一元一次不等式组(培优竞赛)
一元一次不等式(组)的竞赛题巧解举例知识讲解
一元一次不等式(组)的竞赛题巧解举例 一元一次不等式(组)是初中数学竞赛试题中经常出现的重点内容。
根据不等式的基本性质和一元一次不等式(组)的解的概念,适当地进行变换,可以巧妙解决一些关于不等式(组)的竞赛题。
一、 巧用不等式的性质例1 要使a 5<a 3<a <a 2<a 4成立,则a 的取值范围是( )A.0<a <1B. a >1C.-1<a <0D. a <-1分析:由a 3<a 到a 2<a 4,是在a 3<a 的两边都乘以a ,且a <0来实现的;在a 3<a 两边都除以a ,得a 2>1,显然有a <-1。
故选D点评:本题应用不等式的性质,抓住题目给出的一个不等式作为基础进行变形,确定 a 的取值范围。
例2 已知6<a <10,2a ≤b ≤a 2,b ac +=,则c 的取值范围是 。
分析:在2a ≤b ≤a 2的两边都加上a ,可得23a ≤b a +≤a 3,再由6<a <10可得9<b a +<30,即9<c <30 点评:本题应用不等式的基本性质,在2a ≤b ≤a 2的两边都加上a 后,直接用关于a 的不等式表示c ,再根据6<a <10求出c 的取值范围。
二、 由不等式的解集确定不等式中系数的取值范围例3 若关于x 的不等式组⎪⎩⎪⎨⎧+++②m <x ①x >x 01456 的解集为4x <,则m 的取值范围是 。
分析:由①得 205244++x >x ,解之得4x <。
由②得 m x <-。
因为原不等式组的解集为4x <,所以4≥-m ,所以4-≤m 。
点评:本题直接解两个不等式得到4x <且m x <-。
若m -≤4,则其解集为4x <,若m >-4,则其解集为m x <-,而原不等式的解集为4x <,所以4≥-m ,即4-≤m 。
对此理解有困难的学生,可以通过在数轴上表示不等式的解集来帮助理解。
例4 若不等式0432b <a x b a -+-)(的解集是49x >,则不等式 的解集是0324b >a x b a -+-)( 。
浙教版八年级竞赛培优训练第9讲 一元一次不等式组
第9讲 一元一次不等式组【思维入门】1.把不等式组⎩⎨⎧x +2>1,3-x ≥0的解集表示在数轴上,正确的是( )A BC D2.不等式组⎩⎪⎨⎪⎧x -4≤8-2x ,x >-23的最小整数解是 ( )A .-1B .0C .1D .43.不等式组⎩⎪⎨⎪⎧12x +2≥13x +1,3x <x +2的解是 ( )A .-6<x ≤1B .-6<x <1C .-6≤x <1D .-6≤x ≤14.已知点P (3-m ,m -1)在第二象限,则m 的取值范围在数轴上表示正确的是( )A BC D5.求不等式组⎩⎨⎧7(x -1)<4x -3,6(0.5x +1)≥2x +5的整数解.6.解不等式组⎩⎪⎨⎪⎧23x +5>1-x ,x -1<34x -18,并写出它的非负整数解.【思维拓展】7.若关于x 的不等式组⎩⎨⎧5-2x >-1,x -a >0无实数解,则a 的取值范围是____.8.对非负数x 四舍五入到个位的值记为〈x 〉,即当n 为非负整数时,若n -12≤x <n +12,则〈x 〉=n .如〈0.46〉=0,〈3.67〉=4. 给出下列关于〈x 〉的结论: ①〈1.493〉=1; ②〈2x 〉=2〈x 〉;③若〈12x -1〉=4,则实数x 的取值范围是9≤x <11;④当x ≥0,m 为非负整数时,有〈m +2 013x 〉=m +〈2 013x 〉; ⑤〈x +y 〉=〈x 〉+〈y 〉.其中,正确的结论有____(填写所有正确的序号).9.定义新运算:对于任意实数a ,b 都有a △b =ab -a -b +1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4-2-4+1=8-6+1=3,请根据上述知识解决问题:若3△x 的值大于5而小于9,求x 的取值范围.10.已知实数a 是不等于3的常数,解不等式组⎩⎪⎨⎪⎧-2x +3≥-3,12(x -2a )+12x <0,并依据a 的取值情况写出其解集.11.已知关于x ,y 的方程组⎩⎨⎧5x +2y =11a +18,2x -3y =12a -8的解满足x >0,y >0,求实数a 的取值范围.【思维升华】12.若关于x 的不等式组⎩⎨⎧2-3x ≥0,2x +m >0没有实数解,则实数m 的取值范围是( )A .m <-43B .m ≤-43C .m >-43D .m ≥-4313.已知a 是实数,关于x ,y 的二元一次方程组⎩⎨⎧2x -3y =5a ,x +2y =1-2a 的解不可能出现的情况是( )A .x ,y 都是正数B .x ,y 都是负数C .x 是正数,y 是负数D .x 是负数,y 是正数14.已知方程组⎩⎨⎧x +my =11,x +3=2y 的解都是正整数,则整数m 的值为____.15.已知a +b +c =0,a ≥b ≥c ,a ≠0,则ca 的最大值是 ____,最小值是____. 16.已知关于x 的不等式组⎩⎨⎧x <a +1,2x -2>a 的解集中的整数恰好有2个,求实数a 的取值范围.第9讲 一元一次不等式组【思维入门】1.把不等式组⎩⎨⎧x +2>1,3-x ≥0的解集表示在数轴上,正确的是( D )A BC D2.不等式组⎩⎪⎨⎪⎧x -4≤8-2x ,x >-23的最小整数解是 ( B )A .-1B .0C .1D .43.不等式组⎩⎪⎨⎪⎧12x +2≥13x +1,3x <x +2的解是 ( C )A .-6<x ≤1B .-6<x <1C .-6≤x <1D .-6≤x ≤14.已知点P (3-m ,m -1)在第二象限,则m 的取值范围在数轴上表示正确的是( A )A BC D5.求不等式组⎩⎨⎧7(x -1)<4x -3,6(0.5x +1)≥2x +5的整数解.解:⎩⎪⎨⎪⎧7(x -1)<4x -3,①6(0.5x +1)≥2x +5,②解不等式①,得x <43,解不等式②,得x ≥-1, ∴不等式组的解集为-1≤x <43, ∴不等式组的整数解为-1,0,1.6.解不等式组⎩⎪⎨⎪⎧23x +5>1-x ,x -1<34x -18,并写出它的非负整数解.解:⎩⎪⎨⎪⎧23x +5>1-x ,①x -1<34x -18,②解不等式①,得x >-125, 解不等式②,得x <72, ∴不等式组的解集为-125<x <72. ∴它的非负整数解为0,1,2,3.【思维拓展】7.若关于x 的不等式组⎩⎨⎧5-2x >-1,x -a >0无实数解,则a 的取值范围是__a ≥3__.【解析】 解关于x 的不等式组⎩⎪⎨⎪⎧5-2x >-1,x -a >0,得⎩⎪⎨⎪⎧x <3,x >a , ∵不等式组无解,∴a ≥3.8.对非负数x 四舍五入到个位的值记为〈x 〉,即当n 为非负整数时,若n -12≤x <n +12,则〈x 〉=n .如〈0.46〉=0,〈3.67〉=4. 给出下列关于〈x 〉的结论: ①〈1.493〉=1; ②〈2x 〉=2〈x 〉;③若〈12x -1〉=4,则实数x 的取值范围是9≤x <11;④当x ≥0,m 为非负整数时,有〈m +2 013x 〉=m +〈2 013x 〉; ⑤〈x +y 〉=〈x 〉+〈y 〉.其中,正确的结论有__①③④__(填写所有正确的序号). 【解析】 ①〈1.493〉=1,正确;②〈2x 〉≠2〈x 〉,例如当x =0.3时,〈2x 〉=1,2〈x 〉=0,故②错误; ③若〈12x -1〉=4,则4-12≤12x -1<4+12,解得9≤x <11,故③正确; ④m 为整数,不影响四舍五入,故〈m +2 013x 〉=m +〈2 013x 〉,④正确; ⑤〈x +y 〉≠〈x 〉+〈y 〉,例如x =0.3,y =0.4时,〈x +y 〉=1,〈x 〉+〈y 〉=0,故⑤错误. 综上可得①③④正确.9.定义新运算:对于任意实数a ,b 都有a △b =ab -a -b +1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4-2-4+1=8-6+1=3,请根据上述知识解决问题:若3△x 的值大于5而小于9,求x 的取值范围.解:∵3△x =3x -3-x +1=2x -2,且3△x 的值大于5而小于9, ∴5<2x -2<9,即72<x <112.10.已知实数a 是不等于3的常数,解不等式组⎩⎪⎨⎪⎧-2x +3≥-3,12(x -2a )+12x <0,并依据a 的取值情况写出其解集.解:⎩⎨⎧-2x +3≥-3,①12(x -2a )+12x <0,②解①得x ≤3,解②得x <a , ∵ a 是不等于3的常数,∴ 当a >3时,不等式组的解集为x ≤3; 当a <3时,不等式组的解集为x <a .11.已知关于x ,y 的方程组⎩⎨⎧5x +2y =11a +18,2x -3y =12a -8的解满足x >0,y >0,求实数a 的取值范围.解:解方程组⎩⎪⎨⎪⎧5x +2y =11a +18,①2x -3y =12a -8,②①×3得15x +6y =33a +54③, ②×2得4x -6y =24a -16④,③+④得19x =57a +38,解得x =3a +2, 把x =3a +2代入①,得5(3a +2)+2y =11a +18, 解得y =-2a +4,∴方程组的解是⎩⎪⎨⎪⎧x =3a +2,y =-2a +4,∵x >0,y >0,∴⎩⎪⎨⎪⎧3a +2>0,-2a +4>0,解得⎩⎨⎧a >-23,a <2, ∴a 的取值范围是-23<a <2.【思维升华】12.若关于x 的不等式组⎩⎨⎧2-3x ≥0,2x +m >0没有实数解,则实数m 的取值范围是( B )A .m <-43 B .m ≤-43 C .m >-43D .m ≥-4313.已知a 是实数,关于x ,y 的二元一次方程组⎩⎨⎧2x -3y =5a ,x +2y =1-2a 的解不可能出现的情况是( B )A .x ,y 都是正数B .x ,y 都是负数C .x 是正数,y 是负数D .x 是负数,y 是正数【解析】 ⎩⎪⎨⎪⎧2x -3y =5a ,①x +2y =1-2a ,②②×2-①得7y =2-9a ,y =2-9a7③,③代入②,得x =1-2a -2y =1-2a -2×2-9a 7=4a +37.A.⎩⎨⎧2-9a7>0,4a +37>0,解得-34<a <29;B.⎩⎨⎧2-9a 7<0,4a +37<0,解得a >29,a <-34,无解;C.⎩⎨⎧2-9a7>0,4a +37<0,解得a <-34;D.⎩⎨⎧2-9a7<0,4a +37>0,解得a >29,故选B.14.已知方程组⎩⎨⎧x +my =11,x +3=2y 的解都是正整数,则整数m 的值为__-1,0或5__.【解析】 方程组⎩⎪⎨⎪⎧x +my =11,x +3=2y ,∴x +my -x -3=11-2y , 解得(m +2)y =14,y =14m +2.∵方程组有正整数解,∴m +2>0,m >-2,又x =22-3mm +2,故22-3m >0,解得m <223,故-2<m <223,整数m 只能取-1,0,1,2,3,4,5,6,7. 又x ,y 均为正整数,∴只有m =-1或0或5符合题意.15.已知a +b +c =0,a ≥b ≥c ,a ≠0,则c a 的最大值是 __-12__,最小值是__-2__. 【解析】 已知a +b +c =0,即c =-a -b , 因为a ≥b ≥c ,必有a >0,c <0,c a =-a -b a =-1-b a , 可知当b 与a 同号时,即b >0. 式子-1-ba 才可能取最小值.因为a ≥b ,故ba ≤1,故当b a =1时,式子-1-ba 取最小值为-2. 同理:当b 与a 异号时,即b <0, 式子-1-ba 才可能取最大值, a +b +c =0,a =-(b +c ). 因为0≥b ≥c ,即|b |≤|c |.式子-1-b a =-1+b b +c =-1+|b ||b |+|c |,当|b ||b |+|c |取最大值时,整个式子有最大值,|b ||b |+|c |≤|b ||b |+|b |=12. 故式子-1-b a ≤-1+12=-12,此为最大值.16.已知关于x 的不等式组⎩⎨⎧x <a +1,2x -2>a 的解集中的整数恰好有2个,求实数a 的取值范围.解:原不等式组可化为⎩⎪⎨⎪⎧x <a +1,x >a +22,根据题意,有a +22<x <a +1.满足原不等式组解集中的整数恰好有2个,只需 ⎩⎪⎨⎪⎧k ≤a +22<k +1,k +2<a +1≤k +3,(k 为整数) 即⎩⎪⎨⎪⎧2k -2≤a <2k ,k +1<a ≤k +2.(k 为整数)(*) 关于整数k 的不等式组⎩⎪⎨⎪⎧k +1<2k ,2k -2≤k +2有解.解得1<k ≤4,得k 可以取2,3,4.当k =2时,代入(*)式,有⎩⎪⎨⎪⎧2≤a <4,3<a ≤4,解得3<a <4;当k =3时,代入(*)式,有⎩⎪⎨⎪⎧4≤a <6,4<a ≤5,解得4<a ≤5;当k =4时,代入(*)式,有⎩⎪⎨⎪⎧6≤a <8,5<a ≤6,解得a =6.所以,3<a <4或4<a ≤5或a =6即为所求.。
一元一次不等式培优带答案
初一数学培优讲义—不等式(答案)一、例题选讲例1、已知关于x的方程:17834-=-xmx,当m为某些负整数时,方程的解为负整数,试求负整数m的最大值。
解:原方程化简整理得:12141214+=-=xmmx,可得由于m为负整数,所以x214必为小于-1的负整数所以4154211214-<-<∴-<xxx,即,而要使x214为负整数,x必是21的倍数,所以x的最大值为-21由于当x取最大值时,m也取得最大值,所以m的最大值为-3例2、已知m、n为实数,若不等式(2m-n) x+3m-4n<0的解集为94 >x,求不等式 (m-4n) x+2m-3n>0 的解。
解:由(2m-n) x+3m-4n<0得:(2m-n) x<4n-3m,由于它的解集为94>x,所以有⎪⎩⎪⎨⎧=--<-(2)94234(1)2nmmnnm由(2)得mn87=代入(1)得 m<0把mn87=代入(m-4n) x+2m-3n>0得8525mxm>-∵m<0 ∴41->x所以,不等式(m-4n) x+2m-3n>0 的解集为41->x例3、解不等式:(1) (2x+1)2-7<(x+m)2+3x (x-1)(2)1324≤---xx解:(1) 原不等式可化为:(7-2m) x<m2+6∴当m<27即7-2m>0时,解为x<mm2762-+当m>27即7-2m<0时,解为x>mm2762-+当m=27即7-2m=0,m2+6=4118时,解为一切实数。
(2)4;423;23234324>≤<≤--xxxxxx分为三段:的取值范围零点分段法,可把,由和的零点分别是与当x23≤时,原不等式可化为 -x+4+2x-3≤1,解得x≤0当423≤<x时,原不等式可化为-x+4-2x+3≤1,解得x≥2所以,原不等式的解为2≤x≤4当x>4时,原不等式可化为x-4-2x+3≤1,解得x≥-2 所以,原不等式的解为x>4综上所述,原不等式的解集为x≤0 或x≥2例4、先阅读下面的例题,再解答问题:解不等式(3x-2)(2x+1)>0.解:由有理数的乘法法则“两数相乘,同号得正”可得①或②解不等式组①,得x>; 解不等式组②,得x<-, 所以(3x-2)(2x+1)>0的解集是x>或x<-.依据上面的方法,解不等式<0.解:依据题意可列出不等式组①或②解不等式组①,得不等式组无解; 解不等式组②,得-<x<-.所以不等式<0的解集是-<x<-.例5、一玩具工厂用于生产的全部劳力为450个工时,原料为400个单位。
浙教版八年级上册一元一次不等式专题培优(附答案)
浙教版八年级上册一元一次不等式专题培优(附答案)八年级上册一元一次不等式专题培优基础巩固1.不等式 $x+1\geq2x-1$ 的解集在数轴上表示为()。
答案:$[2,+\infty)$2.已知$a>b$,$c\neq0$,则下列关系一定成立的是()。
A。
$ac>bc$B。
$\frac{c}{a}>\frac{c}{b}$C。
$c-a>c-b$D。
$c+a>c+b$答案:A3.若实数 $3$ 是不等式 $2x-a-2<0$ 的一个解,则 $a$ 可取的最小正整数为()。
答案:$5$4.下列命题中:①如果 $a1-a$ 的解集是 $x<-1$,则 $a<1$;③若 $\frac{6-x}{3}$ 是自然数,则满足条件的正整数 $x$ 有$4$ 个。
正确的命题有()。
A。
个B。
$1$ 个C。
$2$ 个D。
$3$ 个答案:C5.若关于$x$,$y$ 的二元一次方程组的解满足$x+y<2$,则 $a$ 的取值范围是()。
A。
$a>2$B。
$a<2$C。
$a>4$D。
$a<4$答案:B6.若 $x$ 的 $3$ 倍大于 $5$,且 $x$ 的一半与 $1$ 的差不大于 $2$,则 $x$ 的取值范围是()。
答案:$[\frac{7}{3},+\infty)$7.若 $ab$ 的解集是 $x<\frac{a}{b}$,则 $a$ 的取值范围是()。
