2012年长春市试考数学试题及答案

合集下载

2012年长春市中考试题参考答案

2012年长春市中考试题参考答案

2012年长春市初中毕业生学业考试数学参考答案及评分标准一、选择题(每小题3分,共24分)1.A 2.C 3.B 4.D 5.C 6.A 7.C 8.D 二、填空题(每小题3分,共18分) 910.2ab11.60 12.165 13.3 14.18三、解答题(每小题5分,共20分)15.解:原式=22242632a a a -++=+. (3分)当13a =时,原式=2173()233⨯+=. (5分)16.解:(3分)∴P (两个数字之和是6)=29. (5分) 17. 解:设指导前平均每秒撤离x 人. (1分)根据题意,得4545303x x-=. (3分) 解得1x =.经检验,1x =是原方程的解,且符合题意.答:指导前平均每秒撤离1人. (5分)18. 解:过点O 作OC ⊥AB 于C ,连结OA . (1分)∴1112622AC AB ==⨯=. 在Rt △AOC 中,∠ACO =90°,OC =428⨯=, (3分)或∴10OA =.∴⊙O 的半径为10 . (5分)四、解答题(每小题6分,共12分)19.解:(1)18201250++=,所以a 值为50. (2分) (2)20100%40%50⨯=, 所以这50名学生选择去净月潭游园的人数的百分比为40%. (4分) (3)650×40%=260(人).所以该校七年级650名学生中会选择净月潭游园的人数约为260人.(6分)20.解:过点O 作OD ⊥AB 于D . (1分)∵OA =OB , ∴ AB=2 AD . ∵CO ∥AB ,∴∠OAD =∠AOC =59º . (2分) 在Rt △ADO 中,∠ADO =90,cos ADOAD OA∠=, (4分) ∵OA =108,∴cos 108cos591080.5256.16AD OA OAD =⋅∠=⨯=⨯=.∴AB =2×56.16=112.32≈112.3(cm).答:支架两个着地点之间的距离AB 约为112.3cm . (6分) 五、解答题(每小题6分,共12分) 21.解:以下答案供参考.画对一个得3分,共6分.(画出符合要求的凹四边形同样赋分)22.解:(1) ∵四边形OABC 是平行四边形,∴CB = OA , CB ∥OA . ∵A (2,0) ,C (1-,2),∴B (1,2). (3分) ∵反比例函数ky x=(k ≠0)的图象经过点B , ∴21k=,2k =. (4分) (2) 点C '在反比例函数2y x=的图象上. 理由:由翻折可知,点C '与点C 关于x 轴对称, ∵C (1-,2), ∴C '(-1,-2).由(1)知,反比例函数解析式为 2y x= . ∵当1x =-时,221y ==--, ∴点C '在反比例函数2y x=的图象上. (6分) 六、解答题(每小题7分,共14分) 23.解:(1)∵60320=(元), ∴工人一天加工零件不超过20个时每个零件的加工费为3元. (1分) (2)当40≤x ≤60 时,设y 与x 的函数关系式为y kx b =+.∵图象经过(40,140)、(60,240),∴40140,60240.k b k b +=⎧⎨+=⎩解得5,60.k b =⎧⎨=-⎩ ∴当40≤x ≤60 时,y 与x 的函数关系式为560y x =- . (4分) (3)设小王第一天加工a 个零件,则第二天加工(60)a -个零件.∵小王第一天加工零件不足20个, ∴0≤a <20. ∴40<60a -≤60.根据题意,得()356060220a a +--= . 解得a =10.∴小王第一天加工10个零件. (7分)24.拓展: ∵1ABE BAE ∠=∠+∠, BAC CAF BAE ∠=∠+∠,又∵1BAC ∠=∠,∴ABE BAE CAF BAE ∠+∠=∠+∠.∴ABE CAF ∠=∠. (2分) ∵∠1 =∠2, 1180AEB ∠+∠=︒,2180CFA ∠+∠=︒,∴AEB CFA ∠=∠. (4分) 又∵AB =AC ,∴△ABE ≌△CAF . (5分)应用: 6 (7分) 七、解答题(每小题10分,共20分)25.解:(1)在242y x =-+中,当x =16时,y =10.在y x =中,当x =4时y =4.∴点C 的纵坐标为10,点D 的纵坐标为4. (2分) (2)由(1)知,点C 的坐标为(16,10),点D 的坐标为(4,4).∵抛物线图象经过点C 、D ,∴2563210,168 4.a c a c -+=⎧⎨-+=⎩解得1,810.a c ⎧=⎪⎨⎪=⎩∴a 的值为18, c 的值为10. (4分) (3) 在y x =中,当x =5时y =5.∴点Q 的横坐标为5.由(2)可知,抛物线的解析式为212108y x x =-+. 当y =5时,2121058x x -+=,解得8x =±.∴点P 的横坐标为8±.①当点P 在点Q 左侧时,线段PQ 的长为5(83--=.②当点P 在点Q 右侧时,线段PQ 的长为(853+-=+.∴线段PQ 的长为3或3+(8分) (4)当0≤m <4或12≤m <16时,d 随m 增大而减小. (10分)26.解:(1)(2t -) (不要求写t 的取值范围) (1分)(2)①当点P 在线段DE 上时,如图①.PD = PN =PQ =2. ∴22t -=. ∴t =4.②当点P 在线段BE 上时,如图②.PN =2PB .∵PN =PC =(t -6)+2=t -4, BP=2-(t -6)=8-t , ∴42(8)t t -=-,解得 203t =. ∴当点N 落在AB 边上时,t 的值为4或203. (3分)(3)①当2<t <4时,如图③,S =2212(4)4t --,即2124S t t =-+.②当203<t <8时,如图④, S =()221(4)3204t t ---, 即2522844S t t =-+-. (7分)(4)143t =或5t =或6≤t ≤8. (10分)提示:当点H 第一次落在线段CD 上时,12.5(4)(4)22t t -+-=,解得143t =.当点H 第二次落在线段CD 上时,12.5(4)2(4)2t t --=-,解得5t =.当点H 第三次落在线段CD 上时,16 2.5(4)(4)2t t --=-,解得6t =.当6≤t ≤8时,点H 恒在线段CD 上.。

吉林省长春市2011-2012学年八年级数学下学期第一次月考试题(1)(无答案)

吉林省长春市2011-2012学年八年级数学下学期第一次月考试题(1)(无答案)

8.已知□ABCD 中,对角线 AC 与 BD 相交于点 O,AC=8 cm,BD=12cm,AB=10cm,则△AOB 的周长为( ) 。 A 30cm B.20cm C.19cm D. 18cm 二、填空题(每空 3 分,共 21 分) 9、命题“如果一 个三角形有一个角是钝角,那么它的另外两个角是锐角”的逆命题 是 ________.,____ __. 10、如图,在Δ ABC 中,∠A=50°,AB=AC,AB 的垂直平分线 DE 交 AC 于 D,则∠DBC 的度 数是____ _ ___.

(B) 6:5:4:3 (C)6:4:3:5 (D)3:4:6:5
4.四边形 ABCD,从(1)AB∥CD;(2)AB=CD;(3)BC∥AD; (4)BC=AD 这四个条件中任选两个,其中能使四边形 ABCD 是平行四边形的选法有( ) (A)3 种 (B)4 种 (C)5 种 (D)6 种
Байду номын сангаас
11.已知四边形 ABCD 中,对角线 AC 与 BD 相交于点 O,AO=OC,BD=16cm,则当 OB=_____cm 时,四边形 ABCD 是平行四边形. 12.用边长分别为 2cm,3cm,4cm 的两个全等三角形拼成四边形,共能拼成_________ 个四边形,其中_________ _____个为平行四边形。 13.在四边形 ABCD 中,AD∥BC,但 AD≠BC,若使它成为等腰梯形,则需要添加的条件是 __________(填一个正确的条件即可). 14 如图,矩形 ABCD 的对角线相交于点 O,AB=2,BC=4,过点 O 任作一条直线分别交 AD、 BC 于点 E,F,则阴影部分的面 积是________.
三、解答题(每小题 5 分,共 30 分) 15、已知:如图,AD∥BC,BD 平分∠ABC。求证:AB=AD

数学_2012年吉林省长春市高考数学一模试卷(理科)(含答案)

数学_2012年吉林省长春市高考数学一模试卷(理科)(含答案)

2012年吉林省长春市高考数学一模试卷(理科)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填写在答题纸上)1. 设集合A ={x||x|≤2, x ∈R},B ={y|y =−x 2, −1≤x ≤2},则∁R (A ∩B)等于( ) A R B (−∞, −2)∪(0.+∞) C (−∞, −1)∪(2, +∞) D φ2. 若复数(a +i)2在复平面内对应的点在y 轴负半轴上,则实数a 的值是( )A 1B −1C √2D −√23. “a <−2”是“函数f(x)=ax +3在区间[−1, 2]上存在零点x 0”的( )A 充分非必要条件B 必要非充分条件C 充分必要条件D 既非充分也非必要条件 4. 阅读如图所示的程序框图,输出的结果S 的值为( )A 0B √32 C √3 D −√325. △ABC 中,∠A =π3,BC =3,AB =√6,则∠C =( ) A π6B π4C 3π4D π4或3π46. 设a 、b 是两条不同的直线,α、β是两个不同的平面,则下列四个命题:①若a ⊥b ,a ⊥α,b ⊄α,则b // α; ②若a // α,a ⊥β,则α⊥β;③若a ⊥β,α⊥β,则a // α或a ⊂α; ④若a ⊥b ,a ⊥α,b ⊥β,则α⊥β 其中正确命题的个数为( ) A 1 B 2 C 3 D 47. 如图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为( )A 32π B 2π C 3π D 4π8. 函数y =cos(ωx +φ)(ω>0, 0<φ<π)为奇函数,该函数的部分图象如图所表示,A 、B 分别为最高点与最低点,并且两点间的距离为2√2,则该函数的一条对称轴为( )A x =2π B x =π2 C x =1 D x =29. 在△ABC 中,P 是BC 边中点,角A 、B 、C 的对边分别是a 、b 、c ,若cAC →+aPA →+bPB →=0→,则△ABC 的形状为( )A 直角三角形B 钝角三角形C 等边三角形D 等腰三角形但不是等边三角形 10. 类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=a x −a −x ,C(x)=a x +a −x ,其中a >0,且a ≠1,下面正确的运算公式是:( ) ①S(x +y)=S(x)C(y)+C(x)S(y);②S(x −y)=S(x)C(y)−C(x)S(y); ③2S(x +y)=S(x)C(y)+C(x)S(y);④2S(x −y)=S(x)C(y)−C(x)S(y). A ①② B ③④ C ①④ D ②③11. 设e 1、e 2分别为具有公共焦点F 1、F 2的椭圆和双曲线的离心率,P 是两曲线的一个公共点,且满足|PF 1→+PF 2→|=|F 1F 2→|,则12√e 1+e 2的值为( )A √22 B 2 C √2 D 112. 设f(x)是定义在R 上的增函数,且对于任意的x 都有f(1−x)+f(1+x)=0恒成立.如果实数m ,n 满足不等式组{f(m 2−6m +23)+f(n 2−8n)<0,m >3,那么m 2+n 2的取值范围是( )A (3, 7)B (9, 25)C (13, 49)D (9, 49)二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题纸中的横线上).13. 若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7=________.14. 已知直线l 1与圆x 2+y 2+2y =0相切,且与直线l 2:3x +4y −6=0平行,则直线l 1的方程是________.15. 设f(x)={x 2x ∈[0,1]1xx ∈(1,e](e 为自然对数的底数),则∫f e0(x)dx 的值________.16. 已知函数f(x)={e x,x ≥0−2x,x <0,则关于x 的方程f[f(x)]+k =0给出下列四个命题:①存在实数k ,使得方程恰有1个实根;②存在实数k ,使得方程恰有2个不相等的实根; ③存在实数k ,使得方程恰有3个不相等的实根; ④存在实数k ,使得方程恰有4个不相等的实根.其中正确命题的序号是________(把所有满足要求的命题序号都填上).三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤).17. 如图,在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A ,B 两点.(1)如果A ,B 两点的纵坐标分别为45,1213,求cosα和sinβ的值;(2)在(1)的条件下,求cos(β−α)的值;(3)已知点C(−1,√3),求函数f(α)=OA →⋅OC →的值域.18. 已知数列{a n }满足a 1=1,a n+1=2a n +1(n ∈N ∗). (1)求数列{a n }的通项公式;(2)若数列{b n }满足4b 1−1⋅42b 2−1⋅43b 3−1…4nb n −1=(a n +1)n ,求数列{b n }的通项公式.19. 如图,在底面为直角梯形的四棱锥P −ABCD 中,AD // BC ,∠ABC =90∘,PD ⊥面ABCD .AD =1,AB =√3,BC =4. (1)求证:BD ⊥PC ;(2)求直线AB 与平面PDC 所成角;(3)设点E 在棱PC 、上,PE →=λPC →,若DE // 面PAB ,求λ的值.20. 已知点A(−1, 0),B(1, 0),动点M 的轨迹曲线C 满足∠AMB =2θ|AM →|⋅|BM →|cos 2θ=3,过点B 的直线交曲线C 于P 、Q 两点.(1)求|AM →|+|BM →|的值,并写出曲线C 的方程;(2)求△APQ 面积的最大值.21. 已知函数f(x)=e x −ax −1(a >0,e 为自然对数的底数). (1)求函数f(x)的最小值;(2)若f(x)≥0对任意的x ∈R 恒成立,求实数a 的值; (3)在(2)的条件下,证明:(1n )n +(2n )n +⋯+(n−1n)n+(n n )n <ee−1(其中n ∈N ∗).四、请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22. 如图,⊙O 内切于△ABC 的边于D ,E ,F ,AB =AC ,连接AD 交⊙O 于点H ,直线HF 交BC 的延长线于点G . (1)求证:圆心O 在直线AD 上. (2)求证:点C 是线段GD 的中点. 23. 选修4−4:坐标系与参数方程在极坐标系中,O 为极点,半径为2的圆C 的圆心的极坐标为(2,π3).(1)求圆C 的极坐标方程;(2)P 是圆C 上一动点,点Q 满足3OP →=OQ →,以极点O 为原点,以极轴为x 轴正半轴建立直角坐标系,求点Q 的轨迹的直角坐标方程. 24. 选修4−5:不等式选讲已知函数f(x)=|x −1|+|2x +2|. (1)解不等式f(x)>5;(2)若不等式f(x)<a(a ∈R)的解集为空集,求a 的取值范围.2012年吉林省长春市高考数学一模试卷(理科)答案1. B2. B3. A4. B5. B6. D7. A8. C9. C 10. B 11. A 12. C 13. 1314. 3x +4y −1=0或3x +4y +9=0 15. 4316. ①②17. 解:(1)根据三角函数的定义,得sinα=45,sinβ=1213.又α是锐角,所以,cosα=35. (2)由(1)知,sinα=45,sinβ=1213.又α是锐角,β是钝角, 所以cosα=35,cosβ=−513.所以cos(β−α)=cosβcosα+sinβsinα=(−513)×35+1213×45=3365.(3)由题意可知,OA →=(cosα,sinα),OC →=(−1,√3). 所以f(α)=OA →⋅OC →=√3sinα−cosα=2sin(α−π6), 因为0<α<π2,所以−π6<α−π6<π3, 所以函数f(α)=OA →⋅OC →的值域为(−1,√3).18. 解:(1)∵ a n+1=2a n +1,∴ a n+1+1=2(a n +1),a 1=1,所以数列{a n +1}是首项为2,公比为2的等比数列,所以a n +1=2⋅2n−1=2n , a n =2n −1,(2)∵ 4b 1−1⋅42b 2−1⋅43b 3−1…4nb n −1=(a n +1)n ,∴ 4b 1+2b 2+3b 3+⋯+nb n −n =2n 2∴ 2(b 1+2b 2+3b 3+...+nb n )−2n =n 2, 即2(b 1+2b 2+3b 3+...+nb n )=n 2+2n①当n ≥2时,2[b 1+2b 2+3b 3+...(n −1)b n−1]=(n −1)2+2(n −1)② ①-②得,2nb n =2n +1,b n =1+12n , 当n =1时也适合,所以b n =1+12n,19.解:(1)∵ ∠DAB =90∘,AD =1,AB =√3,∴ BD =2,∠ABD =30∘,∵ BC // AD∴ ∠DBC =60∘,BC =4,由余弦定理得DC =2√3,BC 2=DB 2+DC 2,∴ BD ⊥DC ,∵ PD ⊥面ABCD ,∴ BD ⊥PD ,PD ∩CD =D ,∴ BD ⊥面PDC ,∵ PC 在面PDC 内,∴ BD ⊥PC(2)在底面ABCD 内过D 作直线DF // AB ,交BC 于F , 分别以DA 、DF 、DP 为x 、y 、z 轴建立如图空间坐标系, 由(1)知BD ⊥面PDC ,∴ DB →就是面PDC 的法向量,A(1, 0, 0),B(1, √3, 0),P(0, 0, a)AB →=(0, √3, 0),DB →=(1, √3, 0), 设AB 与面PDC 所成角大小为θ,cosθ=2√3=√32, ∵ θ∈(0∘, 90∘)∴ θ=30∘(3)在(2)中的空间坐标系中A 、(1, 0, 0),B 、(1, √3, 0),P(0, 0, a)C 、(−3, √3, 0), PC →=(−3, √3, −a),PE →=(−3λ, √3λ, −aλ),DE →=DP →+PE →=(0, 0, a)+(−3λ, √3λ, −aλ)=(−3λ, √3λ, a −aλ) AB →=(0, √3, 0),PA →=(1, 0, −a), 设n →=(x, y, z)为面PAB 的法向量, 由AB →⋅n →=0,得y =0,由PA →⋅n →=0,得x −az =0,取x =a ,z =1,n →=(a, 0, 1), 由D 、E // 面PAB 得:DE →⊥n →,∴ DE →⋅n →=0,−3aλ+a −aλ=0,∴ λ=14 20. 解:(1)由题意,|AM|=|AM →|,|BM|=|BM →| 设M(x, y),在△MAB 中,|AB|=2,∠AMB =2θ ∴ |AM|2+|BM 2|−2|AM|⋅|BM|cos2θ=4∴ (|AM|+|BM|)2−2|AM|⋅|BM|(1+cos 2θ)=4 ∴ (|AM|+|BM|)2−4|AM|⋅|BM|cos 2θ=4 ∵ |AM →|⋅|BM →|cos 2θ=3 ∴ |AM|+|BM|=4 ∴ |AM →|+|BM →|=4因此点M 的轨迹是以A 、B 为焦点的椭圆,a =2,c =1 ∴ 曲线C 的方程为x 24+y 23=1(2)设直线PQ 方程为x =my +1(m ∈R)由x =my +1与x 24+y 23=1,消元可得:(3m 2+4)y 2+6my −9=0显然,方程①的△>0,设P(x 1, y 1),Q(x 2, y 2),则有S =12×2×|y 1−y 2|=|y 1−y 2|y 1+y 2=−6m3m 2+4,y 1y 2=−93m 2+4∴ (y 1−y 2)2=(y 1+y 2)2−4y 1y 2=48×3m 2+3(3m 2+4)2令t =3m 2+3,则t ≥3,(y 1−y 2)2=48t+1t+2由于函数y =t +1t在[3, +∞)上是增函数,∴ t +1t≥103故(y 1−y 2)2≤9,即S ≤3∴ △APQ 的最大值为3,此时直线PQ 的方程为x =1 21. (1)解:由题意a >0,f′(x)=e x −a , 由f′(x)=e x −a =0得x =lna .当x ∈(−∞, lna)时,f′(x)<0;当x ∈(lna, +∞)时,f′(x)>0. ∴ f(x)在(−∞, lna)单调递减,在(lna, +∞)单调递增.即f(x)在x =lna 处取得极小值,且为最小值,其最小值为f(lna)=e lna −alna −1=a −alna −1.(2)解:f(x)≥0对任意的x ∈R 恒成立,即在x ∈R 上,f(x)min ≥0. 由(1),设g(a)=a −alna −1,所以g(a)≥0. 由g′(a)=1−lna −1=−lna =0得a =1.∴ g(a)在区间(0, 1)上单调递增,在区间(1, +∞)上单调递减, ∴ g(a)在a =1处取得最大值,而g(1)=0. 因此g(a)≥0的解为a =1,∴ a =1.(3)证明:由(2)知,对任意实数x 均有e x −x −1≥0,即1+x ≤e x . 令x =−kn (n ∈N ∗, k =0, 1, 2, 3,…,n −1),则0<1−kn ≤e −kn.∴ (1−kn )n ≤(e −kn )n =e −k . ∴ (1n )n +(2n )n +⋯+(n−1n)n+(nn )n ≤e −(n−1)+e −(n−2)+⋯+e −2+e −1+1=1−e −n 1−e −1<11−e−1=ee−1.22.证明:(1)∵ AB =AC ,AF =AE∴ CD =BE又∵ CF =CD ,BD =BE ∴ CF =BD又∵ △ABC 是等腰三角形, ∴ AD 是∠CAB 的角分线∴ 圆心O 在直线AD 上.(II)连接DF ,由(I)知,DH 是⊙O 的直径, ∴ ∠HFD =90∘,∴ ∠FDH +∠FHD =90∘ 又∵ ∠G +∠FHD =90∘ ∴ ∠FDH =∠G∵ ⊙O 与AC 相切于点F ∴ ∠AFH =∠GFC =∠FDH ∴ ∠GFC =∠G ∴ CG =CF =CD∴ 点C 是线段GD 的中点.23. 解:(1)设M(ρ, θ)是圆C 上任一点,过C 作CH ⊥OM 于H 点,则在RT △COH 中,OH =OCsin∠COH ,而∠COH =∠COM =|θ−π3|,OH =12OM =12ρ,OC =2,所以12ρ=2cos|θ−π3|,即ρ=4cos(θ−π3)为圆C 的极坐标方程.(2)设Q 的极坐标为(ρ, θ),由于3OP →=OQ →,所以点P 的极坐标为(13ρ, θ),代入(1)中方程得13ρ=4cos(θ−π3)即ρ=6cosθ+6√3sinθ,∴ ρ2=6ρcosθ+6√3ρsinθ,所以点Q 的轨迹的直角坐标方程为x 2+y 2−6x −6√3y =0.24. 解:(1)不等式f(x)>5即|x −1|+|2x +2|>5,∴ ①{x <−11−x −2x −2>5,或②{−1≤x ≤11−x +2x +2>5,或③{x >1x −1+2x +2>5.解①得x <−2,解②得x ∈⌀,解③得x >43.故原不等式的解集为{x|x <−2, 或x >43}.(2)由于函数f(x)=|x −1|+|2x +2|表示数轴上的x 对应点到1对应点的距离加上 数轴上的x 对应点到−1对应点的距离的2倍,故当x =−1时,函数f(x)=|x −1|+|2x +2|有最小值等于2,即 f(x)∈[2, +∞). 由于f(x)<a(a ∈R)的解集为空集,则a ∈(−∞, 2].。

