全国硕士研究生入学统一考试数学三试题完整版

合集下载

数学三试题

数学三试题

2021年全国硕士研究生入学统一考试数学(三)试题解析一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设{}n x 是数列,下列命题中不正确的是 ( ) (A) 若lim →∞=n n x a ,则221lim lim +→∞→∞==n n n n x x a(B) 若221lim lim +→∞→∞==n n n n x x a , 则lim →∞=n n x a(C)若lim →∞=n n x a ,则331lim lim +→∞→∞==n n n n x x a(D) 若331lim lim +→∞→∞==n n n n x x a ,则lim →∞=n n x a(2) 设函数()f x 在(),-∞+∞内持续,其2阶导函数()f x ''的图形如右图所示,则曲线()=y f x 的拐点个数为 ( )(A) 0 (B) 1 (C)2 (D) 3 (3) 设(){}2222,2,2=+≤+≤D x y xy x x y y ,函数(),f x y 在D 上持续,则(),d d Df x y x y =⎰⎰ ( )(A)()()2cos 2sin 4204d cos ,sin d d cos ,sin d f r r r r f r r r r θθθθθθθθπππ+⎰⎰⎰⎰ (B)()()2sin 2cos 420004d cos ,sin d d cos ,sin d f r r r r f r r r r θθθθθθθθπππ+⎰⎰⎰⎰(C)()112d ,d xx f x y y ⎰⎰(D) ()102d ,d xxf x y y ⎰(4) 下列级数中发散的是( )(A) 13n n n∞=∑ (B)1)n n ∞=+∑(C)2(1)1ln n n n ∞=-+∑(D)1!n n n n∞=∑(5)设矩阵21111214a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,21d d ⎛⎫⎪ ⎪= ⎪⎪⎝⎭b .若集合}{1,2Ω=,则线性方程组=Ax b 有无穷多解的充分必要条件为 ( )(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C),a d ∈Ω∉Ω(D) ,a d ∈Ω∈Ω(6)设二次型()123,,f x x x 在正交变换=x Py 下的标准形为2221232y y y +-,其中123(,,)=P e e e ,若132(,,)=-Q e e e 则123(,,)f x x x =在正交变换=x Qy 下的标准形为( )(A)2221232y y y -+ (B) 2221232y y y +- (C)2221232y y y --(D) 2221232y y y ++(7) 若,A B 为任意两个随机事件,则: ( )(A)()()()≤P AB P A P B (B)()()()≥P AB P A P B (C)()()()2+≤P A P B P AB (D) ()()()2+≥P A P B P AB(8) 设整体()~,,X B m θ12,,,n X X X 为来自该整体的简单随机样本,X 为样本均值,则()21ni i E X X=⎡⎤∑-=⎢⎥⎣⎦( ) (A) ()()11θθ--m n (B)()()11θθ--m n (C)()()()111θθ---m n (D)()1θθ-mn二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 20ln(cos )lim__________.x x x →=(10)设函数()f x 持续,2()()d ,x x xf t t ϕ=⎰若(1)1,(1)5,ϕϕ'==则(1)________.f =(11)若函数(,)z z x y =由方程23e1x y zxyz +++=肯定,则(0,0)d _________.z=(12)设函数()y y x =是微分方程20y y y '''+-=的解,且在0x =处取得极值3,则()________.y x =(13)设3阶矩阵A 的特征值为2,2,1-,2,=-+B A A E 其中E 为3阶单位矩阵,则行列式________.=B(14)设二维随机变量(,)X Y 服从正态散布(1,0;1,1;0)N ,则{0}_________.P XY Y -<=三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解承诺写出文字说明、证明进程或演算步骤.(15)(本题满分10 分)设函数3()ln(1)sin ,()f x x a x bx x g x c kx =+++==.若()f x 与()g x 在0x →时是等价无穷小,求,,a b k 的值.(16)(本题满分10 分) 计算二重积分()d d Dx x y x y +⎰⎰,其中222{(,)2,}.D x y x y y x =+≤≥(17)(本题满分10分)为了实现利润的最大化,厂商需要对某商品肯定其定价模型,设Q 为该商品的需求量,P 为价钱,MC 为边际本钱,η为需求弹性(0)η>.(I) 证明定价模型为11MCP η=-; (II) 若该商品的本钱函数为2()1600C Q Q =+,需求函数为40Q P =-,试由(I )中的定价模型肯定此商品的价钱.(18)(本题满分10 分)设函数()f x 在概念域I 上的导数大于零,若对任意的0x I ∈,曲线()y f x =在点00(,())x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且(0)2f =,求()f x表达式.(19)(本题满分 10分)(I )设函数(),()u x v x 可导,利用导数概念证明[()()]()()()();u x v x u x v x u x v x '''=+ (II )设函数12(),(),,()n u x u x u x 可导,12()()()()n f x u x u x u x =,写出()f x 的求导公式.(20) (本题满分 11分)设矩阵101101a a a ⎛⎫ ⎪- ⎪ ⎪⎝⎭A =,且3=A O .(I) 求a 的值;(II)若矩阵X 知足22--+=X XA AX AXA E ,其中E 为3阶单位矩阵,求X .(21) (本题满分11 分)设矩阵02313312a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A 相似于矩阵12000031b -⎛⎫ ⎪⎪ ⎪⎝⎭B =.(I) 求,a b 的值;(II )求可逆矩阵P ,使1-P AP 为对角矩阵.(22) (本题满分11 分)设随机变量X 的概率密度为()2ln 2,00,0xx f x x -⎧>⎪=⎨≤⎪⎩,对X 进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y 为观测次数(I)求Y 的概率散布;(II)求()E Y.(23) (本题满分11 分)设整体X的概率密度为,1,(,),xf xθθθ⎧≤≤⎪=-⎨⎪⎩110其他,其中θ为未知参数,12nX,X,,X为来自该整体的简单随机样本.(I)求θ的矩估量量;(II)求θ的最大似然估量量.。

2020年全国硕士研究生入学统一考试数学三试题

2020年全国硕士研究生入学统一考试数学三试题

2020年全国硕士研究生入学统一考试数学(三)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. 1.设()lim ,x a f x a b x a →-=-则sin ()sin limx a f x ax a→--( ) A. sin b a B.cos b a C.sin ()b f a D. cos ()b f a2. 函数11ln 1()(1)(2)x x e xf x e x -+=--的第二类间断点的个数为( )A.1B.2C. 3D.4 3. 设奇函数()f x 在(,)-∞+∞具有连续导数,则( )A.0[cos ()()]xf t f t dt '+⎰是奇函数 B. 0[cos ()()]xf t f t dt '+⎰是偶函数 C. 0[cos ()()]xf t f t dt '+⎰是奇函数 D. 0[cos ()()]xf t f t dt '+⎰是偶函数4.设幂级数当1(2)nnn na x ∞=-∑的收敛区间为(2,6)-,则21(1)nn n a x ∞=+∑的收敛区间为( )A. (2,6)-B. (3,1)-C. (5,3)-D. (17,15)-5. 设4阶方阵()ij A A =不可逆,12a 的代数余子式120A ≠,1234,,,αααα为矩阵A 的列向量组,则*0A X =的通解为( )A.112233x k k k ααα=++B.112234x k k k ααα=++C.112334x k k k ααα=++D.122334x k k k ααα=++6. A 为3阶方阵,12,αα为属于特征值1的线性无关的特征向量,3α为A 的属于-1的特征向量,满足1111P AP -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦的可逆矩阵P 为( )A. ()1323,,αααα+-B.()1223,,αααα+- C. ()1332,,αααα+- D. ()1232,,αααα+-7. 设A,B,C 为三个随机事件,且1()()(),()0,4P A P B P C P AB ====()()P AC P BC = 112=,则A,B,C 中恰有一个事件发生的概率为( ) A.34 B. 23 C.12 D.5128. 设随机变量(,)X Y 服从二维正态分布1(0,0;1,4;)2N -,下列随机变量服从标准正态分布且与X 独立的是( ))X Y + B. )X Y - C. )X Y + D. )X Y - 二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题..纸.指定位置上.9. 设()[],sin arctan y x xy z ++=则()=π,0d z . 10.设曲线20xyx y e++=在点(0,1)-处的切线方程为 .11.设Q 表示产量,成本()10013C Q Q =+,单价P ,需求量800)23QP P =-+,则工厂取得利润最大时的产量为 . 12. 设平面区域21(,),0121x D x y y x x ⎧⎫=≤≤≤≤⎨⎬+⎩⎭,则D 绕y 轴旋转所形成旋转体体积为 .13. 行列式=----aa aa11011110110 . 14. 随机变量X 的分布律为1(),1,2,,2kP X k k Y ===L 为X 被3除的余数, 则EY = .三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. 15.(本题满分10分).设,a b 为常数,且当n →∞时,1(1)ne n+-与abn 为等价无穷小,求,a b 的值 16.(本题满分10分)求函数33(,)8f x y x y xy =+-的极值. 17.(本题满分10分)若函数()f x 满足()2()5()0,f x f x f x '''++=且有(0) 1.(0)1f f '==-, (I )求()f x ;(II )设+()n na f x dx π∞=⎰,求1n n a ∞=∑.18. (本题满分10分)设区域{}22(,)1,0D x y x y y =+≤≥, ()()Df xy x f xy dxdy =⎰⎰,计算()Dxf xy dxdy ⎰⎰.19.(本题满分10分)设函数()x f 在[0,2]上具有连续导数,()()020f f ==,(0,2)max{|()|}x M f x ∈=.证明:(1)()0,2,ξ∃∈使得()f M ξ'≥ (2)若()()0,2,x f x M '∀∈≤,则0M =. 20.(本题满分11分)设二次型()22121122,44f x x x x x x =++经正交变换1122x y Q x y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭化为二次型()22121122,4g y y ay y y by =++,其中a b ≥ (I )求,a b 的值;(II )求正交矩阵Q .21.(本题满分11分)设A 为2阶矩阵,(,)=P αA α,α是非零向量且不是A 的特征向量。