答案:$(-\infty,0)\cup(b,+\infty)$8.若在数轴上表示关于 $x$ 的不等式 $x-3>\frac{2}{3}$ 的解集如图所示,则 $a$ 的值是()。
答案:$a=\frac{11}{3}$9.如图,若开始输入的 $x$ 的值为正整数,最后输出的结果为 $144$,则满足条件的 $x$ 的值为()。
答案:$6$10.解下列不等式,并把解集表示在数轴上。
一元一次不等式组(培优竞赛)
一元一次不等式(组)的应用(培优提高)例题求解【例题1】已知2007321,......,,a a a a 是彼此不相等的负数,且M= =)......)(,......(20074322006321a a a a a a a a ++++N )......)(,......(20064322007321a a a a a a a a ++++,请比较M 、N 的大小。
本题思路点拨:从作差入手:M-N ,将某部分看做一个整体,用换元法化简。
【例题2】设a 、b 为正整数,且满足:91.09.0,5956≤<≤+≤ba b a ,试求22b a -的值。
思路点拨:化二元一次不等式组为一元一次不等式组是接本列关键。
【例题3】已知7654321,,,,,,a a a a a a a 是彼此不同的正整数,他们的和等于159,求其中最小的数1a 的最大值。
思路点拨:设7654321a a a a a a a <<<<<<,且有7654321a a a a a a a ++++++=159 ,因为7654321,,,,,,a a a a a a a 是彼此不同的正整,所以设:7161514131216,5,4,3,2,1a a a a a a a a a a a a ≤+≤+≤+≤+≤+≤+,,将上面不等式相加,在求关于1a 的不等式的解集。
【例题4】若a 、b 满足b a s b a 32,75322-==+,则s 的取值范围是_______________。
思路点拨:组成方程组,解出b a ,2,利用其性质,求出s 的取值范围。
(1)符合题意搭配方案有哪几种?(2)若搭配一个A 种造型成本为1000元,搭配一个B 种造型成本为1200元,试说明选用(1)哪种方案成本最低?【例题7】、荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货租用2辆甲型汽车和1辆乙型汽车共需费用2450元物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.【课堂练习】1、一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()种。
一元一次不等式组含参培优专题-教师版
一元一次不等式组含参培优专题1.若关于x 的不等式组0721x m x -⎧⎨-⎩<≤的整数解共有3个,则m 的取值范围是( ) A .56m <<B .56m ≤<C .56m ≤≤D .67m ≤<【答案】B 2.已知关于x 的不等式组:2123x a x b +⎧⎨-⎩<>的解集是32x -<<,则a b +的值为( ) A .3-B .2C .0D .6-【答案】D 3.如果不等式组2223x a x b ⎧+⎪⎨⎪-⎩≥<的解集是03x ≤<,那么a b 的值为____________. 【答案】94.关于x 的不等式组352x a x a -⎧⎨-⎩><无解,则a 的取值范围是____________. 【答案】12a -≤ 5.若关于x 的不等式组01321x m x -⎧⎨-⎩>≥的所有整数解的和是15,则m 的取值范围是____________.【答案】34m ≤<或43m --≤<【解析】解:解不等式组01321x m x ->⎧⎨-⎩得:6m x <, 所有整数解的和是15,15654=++, 6x ∴=,5,4,因此不等式组的整数解为①6,5,4,或②6,5,4,3,2,1,0,1-,2-,3-,34m ∴<或43m -<-;故答案为:34m <或43m -<-.6.关于x 的不等式组30340x x a -⎧⎨+⎩<<的解集中为3x <,则a 的取值范围是____________. 【答案】94a -≤ 7.不等式组1726m x m x ++⎧⎨⎩<<<<有解且解集是27x m +<<,则m 的取值范围为____________.【答案】51m --≤<8.方程组43165x y k x y -=+⎧⎨+=⎩的解x 、y 满足条件0783x y -<<,则k 的取值范围____________. 【答案】112k << 9.已知关于x 的不等式组211x m n x m ++⎧⎨--⎩><,的解集为12x -<<,则2020()m n +的值是____________.【答案】110.若不等式组11324x x x m+⎧-⎪⎨⎪⎩<<有解,则m 的取值范围为____________. 【答案】2m >11.若关于x 的一元一次不等式组1020x x a -⎧⎨-⎩><有2个整数解,则a 的取值范围是____________.【答案】68a <≤12.若不等式组11324x x x m+⎧-⎪⎨⎪⎩<<无解,则m 的取值范围是____________. 【答案】2m ≤13.若不等式组11324x x x m+⎧-⎪⎨⎪⎩<<有解,则m 的取值范围为____________. 【答案】2m >14.若不等式组420x a x ⎧⎨-⎩><的解集是x a >,则a 的取值范围是____________. 【答案】2a ≥15.若关于x 的不等式组6050x a x b ⎧-⎨-⎩≥<的整数解仅有1,2,3,则a b +的最大值为____________. 【答案】26【解析】解:6050x a x b -⎧⎨-<⎩①②, 解不等式①得:6a x, 解不等式②得:5b x <, ∴不等式组的解集为65a b x <, 关于x 的不等式组6050x a x b -⎧⎨-<⎩的整数解仅有1,2,3, 016a ∴<,345b <, 解得:06a <,1520b <a ∴的最大值为6,b 的最大值为20, a b ∴+的最大值为26.16.若x 为实数,定义:[]x 表示不大于x 的最大整数.(1)例如[1.6]1=,[]π= ,[ 2.82]-= .(请填空)(2)[]1x +是大于x 的最小整数,对于任意的实数x 都满足不等式[][]1x x x +≤<,利用这个不等式,求出满足[]21x x =-的所有解.【答案】解:(1)[]3π=,[ 2.82]3-=-.(2)对任意的实数x 都满足不等式[][]1x x x <+,[]21x x =-, 21211x x x ∴-<-+, 解得01x <,21x -是整数,0.5x ∴=或1x =,故答案为:3,3-.17.已知方程组317x y a x y a -=+⎧⎨+=--⎩. (1)求方程组的解(用含有a 的代数式表示);(2)若方程组的解x 为负数,y 为非正数,且4a b +=,求b 的取值范围.【答案】解:(1)317x y a x y a -=+⎧⎨+=--⎩①②, ①+②得:226x a =-,解得:3x a =-,②-①得:248y a =--,解得:24y a =--,所以方程组的解是:324x a y a =-⎧⎨=--⎩; (2)方程组的解x 为负数,y 为非正数, ∴30240a a -<⎧⎨--⎩, 解得:23a -<,∴乘以1-得:23a ->-,加上4得:641a ->,4a b +=,4b a ∴=-,b ∴的取值范围是16b <.18.已知关于x 、y 的方程组22324x y m x y m -=⎧⎨+=+⎩的解满足不等式组3050x y x y ⎧+⎨+⎩≤>,求满足条件的m 的整数解.【答案】解:22324x y m x y m -=⎧⎨+=+⎩①②, ①+②,得:334x y m +=+,②-①,得:54x y m +=+,由3050x y x y +⎧⎨+>⎩可得34040m m +⎧⎨+>⎩,解得:443m -<-, 则满足条件的m 的整数解为3-、2-.19.若关于x 的不等式组23(3)1324x x x x a -+⎧⎪⎨++⎪⎩<>有四个整数解,求a 的取值范围. 【答案】解:由不等式①,得2391x x -<-+, 解得8x >,由不等式②,得3244x x a +>+,解得24x a <-,不等式组有四个整数解,即:9,10,11,12, 122413a ∴<-,解得11542a -<-. 20.对x ,y 定义一种新的运算A ,规定:()()()ax by x y A x y ay bx x y ⎧+⎪=⎨+⎪⎩,当时,,当时≥<,(其中0ab ≠).已知(11)0A =,,(02)2A =,.(1)求a ,b 的值;(2)若关于正数p 的不等式组(321)4(132)A p p A p p m -⎧⎨---⎩,,>≤恰好有2个整数解,求m 的取值范围; (3)请直接写出()()22220A x y A y x +=,,时,满足条件的x ,y 的关系.【答案】解:(1)根据题中的新定义得:022a b a +=⎧⎨=⎩, 解得:11a b =⎧⎨=-⎩; (2)由(1)化简得:(A x ,(),),()x y x y y y x x y ⎧-=⎨-<⎩当时当时, ∴在关于正数p 的不等式组(3,21)4(13,2)A p p A p p m->⎧⎨---⎩中,3(21)10p p p --=+>,13(2)10p p p ----=--<,(3,21)32114A p p p p p ∴-=-+=+>,(13,2)2131A p p p p p m ---=-++=+, 3p ∴>,1p m -恰好有2个整数解,2∴个整数解为4,5.516m ∴-<67m ∴<.答:m 的取值范围为67m <.(3)2(A x ,22)(y A y +,2)0x =, ∴当22x y 时,22220x y x y -+-=, 22x y ∴=,x y ∴=或x y =-;当22y x 时,22220y x y x -+-=,x y ∴=或x y =-.答:满足条件的x ,y 的关系为x y =或x y =-.21.对x 、y 定义一种新运算T ,记为:()T x y ,.(1)若()21T x y x y =+-,,如:(01)02111T =+⨯-=,,则(13)T =, ;(2)若()1T x y ax by =+-,,(其中a 、b 为常数),且(11)2T -=-,,(42)3T =,. ①求a 、b 的值;②若关于m 的不等式组(254)4(32)T m m T m m P ⎧-⎨-⎩,,≤>恰好有2个整数解,求实数P 的取值范围. 【答案】解:(1)(1,3)12316T =+⨯-=, 故答案为:6;(2)①由题意,得:124213a b a b --=-⎧⎨+-=⎩, 解得:1343a b ⎧=⎪⎪⎨⎪=⎪⎩;②由题意得()()45421433432133mmmmP-⎧+-⎪⎪⎨-⎪+->⎪⎩①②,解不等式①,得:514 m,解不等式②,得:937Pm-<,不等式组恰好有2个整数解,∴此整数解为1、2,则93237P-<,解得:543P-<-.。
八年级数学竞赛培优训练 一元一次不等式(组)的应用 含解析
一元一次不等式(组)的应用【思维入门】1.王芳同学到文具店买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,王芳带了10元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于0.8元) ()A.6B.7C.8D.92.运动会间,李老师组织班上的同学给运动员加油助威,将手中的若干面小旗分发给若干小组,若每小组分4面小旗,还剩20面;若每小组分8面小旗,则还有一组数量不够,那么李老师一共有小旗()A.38面B.40面C.42面D.44面3.某校班级篮球联赛中,每场比赛都要分出胜负,每队胜1场得3分,负1场得1分,如果某班在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?4.为推进郴州市创建国家森林城市工作,尽快实现“让森林走进城市,让城市拥抱森林“的构想,今年三月份,某县园林办购买了甲、乙两种树苗共1 000棵,其中甲种树苗每棵40元,乙种树苗每棵50元.根据相关资料表明:甲、乙两种树苗的成活率分别为85%和90%.(1)若购买甲、乙两种树苗共用去了46 500元,则购买甲、乙两种树苗各多少棵?(2)若要使这批树苗的成活率不低于88%,则至多可购买甲种树苗多少棵?5.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?【思维拓展】6.“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8 t,10 t的卡车共12辆,全部车辆运输一次能运输110 t沙石.(1)求“益安”车队载重量为8 t,10 t的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165 t以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.7.某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额:注:300~400表示消费金额大于300元且小于或等于400元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为400元的商品.则消费金额为320元,获得的优惠额为400×(1-80%)+30=110(元).(1)购买一件标价为1 000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?8.某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大、小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生,将入住寝室80间,问该校有多少种安排住宿的方案?9.某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A,B两种型号的污水处理设备共8台,具体情况如下表:经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1 380 t.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.【思维升华】10.一个长方体盒子的最短边长50 cm,最长边长90 cm.则盒子的体积可能是()A.4 500 cm3B.180 000 cm3C.90 000 cm3D.360 000 cm311.已知三角形三边的长分别为a,b,c,且a,b,c均为整数,若b=7,a<b,则满足条件的三角形的个数是()A.30 B.36 C.40 D.4512.A商品的单价是50元,B商品的单价是60元,几所学校各付款1 220元购买了这两种商品,任意2所学校购买的A商品的数量都不同.则参加这次采购的学校最多有____所.13.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元,开始时他有铅笔和圆珠笔共350支,当天虽然没有全部卖完,但是他的销售收入恰好是2 013元,则他至少卖出了____支圆珠笔.14.元旦期间,甲、乙两人到特价商店购买商品,已知两人购买商品的件数相同,且每件商品的单价只有8元和9元两种.若两人购买商品一共花费了172元,则其中单价为9元的商品有____件.15.某公司为了扩大经营,决定购买6台机器用于生产活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器的日生产活塞数量如下表所示.经过预算,本次购买机器所需的资金不能超过34万元.(1)按该公司的要求,可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,为了节约资金,应选择哪种购买方案?一元一次不等式(组)的应用【思维入门】1.王芳同学到文具店买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,王芳带了10元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于0.8元)( B )A .6B .7C .8D .92.运动会间,李老师组织班上的同学给运动员加油助威,将手中的若干面小旗分发给若干小组,若每小组分4面小旗,还剩20面;若每小组分8面小旗,则还有一组数量不够,那么李老师一共有小旗( D )A .38面B .40面C .42面D .44面【解析】 设共有x 个小组,那么就有(4x +20)面小旗,⎩⎨⎧4x +20>8(x -1),4x +20<8x ,解得5<x <7,所以有6组. 4×6+20=44(面). 所以有44面小旗.3.某校班级篮球联赛中,每场比赛都要分出胜负,每队胜1场得3分,负1场得1分,如果某班在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场? 