横截面上的最大正应力
工程力学习题册第八章 - 答案
第八章 直梁弯曲一、填空题1.工程中 发生弯曲 或以 弯曲变形 为主的杆件称为梁。
2.常见梁的力学模型有 简支梁 、 外伸梁 和 悬臂梁 。
3.平面弯曲变形的受力特点是 外力垂直于杆件的轴线,且外力和力偶都作用在梁的纵向对称面内 ;平面弯曲变形的变形特点是 梁的轴线由直线变成了在外力作用面内的一条曲线 ;发生平面弯曲变形的构件特征是 具有一个以上对称面的等截面直梁 。
4.作用在梁上的载荷有 集中力 、 集中力偶 和 分布载荷 。
5.梁弯曲时,横截面上的内力一般包括 剪力 和 弯矩 两个分量,其中对梁的强度影响较大的是 弯矩 。
6.在计算梁的内力时,当梁的长度大于横截面尺寸 五 倍以上时,可将剪力略去不计。
7.梁弯曲时,某一截面上的弯矩,在数值上等于 该截面左侧或右侧梁上各外力对截面形心的力矩 的代数和。
其正负号规定为:当梁弯曲成 凹面向上 时,截面上弯矩为正;当梁弯曲成凸面向上 时,截面上弯矩为负。
8.在集中力偶作用处,弯矩发生突变,突变值等于 集中力偶矩 。
9.横截面上弯矩为 常数 而剪力为 零 的平面弯曲变形称为 纯弯曲变形 。
10.梁纯弯曲变形实验中,横向线仍为直线,且仍与 梁轴线 正交,但两线不再 平行 ,相对倾斜角度θ。
纵向线变为 弧线 ,轴线以上的纵向线缩短,称为 缩短 区,此区梁的宽度 增大 ;轴线以下的纵向线伸长,称为 伸长 区,此区梁的宽度 减小 。
情况与轴向拉伸、压缩时的变形相似。
11.中性层与横截面的交线称为 中性轴 ,变形时梁的 所有横截面 均绕此线相对旋转。
12.在中性层凸出一侧的梁内各点,其正应力均为 正 值,即为 拉 应力。
13.根据弯曲强度条件可以解决 强度校核 、 截面选取 和 确定许可载荷 等三类问题。
14.产生最大正应力的截面又称为 危险截面 ,最大正应力所在的点称为 危险点 。
15.在截面积A 相同的条件下, 抗弯截面系数 越大,则梁的承载能力就越高。
轴向拉伸与压缩时横截面上的应力
例 一正中开槽的直杆,承受轴向载荷F =20kN的作用, 如图4-7a所示。已知h = 25mm,h0 = 10mm,b = 20mm。试求 杆内的最大正应力。
1 2
F
1 2
F
解 (1) 计算轴力 由截面法可求得杆中 各横截面上的轴力均为
a)
FN F
b)
图4-7
FN = -F = -20kN
A1
图4-6
由材料的均匀性、连续性假设可以推断出轴力在横截面 上的分布是均匀的,而且都垂直于横截面,故横截面上的正 应力也是均匀分布的,如图4-6c所示。因此,轴向拉伸与压 缩时的横截面上的正应力计算公式为
FN σ= A
σ 式中, 为横截面上的正应力;FN 为横截面上的内力(轴
力);A 为横截面面积。 正应力的正负号与轴力的正负号一致。即拉应力正, 压应力为负。
h0 h
A2
h
b b
c)
(2)计算最大正应力 图4-7 由于整个杆件轴力相同,故最大正应力发生在面积较小 的横截面上,即开槽部分的横截面上如图4-7c,其面积为
A = (h-h0 )b = (25-10)
则杆件内的最大正应力 σ max 为
×20mm2 =
300mm2
σ max
材料力学A3习题
拉伸与压缩1. 图示结构,AF为刚性杆,CD杆为钢制,其面积A=200mm2,弹性模量E=2.0×105MPa。
B处弹簧刚度k=3×103N/mm,l=1m。
若CD杆的许用应力[σ]=160MPa,试求荷载F的容许值。
(西南交大2003年)2. 图示结构C结点与滑块铰接,不计滑块与滑槽间摩擦力,滑块只可能沿滑槽上下自由移动,AC与BC两杆面积均为A=100mm2,材料的弹性模量均为E=2.0⨯105MPa,膨胀系数α=12⨯10-6(1/℃)。
求当BC杆升温50C0,而AC杆温度不变时C处的位移值。
(西南交大2002年)3. 图示杆系中AC、BC杆的直径分别为d1=10mm 、d2=20mm,两杆材料均为Q235钢,许用应力[σ] = 170MPa,试按强度条件确定容许F值。
(西南交大2001年)4.图示两端固定的杆件,在距左端x处作用一轴向力F,杆横截面面积为A,材料的许用拉应力为[σt],许用压应力为[σc],且[σc] =3[σt]。
求x为何值时F的许可值最大?其值[ F ]max 为多少?(西南交大1999年)5. 图示结构中①、②、③三杆的材料相同,弹性模量均为E,线膨胀系数均为α。
三杆的横截面面积分别为A1、A2、A3,各杆的长度如图所示。
横杆CD为钢杆。
受力如图所示,各杆温度同时上升t∆℃。
