by a mon twist drill:The chips must exit through the flutes to the outside of the tool. As can be seen in the figure, the cutting front is embedded within the workpiece, making cooling difficult. The cutting area can be flooded, coolant spray mist can be applied, or coolant can be delivered through the drill bit shaft. For an overview of the chip-formation process, see the Chip Formation Section.Drilling CharacteristicsThe characteristics of drilling that set it apart from other powered metal cutting operations are: •The chips must exit out of the hole created by the cutting.•Chip exit can cause problems when chips are large and/or continuous.•For deep holes in large workpieces, coolant may need to be delivered through the drill shaft to the cutting front.•Of the powered metal cutting processes, drilling on a drill press is the most likely to be performed by someone who is not a machinist.Drill Press Work AreaA view of the metal-cutting area of a drill press is shown below. The workpiece is held in place by a clamp since cutting forces can be quite large. It is dangerous to hold a workpiece by hand during drilling since cutting forces can unpredictably get quite large and wrench the part away. Wood is often used underneath the part so that the drill bit can overshoot without damaging the table. The table also has holes for drill overshoot as well as weight reduction. A three-jaw chuck is used since three points determine a circle in two dimensions. Four-jaw chucks are rarely seen since offset of the bit is not necessary. The next section contains illustrations of drill bit chucks. To get an idea of the differing configurations of three and four-jaw chucks, please see the equivalent lathe chucks.Turning: Engine LatheTurning is another of the basic machining processes. Information in this section is organized according to the subcategory links in the menu bar to the left.ÂTurning produces solids of revolution which can be tightly toleranced because of the specialized nature of the operation. Turning is performed on a machine called a lathe in which the tool is stationary and the part is rotated. The figure below illustrates an engine lathe. Lathes are designed solely for turning operations, so that precise control of the cutting results in tight tolerances. The work piece is mounted on the chuck, which rotates relative to the stationary tool.TurningTurning refers to cutting as shown below.The term "facing" is used to describe removal of material from the flat end of a cylindrical part, as shown below. Facing is often used to improve the finish of surfaces that have been parted.Milling: IntroductionMilling is as fundamental as drilling among powered