解:设这个班胜x 场,则负(28-x )场, 由题意,得3x +(28-x )≥43, 解得x ≥7.5.因为场次x 为正整数,故x ≥8. 答:这个班至少要胜8场.4.为推进郴州市创建国家森林城市工作,尽快实现“让森林走进城市,让城市拥抱森林“的构想,今年三月份,某县园林办购买了甲、乙两种树苗共1 000棵,其中甲种树苗每棵40元,乙种树苗每棵50元.根据相关资料表明:甲、乙两种树苗的成活率分别为85%和90%.(1)若购买甲、乙两种树苗共用去了46 500元,则购买甲、乙两种树苗各多少棵? (2)若要使这批树苗的成活率不低于88%,则至多可购买甲种树苗多少棵? 解:(1)设购买甲种树苗x 棵,乙种树苗y 棵.⎩⎨⎧x +y =1 000,40x +50y =46 500, 解得⎩⎨⎧x =350,y =650,答:购买甲种树苗350棵,乙种树苗650棵;(2)设购买甲种树苗a 棵,则购买乙种树苗(1 000-a )棵. 85%a +90%(1 000-a )≥1 000×88%, 解得a ≤400.答:至多可购买甲种树苗400棵.5.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x 元,其中x >100. (1)根据题意,填写下表(单位:元):(2)当x 取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少? 解:(1)在甲商场:271,0.9x +10;在乙商场:278,0.95x +2.5. (2)根据题意,有0.9x +10=0.95x +2.5, 解得x =150,∴当x =150时,小红在甲、乙两商场的实际花费相同. (3)由0.9x +10<0.95x +2.5,解得x >150, 由0.9x +10>0.95x +2.5,解得x <150.∴当小红累计购物超过150元时,在甲商场的实际花费少.当小红累计购物超过100元而不到150元时,在乙商场的实际花费少.【思维拓展】6.“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8 t ,10 t 的卡车共12辆,全部车辆运输一次能运输110 t 沙石. (1)求“益安”车队载重量为8 t ,10 t 的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165 t 以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.解:(1)设“益安”车队载重量为8 t ,10 t 的卡车分别有x 辆,y 辆,由题意,得⎩⎨⎧x +y =12,8x +10y =110, 解得⎩⎨⎧x =5,y =7.答:“益安”车队载重量为8 t 的卡车有5辆,10 t 的卡车有7辆. (2)设载重量为8 t 的卡车增加了z 辆,由题意,得 8(5+z )+10(7+6-z )>165, 解得 z <52. ∵z ≥0且为整数, ∴z =0,1,2; ∴6-z =6,5,4.∴车队共有3种购车方案:①载重量为8 t 的卡车不购买,10 t 的卡车购买6辆; ②载重量为8 t 的卡车购买1辆,10 t 的卡车购买5辆; ③载重量为8 t 的卡车购买2辆,10 t 的卡车购买4辆.7.某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额:注:300~400表示消费金额大于300元且小于或等于400元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为400元的商品.则消费金额为320元,获得的优惠额为400×(1-80%)+30=110(元). (1)购买一件标价为1 000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?解:(1)购买一件标价为1 000元的商品,消费金额为800元,顾客获得的优惠额为1 000×(1-80%)+150=350(元). (2)设该商品的标价为x 元. 当80%x ≤500,即x ≤625时,顾客获得的优惠额不超过625×(1-80%)+60=185<226; 当500<80%x ≤600,即625<x ≤750时, (1-80%)x +100≥226. 解得x ≥630. 所以630≤x ≤750.当600<80%x ≤800×80%,即750<x ≤800时,顾客获得的优惠额大于750×(1-80%)+130=280>226.综上,顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为630元.8.某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大、小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生,将入住寝室80间,问该校有多少种安排住宿的方案?解:(1)设该校大寝室每间住x 人,小寝室每间住y 人. 可得方程组⎩⎨⎧55x +50y =740,50x +55y =730,解方程组得⎩⎨⎧x =8,y =6.答:该校大寝室每间住8人,小寝室每间住6人. (2)设应安排小寝室z 间,则有 6z +8(80-z )≥630, 解不等式得 z ≤5,∵z 为自然数,∴z =0,1,2,3,4,5. 答:共有6种安排住宿方案.9.某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A ,B 两种型号的污水处理设备共8台,具体情况如下表:经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1 380 t. (1)该企业有几种购买方案? (2)哪种方案更省钱,说明理由.解:(1)设购买污水处理设备A 型号x 台,则购买B 型号(8-x )台,根据题意,得 ⎩⎨⎧12x +10(8-x )≤89.200x +160(8-x )≥1 380, 解这个不等式组,得2.5≤x ≤4.5. ∵x 是整数,∴x =3或x =4.当x =3时,8-x =5;当x =4时,8-x =4.所以有2种购买方案:第一种是购买3台A 型污水处理设备,5台B 型污水处理设备; 第二种是购买4台A 型污水处理设备,4台B 型污水处理设备. (2)当x =3时,购买资金为12×3+10×5=86(万元); 当x =4时,购买资金为12×4+10×4=88(万元). 因为88>86,所以为了节约资金,应购污水处理设备A 型号3台,B 型号5台. 答:购买3台A 型污水处理设备,5台B 型污水处理设备更省钱.【思维升华】10.一个长方体盒子的最短边长50 cm ,最长边长90 cm.则盒子的体积可能是( D ) A .4 500 cm 3 B .180 000 cm 3 C .90 000 cm 3D .360 000 cm 3【解析】 ∵长方体盒子的最短边长50 cm ,最长边长90 cm , ∴长方体盒子的高h 满足50≤h ≤90, 所以其体积V 满足225 000≤V ≤405 000.11.已知三角形三边的长分别为a ,b ,c ,且a ,b ,c 均为整数,若b =7,a <b ,则满足条件的三角形的个数是( B ) A .30B .36C .40D .45【解析】 ∵三角形的三边a ,b ,c 的长都是整数,且a <b ,b =7, ∴a =1,2,3,4,5,6.根据三角形的三边关系,得b -a <c <b +a ,即7-a <c <7+a . 当a =1时,6<c <8,则c =7,此时满足条件的三角形有1个;当a=2时,5<c<9,则c=6,7,8,此时满足条件的三角形有3个;当a=3时,4<c<10,则c=5,6,7,8,9,此时满足条件的三角形有5个;当a=4时,3<c<11,则c=4,5,6,7,8,9,10,此时满足条件的三角形有7个;当a=5时,2<c<12,则c=3,4,5,6,7,8,9,10,11,此时满足条件的三角形有9个;当a=6时,1<c<13,则c=2,3,4,5,6,7,8,9,10,11,12,此时满足条件的三角形有11个.∴满足条件的三角形一共有1+3+5+7+9+11=36(个).12.A商品的单价是50元,B商品的单价是60元,几所学校各付款1 220元购买了这两种商品,任意2所学校购买的A商品的数量都不同.则参加这次采购的学校最多有__4__所.【解析】设某校购买了x件A商品,y件B商品,则有50x+60y=1 220,即5x+6y =122,5x<122,x<2425,y=122-5x6=20-x+2+x6,x是除以6余4的数,所以x=4,10,16,22,即有4个整数解,所以最多有4所学校.13.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元,开始时他有铅笔和圆珠笔共350支,当天虽然没有全部卖完,但是他的销售收入恰好是2 013元,则他至少卖出了__207__支圆珠笔.【解析】设4元的卖x支,7元的卖y支,则4x+7y=2 013,x+y<350.4x+7y=2 013⇒4x=2 012-8y+y+1⇒x=503-2y+y+1 4.令y+14=k⇒y=4k-1,则x=503-2(4k-1)+k=505-7k,又x+y<350,即505-7k+4k-1<350⇒k≥5113k≥52,y=4k-1≥4×52-1=207.即他至少卖了207支圆珠笔.14.元旦期间,甲、乙两人到特价商店购买商品,已知两人购买商品的件数相同,且每件商品的单价只有8元和9元两种.若两人购买商品一共花费了172元,则其中单价为9元的商品有__12__件.【解析】设共购商品2x件,9元商品a件,则8元商品为(2x-a)件,根据题意,得8(2x-a)+9a=172,解得a=172-16x,∴依题意2x≥a,且a=172-16x≥0,x为正整数,可得959≤x≤10.75,∴x=10,则a=12.∴9元的商品12件,故答案填12.15.某公司为了扩大经营,决定购买6台机器用于生产活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器的日生产活塞数量如下表所示.经过预算,本次购买机器所需的资金不能超过34万元.(1)按该公司的要求,可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,为了节约资金,应选择哪种购买方案?解:(1)设购买x台甲机器,则7x+5(6-x)≤34,所以x≤2.即x取0,1,2三个值,有三种购买方案:①不购买甲机器,购6台乙机器;②购买1台甲机器,5台乙机器;③购买2台甲机器,4台乙机器.(2)按方案①,所需资金为6×5=30(万元),日产量为6×60=360(个);按方案②,所需资金为1×7+5×5=32(万元),日产量为1×100+5×60=400(个);按方案③,所需资金为2×7+5×4=34(万元),日产量为2×100+4×60=440(个).所以,选择方案②.。
一元一次不等式(组)培优40题(含解析)
一元一次不等式(组)培优40题(含解析)一.选择题:(共10题)1.从−7,−5,−1,0,4,3这六个数中,随机抽一个数,记为m ,若数m 使关于x 的不等式组{x−m2>0x −4<3(x −2)的解集为x >1,且关于x 的分式方程1−x 2−x +m x−2=3有非负整数解,则符合条件的m 的值的个数是( ) A .1个B .2个C .3个D .4个2.若方程组{3x +2y =2k 2y −x =3的解满足x <1,且y >1,则整数k 的个数是( )A .4B .3C .2D .13.若关于x 的不等式组{x <2(x −a)x −1≤23x恰有3个整数解,则a 的取值范围是( ) A .0≤a <12B .0≤a <1C .−12<a ≤0 D .−1≤a <04.正五边形广场 ABCDE 的边长为 80 米,甲、乙两个同学做游戏,分别从 A 、 C 两点处同时出发,沿 A −B −C −D −E −A 的方向绕广场行走,甲的速度为 50米/分,乙的速度为 46米/分,则两人第一次刚走到同一条边上时 ( )A .甲在顶点 A 处B .甲在顶点 B 处C .甲在顶点C 处D .甲在顶点D 处 5.若不等式组{x −2<3x −6x <m无解,则m 的取值范围是( )A .m >2B .m <2C .m ≥2D .m ≤26.若不等式组{1<x ≤2x >k无解,则k 的取值范围是( )A .k ≤2B .k >2C .k ≥2D .1≤k <27.如图,直线y=kx+b 与y=mx+n 分别交x 轴于点A (﹣0.5,0)、B (2,0),则不等式(kx+b )(mx+n )<0的解集为( )A .x >2B .﹣0.5<x <2C .0<x <2D .x <﹣0.5或x >28.若关于x 的不等式3x-2m ≥0的负整数解为-1,-2,则m 的取值范围是( ) A .−6≤m <−92 B .−6<m ≤−92 C .−92≤m <−3 D .−92<m ≤−3 9.如图,经过点B (1,0)的直线y=kx+b 与直线y=4x+4相交于点A (m ,83),则0<kx+b<4x+4的解集为( )A .x <-13B .-13<x <1 C .x <1 D .-1<x <110.若数a 使关于x 的不等式组{13x −1≤12(x −1)2x −a ≤3(1−x),有且仅有三个整数解,且使关于y 的分式方程3yy−2+a+122−y=1有整数解,则满足条件的所有a 的值之和是( )A .﹣10B .﹣12C .﹣16D .﹣18 二.填空题:(共10题)11.若数a 使关于x 的不等式组{x−12<1+x 35x −2≥x +a有且只有四个整数解,且使关于y 的方程y+a y−1+2a 1−y=2的解为非负数,则符合条件的正整数a 的值为______.12.如果不等式mx+13>1+x+33的解集为x>5,则m 的值为_______.13.若关于x ,y 的方程组{3x +2y =k −12x −3y =2 的解使4x +7y >2成立,则k 的取值范围是________.14.冬至节快到了,李老师和杨老师都准备给班级同学买饺子吃.到了超市两人均买了两款饺子,A 款单价为33元/袋,B 款41元/袋.其中李老师购买A 款数量少于B 款数量,合计花了500多元.杨老师购买的A ,B 两款的数量刚好与李老师互换,也花了500多元,巧合的是所花费用的十位数字与个位数字刚好也和李老师所花费用的十位数字与个位数字互换.则李老师购买A ,B 两款饺子共计____袋.15.若不等式组{x −a ≻0x −a ≺1-的解集中的任何一个x 的值均不在2≤x ≤5的范围内,则a 的取值范围为________.16.如果不等式组{3x −a ≥02x −b <0 的整数解仅为 2,且 a 、b 均为整数,则代数式 2a 2+b 的最大值=________.17.使得关于x 的分式方程x+kx+1−kx−1=1的解为负整数,且使得关于x 的不等式组{3x +2≥2x −14x −4≤k有5个整数解的所有k 的和为_____.18.关于x 的不等式组{4a +3x >03a −4x ≥0恰好只有三个整数解,则a 的取值范围是_____________.19.若关于x 的一元一次不等式组{x −a >02x −3<1有2个负整数解,则a 的取值范围是_____.20.在一次智力测验中有20道选择题,评分标准为:对l 题给5分,错1题扣2分,不答题不给分也不扣分,张强有1道题末答,如果总分才不会低于70分,则他至少答对____道题.三.解答题:(共20题)21.某工厂计划生产A 、B 两种产品共50件,需购买甲、乙两种材料.生产一件A 产品需甲种材料30千克、乙种材料10千克;生产一件B 产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B 产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A 产品需加工费200元,生产一件B 产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费) 22.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)设商场购进甲种节能灯x 只,求出商场销售完节能灯时总利润w 与购进甲种节能灯x 之间的函数关系式;(3)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元? 23.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?24.在平面直角坐标系中,已知直线l1:y=2x+1(1)若将直线l1平移,使之经过点(1,-5),求平移后直线的解析式;(2)若直线l2:y=x+m与直线l1的交点在第二象限,求m的取值范围;(3)如图,直线y=x+b与直线y=nx+2n(n≠0)的交点的横坐标为-5,求关于x的不等式组0<nx+2n<x+b的解集.25.