求①、②、③三杆的轴力。
(西南交大1998年)6. 图示结构中,BC为刚性梁,杆①、②、③的材料、横截面面积均相同,在横梁BC上作用一可沿横梁移动的载荷F,其活动范围为a≤。
计算各杆的最大轴力值。
(西南x20≤交大1997年)7、空心圆截面钢杆,其外径D=40mm,内径d=20mm,承受轴向拉力F=180kN,钢材的弹性常数E=2.0⨯105MPa及v=0.3。
求m—m横截面上a、b两点的相对位移和b、c两点的相对位移。
(西南交大1991年)m-m横截面8、AC及BC两钢杆的抗拉刚度为EA,在C点铰接处受一铅垂向下的力F作用。
材料力学习题解答[第三章]
3-1求图中所示杆各个横截面上的应力,已知横截面面积A=400mm 2。
解a):MPaMPa1004001040050400102033231=⨯==-=⨯-=σσσ 题3-1a)图 解b):MPa MPaMPa2540010105050400102032231=⨯=-=-=⨯-=右左σσσ MPa MPa 125400105025333=⨯==右左σσ 题3-1b)图3-2图中为变截面杆,如果横截面面积A 1=200mm 2,A 2=300mm 2,A 3=400mm 2,求杆内各横截面上的应力。
解a ):MPaMPa MPa10040010407.663001020502001010333231=⨯=-=⨯-==⨯=σσσ题3-2a)图解b):MPaMPa 7540010303.333001010033321-=⨯-==⨯==σσσ题3-2b)图30kN3-3 图示杆系结构中,各杆横截面面积相等,即A=30cm 2,载荷F=200kN 。
试求各杆横截面上的应力。
解:(1)约束反力:kNF F kN F F kN F F AXAY Dy 2001504315043======(2)各杆轴力)(250150200)(150)(200)(1502222压压拉拉kN F F F kN F F kN F F kN F F NCD NAC NAC D NCD AX NAC AY NAB =+=+======= 题3-3图(3)各杆的正应力)(3.8330010250,)(5030010150)(7.6630010200,)(50300101503333压压拉拉MPa MPa MPa MPa AC CDAC AB -=⨯-=-=⨯-==⨯==⨯=σσσσ 3-4钢杆CD 直径为20mm ,用来拉住刚性梁AB 。
已知F=10kN ,求钢杆横截面上的正应力。
解:)(7.112204104.3544.3545cos 1)5.11(232拉MPa d F kNF F NCD CD oNCD =⨯⨯===⨯+=ππσ 题3-4图3-5图示结构中,1、2两杆的横截面直径分别为10mm 和20mm ,试求两杆内的应力。
材力网络测试题
第一章绪论判断题1、根据均匀性假设,可认为构件的应力在各点处相同。
()2、根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
()3、固体材料在各个方向具有相同力学性能的假设,称为各向同性假设。
所有工程材料都可应用这一假设。
()4、在小变形条件下,研究构件的应力和变形时,可用构件的原始尺寸代替其变形后的尺寸。
()5、任何物体都是变形固体,在外力作用下,都将发生变形。
当物体变形很小时,就可视其为刚体。
填空题1、材料力学的任务是。
2、为保证机械或工程结构的正常工作,其中各构件一般应满足、和三方面的要求。
3、物体受力后产生的外效应是,内效应是;材料力学研究的是效应问题。
4、认为固体在其整个几何空间毫无空隙地充满了物质,这样的假设称为假设。
根据这一假设,构件的就可用坐标的连续函数表示。
5、受外力而发生变形的构件,在外力解除够后具有消除变形的这种性质称为;而外力除去后具有保留变形的这种性质为。
选择题1、根据均匀性假设,可认为构件的()在各点处相同。
A 应力B 应变C 材料的弹性常数D 位移2、根据各向同性假设,可认为构件的()在各方向都相同。
A 应力B 应变C 材料的弹性常数D 位移3、确定截面的内力的截面法,适用于()。
A 等截面直杆B 直杆承受基本变形C 直杆任意变形D 任意杆件4、构件的强度、刚度和稳定性( )。
A 只与材料的力学性质有关B 只与构件的形状尺寸有关C 与A、B都有关D 与A、B都无关5、各向同性假设认为,材料沿各个方向具有相同的( )。
A 外力B 变形C 位移D 力学性能6、材料力学主要研究( )。