2023年吉林省长春市中考数学真题(解析版)

2023年吉林省长春市中考数学真题(解析版)

2023年长春市初中学业水平考试数学本试卷包括三道大题,共24道小题,共6页.全卷满分20分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将自己的姓名,准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(本大题共8小题,每小题3分,共24分)1. 实数a 、b 、c 、d 伍数轴上对应点位置如图所示,这四个数中绝对值最小的是( )A. aB. bC. cD. d【答案】B【解析】【分析】根据绝对值的意义即可判断出绝对值最小的数.【详解】解:由图可知,3a >,01b <<,01c <<,23d <<,比较四个数的绝对值排除a 和d ,根据绝对值的意义观察图形可知,c 离原点的距离大于b 离原点的距离,<b c \,\这四个数中绝对值最小的是b .故选:B 【点睛】本题考查了绝对值意义,解题的关键在于熟练掌握绝对值的意义,绝对值是指一个数在数轴上所对应点到原点的距离,离原点越近说明绝对值越小.2. 长春龙嘉国际机场T3A 航站楼设计创意为“鹤舞长春”,如图所示,航站楼的造型如仙鹤飞翔,蕴含了对吉春大地未来发展的美好愿景.本期工程按照满足2030年旅客吞吐量38000000人次目标设计的,其中38000000这个数用科学记数法表示为().的A. 80.3810´ B. 63.810´ C. 83.810´ D. 73.810´【答案】D【解析】【分析】根据科学记数法公式转换即可,科学记数法公式为:10n a ´,1<10a £,n 为整数的位数减1.【详解】解:738000000 3.810=´,故选:D .【点睛】本题考查了科学记数法;解题的关键是熟练掌握科学记数法的定义.3. 下列运算正确的是( )A. 32a a a-= B. 23a a a ×= C. ()325a a = D. 623a a a ¸=【答案】B【解析】【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】A. 3a 与2a 不能合并,故该选项不正确,不符合题意;B. 23a a a ×=,故该选项正确,符合题意;C. ()326a a =,故该选项不正确,不符合题意;D. 624a a a ¸=,故该选项不正确,不符合题意;故选:B .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握以上运算法则是解题的关键.4. 下图是一个多面体的表面展开图,每个面都标注了数字.若多面体的底面是面③,则多面体的上面是( )A. 面①B. 面②C. 面⑤D. 面⑥【答案】C【解析】【分析】根据底面与多面体的上面是相对面,则形状相等,间隔1个长方形,且没有公共顶点,即可求解.【详解】解:依题意,多面体的底面是面③,则多面体的上面是面⑤,故选:C .【点睛】本题考查了长方体的表面展开图,熟练掌握基本几何体的展开图是解题的关键.5. 如图,工人师傅设计了一种测零件内径AB 的卡钳,卡钳交叉点O 为AA ¢、BB ¢的中点,只要量出A B ¢¢的长度,就可以道该零件内径AB 的长度.依据的数学基本事实是( )A. 两边及其夹角分别相等的两个三角形全等B. 两角及其夹边分别相等的两个三角形全等C. 两余直线被一组平行线所截,所的对应线段成比例D. 两点之间线段最短【答案】A【解析】【分析】根据题意易证()SAS AOB A OB ¢¢V V ≌,根据证明方法即可求解.【详解】解:O 为AA ¢、BB ¢的中点,OA OA \¢=,OB OB ¢=,AOB A OB ¢¢Ð=ÐQ (对顶角相等),\在AOB V 与A OB ¢¢△中,OA OA AOB A OB OB OB =ìïÐ=Ðíï=¢¢î¢,()SAS AOB A OB ¢¢\△≌△,AB A B ¢¢\=,故选:A .【点睛】本题考查了全等三角形的证明,正确使用全等三角形的证明方法是解题的关键.6. 学校开放日即将来临,负责布置的林老师打算从学校图书馆的顶楼拉出一条彩旗绳AB 到地面,如图所示.已彩旗绳与地面形成25°角(即25BAC Ð=°)、彩旗绳固定在地面的位置与图书馆相距32米(即32AC =米),则彩旗绳AB 的长度为( )A. 32sin 25°米B. 32cos 25°米C. 32sin 25°米D. 32cos 25°米【答案】D【解析】【分析】根据余弦值的概念即邻边与斜边之比,即可求出答案.【详解】解:Q AC 表示的是地面,BC 表示是图书馆,AC BC \^,ABC \V 为直角三角形,32cos 25cos 25AC AB \==°°(米).故选:D .【点睛】本题考查的是解直角三角形的应用,涉及到余弦值,解题的关键在于熟练掌握余弦值的概念.7. 如图,用直尺和圆规作MAN Ð的角平分线,根据作图痕迹,下列结论不一定正确的是( )A. AD AE= B. AD DF = C. DF EF = D. AF D E^【答案】B 【解析】【分析】根据作图可得,AD AE DF EF ==,进而逐项分析判断即可求解.【详解】解:根据作图可得,AD AE DF EF ==,故A ,C 正确;∴,A F 在DE 的垂直平分线上,∴AF D E ^,故D 选项正确,而DF EF =不一定成立,故B 选项错误,故选:B .【点睛】本题考查了作角平分线,垂直平分线的判定,熟练掌握基本作图是解题的关键.8. 如图,在平面直角坐标系中,点A 、B 在函数(0,0)k y k x x=>>的图象上,分别以A 、B 为圆心,1为半径作圆,当A e 与x 轴相切、B e 与y 轴相切时,连结AB ,AB =k 的值为( )A. 3B.C. 4D. 6【答案】C【解析】【分析】过点,A B 分别作,y x 轴的垂线,垂足分别为,E D ,,AE BD 交于点C ,得出B 的横坐标为1,A 的纵坐标为1,设(),1A k ,()1,B k ,则1,1AC k BC k =-=-,根据AB =【详解】解:如图所示,过点A B ,分别作y x ,轴的垂线,垂足分别为ED ,,AE BD ,交于点C ,依题意,B 的横坐标为1,A 的纵坐标为1,设(),1A k ,()1,B k ∴()1,1C ,则1,1AC k BC k =-=-,又∵90ACB Ð=°,AB =,∴()()(22211k k -+-=∴13k -=(负值已舍去)解得:4k =,故选:C .【点睛】本题考查了切线的性质,反比例函数的性质,勾股定理,掌握以上知识是解题的关键.二、填空题(本大题共6小题,每小题3分,共8分)9. 分解因式:21a -=____.【答案】()()11a a +-.【解析】【分析】利用平方差公式分解因式即可得到答案【详解】解:()()2111a a a -=+-.故答案为:()()11a a +-【点睛】本题考查的是利用平方差公式分解因式,掌握利用平方差公式分解因式是解题的关键.10. 若关于x 的方程220x x m -+=有两个不相等的实数根,则m 的取值范围是_________.【答案】1m <【解析】【分析】根据根的判别式求出2(2)41440m m D =--´´=->,再求出不等式的解集即可.【详解】解:Q 关于x 的方程220x x m -+=有两个不相等的实数根,2(2)41440m m \D =--´´=->解得:1m <,故答案为:1m <.【点睛】本题考查了根的判别式和解一元一次不等式,解题的关键是能熟记根的判别式的内容是解此题的关键,注意:已知一元二次方程20ax bx c ++=(,,a b c 为常数,0)a ¹,①当240b ac D =->时,方程有两个不相等的实数根,②当240b ac D =-=时,方程有两个相等的实数根,③当24<0b ac D =-时,方程没有实数根.11. 2023长春马拉松于5月21日在南岭体育场鸣枪开跑,某同学参加了7.5公里健康跑项目,他从起点开始以平均每分钟x 公里的速度跑了10分钟,此时他离健康跑终点的路程为__________公里.(用含x 的代数式表示)【答案】()7.510x -【解析】【分析】根据题意列出代数式即可.【详解】根据题意可得,他离健康跑终点的路程为()7.510x -.故答案为:()7.510x -.【点睛】此题考查了列代数式,解题的关键是读懂题意.12. 如图,ABC V 和A B C ¢¢¢V 是以点O 为位似中心的位似图形,点A 在线段OA ¢上.若12OA AA ¢=::,则ABC V 和A B C ¢¢¢V 的周长之比为__________.【答案】1:3【解析】【分析】根据位似图形的性质即可求出答案.【详解】解:12OA AA ¢=Q ::,:1:3OA OA ¢\=,设ABC V 周长为1l ,设A B C ¢¢¢V 周长为2l ,ABC QV 和A B C ¢¢¢V 是以点O 为位似中心的位似图形,1213l OA l OA \==¢.12:1:3l l \=.ABC \V 和A B C ¢¢¢V 的周长之比为1:3.故答案为:1:3.【点睛】本题考查了位似图形的性质,解题的关键在于熟练掌握位似图形性质.13. 如图,将正五边形纸片ABCDE 折叠,使点B 与点E 重合,折痕为AM ,展开后,再将纸片折叠,使边AB 落在线段AM 上,点B 的对应点为点B ¢,折痕为AF ,则AFB ¢Ð的大小为__________度.【答案】45【解析】【分析】根据题意求得正五边形的每一个内角为()5218101508-´°=°,根据折叠的性质求得,,BAM FAB ¢ÐÐ在AFB ¢V 中,根据三角形内角和定理即可求解.【详解】解:∵正五边形的每一个内角为()5218101508-´°=°,将正五边形纸片ABCDE 折叠,使点B 与点E 重合,折痕为AM ,则111085422BAM BAE Ð=Ð=´°=°,∵将纸片折叠,使边AB 落在线段AM 上,点B 的对应点为点B ¢,折痕为AF ,∴11542722FAB BAM ¢Ð=Ð=´°=°,108AB F B ¢Ð=Ð=°,在AFB ¢V 中,1801801082745AFB B FAB ¢¢Ð=°-Ð-Ð=°-°-°=°,故答案为:45.【点睛】本题考查了折叠的性质,正多边形的内角和的应用,熟练掌握折叠的性质是解题的关键.14. 2023年5月8日,C919商业首航完成——中国民商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的地物线的一部分.如图②,当两辆消防车喷水口A 、B 的水平距离为80米时,两条水柱在物线的顶点H 处相遇,此时相遇点H 距地面20米,喷水口A 、B 距地面均为4米.若两辆消防车同时后退10米,两条水柱的形状及喷水口A ¢、B ¢到地面的距离均保持不变,则此时两条水柱相遇点H ¢距地面__________米.【答案】19【解析】【分析】根据题意求出原来抛物线的解析式,从而求得平移后的抛物线解析式,再令0x =求平移后的抛物线与y 轴的交点即可.【详解】解:由题意可知:()40,4A -、()40,4B 、()0,20H ,设抛物线解析式为:220y ax =+,将()40,4A -代入解析式220y ax =+,解得:1100a =-,220100x y \=-+,消防车同时后退10米,即抛物线220100x y =-+向左(右)平移10米,平移后的抛物线解析式为:()21020100x y +=-+,令0x =,解得:19y =,故答案为:19.【点睛】本题考查了待定系数法求抛物线解析式、函数图像的平移及坐标轴的交点;解题的关键是求得移动前后抛物线的解析式.三、解答题(本大题共10小题,共78分)15. 先化简.再求值:2(1)(1)a a a ++-,其中a =【答案】31a +1【解析】【分析】根据完全平方公式以及单项式乘以单项式进行化简,然后将字母的值代入进行计算即可求解.【详解】解:2(1)(1)a a a ++-2221a a a a =+++-31a =+当a =311==【点睛】本题考查了整式乘法的化简求值,实数的混合运算,熟练掌握完全平方公式以及单项式乘以单项式的运算法则是解题的关键.16. 班级联欢会上有一个抽奖活动,每位同学均参加一次抽奖,活动规则下:将三个完全相同的不透明纸杯倒置放在桌面上,每个杯子内放入一个彩蛋,彩蛋颜色分别为红色、红色、绿色.参加活动的同学先从中随机选中一个杯子,记录杯内彩蛋颜色后再将杯子倒置于桌面,重新打乱杯子的摆放位置,再从中随机选中一个杯子,记录杯内彩蛋颜色.若两次选中的彩蛋颜色不同则获一等奖,颜色相同则获二等奖.用画树状图(或列表)的方法,求某同学获一等奖的概率.【答案】49【解析】【分析】依题意画出树状图,运用概率公式求解即可.【详解】解:画树状图如下:共有9种可能,获一等奖即两次颜色不相同的可能有4种,则某同学获一等奖的概率为:49,答:某同学获一等奖的概率为49.【点睛】本题考查了树状图求概率,正确画出树状图是解题的关键.17. 随着中国网民规模突破10亿、博物馆美育不断向线上拓展.敦煌研究院顺势推出数字敦煌文化大使“伽瑶”,受到广大敦煌文化爱好者的好评.某工厂计划制作3000个“伽瑶”玩偶摆件,为了尽快完成任务,实际平均每天完成的数量是原计划的1.5倍,结果提前5天完成任务.问原计划平均每天制作多少个摆件?【答案】原计划平均每天制作200个摆件.【解析】【分析】设原计划平均每天制作x 个,根据题意列出方程,解方程即可求解.【详解】解:设原计划平均每天制作x 个,根据题意得,3000300051.5x x=+解得:200x =经检验,200x =是原方程的解,且符合题意,答:原计划平均每天制作200个摆件.【点睛】本题考查了分式方程的应用,根据题意列出方程是解题的关键.18. 将两个完全相同的含有30°角的直角三角板在同一平面内按如图所示位置摆放.点A ,E ,B ,D 依次在同一直线上,连结AF 、CD .(1)求证:四边形AFDC 是平行四边形;(2)已知6cm BC =,当四边形AFDC 是菱形时.AD 的长为__________cm .【答案】(1)见解析;(2)18【解析】【分析】(1)由题意可知ACB DFE △≌△易得AC DF =,30CAB FDE Ð=Ð=°即AC DF ∥,依据一组对边平行且相等的四边形是平行四边形可证明;(2)如图,在Rt ACB △中,由30°角所对的直角边等于斜边的一半和直角三角形锐角互余易得212cm AB BC ==,60ABC Ð=°;由菱形得对角线平分对角得30CDA FDA Ð=Ð=°,再由三角形外角和易证BCD CDA Ð=Ð即可得6cm BC BD ==,最后由AD AB BD =+求解即可.【小问1详解】证明:由题意可知ACB DFE △≌△,AC DF =∴,30CAB FDE Ð=Ð=°,AC DF \∥,\四边形AFDC 地平行四边形;【小问2详解】如图,在Rt ACB △中,90ACB Ð=°,30CAB Ð=°,6cm BC =,212cm AB BC \==,60ABC Ð=°,四边形AFDC 是菱形,AD \平分CDF Ð,30CDA FDA \Ð=Ð=°,ABC CDA BCD Ð=Ð+ÐQ ,603030BCD ABC CDA \Ð=Ð-Ð=°-°=°,BCD CDA \Ð=Ð,6cm BC BD \==,18cm AD AB BD \=+=,故答案为:18.【点睛】本题考查了全等三角形的性质,平行四边形的判定,菱形的性质,30°角所对的直角边等于斜边的一半和直角三角形锐角互余,三角形外角及等角对等边;解题的关键是熟练掌握相关知识综合求解.19. 近年来,肥胖经成为影响人们身体健康的重要因素.目前,国际上常用身体质量指数(Body Mass Index ,缩写BMI )来衡量人体胖瘦程度以及是否健康,其计算公式是22kg BMI=m 体重(单位:)身高(位置:)例如:某人身高1.60m ,体重60kg ,则他的260BMI 23.41.60=».中国成人的BMI 数值标准为:BMI<18.5为偏瘦;18.5BMI 24£<为正常;24BMI 28£<为偏胖;BMI 28³为肥胖.某公司为了解员工的健康情况,随机抽取了一部分员工的体检数据,通过计算得到他们的BMI 值并绘制了如下两幅不完整的统计图.