metal cutting processes.Milling is versatile for a basic machining process, but because the milling set up has so many degrees of freedom, milling is usually less accurate than turning or grinding unless especially rigid fixturing is implemented.For manual machining, milling is essential to fabricate any object that is not axially symmetric. There is a wide range of different milling machines, ranging from manual light-duty Bridgeportsâ…¢ to huge C machines for milling parts hundreds of feet long. Below is illustrated the process at the cutting area.Milling: Column-and-Knee Manual MillBelow is illustrated a typical column-and-knee type manual mill. Such manual mills are mon in job shops that specialize in parts that are low volume and quickly fabricated. Such job shops are often termed "model shops" because of the prototyping nature of the work.The parts of the manual mill are separated below. The knee moves up and down the column on guideways in the column. The table can move in x and y on the knee, and the milling head can move up and down.Grinding: IntroductionGrinding is a finishing process used to improve surface finish, abrade hard materials, and tighten the tolerance on flat and cylindrical surfaces by removing a small amount of material. Information in this section is organized according to the subcategory links in the menu bar to the left.In grinding, an abrasive material rubs against the metal part and removes tiny pieces of material. The abrasive material is typically on the surface of a wheel or belt and abrades material in a way similar to sanding. On a microscopic scale, the chip formation in grinding is the same as thatfound in other machining processes. The abrasive action of grinding generates excessive heat so that flooding of the cutting area with fluid is necessary.Reasons for GrindingReasons for grinding are:1. The material is too hard to be machined economically. (The material may havebeen hardened in order to produce a low-wear finish, such as that in a bearing raceway.2. Tolerances required preclude machining. Grinding can produce flatnesstolerances of less than ±0.0025 mm (±0.0001 in) on a 127 x 127 mm (5 x 5 in) steel surface if the surface is adequately supported.3. Machining removes excessive material.Chip Formation: IntroductionBecause of the importance of machining for any industrial economy, Machining Theory has been extensively studied.ÂThe chip formation process is the same for most machining processes, and it has been researched in order to determine closed-form solutions for speeds, feeds, and other parameters which have in the past been determined by the "feel" of the machinist.