A 各种材料的力学问题B 各种材料的力学性能C 杆件受力后变形与破坏的规律D 各类杆中力与材料的关系7、构件的外力包括( )。
A 集中载荷和分布载荷B 静载荷和动载荷C 载荷与约束反力D 作用在物体上的全部载荷第二章杆件的内力分析判断题1、材料力学中的内力是指由外力作用引起的某一截面两侧各质点间相互作用力的合力的改变量。
工程力学 第二版 (范钦珊 唐静静 著) 高等教育出版社 课后答案 第10章 组合受力与变形杆件的强度计算
网
FP a2
ww w
5
.k hd
b
m
上表面
∴
σa 4 = σb 3
习题 10-7 图
和 ε 2 。证明偏心距 e与 ε1 、 ε 2 之间满足下列关系:
FP
网
ww w
e=
ε1 − ε 2 h × ε1 + ε 2 6
课
后 答
案
FP
M = FP e
习题 10-8 图
解:1,2 两处均为单向应力状态,其正应力分别为: 1 处:
第10章
组合变形与变形杆件的强度计算
10-1 根据杆件横截面正应力分析过程, 中性轴在什么情形下才会通过截面形心?试分析 下列答案中哪一个是正确的。 (A)My = 0 或 Mz = 0, FN ≠ 0 ; (B)My = Mz = 0, FN ≠ 0 ; (C)My = 0,Mz = 0, FN ≠ 0 ; (D) M y ≠ 0 或 M z ≠ 0 , FN = 0 。 正确答案是 D 。 解:只要轴力 FN x ≠ 0 , 则截面形心处其拉压正应力一定不为零, 而其弯曲正应力一定为零, 这样使其合正应力一定不为零,所以其中性轴一定不通过截面形心,所以答案选(D) 。 关于中性轴位置,有以下几种论述,试判断哪一种是正确的。 (A)中性轴不一定在截面内,但如果在截面内它一定通过形心; (B)中性轴只能在截面内并且必须通过截面形心; (C)中性轴只能在截面内,但不一定通过截面形心; (D)中性轴不一定在截面内,而且也不一定通过截面形心。 正确答案是 D 。 解:中性轴上正应力必须为零。由上题结论中性轴不一定过截面形心;另外当轴力引起的 拉(压)应力的绝对值大于弯矩引起的最大压(拉)应力的绝对值时,中性轴均不在截面内, 所以答案选(D) 。 并且垂 10-3 图示悬臂梁中, 集中力 FP1 和 FP2 分别作用在铅垂对称面和水平对称面内, 直于梁的轴线,如图所示。已知 FP1=1.6 kN,FP2=800 N,l=1 m,许用应力 σ =160 MPa。 试确定以下两种情形下梁的横截面尺寸: 1.截面为矩形,h=2b; 2.截面为圆形。
材料力学--弯曲正应力及其强度条件
C
E
15 106 200 109
7.5 105
q 40 kN / m
A
C
1.5 m
1.5 m
B 300 200
例21:图示木梁,已知下边缘纵向总伸
长为 10 mm,E=10GPa,求载荷P的大小。
P
300
A
C
B 200
2m
2m
解: AC
l/2
(x) dx
0
l/2 (x) d x l/2 M ( x) d x
1m
例20:简支梁受均布荷载,在其C截面
的下边缘贴一应变片,已知材料的 E=200GPa,试问该应变片所测得的应变 值应为多大?
q 40 kN / m
A
C
1.5 m
1.5 m
B 300 200
解:C截面的弯矩
ql2 MC 8 45kN m
C截面下边缘的应力 C
MC Wz
15MPa
应变值
P
y1
y2
Cz
解:
max
M max y1 Iz
[ ]
(1)
max
M max y2 Iz
[ ]
(2)
(1) 得: y1 [ ]
(2)
y2 [ ]
例16:图示外伸梁,受均布载荷作用,
材料的许用应力[σ]=160 MPa,校核 该梁的强度。
10 kN / m
2m
4m
200 100
10 kN / m
变形几何关系 从三方面考虑: 物理关系
静力学关系
1、变形几何关系
m
mn
m
aa
bb
mn
m
m
观察到以下变形现象: (1)aa、bb弯成弧线,aa缩短,bb伸长 (2)mm、nn变形后仍保持为直线,且仍与变为
第4章杆件横截面上的正应力分析
=12.7MPa(拉)
σ AB N AB 3.46 10 6 N 6.4 10 2 6 m AAB 540 10
3
= 6.4MPa(压)
第4章
杆件横截面上的正应力分析
30
y1
Ay A
i
i
200
z y1
30 170 170 2 30 170 (139 ) 12 2
3
85 30 85 y
40.3106 (mm)4 40.3106 m4
第4章
杆件横截面上的正应力分析
(2) 画弯矩图
q =10kN/m
A 2m P=20kN C 3m 20kNm 1m D