全国硕士研究生入学统一考试数学三试题及答案解析

全国硕士研究生入学统一考试数学三试题及答案解析

年全国硕士研究生入学统一考试数学三试题一、 填空题(本题共小题,每小题分,满分分. 把答案填在题中横线上)()设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在处连续,则λ的取值范围是. ()已知曲线b x a x y +-=233与轴相切,则2b 可以通过表示为=2b .()设>,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(.()设维向量0,),0,,0,(<=a a a T α;为阶单位矩阵,矩阵 T E A αα-=, T aE B αα1+=, 其中的逆矩阵为,则.()设随机变量 和的相关系数为, 若4.0-=X Z ,则与的相关系数为.()设总体服从参数为的指数分布,n X X X ,,,21 为来自总体的简单随机样本,则当∞→n 时,∑==ni i n X n Y 121依概率收敛于.二、选择题(本题共小题,每小题分,满分分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)()设()为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=() 在处左极限不存在. () 有跳跃间断点.() 在处右极限不存在. () 有可去间断点. [ ] ()设可微函数()在点),(00y x 取得极小值,则下列结论正确的是() ),(0y x f 在0y y =处的导数等于零. ()),(0y x f 在0y y =处的导数大于零.() ),(0y x f 在0y y =处的导数小于零. () ),(0y x f 在0y y =处的导数不存在. [ ] ()设2nn n a a p +=,2nn n a a q -=, ,2,1=n ,则下列命题正确的是() 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛.() 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛.() 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.() 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定. [ ]()设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若的伴随矩阵的秩为,则必有 () 或. () 或≠.() ≠且. () ≠且≠. [ ] ()设s ααα,,,21 均为维向量,下列结论不正确的是() 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关.() 若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα() s ααα,,,21 线性无关的充分必要条件是此向量组的秩为.() s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关. [ ]()将一枚硬币独立地掷两次,引进事件:1A {掷第一次出现正面},2A {掷第二次出现正面},3A {正、反面各出现一次},4A {正面出现两次},则事件() 321,,A A A 相互独立. () 432,,A A A 相互独立.() 321,,A A A 两两独立. () 432,,A A A 两两独立. [ ] 三、(本题满分分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义()使得()在]1,21[上连续.四 、(本题满分分)设()具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222y gx g ∂∂+∂∂ 五、(本题满分分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π其中积分区域}.),{(22π≤+y x y x六、(本题满分分)求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数()及其极值.七、(本题满分分)设()()(), 其中函数()()在),(+∞-∞内满足以下条件:)()(x g x f =',)()(x f x g =',且(), .2)()(x e x g x f =+ (1) 求()所满足的一阶微分方程; (2) 求出()的表达式. 八、(本题满分分)设函数()在[,]上连续,在(,)内可导,且()()(), ().试证必存在)3,0(∈ξ,使.0)(='ξf 九、(本题满分分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a 其中.01≠∑=ni ia试讨论n a a a ,,,21 和满足何种关系时,() 方程组仅有零解;() 方程组有非零解. 在有非零解时,求此方程组的一个基础解系. 十、(本题满分分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵的特征值之和为,特征值之积为. (1) 求的值;(2) 利用正交变换将二次型化为标准形,并写出所用的正交变换和对应的正交矩阵. 十一、(本题满分分) 设随机变量的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f()是的分布函数. 求随机变量()的分布函数.十二、(本题满分分)设随机变量与独立,其中的概率分布为⎪⎪⎭⎫⎝⎛7.03.021~X ,而的概率密度为(),求随机变量的概率密度().年考研数学(三)真题解析一、填空题(本题共小题,每小题分,满分分. 把答案填在题中横线上)()设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在处连续,则λ的取值范围是2>λ. 【分析】 当≠x 可直接按公式求导,当时要求用定义求导.【详解】 当1>λ时,有,0,0,0,1sin 1cos )(21=≠⎪⎩⎪⎨⎧+='--x x xx x x x f 若若λλλ 显然当2>λ时,有)0(0)(lim 0f x f x '=='→,即其导函数在处连续.()已知曲线b x a x y +-=233与轴相切,则2b 可以通过表示为=2b 64a .【分析】 曲线在切点的斜率为,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2b 与的关系.【详解】 由题设,在切点处有03322=-='a x y ,有 .220a x =又在此点坐标为,于是有0300230=+-=b x a x ,故 .44)3(6422202202a a a x a x b =⋅=-=【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程. ()设>,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而表示全平面,则⎰⎰-=Ddxdy x y g x f I )()( 2a .【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 ⎰⎰-=Ddxdyx y g x f I )()(dxdy ax y x ⎰⎰≤-≤≤≤10,102.])1[(212112adx x x ady dx ax x=-+=⎰⎰⎰+【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.()设维向量0,),0,,0,(<=a a a T α;为阶单位矩阵,矩阵 T E A αα-=, T aE B αα1+=, 其中的逆矩阵为,则 .【分析】 这里T αα为阶矩阵,而22a T =αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.【详解】 由题设,有)1)((T T a E E AB αααα+-= T T T T a a E αααααααα⋅-+-11T T T T a a E αααααααα)(11-+-T T T a a E αααααα21-+-E aa E T =+--+αα)121(,于是有 0121=+--aa ,即 0122=-+a a ,解得 .1,21-==a a 由于< ,故.()设随机变量 和的相关系数为, 若4.0-=X Z ,则与的相关系数为 .【分析】 利用相关系数的计算公式即可. 【详解】 因为)4.0()()]4.0([()4.0,cov(),cov(---=-=X E Y E X Y E X Y Z Y )(4.0)()()(4.0)(Y E X E Y E Y E XY E +-- () – ()()(), 且.DX DZ =于是有 ()DZDY Z Y ),cov(.9.0),cov(==XY DYDX Y X ρ【评注】 注意以下运算公式:DX a X D =+)(,).,cov(),cov(Y X a Y X =+()设总体服从参数为的指数分布,n X X X ,,,21 为来自总体的简单随机样本,则当∞→n 时,∑==ni i n X n Y 121依概率收敛于 21 .【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量n X X X ,,,21 ,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:).(1111∞→→∑∑==n EX n X n ni i pn i i【详解】 这里22221,,,nX X X 满足大数定律的条件,且22)(i i i EX DX EX +=21)21(412=+,因此根据大数定律有 ∑==n i i n X n Y 121依概率收敛于.21112=∑=n i i EX n二、选择题(本题共小题,每小题分,满分分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)()设()为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=() 在处左极限不存在. () 有跳跃间断点.() 在处右极限不存在. () 有可去间断点. [ ] 【分析】 由题设,可推出() , 再利用在点处的导数定义进行讨论即可. 【详解】 显然为()的间断点,且由()为不恒等于零的奇函数知,(). 于是有 )0(0)0()(lim )(lim)(lim 00f x f x f x x f xg x x x '=--==→→→存在,故为可去间断点. 【评注】 本题也可用反例排除,例如(), 则此时(),0,0,0,1=≠⎩⎨⎧=x x x x 可排除(),(),() 三项,故应选().【评注】 若()在0x x =处连续,则.)(,0)()(lim000A x f x f A x x x f x x ='=⇔=-→.()设可微函数()在点),(00y x 取得极小值,则下列结论正确的是() ),(0y x f 在0y y =处的导数等于零. ()),(0y x f 在0y y =处的导数大于零. () ),(0y x f 在0y y =处的导数小于零. () ),(0y x f 在0y y =处的导数不存在. [ ] 【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数()在点),(00y x 取得极小值,根据取极值的必要条件知0),(00='y x f y ,即),(0y x f 在0y y =处的导数等于零, 故应选().【评注】 本题考查了偏导数的定义,),(0y x f 在0y y =处的导数即),(00y x f y ';而),(0y x f 在0x x =处的导数即).,(00y x f x '【评注】 本题也可用排除法分析,取22),(y x y x f +=,在()处可微且取得极小值,并且有2),0(y y f =,可排除(),(),(), 故正确选项为().()设2nn n a a p +=,2nn n a a q -=, ,2,1=n ,则下列命题正确的是() 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛.() 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛.() 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.() 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定. [ ]【分析】 根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案. 【详解】 若∑∞=1n na绝对收敛,即∑∞=1n na收敛,当然也有级数∑∞=1n na收敛,再根据2nn n a a p +=,2nn n a a q -=及收敛级数的运算性质知,∑∞=1n np与∑∞=1n nq都收敛,故应选().()设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若的伴随矩阵的秩为,则必有 () 或. () 或≠.() ≠且. () ≠且≠. [ ]【分析】 的伴随矩阵的秩为, 说明的秩为,由此可确定应满足的条件. 【详解】 根据与其伴随矩阵*秩之间的关系知,秩(),故有0))(2(2=-+=b a b a ab b b a b bb a ,即有02=+b a 或.但当时,显然秩()2≠, 故必有 ≠且. 应选().【评注】 ()2≥阶矩阵与其伴随矩阵*的秩之间有下列关系:.1)(,1)(,)(,0,1,*)(-<-==⎪⎩⎪⎨⎧=n A r n A r n A r n A r()设s ααα,,,21 均为维向量,下列结论不正确的是() 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关.() 若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα() s ααα,,,21 线性无关的充分必要条件是此向量组的秩为.() s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关. [ ]【分析】 本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式. 应注意是寻找不正确的命题.【详解】(): 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 必线性无关,因为若s ααα,,,21 线性相关,则存在一组不全为零的数s k k k ,,,21 ,使得 02211=+++s s k k k ααα ,矛盾. 可见()成立.(): 若s ααα,,,21 线性相关,则存在一组,而不是对任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα ()不成立.() s ααα,,,21 线性无关,则此向量组的秩为;反过来,若向量组s ααα,,,21 的秩为,则s ααα,,,21 线性无关,因此()成立.() s ααα,,,21 线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,可见()也成立.综上所述,应选().【评注】 原命题与其逆否命题是等价的. 例如,原命题:若存在一组不全为零的数s k k k ,,,21 ,使得02211=+++s s k k k ααα 成立,则s ααα,,,21 线性相关. 其逆否命题为:若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.()将一枚硬币独立地掷两次,引进事件:1A {掷第一次出现正面},2A {掷第二次出现正面},3A {正、反面各出现一次},4A {正面出现两次},则事件() 321,,A A A 相互独立. () 432,,A A A 相互独立.() 321,,A A A 两两独立. () 432,,A A A 两两独立. [ ]【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再检验是否相互独立.【详解】 因为21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P ,且 41)(21=A A P ,41)(31=A A P ,41)(32=A A P ,41)(42=A A P 0)(321=A A A P ,可见有)()()(2121A P A P A A P =,)()()(3131A P A P A A P =,)()()(3232A P A P A A P =,)()()()(321321A P A P A P A A A P ≠,)()()(4242A P A P A A P ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选().【评注】 本题严格地说应假定硬币是均匀的,否则结论不一定成立.三 、(本题满分分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义()使得()在]1,21[上连续.【分析】 只需求出极限)(lim 1x f x -→,然后定义()为此极限值即可. 【详解】 因为)(lim 1x f x -→])1(1sin 11[lim 1x x x x --+-→πππxx xx x πππππsin )1(sin )1(lim 111---+-→xx x xx ππππππππcos )1(sin cos lim 111-+---+-→xx x x xx ππππππππππsin )1(cos cos sin lim 11221----+-→.1π由于()在)1,21[上连续,因此定义π1)1(=f ,使()在]1,21[上连续.【评注】 本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.在计算过程中,也可先作变量代换,转化为求+→0y 的极限,可以适当简化.四 、(本题满分分)设()具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂【分析】 本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y x v xy u -==,直接利用复合函数求偏导公式即可,注意利用.22uv fv u f ∂∂∂=∂∂∂【详解】vfxu f y x g ∂∂+∂∂=∂∂, .vf y u f x yg ∂∂-∂∂=∂∂ 故 v f vf x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222, .2222222222vf v f y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂所以 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂ .22y x +【评注】 本题考查半抽象复合函数求二阶偏导. 五 、(本题满分分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π其中积分区域}.),{(22π≤+y x y x【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算.【详解】 作极坐标变换:θθsin ,cos r y r x ==,有 dxdy y x e e I Dy x)sin(22)(22+=⎰⎰+-π.sin 2022dr r re d e r ⎰⎰-πππθ令2r t =,则tdt e e I t sin 0⎰-=πππ.记 tdt e A t sin 0⎰-=π,则t t de e A --⎰-=int 0π]cos sin [0⎰----ππtdt e t e t t⎰--πcos t tde]sin cos [0tdt e t e t t ⎰--+-ππ.1A e -+-π 因此 )1(21π-+=e A , ).1(2)1(2πππππe e e I +=+=-【评注】 本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.六、(本题满分分)求幂级数∑∞=<-+12)1(2)1(1n n nx n x 的和函数()及其极值.【分析】 先通过逐项求导后求和,再积分即可得和函数,注意当时和为. 求出和函数后,再按通常方法求极值.【详解】.1)1()(1212∑∞=-+-=-='n n nxxx x f 上式两边从到积分,得).1ln(211)0()(202x dt t t f x f x+-=+-=-⎰ 由(), 得).1(),1ln(211)(2<+-=x x x f 令0)(='x f ,求得唯一驻点. 由于,)1(1)(222x x x f +--=''01)0(<-=''f , 可见()在处取得极大值,且极大值为().【评注】 求和函数一般都是先通过逐项求导、逐项积分等转化为可直接求和的几何级数情形,然后再通过逐项积分、逐项求导等逆运算最终确定和函数.七、(本题满分分)设()()(), 其中函数()()在),(+∞-∞内满足以下条件:)()(x g x f =',)()(x f x g =',且(), .2)()(x e x g x f =+(3) 求()所满足的一阶微分方程; (4) 求出()的表达式.【分析】 ()所满足的微分方程自然应含有其导函数,提示应先对()求导,并将其余部分转化为用()表示,导出相应的微分方程,然后再求解相应的微分方程.【详解】 () 由)()()()()(x g x f x g x f x F '+'=')()(22x f x g +)()(2)]()([2x g x f x g x f -+ (2)x e -2F(), 可见()所满足的一阶微分方程为.4)(2)(2x e x F x F =+'() ]4[)(222C dx e e e x F dxx dx +⎰⋅⎰=⎰-]4[42C dx e e x x +⎰-.22x x Ce e -+ 将()()()代入上式,得 . 于是.)(22x x e e x F --=【评注】 本题没有直接告知微分方程,要求先通过求导以及恒等变形引出微分方程的形式,从题型来说比较新颖,但具体到微分方程的求解则并不复杂,仍然是基本要求的范围.八、(本题满分分)设函数()在[,]上连续,在(,)内可导,且()()(), ().试证必存在)3,0(∈ξ,使.0)(='ξf 【分析】 根据罗尔定理,只需再证明存在一点)3,0[∈,使得)3(1)(f c f ==,然后在[]上应用罗尔定理即可. 条件()()()等价于13)2()1()0(=++f f f ,问题转化为介于()的最值之间,最终用介值定理可以达到目的.【详解】 因为()在[,]上连续,所以()在[,]上连续,且在[,]上必有最大值和最小值,于是 M f m ≤≤)0(, M f m ≤≤)1(, M f m ≤≤)2(. 故.3)2()1()0(M f f f m ≤++≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f因为()(), 且()在[]上连续,在()内可导,所以由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf【评注】 介值定理、微分中值定理与积分中值定理都是常考知识点,且一般是两两结合起来考. 本题是典型的结合介值定理与微分中值定理的情形.九、(本题满分分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a 其中.01≠∑=ni ia试讨论n a a a ,,,21 和满足何种关系时,() 方程组仅有零解;() 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等. 可先将所有列对应元素相加,然后提出公因式,再将第一行的()倍加到其余各行,即可计算出行列式的值.【详解】 方程组的系数行列式ba a a a ab a a a a a b a a a a a ba A n nn n ++++=321321321321).(11∑=-+ni i n a b b(1) 当0≠b 时且01≠+∑=ni iab 时,秩(),方程组仅有零解.(2) 当 时,原方程组的同解方程组为 .02211=+++n n x a x a x a 由01≠∑=ni ia可知,),,2,1(n i a i =不全为零. 不妨设01≠a ,得原方程组的一个基础解系为T a a )0,,0,1,(121 -=α,T a a)0,,1,0,(132 -=α,.)1,,0,0,(,1T n n a a -=α 当∑=-=ni iab 1时,有0≠b ,原方程组的系数矩阵可化为⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑∑∑∑====n i i n nni inni inni ia a a a a a a a a a a a a a a a a a a a 1321132131213211(将第行的倍加到其余各行,再从第行到第行同乘以∑=-ni ia11倍)→ ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑=1001010100113211 n ni ia a a a a( 将第行n a -倍到第行的2a -倍加到第行,再将第行移到最后一行)→ .0000100101010011⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---由此得原方程组的同解方程组为12x x =,13x x =,1,x x n = . 原方程组的一个基础解系为 .)1,,1,1(T =α【评注】 本题的难点在∑=-=ni iab 1时的讨论,事实上也可这样分析:此时系数矩阵的秩为(存在阶子式不为零),且显然T )1,,1,1( =α为方程组的一个非零解,即可作为基础解系.十、(本题满分分)设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵的特征值之和为,特征值之积为. (3) 求的值;(4) 利用正交变换将二次型化为标准形,并写出所用的正交变换和对应的正交矩阵. 【分析】 特征值之和为的主对角线上元素之和,特征值之积为的行列式,由此可求出 的值;进一步求出的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】 ()二次型的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A 设的特征值为).3,2,1(=i i λ 由题设,有1)2(2321=-++=++a λλλ,.12242002002321-=--=-=b a b ba λλλ解得 .() 由矩阵的特征多项式)3()2(220202012+-=+----=-λλλλλλA E ,得的特征值.3,2321-===λλλ对于,221==λλ解齐次线性方程组0)2(=-x A E ,得其基础解系 T )1,0,2(1=ξ,.)0,1,0(2T =ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,得基础解系 .)2,0,1(3T -=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得T )51,0,52(1=η,T )0,1,0(2=η,.)52,0,51(3T -=η令矩阵[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==5205101051052321ηηηQ ,则为正交矩阵. 在正交变换下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T ,且二次型的标准形为.322232221y y y f -+=【评注】 本题求,也可先计算特征多项式,再利用根与系数的关系确定:二次型的矩阵对应特征多项式为)].2()2()[2(220022b a a bb aA E +----=+----=-λλλλλλλ设的特征值为321,,λλλ,则).2(,2,2232321b a a +-=-=+=λλλλλ由题设得1)2(2321=-+=++a λλλ,.12)2(22321-=+-=b a λλλ解得.十一、(本题满分分) 设随机变量的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f()是的分布函数. 求随机变量()的分布函数.【分析】 先求出分布函数() 的具体形式,从而可确定() ,然后按定义求 的分布函数即可.注意应先确定()的值域范围)1)(0(≤≤X F ,再对分段讨论.【详解】 易见,当<时,(); 当> 时,(). 对于]8,1[∈x ,有 .131)(3132-==⎰x dt t x F x设()是随机变量()的分布函数. 显然,当0<y 时,();当1≥y 时,(). 对于)1,0[∈y ,有})({}{)(y X F P y Y P y G ≤=≤= })1({}1{33+≤=≤-y X P y X P .])1[(3y y F =+于是,()的分布函数为.1,10,0,1,,0)(≥<≤<⎪⎩⎪⎨⎧=y y y y y G 若若若【评注】 事实上,本题为任意连续型随机变量均可,此时()仍服从均匀分布: 当<时,();当 1≥y 时,();当 1<≤y 时,})({}{)(y X F P y Y P y G ≤=≤= )}({1y F X P -≤ .))((1y y F F =- 十二、(本题满分分)设随机变量与独立,其中的概率分布为 ⎪⎪⎭⎫⎝⎛7.03.021~X ,而的概率密度为(),求随机变量的概率密度().【分析】求二维随机变量函数的分布,一般用分布函数法转化为求相应的概率. 注意只有两个可能的取值,求概率时可用全概率公式进行计算.【详解】 设()是的分布函数,则由全概率公式,知的分布函数为 }{)(u Y X P u G ≤+=}2{7.0}1{3.0=≤++=≤+X u Y X P X u Y X P }22{7.0}11{3.0=-≤+=-≤X u Y P X u Y P . 由于和独立,可见() }2{7.0}1{3.0-≤+-≤u Y P u Y P).2(7.0)1(3.0-+-u F u F 由此,得的概率密度)2(7.0)1(3.0)()(-'+-'='=u F u F u G u g ).2(7.0)1(3.0-+-u f u f【评注】 本题属新题型,求两个随机变量和的分布,其中一个是连续型一个是离散型,要求用全概率公式进行计算,类似问题以前从未出现过,具有一定的难度和综合性.。