ÂWith C machine tools producing parts at ever-faster rates, it has bee important to provide automatic algorithms for determining speeds and feeds. The information presented in this section are some of the more important aspects of chip formation. Reasons for machining being difficult to analyze and characterize can be summarized as follows:•The strain rate is extremely high pared to that of other fabrication processes.•The process varies considerably depending on the part material, temperature, cutting fluids, etc.•The process varies considerably depending on the tool material, temperature, chatter and vibration, etc.•The process is only constrained by the tool cutter. Unlike other processes such as molding and cold forming which are contained, a lot of variation can occur even with the same configuration.For all types of machining, including grinding, honing, lapping, planing, turning, or milling, the phenomenon of chip formation is similar at the point where the tool meets the work.Below are illustrated categories of chip types.。
机械加工中术语中英文对照
![机械加工中术语中英文对照](https://img.taocdn.com/s3/m/3462fce318e8b8f67c1cfad6195f312b3169ebbd.png)
机械加工术语中英文对照机械加工专业术语中英文对照拋光polishing安装to assemble扳手wrench半机械化semi—mechanization; semi-mechanized 半自动滚刀磨床semi-automatic hob grinder半自动化semi—automation;semi-automatic备件spare parts边刨床side planer变速箱transmission gear柄轴arbor部件units; assembly parts插床slotting machine拆卸to disassemble超高速内圆磨床ultra—high-speed internal grinder 车床lathe; turning lathe车刀lathe tool车轮车床car wheel lathe车削turning车轴axle衬套bushing 按英文字母排序3—Jaws indexing spacers 三爪、分割工具头A。
T.C。
system 加工中心机刀库Aluminum continuous melting &holding furnaces 连续溶解保温炉Balancing equipment 平衡设备Bayonet 卡口Bearing fittings 轴承配件Bearing processing equipment 轴承加工机Bearings 轴承Belt drive 带传动Bending machines 弯曲机Blades 刀片Blades,saw 锯片Bolts,screws &nuts 螺栓,螺帽及螺丝Boring heads 搪孔头Boring machines 镗床Cable making tools 造线机Casting,aluminium 铸铝Casting,copper 铸铜Casting,gray iron 铸灰口铁Casting,malleable iron 可锻铸铁Casting,other 其他铸造Casting,steel 铸钢Chain drive 链传动Chain making tools 造链机Chamfer machines 倒角机Chucks 夹盘Clamping/holding systems 夹具/支持系统CNC bending presses 电脑数控弯折机CNC boring machines 电脑数控镗床CNC drilling machines 电脑数控钻床CNC EDM wire-cutting machines 电脑数控电火花线切削机CNC electric discharge machines 电脑数控电火花机CNC engraving machines 电脑数控雕刻机CNC grinding machines 电脑数控磨床CNC lathes 电脑数控车床CNC machine tool fittings 电脑数控机床配件CNC milling machines 电脑数控铣床CNC shearing machines 电脑数控剪切机CNC toolings CNC刀杆CNC wire—cutting machines 电脑数控线切削机Conveying chains 输送链Coolers 冷却机Coupling 联轴器Crimping tools 卷边工具Cutters 刀具Cutting-off machines 切断机Diamond cutters 钻石刀具Dicing saws 晶圆切割机Die casting dies 压铸冲模Die casting machines 压铸机Dies-progressive 连续冲模Disposable toolholder bits 