为了争创全国文明卫生城市,优化城市环境,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车(两种车型都要有)每年能节省的汽油量不低于22.4万升,请问有哪几种购车方案?(3)求(2)中最省钱的购买方案所需的购车款.26.某商场销售每个进价为150元和120元的A、B两种型号的足球,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入−进货成本)(1)求A、B两种型号的足球的销售单价;(2)若商场准备用不多于8400元的金额再购进这两种型号的足球共60个,求A种型号的足球最多能采购多少个?(3)在(2)的条件下,商场销售完这60个足球能否实现利润超过2550元,若能,请给出相应的采购方案;若不能请说明理由.27.(题文)小雨的外婆送来一篮鸡蛋.这篮鸡蛋最多只能装55只左右.小雨3只一数,结果剩下1只,但忘了数多少次,只好重数.他5只一数,结果剩下2只,可又忘了数多少次.他准备再数时,妈妈笑着说:“不用数了,共有52只.”小雨惊讶地问妈妈怎么知道的.妈妈笑而不答.同学们,你们知道这是为什么吗?28.夏季即将来临,某电器超市销售每台进价分别为200元、170元的A,B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)分别求出A ,B 两种型号电风扇的销售单价;(2)若超市准备用不超过5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.29.某人共收集邮票若干张,其中14是2000年以前的国内外发行的邮票,18是2001年国内发行的,119是2002年国内发行的,此外尚有不足100张的国外邮票.求该人共有多少张邮票.30.为落实优秀传统文化进校园,某校计划购进“四书”、“五经”两套图书供学生借阅,已知这两套图书单价和为660元,一套“四书”比一套“五经”的2倍少60元. (1)分别求出这两套图书的单价;(2)该校购买这两套图书不超过30600元,且购进“四书”至少33套,“五经”的套数是“四书”套数的2倍,该校共有哪几种购买方案?31.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有多少块?32.国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表:类别 彩电 冰箱 洗衣机 进价(元/台) 2000 1600 1000 售价(元/台) 2300 1800 1100若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x 台. (1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元? 33.一幢学生宿舍楼有一些空房间,现要安排一批学生入住.若每间住4人,则有20人无法入住;若每间住8人,则有1间房间还剩余一些空床位. (1)求空房间的间数和这批学生的人数;(2)这批学生入住后,男生房间的间数恰好是女生房间间数的2倍,每间房间都有8个床位,每间女生房间都空出数量相同的床位,问:男女学生各多少人?34.(2016黑龙江省牡丹江市)某绿色食品有限公司准备购进A和B两种蔬菜,B种蔬菜每吨的进价比A中蔬菜每吨的进价多0.5万元,经计算用4.5万元购进的A种蔬菜的吨数与用6万元购进的B种蔬菜的吨数相同,请解答下列问题:(1)求A,B两种蔬菜每吨的进价;(2)该公司计划用14万元同时购进A,B两种蔬菜,若A种蔬菜以每吨2万元的价格出售,B种蔬菜以每吨3万元的价格出售,且全部售出,请求出所获利润W(万元)与购买A种蔬菜的资金a(万元)之间的函数关系式;(3)在(2)的条件下,要求A种蔬菜的吨数不低于B种蔬菜的吨数,若公司欲将(2)中的最大利润全部用于购买甲、乙两种型号的电脑赠给某中学,甲种电脑每台2100元,乙种电脑每台2700元,请直接写出有几种购买电脑的方案.35.自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16 000元采购A型商品的件数是用7 500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数解析式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.36.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.37.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如表.(1)该商场购进A、B两种商品各多少件?(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?38.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.39.每年的3月15日是“国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动.甲卖家的某款沙发每套成本为5000元,在标价8000元的基础上打9折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售相同的沙发,其成本、标价与甲卖家一致,以前每周可售出5套,现乙卖家先将标价提高m%,再大幅降价40m元,使得这款沙发在3月15日那一天卖出的数量就比原来一周卖出的m%,这样一天的利润达到了31250元,求m.数量增加了1240.某校九年级6个班举行毕业文艺汇演,每班3个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少6个.设舞蹈类节目有x个.(1)用含x的代数式表示:歌唱类节目有______________个;(2)求九年级表演的歌唱类与舞蹈类节目数各有多少个?(3)该校七、八年级有小品节目参与汇演,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计全场节目交接所用的时间总共16分钟.若从19:00开始,21:30之前演出结束,问参与的小品类节目最多能有多少个?答案与解析1.解{x−m2>0①x−4<3(x−2)②,解不等式①得:x>m,解不等式②得:x>1,∵该不等式组的解集为:x>1,∴m≤1,即m取−7,−5,−1,0;1−x 2−x +mx−2=3,方程两边同时乘以(x−2)得:x−1+m=3(x−2),去括号得:x−1+m=3x−6,移项得:x−3x=1−6−m,合并同类项得:−2x=−5−m,系数化为1得:x=m+52,∵该方程有非负整数解,∴即m+52≥0,m+52≠2,且m+52为整数,∴m取−5,3,综上:m取−5,即符合条件的m的值的个数是1个,故选A.2.解{3x +2y =2k ①2y −x =3②,①﹣②,得:4x=2k ﹣3,∴x =2k−34.∵x <1,∴2k−34<1,解得:k <72.将x =2k−34代入②,得:2y −2k−34=3,∴y =2k+98.∵y >1,∴2k+98>1,解得:k >−12,∴−12<k <72.∵k 为整数,∴k 可取0,1,2,3,∴k 的个数为4个. 故选A . 3.A解:解不等式x <2(x ﹣a ),得:x >2a ,解不等式x ﹣1≤23x ,得:x ≤3. ∵不等式组恰有3个整数解,∴0≤2a <1,解得:0≤a <12.故选A .4.解:两人如果在同一条边上,说明两人的距离小于等于80米,∵甲、乙两个同学做游戏,分别从 A 、 C 两点处同时出发,两人相差160米,甲要追回80米需要的时间是80÷(50-46)=20分钟,20分钟甲走了1000米,正好走到CD 的中点设为F;20分钟乙走920米走到DE 距D 点40米处设为G.甲从F 走到D 是40比50等于0.8分钟;乙用0.8分从G 点走出0.8乘46等于36.8米距E 点80-36.8-40=3.2米由此得知甲走到D 点时乙走在DE 线上距E3.2米处. ∴D 选项是正确的 5.解{x −2<3x −6①x <m ②.∵解不等式①得:x >2,不等式②的解集是x <m . 又∵不等式组{x −2<3x −6x <m无解,∴m ≤2.故选D .6.解:由题意可知不等式组{1<x ≤2x >k无解所以k ≥4.故选:C.7.解∵(kx+b )(mx+n )<0,∴{kx +b >0mx +n <0 ①或{kx +b <0mx +n >0②.∵直线y=kx+b 与直线y=mx+n 分别交x 轴于点A (﹣0.5,0)、B (2,0),∴①的解集为:x <﹣0.5,②的解集为:x >2,∴不等式(kx+b )(mx+n )<0的解集为x <﹣0.5或x >2.故选D .8.解:3x −2m ≥0,得x ≥23m ,根据题意得,-3<23m ≤-2,解得−92<m ≤−3,故选D. 点睛:本题主要考查了一元一次不等式的解法,先用含m 的式子表示出不等式的解集,再根据不等式的负整数解得到含m 的式子的范围,即关于m 的不等式组,解这个不等式组即可求解.9.解∵经过点B (1,0)的直线y=kx+b 与直线y=4x+4相交于点A (m ,83),∴4m+4=83,∴m=−13,∴直线y=kx+b 与直线y=4x+4的交点A 的坐标为(−13,83),直线y=kx+b 与x 轴的交点坐标为B (1,0),又∵当x <1时,kx+b >0,当x >−13时,kx+b <4x+4,∴0<kx+b <4x+4的解集为−13<x <1.故选B .10.解{13x −1≤12(x −1)①2x −a ≤3(1−x)②, 解①得x ≥-3,解②得x ≤3+a 5,不等式组的解集是-3≤x ≤3+a 5. ∵仅有三个整数解,∴-1≤3+a 5<0∴-8≤a <-3,3y y−2+a+122−y =1,3y-a-12=y-2.∴y=a+102,∵y ≠-2,∴a ≠-6,又y=a+102有整数解,∴a=-8或-4,所有满足条件的整数a 的值之和是-8-4=-12,故选B .11.解:{x−12<1+x 3①5x −2≥x +a ② ,解不等式①得:x <5,解不等式②得:x ≥a+24,∵该不等式组有且只有四个整数解,∴该不等式组的解集为:a+24≤x <5,且0<a+24≤1, 解得:−2<a ≤2,又∵y+a y−1+2a 1−y =2,方程两边同时乘以(y −1)得:y +a −2a =2(y −1),去括号得:y −a =2y −2,移项得:y =2−a ,∵该方程的解为非负数,∴2−a ≥0且2−a ≠1,解得:a ≤2且a ≠1,综上可知:符合条件的正整数a 的值为2,故答案为:2.12.解:由不等式mx+13>1+x+33可得(1-m )•x <-5,∵不等式的解集为x >5,∴1-m <0,∴(1-m )•5=-5,∴m=2.故答案为:2.13.解{3x +2y =k −1①2x −3y =2②由①×2﹣②得:4x+7y=2k-2-2,∴2k-2-2>2,∴2k >6,解得:k >3.故答案为:k >3.14.解:依题意设李老师买了A 款饺子x 袋,B 款饺子y 袋,购买的金额十位上的数字为a ,各位上的数字为b ,则可列出方程组:{33x +41y =500+10a +b ①33y +41y =500+10b +a ②①+②得x+y=1000+11a+11b 74③,∵500<33x +41y <600,500<41x +33y <600∴1000<74(x+y )<1200,即13.5<x+y <16.2x+y 可能为14、15、16当x+y=14时,代入③得11a+11b=36,不符题意,当x+y=15时,代入③得11a+11b=110,a+b=10符题意,当x+y=16时,代入③得11a+11b=184,不符题意,故x+y=15,填15.15.解:不等式组{x −a >0x −a <1的解集为:a <x <a+1, ∵任何一个x 的值均不在2≤x ≤5范围内,∴x <2或x >5,∴a+1≤2或a ≥5,解得,a ≤1或a ≥5,∴a 的取值范围是:a ≤1或a ≥5,故答案为:a ≤1或a ≥5.16.解:解不等式3x-a ≥0,得:x ≥a 3,解不等式2x-b <0,得:x <b 2,∵整数解仅为2,∴{1<a 3≤22<b 2≤3, 解得:3<a ≤6,4<b ≤6,∵a 、b 均为整数,∴当a=6、b=6时,2a 2+b 取得最大值,最大值为2×62+6=78,故答案为:78.17.解:解分式方程x+k x+1−k x−1=1,可得x=1-2k ,∵分式方程x+k x+1−k x−1=1的解为负整数,∴1-2k <0,∴k >12,又∵x ≠-1,∴1-2k ≠-1,∴k ≠1,解不等式组{3x +2≥2x −14x −4≤k ,可得{x ≥−3x ≤k +44, ∵不等式组{3x +2≥2x −14x −4≤k有5个整数解, ∴1≤k+44<2,解得0≤k <4,∴12<k <4且k ≠1,∴k 的值为1.5或2或2.5或3或3.5,∴符合题意的所有k 的和为12.5,故答案为:12.5.18.解:解不等式4a+3x>0得:x>-43a ,解不等式3a-4x ≥0得:x ≤34a , ∴不等式的解集为:-43a<x ≤34a ,∵方程组只有三个整数解,∴方程组的解包括0,∴方程组的整数解为:0、1、2或-1、0、1或-2、-1、0,当整数解为0、1、2时:{−1≤−43a ≤02≤34a <3 ,方程组无解,当整数解为-1、0、1时:{−2≤−43a ≤−11≤34a <2,解得:43≤a ≤32, 当整数解为-2、-1、0时:{−3≤−43a ≤−20≤34a <1方程组无解, ∴a 的取值范围为:43≤a ≤32, 故答案为:43≤a ≤3219.解:2x -3<1,得x <2,进而得负整数解为-1,-2,解得-3≤a <-2.20.解:设小明至少答对的题数是x 道,5x-2(20-1-x )≥70,x ≥1537故至少答对16题,总分才不会低于70分.故答案为:16.21.解(1)设甲钟材料每千克x 元,乙种材料每千克y 元,根据题意列方程组得: {x +y =402x +3y =105解之{x =15y =25甲钟材料每千克15元,乙种材料每千克25元.(2)设生产A 产品m 件,生产B 产品(50-m )件,则生产这50件产品的材料费为15×30m+25×10m+15×20(50-m )+25×20(50-m )=-100m+40000,由题意:-100m+40000≤38000,解得m ≥20,又∵50-m ≥28,解得m ≤22,∴20≤m ≤22,∵m 为正整数∴m 的值为20,21,22,共有三种方案,如下表:(3)设总生产成本为W元,加工费为:200m+300(50-m),则W=-100m+40000+200m+300(50-m)=-200m+55000,∵W 随m的增大而减小,而m=20,21,22,∴当m=22时,总成本最低,此时W=-200×22+55000=50600元,∴选择第三种方案. 22.解(1)设商场应购进甲型节能灯x只,则乙型节能灯为(1200﹣x)只.根据题意得:25x+45(1200﹣x)=46000解得:x=400.当x=400时,1200-x=800.答:购进甲型节能灯400只,乙型节能灯800只时,进货款恰好为46000元.(2)设商场应购进甲型节能灯x只,商场销售完这批节能灯可获利w元.根据题意得:w=(30﹣25)x+(60﹣45)(1200﹣x)=5x+18000﹣15x=﹣10x+18000所以w=﹣10x+18000;(3)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,利润为w元,根据题意得:﹣10x+18000≤[25x+45(1200﹣x)]×30%解得:x≥450.∵w=﹣10x+18000,∴k=﹣10<0,∴w随x的增大而减小,∴x=450时,w最大=13500元.答:商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.23.解(1)设购买轿车x辆,那么购买面包车(10-x)辆.由题意,得7x+4(10-x)≤55,解得x≤5.又因为x≥3,所以x的值为3,4,5,所以有三种购买方案:方案一:购买3辆轿车,7辆面包车;方案二:购买4辆轿车,6辆面包车;方案三:购买5辆轿车,5辆面包车.(2)方案一的日租金为3×200+7×110=1370(元)<1500元;方案二的日租金为4×200+6×110=1460(元)<1500元;方案三的日租金为5×200+5×110=1550(元)>1500元.所以为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车.24.解(1)设平移后的直线解析式为y=2x+t ,把(1,-5)代入得2+t=-5,解得t=-7,所以平移后直线的解析式y=2x-7;(2)解方程组{y =x +m y=2x+1 得{y =2m −1x=m−1 ,所以y=x+m 与直线l 1的交点坐标为(m-1,2m-1)因为{2m −1>0m−1<0所以12<m <1; (3)当y=0时,nx+2n=0,解得x=-2,直线y=nx+2n 与x 轴的交点坐标为(-2,0), 所以不等式组0<nx+2n <x+b 的解集为-5<x <-2.25.