根据以上信息回答下列问题:(1)补全条形统计图;(2)请估计该公司200名员工中属于偏胖和肥胖的总人数;(3)基于上述统计结果,公司建议每个人制定健身计划.员工小张身高1.70m ,BMI 值为27,他想通过健身减重使自己的BMI 值达到正常,则他的体重至少需要减掉_________kg .(结果精确到1kg )【答案】(1)见解析(2)110人(3)9【解析】【分析】(1)根据属于正常的人数除以占比得出抽取的人数,结合条形统计图求得属于偏胖的人数,进而补全统计图即可求解;(2)用属于偏胖和肥胖的占比乘以200即可求解;(3)设小张体重需要减掉kg x ,根据BMI 计算公式,列出不等式,解不等式即可求解.小问1详解】抽取了735%20¸=人,属于偏胖的人数为:202738---=,补全统计图如图所示,【【小问2详解】8320011020+´=(人)【小问3详解】设小张体重需要减掉kg x ,依题意,227241.70x -<解得:8.67x >,答:他的体重至少需要减掉9kg ,故答案为:9.【点睛】本题考查了条形统计图与扇形统计图信息关联,样本估计总体,一元一次不等式的应用,根据统计图表获取信息是解题的关键.20. 图①、图②、图③均是55´的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A 、B 均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作ABC V ,点C 在格点上.(1)在图①中,ABC V 的面积为92;(2)在图②中,ABC V 的面积为5(3)在图③中,ABC V 是面积为52的钝角三角形.【答案】(1)见解析 (2)见解析(3)见解析【解析】【分析】(1)以3AB =为底,设AB 边上的高为h ,依题意得19·22ABC S AB h ==V ,解得3h =,即点C 在AB 上方且到AB 距离为3个单位的线段上的格点即可;(2)由网格可知,AB ==AB AB 边上的高为h ,依题意得1·52ABC S AB h ==V ,解得h =,将AB 绕A 或B 旋转90°,过线段的另一个端点作AB 的平行线,与网格格点的交点即为点C ;(3)作BD AB ==,过点D 作CD AB ∥,交于格点C ,连接A 、B 、C 即可.【小问1详解】解:如图所示,以3AB =为底,设AB 边上的高为h ,依题意得:19·22ABC S AB h ==V 解得:3h =即点C 在AB 上方且到AB 距离为3个单位的线段上的格点即可,答案不唯一;【小问2详解】由网格可知,AB ==以AB =为底,设AB 边上的高为h ,依题意得:1·52ABC S AB h ==V解得:h =将AB 绕A 或B 旋转90°,过线段的另一个端点作AB 的平行线,与网格格点的交点即为点C ,答案不唯一,【小问3详解】如图所示,作BD AB ==,过点D 作CD AB ∥,交于格点C ,由网格可知,BD AB ===,AD =,∴ABD △是直角三角形,且AB BD^∵CD AB∥∴15·22ABC S AB BD ==V .【点睛】本题考查了网格作图,勾股定理求线段长度,与三角形的高的有关计算;解题的关键是熟练利用网格作平行线或垂直.21. 甲、乙两个相约登山,他们同时从入口处出发,甲步行登山到山顶,乙先步行15分钟到缆车站,再乘坐缆车到达山顶.甲、乙距山脚的垂直高度y (米)与甲登山的时间x (分钟)之间的函数图象如图所示.(1)当1540x ££时,求乙距山脚的垂直高度y 与x 之间的函数关系式;(2)求乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度.【答案】(1)12180y x =-(2)180【解析】【分析】(1)待定系数法求解析式即可求解;(2)求得甲距山脚的垂直高度y 与x 之间的函数关系式为460y x =+()2560x ££,联立12180y x =-()1540x ££,即可求解.【小问1详解】解:设乙距山脚垂直高度y 与x 之间的函数关系式为y kx b =+,将()15,0,()40,300代入得,15040300k b k b +=ìí+=î,解得:12180k b =ìí=-î,∴12180y x =-()1540x ££;【小问2详解】设甲距山脚的垂直高度y 与x 之间的函数关系式为11y k x b =+()2560x ££将点()()25,16060,300,代入得,11112516060300k b k b +=ìí+=î解得:11460k b =ìí=î,∴460y x =+()2560x ££;联立12180460y x y x =-ìí=+î解得:30180x y =ìí=î∴乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度为180米【点睛】本题考查了一次函数的应用,熟练掌握待定系数法求解析式是解题的关键.22. 【感知】如图①,点A 、B 、P 均在O e 上,90AOB Ð=°,则锐角APB Ð的大小为__________度.的【探究】小明遇到这样一个问题:如图②,O e 是等边三角形ABC 的外接圆,点P 在 AC 上(点P 不与点A 、C 重合),连结PA 、PB 、PC .求证:PB PA PC =+.小明发现,延长PA 至点E ,使AE PC =,连结BE ,通过证明PBC EBA ≌△△,可推得PBE 是等边三角形,进而得证.下面是小明的部分证明过程:证明:延长PA 至点E ,使AE PC =,连结BE ,Q 四边形ABCP 是O e 的内接四边形,180BAP BCP \Ð+Ð=°.180BAP BAE Ð+Ð=°Q ,BCP BAE \Ð=Ð.ABC QV 是等边三角形.BA BC \=,(SAS)PBC EBA \V V ≌请你补全余下的证明过程.【应用】如图③,O e 是ABC V 的外接圆,90ABC AB BC Ð=°=,,点P 在O e 上,且点P 与点B 在AC 的两侧,连结PA 、PB 、PC .若PB =,则PB PC 的值为__________.【答案】感知:45【解析】【分析】感知:由圆周角定理即可求解;探究:延长PA 至点E ,使AE PC =,连结BE ,通过证明(SAS)PBC EBA V V ≌,可推得PBE 是等边三角形,进而得证;应用:延长PA 至点E ,使AE PC =,连结BE ,通过证明(SAS)PBC EBA V V ≌得,可推得PBE 是等腰直角三角形,结合PE PA PC =+与PE =可得3PC PA =,代入PB PC即可求解.【详解】感知:由圆周角定理可得1245APB AOB Ð=Ð=°,故答案为:45;探究:证明:延长PA 至点E ,使AE PC =,连结BE ,Q 四边形ABCP 是O e 的内接四边形,180BAP BCP \Ð+Ð=°.180BAP BAE Ð+Ð=°Q ,BCP BAE \Ð=Ð.ABC QV 是等边三角形.BA BC \=,(SAS)PBC EBA \V V ≌,∴PB EB =,PBC EBA Ð=Ð,60EBA ABP PBC ABP ABC \Ð+Ð=Ð+Ð=Ð=°,PBE \V 是等边三角形,PB PE \=,PB PE PA AE PA PC \==+=+,即PB PA PC =+;应用:延长PA 至点E ,使AE PC =,连结BE ,Q 四边形ABCP 是O e 的内接四边形,180BAP BCP \Ð+Ð=°.180BAP BAE Ð+Ð=°Q ,BCP BAE \Ð=Ð.AB CB =Q ,(SAS)PBC EBA \V V ≌,∴PB EB =,PBC EBA Ð=Ð,90EBA ABP PBC ABP ABC \Ð+Ð=Ð+Ð=Ð=°,PBE \V 是等腰直角三角形,222PB BE PE \+=,222PB PE \=,即PE =,PE PA AE PA PC =+=+Q ,PA PC \+=,PB =Q ,4PA PC PA \+==,3PC PA \=,PB PC \==.【点睛】本题考查了圆周角定理,圆内接四边形对角互补,邻补角,全等三角形的判定和性质,等边三角形、等腰直角三角形的判定和性质,勾股定理解直角三角形;解题的关键是做辅助线构造PBC EBA V V ≌,进行转换求解.23. 如图①.在矩形ABCD .35AB AD ==,,点E 在边BC 上,且2BE =.动点P 从点E 出发,沿折线EB BA AD --以每秒1个单位长度的速度运动,作90PEQ Ð=°,EQ 交边AD 或边DC 于点Q ,连续PQ .当点Q 与点C 重合时,点P 停止运动.设点P 的运动时间为t 秒.(0t >)(1)当点P 和点B 重合时,线段PQ 的长为__________;(2)当点Q 和点D 重合时,求tan PQE Ð;(3)当点P 在边AD 上运动时,PQE V 的形状始终是等腰直角三角形.如图②.请说明理由;(4)作点E 关于直线PQ 的对称点F ,连接PF 、QF ,当四边形EPFQ 和矩形ABCD 重叠部分图形为轴对称四边形时,直接写出t 的取值范围.【答案】(1(2)23(3)见解析(4)0t <£176t =或7t =【解析】【分析】(1)证明四边形ABEQ 是矩形,进而在Rt QBE △中,勾股定理即可求解.(2)证明PBE ECD V V ∽,得出2tan 3PE BE PQE DE CD Ð===;(3)过点P 作PH BC ^于点H ,证明PHE ECQ V V ≌得出PE QE =,即可得出结论(4)分三种情况讨论,①如图所示,当点P 在BE 上时,②当P 点在AB 上时,当,F A 重合时符合题意,此时如图,③当点P 在AD 上,当,F D 重合时,此时Q 与点C 重合,则PFQE 是正方形,即可求解.【小问1详解】解:如图所示,连接BQ ,∵四边形ABCD 是矩形∴90BAQ ABE Ð=Ð=°∵90PEQ Ð=°,∴四边形ABEQ 是矩形,当点P 和点B 重合时,∴3QE AB ==,2BE =在Rt QBE △中,BQ ===,.【小问2详解】如图所示,∵90PEQ Ð=°,90PBE ECD Ð=Ð=°,∴1290,2390Ð+Ð=°Ð+Ð=°,∴13Ð=Ð∴PBE ECD V V ∽,∴PE BE DE CD=,∵2BE =,3CD AB ==,∴2tan 3PE BE PQE DE CD Ð===;【小问3详解】如图所示,过点P 作PH BC ^于点H ,∵90PEQ Ð=°,90PHE ECQ Ð=Ð=°,∴1290,2390Ð+Ð=°Ð+Ð=°,则四边形ABHP 是矩形,∴PH AB =3=又∵523EC BC BE =-=-=∴PH EC =,∴PHE ECQV ≌∴PE QE=∴PQE V 是等腰直角三角形;【小问4详解】①如图所示,当点P 在BE 上时,∵3,2QE QF AQ BE ====,在Rt AQF △中,AF ===则3BF =∵PE t =,则2BP t =-,PF PE t ==,Rt PBF V 中,222PF PB FB =+,∴(()22232t t =+-解得:t =当t <F 在矩形内部,符合题意,∴0t <£符合题意,②当P 点在AB 上时,当,F A 重合时符合题意,此时如图,在则2PB t BE t =-=-,PE =()325AP AB PB t t =-=--=-,在Rt PBE △中,222PE PB BE =+()()222522t t -=-+,解得:176t =,③当点P 在AD 上,当,F D 重合时,此时Q 与点C 重合,则PFQE 是正方形,此时2327t =++=综上所述,0t <£或176t =或7t =.【点睛】本题考查了矩形的性质,正方形的性质与判定,勾股定理,求正切,轴对称的性质,分类讨论,分别画出图形,数形结合是解题的关键.24. 在平面直角坐标系中,点O 为坐标原点,抛物线22y x bx =-++(b 是常数)经过点(2,2).点A 的坐标为(,0)m ,点B 在该抛物线上,横坐标为1m -.其中0m <.(1)求该抛物线对应的函数表达式及顶点坐标;(2)当点B 在x 轴上时,求点A 的坐标;(3)该抛物线与x 轴的左交点为P ,当抛物线在点P 和点B 之间的部分(包括P 、B 两点)的最高点与最低点的纵坐标之差为2m -时,求m 的值.(4)当点B 在x 轴上方时,过点B 作BC y ^轴于点C ,连结AC 、BO .若四边形AOBC 的边和抛物线有两个交点(不包括四边形AOBC 的顶点),设这两个交点分别为点E 、点F ,线段BO 的中点为D .当以点C 、E 、O 、D (或以点C 、F 、O 、D )为顶点的四边形的面积是四边形AOBC 面积的一半时,直接写出所有满足条件的m 的值.【答案】(1)222y x x =-++;顶点坐标为()1,3(2)()A(3)1m =-或2m =-(4)2m =-+或2m =-或12m =-【解析】【分析】(1)将点(2,2)代入抛物线解析式,待定系数法即可求解;(2)当0y =时,2220x x -++=,求得抛物线与x 轴的交点坐标,根据抛物线上的点B 在x 轴上时,横坐标为1m -.其中0m <,得出m =,即可求解;(3)①如图所示,当111m <-<,即0m <<时,②当11m -³m £时,分别画出图形,根据最高点与最低点的纵坐标之差为2m -,建立方程,解方程即可求解;(4)根据B 在x 轴的上方,得出m <<E 是AC 的中点,②同理当F 为AO 的中点时,③12AOC CDF S S =V V ,根据题意分别得出方程,解方程即可求解.【小问1详解】解:将点(2,2)代入抛物线22y x bx =-++,得,2422b =-++解得:2b =∴抛物线解析式为222y x x =-++;∵222y x x =-++()213x =--+,∴顶点坐标为()1,3,【小问2详解】解:由222y x x =-++,当0y =时,2220x x -++=,解得:1211x x =-=+,∵抛物线上的点B 在x 轴上时,横坐标为1m -.其中0m <.∴1m 1->∴11m -=+解得:m =,∵点A 的坐标为(,0)m ,∴()A ;【小问3详解】①如图所示,当111m <-<+,即0m <<时,抛物线在点P 和点B 之间的部分(包括P 、B 两点)的最高点为顶点,最低点为点P ,∵顶点坐标为()1,3,()1P 则纵坐标之差为303-=依题意,32m=-解得:1m =-;②当11m -³+m £时,∵()()()21,1212B m m m ---+-+,即()21,3B m m --+,依题意,()2332m m --+=-,解得:2m =-或1m =(舍去),综上所述,1m =-或2m =-;【小问4详解】解:如图所示,∵B 在x 轴的上方,∴111m -<-<+∴m <<∵以点C 、E 、O 、D 为顶点的四边形的面积是四边形AOBC 面积的一半,线段BO 的中点为D ∴BCD CODS S =V V ∵AOBC AOC BOC S S S =+V V ,BOC BCD CODS S S =+V V V ①当E 是AC 的中点,如图所示则2AOBC CEOD S S =,∴23,22m m E æö-+ç÷èø代入222y x x =-++,即22322222m m m -+æö=-+´+ç÷èø,解得:2m =-(舍去)或2m =-+;②同理当F 为AO 的中点时,如图所示,ACF CFO S S =V V ,BCD COD S S =V V ,则点C 、F 、O 、D 为顶点的四边形的面积是四边形AOBC 面积的一半,∴12m =-,解得:2m =-,③如图所示,设BOC S S =V ,则12DBC S S =V ,∵以点C 、E 、O 、D 为顶点的四边形的面积是四边形AOBC 面积的一半,线段BO 的中点为D∴12CDF FDB AOC S S S S +=+V V V 即1122CDF CDF AOC S S S S S +=-+V V V ∴12AOC CDF S S =V V , ∴CF AO =,∴()2,3F m m --+,∵,B F 关于1x =对称,∴112m m -+-=,解得:12m =-,综上所述,2m =-或2m =-或12m =-.【点睛】本题考查了二次函数综合运用,二次函数的性质,面积问题,根据题意画出图形,分类讨论,熟练掌握二次函数的性质是解题的关键.。