§4-2 梁的弯曲正应力
一、概述
第4章
杆件横截面上的正应力分析
一般平面弯曲时,梁的横截面上将有剪力和弯矩两个 内力分量。如果梁的横截面上只有弯矩一个内力分量, 这种平面弯曲称为纯弯曲。此时由于梁的横截面上只 有弯矩,因而便只有垂直于横截面的正应力。
c
c
c
c
第4章
杆件横截面上的正应力分析
在垂直梁轴线的横力作用下,梁横截面 上将同时产生剪力和弯矩。这时,梁的横截面 上不仅有正应力,还有剪应力。这种弯曲称为 横向弯曲。
第4章
杆件横截面上的正应力分析
第4章
杆件横截面上的正应力分析
第4章
杆件横截面上的正应力分析
第4章
杆件横截面上的正应力分析
解:先确定危险截面
故取b=43mm
第4章
杆件横截面上的正应力分析
例 求图示梁的最大拉应力和最大压应力。 q =10kN/m A B P=20kN C 1m D
工程力学复习资料2
工程力学(2)复习资料一、复习知识点1、直径为D 的实心轴,两端受扭转力偶作用,轴内最大剪应力为τ,若轴的直径改为D /2,则轴内的最大剪应力变为8τ。
(提示 )2.圆轴扭转,横截面上任意点处的切应力沿半径成线性变化。
3、空心圆截面外径为D ,内径为d ,其抗弯截面系数为。
4、脆性材料的极限应力为材料的强度极限,塑性材料的极限应力为材料的屈服极限。
5.简支梁在集中力作用处,其剪力图发生突变;在集中力偶处,其弯矩图发生突变。
6、梁纯弯曲时,横截面上最大正应力发生在距离中性轴最远的各点处,在中性轴处正应力为零。
矩形截面梁横力弯曲时,横截面上最大切应力发生在中性轴上。
7、图示矩形截面对z 、y 两形心轴的惯性矩分别为33121,121hb I bh I y z ==8、设矩形截面对其一对称轴z 的惯性矩为I z ,则当长宽分别为原来的2倍时,该矩形截面对z 的惯性矩将变为16I z 。
9、梁发生平面弯曲时,其纵向纤维既不伸长也不缩短的一层称为中性层。
10、横力弯曲矩形截面梁横截面上的最大切应力是横截面上平均应力值的1.5倍。
11、横力弯曲圆形截面梁横截面上的最大切应力是横截面上平均应力值的4/3倍。
12、.梁的横截面对中性轴的静矩等于零。
13、.梁的弯曲应力公式zW M max max =σ适用于矩形截面形状的梁。
14、梁的弯曲变形中,挠度y 与转角θ间的微分关系式是dx dy ≈θ;15、梁的弯矩方程对轴线坐标x 的二阶导数等于集度q 。
16、平面应力状态下,不等于零的主应力有1个或2个;空间应力状态下,不等于零的主应力有3个。
用单元体表示点的应力状态,在主平面上切应力一定为零。
17、应力圆上的一个点的坐标值就是单元体上某一截面的应力值,所以应力圆和单元体有着一一对应的关系。
pW T =τ18、 受力构件内单元体各主平面相交成90度角。
19、第一、二强度理论主要适用于脆性材料,如铸铁、木材等。
第三、四强度理论主要适用于塑性材料。
截面正应力计算公式
截面正应力计算公式
1. 基本概念。
- 对于轴向拉压杆件,其横截面上的正应力计算公式为σ=(F_N)/(A)。
其中σ表示正应力,F_N为轴力(拉力为正,压力为负),A为横截面面积。
- 在计算轴力F_N时,通常采用截面法。
即假想地用一截面将杆件截开,研究其中一部分的受力平衡,从而确定轴力的大小和方向。
2. 梁弯曲时的正应力。
- 对于纯弯曲梁(梁的横截面上只有弯矩而无剪力的情况),其正应力计算公式为σ=(My)/(I_z)。
- 这里M为横截面上的弯矩,y为所求应力点到中性轴的距离,I_z为横截面对中性轴z的惯性矩。
- 对于横力弯曲(梁的横截面上既有弯矩又有剪力的情况),当梁的跨度l与横截面高度h之比l/h>5时,纯弯曲正应力公式σ=(My)/(I_z)仍可近似使用。
3. 组合变形下的正应力。
- 当杆件发生组合变形(如拉压与弯曲的组合、扭转与弯曲的组合等)时,可分别计算每种基本变形产生的正应力,然后根据叠加原理求出组合变形下的正应力。
- 例如对于拉压与弯曲组合变形的杆件,横截面上某点的正应力
σ=σ_N+σ_M,其中σ_N = (F_N)/(A)(拉压正应力),σ_M=(My)/(I_z)(弯曲正应力)。
材料力学第五版课后习题答案详解
Microsoft Corporation孙训方材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d)解:。
返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:返回2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EG横截面上的应力。