解(1)由题意可得:{a =b +202a =3b −60,解得:{a =120b =100 . 答:a 的值是120,b 的值是100.(2)设购买A 型公交车x 辆,则购买B 型公交车(10﹣x )辆,根据题意得:2.4x+2(10﹣x )≥22.4,解得:x ≥6.∵两种车型都要有,∴x <10,∴6≤x <10.∵x 为整数,∴x=6、7、8、9,∴有四种购车方案.方案一:购买A 型公交车6辆,购买B 型公交车4辆;方案二:购买A 型公交车7辆,购买B 型公交车3辆;方案三:购买A 型公交车8辆,购买B 型公交车2辆;方案四:购买A 型公交车9辆,购买B 型公交车1辆.(3)设购车款为w 元,购买A 型车x 辆,根据题意得:w=120x+100(10﹣x )=20x+1000∴当x=6时,w 取得最小值,此时w=1120.答:(1)解:设A 、B 两种型号的足球销售单价分别是x 元和 y 元,列出方程组:{5x +3y =14503x+4y=1200解得{y =150x=200A 型号足球单价是200元,B 型号足球单价是150元.(2)解:设A 型号足球购进a 个,B 型号足球购进(60−a)个,根据题意得:150a +120(60−a)≤8400解得a ≤40,所以A 型号足球最多能采购40个.(3)解:若利润超过2550元,须 50a +30(60−a)>2550a >37.5,因为a 为整数,所以38<a ≤40能实现利润超过2550元,有3种采购方案.方案一:A 型号38个,B 型号22个;方案二:A 型号39个,B 型号21个;方案三:A 型号40个,B 型号20个.27.解:设小明第一次数了x 次,第二次数了y 次,由题意,得3x+1=5y+2,3x=5y+1,x=5y+13,3x+1≤55,5y+2≤55,∴x ≤18,y ≤10.6,∵x >0,y >0,且x 、y 为整数,且5y+1是3的倍数,∴5y+1=6,9,12,15,18…,y=1,4,7,10,13…,∴y 最大=10,∵篮子是装满的,并且最多只能装55只,∴(5y+2)中,y 的值只能取y=10,∴篮子的鸡蛋数量为:5×10+2=52(只).28.解(1)设A ,B 两种型号电风扇的销售单价分别为x 元、y 元.......1分根据题意,得{2x +3y =1130,5x +6y =2510.解这个方程组,得{x =250,y =210.答:A ,B 两种型号电风扇的销售单价分别为250元、210.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30﹣a )台,根据题意,得 200a+170(30﹣a )≤5400,解这个不等式,得a ≤10.答:A 种型号的电风扇最多能采购10台(3)根据题意,得(250﹣200)a+(210﹣170)(30﹣a )=1400,解这个方程,得a=20,由(2)可知,a ≤10,∴在(2)的条件下超市不能实现利润1400元的目标.29.解:该人共有x 张邮票,根据题意列方程得:14x+18x+119x >x-100,解得:x <167391.∵其中14是2000年以前的国内外发行的邮票,18是2001年国内发行的,119是2002年国内发行的,∴x 一定是4,8,19的倍数,这三个数的最小公倍数是:152.故该人共有邮票约152张.30.解(1)设五经的单价为x 元,则四书的单价为(2x −60)元,依题意得x +2x −60=660,解得x =240,∴2x −60=420,∴五经的单价为240元,则四书的单价为420元;(2)设购买四书a 套,五经b 套,依题意得{420a +240b ≤30600a ≥33b =2a, 解得33≤a ≤34,∵a 为正整数,∴a =33或34,∴当a =33时,b =66;当a =34时,b =68;∴该校共有2种购买方案:①四书33套,五经66套;②四书34套,五经68套.31.解:设这批手表有x 块,550×60+(x ﹣60)×500>55000解得,x >104答:这批电话手表至少有105块.32.解:(1)根据题意,得:2000⋅2x+1600x+1000(100−3x)⩽170000,解得:x ≤261213, ∵x 为正整数,∴x 最多为26,答:商店至多可以购买冰箱26台.(2)设商店销售完这批家电后获得的利润为y 元,则y=(2300−2000)2x+(1800−1600)x+(1100−1000)(100−3x)=500x+10000,∵k=500>0,∴y 随x 的增大而增大,∵ x ≤261213且x 为正整数, ∴当x=26时,y 有最大值,最大值为:500×26+10000=23000,答:购买冰箱26台时,能使商店销售完这批家电后获得的利润最大,最大利润为23000元.33.解:(1)设空房间有x 间,根据题意,得:8(x-1)<4x+20<8x ,解得:5<x <7,∵x 为整数,∴x=6,这批学生人数为4×6+20=44(人)答:空房间的间数为6间,这批学生的人数为44人.(2)设女生房间为m 间,则男生房间为2m 间,由m+2m=6,得:m=2,2m=4,又设每间女生房间都空出a 个床位,其中a >0则44-(8×2-2a)≤8×4,解得:a ≤2,∴0<a ≤2,且a 为整数,则a 为1或2,∴当a=1时,女生人数为16-2=14(人),男生人数为44-14=30(人);当a=2时,女生人数为16-4=12(人),男生人数为44-12=32(人).34.解:(1)设每吨A 种蔬菜的进价为x 万元,则每吨B 种蔬菜的进价为(x+0.5)万元,依题意得:4.5x =6x+0.5,解得x=1.5,经检验:x=1.5是原方程的解,∴x+0.5=2. 答:每吨A 种蔬菜的进价为1.5万元,每吨B 种蔬菜的进价为2万元;(2)根据题意得,W=(2﹣1.5)×a 1.5+(3﹣2)×14−a 2=−16a +7,∴所获利润W (万元)与购买A 种蔬菜的资金a (万元)之间的函数关系式为:W=−16a +7; (3)当a 1.5≥14−a 2时,a ≥6,∵在一次函数W=−16a +7中,W 随着a 的增大而减小,∴当a=6时,W 有最大值,W 的最大值为﹣1+7=6(万元).设购买甲种电脑a 台,购买乙种电脑b 台,则2100a+2700b=60000,∵a 和b 均为整数,∴{a =8b =16 或{a =17b =9 或{a =26b =2,∴有三种购买方案. 35.解:(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(x+10)元. 由题意:16000x+10=7500x ×2,解得x=150,经检验x=150是分式方程的解.答:一件B 型商品的进价为150元,一件A 型商品的进价为160元.(2)因为客商购进A 型商品m 件,所以客商购进B 型商品(250﹣m )件.由题意:v=80m+70(250﹣m )=10m+17500,∵80≤m ≤250﹣m ,∴80≤m ≤125,∴v=10m+17500(80≤m ≤125);(3)设利润为w 元.则w=(80﹣a )m+70(250﹣m )=(10﹣a )m+17500:①当10﹣a >0时,w 随m 的增大而增大,所以m=125时,最大利润为(18750﹣125a )元. ②当10﹣a=0时,最大利润为17500元.③当10﹣a <0时,w 随m 的增大而减小,所以m=80时,最大利润为(18300﹣80a )元,∴当a <10时,最大利润为(18750﹣125a )元;当a=10时,最大利润为17500元;当a >10时,最大利润为(18300﹣80a )元.36.解:(1)根据题意得:.(2)因为,解得,又因为为正整数,且. 所以,且为正整数. 因为,所以的值随着的值增大而减小, 所以当时,取最大值,最大值为. 答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.37.解:(1)设购进A 种商品x 件,B 种商品y 件,根据题意得,{1200x +1000y =360000(1380−1200)x +(1200−1000)y =60000解得{x=200y=120.答:该商场购进A.B两种商品分别为200件和120件.(2)由于A商品购进400件,获利为(1380-1200)×400=72000(元),从而B商品售完获利应不少于81600-72000=9600(元).设B商品每件售价为z元,则120(z-1000)≥9600,解之得z≥1080.所以B种商品最低售价为每件1080元.38.解:(1)设大货车用x辆,则小货车用(18﹣x)辆,根据题意得:14x+8(18﹣x)=192,解得:x=8,18﹣x=18﹣8=10.答:大货车用8辆,小货车用10辆.(2)设运往甲地的大货车是a,那么运往乙地的大货车就应该是(8﹣a),运往甲地的小货车是(10﹣a),运往乙地的小货车是10﹣(10﹣a),w=720a+800(8﹣a)+500(10﹣a)+650[10﹣(10﹣a)]=70a+11400(0≤a≤8且为整数);(3)14a+8(10﹣a)≥96,解得:a≥83.又∵0≤a≤8,∴3≤a≤8 且为整数.∵w=70a+11400,k=70>0,w随a的增大而增大,∴当a=3时,W最小,最小值为:W=70×3+11400=11610(元).答:使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.39.解:(1)设降价x元,列不等式:8000×0.9-x≥5000(1+20%),解得:x≤1800.答:最多降价1800元,才能使得利润不低于20%.设m%=a,根据题意得:[8000(1+a)-4000a-5000]×5(1+12a)=31250,整理得,8a2+22a-13=0,解得a=12或a=-2(舍).所以m%=1,则m=50.2答:m的值为50.40.解:(1)(2x−6).(2)根据题意得:x+(2x−6)=6×3,解得:x=8.经检验,符合题意.当x=8时,2x−6=10.答:表演的歌唱类节目10个,舞蹈类节目8个.(3)设参与的小品类节目有a个,根据题意得:5×10+6×8+8a+16<150,解得:a<4.5.∵a为整数,∴a最多为4.答:参与的小品类节目最多能有4个.。
初中数学一元一次不等式(组)单元综合培优测试题1(附答案)
初中数学一元一次不等式(组)单元综合培优测试题1(附答案)1.已知不等式组294a -的解集为()()44a a -+,则22()xy x y -得取值范围是( ) A .115x - B .6{ 3.x y ==-,C .13x ≤<D .21x a =-+2.若a b >,则下列不等式正确的是( )A .33a b <B .ma mb >C .11a b -->--D .1122a b +>+ 3.若式子34a -的值不小于2,则a 的取值范围是( )A .23a ≥-B .2a ≥C .a <23-D .a <24.不等式组的解集为( ) A . B . C . D .5.不等数组不等式组213{13x x -≤≤+的解集表示在数轴上正确的是( ) A .B .C .D . 6.若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有2个,则m 的取值范围是( ) A .4<m <5B .4≤m<5C .4<m≤5D .4≤m≤5 7.不等式组20{260x x +>-≤的解集在数轴上表示正确的是( ) A .B .C .D .8.如果a >b ,则下列各式中不成立的是( )A .a+4>b+4B .2+3a>2+3bC .a-6>b-6D .-3a>-3b9.不等式组213{34x x +≤+>的解集是( ) A .x >1 B .x ≤1C .x =1D .无解 10.不等式26x -≤的解集在数轴上表示正确的是( )A .B .C .D .11.若不等式ax |a -1|>2是一元一次不等式,则a =____________.12.不等式(1-3)x >1+3的最大整数解是________.13.当代数式2x -3x 的值大于10时,x 的取值范围是____________. 14.不等式组9511x x x m +<+⎧⎨>+⎩的解集是x>2,则m 的取值范围是_____. 15.当1≤x≤2时,ax+2>0,则a 的取值范围是________16.学完一元一次不等式解法后,老师布置了如下练习:解不等式1532x -≥7x -,并把它的解集在数轴上表示出来. 以下是小明的解答过程:问:请指出小明从第几步开始出现了错误,并说明判断依据.答:______________________________________________.17.2016年在东安县举办了永州市首届中学生足球比赛,比赛规则是:胜一场积3分,平一场积1分;负一场积0分.某校足球队共比赛11场,以负1场的成绩夺得了冠军,已知该校足球队最后的积分不少于25分,则该校足球队获胜的场次最少是_____场. 18.不等式2x ﹣7<5﹣2x 的非负整数解的个数为__个.19.若关于x 的不等式组2{x x m >>的解集是2x >,则m 的取值范围是___________.20.不等式的正整数解是___________;21.解下列不等式(组):(1)43(2)x x ->-;(2)求不等式组11{313(1)8x x x x-+≥--<-的整数解.22.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数.23.若一件商品的进价为500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,设打x 折,那么列出的不等式为_______________.24.解方程组及不等式组:(1)521{68x y x y -=+=;(2)253(2){312x x x x+≤+-≥ 25.解不等式(组)(1) 1(3)42x -->;(2)313{112123x x x x +<-++≤+ 26.求不等式组5234722x x x x -≤+⎧⎪⎨+≥⎪⎩的整数解. 27.某公司为了开发新产品,用A 、B 两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据:(1)设生产甲种产品x 件,根据题意列出不等式组,求出x 的取值范围;(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y 元,求出成本总额y (元)与甲种产品件数x (件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额. 28.(2016四川省资阳市)某大型企业为了保护环境,准备购买A 、B 两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A 型2台、B 型3台需54万,购买A 型4台、B 型2台需68万元.(1)求出A 型、B 型污水处理设备的单价;(2)经核实,一台A 型设备一个月可处理污水220吨,一台B 型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.参考答案1.D【解析】∵不等式组2{x x m >>的解集为()()44a a -+,2m ∴≤故选D.2.D【解析】A. ∵a >b , 33a b > ,故不正确;B. ∵当m=0时, ma mb = ,故不正确;C. ∵a >b , ∴-a<-b , ∴ 11a b --<-- , 故不正确;D. ∵a >b , ∴1122a b +>+,故正确; 故选D.3.B【解析】【详解】由题意可知,3a-4≥2,解得a≥2,故选B.4.D【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集. 解①得x< 4,解②得x≥2,则不等式组的解集是2≤x< 4.“点睛”本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.5.A【解析】由213x -≤得,2x ≤;由132x x 得,;≤+≥-所以这个不等式组的解集是22x -≤≤.故选A.6.C【解析】不等式组整理得:3x m x <⎧⎨≥⎩,即3⩽x<m ,由不等式的整数解有2个,得到整数解为3,4,则m 的范围为4<m ⩽5.故选C点睛:此题考查了一元一次不等式组的整数解.已知解集(整数解)求字母的取值的一般思路为:先把题目中除了未知数以外的字母当做常数看待,解不等式组等,然后再根据题目中对结果的限制的条件得到有关字母的代数式,最后解代数式即可得到答案.7.C【解析】【分析】【详解】解:20{260x x +>-≤①②解不等式①得:x>-2解不等式②得:x≤3所以不等式组的解集在数轴上表示为:故选C .8.D【解析】适当地选用不等式的基本性质对所给不等式进行变形,注意不等号方向的“不变”与“改变”.解:根据不等式的基本性质3可知:不等式两边乘(或除以)同一个负数,不等号的方向改变;即-3a <3b ,故D 错误; 故选D.“点睛”解决这类问题时,先看已知不等式与变化后的不等式两边变化情况,从而确定应用哪一个性质.9.D【解析】21 3......{3 4......x x +≤+>①②解不等式①,得x ≤1,解不等式②,得x>1,所以不等式组无解集;故选D 。