长春市中考数学试题含答案解析(word版)

长春市中考数学试题含答案解析(word版)

一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 3的相反数是()A.﹣3 B.﹣13C.13D.3【答案】A【解析】试题分析: 3的相反数是﹣3故选A.考点:相反数.2.据统计,2016年长春市接待旅游人数约人次,这个数用科学记数法表示为()A.67×106B.×105C.×107D.×108【答案】C考点:科学记数法.3.下列图形中,可以是正方体表面展开图的是()A.B.C.D.【答案】D【解析】试题分析:下列图形中,可以是正方体表面展开图的是,故选D考点:几何体的展开图.4.不等式组10251xx-≤⎧⎨-<⎩的解集为()A.x<﹣2 B.x≤﹣1 C.x≤1 D.x<3【答案】C【解析】试题分析:10 251 xx-≤⎧⎨-<⎩①②解不等式①得:x≤1,解不等式②得:x<3,∴不等式组的解集为x≤1,故选C.考点:解一元一次不等式组.5.如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为()A.54° B.62° C.64° D.74°【答案】C考点:1.平行线的性质;2.三角形的内角和.6.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【答案】A【解析】试题分析:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选A.考点:列代数式.7.如图,点A,B,C在⊙O上,∠ABC=29°,过点C作⊙O的切线交OA的延长线于点D,则∠D的大小为()A.29° B.32° C.42° D.58°【答案】B考点:1.切线的性质;2.等腰三角形的性质;3.三角形的外角的性质;4.三角形的内角和定理.8.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数y=kx(k>0,x>0)的图象经过点C,则k的值为()A.33B.32C.233D.3【答案】D【解析】试题分析:∵四边形ABCD是平行四边形,点A的坐标为(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=3,∴C(1,3),∴k=3,故选D.考点:1.平行四边形的性质;2.反比例函数图象上点的坐标特征.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.计算:2×3= .【答案】6【解析】试题分析:2×3=6;考点:二次根式的乘法.10.若关于x的一元二次方程x2+4x+a=0有两个相等的实数根,则a的值是.【答案】4考点:根的判别式.11.如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为.【答案】6【解析】试题分析:∵a∥b∥c,∴AB DEBC EF=,∴132EF=,∴EF=6.考点:平行线分线段成比例定理.12.如图,则△ABC中,∠BAC=100°,AB=AC=4,以点B为圆心,BA长为半径作圆弧,交BC于点D,则的长为.(结果保留π)【答案】8 9π考点:1.弧长公式;2.等腰三角形的性质;3.三角形内角和定理.13.如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图②,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为.【答案】10【解析】试题分析:依题意知,BG=AF=DE=8,EF=FG=2∴BF=BG ﹣BF=6,∴直角△ABF 中,利用勾股定理得:AB=22AF BF =10.考点:勾股定理的证明.14.如图,在平面直角坐标系中,△ABC 的顶点A 在第一象限,点B ,C 的坐标为(2,1),(6,1),∠BAC=90°,AB=AC ,直线AB 交x 轴于点P .若△ABC 与△A'B'C'关于点P 成中心对称,则点A'的坐标为 .【答案】(-1,-2)考点:等腰直角三角形.三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中a=2.【答案】3a3+4a2﹣a﹣2,36.【解析】试题分析:原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a的值代入计算即可求出值.试题解析:原式=3a3+6a2+3a﹣2a2﹣4a﹣2=3a3+4a2﹣a﹣2,当a=2时,原式=24+16﹣2﹣2═36.考点:整式的混合运算﹣化简求值.16.一个不透明的口袋中有一个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.【答案】1 3考点:列表法与树状图法.17.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅两层之间的距离BC 的长.(结果精确到米)(参考数据:sin31°=,cos31°=,tan31°=)【答案】大厅两层之间的距离BC的长约为米.考点:解直角三角形的应用﹣坡度坡角问题.18.某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.【答案】跳绳的单价是15元.【解析】试题分析:首先设跳绳的单价为x元,则排球的单价为3x元,根据题意可得等量关系:750元购进的跳绳个数﹣900元购进的排球个数=30,依此列出方程,再解方程可得答案.试题解析:设跳绳的单价为x元,则排球的单价为3x元,依题意得:7509003x x=30,解方程,得x=15.经检验:x=15是原方程的根,且符合题意.答:跳绳的单价是15元.考点:分式方程的应用.19.如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.【答案】86°考点:1.菱形的性质;2.旋转的性质;3.三角形的性质和判定.20.某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.【答案】(1)n=60;(2)估计该年级600名学生中睡眠时长不足7小时的人数为90人.【解析】考点:条形统计图的综合运用.21.甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.【答案】(1)80;1140;(2)乙车间加工服装数量y与x之间的函数关系式为y=60x﹣120(4≤x≤9);(3)甲、乙两车间共同加工完1000件服装时甲车间所用的时间为8小时.【解析】试题分析:(1)根据工作效率=工作总量÷工作时间,即可求出甲车间每小时加工服装件数,再根据这批服装的总件数=甲车间加工的件数+乙车间加工的件数,即可求出这批服装的总件数;(2)根据工作效率=工作总量÷工作时间,即可求出乙车间每小时加工服装件数,根据工作时间=工作总量÷工作效率结合工作结束时间,即可求出乙车间修好设备时间,再根据加工的服装总件数=120+工作效率×工作时间,即可求出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于1000,求出x值,此题得解.试题解析:(1)甲车间每小时加工服装件数为720÷9=80(件),这批服装的总件数为720+420=1140(件).故答案为:80;1140.(2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时).∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x﹣4)=60x﹣120(4≤x≤9).(3)甲车间加工服装数量y与x之间的函数关系式为y=80x,当80x+60x﹣120=1000时,x=8.答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为8小时.考点:1.一次函数的应用;2.解一元一次方程.22.【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=12 BC.(不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH 的形状,并加以证明.【应用】在(1)【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形你添加的条件是:.(只添加一个条件)(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,则阴影部分图形的面积和为.【答案】【探究】平行四边形.理由见解析;【应用】(1)添加AC=BD,理由见解析;(2)54.(2)先判断出S△BCD=4S△CFG,同理:S△ABD=4S△AEH,进而得出S四边形EFGH=52,再判断出OM=ON,进而得出S阴影=12S四边形EFGH即可.试题解析:【探究】平行四边形.理由:如图1,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形.【应用】(1)添加AC=BD,理由:连接AC,BD,同(1)知,EF=12 AC,同【探究】的方法得,FG=12 BD,∵AC=BD,∴EF=FG,∵四边形EFGH是平行四边形,∴▱EFGH是菱形;故答案为AC=BD;考点:1.三角形的中位线定理;2.平行四边形的判定;3.菱形的判定;4.相似三角形的判定和性质.23.如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒43个单位长度的速度运动,P,Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长;(用含t的代数式表示)(2)连结PQ,当PQ与△ABC的一边平行时,求t的值;(3)如图②,过点P作PE⊥AC于点E,以PE,EQ为邻边作矩形PEQF,点D为AC的中点,连结DF.设矩形PEQF与△ABC重叠部分图形的面积为S.①当点Q在线段CD上运动时,求S与t之间的函数关系式;②直接写出DF将矩形PEQF分成两部分的面积比为1:2时t的值.【答案】(1)AQ=8﹣43t(0≤t≤4);(2)t=32s或3s时, PQ与△ABC的一边平行;(3)①当0≤t≤32时,S=﹣16t2+24t.当32<t≤2时,S=﹣163t2+40t-48.当2<t≤3时,S=﹣203t2+30t﹣24.②当t=914s或3631s时,DF将矩形PEQF分成两部分的面积比为1:2.【解析】(3)①如图1中,a、当0≤t≤32时,重叠部分是四边形PEQF.S=PE•EQ=3t•(8﹣4t﹣43t)=﹣16t2+24t.b、如图2中,当32<t≤2时,重叠部分是四边形PNQE.S=S四边形PEQF﹣S△PFN=(16t2﹣24t)﹣12•45[5t﹣54(8﹣43t)]•35[5t﹣54(8﹣43t0]=﹣163t2+40t-48.C、如图3中,当2<t≤3时,重叠部分是五边形MNPBQ.S=S四边形PBQF S△FNM=43t•[6﹣3(t﹣2)]﹣12•[43t﹣4(t﹣2)]•34[43t﹣4(t﹣2)]=﹣203t2+30t﹣24.∴DE:DQ=NE:FQ=1:3,∴(3t﹣3):(3﹣43t)=1:3,解得t=36 31s,综上所述,当t=914s或3631s时,DF将矩形PEQF分成两部分的面积比为1:2.考点:1.矩形的性质;2.勾股定理;3.相似三角形的性质和判定;4.平行线分线段成比例定理.24.定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它们的相关函数为y=()()1010x xx x-+<⎧⎪⎨-≥⎪⎩.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣x2+4x﹣12.①当点B(m,32)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣12的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M,N的坐标分别为(﹣12,1),(92,1}),连结MN.直接写出线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点时n的取值范围.【答案】(1)a=1;(2)①m=2﹣5或m=2+2或m=2﹣2.②当﹣3≤x≤3时,函数y=﹣x2+4x﹣12的相关函数的最大值为432,最小值为﹣12;(3)n的取值范围是﹣3<n≤﹣1或1<n≤54.(2)二次函数y=﹣x2+4x﹣12的相关函数为y=()()2214021402x x xx x x⎧-+<⎪⎪⎨⎪-+-≥⎪⎩①当m<0时,将B(m,32)代入y=x2﹣4x+12得m2﹣4m+12=32,解得:5或m=25当m≥0时,将B(m,32)代入y=﹣x2+4x﹣12得:﹣m2+4m﹣12=32,解得:2或m=22.综上所述:m=252或m=22.②当﹣3≤x<0时,y=x2﹣4x+12,抛物线的对称轴为x=2,此时y随x的增大而减小,∴此时y的最大值为432.当0≤x≤3时,函数y=﹣x2+4x﹣12,抛物线的对称轴为x=2,当x=0有最小值,最小值为﹣12,当x=2时,有最大值,最大值y=72.综上所述,当﹣3≤x≤3时,函数y=﹣x2+4x﹣12的相关函数的最大值为432,最小值为﹣12;(3)如图1所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有1个公共点.所以当x=2时,y=1,即﹣4+8+n=1,解得n=﹣3.如图2所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点考点:二次函数的综合应用.。

吉林省长春市高一数学上学期第一次月考试题(扫描版,无答案)(new)

吉林省长春市高一数学上学期第一次月考试题(扫描版,无答案)(new)

吉林省长春市2017—2018学年高一数学上学期第一次月考试题(扫描版,
无答案)
尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。

This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。

长春市市直事业单位考试真题

长春市市直事业单位考试真题

长春市市直事业单位考试真题一、在长春市市直事业单位考试中,关于公共基础知识的考查,以下哪项内容最可能出现在试题中?A. 古代文学名著的作者及背景B. 最新的国家政策法规解读C. 复杂数学公式的推导过程D. 外国艺术流派的历史沿革(答案:B)二、关于行政职业能力测试,下列哪项能力不是其主要考察点?A. 逻辑推理能力B. 语言表达与理解能力C. 专业技术操作能力D. 资料分析能力(答案:C)三、在长春市市直事业单位面试环节,考官最可能通过哪种方式评估考生的组织协调能力?A. 询问考生对专业知识的掌握程度B. 让考生现场解决一个技术难题C. 给出情境题,要求考生提出解决方案D. 测试考生的计算机操作技能(答案:C)四、关于事业单位改革的最新动向,以下哪项陈述是正确的?A. 所有事业单位都将转为营利性机构B. 事业单位人员将全部实行合同聘用制C. 事业单位将不再提供任何公共服务D. 事业单位改革已完成,不再有变动(答案:B)五、在长春市市直事业单位招聘中,对于应聘者的政治素质考察,以下哪项不是重点考察内容?A. 政治立场和思想观念B. 遵守国家法律法规情况C. 社交媒体上的个人言论D. 专业技能水平(答案:D)六、关于职业道德的考查,在长春市市直事业单位考试中,以下哪项最符合职业道德的核心要求?A. 个人利益最大化B. 忠诚守信,服务群众C. 追求个人名利D. 不顾一切追求效率(答案:B)七、在长春市市直事业单位笔试中,关于时事政治的考查,以下哪项内容最可能被涉及?A. 国际体育赛事的详细规则B. 近期国内外重大新闻事件C. 明星娱乐八卦新闻D. 历史上的重要战争细节(答案:B)八、关于事业单位工作人员的培训与发展,以下哪项是长春市市直事业单位通常采取的做法?A. 一次性培训后不再进行后续提升B. 只针对新入职员工进行基础培训C. 定期组织专业技能和职业素养培训D. 完全依赖员工自学提升能力(答案:C)。