解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6)图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6(2-8) 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)返回2-7(2-9)一根直径、长的圆截面杆,承受轴向拉力,其伸长为。
试求杆横截面上的应力与材料的弹性模量E。
解:2-8(2-11)受轴向拉力F作用的箱形薄壁杆如图所示。
已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。
解:横截面上的线应变相同因此返回2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。
材料力学 复习资料及答案
材料力学I 期末复习资料一、判断题1. 弹性体静力学的任务是尽可能的保证构件的安全工作。
(Y )2. 作用在刚体上的力偶可以任意平移,但作用在弹性体上的力偶一般不能平移。
(Y )3. 若构件上的某一点的任何方向都无应变,则该点无位移。
(N )4. 切应变是变形后构件后构件内任意两条微线段之间夹角的变化量。
(N )5. 胡克定律适用于弹性变形范围内。
(Y )6. 材料的延伸率与试件的尺寸有关。
(Y )7. 一般情况下,脆性材料的安全系数要比塑性材料的大些。
(Y )8. 受扭圆轴的最大切应力出现在横截面上。
(Y )9. 受扭圆轴的最大拉应力的值和最大剪应力的值相等。
(N )10.受扭杆件的扭矩,仅与杆件受到的外力偶矩有关,而与杆件的材料及横截面积的大小、形状无关。
(N )11.平面图形对某轴的静矩等于零,则该轴比为此图形的对称轴。
. (N )12.在一组平行轴中,平面图形对心轴的惯性矩最小。
(Y )13.两梁的跨度、承受的载荷以及支撑都相同,但材料和横截面积不同,则它们的剪力图和弯矩图不一定相同。
(N )14.最大弯矩必然发生在剪力为零的横截面上。
(N )15.若在结构对称的梁上,作用有反对称载荷,则该梁具有对称的剪力图和反对称的弯矩图。
(Y )16.控制梁弯曲强度的主要因素是最大弯矩值。
(N )17.在等截面梁中,正应力绝对值的最大值︱σ︱max比出现在弯矩值︱M︱max最大截面上。
(N )18.梁上弯矩最大的截面,挠度也最大;弯矩为零的截面,转角也为零。
(N )19.平面弯矩梁的挠曲线必定是一条与外力作用面重合或平行的平面曲线。
(Y )20.有正应力作用的方向上,必有线应变;没有正应力作用的方向上,必无线应变。
(N )21.脆性材料不会发生塑性屈服破坏,塑性材料不会发生脆性断裂破坏。
(N )22.纯剪切单元体属于单向应力状态。
(N )23.脆性材料的破坏形式一定是脆性断裂。
(N )24.材料的破坏形式由材料的种类和所处的应力状态而定。
材料力学考试复习题3
材料力学考试复习题一、填空题:1、材料力学是研究构件 强度 、 刚度 、 稳定性 计算的科学。
2、固体的变形可分为: 弹性变形 和 塑性变形 。
3、构件在外力作用下,抵抗 破坏 的能力称为强度, 抵抗 变形 的能力称为刚度,维持 平衡 的能力称为稳定性。
4、构件安全工作的基本要求是:构件必须具有 足够的强度 、 足够刚度和 足够稳定性 。
5、在强度计算中,根据强度条件可以解决三方面的问题:即 校核强度 、 设计截面尺寸 、和 计算许可载荷 。
6、研究杆件内力的基本方法是 截面法 。
7、材料的破坏通常分为两类,即 脆性断裂 和 塑性屈服 。
8、在低碳钢的拉伸试验中,材料的应力变化不大而变形显著增加的现象称为 屈 服 。
9、因截面形状尺寸突变而引起局部应力增大的现象,称为 应力集中 。
10、扭转的变形特点是截面绕轴线发生相对 转动11、杆件变形的基本形式有 拉(压)变形 、 剪切变形 、 扭转变形和 弯曲变形 。
12、吊车起吊重物时,钢丝绳的变形是 拉伸变形 ;汽车行驶时,传动轴的变形是 扭转变形 ;教室中大梁的变形是 弯曲变形 ;螺旋千斤顶中的螺杆的变形是 压缩 变形。
13、下图所示各杆件中受拉伸的杆件有 AB 、BC 、CD 、AD ;受力压缩杆件有BE 。
14、图中σε-曲线上,对应p 点的应力为比例极限,符号p σ、对应y 点的应力称为屈服极限,符号σs 、对应b 点的应力称为强化极限符号σb 。
15、内力是外力作用引起的,不同的 外力 引起不同的内力,轴向拉、压变形时的内力为 轴力 。