2022年中考数学综合培优测试卷 一元一次不等式
专题:一元一次不等式一.一元一次不等式(组)与学科内知识的综合类型一 不等式(组)与平面直角坐标系◆1.已知点P (2a +1,1-a )在第一象限,则a 的取值范围在数轴上表示正确的是( )2.在平面直角坐标系中,点P (m -3,4-2m )不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限3.已知点M (3a -9,1-a )在第三象限,且它的横、纵坐标都是整数,则a 的值是 W.4.在平面直角坐标系中,点A (1,2a +3)在第一象限.(1)若点A 到x 轴的距离与到y 轴的距离相等,求a 的值;(2)若点A 到x 轴的距离小于到y 轴的距离,求a 的取值范围.类型二 不等式(组)与方程(组)的综合◆5.若关于x ,y 的二元一次方程组的解满足x +y >0,则m 的取值范围{x -y =2m -1,x +3y =3)是 W.6.已知不等式组的解集是2<x <3,则关于x 的方程ax +b =0的解为 {x +1<2a ,x -b >1)W.7.已知关于x ,y 的方程组的解是一对正数.{x +2y =2m +1①,x -2y =4m -3②)(1)试确定m 的取值范围;(2)化简|3m -1|+|m -2|.类型三 不等式(组)与新定义型问题的综合◆8.我们定义=ad -bc ,例如=2×5-3×4=10-12=-2,则不等式组1<|a b c d ||2345|<3的解集是 W.|1x34|9.定义新运算“⊕”如下:当a >b 时,a ⊕b =ab +b ;当a <b 时,a ⊕b =ab -b .若3⊕(x +2)>0,则x 的取值范围是( )A.-1<x <1或x <-2B.x <-2或1<x <2C.-2<x <1或x >1D.x <-2或x >210.阅读以下材料:对于三个数a ,b ,c ,用M {a ,b ,c }表示这三个数的平均数,用min{a ,b ,c }表示这三个数中最小的数.例如:M {-1,2,3}==;min{-1,2,3}-1+2+3343=-1;min{-1,2,a }={a (a ≤-1),-1(a >-1).)(1)填空:若min{2,2x +2,4-2x }=2,则x 的取值范围是 ;(2)如果M {2,x +1,2x }=min{2,x +1,2x },求x 的值.二.一元一次不等式(组)中含字母系数的问题类型一 已知解集求字母系数的值或取值范围◆1.关于x 的一元一次不等式≤-2的解集为x ≥4,则m 的值为( )m -2x 3A.14 B.7 C.-2 D.22.若关于x 的一元一次不等式组的解集是x <5,则m 的取值范围是{2x -1>3(x -2),x <m )【易错11】( )A.m ≥5B.m >5C.m ≤5D.m <53.已知关于x 的不等式组的解集在数轴上表示如图所示,则a b 的值{x ≥-a -1①,-x ≥-b ②)为 .4.若不等式组的解集为-1<x <1,求代数式(b -1)a +1的值.{2x -a <1,x -2b >3)类型二 已知整数解的情况求字母系数的取值范围◆5.关于x 的不等式x -b >0恰有两个负整数解,则b 的取值范围是( )A.-3<b <-2B.-3<b ≤-2C.-3≤b ≤-2D.-3≤b <-26.对于任意实数m ,n ,定义一种新运算m ※n =mn -m -n +3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a <2※x <7,且解集中有两个整数解,则a 的取值范围是 W.7.已知关于x 的不等式组恰好有两个整数解,求实数a 的取值范{5x +1>3(x -1)①,12x ≤8-32x +2a ②)围.类型三 已知不等式组有、无解求字母系数的取值范围◆8.若关于x 的不等式组有实数解,则实数m 的取值范围是( ){5-3x ≥0,x -m ≥0)A.m ≤B.m <5353C.m >D.m ≥53539.已知关于x 的不等式组无解,则实数a 的取值范围是 .{x -a ≥0,5-2x >1)10.若关于x 的不等式组有解,求实数a 的取值范围.【易错11】{x +1<a ①,3x +5>x -7②)参考答案与解析一1.C 2.A3.2 解析:由题意得解得1<a <3.∵横、纵坐标都是整数,∴a 必为整{3a -9<0,1-a <0,)数,∴a =2.4.解:(1)∵点A 到x 轴的距离与到y 轴的距离相等,且点A 在第一象限,∴2a +3=1,解得a =-1.(2)∵点A 到x 轴的距离小于到y 轴的距离,点A 在第一象限,∴解得{2a +3>0,2a +3<1,)-<a <-1.325.m >-1 6.x =-127.解:(1)①+②,得2x =6m -2,x =3m -1.①-②得4y =-2m +4,则y =-m +1.依12题意有解得<m <2.{3m -1>0,-12m +1>0,)13(2)由(1)知<m <2,∴3m -1>0,m -2<0,∴|3m -1|+|m -2|=3m -1+[-(m -2)]13=3m -1-m +2=2m +1.8.<x <1139.C 解析:当3>x +2,即x <1时,由题意得3(x +2)+x +2>0,解得x >-2,∴-2<x <1;当3<x +2,即x >1时,由题意得3(x +2)-(x +2)>0,解得x >-2,∴x >1.综上所述,x 的取值范围是-2<x <1或x >1,故选C.10.解:(1)0≤x ≤1 解析:由题意得解得0≤x ≤1.{2x +2≥2,4-2x ≥2,)(2)方法一:M {2,x +1,2x }==x +1.当x ≥1时,则min{2,x +1,2x }2+x +1+2x 3=2,则x +1=2,∴x =1.当x <1时,则min{2,x +1,2x }=2x ,则x +1=2x ,∴x =1(舍去).∴x =1.方法二:∵M {2,x +1,2x }==x +1=min{2,x +1,2x },∴2+x +1+2x 3∴∴x =1.{2≥x +1,2x ≥x +1,){x ≤1,x ≥1,)二1.D 2.A3.1 解析:由不等式②得x ≤b ,由数轴可得,原不等式组的解集是-2≤x ≤3,∴解得∴a b =13=1.{-a -1=-2,b =3,){a =1,b =3,)4.解:解不等式①得x <.解不等式②得x >2b +3.根据题意得{2x -a <1①,x -2b >3②,)a +12解得则(b -1)a +1=(-3)2=9.{a +12=1,2b +3=-1,){a =1,b =-2,)5.D6.4≤a<5 解析:根据题意得2※x=2x-2-x+3=x+1.∴a<x+1<7,即a-1<x<6.又∵解集中有两个整数解,∴3≤a-1<4,∴a的取值范围为4≤a<5.7.解:解不等式①得x>-2,解不等式②得x≤4+a.∴不等式组的解集是-2<x≤4+a.∵不等式组恰好有两个整数解,∴0≤4+a<1,解得-4≤a<-3.8.A 9.a≥210.解:解不等式①得x<a-1.解不等式②得x>-6.∵不等式组有解,∴-6<a-1,∴a>-5.。
初一数学一元一次不等式培优
初一数学一元一次不等式培优(最新) 一、选择题1.不等式组30,32x x -⎧⎪⎨<⎪⎩≥的所有整数解之和是( )A 、9B 、12C 、13D 、15 2.如果不等式组213(1)x x x m->-⎧⎨<⎩的解集是x <2,那么m 的取值范围是( )A 、m=2B 、m >2C 、m <2D 、m≥23。
如果0>>a b ,那么( ) A 、ba 11->-B 、b a 11<C 、b a 11> D 、a b ->-4。
如果m <n <0,那么下列结论中错误的是( ) A 、mn 11> B 、-m >-n C 、m -9<n -9 D 、n m >15.方程组⎩⎨⎧+=-=+12,a y x a y x 的解0,0><y x y x 适合、,则a 的取值( )A 、31->aB 、1->aC 、311-<<-a D 、1-<a6.如果10<<x ,则下列不等式成立的( )A 、x x x 12<< B 、x x x 12<< C 、21x x x << D 、x x x<<21 7。
某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环(10次射击)的记录,第七次射击不能少于( )环(每次射击最多是10环) A 、5 B 、6 C 、7 D 、88。
关于x 的不等式组153,2223x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有4个整数解,则a 的取值范围是( )A 、-5≤a <-143 B 、-5≤a ≤-143 C 、-5<a ≤-143 D 、-5<a 〈-1439。
已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b的值为 ( )A .-2B .21-C .-4D .41-10。
一元一次不等式(组)的解法及其应用培优竞赛
一元一次不等式 (组 )的解法及其应用题一、整数解x ≥3 0,例 1 ( 2011 江苏苏州, 6, 3 分)不等式组x 的所有整数解之和是()23A 、 9 B、 12 C、 13 D、 15考点:一元一次不等式组的整数解.分析:第一求出不等式的解集,再找出切合条件的整数,求其和即可获取答案.解答:由①得:x≥3,由②得: x< 6,∴不等式的解集为:3≤x< 6,∴整数解是:3,4, 5,所有整数解之和:3+4+5=12 .应选 B.议论:此题主要察看了一元一次不等式组的解法,求不等式组的解集,应依照以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.练习 1.(2011 山东泰安, 18 ,3 分)不等式组3-x> 04x 3 x 的最小整数解为 ().3+2>- 6【答案】 A2.(2011?南通)求不等式组3x 6 x 42 x 1 3( x 的解集,并写出它的整数解 .1)专题:研究型。
分析:分别求出各不等式的解集,再求出其公共解集,并找出其公共解集内x 的整数解即可.解答:【解】解不等式3x- 6≥x- 4,得 x≥1.解不等式 2x+ 1> 3(x- 1),得 x< 4.所以原不等式组的解集为1≤x< 4.它的整数解为1, 2,3.议论:此题察看的是求一元一次不等式组的整数解,熟知解一元一次不等式依照的法规是解答此题的要点.例 2①(2011?恩施州14,3分)若不等式x< a 只有 4 个正整数解,则 a 的取值范围是考点:一元一次不等式的整数解。
分析:第一依照题意确定四个正整数解,尔后再确定 a 的范围.解答:解:∵不等式x< a 只有四个正整数解,∴四个正整数解为:1, 2, 3, 4,4< a≤5 .∴4< a≤5,故答案为: 4< a≤5,议论:此题主要察看了一元一次不等式的整数解,做此题的要点是确定好四个正整数解.②已知关于x 的不等式x- 2a<3 的最大整数解-5,求 a 的取值范围.解: x< 2a+ 3,由题意,有-5< 2a+ 3≤- 4,- 8< 2a≤- 7,4 a 7 .22( x 1) 3(x 2) 6, ①③关于 x 的不等式组x a1, 恰好有两个整数解,求 a 的取值范围.2②解:由①,得2x - 2- 3x- 6>- 6,- x> 2, x<- 2,由②得 x>2- a,因为恰好有两个整数解-5≤2- a<- 4,所以- 7≤- a<- 6,- 7≥ a>6.x 1 x 2 1,只有 3 个整数解,求 a 的取值范围.练习 1.关于 x 的不等式组23x a 2,2 x 1 3x 5, a 的取值范围.2.关于 x 的不等式组a0, 恰好有 4 个整数解,求 2 x二、不等式 (组 )的解集 例 3 已知不等式 ax 1的每一个解都是 2x 11 的解,求 a 的取值范围; 解:由a x3 2x 11 2 21,得 x < a - 3,由 得 x < 1,由题意有: a - 3≤ 1,得 a ≤ 4.32 2议论:注意二者之差异.练习 1.若不等式 xa x a1的解集与 x < 6 的解集相同,求 a 的取值范围.解:由x ax a 3 21 ,得 2x -2a - 3x +3a > 6,- x > 6- a , x < a - 6,32由题意,有 a - 6= 6,所以 a = 12.2.( 2011 山东日照, 6, 3 分)若不等式2x < 4 的解都能使关于 x 的一次不等式( a ﹣ 1)x < a+5 成立,则a 的取值范围是( )A . 1<a ≤7B . a ≤7C . a <1 或 a ≥7D . a=7考点 :解一元一次不等式组;不等式的性质。
一元一次不等式(组)的竞赛题
一元一次不等式(组)的竞赛题
一.巧用不等式的性质
1 要使a 5<a 3<a <a 2<a 4成立,则a 的取值范围是( )
A.0<a <1
B. a >1
C.-1<a <0
D. a <-1
2 已知6<a <10,
2
a ≤
b ≤a 2,b a
c +=,则c 的取值范围是 。
二.由不等式的解集确定不等式中系数的取值范围
3 若关于x 的不等式组
⎪⎩⎪⎨⎧+++②m <x ①x >x 01456 的解集为4x <,则m 的取值范围是 。
4.若不等式0432b <a x b a -+-)(的解集是4
9x >,则不等式 的解集是0324b >a x b a -+-)( 。
三.利用不等式求代数式的最大值
5.设7321x x x x ,,,, 均为自然数,且76321x x x x x <<<<< ,又159721=+++x x x ,则321x x x ++的最大值是 。
6 在满足32≤+y x ,00≥≥y x ,的条件下,y x +2 能达到的最大值是 。
7. 若整数c b a 、、满足不等式组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧+<+<<+<b c <a b a c <b a c
b a
c 4112
5352
32611 试确定c b a 、、的大小关系
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。
一元一次不等式(组)培优(含解析)