2012年长春市中考数学试卷

2012年长春市中考数学试卷

2012年长春市中考数学试卷一、填空题(共1小题;共5分)1. 计算:18−8= ______.二、解答题(共2小题;共26分).2. 先化简,再求值:a+2a−2+2a2+3,其中a=133. 某班有45名同学参加紧急疏散演练.对比发现:经专家指导后,平均每秒撤离的人数是指导前的3倍,这45名同学全部撤离的时间比指导前快3秒.求指导前平均每秒撤离的人数.三、选择题(共3小题;共15分)4. 神舟九号飞船发射成功,一条相关的微博被转发了3570000次,3570000这个数用科学计数法表示为 A. 357×104 .B. 35.7×105C. 3.57×106D. 3.57×1075. 在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是______A. B.C. D.6. 有一道题目:已知一次函数y=2x+b,其中b<0,与这段描述相符的函数图像可能是______A. B.C. D.四、填空题(共1小题;共5分)7. 学校购买了一批图书,共a箱,每箱有b册,将这批图书的一半捐给社区,则捐给社区的图书为 ______册(用含a、b的代数式表示).五、选择题(共2小题;共10分)8. 在2、0、−2、−1这四个数中,最大的数是______A. 2B. 0C. −2D. −19. 不等式3x−6≥0的解集为______A. x>2B. x≥2C. x<2D. x≤2六、填空题(共1小题;共5分)10. 如图,平行四边形ABCD的顶点B在矩形AEFC的边EF上,点B与点E,F不重合.若△ACD的面积为3,则图中的阴影部分两个三角形的面积和为 ______.答案第一部分1. 2第二部分2. 原式=a2−4+2a2+6=3a2+2.当a=13时,原式=3×132+2=213.3. 设指导前平均每秒撤离x人,根据题意,得:45 x −453x=3解得x=10.经检验:x=10是原分式方程的解,且符合题意.答:指导前平均每秒撤离10人.第三部分4. C5. D6. A第四部分7. 12ab第五部分8. A 9. B第六部分10. 3。

吉林省长春市七年级上学期数学期中考试试卷

吉林省长春市七年级上学期数学期中考试试卷

吉林省长春市七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七上·江都期末) 把一枚硬币在桌面上竖直快速旋转后所形成的几何体是()A . 圆柱B . 圆锥C . 球D . 正方体2. (2分) (2018七上·兰州期中) 正方体的截面中,边数最多的多边形是()A . 四边形B . 五边形C . 六边形D . 七边形3. (2分)如果a、b为有理数,且=0,那么一定有()A . a=0B . b=0且a≠0C . a=b=0D . a=0且b=04. (2分)(2017·菏泽) 下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A .B .C .D .5. (2分) (2017七上·深圳期中) 2017年天猫双11落下帷幕,总成交额最终定格在1207亿元,是8年来成交额首次突破1000亿大关,数据1207亿元用科学记数法表示为()A . 12.07×1010B . 1.207×1011C . 12.07×1012D . 1.207×10126. (2分) (2018九上·云南期末) 下列运算正确的有()A .B .C . 5ab-b=4D .7. (2分) (2020八上·西安期末) 下列各式运算正确的是()A . =±2B . (-1)2=1C . (-1)0=-1D . =-28. (2分)下列各式符合代数式书写规范的是()A .B . a×3C . 2m﹣1个D . 1m9. (2分) (2019七下·遂宁期中) 对于任意有理数a,b,c,d,规定,如果,那么x的取值范围是()A . x>-3B . x<-3C . x<5D . x>-510. (2分)的相反数是A . ﹣6B . 8C .D .二、填空题 (共5题;共5分)11. (1分)某食品包装袋上标有“净含量385±5”,•这包食品的合格净含量范围是________克~390克.12. (1分) (2018七上·阳江月考) 土星表面的夜间平均气温为﹣130℃,白天比夜间高26℃,那么土星表面白天的平均气温为________13. (1分) (2018七上·鄂托克期中) 甲数的比乙数小1,设甲数为,则乙数可表示为________.14. (1分)若a、b互为相反数,c、d互为倒数,m的绝对值为2,则代数式m2﹣cd+ 的值为________.15. (1分)已知a、b、c均是不等于0的有理数,则的值为________三、解答题 (共8题;共73分)16. (15分) (2016七上·长乐期末) 计算:(1)﹣3﹣(﹣10)+(﹣14)(2)÷(﹣)+(﹣2)2×(﹣2)(3)100°﹣12°17′×6.17. (5分) (2015七上·寻乌期末) 2(3ab2﹣a3b)﹣3(2ab2﹣a3b),其中a=﹣,b=4.18. (14分) (2019七上·九龙坡期中)(1)(2)(3)画一条数轴,在数轴上标出以下各点,然后用“<”连接起来.- ;-(-4);-|-1|;;0;;2.5;19. (3分) (2018七上·昌图期末) 已知一个直棱柱,它有21条棱,其中一条侧棱长为20,底面各边长都为4.(1)这是几棱柱?(2)它有多少个面?多少个顶点?(3)这个棱柱的所有侧面的面积之和是多少?20. (10分) (2019七上·深圳期末) 已知:A-2B=7a2-7ab,且B=-4a2+6ab+7(1)求A等于多少?(2)若3x2ayb+1与- x2ya+3是同类项,求A的值.21. (10分) (2016七上·柘城期中) 某公司改革实行每月考核再奖励的新制度,大大调动了员工的积极性,2015年一名员工每月奖金的变化如下表:(正数表示比前一月多的钱数,负数表示比前一月少的钱数)单位:(元)月份一月二月三月四月五月六月七月钱数变化+300+220﹣150﹣100+330+200+280(1)若2014年底12月份奖金为a元,用代数式表示2015年二月的奖金;(2)请判断七个月以来这名员工得到奖金最多是哪个月?最少是哪个月?它们相差多少元?(3)若2015年这七个月中这名员工最多得到的奖金是2800元,请问2014年12月份他得到多少奖金?22. (5分) (2018七上·滨海月考) 8袋大米,以每袋50千克为准,超过的千克记作正数,分别为:﹣2、+1、+4、﹣6、﹣3、﹣4、+5、﹣3,求8袋大米共重多少千克?23. (11分) (2019八上·泰兴期中) 用一条直线分割一个三角形,如果能分割出等腰三角形,那么就称这条直线为该三角形的一条等腰分割线.在直角三角形ABC中,∠C=90°,AC=8,BC=6.(1)如图(1),若O为AB的中点,则直线OC是________△ABC的等腰分割线(填“是”或“不是”)(2)如图(2)已知△ABC的一条等腰分割线BP交边AC于点P,且PB=PA,请求出CP的长度.(3)如图(3),在△ABC中,点Q是边AB上的一点,如果直线CQ是△ABC的等腰分割线,求线段BQ的长度等于________.(直接写出答案).参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共73分)16-1、16-2、16-3、17-1、18-1、18-2、18-3、19-1、19-2、19-3、20-1、20-2、21-1、21-2、21-3、22-1、23-1、23-2、23-3、。

吉林省长春市2012年中考数学试题(含答案)

吉林省长春市2012年中考数学试题(含答案)

2012年长春市初中毕业生学业考试(数 学)参考答案本试卷包括七道大题,共26小题,共6页.全卷满分120分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.卷和答题卡一并交回. 注意事项:1. 答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形区域内.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形区域内.2. 答题时,考试务必按照考试要求在答题卡上的指定区域作答,在草稿纸、试卷上答题无效.答题时,考试务必按照考试要求在答题卡上的指定区域作答,在草稿纸、试卷上答题无效. 一、选择题(每小题3分,共24分)[:]1. 在2、0、-2、-1这四个数中,最大的数是(A ) (A )2)2.. (B ) 0. (C ) -2. (D ) -1. 2. 神舟九号飞船发射成功,一条相关的微薄被转发了3570000次,3570000这个数用科学计数法表示为(C ) (A )435710´. (B ) 535.710´ (C ) 61057.3´ (D ) 73.5710´ 3.不等式3x -6³0的解集为(B ) (A ) x >2 (B ) x ≥2. (C )x <2 (D )x ≤2.4. 在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是(D ) 5.右图是2012年伦敦奥运会吉祥物,某校在五个班级中对认识它的人数进行了调查,某校在五个班级中对认识它的人数进行了调查,结果为结果为(单位:人):30,31,27,26,31.这组数据的中位数是(C ) (A ) 27 (B )29 (C ) 30 (D )31 6.有一道题目:已知一次函数y =2x +b ,其中b <0,…,与这段描述相符的函数图像可能是(A ) 7.如图,在Rt△ABC中,∠C=90°.D为边CA延长线上的一点,DE‖AB,∠ADE=42°,则∠B的大小为(C) (A) 42°(B) 45°(C) 48°(D)58°8. 如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A, B为1AB长为半径作弧,两弧交于点C.若点C的坐标为(m-1,2n),则m与n的关系为(B) 圆心,以大于2(A)m+2n=1 (B)m-2n=1 (C)2n-m=1 (D)n-2m=1 二、填空题(每小题3分,共18分)=39.计算:23-3___1 10.学校购买了一批图书,共a箱,每箱有b册,将这批图书的一半捐给社区,则捐给社区的图书为ab2的代数式表示).册(用含a、b的代数式表示).11.如图,⊙O 与正六边形OABCDE 的边OA 、OE 分别交于点F 、G ,则弧FG 所对的圆周角∠FPG 的大小为_60_度.度.12.如图,在△ABC 中,AB =5,AC =4,点D 在边AB 上,∠ACD =∠B ,则AD 的长为516.13.如图,ABCD 的顶点B 在矩形AEFC 的边EF 上,点B 与点E 、F 不重合.若△ACD 的面积为3,则图中的阴影部分两个三角形的面积和为图中的阴影部分两个三角形的面积和为 314.如图,在平面直角坐标系中,点A 是抛物线2(3)y a x k =-+与y 轴的交点,点B 是这条抛物线上的另一点,且AB ‖x 轴,则以AB 为边的等边三角形ABC 的周长为18. 三、解答题(每小题5分,共20分)15.先化简,再求值:21(2)(2)2(3),3a a a a +-++=其中312231331236242222=+÷øöçèæ´==+=++-=原式时当原式解,a a a a : 16.有甲、乙两个不透明的口袋,甲袋中有3个球,分别标有数字0,2,5;乙袋中有3个球,分别标有数个球,分别标有数字0,1,4.这6个球除所标数字以外没有任何其他区别.从甲、乙两袋中各随机摸出1个球,用画树状个球,用画树状 图(或列表)的方法,求摸出的两个球上数字之是6的概率.的概率. 甲袋 乙袋和 0 1 4 2 3 6 5 6 9 所以()926=数学之和为P 17.某班有45名同学参加紧急疏散演练.对比发现:经专家指导后,平均每秒撤离的人数是指导前的3倍, 这45名同学全部撤离的时间比指导前快3秒.求指导前平均每秒撤离的人数.秒.求指导前平均每秒撤离的人数.0 2 5 0 1 4 0 1 4 0 1 4 。

2022年9月吉林省长春市小升初数学必刷经典应用题测试四卷含答案解析

2022年9月吉林省长春市小升初数学必刷经典应用题测试四卷含答案解析

2022年9月吉林省长春市小升初数学必刷经典应用题测试四卷含答案解析学校:________ 姓名:________ 考号:________ 得分:________一、应用题(精选120题,每题1分。

一、审题:在开始解答前,应仔细阅读题目,理解题目意思、数量关系、问题是什么,以及需要几步解答;二、注意格式:正确使用算式、单位和答语;三、卷面要求:书写时应使用正楷,尽量避免连笔,字迹稍大,并注意排版,确保卷面整洁;四、π一律取值3.14。

)1.某小学四、五年级学生共为地震灾区捐款900元,其中五年级学生捐款数是四年级的1.5倍,五年级学生捐款多少?2.甲、乙两车从相距675千米的两地相对出发,甲每小时行45千米,乙每小时行60千米,甲先行1小时后,乙才出发,再经过几小时两车才能相遇?3.希望小学五年级有学生216人,六年级的学生人数比五年级多2/9,六年级有学生多少人?4.甲、乙两辆汽车同时从同一地点出发,反向而行.甲车平均每小时行90千米,乙车平均每小时行110千米.经过3小时,两车之间相隔多少千米?5.一桶油连桶重32.1千克,倒出一半油后连桶重还有17.1千克,原来这桶油有多少千克?6.甲乙两列火车同时从A、B两地相对开出,甲车每小时行123.5千米,乙车每小时行126.5千米,4小时相遇,A、B两地相距多少千米?(用两种方法计算,体会一下乘法分配律能使运算简便)7.一桶油连桶重101.5千克,卖出油的一半后,连桶还重51.5千克.如果每千克油的价格是3.45元在,这桶油能卖多少元?8.甲、乙两辆相同的汽车,若每天行驶200千米,装满汽油可行驶24天.两车同时从A地出发,要求甲车尽可能地开出最远的距离,乙车可借给甲车汽油,但要保证两车都能回到原地.甲车能开出的最远距离是多少?9.师徒两人共同加工644个零件.师傅每小时加工54个,徒弟每小时加工38个.几小时可以完成加工任务?10.两列火车相向而行,甲车每小时行48千米,乙车每小时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒钟,求乙车全长多少米.11.一共有13根火柴,一共可以拼成几个三边形和几个正方形,并且刚好使这些火柴都用完?12.一件衣服打七五折卖价是240元,可赚60元钱.如果按原来的价格卖,可赚多少元?13.一双舞蹈鞋原价50元,打折后32元.学校舞蹈队新买了56双,花了多少钱?节省了多少元?14.一件上衣45元,一条裤子的价钱是一件上衣的60%,购一套这样的衣服要多少元?15.某车间有普通工人100名,技术工人15名,现在要求技术工人与普通工人的人数比是1:4,如果普通工人一个也不调走,那么需要再聘多少名技术工人?16.饲养小组养白兔36只,灰兔12只,灰兔和白兔分别占总数的百分之几?17.A、B两地相距780千米,甲、乙两列火车分别从A、B两地相对开出,6.5小时相遇,已知甲车每小时行62.8千米,乙车每小时行多少千米?(列方程解)18.某厂去年每月生产机床200台,今年前10个月的产量比去年全年还多600台,照这样计算,今年全年可以生产多少台?19.在比例尺是1:9000000的地图上,量得甲城到乙城的航线长是20厘米,一架飞机以每小时750的速度从甲城飞往乙城,要多少小时到达?20.甲、乙两地相距315千米,快车和慢车分别从两地同时出发,相向而行,3.5小时相遇.已知快车每小时行50千米,慢车每小时行多少千米?21.1000kg小麦可以磨出850kg面粉,1kg面粉可以加工某种食品10kg,10kg小麦磨出的面粉可以生产这种食品多少千克?22.服装店的上衣每件68元,裤子每条57元,“五一”黄金周一共卖出8套这样的服装,一共卖了多少钱?23.植树节,王老师带领六(1)班的45名同学去给树苗浇水,王老师共浇了20棵小树苗,男同学每人浇8棵,比女同学每人多浇2棵,结果师生共浇树苗340棵。