舍弃式刀头Drawing machines 拔丝机Drilling machines 钻床Drilling machines bench 钻床工作台Drilling machines,high—speed 高速钻床Drilling machines,multi—spindle 多轴钻床Drilling machines,radial 摇臂钻床Drilling machines,vertical 立式钻床drills 钻头Electric discharge machines(EDM)电火花机Electric power tools 电动刀具Engraving machines 雕刻机Engraving machines,laser 激光雕刻机Etching machines 蚀刻机Finishing machines 修整机Fixture 夹具Forging dies 锻模Forging,aluminium 锻铝Forging,cold 冷锻Forging,copper 铜锻Forging,other 其他锻造Forging,steel 钢锻Foundry equipment 铸造设备Gear cutting machines 齿轮切削机Gears 齿轮Gravity casting machines 重力铸造机Grinder bench 磨床工作台Grinders,thread 螺纹磨床Grinders,tools & cutters 工具磨床Grinders,ultrasonic 超声波打磨机Grinding machines 磨床Grinding machines,centerless 无心磨床Grinding machines,cylindrical 外圆磨床Grinding machines,universal 万能磨床Grinding tools 磨削工具Grinding wheels 磨轮Hand tools 手工具Hard/soft and free expansion sheet making plant 硬(软)板(片)材及自由发泡板机组Heat preserving furnaces 保温炉Heating treatment funaces 熔热处理炉Honing machines 搪磨机Hydraulic components 液压元件Hydraulic power tools 液压工具Hydraulic power units 液压动力元件Hydraulic rotary cylinders 液压回转缸Jigs 钻模Lapping machines 精研机Lapping machines,centerless 无心精研机Laser cutting 激光切割Laser cutting for SMT stensil 激光钢板切割机Lathe bench 车床工作台Lathes,automatic 自动车床Lathes,heavy—duty 重型车床Lathes,high—speed 高速车床Lathes,turret 六角车床Lathes,vertical 立式车床Lubricants 润滑液Lubrication Systems 润滑系统Lubricators 注油机Machining centers,general 通用加工中心Machining centers,horizontal 卧式加工中心Machining centers,horizontal &vertical 卧式及立式加工中心Machining centers,vertical 立式加工中心Machining centers,vertical double—column type 立式双柱加工中心Magnetic tools 磁性工具Manifolds 集合管Milling heads 铣头Milling machines 铣床Milling machines,bed type 床身式铣床Milling machines,duplicating 仿形铣床Milling machines,horizontal 卧式铣床Milling machines,turret vertical 六角立式铣床Milling machines,universal 万能铣床Milling machines,vertical 立式铣床Milling machines,vertical &horizontal 立式及卧式铣床Mold & die components 模具单元Mold changing systems 换模系统Mold core 模芯Mold heaters/chillers 模具加热器/冷却器Mold polishing/texturing 模具打磨/磨纹Mold repair 模具维修Molds 模具Nail making machines 造钉机Oil coolers 油冷却器Overflow cutting machines for aluminium wheels 铝轮冒口切断机P type PVC waterproof rolled sheet making plant P型PVC高分子防水PCB fine piecing systems 印刷电器板油压冲孔脱料系统Pipe &tube making machines 管筒制造机Planing machines 刨床Planing machines vertical 立式刨床Pneumatic hydraulic clamps 气油压虎钳Pneumatic power tools 气动工具Powder metallurgic forming machines 粉末冶金成型机Presses,cold forging 冷锻冲压机presses,crank 曲柄压力机Presses,eccentric 离心压力机Presses,forging 锻压机Presses,hydraulic 液压冲床Presses,knuckle joint 肘杆式压力机Presses,pneumatic 气动冲床Presses,servo 伺服冲床Presses,transfer 自动压力机Pressing dies 压模Punch formers 冲子研磨器Quick die change systems 速换模系统Quick mold change systems 