2020年考研数学(三)真题(后附解析答案)

2020年考研数学(三)真题(后附解析答案)

2020年全国硕士研究生招生考试数学(三)(科目代码:303)一、选择题(1〜8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选项前的字母写在题后的括号内.)(1)设1口心—°= b,则lim sinfQ)—sina=().x-^a x——a x-*a3C——a(A)6sin a(B)6cos a(C)6sin/(a)iIn I14-rr I(2)函数心)=二的第二类间断点的个数为((e—1)(j?—2)(A)l(B)2(03(3)设奇函数心)在(-00,-1-00)上具有连续导数,则().(A)f[cos/"(/)+/^(Olldr是奇函数J0(E)「[cos/(i)+/(O]d^是偶函数J0(C)[[cos/"'(/)+y(t)]d/是奇函数J0(D)「[cos是偶函数J0(D)bcos/(a) ).(D)4(4)设幕级数—2)"的收敛区间为(一2,6),则工a”Q+l)2n的收敛区间为().n=\n=1(A)(-2,6)(B)(-3,l)(0(-5,3)(D)(-17,15)(5)设4阶矩阵A=(a“)不可逆,a*的代数余子式A12丰O,aj,a2,a3,a,为矩阵A的列向量组,A*为A的伴随矩阵,则方程组A*X=0的通解为().(A)X=^1a1+^2a2+^3a3,其中k x,k2,k.为任意常数(B)X=^1a1+k2a2+k3a4,其中k,,k2,k3为任意常数(C)X=bS+展as+匕。

4,其中紅,k2,k3为任意常数(D)X=k i a2k2a3+怂。

4,其中ki,k2^k3为任意常数(6)设A为3阶矩阵,a】,a?为A的属于特征值1的线性无关的特征向量,as为A的属于特征I1°°\值一1的特征向量,则满足P_1AP=0-10的可逆矩阵卩为().'o01'(A)(a j a3,a2,—a3)(B)(a〕+ct2,a2,—a3)(C)(a1+a3,—a3,a2)(D)(a T+a2»—a3,a2)(7)设A,B,C为三个随机事件,且PC A)=P(£)=P(C)=±,P(AB)=O,P(AC)=P(BC)=2,412则A,B,C中恰有一个事件发生的概率为().3215(A)Z(B)T(C)7(D)12(8)设随机变量(X,Y)服从二维正态分布N(0,0;1,4;-,则下列随机变量中服从标准正态分布且与X相互独立的是().(A)啤(X+Y)(B)尝(X—丫)55(C)y(X+Y)(D)y(X-Y)二、填空题(9〜14小题,每小题4分,共24分.请将答案写在题中的横线上.)(9)设z=arctanRy+sin(z+了)],贝0dz|(0,…)=______.(10)曲线jc y+e2iy=0在点(0,—1)处的切线方程为________.(H)设某厂家生产某产品的产量为<2,成本C(Q)=100+13Q,该产品的单价为/,需求量—2,则该厂家获得最大利润时的产量为(12)设平面区域。