【恒心】【好卷速递】12长春市三模理科数学试题及标准答案【首发】【教师专版】

【恒心】【好卷速递】12长春市三模理科数学试题及标准答案【首发】【教师专版】

2012年东北三省四市教研协作体等值诊断联合考试2012年长春市高中毕业班第三次调研测试数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间为120分钟,其中第Ⅱ卷22题-24题为选考题,其它题为必考题.考试结束后,将试卷和答题卡一并交回. 注意事项:1. 答题前,考生必须将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2. 选择题必须用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4. 保持卡面清洁,不要折叠、不要弄破、不准使用涂改液、刮纸刀.第Ⅰ卷(选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项....是符合题目要求的,请将正确选项填涂在答题卡上). 1.若集合2{|4}A x x =<,则集合{|1,}y y x x A =+∈=A.{|01}y y <≤B.{|01}y y ≤<C.{|03}y y ≤≤D.{|03}y y ≤<2. 若i zi-=+123,则=z A.1522i -- B. 1522i - C.i 2521+ D.1522i -+ 3.直线l :2x my =+与圆M :22220x x y y +++=相切,则m 的值为A.1或-6B.1或-7C.-1或7D.1或17-4.对四组数据进行统计,获得以下散点图,关于其相关系数比较,正确的是相关系数为1r相关系数为2r相关系数为3r相关系数为4rA. 24310r r r r <<<<B. 42130r r r r <<<<C. 42310r r r r <<<<D. 24130r r r r <<<<5.各项都是正数的等比数列{}n a 中,13a ,312a ,22a 成等差数列,则10121519202381013171821a a a a a a a a a a a a +++++=+++++A.1B.3C.6D.96.函数21()3cos log 22f x x x π=--的零点个数为A.2B.3C.4D.57.一个算法的程序框图如图所示,若该程序输出的结果是631,则判断框内应填入的条件是 A.i <4 B.i >4C.i <5D.i >58.函数()sin()6f x A x πω=+(0)ω>的图像与x 轴的交点的横坐标构成一个公差为2π的等差数列,要得到函数()cos g x A x ω=的图像只需将()f x 的图像A.向左平移6π B.向右平移3π C.向左平移23πD.向右平移23π9.给出下列说法: ①命题“若6πα=,则1sin 2α=”的否命题是假命题;②命题p :0x R ∃∈,使0sin 1x ∃>,则p ⌝:,sin 1x R x ∀∈≤;③“2()2k k Z πϕπ=+∈”是“函数sin(2)y x ϕ=+为偶函数”的充要条件;④命题p :“(0,)2x π∃∈,使1s i n c o s 2x x +=”, 命题q :“在△ABC 中,若sin sin A B >,则A B >”.那么命题(p q ⌝∧)为真命题. 其中正确的个数是A. 4B. 3C. 2D. 110.双曲线22221(0,0)x y a b a b-=>>的右是焦点是抛物线28y x =的焦点,两曲线的一个公共点为P ,且|PF|=5,则该双曲线的离心率为A.52B.5C. 2D.23311.四棱锥S ABCD-的所有顶点都在同一个球面上,底面ABCD是正方形且和球心O 在同一平面内,当此四棱锥的体积取得最大值时,它的表面积等于443+,则球O的体积等于A.423π B.823π C.1623π D.3223π12.现有4名教师参加说题比赛,共有4道备选题目,若每位选手从中有放回地随机选出一道题进行说题,其中恰有一道题没有被这4位选中的情况有A.288种B.144种C.72种D.36种第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作答,第22题-24题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上). 13.二项式42()(1)x x x+-的展开式中x 的系数是___________. 14.某长方体的三视图如右图,长度为10的体对角线在正视图中的长度为6,在侧视图中的长度为5,则该长方体的全面积为________________.15.等比数列{}n a 的首项为a ,公比为q ,其前n 项和为n S ,则数列{}n S 为递增数列的充分必要条件是________________. 16、如果直线250ax by -+=(0,0)a b >>和函数1()1x f x m+=+(0,1)m m >≠的图像恒过同一个定点,且该定点始终落在圆2285(1)(2)4x a y b -+++-=的内部或圆上,那么2aba b +的取值范围是_______________.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17、(本小题满分12分)在△ABC 中,向量(2cos ,1)m B = ,向量2(2cos (),1sin 2)42Bn B π=+-+ ,且满足m n m n +=- .⑴求角B 的大小;⑵求22sin sin A C +的取值范围. 18.(本小题满分12分)2012年2月份,从银行房贷部门得到好消息,首套住房贷款利率将回归基准利率. 某大型银行在一个星期内发放贷款的情况统计如图所示:⑴求在本周内该银行所借贷客户的平均贷款年限(取过剩近似整数值);⑵从本周内该银行所借贷客户中任意选取两位,求他们贷款年限相同的概率;⑶假设该银行此星期的贷款业绩一共持续10个星期不变,在这段时间里,每星期都从借贷客户中选出一人,记ξ表示其中贷款年限不超过20年得人数,求()E ξ.19.(本小题满分12分)已知四棱柱1111ABCD A B C D -中,1AA ABCD ⊥底面,A 1D 1B1C 16正视图侧视图俯视图590ADC ∠= ,AB CD ||,122AD CD DD AB ====.⑴求证:11AD B C ⊥;⑵求二面角11A BD C --的正弦值; (3)求四面体11A BDC 的体积.20.(本小题满分12分)已知12,F F 分别为椭圆22221x y a b+=(0)a b >>的左右焦点, ,M N 分别为其左右顶点,过2F 的直线l 与椭圆相交于,A B 两点. 当直线l 与x 轴垂直时,四边形AMBN的面积等于2,且满足222MF AB F N =+.⑴求此椭圆的方程;⑵当直线l 绕着焦点2F 旋转但不与x 轴重合时,求AM AN BM BN ⋅+⋅的取值范围.21.(本小题满分12分)已知函数()ln f x x x =.⑴讨论函数()f x 的单调性;⑵对于任意正实数x ,不等式1()2f x kx >-恒成立,求实数k 的取值范围; ⑶是否存在最小的正常数m ,使得:当a m >时,对于任意正实数x ,不等式()()xf a x f a e +<⋅恒成立?给出你的结论,并说明结论的合理性.请考生在22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-1:几何证明选讲.自圆O 外一点P 引圆的一条切线PA ,切点为A ,M 为PA的中点,过点M 引圆O 的割线交该圆于,B C 两点,且100BMP ∠= ,40BPC ∠= .⑴求证:MBP ∆ 与MPC ∆相似; ⑵求MPB ∠的大小.23.(本小题满分10分)选修4-4:坐标系与参数方程选讲.在直角坐标系xOy 中,曲线M 的参数方程为sin cos sin 2x y θθθ=+⎧⎨=⎩(θ为参数),若以该直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线N 的极坐标方程为:2sin()42t πρθ+=(其中t 为常数).⑴若曲线N 与曲线M 只有一个公共点,求t 的取值范围; ⑵当2t =-时,求曲线M 上的点与曲线N 上点的最小距离.24.(本小题满分10分)选修4-5:不等式选讲. 已知函数()|1||22|.f x x x =-++ ⑴解不等式()5f x >; ⑵若关于x 的方程1()4a f x =-的解集为空集,求实数a 的取值范围.2012年东北三省四市教研协作体等值诊断联合考试2012年长春市高中毕业班第三次调研测试数学(理科)参考答案及评分标准一、选择题(本大题包括12小题,每小题5分,共60分)1.D2.C3. B4. A5.D6. B7.C8.A9.B 10.C 11.B 12.B 简答与提示:1. D 集合{|22}A x x =-<<,113x -<+<,则013x ≤+<,即{|1,}{|03}y y x x A y y =+∈=≤<.故选D.2. C 由于32(32)(1)3232151(1)(1)222i i i i i z i i i i +++++-====+--+. 故选C. 3. B 由题意可知,圆M :22220x x y y +++=的圆心(1,1)--到直线l :2x my =+的距离为圆的半径2,由点到直线的距离公式可知1m =或7m =-. 故选B.4. A 由相关系数的定义以及散点图所表达的含义可知24310r r r r <<<<,故选A.5. D 由题意31232a a a =+,即211132a q a a q =+,可得2230q q --=,3q =或1q =-,又已知0q >,即3q =,2101215192023810131718219a a a a a a q a a a a a a +++++==+++++.故选D.6. B 在同一坐标系内画出函数3cos 2y x π=和21log 2y x =+的图像,可得交点个数为3. 故选B.7. C 初始值15,0,1===P T i ,第一次循环后2,1,5i T P ===,第二次循环后3,2,1i T P ===,第三次循环后14,3,7i T P ===,第四次循环后15,4,63i T P ===,因此循环次数应为4次,故5i <可以作为判断循环终止的条件. 故选C.8. A 由函数()sin()6f x A x πω=+(0)ω>的图像与x 轴的交点的横坐标构成一个公差为2π的等差数列可知,函数()f x 的周期为π,可知2ω=,即函数()sin(2)6f x A x π=+,()cos 2g x A x =,可将()g x 化为()sin(2)2g x A x π=+,可知只需将()f x 向左平移6π个单位即可获得()sin[2()]sin(2)6662f x A x A x ππππ+=++=+. 故选A .9. B 命题“若 6πα=,则21sin =α”的否命题是“若 6πα≠,则1sin 2α≠”,是假命题,因此①正确;命题 ,:0R x p ∈∃使0sin 1x >,则1sin ,:≤∈∀⌝x R x p 完全符合命题否定的规则,因此②也正确;“函数sin(2)y x ϕ=+为偶函数”的充要条件是sin 1ϕ=±,即2k πϕπ=+()k Z ∈,因此③错误;命题:(0,)2p x π∃∈“,使21cos sin =+x x ”中22sin cos 2(sin cos )2sin()224x x x x x π+=+=+,当(0,)2x π∈时,12sin()24x π<+≤,即:(0,)2p x π∃∈“,使21cos sin =+x x ”为假命题,而命题:q ABC ∆在“中,若sin sin A B >,则A B >”为真命题,可知命题(p ⌝)∧q 为真命题,因此④正确.一共有3个正确. 故选B.10. C 双曲线22221x y a b-=的右焦点F 是抛物线28y x =的焦点可知2c =,又5PF =可知P 到抛物线的准线2x =-的距离为5,可设(3,)P m ,根据两点间距离公式可得到26m =,将双曲线22221x y a b -=方程化为222214x y a a-=-,代入点P 的坐标并求解关于2a 的一元二次方程,可求得21a =或236a =. 又22c a >,可将236a =舍去,可知21a =,即1a =,(或根据双曲线定义得2a =|PF 2|-|PF 1|=2),综上可知双曲线的离心率为221c e a ===. 故选C.11. B 由题意可知四棱锥S ABCD -的所有顶点都在同一个球面上,底面ABCD 是正方形且和球心O 在同一平面内,当体积最大时, 可以判定该棱锥为正四棱锥,底面在球大圆上,可得知底面正方形的对角线长度为球的半径r ,且四棱锥的高h r =,进而可知此四棱锥的四个侧面均是边长为2r 的正三角形,底面为边长为2r 的正方形,所以该四棱锥的表面积为2222234(2)(2)232(232)4434S r r r r r =⨯+=+=+=+, 因此22r =,2r =,进而球O 的体积3448222333V r πππ==⨯=. 故选B.。

【恒心】【好卷速递】2012年长春市高中毕业生第四次调研测试理科数学标准参考答案【教师专版】

【恒心】【好卷速递】2012年长春市高中毕业生第四次调研测试理科数学标准参考答案【教师专版】

2012年长春市高中毕业生第四次调研测试数学(理科)参考答案及评分细则1. D *{|911}{1,2,3,4,5,6,7,8,9,10}A x N x =∈-<<=,{|32}B x x =-≤≤,∴{1,2}A B = . 故选D.2. B211(1)111(1)22222i i i i i i i i i i +++⨯-====-+---⨯,其共轭复数为1122i --. 故选B. 3. B 四个函数中只有函数3y x x =+既是奇函数又是增函数. 故选B. 4. C 令首项为a ,根据条件有2(9)(3)(21)3a a a a +=+⋅+⇒=,433312a =+⨯=.故选C.5. D 01234522222263100+++++=< ,012345622222226364127100++++++=+=>.∴当151k k =+=+时,63100S =<;当161k k =+=+时,127100S =>. 即该程序输出的7k =. 故选D.6. A 9921991()(1)r r r r r rr T C x C x x--+=-=-,令9233r r -=⇒=,从而3x 的系数为339(1)84C -=-. 故选A.7. A 通过观察图像可知函数图像过(2,0)-和(2,4)-两个固定点,由(2,0)-可知:84x x ππωϕ+=+;由(2,4)-可知:4A =-.从而()4sin()84f x x ππ=-+. 故选A.8. D 244412A p A ==. 故选D.9. D 由于2ABF ∆是以2F 为顶点的等腰三角形,所以2ABF ∆为锐角三角形的充要条件是12Rt AF F ∆的锐角221452b AF F ca∠<︒⇔>,即2222,210ac c a e e >---<,解得11e <1e >,所以11e <<. 故选D. 10. D 在中,根据余弦定理得BC 根据正弦定理得1sin cos sin sin sin AC BC B B B A B =⇒=⇒=⇒= 从而有22()()BP AP BC BC AB BC BC λλ-⋅=-+⋅2211372(77()24λλλ=--=-+.又01λ≤≤,所以2BP AP BC -⋅的取值范围是13[,5]4. 故选D.11. C 此几何体是底面边长为2为12. 令内切球的半径为r ,则1123r r ⨯=⇒=343V π== 故选C.12. C 函数()f x 的定义域为[,作出函数[y x =∈和]),[(2a a x x y -∈-=的图像,前者是圆22x y a +=的上半圆,后者是一条折线段,观察图像很容易发现:当01a <<时,()0f x <在[上恒成立;当2a >时,()0f x >在[上恒成立;当12a ≤≤时,()0f x =在[上总有实数根. 故选C.二、填空题(本大题包括4小题,每小题5分,共20分)13. 5π- 14. 960 15. 16. [8,2]-简答与提示: 13.222220022()cos 2sin |2|sinsin 02(2)22f x dx xdx dx x x ππππππ=+=+=-+-⎰⎰⎰145ππ=+-=-.14. 1500(0.820.46)0.5960⨯+⨯=(人). 15. 在BCD ∆中,根据正弦定理得,30sin sin 30sin sin(1801530)CD BC CDB CBD =⋅∠=⨯︒=∠︒-︒-︒在Rt ABC ∆中,tan tan60AB BC ACB =⋅∠=︒=.16. 设直线AB 的斜率为k ,则直线AB 的方程为)1(2+=-x k y .设11(,)A x y ,22(,)B x y ,则由222(1)8y k x x y -=+⎧⎨+=⎩可以得 222122211447,144k k k y y k k k x x +++-=+-+=. 从而有221212224474411k k k k OA OB x x y y k k +--++⋅=+=+++2226886611k k k k k-++==-+++.令43k t +=,则2326625tOA OB t t ⋅=-+-+ .当0t =时,6OA OB ⋅=-;当0t ≠时,2323266256256t OA OB t t t t ⋅=-+=-+-++- . 由于2510t t+≥(当5t =时取等号),所以82OA OB -⋅ ≤≤但6OA OB ⋅≠- .综合可知82OA OB -⋅≤≤为所求.三、解答题(本大题必做题5小题,三选一选1小题,共70分) 17. (本小题满分12分)【命题意图】本小题主要考查等差数列基本量的求取、等差数列求和公式以及函数单调性等有关知识的应用.【试题解析】解:⑴由22222S a a =+,可得211112()()()a a d a d a d ++=+++. 又11a =,可得1d =. 数列{}n a 是首项为1,公差为1的等差数列,n a n ∴=.(4分)⑵根据⑴得(1)2n n n S +=,213(1)13131n n S n n b n n n n +++===++. 由于函数13()(0)f x x x x=+>在上单调递减,在)+∞上单调递增,而34<,且132288(3)33312f =+==,132987(4)44412f =+==, 所以当4n =时,n b 取得最小值,且最小值为2933144+=. 即数列{}n b 的最小值项是4334b =. (12分) 18. (本小题满分12分)【命题意图】本小题主要考查统计与概率的相关知识,具体涉及到随机变量的分布列、数学期望的求法和统计案例中独立性检验等知识内容.【试题解析】解:⑴根据条件ξ的取值为2,3,4,而且在20人中,数学成绩优秀的6人,不优秀的14人,所以有21422091(2)190C p C ξ===,1161422084(3)190C C p C ξ===,2622015(4)190C p C ξ===. 所以ξ的分布列为(6分)数学期望918415()234 2.6190190190E ξ=⨯+⨯+⨯=. (8分)所以220(41222) 5.4875 5.024(42)(212)(42)(212)K ⋅⨯-⨯=≈>+⋅+⋅+⋅+. 又2( 5.024)0.025p K =≥,因此根据这次抽查数据在犯错误的概率不超过0.025的前提下可以认为物理成绩优秀与否和数学成绩优秀与否有关系.(12分) 19. (本小题满分12分)【命题意图】本小题主要考查立体几何的相关知识,具体涉及到直线与直线垂直的判断、线面的平行关系的判断以及二面角的求法等有关知识.【试题解析】⑴证明:由条件知四边形ABCD 是菱形,所以BD AC ⊥,而平面⊥11CC AA 平面ABCD ,平面11AACC 平面ABCD AC =, 所以BD⊥平面11AACC ,又1AA ⊂平面11AACC ,因此1AABD ⊥. (3分) ⑵因为60ABC ∠=,ABCD 是菱形,所以1AC AB AA ==,而160A AC ∠=,所以1A AC ∆是正三角形. 令BD AC O = ,连结1AO ,则1,,BD AC OA 两两互相垂直.如图所示,分别以1,,BD AC OA 所在的直线为,,x y z 轴建立空间直角坐标系,则(D ,(0,1,0)A -,1A ,1,0)DA =-,1DA = ,平面11AACC 的法向量为(1,0,0)n = . 设(,,)m x y z =是平面1DAA 的法向量,则100000m DA y y x z m DA ⎧⎧⋅=-==⎪⎪⇔⇔⎨⎨+=⋅=⎪=⎪⎩⎩. 令1x =,则 1.y z =-即(11)m =-. 设二面角C AA D --1的平面角为θ, 则θ是锐角,并且cos cos ,5m n m n m nθ⋅====⋅因此二面角C AA D --1(8分) ⑶设这样的点P 存在,且1CP CCλ=,而1(0,1,0),2,3)C C ,所以(0,1)P λ+,又B ,所以()BP λ=+,1DC = 设(,,)k x y z =是平面11DAC 的法向量,则。