快速换模系统Reverberatory furnaces 反射炉Rollers 滚筒Rolling machines 辗压机Rotary tables 转台Sawing machines 锯床Sawing machines,band 带锯床Saws,band 带锯Saws,hack 弓锯Saws,horizontal band 卧式带锯Saws,vertical band 立式带锯shafts 轴Shapers 牛头刨床Shearing machines 剪切机Sheet metal forming machines 金属板成型机Sheet metal working machines 金属板加工机Slotting machines 插床spindles 主轴Stamping parts 冲压机Straightening machines 矫直机Switches & buttons 开关及按钮Tapping machines 攻螺丝机Transmitted chains 传动链Tube bending machines 弯管机Vertical hydraulic broaching machine 立式油压拉床Vises 虎钳Vises,tool-maker 精密平口钳Wheel dressers 砂轮修整器Woven-Cutting machines 织麦激光切割机Wrenches 扳手。
机加工专业英语大全
![机加工专业英语大全](https://img.taocdn.com/s3/m/5c039f373c1ec5da50e2706e.png)
实用机加工专业英语对照【大全】机械加工专用术语中英文对照,金属加工专业词中英对照,机械加工英语怎么说、英语单词怎么写、例句等信息。
1.1切削加工概述切削cutting;加工machining;金属切削metal cutting (metal removal);金属切削工艺metal-removal process;金属工艺学technology of metals;机器制造machine-building;机械加工machining;冷加工cold machining;热加工hot working;工件workpiece;切屑chip;常见的加工方法universal machining method;钻削drilling;镗削boring;车削turning;磨削grinding;铣削milling;刨削planning;插削slotting锉filing划线lineation;錾切carving;锯sawing;刮削facing;钻孔boring;攻丝tap1.2零件表面构成及成形方法变形力deforming force变形deformation;几何形状geometrical;尺寸dimension精度precision;表面光洁度surface finish;共轭曲线conjugate curve;范成法generation method;轴shaft1.3机床的切削运动及切削要素主运动main movement;主运动方向direction of main movement;进给方向direction of feed;进给运动feed movement;合成进给运动resultant movement of feed;合成切削运动resultant movement of cutting;合成切削运动方向direction of resultant movement of cutting 切削速度cutting speed;传动drive/transmission;切削用量cutting parameters;切削速度cutting speed;切削深度depth of cut;进给速度feed force;切削功率cutting power1.4金属切削刀具合金工具钢alloy tool steel;高速钢high-speed steel;硬质合金hard alloy;易加工ease of manufacturing切削刀具cutting tool刀具cutter;车刀lathe tool;主切削刃main cutting edge;副切削刃assistant cutting edge;刀体tool body刀柄tool shank;前刀面rake face;主后刀面major flank;刀尖nose of tool;主剖面系tool orthogonal plane system;切削平面tool cutting edge plane;主剖面tool orthogonal plane;切削宽度width of the uncut chip;进给平面系assumed working plane system;加工表面transient surface;前角rake angle;后角clearance angle;主偏角tool cutting edge angle;刀尖角nose angle1.5刀具切削过程及磨削机理塑性变形plastic distortion;微观组织,显微结构microstructure切削力cutting force;切削温度cutting temperature;积屑瘤built-up edge;刀尖磨损nose wear;月牙洼crater;残留应力residual stress;应力stress;硬度rigidity机加工设备英语CNC bending presses 电脑数控弯折机CNC boring machines 电脑数控镗床CNC drilling machines 电脑数控钻床CNC EDM wire-cutting machines 电脑数控电火花线切削机CNC electric discharge machines 电脑数控电火花机CNC engraving machines 电脑数控雕刻机CNC grinding machines 电脑数控磨床CNC lathes 电脑数控车床CNC machine tool fittings 电脑数控机床配件CNC milling machines 电脑数控铣床CNC shearing machines 电脑数控剪切机CNC toolings CNC刀杆CNC wire-cutting machines 电脑数控线切削机Conveying chains 