2023年全国硕士研究生招生考试数学试题(数学三)真题解析

2023年全国硕士研究生招生考试数学试题(数学三)真题解析

2023 考研数学三真题及解析一、选择题:1~10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1.已知函数 f( ,x y ) = ln ( y + x sin y ),则( ).(A )()0,1f x ∂∂不存在,()0,1fy∂∂存在(B )()0,1f x∂∂存在,()0,1fy ∂∂不存在(C )()0,1f x∂∂()0,1f y∂∂均存在(D )()0,1f x∂∂()0,1f y∂∂均不存在【答案】(A )【解析】 本题考查具体点偏导数的存在性,直接用定义处理,()0,10f =()()()()0,1000ln 1sin1sin1,10,1sin1,0lim lim limsin1,0x x x x x f x f x fx x x x x +−→→→+ −→∂=== ∂−→ 故()0,1f x∂∂不存在()()()0,1110,0,1ln lim lim 111y y f y f f y y y y →→−∂===∂−−,()0,1f y∂∂存在,选(A )2.函数() 0,()1cos ,0.x f x x x x ≤=+>的一个原函数是( )(A)), 0,()(1)cos sin ,0.x x F x x x x x −≤= +−>(B))1, 0,()(1)cos sin ,0.x x F x x x x x +≤=+−>(C)), 0,()(1)sin cos ,0.x x F x x x x x −≤= ++>(D))1, 0,()(1)sin cos ,0.x x F x x x x x +≤=++> 【答案】(D) .【分析】本题主要考查原函数的概念,分段函数不定积分的求法以及函数可导与连续的关系.【详解】由于当0x <时,)1()lnF xx x C==+∫当0x >时,()()2()1cos d 1sin cos F x x x x x x x C =+=+++∫由于()F x 在0x =处可导性,故()F x 在0x =处必连续因此,有00lim ()lim ()x x F x F x −+→→=,即 121C C =+.取20C =得)1, 0,()(1)sin cos ,0.x x F x x x x x −+≤= ++> 应选(D) .【评注】此题考查分段函数的不定积分,属于常规题,与2016年真题的完全类似,在《真题精讲班》系统讲解过. 原题为已知函数2(1),1,()ln , 1.x x f x x x −< = ≥则()f x 的一个原函数是( )(A) 2(1),1,()(ln 1), 1.x x F x x x x −<= −≥ (B) 2(1),1,()(ln 1)1, 1.x x F x x x x −<=+−≥ (C) 2(1),1,()(ln 1)1, 1.x x F x x x x −<= ++≥ (D) 2(1),1,()(ln 1)1, 1.x x F x x x x −<= −+≥3.若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A )00a b <>, (B )00a b >>, (C )00a b =>, (D )00a b =<, 【答案】(C )【解析】特征方程为20r ar b ++=,解得1,2r =.记24a b ∆=−当0∆>时,方程的通解为1212()e e r x r x yx c c ⋅⋅=+,当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当0∆=时,1202ar r −=<=,方程的通解为1112()e e r x r x yx c c x =+,当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当0∆<时,1,22a r i β=−±,方程的通解为()212()e cos sin axy x c x c x ββ−=+. 只有当0a =,且240a b ∆=−<,即0b >时,lim ()lim ()0x x y x y x →+∞→−∞==,此时方程的解在(,)−∞+∞上有界. 故选(C )【评注】此题关于x →+∞方向的讨论,在《基础班》习题课上讲解过,见《基础班》习题课第八讲《常微分方程》第15题.4.已知()1,2,n n a b n <=,若1nn a∞=∑与1n n b ∞=∑均收敛.则1nn a∞=∑绝对收敛是1n n b ∞=∑绝对收敛的( )(A )充分必要条件 (B )充分不必要条件 (C )必要不充分条件(D )既非充分也非必要条件 【答案】(A ) 【解析】由题设条件知()1nn n ba ∞=−∑为收敛的正项级数,故()1n n n b a ∞=−∑也是绝对收敛的若1nn a∞=∑绝对收敛,则n n n n n n n b b a a b a a =−+≤−+,由比较判别法知,1n n b ∞=∑绝对收敛;若1n n b ∞=∑绝对收敛,则则nn n n n n n aa b b a b b =−+≤−+,由比较判别法知,1n n a ∞=∑绝对收敛;故应选(A )【评注】本题考查正项级数的比较判别法,及基本不等式放缩.关于上述不等式《基础班》第一讲在讲解数列极限定义时就反复强调过.5.设A,B 分别为n 阶可逆矩阵,E 是n 阶单位矩阵,*M 为M 的伴随矩阵,则AE OB 为( ) (A )*****−A B B A O A B (B )****− A B A B OB A(C )****−B A B A OA B (D )****−B A A B OA B 【答案】(D )【解析】由分块矩阵求逆与行列式的公式,结合1∗−=A A A 得11111∗−−−−− −==A E A E A E E A A AB B O B O B O B O B ∗∗∗∗−=B O A A A B B 选(D )【评注】这钟类型的题在02年,09年均考过完全类似的题,《基础班》第二讲也讲过,原题为【例1】设,A B ∗∗分别为n 阶可逆矩阵,A B 对应的伴随矩阵,∗∗=A O C O B6.二次型()()()222123121323(,,)4f x x x x x x x x x =+++−−的规范形为( ). (A )2212y y + (B )2212y y −(C )222123y y y −−(D )222123y y y +−【答案】(B )【详解】因为123(,,)f x x x 222123121323233228x x x x x x x x x =−−+++方法1.二次型的矩阵为 211134143 =− −A , 由()()211134730143λλλλλλλ−−−−=−+−=+−=−−+E A ,得特征值为0,7,3−,故选(B )方法2.()222123123121323,,233228f x x x x x x x x x x x x =−−+++()()()22232322211232323233842x x x x x x x x x x x x ++=+++−−−+ 222222322332323126616222x x x x x x x x x x x +++++−=+−()22231237222x x x x x +=+−− 故所求规范形为()2212312,,f x x x y y =−【评注】本题考查二次型的规范形,与考查正负惯性指数是同一类题,在《基础班》《强化班》均讲过. 《解题模板班》类似例题为【11】设123123(,,),(,,)T T a a a b b b αβ==,,αβ线性无关,则二次型123112233112233(,,)()()f x x x a x a x a x b x b x b x =++++的规范型为( ).(A)21y (B) 2212y y + (C) 2212y y − (D) 222123y y y ++7.已知向量12121,,1222150390,1====ααββ,若γ既可由12,αα表示,也由与12,ββ表示,则=γ( ).(A )334k (B )3510k(C )112k − (D )158k【答案】(D ) 【解析】由题意可设11212212x y x y +==+γααββ,只需求出21,x x 即可即解方程组112112220x y y x +−−=ααββ()121212211003,,2150010131910011,−−−−=−→− −−ααββ 得()()2211,,1,3,,1,1TTx k x y y =−−,k 为任意常数11221212133215318x k k k k k x+=−+=−+=−=γαααα,故选(D )【评注】1.此题与《强化班》讲义第三讲练习第12题完全类似,原题为【12】(1)设21,αα,21,ββ均是三维列向量,且21,αα线性无关, 21,ββ线性无关,证明存在非零向量ξ,使得ξ既可由21,αα线性表出,又可由21,ββ线性表出.(2)当 =4311α,=5522α:1231β= − ,2343β−=−时,求所有既可由21,αα线性表出,又可21,ββ线性表出的向量。

2022考研数学三真题及答案解析(数三)

2022考研数学三真题及答案解析(数三)