2012年吉林省中考数学试卷-答案

2012年吉林省中考数学试卷-答案

【解析】解:如图所示:
【解析】解:画树状图得:
ABC △
Y是矩形.∴ADCE
当2535x <≤时,100y =;如图所示:
22225
由于EF OA ∥,且EF OA ≠,所以四边形OFEA 是梯形.
【解析】【特例探究】【归纳证明】都是【拓展应用】(1)的特殊情况,因此以【拓展】(1)为例说明前三小问的思路:
已知A B ,的坐标,根据抛物线的解析式,能得到C D ,的坐标,进而能求出直线OC OD ,的解析式,也就能得出E F ,两点的坐标,再进行比较即可.
最后一小题也比较简单:总结前面的结论,能得出EF x ∥轴的结论,那么四边形OFEA 的面积可分作OEF OEA △,△两部分,根据给出的四边形和OFE △的面积比例关系,能判断出EF OA ,的比例关系,进而得出m n ,的比例关系,再对四边形OFEA 的形状进行判定.
【考点】二次函数综合题.。

2012年吉林省长春市小学数学毕业试卷及参考答案

2012年吉林省长春市小学数学毕业试卷及参考答案

10. (3 分)如图是某小学六年级学生视力情况统计图. ①视力正常的有 76 人,视力近视的有 ②假性近视的同学比视力正常的人少 人; %; (百分号前保留一位小数) .
③视力正常的学生与视力非正常学生人数的比是
____________________________________________________________________________
20. (2 分)在下图中,以直线为轴旋转一周,可以得出圆柱体的是(

A.
B.
C.
D.
四、计算题(25 分) 21. (4 分) 直接写得数 3.2+1.68= 0.75÷15= ×5.6= 0.375×4= 22. (6 分)解方程. (1)18 (2)2(x+1)=1﹣(x﹣4) 23. (15 分)计算下面各题能简便的尽量简便 (1)24×( (2)[ (3)0.374×48+0.62×37.4﹣3.74 (4)0.125× + ×8.25+12.5% (5)2012÷2012 + . 8.1﹣6 = = = 7.5﹣(2.5+3.8)=
17. (2 分)下面能化成有限小数的是( A. B. C. D.
18. (2 分)一个边长 2 分米的正方形,如果在四个角各剪去一个边长为 2 厘米 的小正方形,那么它周长与原来比,结果是( A.减少 B.不变 C.增加 )
19. (2 分)有一种手表零件长 5 毫米,在设计图纸上的长度是 10 厘米,图纸的 比例尺是( A.1:20 ) B.20:1 C.2:1 D.1:2
五、解答题(30 分) 24. (6 分)甲、乙两个车间共同加工一批零件.已知甲车间生产零件数的 与乙 车间生产零件数的 相等.完成任务时,乙车间共生产零件 900 个,甲车间共生 产零件多少个? 25. (6 分)小明很喜欢玩电脑,但他爸爸要求小明一星期平均每天玩电脑的时 间不超过 1 小时, 他想说服爸爸增加时间,于是对班级部分同学从星期日到星期

吉林省长春市(市命题)七年级数学上学期第一次月考试卷(含解析)新人教版

吉林省长春市(市命题)七年级数学上学期第一次月考试卷(含解析)新人教版

2016-2017学年吉林省长春市名校调研七年级(上)第一次月考数学试卷(市命题)一、选择题(共8小题,每小题3分,满分24分)1.如果向右走5步记为+5,那么向左走3步记为()A.+3 B.﹣3 C.+ D.﹣2.四个数﹣3,0,1,2,其中负数是()A.﹣3 B.0 C.1 D.23.下列各对数互为相反数的是()A.4和﹣(﹣4)B.﹣3和C.﹣2和﹣D.0和04.下列算式正确的是()A.(﹣14)﹣5=﹣9 B.0﹣(﹣3)=3 C.(﹣3)﹣(﹣3)=﹣6 D.|5﹣3|=﹣(5﹣3)5.如图,数轴上点M所表示的数可能是()A.1.5 B.﹣1.6 C.﹣2.6 D.﹣3.46.一个数的绝对值是3,则这个数可以是()A.3 B.﹣3 C.3或﹣3 D.7.点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:ab>0,其中正确的是()A.甲、乙B.丙、丁C.甲、丙D.乙、丁8.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,则第8个图案中有n个白色纸片,则n的值为()A.23 B.24 C.25 D.26二、填空题(共6小题,每小题3分,满分18分)9.比较大小(用“>,<,=”表示):﹣|﹣2| ﹣(﹣2).10.的相反数是,倒数是.11.计算(﹣2)×3×(﹣1)的结果是.12.绝对值小于2的整数是.13.比﹣3大5的数是.14.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是.三、解答题(共10小题,满分78分)15.计算:(﹣12)+(+3).16.计算:10+5×(﹣3).17.+(﹣14)+(﹣16)+(+8).18.计算:(﹣18)×(﹣+).19.将下列各数在数轴上表示,再用“<”把各数连接起来:﹣3,﹣|﹣|,﹣(﹣2),﹣1<<<.20.把下列各数填入表示一些数集合的相应的大括号里:﹣0.1,,325,0,0.6,﹣20,10.1,﹣5%整数集:{ …};分数集:{ …};有理数集:{ …}.21.已知a,b互为相反数,x的绝对值为1,求2016(a+b)+2017﹣x的值.22.如表是一种股票星期一至星期五收盘价的变化情况,星期一前一个交易日的收盘价为8.8(单位:元).星期一二三四五收盘价变化(与前一个交易日比较)+0.3 ﹣0.5 ﹣0.7 +1.4 +0.4(1)请计算这五日的收盘价;(2)这五日内哪一天的收盘价最高?是多少?23.某公路检修组乘汽车沿公路检修,约定前进为正,后退为负,某天自A地出发到收工时所走的路程(单位:千米)为+10,﹣3,+4,﹣2,﹣8,+13,﹣2,﹣11,+7,+5.(1)问收工时相对A地是前进了还是后退了?距A地多远?(2)若检修组最后回到了A地且每千米耗油0.2升,问共耗油多少升?24.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C到点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t大于0)秒.(1)点C表示的数是.(2)求当t等于多少秒时,点P到达点A处?(3)点P表示的数是(用含字母t的式子表示)(4)求当t等于多少秒时,P、C之间的距离为2个单位长度.2016-2017学年吉林省长春市名校调研七年级(上)第一次月考数学试卷(市命题)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.如果向右走5步记为+5,那么向左走3步记为()A.+3 B.﹣3 C.+ D.﹣【考点】正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:向右记为正,则向左就记为负,据此解答即可.【解答】解:如果向右走5步记为+5,那么向左走3步记为﹣3;故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.四个数﹣3,0,1,2,其中负数是()A.﹣3 B.0 C.1 D.2【考点】正数和负数.【专题】计算题.【分析】﹣3小于零,是负数,0既不是正数也不是负数,1和2是正数.【解答】解:∵﹣3<0,且小于零的数为负数,∴﹣3为负数.故选:A.【点评】题目考查了正负数的定义,解决此类问题关键是熟记正负数的定义,需要注意的是,0既不是正数也不是负数.3.下列各对数互为相反数的是()A.4和﹣(﹣4)B.﹣3和C.﹣2和﹣D.0和0【考点】相反数.【分析】根据只有符号不同的两个数叫做相反数对各选项分析判断即可得解.【解答】解:A、4和﹣(﹣4)=4,是相同的两个数,不是互为相反数,故本选项错误;B、﹣3和,不是互为相反数,故本选项错误;C、﹣2和﹣,不是互为相反数,故本选项错误;D、0和0是互为相反数,故本选项正确.故选D.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.4.下列算式正确的是()A.(﹣14)﹣5=﹣9 B.0﹣(﹣3)=3 C.(﹣3)﹣(﹣3)=﹣6 D.|5﹣3|=﹣(5﹣3)【考点】有理数的减法;绝对值.【分析】根据有理数的减法运算法则和绝对值的性质对各选项分析判断利用排除法求解.【解答】解:A、(﹣14)﹣5=﹣19,故本选项错误;B、0﹣(﹣3)=0+3=3,故本选项正确;C、(﹣3)﹣(﹣3)=﹣3+3=0,故本选项错误;D、|5﹣3|=2,﹣(5﹣3)=﹣2,故本选项错误.故选B.【点评】本题考查了有理数的减法,绝对值的性质,熟记运算法则和性质并准确计算是解题的关键.5.如图,数轴上点M所表示的数可能是()A.1.5 B.﹣1.6 C.﹣2.6 D.﹣3.4【考点】数轴.【分析】由数轴可知:M所表示的数在﹣3与﹣2之间.【解答】解:设M表示的数为x,由数轴可知:﹣3<x<﹣2,M可能是﹣2.6,故选(C)【点评】本题考查利用数轴表示数的大小,属于基础题型.6.一个数的绝对值是3,则这个数可以是()A.3 B.﹣3 C.3或﹣3 D.【考点】绝对值.【专题】计算题.【分析】此题根据绝对值的性质进行求解即可.【解答】解:∵一个数的绝对值是3,可设这个数位a,∴|a|=3,∴a=±3故选C.【点评】此题主要考查绝对值的性质,比较简单.7.点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:ab>0,其中正确的是()A.甲、乙B.丙、丁C.甲、丙D.乙、丁【考点】绝对值;数轴.【专题】推理填空题.【分析】根据图示,可得b<﹣3,0<a<3,据此逐项判断即可.【解答】解:∵b<a,∴b﹣a<0;∵b<﹣3,0<a<3,∴a+b<0;∵b<﹣3,0<a<3,∴|b|>3,|a|<3,∴|a|<|b|;∵b<0,a>0,∴ab<0,∴正确的是:甲、丙.故选:C.【点评】此题主要考查了绝对值的含义和求法,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a、b的取值范围.8.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,则第8个图案中有n个白色纸片,则n的值为()A.23 B.24 C.25 D.26【考点】规律型:图形的变化类.【分析】观察图形,发现:白色纸片在4的基础上,依次多3个;根据其中的规律得出第n个图案中有白色纸片,求出n=8的值即可.【解答】解:∵第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张,第3图案中有白色纸片3×3+1=10张,∴第n个图案中有白色纸片3n+1张,当n=8时,3n+1=25,故选:C.【点评】此题主要考查图形的变化规律,此题的关键是注意发现前后图形中的数量之间的关系.二、填空题(共6小题,每小题3分,满分18分)9.比较大小(用“>,<,=”表示):﹣|﹣2| <﹣(﹣2).【考点】有理数大小比较.【分析】先求出各数的值,再根据负数小于一切正数即可得出结论.【解答】解:∵﹣|﹣2|=﹣2<0,﹣(﹣2)=2>0,∴﹣|﹣2|<﹣(﹣2).故答案为:<.【点评】本题考查的是有理数的大小比较,熟知负数小于一切正数是解答此题的关键.10.的相反数是,倒数是.【考点】倒数;相反数.【分析】两数互为相反数,和为0;两数互为倒数,积为1.【解答】解:设的相反数为x,倒数为y.依题意得: +x=0, y=1,所以x=,y=.则的相反数是,倒数是﹣.【点评】本题考查的是相反数和倒数的概念.两数互为相反数,和为0;两数互为倒数,积为1.11.计算(﹣2)×3×(﹣1)的结果是 6 .【考点】有理数的乘法.【专题】计算题;实数.【分析】原式利用乘法法则计算即可得到结果.【解答】解:原式=6,故答案为:6【点评】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.12.绝对值小于2的整数是﹣1,0,1 .【考点】绝对值.【分析】可以根据数轴得到答案,到原点距离小于2的整数只有三个:﹣1,1,0.【解答】解:绝对值小于2的整数是:﹣1,0,1.【点评】本题考查了绝对值的概念.13.比﹣3大5的数是 2 .【考点】有理数的加法.【分析】比﹣3大5的数是﹣3+5,根据有理数的加法法则即可求解.【解答】解:﹣3+5=2.故答案是:2.【点评】本题考查了有理数加法运算,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.14.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是21 .【考点】有理数的乘法.【专题】图表型.【分析】根据转换机的设置,结合有理数的混合运算法则求出即可.【解答】解:如图所示:若输入的x为﹣5,则输出的结果是:(﹣5﹣2)×(﹣3)=﹣7×(﹣3)=21.故答案为:21.【点评】此题主要考查了有理数的混合运算,熟练掌握运算法则是解题关键.三、解答题(共10小题,满分78分)15.计算:(﹣12)+(+3).【考点】有理数的加法.【专题】计算题;实数.【分析】原式利用异号两数相加的法则计算即可得到结果.【解答】解:原式=﹣12+3=﹣9.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.16.计算:10+5×(﹣3).【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=10﹣15=﹣5.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(+26)+(﹣14)+(﹣16)+(+8).【考点】有理数的加法;正数和负数.【专题】计算题.【分析】根据有理数的加法法则对式子进行计算.把同号的先相加,得出的结果再相加,得出最后结果.【解答】解:原式=(+26)+(+8)+(﹣14)+(﹣16)=34+(﹣30)=4.【点评】本题主要考查了有理数加法法则:(1)同号相加,取相同符号,并把绝对值相加.(2)绝对值不相等的异号两数加减,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.18.计算:(﹣18)×(﹣+).【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式利用乘法分配律计算即可得到结果.【解答】解:原式=﹣9+10﹣15=﹣14.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.将下列各数在数轴上表示,再用“<”把各数连接起来:﹣3,﹣|﹣|,﹣(﹣2),﹣1﹣3 <﹣1 <﹣|﹣| <﹣(﹣2).【考点】有理数大小比较;数轴;绝对值.【分析】结合有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.进行求解即可.【解答】解:数轴如图所示:∴﹣3<﹣1<﹣|﹣|<﹣(﹣2).故答案为:﹣3,﹣1,﹣|﹣|,﹣(﹣2).【点评】本题考查了有理数大小的比较,解答本题的关键在于熟练掌握有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.20.把下列各数填入表示一些数集合的相应的大括号里:﹣0.1,,325,0,0.6,﹣20,10.1,﹣5%整数集:{ 325,﹣20,0 …};分数集:{ ﹣0.1,,0.6,10.1,﹣5% …};有理数集:{ ﹣0.1,,325,0,0.6,﹣20,10.1,﹣5% …}.【考点】有理数.【分析】根据有理数的分类,可得答案.【解答】解:整数集:{ 325,﹣20,0…};分数集:{﹣0.1,,0.6,10.1,﹣5%…};有理数集:{﹣0.1,,325,0,0.6,﹣20,10.1,﹣5%…},故答案为:325,﹣20,0;﹣0.1,,0.6,10.1,﹣5%;﹣0.1,,325,0,0.6,﹣20,10.1,﹣5%.【点评】本题考查了有理数,熟记有理数的分类是解题关键.21.已知a,b互为相反数,x的绝对值为1,求2016(a+b)+2017﹣x的值.【考点】代数式求值.【专题】计算题;实数.【分析】利用相反数,绝对值的代数意义求出各自的值,代入原式计算即可得到结果.【解答】解:由题意得:a+b=0,|x|=1,则原式=2017﹣x=2017±1=2016或2018【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.22.如表是一种股票星期一至星期五收盘价的变化情况,星期一前一个交易日的收盘价为8.8(单位:元).星期一二三四五收盘价变化(与前一个交易日比较)+0.3 ﹣0.5 ﹣0.7 +1.4 +0.4(1)请计算这五日的收盘价;(2)这五日内哪一天的收盘价最高?是多少?【考点】正数和负数.【分析】(1)根据有理数的加法,可得每天股票的价格;(2)比较(1)中计算结果即可求解.【解答】解:(1)这五日的收盘价分别是:周一8.8+0.3=9.1(元),周二9.1﹣0.5=8.6(元),周三8.6﹣0.7=7.9(元),周四7.9+1.4=9.3(元),周五9.3+0.4=9.7(元);(2)∵9.7>9.3>9.1>8.6>7.9,∴这五日内星期五的收盘价最高,是9.7元.【点评】本题考查了正数和负数,利用了有理数的加法运算,有理数的大小比较进行解题,此题难度不大.23.某公路检修组乘汽车沿公路检修,约定前进为正,后退为负,某天自A地出发到收工时所走的路程(单位:千米)为+10,﹣3,+4,﹣2,﹣8,+13,﹣2,﹣11,+7,+5.(1)问收工时相对A地是前进了还是后退了?距A地多远?(2)若检修组最后回到了A地且每千米耗油0.2升,问共耗油多少升?【考点】正数和负数.【分析】(1)约定前进为正,后退为负,依题意列式求出和即可;(2)要求耗油量,需求他共走了多少路程,这与方向无关.【解答】解:(1)10﹣3+4﹣2﹣8+13﹣2﹣11+7+5=13(千米).故收工时相对A地是前进了,距A地13千米;(2)自A地出发到收工时所走的路程:|+10|+|﹣3|+|+4|+|﹣2|+|﹣8|+|+13|+|﹣2|+|﹣11|+|+7|+|+5|=65(千米),自A地出发到回到A地时所走的路程:65+13=78(千米),78×0.2=15.6(升).答:若检修组最后回到了A地且每千米耗油0.2升,共耗油15.6升.【点评】此题考查了有理数的加减混合运算,以及正数与负数,弄清题意是解本题的关键.正负数是表示相反意义的量,如果规定一个量为正,则与它相反的量一定为负.24.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C到点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t大于0)秒.(1)点C表示的数是 1 .(2)求当t等于多少秒时,点P到达点A处?(3)点P表示的数是2t﹣4 (用含字母t的式子表示)(4)求当t等于多少秒时,P、C之间的距离为2个单位长度.【考点】一元一次方程的应用;数轴;列代数式.【分析】(1)根据题意得到点C是AB的中点;(2)、(3)根据点P的运动路程和运动速度列出方程;(4)分两种情况:点P在点C的左边有右边.【解答】解:(1)依题意得,点C是AB的中点,故点C表示的数是: =1.故答案是:1;(2)[6﹣(﹣4)]÷2=10÷2=5(秒)答:当t=5秒时,点P到达点A处.(3)点P表示的数是2t﹣4.故答案是:2t﹣4;(4)当点P在点C的左边时,2t=3,则t=1.5;当点P在点C的右边时,2t=7,则t=3.5.综上所述,当t等于1.5或3.5秒时,P、C之间的距离为2个单位长度.【点评】本题考查了一元一次方程的应用,列代数式和数轴.解题时,利用了数形结合的数学思想.。