输送链Coolers 冷却机Coupling 联轴器Crimping tools 卷边工具Cutters 刀具Cutting-off machines 切断机Diamond cutters 钻石刀具Dicing saws 晶圆切割机Die casting dies 压铸冲模Die casting machines 压铸机Dies-progressive 连续冲模Disposable toolholder bits 舍弃式刀头Drawing machines 拔丝机Drilling machines 钻床Drilling machines bench 钻床工作台Drilling machines,high-speed 高速钻床Drilling machines,multi-spindle 多轴钻床Drilling machines,radial 摇臂钻床Drilling machines,vertical 立式钻床drills 钻头Electric discharge machines(EDM) 电火花机Electric power tools 电动刀具Engraving machines 雕刻机Engraving machines,laser 激光雕刻机Etching machines 蚀刻机Finishing machines 修整机Fixture 夹具Forging dies 锻模Forging,aluminium 锻铝Forging,cold 冷锻Forging,copper 铜锻Forging,other 其他锻造Forging,steel 钢锻Foundry equipment 铸造设备Gear cutting machines 齿轮切削机Gears 齿轮Gravity casting machines 重力铸造机Grinder bench 磨床工作台Grinders,thread 螺纹磨床Grinders,tools & cutters 工具磨床Grinders,ultrasonic 超声波打磨机Grinding machines 磨床Grinding machines,centerless 无心磨床Grinding machines,cylindrical 外圆磨床Grinding machines,universal 万能磨床Grinding tools 磨削工具Grinding wheels 磨轮Hand tools 手工具Hard/soft and free expansion sheet making plant 硬(软)板(片)材及自由发泡板机组Heat preserving furnaces 保温炉Heating treatment funaces 熔热处理炉Honing machines 搪磨机Hydraulic components 液压元件Hydraulic power tools 液压工具Hydraulic power units 液压动力元件Hydraulic rotary cylinders 液压回转缸Jigs 钻模Lapping machines 精研机Lapping machines,centerless 无心精研机Laser cutting 激光切割Laser cutting for SMT stensil 激光钢板切割机Lathe bench 车床工作台Lathes,automatic 自动车床Lathes,heavy-duty 重型车床Lathes,high-speed 高速车床Lathes,turret 六角车床Lathes,vertical 立式车床Lubricants 润滑液Lubrication Systems 润滑系统Lubricators 注油机Machining centers,general 通用加工中心Machining centers,horizontal 卧式加工中心Machining centers,horizontal & vertical 卧式及立式加工中心Machining centers,vertical 立式加工中心Machining centers,vertical double-column type 立式双柱加工中心Magnetic tools 磁性工具Manifolds 集合管Milling heads 铣头Milling machines 铣床Milling machines,bed type 床身式铣床Milling machines,duplicating 仿形铣床Milling machines,horizontal 卧式铣床Milling machines,turret vertical 六角立式铣床Milling machines,universal 万能铣床Milling machines,vertical 立式铣床Milling machines,vertical & horizontal 立式及卧式铣床Mold & die components 模具单元Mold changing systems 换模系统Mold core 模芯Mold heaters/chillers 模具加热器/冷却器Mold polishing/texturing 模具打磨/磨纹Mold repair 模具维修Molds 模具Nail making machines 造钉机Oil coolers 油冷却器Overflow cutting machines for aluminium wheels 铝轮冒口切断机P type PVC waterproof rolled sheet making plant P型PVC高分子防水PCB fine piecing systems 印刷电器板油压冲孔脱料系统Pipe & tube making machines 管筒制造机Planing machines 刨床Planing machines vertical 立式刨床Pneumatic hydraulic clamps 气油压虎钳Pneumatic power tools 气动工具Powder metallurgic forming machines 粉末冶金成型机Presses,cold forging 冷锻冲压机presses,crank 曲柄压力机Presses,eccentric 离心压力机Presses,forging 