2022年全国硕士研究生入学统一考试数学(三)试题及参考答案一、选择题:1~10题,每小题5分,共50分.1、当0→x 时,)()(x x βα、是非零无穷小量,给出以下四个命题 ① 若)(~)(x x βα,则)(~)(22x x βα; ② 若)(~)(22x x βα,则)(~)(x x βα; ③ 若)(~)(x x βα,则))(()()(x o x x αβα=-; ④ 若))(()()(x o x x αβα=-,则)(~)(x x βα. 其中正确的序号是( )A :①②;B :①④;C :①③④;D :②③④. 答案:C .解析:当0→x 时,若)(~)(x x βα,则1)()(lim 0=→x x x βα,故1)()(lim )()(lim 20220=⎪⎪⎭⎫⎝⎛=→→x x x x x x βαβα,即)(~)(22x x βα,且011)()()(lim0=-=-→x x x x αβα,故))(()()(x o x x αβα=-.所以①③正确.当0→x 时,)(~)(22x x βα,则1)()(lim 220=→x x x βα,此时1)()(lim 0±=→x x x βα,而1)()(lim 0-=→x x x βα时,)(x α与)(x β不是等价无穷小,故 ②不正确.当0→x 时,若))(()()(x o x x αβα=-,1)()(lim ))(()()(lim )()(lim000==-=→→→x x x o x x x x x x x αααααβα,所以)(~)(x x βα,④正确.综上,C 为选项.2 、已知),2,1()1( =--=n nn a nnn ,则}{n a ( ) A :有最大值,有最小值; B :有最大值,没有最小值; C :没有最大值,有最小值; D :没有最大值,没有最小值. 答案:A .解析:1212,1221<-=>=a a ,又1lim =∞→n n a ,故存在0>N ,当N n >时,12a a a n <<,所以}{n a 有最大值和最小值,选项A 正确.3、设函数)(t f 连续,令⎰---=y x dt t f t y x y x F 0)()(),(,则( )A :2222y F x F y F x F ∂∂=∂∂∂∂=∂∂,; B :2222y Fx F y F x F ∂∂-=∂∂∂∂=∂∂,; C :2222y F x F y F x F ∂∂=∂∂∂∂-=∂∂,; D :2222yF x F y F x F ∂∂-=∂∂∂∂-=∂∂,. 答案:C .解析:⎰⎰⎰-----=--=y x y x y x dt t tf dt t f y x dt t f t y x y x F 0)()()()()(),(,⎰⎰--=-----+=∂∂y x y x dt t f y x f y x y x f y x dt t f x F 00)()()()()()(,)(22y x f x F -=∂∂,同理⎰⎰---=--+----=∂∂y x y x dt t f y x f y x y x f y x dt t f yF00)()()()()()(,)(22y x f y F -=∂∂, 综上2222yF x F y F x F ∂∂=∂∂∂∂-=∂∂,,选项C 正确. 4、已知⎰⎰⎰+=++=+=101031021sin 12,cos 1)1ln(,)cos 1(2dx x xI dx x x I dx x x I ,则( ) A :321I I I <<; B :312I I I <<; C :231I I I <<; D :123I I I <<. 答案:A .解析:⎰⎰⎰+=++=+=1010310212sin 1,cos 1)1ln(,)cos 1(2dx xx I dx x x I dx x xI ,先比较21,I I 的大小,令)1,0()1ln(2)(∈+-=x x xx f ,此时0)0(=f ,此时0)1(211121)(<+-=+-='x x x x f ,即)(x f 单调递减,从而0)0()(=<f x f ,可得)1,0()1ln(2∈+x x x《,从而21I I <.再比较23,I I 的大小,因)1,0(,cos 12sin 1,)1ln(∈+<+<+x x x x x ,则2sin 1cos 1)1ln(x xxx +<++,从而23I I >.综上,可得A 正确.5、设A 为3阶矩阵,⎪⎪⎪⎭⎫ ⎝⎛-=Λ000010001,则A 的特征值为011,,-的充分必要条件是( )A :存在可逆矩阵Q P ,,使得Q P A Λ=;B :存在可逆矩阵P ,使得1-Λ=P P A ; C :存在正交矩阵Q ,使得1-Λ=Q Q A ; D :存在可逆矩阵P ,使得TP P A Λ=; 答案:B解析:3阶A 有011,,-三个不同的特征值,所以A 可以相似对角化,故存在可逆矩阵P ,使得1-Λ=P P A ;若存在可逆矩阵P ,使得1-Λ=P P A ,即A 相似与Λ,而相似矩阵具有相同的特征值,而Λ的特征值为011,,-,故A 的特征值为011,,-.因此选B . 6、设矩阵⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=421,1111122b b b a a A ,则线性方程组b Ax =解的情况为( )A :无解; B: 有解; C:有无穷多解或无解 ; D: 有唯一解或无解; 答案:D .解析:⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫⎝⎛→31101110111141211111)|2222b b a a b b a a b A ((1)当1=a 或1=b 时,)|()(b A r A r ≠,方程无解(2)当1≠a 且1≠b 时,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----+→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+→11130011110111113110111101111)|a b a b a a b b a a b A ( (i )当b a ≠时,3)|()(==b A r A r ,方程有唯一解 (ii )当b a =时,3)|(2)(==b A r A r ,,方程无解; 综述:方程有唯一解或无解,选D .7、设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=243211,11,11,11λλαλαλαλα,若向量组321,,ααα与421,,ααα等价,则λ的取值范围( )A :}1,0{ ; B:}2,|{-≠∈λλλR ;C:}2,1,|{-≠-≠∈λλλλR ; D:}1,|{-≠∈λλλR . 答案:C解析:向量组321,,ααα与421,,ααα等价的充要条件是()),,.,,(,,),,(421321421321ααααααααααααr r r ==,而),,,(),,.,,(4321421321αααααααααα,r r =()⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛→λλλλλλλλλλλλαααα2222431201101101111111111,,,(1)当1=λ时,()1).,,(,,),,(4321421321===ααααααααααr r r ,此时向量组等价 (2)当1≠λ时()⎪⎪⎪⎭⎫ ⎝⎛++---→⎪⎪⎪⎭⎫⎝⎛---+→⎪⎪⎪⎭⎫ ⎝⎛-++→24312)1(2001110111111001101110110110111,,,λλλλλλλλλλλαααα(i )当2-=λ时,3).,,(),,(2),,(4321421321===ααααααααααr r r ,,此时向量组不等价 (ii )当1,2-=-≠λλ时,3).,,(2),,(3),,(4321421321===ααααααααααr r r ,,,此时向量组不等价(iii )当1,2-≠-≠λλ时,3).,,(),,(),,(4321421321===ααααααααααr r r ,此时向量组等价 综上,当1,2-≠-≠λλ时,向量组321,,ααα与421,,ααα等价;选C8、随机变量)4,0(~N X ,随机变量⎪⎭⎫⎝⎛31,3~B Y ,且X 与Y 不相关,则=+-)13(Y X D ( )A: 2; B: 4; C: 6; D: 10. 答案:D .解析:由题意知,0),(32)(,4)(===Y X Cov Y D X D ,; 10)(9)()3()13(=+=-=+-Y D X D Y X D Y X D ,故选D .9、设随机变量序列 ,,,21n X X X 独立同分布,且i X 的概率密度为⎩⎨⎧<-=其他11)(x xx f 则当∞→n 时,∑=n i i X n 121依概率收敛于( )A :81; B : 61; C: 31; D: 21. 答案:B .解析:61)1(2)1()()(1211222=-=-==⎰⎰⎰-+∞∞-dx x x dx x x dx x f x X E i ,从而∑∑====⎪⎭⎫ ⎝⎛n i i n i i X E n X n E 121261)(11,由辛钦大数定律可得,∑=n i i X n 121依概率收敛于⎪⎭⎫ ⎝⎛∑=n i i X n E 121,从而选B .10、设二维随机变量),(Y X 的概率分布若事件}2},{max{==Y X A 与事件}1},{min{==Y X B 相互独立,则=),(Y X Cov ( )A :6.0- ; B: 36.0-; C: 0; D: 48.0. 答案:B .解析:1.0}2,1{)(,2.0)(,1.0)(=====+=Y X P AB P B P b A P ,由B A ,相互独立,故)()()(B P A P AB P =,解得4.0=b ,由分布律的性质得2.0=a ,6.0)(,2.1)(,2.0)(-==-=XY E Y E X E从而36.0)()()(),(-=-=Y E X E XY E Y X Cov ,故选B . 二、填空题:11~16题,每题5分,共30分.11、若=⎪⎪⎭⎫ ⎝⎛+→xx x e cot 021lim .答案:21e .解析:21tan 21lim21ln cot lim cot 00021lim e eeex e e x xxx x x xx ===⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+→→→.12、⎰=++-2024242dx x x x .答案:333ln π-. 解析:原式⎰⎰++-+++=2022024*******dx x x dx x x x ⎰⎰++-++++=20222022)3()1(1642)42(dx x x x x x d 20202|31arctan 36|)42ln(+-++=x x x 333ln π-=.13、已知函数x xe e xf sin sin )(-+=,则=''')2(πf .答案:0.解析:方法一:x xxe xex f sin sin cos cos )(--=',x x e x x e x x x f sin 2sin 2)sin (cos )sin (cos )(-++-='',)cos sin cos 2()sin (cos cos )sin (cos cos )cos sin cos 2()(sin sin 2sin 2sin x x x eex x x e x x x e x x x x f xxxx +-++--+--='''--从而01111)2(=+--='''πf . 方法二:x xe ex f sin sin )(-+=,显然)()(sin sin x f e e x f x x=+=--,故)(x f 为偶函数,且周期π2=T ,于是)(x f '为奇函数,)(x f ''为偶函数,)(x f '''为奇函数,从而0)0(='''f ,而0)0()2(='''='''f f π.14、已知⎩⎨⎧≤≤=其他,010,)(x e x f x ,则=-⎰⎰∞+∞-∞+∞-dy x y f x f dx )()( .答案:2)1(-e .解析:记}10,10|),{(≤-≤≤≤=x y x y x D ,原式⎰⎰⎰⎰-=-=Dx y x Ddxdy e e dxdy x y f x f )()(,2111)1()1(-=-==⎰⎰⎰+-e dy e e dy edx e x x xxy x.15、设A 为3阶矩阵,交换A 的第2行和第3行,再将第2列的1-倍加到第一列,得到矩阵⎪⎪⎪⎭⎫ ⎝⎛----=001011112B ,则1-A 的迹=-)(1A tr .答案:-1.解析:令⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=100011001,010********P P ,则B AP P =21 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛==--0100011111000110010010111120101000011211BP P A 0)1)(1(1011112=++-=-------=-λλλλλλE A ,解得i i -==-=321,,1λλλ 故1-A 的特征值为i i =-=-=321,,1λλλ,从而1)(1-=-A tr16、设C B A ,,为随机事件,且A 与B 互不相容,A 与C 互不相容,B 与C 相互独立,31)()()(===C P B P A P ,则=)|(C B A C B P .答案:85. 解析:()C B A P C B P C B A C B P )()|(=()98)()())(()()(95)()()()()()()()(=+=-+==-+=-+=C B P A P C B A P C B P A P C B A P C P B P C P B P BC P C P B P C B P从而85)|(=C B A C B P . 三、解答题:17~22小题,共94分,解答应写出文字说明,证明过程或演算步骤. 17、(本题满分10分)设函数)(x y 是微分方程x y xy +=+'221满足条件3)1(=y 的解,求曲线)(x y y =的渐近线.解:])2([)(2121C dx ex ex y dxxdxx+⎰+⎰=⎰-])2([C dx e x e x x ++=⎰-]2[C xee xx +=-xCe x -+=2,其中C 为任意常数,又3)1(=y ,得e C =,即xe x x y -+=12)(.22limlim 1=+==-+∞→+∞→xe x x y a xx x ,0lim )2(lim 1==-=-+∞→+∞→xx x e x y b ,故x y 2=为曲线)(x y y =的斜渐近线.18、(本题满分12分)设某产品的产量Q 由资本投入量x 和劳动投入量y 决定,生产函数为612112y x Q =,该产品的销售单价P 与Q 的关系为Q P 5.11160-=,若单位资本投入量和单位蓝洞投入量的价格分别为6和8,求利润最大时的产量.解:利润y x xy y x y x Q Q y x PQ L 862161392086)6.11160(86316121---=---=--=令⎪⎩⎪⎨⎧=--=--='=--=--='--------08)722320(872232006)722320(362166960612132326521612131316121y x xy xy y x L y x y y y x L yx,得驻点)64,256(, 此时38464256126=⨯⨯=Q ,在实际问题中由于驻点唯一,故利润L 在384=Q 处取到最大值. 19、(本题满分12分)已知平面区域}20,42|),{(2≤≤-≤≤-=y y x y y x D ,计算⎰⎰+-=Ddxdy y x y x I 222)(. 解:⎰⎰⎰⎰⎰⎰--+-=+-=ππϕϕπρρϕϕϕρρϕϕϕ2cos sin 20220202222)sin (cos )sin (cos )(d d d d dxdy y x y x I D⎰⎰+-=πππϕϕϕϕ2202)cos sin 21(2d d 22)12(2|)sin (2202-=+-=+-=ππππϕϕπ. 20、(本题满分12分)求幂级数∑∞=++-02)12(41)4(n nnn x n 的收敛域及和函数)(x S . 解:1)12(41)4()32(41)4(lim 22211n <++-++-+++∞→nnn n n n x n xn ,解得1||<x ,从而1=R ,收敛区间)1,1(-,当1±=x 时,∑∞=++-0)12(41)4(n nn n 收敛,故收敛域为]1,1[-. 当]1,1[-∈x ,令∑∑∞=∞=+++-=012)12(412)1()(n n n nn n n x x n x S , 令∑∑∞=+∞=≠+-=+-=0120210,12)1(112)1()(n n n n n n x n x x n x x S ,此时∑∑∞=∞=++=-='⎪⎪⎭⎫ ⎝⎛+-02201211)1(12)1(n nn n n n x x n x ,x dx x n x x n n n arctan 1112)1(0202=+=+-⎰∑∞=,故0,arctan 1)(1≠=x x xx S .∑∑∞=+∞=≠+=+=0120220,1241)12(4)(n n n n n n x n x x n x x S )(,此时2202012444114124x x x n x n n nn n n -=-=='⎪⎪⎭⎫ ⎝⎛+∑∑∞=∞=+)(,0,22ln 4412402012≠-+=-=+⎰∑∞=+x x x dx x n x x n n n )(,故0,22ln 1)(2≠-+=x xx x x S .0=x 时,2)0(=S .综上当]1,1[-∈x ,⎪⎩⎪⎨⎧=-∈-++=0,2]1,0)0,1[,22ln1arctan 1)(x x xx x x x x S ( . 21、(本题满分12分)已知二次型312322213212343),,(x x x x x x x x f +++=,(1)求正交变换Qy x =将),,(321x x x f 化为标准形; (2)证明:2)(min=≠xx x f T x . 解:(1)二次型对应矩阵⎪⎪⎪⎭⎫⎝⎛=301040103A ,0)2()4(3010401032=---=---=-λλλλλλE A ,解得4,2321===λλλ21=λ对应特征向量满足0)2(=-x E A ,解得⎪⎪⎪⎭⎫⎝⎛-=1011ξ432==λλ对应特征向量满足0)4(=-x E A ,解得⎪⎪⎪⎭⎫ ⎝⎛=0102ξ,⎪⎪⎪⎭⎫ ⎝⎛=1013ξ321,,ξξξ已经两两正交,单位化得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛-=22022,010,22022321ηηη,故存在正交矩阵),,(321ηηη=Q ,当Qy x =时232221321442),,(y y y y y y f ++=.(2)2322212322232221232221222442)()()(y y y y y y y y y y y y y y f Qy Q y y f x x x f T T T Qy x T ++++=++++==== 当0≠x 时,由Qy x =得0≠y ,当0,0132≠==y y y 时,2322212322222y y y y y ++++的最小值为2,故2)(min=≠xx x f Tx . 22、(本题12分)设n X X X ,,,21 为来自均值为θ的指数分布总体X 的简单随机样本,m Y Y Y ,,,21 为来自均值为θ2的指数分布总体Y 的简单随机样本,且两样本相互独立,其中)0(>θθ是未知参数,利用样本n X X X ,,,21 ,m Y Y Y ,,,21 ,求θ的最大似然估计量θˆ,并求)ˆ(θD . 解:由题知:总体Y X ,的概率密度为,0021)(,0001)(2⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>=--y y ey f x x ex f y YxX θθθθ令θθθθθθθθθ21211111121211),(),(∑∑=⋅=⋅===--+=-=-==∏∏∏∏mj j ni ij iy x n m m mj y ni x m j j Y ni i Xee e ey f x fLθθθ2ln )(2ln ln 11∑∑==--+--=mj jni i yx n m m L02ln 2121=+++-=∑∑==θθθθmj jni i yx n m d L d 解得⎪⎪⎭⎫⎝⎛++=∑∑==m j j n i i y x n m 11211ˆθ故θ的最大似然估计量⎪⎪⎭⎫⎝⎛++=∑∑==m j j n i i Y X n m 11211ˆθ⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛++=∑∑∑∑====m j j n i i m j j n i i Y D X D n m Y X n m D D 11211)(41)()(1211)ˆ(θ⎪⎭⎫ ⎝⎛++=)(4)()(12j i Y D m X nD n m 而224)(,)(θθ==j i Y D X D ,从而n m m n n m D +=⎪⎭⎫ ⎝⎛⋅++=222244)(1)ˆ(θθθθ。