剪切变形时的内力为 剪力 ,扭转变形时内力为 扭矩 ,弯曲变形时的内力为 弯矩和剪力 。
16、杆件轴向拉压胡克定律的两种表达式为∆=l Nl EA 和εσE =。
E 称为材料的 弹性模量 。
它是衡量材料抵抗 变形 能力的一个指标。
E 的单位为MPa ,1 MPa=106Pa 。
14、衡量材料强度的两个重要指标是 屈服极限 和 强化极限 。
材料力学(华东交通大学)智慧树知到答案章节测试2023年
绪论单元测试1.在下列各工程材料中,()不可应用各向同性假设。
A:玻璃B: 松木C:铸铜D:铸铁答案:B2.根据均匀性假设,可认为构件的()在各处相等。
A:应力B:弹性常数C:位移D:应变答案:B3.研究变形体构件的平衡时,应按照变形后的尺寸计算。
A:对B:错答案:B4.小变形假设认为()。
A:构件不变形B:构件不破坏C:构件仅发生弹性变形D:构件的变形远小于其原始几何尺寸答案:D5.各向同性假设认为,材料沿各个方向具有相同的()。
A:力学性质B:位移C:内力D:变形答案:A6.下列不属于杆件变形基本形式的是()。
A:挤压B:扭转C:轴向拉伸(压缩)D:弯曲E:剪切答案:A7.构件的强度、刚度和稳定性()。
A:与上述两者均无关B:与上述两者均有关C:与构件的形状尺寸有关D:与材料的力学性质有关答案:B8.材料力学研究的对象几何特征是()。
A:块体B:杆件C:板壳D:构件答案:B9.材料力学的三个基本假设是()。
A:各向同性、连续性和弹性假设B:弹性、小变形和平面假设C:各向同性、连续性和均匀性假设D:弹性、均匀性和平面假设答案:C10.下列结论中正确的是()。
A:材料力学主要研究各种材料的力学问题B:材料力学主要研究各种材料的力学性质C:材料力学主要研究各种材料中力与材料的关系D:材料力学主要研究杆件受力后变形与破坏的规律答案:D第一章测试1.结构中有三根拉压杆,设由这三根杆的强度条件确定的结构许用荷载分别为,且,则结构的实际许可荷载为()。
A:B:C:D:答案:A2.图示拉伸(压缩)杆1-1截面的轴力为()。
A:B:C:D:答案:C3.用截面法求一水平杆某截面的内力时,是对()建立平衡方程求解的。
A:整个杆B:该截面右段C:该截面左段D:该截面左段或右段答案:D4.一般而言,我们采用材料的强度极限指标作为极限应力。
A:错B:对答案:A5.轴向拉伸杆,正应力最大的截面和切应力最大的截面()。
A:分别是横截面、45°斜截面B:都是45°斜截面C:都是横截面D:分别是45°斜截面、横截面答案:A6.轴向拉伸(压缩)作用下,杆件破坏一定发生在横截面上。
河海大学材料力学习题册答案解析
word格式文档学号姓名2-1求下列结构中指定杆内的应力。
已知(a)图中杆的横截面面积A1=A2=1150mm2。
2-2求下列各杆内的最大正应力。
(3)图(c)为变截面拉杆,上段AB的横截面积为40mm2,下段BC的横截面积为30mm2,杆材料的ρg=78kN/m3。
AECDB2-4一直径为15mm,标距为200mm 的合金钢杆,比例极限内进行拉伸试验,当轴向荷载从零缓慢地增加58.4kN 时,杆伸长了0.9mm,直径缩小了0.022mm,确定材料的弹性模量E、泊松比ν。
2-6图示短柱,上段为钢制,长200mm,截面尺寸为100×100mm2;下段为铝制,长300mm,截面尺寸为200×200mm2。
当柱顶受F力作用时,柱子总长度减少了0.4mm,试求F值。
已知E钢=200GPa,E铝=70GPa。
2-7图示等直杆AC,材料的容重为ρg,弹性模量为E,横截面积为A。
求直杆B截面的位移ΔB。
word格式文档学号姓名2-8图示结构中,AB可视为刚性杆,AD为钢杆,面积A1=500mm2,弹性模量E1=200GPa;CG 为铜杆,面积A2=1500mm2,弹性模量E2=100GPa;BE为木杆,面积A3=3000mm2,弹性模量E=10GPa。
当G点处作用有F=60kN时,求该点的竖直位移ΔG。
32-11图示一挡水墙示意图,其中AB杆支承着挡水墙,各部分尺寸均已示于图中。
若AB 杆为圆截面,材料为松木,其容许应力[σ]=11MPa,试求AB杆所需的直径。
2-12图示结构中的CD杆为刚性杆,AB杆为钢杆,直径d=30mm,容许应力[σ]=160MPa,弹性模量E=2.0×105MPa。
试求结构的容许荷载F。
2-14图示AB为刚性杆,长为3a。
A端铰接于墙壁上,在C、B两处分别用同材料、同面积的①、②两杆拉住,使AB杆保持水平。
在D点作用荷载F后,求两杆内产生的应力。