锻压机Presses,hydraulic 液压冲床Presses,knuckle joint 肘杆式压力机Presses,pneumatic 气动冲床Presses,servo 伺服冲床Presses,transfer 自动压力机Pressing dies 压模Punch formers 冲子研磨器Quick die change systems 速换模系统Quick mold change systems 快速换模系统Reverberatory furnaces 反射炉Rollers 滚筒Rolling machines 辗压机Rotary tables 转台Sawing machines 锯床Sawing machines,band 带锯床Saws,band 带锯Saws,hack 弓锯Saws,horizontal band 卧式带锯Saws,vertical band 立式带锯shafts 轴Shapers 牛头刨床Shearing machines 剪切机Sheet metal forming machines 金属板成型机Sheet metal working machines 金属板加工机Slotting machines 插床spindles 主轴Stamping parts 冲压机Straightening machines 矫直机Switches & buttons 开关及按钮Tapping machines 攻螺丝机Transmitted chains 传动链Tube bending machines 弯管机Vertical hydraulic broaching machine 立式油压拉床Vises 虎钳Vises,tool-maker 精密平口钳Wheel dressers 砂轮修整器Woven-Cutting machines 织麦激光切割机。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械加工介绍摘要:机械加工是一种用加工机械对工件的外形尺寸或性能进行改变的过程。
其中车床加工是机械加工的重要部份,主要有两种加工形式:一种是把车刀固定,加工旋转中未成形的工件,另一种是将工件固定,通过工件的高速旋转,车刀(刀架)的横向和纵向移动进行精度加工。
在车床上还可用钻头、扩孔钻、铰刀、丝锥、板牙和滚花工具等进行相应的加工。
车床主要用于加工轴、盘、套和其他具有回转表面的工件,是机械制造和修配工厂中使用最广的一类机床加工。
关键词:车床/加工/精度/工件1 车床车床主要是为了进行车外圆、车端面和镗孔等项工作而设计的机床。
车削很少在其他种类的机床上进行,而且任何一种其他机床都不能像车床那样方便地进行车削加工。
由于车床还可以用来钻孔和铰孔,车床的多功能性可以使工件在一次安装中完成几种加工。
因此,在生产中使用的各种车床比任何其他种类的机床都多。
车床的基本部件有:床身、主轴箱组件、尾座组件、溜板组件、丝杠和光杠。
床身是车床的基础件。
它能常是由经过充分正火或时效处理的灰铸铁或者球墨铁制成。
它是一个坚固的刚性框架,所有其他基本部件都安装在床身上。
通常在床身上有内外两组平行的导轨。
有些制造厂对全部四条导轨都采用导轨尖朝上的三角形导轨(即山形导轨),而有的制造厂则在一组中或者两组中都采用一个三角形导轨和一个矩形导轨。
导轨要经过精密加工以保证其直线度精度。
为了抵抗磨损和擦伤,大多数现代机床的导轨是经过表面淬硬的,但是在操作时还应该小心,以避免损伤导轨。
导轨上的任何误差,常常意味着整个机床的精度遭到破坏。
主轴箱安装在内侧导轨的固定位置上,一般在床身的左端。
它提供动力,并可使工件在各种速度下回转。
它基本上由一个安装在精密轴承中的空心主轴和一系列变速齿轮(类似于卡车变速箱)所组成。
通过变速齿轮,主轴可以在许多种转速下旋转。
大多数车床有8~12种转速,一般按等比级数排列。
而且在现代机床上只需扳动2~4个手柄,就能得到全部转速。
一种正在不断增长的趋势是通过电气的或者机械的装置进行无级变速。
由于机床的精度在很大程度上取决于主轴,因此,主轴的结构尺寸较大,通常安装在预紧后的重型圆锥滚子轴承或球轴承中。
主轴中有一个贯穿全长的通孔,长棒料可以通过该孔送料。
主轴孔的大小是车床的一个重要尺寸,因此当工件必须通过主轴孔供料时,它确定了能够加工的棒料毛坯的最大尺寸。
尾座组件主要由三部分组成。
底板与床身的内侧导轨配合,并可以在导轨上作纵向移动。
底板上有一个可以使整个尾座组件夹紧在任意位置上的装置。
尾座体安装在底板上,可以沿某种类型的键槽在底板上横向移动,使尾座能与主轴箱中的主轴对正。
尾座的第三个组成部分是尾座套筒。
它是一个直径通常大约在51~76mm(2~3英寸)之间的钢制空心圆柱体。
通过手轮和螺杆,尾座套筒可以在尾座体中纵向移入和移出几个英寸。
车床的规格用两个尺寸表示。
第一个称为车床的床面上最大加工直径。
这是在车床上能够旋转的工件的最大直径。
它大约是两顶尖连线与导轨上最近点之间距离的两倍。
第二个规格尺寸是两顶尖之间的最大距离。
车床床面上最大加工直径表示在车床上能够车削的最大工件直径,而两顶尖之间的最大距离则表示在两个顶尖之间能够安装的工件的最大长度。
普通车床是生产中最经常使用的车床种类。
它们是具有前面所叙的所有那些部件的重载机床,并且除了小刀架之外,全部刀具的运动都有机动进给。
它们的规格通常是:车床床面上最大加工直径为305~610mm(12~24英寸);但是,床面上最大加工直径达到1270mm(50英寸)和两顶尖之间距离达到3658mm的车床也并不少见。
这些车床大部分都有切屑盘和一个安装在内部的冷却液循环系统。
小型的普通车床—车床床面最大加工直径一般不超过330mm(13英寸)--被设计成台式车床,其床身安装在工作台或柜子上。
虽然普通车床有很多用途,是很有用的机床,但是更换和调整刀具以及测量工件花费很多时间,所以它们不适合在大量生产中应用。
通常,它们的实际加工时间少于其总加工时间的30%。
此外,需要技术熟练的工人来操作普通车床,这种工人的工资高而且很难雇到。
然而,操作工人的大部分时间却花费在简单的重复调整和观察切屑过程上。
因此,为了减少或者完全不雇用这类熟练工人,六角车床、螺纹加工车床和其他类型的半自动和自动车床已经很好地研制出来,并已经在生产中得到广泛应用。