数学(三)真题 参考答案及解析

数学(三)真题 参考答案及解析

(15)已知函数
(f x)
x2x,
xex
1,
x x
0 0 ,求
f( x),并求
(f x)的极值.
【答案】
f( x)
2x2(x ln x 1),
(x
1)e
x
,
x x
0, 0.e
2
e1
和1
e1

(f x)的极小值;1为
(f x)的
极大值.
7
中公学员内部专用
版权所有 翻版必究
【解析】当 x 0 时, f( x)=(x2x) =(e2xln x) =e2xln(x 2lnx 2)=2x2(x lnx 1);
大值.
(16)设函数 (f u,v)具有二阶连续偏导数,函数 g(x,y) xy (f x y,x y),
8
中公学员内部专用
版权所有 翻版必究

2g x2
2g xy
2g y 2
.
【答案】1 3 f11 f22 .
【解析】因为 (f u,v)具有二阶连续偏导数,所以 f12 f21 .
由复合函数求导法则可知
0
(12)以 pA , pB 分别表示 A , B 两种商品的价格,设商品 A 的需求函数为
QA
500
p
2 A
pA
pB
2 pB2
,则当
pA
10,pB
20
时,商品
A 的需求量对自身价
格的弹性AA (AA 0) 为_______.
【答案】 0.4
【解析】由题干得
QA pA
=
2 pA
pB
.
因为
AA
pA QA

2020年全国硕士研究生入学考试数学三试题完整版附答案解析

2020年全国硕士研究生入学考试数学三试题完整版附答案解析

为 X 独立的是().
A. 5 ( X + Y ) B. 5 ( X −Y ) C. 3 ( X + Y ) D. 3 ( X −Y )
5
5
3
3
答案: B
解析:
E
5 5
(X
− Y )
=
5 E(X −Y) = 5
5 (0 − 0) = 0 5
D
5 (X 5

Y
)
=
1 5
D(
X

Y
)
=
1 5
6.设 A 为 3 阶矩阵 a1, a2 为 A 的属于特征值 1 的线性无关的特征向量, a3 为 A 的属于特征
1 0 0
值-1
的特征向量,则满足
P
−1
AP
=
0
−1
0
的可逆矩阵为
0 0 1
A.(a1 + a3, a2 ,-a3) B.(a1 + a2, a2 ,-a3) C.(a1 + a3, −a3 ,a2 ) D.(a1 + a2, −a2 ,a2 )
2020 年全国硕士研究生入学考试数学三试题
完整版附答案解析
一、选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个
选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.
f (x)−a
sin f ( x) − sin a
1.设 lim
= b, 则 lim
=
x→a x − a
x→a
x−a
A. b sin a
B. b cos a
C. b sin f (a)

2020年考研数学三真题完整版

2020年考研数学三真题完整版

全国硕士研究生入学统一考试备考资料2020年全国硕士研究生入学考试数学三试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上。

1、设 , )(lim b a x a x f a x =--→则 sin )(sin lim =--→a x a x f ax ()(A)a b sin (B)ab cos (C))(sin a f b (D))(cos a f b 2、函数)2)(1(1ln )(11--+=-x e x e x f x x 的第二类间断点的个数为()(A)1(B)2(C)3(D)43、设奇函数)(x f 在),(-+∞∞上具有连续导数,则()(A)⎰+x dt t f t f 0)](')([cos 是奇函数(B)⎰+x dt t f t f 0)](')([cos 是偶函数(C)⎰+x dt t f t f 0)]()('[cos 是奇函数(D)⎰+x dt t f t f 0)]()('[cos 是偶函数4、设幂级数n n n x na )2(1-∑∞=的收敛区间为(-2,6),则n n n x a 21)1(+∑∞=的收敛区间为(A)(-2,6)(B)(-3,1)(C)(-5,3)(D)(-17,15)5、设4阶矩阵)(ij a A =不可逆,12a 的代数余子式012≠A ,,,,,4321αααα为矩阵A 的列向量组,*A 为A 的伴随矩阵,则方程组0*=X A 的通解为()(A)332211αααk k k x ++=,其中321,,k k k 为任意数(B)432211αααk k k x ++=,其中321,,k k k 为任意数(C)433211αααk k k x ++=,其中321,,k k k 为任意数(D)433221αααk k k x ++=,其中321,,k k k 为任意数6、设A为3阶矩阵,,,21αα为A 的属于特征值1的线性无关的特征向量,3α为A 的属于-1的特征向量,满足的可逆矩阵P 为()(A)),-,(3231αααα+(B)),-,(3221αααα+(C)),,-(2331αααα+(D)),,-(2321αααα+7、设A,B,C为三个随机事件,且41(((===)))C P B P A P ,0)(=AB P ,121((==))BC P AC P ,则A,B,C,中恰有一个事件发生的概率为()(A)43(B)32(C)21(D)1258、设随机变量(X,Y)服从二维正态分布21;4,1;0,0(-N ,则下列随机变量中服从标准正态分布且与X 独立的是()(A))(55Y X +(B))-(55Y X (C))(33Y X +(D))-(33Y X 二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.9、设)]sin(arctan[y x xy z ++=,则),0(πdz =.10、曲线11、设某厂家某产品的产量为Q ,成本C(Q)=100+13Q,设产品的单价为P ,需求量23800)(-+=P P q ,则该厂家获得最大利润时的产量为.12、设平面区域,则D 绕y 轴旋转所成的旋转体的体积为.13、行列式14、设随机变量X 的概率分布为k k X P 21}{==,k=1,2,3, ,Y 表示X 被3除的余数,则EY=.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸指定位置上.15、(本题满分10分)已知b a ,为常数,若e n n -+1(1与a nb 在∞→n 时是等价无穷小,求b a ,。

2023年全国硕士研究生招生考试《数学三》真题及答案解析【完整版】

2023年全国硕士研究生招生考试《数学三》真题及答案解析【完整版】

2023年全国硕士研究生招生考试《数学三》真题及答案解析【完整版】一、选择题:1~10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。

1.已知函数f (x ,y )=ln (y +|xsiny|),则( )。

A .()0,1fx ∂∂不存在,()0,1f y ∂∂存在B .()0,1fx ∂∂存在,()0,1f y ∂∂不存在C .()0,1fx ∂∂,()0,1f y ∂∂均存在 D .()0,1fx ∂∂,()0,1f y ∂∂均不存在 〖答案〗A〖解析〗f (0,1)=0,由偏导数的定义()()()()0000,1ln 1sin1,10,1lim lim sin1lim x x x x x f x f fx x xx →→→+-∂===∂,因为0lim 1x x x +→=,0lim 1x x x -→=-,所以()0,1fx ∂∂不存在,()()()1110,10,0,1ln 1lim lim lim 1111y y y f y f f y y y y y y →→→-∂-====∂---,所以()0,1fy ∂∂存在.2.函数()()01cos ,0x f x x x x ≤=+>⎩的原函数为( )。

A .())()ln ,01cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B .())()ln 1,01cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C .())()ln ,01sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D .())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩〖答案〗D〖解析〗当x ≤0时,()(1d ln f x x x C ==+⎰当x >0时,()()()()()2d 1cos d 1dsin 1sin sin d 1sin cos f x x x x xx x x x x x x x x C =+=+=+-=+++⎰⎰⎰⎰原函数在(-∞,+∞)内连续,则在x =0处(110lim ln x x C C -→++=,()220lim 1sin cos 1x x x x C C +→+++=+ 所以C 1=1+C 2,令C 2=C ,则C 1=1+C ,故())()ln 1,0d 1sin cos ,0x C x f x x x x x C x ⎧++≤⎪=⎨⎪+++>⎩⎰,综合选项,令C =0,则f (x )的一个原函数为())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩.3.已知微分方程式y ′′+ay ′+by =0的解在(-∞,+∞)上有界,则( )。

2022年全国硕士研究生招生考试真题及答案(数学三)

2022年全国硕士研究生招生考试真题及答案(数学三)

2022年硕士研究生招生考试真题及答案(数学三)一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。

1.当x→0时,α(x),β(x)是非零无穷小量,给出以下四个命题①若α(x)~β(x),则α2(x)~β2(x)②若α2(x)~β2(x),则α(x)~β(x)③若α(x)~β(x),则α(x)−β(x)=o(α(x))④若α(x)−β(x)=o(α(x)),则α(x)~β(x)其中正确所有的序号是()A①②B①④C①③④D②③④正确答案:C解析:当x→0时,α(x)~β(x),则limx→0α(x)β(x)=1,limx→0α2(x)β2(x)=limx→0[α(x)β(x)]2=1则limx→0α(x )−β(x )β(x )=0,故α(x )−β(x )=o(α(x )),所以①③正确当x →0时,α2(x )~β2(x ),则lim x→0α2(x )β2(x )=1,则lim x→0α(x )β(x )=±1当lim x→0α(x )β(x )=−1时,α(x )与β(x )不是等价无穷小,所以②不正确当α(x )−β(x )=o(α(x ))时,lim x→0α(x )β(x )=lim x→0α(x )α(x )−o(α(x ))=lim x→0α(x )α(x )=1所以④正确,故选C2.已知a n =√n n−(−1)n n(n =1,2…),则{a n }()A.有最大值,有最小值B.有最大值,没有最小值C.没有最大值,有最小值D.没有最大值,没有最小值 答案:A3.设函数f(t)连续,令F (x,y )=∫(x −y −t )f (t )dt x−y0,则()A.ðFðx =ðF ðy ,ð2Fð2x =ð2Fð2y B.ðFðx =ðF ðy ,ð2Fð2x =−ð2Fð2y C.ðFðx =−ðF ðy ,ð2Fð2x =ð2Fð2y D.ðF ðx =−ðF ðy ,ð2F ð2x=−ð2F ð2y正确答案:C 解析:F (x,y )=∫(x −y −t )f (t )dt x−y=(x −y )∫f (t )dt x−y−∫tf (t )dt x−yðFðx =∫f (t )dt x−y 0+(x −y )f (x −y )−(x −y )f (x −y )=∫f (t )dt x−yð2Fðx 2=f (x −y )同理ðF ðy =∫f (t )dt x−y 0+(x −y )f (x −y )−(x −y )f (x −y )=∫f (t )dt x−yð2Fðy 2=f (x −y ) 综上所述,ðF ðx=−ðF ðy ,ð2F ðx 2=ð2F ðy 2,故选C4. I 1=∫x 2(1+cos x)1dx,I 2=∫ln(1+x)1+cos x10dx,I 3=∫2x 1+sin x10dx,则:()A.I 1<I 2<I 3B.I 3<I 1<I 2C.I 2<I 1<I 3D.I 3<I 2<I 1答案:A 解析:综上所述,故选A5.设A 为3阶矩阵,∧=(100−10000),则A 的特征值为1,-1,0的充分必要条件是()A.存在可逆矩阵P ,Q ,使得A=P ∧QB.存在可逆矩阵P ,使得A=P ∧P -1C.存在正交矩阵Q ,使得A=Q ∧Q -1D. 存在可逆矩阵P ,使得A=P ∧P T正确答案:B解析:因为A 有三个不同的特征值,所以A 有三个无关的特征向量,即A 可相似对角化,A 的特征值为1,-1,0。