一元一次不等式(组)培优(含解析)一、单选题:(共10题)1.从−7,−5,−1,0,4,3这六个数中,随机抽一个数,记为m ,若数m 使关于x 的不等式组{x−m2>0x −4<3(x −2)的解集为x >1,且关于x 的分式方程1−x 2−x +m x−2=3有非负整数解,则符合条件的m 的值的个数是( ) A .1个B .2个C .3个D .4个2.若方程组{3x +2y =2k 2y −x =3的解满足x <1,且y >1,则整数k 的个数是( )A .4B .3C .2D .13.若关于x 的不等式组{x <2(x −a)x −1≤23x恰有3个整数解,则a 的取值范围是( ) A .0≤a <12B .0≤a <1C .−12<a ≤0 D .−1≤a <04.正五边形广场 ABCDE 的边长为 80 米,甲、乙两个同学做游戏,分别从 A 、 C 两点处同时出发,沿 A −B −C −D −E −A 的方向绕广场行走,甲的速度为 50米/分,乙的速度为 46米/分,则两人第一次刚走到同一条边上时 ( )A .甲在顶点 A 处B .甲在顶点 B 处C .甲在顶点C 处D .甲在顶点D 处 5.若不等式组{x −2<3x −6x <m无解,则m 的取值范围是( )A .m >2B .m <2C .m ≥2D .m ≤26.若不等式组{1<x ≤2x >k无解,则k 的取值范围是( )A .k ≤2B .k >2C .k ≥2D .1≤k <27.如图,直线y=kx+b 与y=mx+n 分别交x 轴于点A (﹣0.5,0)、B (2,0),则不等式(kx+b )(mx+n )<0的解集为( )A .x >2B .﹣0.5<x <2C .0<x <2D .x <﹣0.5或x >28.若关于x 的不等式3x-2m ≥0的负整数解为-1,-2,则m 的取值范围是( ) A .−6≤m <−92 B .−6<m ≤−92 C .−92≤m <−3 D .−92<m ≤−3 9.如图,经过点B (1,0)的直线y =kx +b 与直线y =4x +4相交于点A (m ,83),则0<kx +b<4x +4的解集为( )A .x <-13B .-13<x <1 C .x <1 D .-1<x <110.若数a 使关于x 的不等式组{13x −1≤12(x −1)2x −a ≤3(1−x),有且仅有三个整数解,且使关于y 的分式方程3yy−2+a+122−y=1有整数解,则满足条件的所有a 的值之和是( )A .﹣10B .﹣12C .﹣16D .﹣18 二、填空题:(共10题)11.若数a 使关于x 的不等式组{x−12<1+x 35x −2≥x +a有且只有四个整数解,且使关于y 的方程y+a y−1+2a 1−y=2的解为非负数,则符合条件的正整数a 的值为______.12.如果不等式mx+13>1+x+33的解集为x>5,则m 的值为_______.13.若关于x ,y 的方程组{3x +2y =k −12x −3y =2 的解使4x +7y >2成立,则k 的取值范围是________.14.冬至节快到了,李老师和杨老师都准备给班级同学买饺子吃.到了超市两人均买了两款饺子,A 款单价为33元/袋,B 款41元/袋.其中李老师购买A 款数量少于B 款数量,合计花了500多元.杨老师购买的A ,B 两款的数量刚好与李老师互换,也花了500多元,巧合的是所花费用的十位数字与个位数字刚好也和李老师所花费用的十位数字与个位数字互换.则李老师购买A ,B 两款饺子共计____袋.15.若不等式组{x −a ≻0x −a ≺1-的解集中的任何一个x 的值均不在2≤x ≤5的范围内,则a 的取值范围为________.16.如果不等式组{3x −a ≥02x −b <0 的整数解仅为 2,且 a 、b 均为整数,则代数式 2a 2+b 的最大值=________.17.使得关于x 的分式方程x+kx+1−kx−1=1的解为负整数,且使得关于x 的不等式组{3x +2≥2x −14x −4≤k有5个整数解的所有k 的和为_____.18.关于x 的不等式组{4a +3x >03a −4x ≥0恰好只有三个整数解,则a 的取值范围是_____________.19.若关于x 的一元一次不等式组{x −a >02x −3<1有2个负整数解,则a 的取值范围是_____.20.在一次智力测验中有20道选择题,评分标准为:对l 题给5分,错1题扣2分,不答题不给分也不扣分,张强有1道题末答,如果总分才不会低于70分,则他至少答对____道题.三、解答题:(共20题)21.某工厂计划生产A 、B 两种产品共50件,需购买甲、乙两种材料.生产一件A 产品需甲种材料30千克、乙种材料10千克;生产一件B 产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B 产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A 产品需加工费200元,生产一件B 产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费) 22.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)设商场购进甲种节能灯x 只,求出商场销售完节能灯时总利润w 与购进甲种节能灯x 之间的函数关系式;(3)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元? 23.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?24.在平面直角坐标系中,已知直线l1:y=2x+1(1)若将直线l1平移,使之经过点(1,-5),求平移后直线的解析式;(2)若直线l2:y=x+m与直线l1的交点在第二象限,求m的取值范围;(3)如图,直线y=x+b与直线y=nx+2n(n≠0)的交点的横坐标为-5,求关于x的不等式组0<nx+2n<x+b的解集.25.为了争创全国文明卫生城市,优化城市环境,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车(两种车型都要有)每年能节省的汽油量不低于22.4万升,请问有哪几种购车方案?(3)求(2)中最省钱的购买方案所需的购车款.26.某商场销售每个进价为150元和120元的A、B两种型号的足球,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入−进货成本)(1)求A、B两种型号的足球的销售单价;(2)若商场准备用不多于8400元的金额再购进这两种型号的足球共60个,求A种型号的足球最多能采购多少个?(3)在(2)的条件下,商场销售完这60个足球能否实现利润超过2550元,若能,请给出相应的采购方案;若不能请说明理由.27.(题文)小雨的外婆送来一篮鸡蛋.这篮鸡蛋最多只能装55只左右.小雨3只一数,结果剩下1只,但忘了数多少次,只好重数.他5只一数,结果剩下2只,可又忘了数多少次.他准备再数时,妈妈笑着说:“不用数了,共有52只.”小雨惊讶地问妈妈怎么知道的.妈妈笑而不答.同学们,你们知道这是为什么吗?28.夏季即将来临,某电器超市销售每台进价分别为200元、170元的A,B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)分别求出A ,B 两种型号电风扇的销售单价;(2)若超市准备用不超过5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.29.某人共收集邮票若干张,其中14是2000年以前的国内外发行的邮票,18是2001年国内发行的,119是2002年国内发行的,此外尚有不足100张的国外邮票.求该人共有多少张邮票.30.为落实优秀传统文化进校园,某校计划购进“四书”、“五经”两套图书供学生借阅,已知这两套图书单价和为660元,一套“四书”比一套“五经”的2倍少60元. (1)分别求出这两套图书的单价;(2)该校购买这两套图书不超过30600元,且购进“四书”至少33套,“五经”的套数是“四书”套数的2倍,该校共有哪几种购买方案?31.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有多少块?32.国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表:类别 彩电 冰箱 洗衣机 进价(元/台) 2000 1600 1000 售价(元/台) 2300 1800 1100若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x 台. (1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元? 33.一幢学生宿舍楼有一些空房间,现要安排一批学生入住.若每间住4人,则有20人无法入住;若每间住8人,则有1间房间还剩余一些空床位. (1)求空房间的间数和这批学生的人数;(2)这批学生入住后,男生房间的间数恰好是女生房间间数的2倍,每间房间都有8个床位,每间女生房间都空出数量相同的床位,问:男女学生各多少人?34.(2016黑龙江省牡丹江市)某绿色食品有限公司准备购进A和B两种蔬菜,B种蔬菜每吨的进价比A中蔬菜每吨的进价多0.5万元,经计算用4.5万元购进的A种蔬菜的吨数与用6万元购进的B种蔬菜的吨数相同,请解答下列问题:(1)求A,B两种蔬菜每吨的进价;(2)该公司计划用14万元同时购进A,B两种蔬菜,若A种蔬菜以每吨2万元的价格出售,B种蔬菜以每吨3万元的价格出售,且全部售出,请求出所获利润W(万元)与购买A种蔬菜的资金a(万元)之间的函数关系式;(3)在(2)的条件下,要求A种蔬菜的吨数不低于B种蔬菜的吨数,若公司欲将(2)中的最大利润全部用于购买甲、乙两种型号的电脑赠给某中学,甲种电脑每台2100元,乙种电脑每台2700元,请直接写出有几种购买电脑的方案.35.自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16 000元采购A型商品的件数是用7 500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数解析式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.36.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.37.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如表.(1)该商场购进A、B两种商品各多少件?(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?38.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.39.每年的3月15日是“国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动.甲卖家的某款沙发每套成本为5000元,在标价8000元的基础上打9折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售相同的沙发,其成本、标价与甲卖家一致,以前每周可售出5套,现乙卖家先将标价提高m%,再大幅降价40m元,使得这款沙发在3月15日那一天卖出的数量就比原来一周卖出的m%,这样一天的利润达到了31250元,求m.数量增加了1240.某校九年级6个班举行毕业文艺汇演,每班3个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少6个.设舞蹈类节目有x个.(1)用含x的代数式表示:歌唱类节目有______________个;(2)求九年级表演的歌唱类与舞蹈类节目数各有多少个?(3)该校七、八年级有小品节目参与汇演,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计全场节目交接所用的时间总共16分钟.若从19:00开始,21:30之前演出结束,问参与的小品类节目最多能有多少个?答案与解析1.A【解析】【分析】根据分式方程有非负整数解,即可从−7,−5,−1,0,4,3这六个数中找出符合要求的m 的值,综上即可得到答案.【详解】{x−m2>0①x−4<3(x−2)②,解不等式①得:x>m,解不等式②得:x>1,∵该不等式组的解集为:x>1,∴m≤1,即m取−7,−5,−1,0;1−x 2−x +mx−2=3,方程两边同时乘以(x−2)得:x−1+m=3(x−2),去括号得:x−1+m=3x−6,移项得:x−3x=1−6−m,合并同类项得:−2x=−5−m,系数化为1得:x=m+52,∵该方程有非负整数解,∴即m+52≥0,m+52≠2,且m+52为整数,∴m 取−5,3,综上:m 取−5,即符合条件的m 的值的个数是1个, 故选A . 2.A 【解析】 【分析】本题可运用加减消元法,将x 、y 用含k 的代数式表示,然后根据x <1,y >1得出k 的范围,再根据k 为整数可得出k 的值. 【详解】 {3x +2y =2k ①2y −x =3②,①﹣②,得:4x =2k ﹣3,∴x =2k−34.∵x <1,∴2k−34<1,解得:k <72.将x =2k−34代入②,得:2y −2k−34=3,∴y =2k+98.∵y >1,∴2k+98>1,解得:k >−12,∴−12<k <72.∵k 为整数,∴k 可取0,1,2,3,∴k 的个数为4个. 故选A . 3.A 【解析】 【分析】求出两个关于x 的不等式的解集,再根据不等式组恰有3个整数解,即可得a 的范围. 【详解】解不等式x <2(x ﹣a ),得:x >2a ,解不等式x ﹣1≤23x ,得:x ≤3.∵不等式组恰有3个整数解,∴0≤2a <1,解得:0≤a <12. 故选A . 4.D 【解析】 【分析】实际应用问题,见详解. 【详解】解:两人如果在同一条边上,说明两人的距离小于等于80米,∵甲、乙两个同学做游戏,分别从 A 、 C 两点处同时出发,两人相差160米,甲要追回80米需要的时间是80÷(50-46)=20分钟,20分钟甲走了1000米,正好走到CD 的中点设为F;20分钟乙走920米走到DE 距D 点40米处设为G.甲从F 走到D 是40比50等于0.8分钟;乙用0.8分从G 点走出0.8乘46等于36.8米距E 点80-36.8-40=3.2米由此得知甲走到D 点时乙走在DE 线上距E3.2米处. ∴D 选项是正确的 5.D 【解析】 【分析】求出两个不等式的解集,根据已知得出m ≤2,即可得出选项. 【详解】 {x −2<3x −6①x <m ②.∵解不等式①得:x >2,不等式②的解集是x <m . 又∵不等式组{x −2<3x −6x <m无解,∴m ≤2.故选D . 6.C 【解析】 【分析】根据不等式组的解集的确定方法,由不等式组无解得到k 的取值范围. 【详解】由题意可知不等式组{1<x ≤2x >k无解所以k ≥4.7.D 【解析】 【分析】把(kx +b )(mx +n )<0,转化为不等式组{kx +b >0mx +n <0 ①或{kx +b <0mx +n >0②,然后看两函数的图象即可得到结论. 【详解】∵(kx +b )(mx +n )<0,∴{kx +b >0mx +n <0 ①或{kx +b <0mx +n >0②.∵直线y =kx +b 与直线y =mx +n分别交x 轴于点A (﹣0.5,0)、B (2,0),∴①的解集为:x <﹣0.5,②的解集为:x >2,∴不等式(kx +b )(mx +n )<0的解集为x <﹣0.5或x >2. 故选D . 8.D 【解析】解3x −2m ≥0,得x ≥23m ,根据题意得,-3<23m ≤-2,解得−92<m ≤−3,故选D.点睛:本题主要考查了一元一次不等式的解法,先用含m 的式子表示出不等式的解集,再根据不等式的负整数解得到含m 的式子的范围,即关于m 的不等式组,解这个不等式组即可求解. 9.B【解析】∵经过点B (1,0)的直线y =kx +b 与直线y =4x +4相交于点A (m ,83),∴4m +4=83,∴m=−13,∴直线y =kx +b 与直线y =4x +4的交点A 的坐标为(−13,83),直线y =kx +b 与x 轴的交点坐标为B (1,0),又∵当x <1时,kx +b >0,当x >−13时,kx +b <4x +4,∴0<kx +b <4x +4的解集为−13<x <1.故选B . 10.B 【解析】 【分析】根据不等式的解集,可得a 的范围,根据方程的解,可得a 的值,根据有理数的加法,可得答案.{13x−1≤12(x−1)①2x−a≤3(1−x)②,解①得x≥-3,解②得x≤3+a5,不等式组的解集是-3≤x≤3+a5.∵仅有三个整数解,∴-1≤3+a5<0∴-8≤a<-3,3y y−2+a+122−y=1,3y-a-12=y-2.∴y=a+102,∵y≠-2,∴a≠-6,又y=a+102有整数解,∴a=-8或-4,所有满足条件的整数a的值之和是-8-4=-12,故选B.11.2.【解析】【分析】分别解不等式组{x−12<1+x35x−2≥x+a的两个不等式,根据“该不等式组有且只有四个整数解”,得到关于a的不等式,解之,解关于y的方程y+ay−1+2a1−y=2,根据“该方程的解为非负数”,得到关于a的不等式组,解之,综上可得到a的取值范围,即可得到答案.【详解】解:{x−12<1+x3①5x−2≥x+a②,解不等式①得:x <5, 解不等式②得:x ≥a+24,∵该不等式组有且只有四个整数解, ∴该不等式组的解集为:a+24≤x <5,且0<a+24≤1,解得:−2<a ≤2, 又∵y+ay−1+2a1−y =2,方程两边同时乘以(y −1)得:y +a −2a =2(y −1), 去括号得:y −a =2y −2, 移项得:y =2−a , ∵该方程的解为非负数, ∴2−a ≥0且2−a ≠1, 解得:a ≤2且a ≠1,综上可知:符合条件的正整数a 的值为2, 故答案为:2. 12.2. 【解析】 【分析】先将不等式化为ax >b 的形式,再根据不等式的解集,即可求出m 的值. 【详解】 由不等式mx+13>1+x+33可得(1-m )•x <-5,∵不等式的解集为x >5, ∴1-m <0, ∴(1-m )•5=-5, ∴m=2. 故答案为:2. 13.k >3 【解析】 【分析】将第一个方程×2-第二个方程,得到4x+7y=2k-2-2,然后代入4x+7y>2,解关于k的一元一次不等式即可.【详解】{3x+2y=k−1①2x−3y=2②由①×2﹣②得:4x+7y=2k-2-2,∴2k-2-2>2,∴2k>6,解得:k>3.故答案为:k>3.14.15【解析】【分析】依题意设李老师买了A款饺子x袋,B款饺子y袋,购买的金额十位上的数字为a,各位上的数字为b,则可列出方程组:{33x+41y=500+10a+b①33y+41y=500+10b+a②,①+②得x+y=1000+11a+11b74,由两次购买的钱数都是500多,所以500<33x+41y<600,500<41x+33y<600,故1000<74(x+y)<1200,即13.5<x+y<16.2.所以x+y可能为14、15、16.再根据杨老师所花费用的十位数字与个位数字刚好也和李老师所花费用的十位数字与个位数字互换来求得x+y=15.