设弹性模量为E,横截面面积为A。
正应力计算公式
M、y绝对值代入,由变形判断 符号
m
0
M 0, 上压下拉 M 0, 下压上拉
(M>0)
0
m
0
(M<0)
0
横截面上的最大正应力:
t
M y1 IZ
,
c
M y2 IZ
当中性轴是横截面的对称轴时:
y1 y2 ymax
t c max
max
梁在弯曲变形时上面部分纵向纤维缩短下面部分纵向纤维伸长必有一层纵向纤维既不伸长也不缩短保持原来的长度这一纵向纤维层称为中性层
第六章 弯曲应力
§6-1 概 述
dA
dA
dA
dA M
dA Fs
M
Fs
在横截面上,法向内力元素σdA合成弯矩M, 切向内力元素τdA合成剪力Fs
M ymax IZ
M WZ
Wz
Iz y max
Wz 称为抗弯截面模量
bh3
bh2
I Z 12 , WZ 6
d4
I Z 64
d3
, WZ 32
IZ
(D4 d 4)
64
D4
64
(1 4 )
WZ
D3
32
(1 4 )
§6-3 横力弯曲时的正应力 正应力强度计算 My
20 M (kN m)
Mmax 20 kN m
11.25
15
max
M max Wz
20 103 0.1 0.22
6
30MPa < [ ]
该梁满足强度条件,安全 20
梁横截面上的应力
2)计算C截面上的最大拉应力和最大压应力。
C截面上的最大拉应力和最大压应力为
tC
M C y2 I
2.5103 N m 8.810-2 m 7.6410-6 m4
Z
28.8106 P a 28.8MP a
cC
M
B
y 1
Iz
2.5 103 N m 5.2 10-2 m 7.6410-6 m 4
17.0 106 P a 17.0MP a
3)计算B截面上的最大拉应力和最大压应力。
B截面上的最大拉应力和最大压应力为
tB
M
B
y 1
Iz
4 103 N m 5.2 10-2 m 7.6410-6 m 4
27.2 106 P a 27.2MP a
cB
M B y2 Iz
4 103 N m 8.810-2 m 7.6410-6 m4
【例4.17】 求图(a,b)所示T形截面梁的最大拉 应力和最大压应力。已知T形截面对中性轴的惯性矩 Iz=7.64106 mm4,且y1=52 mm。
【解】 1)绘制梁的弯矩图。
梁的弯矩图如图(c)所示。 由图可知,梁的最大正弯矩发 生在截面C上,MC=2.5kNm; 最 大负弯矩发生在截面B上,MB= -4kNm。
入,求得的大小,再根据弯曲变形判断应力的正(拉)
或负(压)。即以中性层为界,梁的凸出边的应力为拉 应力,凹入边的应力为压应力。
(2)横截面上正应力的分布规律和最大正应力 在同一横截面上,弯矩M 和惯性矩Iz 为定值,因此
由公式可以看出,梁横截面上某点处的正应力σ与该点到 中性轴的距离y成正比,当y=0时,σ=0,中性轴上各点处 的正应力为零。中性轴两侧,一侧受拉,另一侧受压。离 中性轴最远的上、下边缘y=ymax处正应力最大,一边为最 大拉应力σtmax,另一边为最大压应力σcmax。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B max
4 88 Iz
46.1MPa
例8:简支梁AΒιβλιοθήκη ,在C截面下边缘贴一应变片,测得其应变ε= 6×10-4,材料的弹性 模量 E=200GPa,求载荷P的大小。
P
A
CD
B
40
0.5 m
0.4 m
20
1m
解:C点的应力 C E 200 103 6 104
120MPa
C截面的弯矩 MC C Wz 640 N m
第六章
圆环:
复 习
I y I z I z大 I z小
D4 d 4
64 64
D4 (1 4 )
64
其中 d
D
y
z
d D
bh3 I Z 12
d4
I Z 64
WZ
bh2 6
WZ
d 3
32
h
Z
b
d
Z
IZ
(D4
64
d4)
D4
64
(1 4 )
WZ
D3
32
(1 4 )
Z
d D
横截面上的最大正应力:
15 11.25
max
M max Wz
20 103 0.1 0.22
6
30MPa < [ ]
该梁满足强度条件,安全 20
例7:图示铸铁梁,许用拉应力[σ+ ]=30MPa,
许用压应力[σ- ]=60MPa,Iz=7.63×10-6m4,
试校核此梁的强度。
9 kN
4 kN
A
C
B
52
D
Cz
1m 1m 1m
例2:两矩形截面梁,尺寸和材料的许用应力
均相等,但放置如图(a)、(b)。按弯曲正应力
强度条件确定两者许可载荷之比 P1/P2=?