2022年考研数学三真题(word完美版)

2022年考研数学三真题(word完美版)

2022年全国硕士研究生招生考试数学试题(数学三 )(科目代码: 303)一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所有选项前的字母填在答题卡指定位置 (1)当0→x 时,)(),(x x βα是非零无穷小量,给出以下四个命题 ①若)(~)(x x βα,则)(~)(22x x βα ②若)(~)(22x x βα,则)(~)(x x βα ③若)(~)(x x βα,则))(()()(x o x x αβα=- ④若))(()()(x o x x αβα=-,则)(~)(x x βα其中正确的是( )(A )①② (B )①④ (C )①③④ (D )②③④(2)已知,...)2,1()1(=--=n nn a nnn ,则}{n a ( ) (A )有最大值,有最小值 (B )有最大值,没有最小值 (C )没有最大值,有最小值 (D )没有最大值,没有最小值 (3)设函数)(t f 连续,令0(,)()()d x y F x y x y t f t t -=--⎰,则( )(A )y F x F y F x F 2222,∂∂=∂∂∂∂=∂∂ (B )y Fx F y F x F 2222,∂∂-=∂∂∂∂=∂∂ (C )y F x F y F x F 2222,∂∂=∂∂∂∂-=∂∂ (D )yF x F y F x F 2222,∂∂-=∂∂∂∂-=∂∂ (4)已知111123000ln(1)2d d d ,2(1cos )1cos 1sin x x xI x I x I x x x x+===+++⎰⎰⎰,,则( ) (A ) 321I I I << (B )312I I I << (C )231I I I << (D )123I I I <<(5)设A 为3阶矩阵,100010000⎛⎫ ⎪=- ⎪ ⎪⎝⎭Λ,则A 的特征值为0,11-,的充分必要条件是( )(A )存在可逆矩阵,P Q ,使得=A P ΛQ(B )存在可逆矩阵P ,使得1-=A P ΛP (C )存在正交矩阵Q ,使得1-=A Q ΛQ (D )存在可逆矩阵P ,使得T =A P ΛP(6)设矩阵2211111,214a a b b ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A b ,则线性方程组=Ax b 解的情况为( )(A )无解 (B )有解(C )有无穷多解或无解 (D )有唯一解或无解(7)设11,1λ⎛⎫ ⎪= ⎪ ⎪⎝⎭α 21,1λ⎛⎫ ⎪= ⎪ ⎪⎝⎭α 311,λ⎛⎫ ⎪= ⎪ ⎪⎝⎭α 421,λλ⎛⎫ ⎪= ⎪ ⎪⎝⎭α 若向量组123,,ααα与124,,ααα等价,则λ的取值范围是( )(A )}1,0{ (B )}2|{-≠∈λλλ,R (C )}2,1,|{-≠-≠∈λλλλR (D )}1|{-≠∈λλλ,R(8)设随机变量)4,0(~N X ,随机变量)31,3(~B Y ,且X 与Y 不相关,则=+-)13(Y X D ( )(A )2 (B )4 (C )6 (D )10 (9)设随机变量序列 ,,,,21n X X X 独立同分布,且1X 的概率密度为⎩⎨⎧<-=其他,01|||,|1)(x x x f ,则∞→n 时,211i n i X n =∑依概率收敛于( ) (A )81 (B )61 (C )31 (D )21(10)设二维随机变量),(Y X 的概率分布若事件}2},{max{=Y X 与事件}1},{min{=Y X 相互独立,则=),(Y X Cov ( )(A )6.0- (B )36.0- (C )0 (D )0.48二、填空题:11-16小题,每小题5分,共30分(11)cot 01e lim()2x xx →+=_______. (12)2224d 24x x x x -=++⎰_______. (13)已知函数sin sin ()e e x x f x -=+,则=''')2(πf _______.(14)已知函数e ,01()0,x x f x ⎧≤≤=⎨⎩其他,则d ()()d x f x f y x y +∞+∞-∞-∞-=⎰⎰_______.(15)设A 为3阶矩阵,交换A 的第2行和第3行,再将第2列的1-倍加到第1列,得到矩阵⎪⎪⎪⎭⎫⎝⎛----001011112,则1-A 的迹1()tr -=A _______. (16)设,,A B C 为随机事件,且A 与B 互不相容,A 与C 互不相容,B 与C 相互独立,31)()()(===C P B P A P ,则=)|(C B A C B P _______.三、解答题:17-22小题,共70分.解答应写出文字说明、证明过程或演算步骤(17)(本题满分10分)设函数)(x y 是微分方程x y xy +=+'221满足条件3)1(=y 的解,求曲线)(x y y =的渐近线.(18)(本题满分12分)设某产品的产量Q 由资本投入量x 和劳动投入量y 决定,生产函数为612112y x Q =, 该产品的销售单价P 与Q 的关系为 1.5Q 1160-=P ,若单位资本投入和单位劳动投入的价格分别为6和8, 求利润最大时的产量.(19)(本题满分12分)已知平面区域}20,42|),{(2≤≤-≤≤-=y y x y y x D ,计算y x y x y x I Dd d )(222⎰⎰+-=. (20)(本题满分12分)求幂级数nn nn x n 20)12(41)4(∑∞=++-的收敛域及和函数)(x S . (21)已知二次型312322213212343),,(x x x x x x x x f +++=(i )求正交变换=x Qy 将),,(321x x x f 化为标准形; (ii )证明T()min2x f x ≠=x x.(22)设n X X X ,,,21 为来自均值为θ的指数分布总体的简单随机样本,求m Y Y Y ,,,21 为来自均值为θ2的指数分布总体的简单随机样本,且两样本相互独立,其中)0(>θθ是未知参数.利用样本m n Y Y Y X X X ,,,,,,,2121 ,求θ的最大似然估计量θˆ,并求)ˆ(θD .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国硕士研究生入学统一考试数学三试题一.选择题(本题共10分小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在后边的括号内)(1) 当0x +→ )A .1- .ln(1B + 1C .1D -(2) 设函数()f x 在0x =处连续,下列命题错误的是: ( )A .若0()limx f x x →存在,则(0)0f = .B 若0()()lim x f x f x x→+-存在,则(0)0f =.C .若0()limx f x x →存在,则'(0)f 存在 .D 若0()()lim x f x f x x→--存在,则'(0)f 存在 (3) 如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是:( ).A .(3)F 3(2)4F =-- .B (3)F 5(2)4F =.C (3)F - 3(2)4F =- .D (3)F -5(2)4F =--(4) 设函数(,)f x y 连续,则二次积分1sin 2(,)xdx f x y dy ππ⎰⎰等于( ).A1arcsin (,)xdy f x y dx ππ+⎰⎰.B 10arcsin (,)ydy f x y dx ππ-⎰⎰.C 1arcsin 02(,)ydy f x y dx ππ+⎰⎰ .D 1arcsin 02(,)ydy f x y dx ππ-⎰⎰(5) 设某商品的需求函数为1602Q ρ=-,其中Q ,ρ分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是( ).A 10 .B 20 .C 30 .D 40(6) 曲线1ln(1),x y e x=++渐近线的条数为( ) .A 0 .B 1 .C 2 .D 3(7)设向量组线性无关,则下列向量组线相关的是( )(A )12αα-2131,,αααα-- (B)21αα-2331,,αααα++ (C )1223312,2,2αααααα--- (D)1223312,2,2αααααα+++(8)设矩阵211121112A --⎧⎫⎪⎪=--⎨⎬⎪⎪--⎩⎭,100010000B ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭则A 与B ( )(A )合同,且相似 (B) 合同,但不相似(C) 不合同,但相似 (D) 既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为 ( )2()3(1)A p p - 2()6(1)B p p - 22()3(1)C p p - 22()6(1)D p p -(10) 设随机变量(,)X Y 服从二维正态分布,且X 与Y 不相关,(),()x y f x f y 分别表示X, Y 的概率密度,则在Y y =条件下,X 的条件概率密度()X Y x y f 为( ) (A )()X f x (B)()y f y (C)()()x y f x f y (D)()()x y f x f y 二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)3231lim(sin cos )________2x x x x x x x →∞+++=+. (12)设函数123y x =+,则()(0)_________n y =. (13)设(,)f u v 是二元可微函数,(,),y x z f x y=则z zy x y∂∂-=∂∂________. (14)微分方程31()2dy y y dx x x =-满足11x y ==的特解为__________. (15)设距阵01000010,00010000A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭则3A 的秩为_______. (16)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于12的概率为________. 三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (17)(本题满分10分) 设函数()y y x =由方程ln 0y y x y -+=确定,试判断曲线()y y x =在点(1,1)附近的凹凸性. (18)(本题满分11分) 设二元函数2. 1.(,)1 2.x x y f x y x y ⎧+≤⎪=≤+≤计算二重积分(,).Df x y d σ⎰⎰其中{}(,)2D x y x y =+≤(19)(本题满分11分)设函数()f x ,()g x 在[],a b 上内二阶可导且存在相等的最大值,又()f a =()g a ,()f b =()g b ,证明:(Ⅰ)存在(,),a b η∈使得()()f g ηη=; (Ⅱ)存在(,),a b ξ∈使得''()''().f g ξξ= (20)(本题满分10分)将函数21()34f x x x =--展开成1x -的幂级数,并指出其收敛区间.1231232123123(21)(11)020(1)4021(2)x x x x x ax x x a x x x x a a ⎧++=⎪++=⎨⎪++=⎩++=-本题满分分设线性方程组与方程有公共解,求的值及所有公共解(22)(本题满分11分)设3阶实对称矩阵A 的特征值12311,2,2,(1,1,1)Tλλλα===-=-是A 的属于1λ的一个特征向量.记534B A A E =-+,其中E 为3阶单位矩阵.(Ⅰ)验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (Ⅱ)求矩阵B. (23)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2,01,0 1.(,)0,x y x y f x y --<<<<⎧=⎨⎩其他(Ⅰ)求{}2P X Y >;(Ⅱ)求Z X Y =+的概率密度()Z f z . (24)(本题满分11分)设总体X 的概率密度为1,0,21(;),1,2(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他.其中参数(01)θθ<<未知,12,,...n X X X 是来自总体X 的简单随机样本,X 是样本均值. (Ⅰ)求参数θ的矩估计量θ;(Ⅱ)判断24X 是否为2θ的无偏估计量,并说明理由.2007年考研数学(三)真题一、选择题(本题共10分小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在后边的括号内)(7) 当0x +→B )A .1- .ln(1B + 1C .1D -(8) 设函数()f x 在0x =处连续,下列命题错误的是: (D)A .若0()limx f x x →存在,则(0)0f = .B 若0()()lim x f x f x x→+-存在,则(0)0f =.C .若0()limx f x x →存在,则'(0)f 存在 .D 若0()()lim x f x f x x→--存在,则'(0)f 存在 (9) 如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是:(C ).A .