初中数学命题思想

初中数学命题思想
要突出对学生基本数学素养的评价。试题首先关注《课程标准》中最基础、最 核心的内容,即所有学生在数学学习和应用数学解决问题过程中最为重要的、必须 掌握的核心观念、思想方法、基本知识和常用的技能。 2、试题素材、求解方式要体现公平性
避免需要特殊背景知识才能够理解的试题素材;要避免试卷的整体表达方式有 利于一种认知风格的学生,而不利于另一种认知风格的学生。对于具有特殊才能和 需要帮助的学生,试卷的构成应考虑到他们各自的数学认知特征、已有的数学活动 经验,给他们提供适当的机会来表达自己的数学才能。
信度系数是用以表明信度高低的数值指标.在测量学中,
信度可定义为真实分数方差与实得分数方差的比.
rXX
ST2
S
2 X
提高测验信度的途径(减小随机误差) 1.适当增加试卷长度; 2.控制各环节误差,特别是提高命题质量. ①题目要注意避免科学性、学术性和技术性问题, ②试题题意明确,文字通顺,表达准确、简练,避免多

2
19 16% 14 12%
5
4%
8 7% 38%

3
39 33% 8
7%
0
0%
0 0% 39%
间4
8 7% 19 16%
8
7%
12 10% 39%
与 图
5
51 34% 15 10%
0
0%
0 0% 44%

6
26 22% 10 8%
2
2%
10 8%
40%

7
34 28% 7
6%
2
2%
6 5% 41%
余的无关内容,含混不清的语言影响考生正确反应。 ③避免与解答有关的暗示性语言和内容出现在题目中.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年长春市初中毕业生学业考试网上阅卷模拟训练数 学本试卷包括七道大题,共26小题,共6页.全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分) 1.计算 6(3)--的值是(A )-9. (B )-3. (C )3. (D )9.2.2011年某市居民人均收入达到36 200元.将36 200这个数字用科学记数法表示为 (A )362×102. (B )3.62×104. (C )3.62×105. (D )0.362×105. 3.右图是由5个完全相同的小正方体组成的几何体,其左视图是4.吉林省2007~2011年全省粮食产量统计结果如图所示(单位:万吨).这组粮食产量数据的中位数是 (A )2 454. (B )2 460. (C )2 840.(D )3 171.5.不等式24x -≤0的解集在数轴上表示为(A ) (B )(C ) (D )正面(第3题)2 4542 8402 4602 8423 1712007年 2008年 2009年 2010年 2011年 (第4题)(A ) (B ) (C ) (D )6.如图,AB 、CD 都是⊙O 的弦,且AB ⊥CD .若∠CDB =62︒,则∠ACD 的大小为 (A )28︒. (B )31︒. (C )38︒. (D )62︒.7.如图,在正六边形ABCDEF 中,△ABC 的面积为2,则△EBC 的面积为 (A )4. (B )6. (C )8. (D )12.8.如图,在平面直角坐标系中,若点A (2,3)在直线12y x b =-+与x 轴正半轴、y 轴正半轴围成的三角形内部,则b 的值可能是(A )3-. (B )3. (C )4. (D )5. 二、填空题(每小题3分,共18分)9.写出一个在2和3之间的无理数: . 10.分解因式:23a a -= .11.购买m 千克苹果花费p 元,则按同样的价格购买n 千克苹果,需花费 元(用含p 、m 、n 的代数式表示).12.如图,在四边形ABCD 中,∠A =90︒,BD ⊥CD ,∠ADB =∠C .若AB =4,AD =3,则BC 的长为 .(第12题) (第13题) (第14题)13.如图,在∠MON 的两边上分别截取OA 、OB ,使OA =OB ;分别以点A 、B 为圆心,OA 长为半径作弧,两弧交于点C ;连结AC 、BC 、AB 、OC .若AB =2cm ,四边形OACB 的面积为42cm .则OC 的长为 cm .14.将矩形纸片ABCD 按如图方式折叠,DE 、CF 为折痕,折叠后点A 和点B 都落在点O 处.若△EOF 是等边三角形,则ABAD的值为 . (第7题)A B CO MN AEFACD(第8题)(第6题) ABCDO .三、解答题(每小题5分,共20分)15.先化简,再求值:2(1)2(1)3a a +---,其中a =.16.A 、B 两车间生产同一种材料,B 车间每天比A 车间多生产20吨,A 车间生产25吨与B 车间生产35吨所用时间相同.A 车间每天生产这种材料多少吨?17.如图,四边形ABCD 是矩形,以AD 为直径的⊙O 交BC 边于点E 、F ,AB =4,AD =12.求线段EF 的长.18.小丹有3张扑克牌,小林有2张扑克牌,扑克牌上的数字如图所示.两人用这些扑克牌做游戏,他们分别从自己的扑克牌中随机抽取一张,比较这两张扑克牌上的数字大小,数字大的一方获胜.请用画树状图(或列表)的方法,求小丹获胜的概率.四、解答题(每小题6分,共12分)19.图①、图②和图③均是边长为1的正方形网格,按要求画出顶点在格点上的图形. (1)用若干个图①中的三角形拼出一个梯形,在图②中画出拼得的梯形.(2)用若干个图①中的三角形、图②中的梯形拼出一个是中心对称但不是轴对称的四边形,在图③中画出拼得的四边形,并画出所用三角形和梯形的各边.图① 图② 图③小林小丹 小林小丹20.如图,在平面直角坐标系中,△ABC 的顶点A 、B 分别落在x 轴、y 轴的正半轴上,顶点C 在第一象限,BC 与x 轴平行.已知BC =2,△ABC 的面积为1. (1)求点C 的坐标.(2)将△ABC 绕点C 顺时针旋转90︒,△ABC 旋转到△A 1B C 的位置,求经过点1B的反比例函数关系式.五、解答题(每小题6分,共12分)21.为了解全校学生登录校社团网站的情况,学生会在全校学生中随机抽取了n 名学生,对他们一周当中登陆校社团网站的次数进行了调查,并将调查结果绘制成如下条形统计图.(1)这次被调查的学生人数n 为 .(2)全校有2 100名学生,估计一周登录 校社团网站超过3次的人数.(3)估计全校2 100名学生一周登录校社团 网站的总次数会达到多少次?22.从水平地面到水平观景台之间有一段台阶路和一段坡路,示意图如下.台阶路AE共有8个台阶,每个台阶的宽度均为0.5m ,台阶路AE 与水平地面夹角∠EAB 为28︒.坡路EC 长7m ,与观景台地面的夹角∠ECD 为15︒.求观景台地面CD 距水平地面AB 的高度BD (精确到0.1m).【参考数据:sin28°=0.47,cos28°=0.88,tan28°=0.53;sin15°=0.26,cos15°=0.97,tan15°=0.27】.n 名学生一周登录校社团网站23.甲、乙两辆货车分别从A 、B 两地同时出发,沿同一条公路相向而行,甲车每小时行驶75千米.两车相遇后,用2小时互换货物,然后甲车沿原路原速度返回,乙车沿原路返回,途经C 地,用0.8小时卸下部分货物后返回B 地.甲车回到A 地时,乙车恰好回到B 地.下图表示乙车离B 地的路程y (千米)与出发时间x (时)的函数图象. (1)求两车相遇前乙车行驶的速度. (2)求A 、B 两地之间这条公路的长.(3)求乙车从C 地返回到B 地行驶过程中y 与x 的函数关系式.24.感知:如图①,在菱形ABCD 中,AB =BD ,点E 、F 分别在边AB 、AD 上.若AE =DF ,易知△ADE ≌△DBF .探究:如图②,在菱形ABCD 中,AB =BD ,点E 、F 分别在BA 、AD 的延长线上.若AE =DF ,△ADE 与△DBF 是否全等?如果全等,请证明;如果不全等,请说明理由.拓展:如图③,在□ABCD 中,AD =BD ,点O 是AD 边的垂直平分线与BD 的交点,点E 、F 分别在OA 、 AD 的延长线上. 若AE =DF ,∠ADB =50︒,∠AFB 32=︒,求∠ADE 的度数.图① 图② 图③CDFABCD EFA BCDOE Fy (千米x (时)25.如图,点A 、B 分别为抛物线2143y x bx =-++、2126y x x c =-+与y 轴交点,两条抛物线都经过点C (6,0).点P 、Q 分别在抛物线2143y x bx =-++、2126y x x c =-+上,点P 在点Q 的上方,PQ 平行y 轴.设点P 的横坐标为m . (1)求b 和c 的值.(2)求以A 、B 、P 、Q 为顶点的四边形是平行四边形时m 的值.(3)当m 为何值时,线段PQ 的长度取得最大值?并求出这个最大值. (4)直接写出线段PQ 的长度随m 增大而减小的m 的取值范围.26.如图,在△AOB 中,∠AOB =90︒,OA =OB =6.C 为OB 上一点,射线CD ⊥OB 交AB于点D ,OC =2.点P 从点AAB 方向运动,点Q 从点C 出发以每秒2个单位长度的速度沿CD 方向运动,P 、Q 两点同时出发,当点P 到达到点B 时停止运动,点Q 也随之停止.过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F ,得到矩形PEOF .以点Q 为直角顶点向下作等腰直角三角形QMN ,斜边MN //OB ,且MN =QC .设运动时间为t (单位:秒). (1)求t =1时FC 的长度. (2)求MN =PF 时t 的值.(3)当△QMN 和矩形PEOF 有重叠部分时,求重叠(阴影)部分图形面积S 与t 的函数关系式.(4)直接写出△QMN 的边与矩形PEOF 的边有三个公共点时t 的值.数学试题参考答案及评分标准1.D 2.B 3.B 4.C 5.C 6.A 7.A 8.D 二、填空题(每小题3分,共18分) 9.5(答案不唯一) 10.)3(-a a 11.m np 12.425 13.4 1415.解:原式322122-+-++=a a a 2a =.当10=a 时,原式2)10(= 10=. 备注: 2)1(+a 展开正确得1分;2(1)a --去括号正确得1分.16.解:设A 车间每天生产这种材料x 吨.根据题意,得xx 252035=+. 解得x =50. 经检验,50=x 是原方程的解,且符合题意. 答:A 车间每天生产这种材料50吨.17.解:作OM ⊥BC 于M ,连结OE .∴EF MF ME 21==. ∵AD =12,∴6=OE在矩形ABCD中,OM ⊥BC ,∴OM =AB =4. 在△OEM 中,=∠OME 90°,∴ME ==∴线段EF 的长度为54.18.解:∴P (小丹获胜)=63=21.2 6 93 8 3 8 3 8 小林小丹或19.解:(1)以下答案供参考.(2)以下答案供参考.备注:(2)中图形正确,但没有画出所用三角形和梯形各边得2分,所画边不全或多画得2分.20.解:(1)作CD ⊥x 轴于D . (1分)∵BC 与x 轴平行,∴CD BC S ABC ⋅=∆21, ∵BC =2,1=∆ABC S ,∴1=CD . (2分)∴ C (2,1). (3分)(2)由旋转得CB 1=CB =2,∴ B 1(2 ,3). (4分)设经过点B 1(2,3)的反比例函数为xky =,∴23k =. 解得k =6.∴经过点B 1的反比例函数为xy 6=. 21.解:(1)150.(2)∵150502100⨯700=(人), ∴全校一周登录校社团网站超过3次的大约有700人. (3)∵366145364163322401=⨯+⨯+⨯+⨯+⨯,∴51241503662100=⨯. ∴全校学生一周登录校社团网站的总次数大约可以达到5 124次.22.解:作EM ⊥CD 于M ,EN ⊥AB 于N .在△ANE 中,∠ENA =90°,ANENEAN =∠tan , ∵∠BAE =28°,AN =0.5×8=4,∴tan EN AN =⋅28°=4×0.53=2.12.在△CME 中,∠CME =90°,CEMEECM =∠sin , ∵∠DCE =15°,EC =7,∴sin ME CE =⋅15°=7×0.26=1.82.∴NE +ME =2.12+1.82=3.94 ≈ 3.9. 答:水平地面到观景台的高度约为3.9m .23.解:(1)两车相遇前乙车行驶的速度为606360=千米/时. (2)75×6=450千米,360+450=810千米. ∴A 、B 两地之间的这条公路长为810千米. (3)乙车从C 地返回到B 地行驶过程中,设y 与x 之间的函数关系式为b kx y +=,根据题意,y 与x 之间的函数图象经过(10.8,240),(14,0)两点,∴⎩⎨⎧+=+=.140,8.10240b k b k 解得⎩⎨⎧=-=.1050,75b k∴乙车从C 地返回到B 地行驶过程中,y 与x 的函数关系式为105075+-=x y . 24. 探究:△ADE 和△DBF 全等.∵四边形ABCD 是菱形,∴AB =AD .∵AB =BD ,∴AB =AD =BD .∴△ABD 为等边三角形. ∴∠DAB =∠ADB =60°.∴∠EAD =∠FDB =120°.MN∵AE =DF ,∴△ADE ≌△DBF .拓展:∵点O 在AD 的垂直平分线上,∴OA=OD .∴∠DAO=∠ADB=50︒.∴∠EAD=∠FDB . ∵AE =DF ,AD =DB ,∴△ADE ≌△DBF .∴∠DEA=∠AFB =32︒. ∴∠EDA=18°.25.解:(1)∵两条抛物线都经过点C (6,0),∴21664=03b -⨯++,解得34=b .21626=06c ⨯-⨯+,解得=6c . (2)根据题意,点A 的坐标为(0,4),点B 的坐标为(0,6),∴AB =2. ∵点P 的横坐标为m , ∴P (m ,434312++-m m ). ∵PQ 平行于y 轴,∴Q (m ,62612+-m m ). ∴PQ =)43431(2++-m m )6261(2+--m m 2310212-+-=m m .∴当PQ AB =时,2310212-+-m m 2=. 解得372101+=m ,372102-=m . ∴以A 、B 、P 、Q 为顶点的四边形是平行四边形时, m 值为37210+或37210-.(3)由(2)知,PQ =2110223m m -+-932)310(212+--=m , ∴当m =310时,线段PQ 的长度最大,线段PQ 的最大长度为932.(4)线段PQ 的长度随m 的增大而减小的取值范围是310≤m <6. 备注:(4)中只写m <6不得分,只写m ≥310或m >310得1分,写310<m <6得2分.数学试题 第 页(共6页) 11 26.解:(1)根据题意,△AOB 、△AEP 都是等腰直角三角形. ∵t AP 2=, OF = EP =t , ∴当t =1时,FC =1.(2)∵t AP 2=,AE =t ,PF =OE =t -6,MN =QC =t 2,∴t -6=t 2,t =2. 当t =2时,∴PF MN =.(3)当1≤t ≤2时,S =2422+-t t ,如图①.当2<t ≤38时,S =32302132-+-t t ,如图②. 当38<t ≤3时,S =t t 622+-,如图③. (4)t =2或38,如图④,如图⑤.图① 图② 图③图④图⑤。

相关文档
最新文档