P1 P2
P
h
z
b
l
z
h b
(b) (a)
解:
max 1
M max 1 Wz 1
P1l bh2
6
max 2
M max 2 Wz 2
P2l hb2
6
由 max 1 max 2 [ ] 得: P1 h
(2)
y2 [ ]
例6:图示外伸梁,受均布载荷作用,材
料的许用应力[σ]=160 MPa,校核该梁 的强度。
10 kN / m
2m
4m
200 100
10 kN / m
200
2m
4m
Fs( kN) 25 45 kN
100
15kN 解:由弯矩图可见
Mmax 20 kN m
20 M (kN m)
支座位置直接影响支座截面和跨
中截面上的弯矩值。当中性轴为截
a
a
面的对称轴,最大拉、压应力相等
l
时,只有支座处截面与跨中截面之
弯矩的绝对值相等,才能使该梁的
ql2 qla
最大弯矩的绝对值为最小,从而使 其最大正应力为最小。
82
⊕
qa2
qa2
2
2
ql2 qla qa2
82 2
取有效值 a 0.207 l
由 MC 0.5RA 0.5 0.4P 0.2P 640 N m
得 P 3.2kN
P
A
CD
B
40
0.5 m
0.4 m
20
1m
例9:简支梁受均布荷载,在其C截面的下
边缘贴一应变片,已知材料的E=200GPa,试 问该应变片所测得的应变值应为多大?
q 40 kN / m
A
C
1.5 m
1.5 m
P
300
A
C
B 200
2m
2m
解: AC
l/2
(x) dx
0
l/2 ( x) d x l/2 M ( x) d x
0E
0 Wz E
l/2 P x
dx
Pl2
0 2Wz E
16Wz E
P
16Wz E AC l2
16 42
0.2 0.32 6
1010
5 103
150 kN
P
P2 b
例3:矩形截面梁当横截面的高度增加一倍,宽
度减小一半时,从正应力强度条件考虑,
该梁的承载能力将是原来的多少倍?
解: 由公式
max
M max Wz
M max bh 2
6
可以看出:该梁的承载能力将是原来的2倍。
例4:主梁AB,跨度为l,采用加副梁CD
的方法提高承载能力,若主梁和副梁材料 相同,截面尺寸相同,则副梁的最佳长度 a为多少?
88
9 kN
4 kN
A
C
B
52
D
Cz
1m 1m 1m
88
2.5kN
10.5kN
M ( kN m) 2.5
C截面:
C
max
2.5 88
Iz
28.8 MPa
满足强度要求
4
C max
2.5 52
I z 17.0 MPa
B截面:
B
max
4 52
Iz
27.3 MPa
本题
可不必计算
C max
为什么?
B 300 200
解:C截面的弯矩
ql2 MC 8 45kN m
C截面下边缘的应力
C
MC Wz
15MPa
应变值
C
E
15 106 200 109
7.5 105=75με
q 40 kN / m
A
C
1.5 m
1.5 m
B 300 200
例10:图示木梁,已知下边缘纵向总伸长
为 10 mm,E=10GPa,求载荷 P 的大小。
P (l a) P a
4
4
得 a l 2
例5:图示梁的截面为T形,材料的许用拉应
力和许用压应力分别为[σ+]和[ σ-],则 y1 和 y2 的最佳比值为多少? (C为截面形心)
P
y1
y2
Cz
解:
max
M max y1 Iz
[ ]
max
M max y2 Iz
[ ]
(1)
(2)
(1) 得: y1 [ ]
max
M y1 IZ
max
M y2 IZ
y2 y1
当中性轴是横截面的对称轴时:
y1 y2 ymax
max
max
max
max
M ymax IZ
M WZ
y
Wz
Iz y max
Wz: 抗弯截面模量
例1:图示工字形截面外伸梁受均布荷载作用,试
求当最大正应力为最小时的支座位置。
q
解:作弯矩图
A
x
dx C
2m
2m
300 B
200
例11:我国营造法中,对矩形截面梁给出的
尺寸比例是 h:b=3:2。试用弯曲正应力强度证明: 从圆木锯出的矩形截面梁,上述尺寸比例接近 最佳比值。
(使Wz最大)
dh b
解: b2 h2 d 2
bh2 b(d 2 b2 )
Wz 6
6
Wz d 2 b2 0 b 6 2
a Pa
C2 A
2D B
l
l
2
2
解:
主梁AB
P 2
A
P 2
B
La M2
M max AB
P (l a) 4
La 2
副梁CD
P
C
D
a
M
Pa M max CD 4
主梁AB的最大弯矩 副梁CD的最大弯矩
P M max AB 4 (l a)
Pa M max CD 4
由 M max AB M max CD
由此得 b d
3 h d2 b2 2 d
3
h 2 ≈3:2
b
dh b
例12:跨长l =2m的铸铁梁受力如图示,已知材料许用拉、
压应力分别为
30MPa 和 90MPa
试根据截面最为合理的要求,确定T形梁横截面的