【详解】解:依题意设李老师买了A款饺子x袋,B款饺子y袋,购买的金额十位上的数字为a,各位上的数字为b,则可列出方程组:{33x+41y=500+10a+b①33y+41y=500+10b+a②①+②得x+y=1000+11a+11b74③,∵500<33x+41y<600,500<41x+33y<600∴1000<74(x+y)<1200,即13.5<x+y<16.2x+y可能为14、15、16当x+y=14时,代入③得11a+11b=36,不符题意,当x+y=15时,代入③得11a+11b=110,a+b=10符题意,当x+y=16时,代入③得11a+11b=184,不符题意,故x+y=15,填15.15.a ≤1或a ≥5 【解析】 【分析】解不等式组{x −a >0x −a <1,求出x 的范围,根据任何一个x 的值均不在2≤x ≤5范围内列出不等式,解不等式得到答案. 【详解】解:不等式组{x −a >0x −a <1的解集为:a <x <a+1,∵任何一个x 的值均不在2≤x ≤5范围内, ∴x <2或x >5, ∴a+1≤2或a ≥5, 解得,a ≤1或a ≥5,∴a 的取值范围是:a ≤1或a ≥5, 故答案为:a ≤1或a ≥5. 16.78 【解析】 【分析】解不等式组后依据整数解仅为2可得{1<a3≤22<b2≤3,解之得到a 、b 的范围,再进一步利用a 、b 均为整数求解可得. 【详解】解不等式3x-a ≥0,得:x ≥a3, 解不等式2x-b <0,得:x <b 2,∵整数解仅为2, ∴{1<a3≤22<b2≤3, 解得:3<a ≤6,4<b ≤6, ∵a 、b 均为整数,∴当a=6、b=6时,2a 2+b 取得最大值,最大值为2×62+6=78,故答案为:78. 17.12.5 【解析】 【分析】依据分式方程x+kx+1−kx−1=1的解为负整数,即可得到k >12,k ≠1,再根据不等式组{3x +2≥2x −14x −4≤k 有5个整数解,即可得到0≤k <4,进而得出k 的值,从而可得符合题意的所有k 的和. 【详解】解分式方程x+kx+1−k x−1=1,可得x=1-2k , ∵分式方程x+kx+1−kx−1=1的解为负整数, ∴1-2k <0, ∴k >12,又∵x ≠-1, ∴1-2k ≠-1, ∴k ≠1,解不等式组{3x +2≥2x −14x −4≤k,可得{x ≥−3x ≤k +44 ,∵不等式组{3x +2≥2x −14x −4≤k有5个整数解,∴1≤k+44<2,解得0≤k <4, ∴12<k <4且k ≠1,∴k 的值为1.5或2或2.5或3或3.5, ∴符合题意的所有k 的和为12.5, 故答案为:12.5. 18.43≤a ≤32 【解析】 【分析】先求出不等式组的解集(含字母a ),因为不等式组有3个整数解,可逆推出a 的值即可. 【详解】解不等式4a+3x>0得:x>-43a , 解不等式3a-4x ≥0得:x ≤34a ,∴不等式的解集为:-43a<x ≤34a , ∵方程组只有三个整数解, ∴方程组的解包括0,∴方程组的整数解为:0、1、2或-1、0、1或-2、-1、0, 当整数解为0、1、2时:{−1≤−43a ≤02≤34a <3,方程组无解, 当整数解为-1、0、1时:{−2≤−43a ≤−11≤34a <2 ,解得:43≤a ≤32, 当整数解为-2、-1、0时:{−3≤−43a ≤−20≤34a <1 方程组无解, ∴a 的取值范围为:43≤a ≤32,故答案为:43≤a ≤32 19.﹣3≤a <﹣2 【解析】 【分析】由第二个不等式求得x 的范围为x <2,这时可采用数轴,也可以用推理,采用推理,x <2的两个负整数解应为-1,-2,故可知a 应大于等于-3小于-2,再进行检验最佳. 【详解】2x -3<1,得x <2,进而得负整数解为-1,-2,解得-3≤a <-2. 20.16【解析】分析:设小明至少答对的题数是x 道,答错的为(20-1-x )道,根据总分才不会低于70分,这个不等量关系可列出不等式求解. 解答:解:设小明至少答对的题数是x 道, 5x-2(20-1-x )≥70,x ≥1537故至少答对16题,总分才不会低于70分. 故答案为:16.21.(1)甲钟材料每千克15元,乙种材料每千克25元;(2)共有三种方案;(3)选择第三种方案. 【解析】 【分析】(1)设甲材料每千克x 元,乙材料每千克y 元,根据购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元,可列出方程组 {x +y =402x +3y =105,解方程组即可得到甲材料每千克15元,乙材料每千克25元; (2)设生产A 产品m 件,生产B 产品(50-m )件,先表示出生产这50件产品的材料费为15×30m+25×10m+15×20(50-m )+25×20(50-m )=-100m+40000,根据购买甲、乙两种材料的资金不超过38000元得到-100m+40000≤38000,根据生产B 产品不少于28件得到50-m ≥28,然后解两个不等式求出其公共部分得到20≤m ≤22,而m 为整数,则m 的值为20,21,22,易得符合条件的生产方案;(3)设总生产成本为W 元,加工费为:200m+300(50-m ),根据成本=材料费+加工费得到W=-100m+40000+200m+300(50-m )=-200m+55000,根据一次函数的性质得到W 随m 的增大而减小,然后把m=22代入计算,即可得到最低成本. 【详解】(1)设甲钟材料每千克x 元,乙种材料每千克y 元,根据题意列方程组得: {x +y =402x +3y =105 解之{x =15y =25甲钟材料每千克15元,乙种材料每千克25元.(2)设生产A 产品m 件,生产B 产品(50-m )件,则生产这50件产品的材料费为15×30m+25×10m+15×20(50-m )+25×20(50-m )=-100m+40000, 由题意:-100m+40000≤38000,解得m ≥20, 又∵50-m ≥28,解得m ≤22, ∴20≤m ≤22,∵m为正整数∴m的值为20,21,22,共有三种方案,如下表:(3)设总生产成本为W元,加工费为:200m+300(50-m),则W=-100m+40000+200m+300(50-m)=-200m+55000,∵W 随m的增大而减小,而m=20,21,22,∴当m=22时,总成本最低,此时W=-200×22+55000=50600元,∴选择第三种方案. 22.(1)购进甲型节能灯400只,乙型节能灯800只;(2)w=﹣10x+18000;(3)商场购进甲型节能灯450只,乙型节能灯750只,销售完节能灯时获利为13500元.【解析】【分析】(1)设商场应购进甲型节能灯x只,根据题意列出方程解答即可;(2)设商场应购进甲开型节能灯x只,根据题意列出函数解析式即可;(3)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,根据“商场销售完节能灯时获利最多且不超过进货价的30%”列不等式,结合一次函数的性质解答即可.【详解】(1)设商场应购进甲型节能灯x只,则乙型节能灯为(1200﹣x)只.根据题意得:25x+45(1200﹣x)=46000解得:x=400.当x=400时,1200-x=800.答:购进甲型节能灯400只,乙型节能灯800只时,进货款恰好为46000元.(2)设商场应购进甲型节能灯x只,商场销售完这批节能灯可获利w元.根据题意得:w=(30﹣25)x+(60﹣45)(1200﹣x)=5x+18000﹣15x=﹣10x+18000所以w=﹣10x+18000;(3)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,利润为w元,根据题意得:﹣10x+18000≤[25x+45(1200﹣x)]×30%解得:x≥450.∵w=﹣10x+18000,∴k=﹣10<0,∴w随x的增大而减小,∴x=450时,w最大=13500元.答:商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.23.(1) 有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车【解析】【分析】设要购买轿车x辆,则要购买面包车(10-x)辆,题中要求“轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元”列出不等式,然后解出x的取值范围,最后根据x的值列出不同方案.【详解】(1)设购买轿车x辆,那么购买面包车(10-x)辆.由题意,得7x+4(10-x)≤55,解得x≤5.又因为x≥3,所以x的值为3,4,5,所以有三种购买方案:方案一:购买3辆轿车,7辆面包车;方案二:购买4辆轿车,6辆面包车;方案三:购买5辆轿车,5辆面包车.(2)方案一的日租金为3×200+7×110=1370(元)<1500元;方案二的日租金为4×200+6×110=1460(元)<1500元;方案三的日租金为5×200+5×110=1550(元)>1500元.所以为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车.24.(1)平移后直线的解析式y=2x-7;(2)1<m<1;(3)-5<x<-22【解析】【分析】(1)利用两直线平行的问题,设平移后的直线解析式为y=2x+t,然后把(1,-5)代入求出t即可;(2)先解方程组{y =2x +1y =x +m得y =x +m 与直线l 1的交点坐标为(m-1,2m-1),利用第二象限点的坐标特征得到{m −1<02m −1>0,然后解不等式组即可;(3)写出直线y =nx +2n 在x 轴上方,且直线y =nx +2n 在直线y =x +b 的下方所对应的自变量的范围即可. 【详解】(1)设平移后的直线解析式为y =2x +t , 把(1,-5)代入得2+t =-5,解得t =-7, 所以平移后直线的解析式y =2x -7;(2)解方程组{y =x +m y=2x+1得{y =2m −1x=m−1, 所以y =x +m 与直线l 1的交点坐标为(m -1,2m -1) 因为{2m −1>0m−1<0所以12<m <1;(3)当y =0时,nx +2n =0,解得x =-2,直线y =nx +2n 与x 轴的交点坐标为(-2,0), 所以不等式组0<nx +2n <x +b 的解集为-5<x <-2. 25.(1)120、100;(2)有四种购车方案,方案一:购买A 型公交车6辆,购买B 型公交车4辆;方案二:购买A 型公交车7辆,购买B 型公交车3辆;方案三:购买A 型公交车8辆,购买B 型公交车2辆;方案四:购买A 型公交车9辆,购买B 型公交车1辆;(3)(2)中最省钱的购买方案所需的购车款是1120万元. 【解析】 【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以求得a 和b 的值; (2)根据题意可以列出相应的不等式,从而可以求得有几种购车方案; (3)根据题意和(2)中的方案,可以求得最省购车方案所需的购车款. 【详解】(1)由题意可得:{a =b +202a =3b −60 ,解得:{a =120b =100 .答:a 的值是120,b 的值是100.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式(组)的应用
例题求解
【例题1】已知2007321,......,,a a a a 是彼此不相等的负数,且
M=)......)(,......(20074322006321a a a a a a a a ++++
N=)......)(,......(20064322007321a a a a a a a a ++++,请比较M 、N 的大小。
【例题3】已知7654321,,,,,,a a a a a a a 是彼此不同的正整数,他们的和等于159,求其中最小的数1a 的最大值。
【例题4】若a 、b 满足b a s b a 32,7532
2-==+,则s 的取值范围是_______________。
(1)符合题意搭配方案有哪几种?
(2)若搭配一个A种造型成本为1000元,搭配一个B种造型成本为1200元,试说明选用(1)哪种方案成本最低
【例题7】、荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨。
已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.
(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?
(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案请你设计出来,并求出最低的租车费用.
【课堂练习】
1、一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有( )种。
2、1、(2010•温州)某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支元,则其中签字笔购买了_______支.
3、学生若干人,住若干间宿舍,如果每间住4人,则余19人没有住处,如果每间住6人,则有一间宿舍不空也不满,求有多少间宿舍多少名学生
4、某校组织师生春游,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可以少租一辆,且余30个座位.则该校去参加春游的人数为________;若已知45座客车的租金为每辆250元,60座客车租金为每辆300元,这次春游同时租用这两种客车,其中60座客车比45座客车多租1辆,所以租金比单独一种客车要节省,按这种方案需要租金 ________元。
5、已知关于x 的不等式组⎩⎨⎧->-≥-1
230x a x 的整数解有5个,则a 的取值范围是__________。
6、某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()
7、西宁市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数()
A、至少20户
B、至多20户
C、至少21户
D、至多21户
8、在a克糖水中含有b克糖(a>b>0),现在加入m克糖,则糖水变得更甜了.这一实际问题说明了数学上的一个不等关系式,则这个不等关系式为_______________。
9、已知关于x的不等式组的解是5
≤x,则
3<
b的值是_________。
a
10、某公司组织员工到公园划船,报名人数不足50人,在安排乘船的时候发现,每只船坐6人,就剩下18人无船可乘;每只船坐10人,那么其余的船坐满后有一只船不空也不满,参加划船的员工共有_______人。
2、(2011•绍兴)筹建中的城南中学需720套单人课桌椅(如图),光明厂承担了这项生产任务.该厂生产桌子的必须5人一组.每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.
(1)问光明厂平均毎天要生产多少套单人课桌椅?
(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.
4、某电器城经销A型号彩电,今年四月份毎台彩电售价为2000元.与去年同期相比,结果卖出彩电的数量相同的,但去年销售额为5万元,今年销售额为4万元.
(1)问去年四月份每台A型号彩电售价是多少元
(2)为了改善经营,电器城决定再经销B型号彩电,已知A型号彩电每台进货价为1800元,B型号彩电每台进货价为1500元,电器城预计用不多于万元且不少于万元的资金购进这两种彩电共20台,问有哪几种进货方案
(3)电器城准备把A型号彩电继续以原价每台2000元的价格出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大最大利润是多少
6、建华小区准备新建50个停车位.以解决小区停车难的问题.己知新建1个地上停车位和1个地下停车位需万元;新建3个地上停车位和2个地下停车位需万元.
(1)该小区新建l个地上停车位和1个地下停车位各需多少万元
(2)若该小区预计投资金额超过l0万元而不超过11万元,则共有几种建造方案
(3)已知每个地上停车位月租金l00元.每个地下停车位月租金300元.在(2)的条件下.新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完.请直接写出该小区选择的是哪种建造方案
7、向阳花卉基地出售两种花卉—百合和玫瑰,其单价为:玫瑰4元/株,百合5元/株,如果同一客户所购的玫瑰数量大于1200株,那么每株玫瑰可以降价1元,现某鲜花店向向阳花卉基地采购玫瑰1000株~1500株,百合若干株,此鲜花店本次用于采购玫瑰和百合恰好花去了9000元,然后再以玫瑰5元,百合元的价格卖出,问:此鲜花店应如何采购这两种鲜花才能使获得毛利润最大
(注:1000株~1500株,表示大于或等于1000株,且小于或等于1500株,毛利润=鲜花店卖出百合和玫瑰所获的总金额-购进百合和玫瑰的所需的总金额。
)
8、如果t >0,试证
t
bt a ++1必在a 与b 之间.。