(3)F 3(2)4F =-- .B (3)F 5(2)4F = .C (3)F - 3(2)4F =- .D (3)F -5(2)4F =--(10) 设函数(,)f x y 连续,则二次积分1sin 2(,)xdx f x y dy ππ⎰⎰等于(B ).A 1arcsin (,)xdy f x y dx ππ+⎰⎰.B 10arcsin (,)ydy f x y dx ππ-⎰⎰.C 1arcsin 02(,)ydy f x y dx ππ+⎰⎰ .D 1arcsin 02(,)ydy f x y dx ππ-⎰⎰(11) 设某商品的需求函数为1602Q ρ=-,其中Q ,ρ分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是(D ).A 10 .B 20 .C 30 .D 40 (12) 曲线1ln(1),x y e x=++渐近线的条数为(D ) .A 0 .B 1 .C 2 .D 3(7)设向量组线性无关,则下列向量组线相关的是 (A) (A )12αα-2131,,αααα-- (B)21αα-2331,,αααα++ (C)1223312,2,2αααααα--- (D)1223312,2,2αααααα+++(8)设矩阵211121112A --⎧⎫⎪⎪=--⎨⎬⎪⎪--⎩⎭,100010000B ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭则A 与B (B )(A )合同,且相似 (B) 合同,但不相似(C) 不合同,但相似 (D) 既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为 (C)2()3(1)A p p - 2()6(1)B p p - 22()3(1)C p p - 22()6(1)D p p -(10) 设随机变量(,)X Y 服从二维正态分布,且X 与Y 不相关,(),()x y f x f y 分别表示X, Y 的概率密度,则在Y y =条件下,X 的条件概率密度()X Y x y f 为 (A) (A )()X f x (B)()y f y (C)()()x y f x f y (D)()()x y f x f y 二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)3231lim(sin cos )___0_________2x x x x x x x →∞+++=+. (12)设函数123y x =+,则()1(1)2!(0)___________3n n n n n y +-=. (13)设(,)f u v 是二元可微函数,(,),y xz f x y=则''122(,)2(,)z z y y x x y x y f f x y x x y y x y∂∂-=-+∂∂. (14)微分方程31()2dy y y dx x x =-满足11x y==的特解为221ln x y x=+. (15)设距阵01000010,00010000A ⎛⎫⎪ ⎪= ⎪⎪⎝⎭则3A 的秩为__1___.(16)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于12的概率为_34_.三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (17)(本题满分10分)设函数()y y x =由方程ln 0y y x y -+=确定,试判断曲线()y y x =在点(1,1)附近的凹凸性. 【详解】:''''1'2'''''''21''11ln 2102ln 112ln121()(2ln )0(2ln )()11(2ln1)8()(1,1)x x x y y y y yy y y y y y y y y y y yy y x ===+-=⇒=+==+++=⇒=-+=-=-<+=对方程两边求导得从而有再对两边求导得求在(1,1)的值:所以在点处是凸的(18)(本题满分11分)设二元函数2. 1.(,)1 2.x x y f x y x y ⎧+≤⎪=≤+≤计算二重积分(,).Df x y d σ⎰⎰其中{}(,)2D x y x y =+≤【详解】:积分区域D 如图,不难发现D 分别关于x 轴和y 轴对称,设1D 是D 在第一象限中的部分,即 {}1(,)0,0D Dx y x y =≥≥利用被积函数(,)f x y 无论关于x 轴还是关于y 轴对称,从而按二重积分的简化计算法则可得1(,)4(,)DD f x y d f x y d σσ=⎰⎰⎰⎰设11112D D D =+,其中{}{}1112(,)1,0,0,(,)12,0,0D x y x y x y D x y x y x y =+≤≥≥=≤+≤≥≥于是1111211122(,)4(,)4(,)4(,) 44(,)DD D D D D f x y d f x y d f x y d f x y d x d f x y d σσσσσσ==+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰由于{}11(,)01,01D x y x y x =≤≤≤≤-,故11111222000111(1)3412xD x d x dx dy x x dx σ-==-=-=⎰⎰⎰⎰⎰为计算12D 上的二重积分,可引入极坐标(,)r θ满足cos ,sin x r y r θθ==.在极坐标系(,)r θ中1x y +=的方程是1,2cos sin r x y θθ=+=+的方程是, 2cos sin r θθ=+,因而12120,2cos sin cos sin D r πθθθθθ⎧⎫=≤≤≤≤⎨⎬++⎩⎭,故1222cos sin 2100cos sin 1cos sin D r d dr d rππθθθθθθθθ++==+⎰⎰⎰⎰⎰令tan2t θ=作换元,则2arctan t θ=,于是:0:012t πθ→⇔→且2222212,cos ,sin 111dt t td t t tθθθ-===+++,代入即得121122200001122100122(1)cos sin 122(1)22 221)D dt dtd t u t t t du du du u u πθθθ===-=++--=-==--==⎰⎰⎰⎰⎰⎰⎰综合以上计算结果可知11(,)41)1)123Df x y d σ=⨯+=+⎰⎰(19)(本题满分11分)设函数()f x ,()g x 在[],a b 上内二阶可导且存在相等的最大值,又()f a =()g a ,()f b =()g b ,证明:(Ⅰ)存在(,),a b η∈使得()()f g ηη=; (Ⅱ)存在(,),a b ξ∈使得''()''().f g ξξ=【详解】:证明:(1)设(),()f x g x 在(,)a b 内某点(,)c a b ∈同时取得最大值,则()()f c g c =,此时的c 就是所求点()()f g ηηη=使得.若两个函数取得最大值的点不同则有设()max (),()max ()f c f x g d g x ==故有()()0,()()0f c g c g d f d ->-<,由介值定理,在(,)c d 内肯定存在()()f g ηηη=使得(2)由(1)和罗尔定理在区间(,),(,)a b ηη内分别存在一点''1212,,()()f f ξξξξ使得==0在区间12(,)ξξ内再用罗尔定理,即''''(,)()()a b f g ξξξ∈=存在,使得. (20)(本题满分10分)将函数21()34f x x x =--展开成1x -的幂级数,并指出其收敛区间. 【详解】:102001111()()(4)(1)513121111513512111111()()()154151531()311243111111()()()(1)151101021()211122111()()153nn nnn n n f x x x x x x x x f x x x x x x f x x x x x x f x ∞=∞=∞===--+---+=----+-==-=-----<⇒-<<-===--++-<⇒-<<-=-+∑∑∑记其中其中则01()(1)10212nnn x x ∞=---<<∑故收敛域为:1231232123123(21)(11)20(1)4021(2)x x x x x ax x x a x x x x a a ⎧++=⎪++=⎨⎪++=⎩++=-本题满分分设线性方程组与方程有公共解,求的值及所有公共解【详解】:因为方程组(1)、(2)有公共解,即由方程组(1)、(2)组成的方程组1231232123123020(3)4021x x x x x ax x x a x x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=-⎩的解.即距阵211100201401211a a a ⎛⎫ ⎪ ⎪ ⎪⎪ ⎪-⎝⎭211100110001000340a a a ⎛⎫ ⎪- ⎪→ ⎪- ⎪ ⎪++⎝⎭方程组(3)有解的充要条件为1,2a a ==.当1a =时,方程组(3)等价于方程组(1)即此时的公共解为方程组(1)的解.解方程组(1)的基础解系为(1,0,1)Tξ=-此时的公共解为:,1,2,x k k ξ==当2a =时,方程组(3)的系数距阵为111011101220011014400001111100⎛⎫⎛⎫⎪ ⎪⎪ ⎪→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭此时方程组(3)的解为1230,1,1x x x ===-,即公共解为:(0,1,1)Tk - (22)(本题满分11分)设3阶实对称矩阵A 的特征值12311,2,2,(1,1,1)Tλλλα===-=-是A 的属于1λ的一个特征向量.记534B A A E =-+,其中E 为3阶单位矩阵.(Ⅰ)验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (Ⅱ)求矩阵B. 【详解】:(Ⅰ)可以很容易验证111(1,2,3...)n nA n αλα==,于是 5353111111(4)(41)2B A A E ααλλαα=-+=-+=-于是1α是矩阵B 的特征向量.B 的特征值可以由A 的特征值以及B 与A 的关系得到,即 53()()4()1B A A λλλ=-+, 所以B 的全部特征值为-2,1,1.前面已经求得1α为B 的属于-2的特征值,而A 为实对称矩阵,于是根据B 与A 的关系可以知道B 也是实对称矩阵,于是属于不同的特征值的特征向量正交,设B 的属于1的特征向量为123(,,)Tx x x ,所以有方程如下: 1230x x x -+=于是求得B 的属于1的特征向量为23(1,0,1),(1,1,0)T T ββ=-=因而,矩阵B 属于2μ=-的特征向量是是1(1,1,1)Tk -,其中1k 是不为零的任意常数.矩阵B 属于1μ=的特征向量是是23(1,1,0)(1,0,1)T T k k +-,其中23,k k 是不为零的任意常数.(Ⅱ)由1122332,,,B B B ααβαββ=-==有令矩阵123123(,,)(2,,)B αααβββ=-,则1(2,1,1)P BP diag -=-,所以那么 11123123211111033(2,,)(,,)210101303201110330B βββααα------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦(23)(本题满分11分)设二维随机变量(,)X Y 的概率密度为 2,01,0 1.(,)0,x y x y f x y --<<<<⎧=⎨⎩其他 (Ⅰ)求{}2P X Y >;(Ⅱ)求Z X Y =+的概率密度()Z f z .【详解】:(Ⅰ){}2(2)D P X Y x y dxdy >=--⎰⎰,其中D 为01,01x y <<<<中2x y >的那部分区域;求此二重积分可得{}112002(2)x P X Y dx x y dy >=--⎰⎰ 1205()8x x dx =-⎰724= (Ⅱ){}{}()Z F z P Z z P X Y z =≤=+≤当0z ≤时,()0Z F z =;当2z ≥时,()1Z F z =;当01z <<时,32001()(2)3z z xZ F z dx x y dy z z -=--=-+⎰⎰ 当12z <<时,1132115()1(2)2433Z z z x F z dx x y dy z z z --=---=-+-⎰⎰ 于是222,01()44,120,Z z z z f z z z z ⎧-<<⎪=-+≤<⎨⎪⎩其他(24)(本题满分11分)设总体X 的概率密度为1,0,21(;),1,2(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他.其中参数(01)θθ<<未知,12,,...n X X X 是来自总体X 的简单随机样本,X 是样本均值. (Ⅰ)求参数θ的矩估计量θ; (Ⅱ)判断24X 是否为2θ的无偏估计量,并说明理由.【详解】:(Ⅰ)记EX μ=,则 1022(1)x x EX dx dx θθμθθ==+-⎰⎰ 1142θ=+, 解出122θμ=-,因此参数θ的矩估计量为122X θ=-; (Ⅱ)只须验证2(4)E X 是否为2θ即可,而22221(4)4()4(())4(())E X E X DX E X DX EX n ==+=+,而 1142EX θ=+,221(12)6EX θθ=++,22251()481212DX EX EX θθ=-=-+, 于是222533131(4)1233n n n E X n n n θθθ+-+=++≠ 因此24X 不是为2θ的无偏估计量.。

相关文档
最新文档