2 数字控制先进制造技术中的一个基本的概念是数字控制(NC)。
在数控技术出现之前,所有的机床都是由人工操纵和控制的。
在与人工控制的机床有关的很多局限性中,操作者的技能大概是最突出的问题。
采用人工控制是,产品的质量直接与操作者的技能有关。
数字控制代表了从人工控制机床走出来的第一步。
数字控制意味着采用预先录制的、存储的符号指令来控制机床和其他制造系统。
一个数控技师的工作不是去操纵机床,而是编写能够发出机床操纵指令的程序。
对于一台数控机床,其上必须安有一个被称为阅读机的界面装置,用来接受和解译出编程指令。
发展数控技术是为了克服人类操作者的局限性,而且它确实完成了这项工作。
数字控制的机器比人工操纵的机器精度更高、生产出零件的一致性更好、生产速度更快、而且长期的工艺装备成本更低。
数控技术的发展导致了制造工艺中其他几项新发明的产生:电火花加工技术、激光切割、电子束焊接。
数字控制还使得机床比它们采用有人工操的前辈们的用途更为广泛。
一台数控机床可以自动生产很多类的零件,每一个零件都可以有不同的和复杂的加工过程。
数控可以使生产厂家承担那些对于采用人工控制的机床和工艺来说,在经济上是不划算的产品生产任务。
同许多先进技术一样,数控诞生于麻省理工学院的实验室中。
数控这个概念是50年代初在美国空军的资助下提出来的。
在其最初的价段,数控机床可以经济和有效地进行直线切割。
然而,曲线轨迹成为机床加工的一个问题,在编程时应该采用一系列的水平与竖直的台阶来生成曲线。
构成台阶的每一个线段越短,曲线就越光滑。
台阶中的每一个线段都必须经过计算。
在这个问题促使下,于1959年诞生了自动编程工具(APT)语言。
这是一个专门适用于数控的编程语言,使用类似于英语的语句来定义零件的几何形状,描述切削刀具的形状和规定必要的运动。
APT语言的研究和发展是在数控技术进一步发展过程中的一大进步。
最初的数控系统与今天应用的数控系统是有很大差别的。
在那时的机床中,只有硬线逻辑电路。
指令程序写在穿孔纸带上(它后来被塑料带所取代),采用带阅读机将写在纸带或磁带上的指令给机器翻译出来。
所有这些共同构成了机床数字控制方面的巨大进步。
然而,在数控发展的这个阶段中还存在着许多问题。
一个主要问题是穿孔纸带的易损坏性。
在机械加工过程中,载有编程指令信息的纸带断裂和被撕坏是常见的事情。
在机床上每加工一个零件,都需要将载有编程指令的纸带放入阅读机中重新运行一次。
因此,这个问题变得很严重。
如果需要制造100个某种零件,则应该将纸带分别通过阅读机100次。
易损坏的纸带显然不能承受严配的车间环境和这种重复使用。
这就导致了一种专门的塑料磁带的研制。
在纸带上通过采用一系列的小孔来载有编程指令,而在塑料带上通过采用一系列的磁点眯载有编程指令。
塑料带的强度比纸带的强度要高很多,这就可以解决常见的撕坏和断裂问题。
然而,它仍然存在着两个问题。
其中最重要的一个问题是,对输入到带中指令进行修改是非常困难的,或者是根本不可能的。
即使对指令程序进行最微小的调整,也必须中断加工,制作一条新带。
而且带通过阅读机的次数还必须与需要加工的零件的个数相同。
幸运的是,计算机技术的实际应用很快解决了数控技术中与穿孔纸带和塑料带有关的问题。
在形成了直接数字控制(DNC)这个概念之后,可以不再采用纸带或塑料带作为编程指令的载体,这样就解决了与之有关的问题。
在直接数字控制中,几台机床通过数据传输线路联接到一台主计算机上。
操纵这些机床所需要的程序都存储在这台主计算机中。
当需要时,通过数据传输线路提供给每台机床。
直接数字控制是在穿孔纸带和塑料带基础上的一大进步。
然而,它敢有着同其他信赖于主计算机技术一样的局限性。
当主计算机出现故障时,由其控制的所有机床都将停止工作。
这个问题促使了计算机数字控制技术的产生。
微处理器的发展为可编程逻辑控制器和微型计算机的发展做好了准备。
这两种技术为计算机数控(CNC)的发打下了基础。
采用CNC技术后,每台机床上都有一个可编程逻辑控制器或者微机对其进行数字控制。
这可以使得程序被输入和存储在每台机床内部。
它还可以在机床以外编制程序,并将其下载到每台机床中。
计算机数控解决了主计算机发生故障所带来的问题,但是它产生了另一个被称为数据管理的问题。
同一个程序可能要分别装入十个相互之间没有通讯联系的微机中。
这个问题目前正在解决之中,它是通过采用局部区域网络将各个微机联接起来,以得于更好地进行数据管理。
3 车削加工普通车床作为最早的金属切削机床的一种,目前仍然有许多有用的和为人要的特性和为人们所需的特性。
现在,这些机床主要用在规模较小的工厂中,进行小批量的生产,而不是进行大批量的和产。
在现代的生产车间中,普通车床已经被种类繁多的自动车床所取代,诸如自动仿形车床,六角车床和自动螺丝车床。
现在,设计人员已经熟知先利用单刃刀具去除大量的金属余量,然后利用成型刀具获得表面光洁度和精度这种加工方法的优点。
这种加工方法的生产速度与现在工厂中使用的最快的加工设备的速度相等。
普通车床的加偏差主要信赖于操作者的技术熟练程度。
设计工程师应该认真地确定由熟练工人在普通车床上加工的试验件的公差。
在把试验伯重新设计为生产零件时,应该选用经济的公差。
六角车床对生产加工设备来说,目前比过去更注重评价其是否具有精确的和快速的重复加工能力。
应用这个标准来评价具体的加工方法,六角车床可以获得较高的质量评定。
在为小批量的零件(100~200件)设计加工方法时,采用六角车床是最经济的。
为了在六角车床上获得尽可能小的公差值,设计人员应该尽量将加工工序的数目减至最少。
自动螺丝车床自动螺丝车床通被分为以下几种类型:单轴自动、多轴自动和自动夹紧车床。
自动螺丝车床最初是被用来对螺钉和类似的带有螺纹的零件进行自动化和快速加工的。
但是,这种车床的用途早就超过了这个狭窄的范围。
现在,它在许多种类的精密零件的大批量生产中起着重要的作用。
工件的数量对采用自动螺丝车床所加工的零件的经济性有较大的影响。
如果工件的数量少于1000件,在六角车床上进行加工比在自动螺丝车床上加工要经济得多。
如果计算出最小经济批量,并且针对工件批量正确地选择机床,就会降低零件的加工成本。
自动仿形车床因为零件的表面粗糙度在很大程度上取决于工件材料、刀具、进给量和切削速度,采用自动仿形车床加工所得到的最小公差一定是最经济的公差。