(新课标)高考数学一轮复习名校尖子生培优大专题等比数列教案新人教A版
(新人教)高三数学第一轮复习教案3.4.1等比数列1
一.课题:等比数列(1)二.教学目标:1. 明确等比数列的定义;2.掌握等比数列的通项公式。
三.教学重、难点:等比数列定义和等比数列通项公式。
四.教学过程:(一)复习:前面我们共同探讨了等差数列,现在我们再来回顾一下主要内容。
(二)新课讲解:1.引入:观察下面几个数列,看其有何共同特点?(1)1,2,4,8,16, (263)(2)5,25,125,625,…(3)111,,,248--…2.等比数列定义:一般地,如果一个数列从第二项起....,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母q 表示(0)q ≠,即:1n a +∶(0)n a q q =≠数列对于数列(1)(2)(3)都是等比数列,它们的公比依次是2,5,21-.(注意:“从第二项起”、“常数”q 、等比数列的公比和项都不为零) 3.等比数列的通项公式: 由定义式可得:(1)n -个等式21a q a =,32 a q a =,……,1 n n a q a -=, 若将上述1n -个等式相乘,便可得:11342312--=⨯⨯⨯n n n q a a a a a a a a Λ, 即:11-⋅=n n q a a (n ≥2) 当1n =时,左边=1a ,右边=1a ,所以等式成立,∴等比数列通项公式为:)0(111≠⋅⋅=-q a q a a n n .或者由定义得:q a a 12=; 21123)(q a q q a q a a ===;234311()a a q a q q a q ===;……;)0(1111≠⋅⋅==--q a q a q a a n n n1n =时,等式也成立,即对一切*∈N n 成立。
(不完全归纳法) 说明:1.由等比数列的通项公式可以知道:当公比1d =时该数列既是等比数列也是等差数列;2.等比数列的图象:如数列①,121-⨯=n n a (64n ≤)(图象略).4.例题分析:例1.一个等比数列的第3项与第4项分别是12与18,求它的第1项、第2项、公比和通项公式。
高中数学新人教版A版精品教案《《等比数列》教学设计》
等比数列教学设计●教学目标知识与技能:掌握等比数列的定义;理解等比数列的通项公式及推导;过程与方法:通过实例,理解等比数列的概念;探索并掌握等比数列的通项公式、性质,能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;体会等比数列与指数函数的关系。
情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。
●教学重点理解等比数列的概念,探索并掌握等比数列的通项公式。
●教学难点等比数列的概念的内涵与外延深刻理解,及通项公式的推导。
● 教学过程体验体验一:拉面馆的师傅将一根很粗的面条,拉伸,捏合,再拉伸,再捏合,如此反复多次,就拉成了许多根细面条。
试问经过8次,可以拉出多少根细面条?第一次 __________ 第五次 __________第二次 ___________ 第六次 __________第三次 ___________ 第七次 __________第四次 ___________ 第八次 __________数列1,2,4,8,16,32,64,128……体验二:战国时代哲学家庄周著的《庄子·天下篇》引用过一句话: 一尺之棰 日取其半 万世不竭 ,...21,......,161,81,41,211,1n体验三:计算机病毒传播问题一种计算机病毒,可以查找计算机中的地址簿,通过邮件进行传播如果把病毒制造者发送病毒称为第一轮,邮件接收者发送病毒称为第二轮,依此类推假设每一轮每一台计算机都感染2021算机,那么在不重复的情况下,这种病毒感染的计算机数构成一个什么样的数列呢1,20210,20210,… ③质疑:上面数列有什么共同特点生答:从第二项起,每一项与前一项的比都等于同一个常数。
等比数列的概念;一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫等比数列。
这个常数叫做等比数列的公比,通常用字母q 表示。
高考数学一轮复习 第六章 数列 第3节 等比数列及其前n项和教学案(含解析)新人教A版-新人教A版高
第3节 等比数列及其前n 项和考试要求 1.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式;2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题;3.了解等比数列与指数函数的关系.知 识 梳 理1.等比数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列. 数学语言表达式:a na n -1=q (n ≥2,q 为非零常数). (2)如果三个数a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,其中G =±ab . 2. 等比数列的通项公式及前n 项和公式(1)假设等比数列{a n }的首项为a 1,公比是q ,那么其通项公式为a n =a 1q n -1;通项公式的推广:a n =a m qn -m.(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1〔1-q n 〕 1-q =a 1-a n q1-q.3.等比数列的性质{a n }是等比数列,S n 是数列{a n }的前n 项和.(1)假设k +l =m +n (k ,l ,m ,n ∈N *),那么有a k ·a l =a m ·a n . (2)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m .(3)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n .[常用结论与微点提醒]1.假设数列{a n },{b n }(项数相同)是等比数列,那么数列{c ·a n }(c ≠0),{|a n |},{a 2n },⎩⎨⎧⎭⎬⎫1a n ,{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 也是等比数列.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.诊 断 自 测1.判断以下结论正误(在括号内打“√〞或“×〞) (1)等比数列公比q 是一个常数,它可以是任意实数.( ) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(3)数列{a n }的通项公式是a n =a n,那么其前n 项和为S n =a 〔1-a n 〕1-a.( )(4)数列{a n }为等比数列,那么S 4,S 8-S 4,S 12-S 8成等比数列.( ) 解析 (1)在等比数列中,q ≠0.(2)假设a =0,b =0,c =0满足b 2=ac ,但a ,b ,c 不成等比数列. (3)当a =1时,S n =na .(4)假设a 1=1,q =-1,那么S 4=0,S 8-S 4=0,S 12-S 8=0,不成等比数列. 答案 (1)× (2)× (3)× (4)×2.(老教材必修5P53T1改编){a n }是等比数列,a 4=16,公比q =2,那么a 1等于( ) A.2 B.-2 C.12D.-12解析 由题意,得a 4=a 1q 3=8a 1=16,解得a 1=2. 答案 A3.(老教材必修5P61T1改编)等比数列{a n }的首项a 1=-1,前n 项和为S n ,假设S 10S 5=3132,那么{a n }的通项公式a n =________. 解析 因为S 10S 5=3132,所以S 10-S 5S 5=-132, 因为S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,所以q 5=-132,q =-12,那么a n =-⎝ ⎛⎭⎪⎫-12n -1.答案 -⎝ ⎛⎭⎪⎫-12n -14.(2020·晋冀鲁豫名校联考)公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,假设a 1a m =9,那么m 的值为( ) A.8 B.9 C.10 D.11解析 由题意得,2a 5a 6=18,a 5a 6=9,∴a 1a m =a 5a 6=9, ∴m =10. 答案 C5.(2018·卷)“十二平均律〞是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.假设第一个单音的频率为f ,那么第八个单音的频率为( ) A.32f B.322f C.1225f D.1227f解析 由题意知十三个单音的频率依次构成首项为f ,公比为122的等比数列,设此数列为{a n },那么a 8=1227f ,即第八个单音的频率为1227f . 答案 D6.(2019·全国Ⅰ卷)设S n 为等比数列{a n }的前n 项和.假设a 1=13,a 24=a 6,那么S 5=________.解析 由a 24=a 6得(a 1q 3)2=a 1q 5,整理得q =1a 1=3.所以S 5=a 1〔1-q 5〕1-q =13〔1-35〕1-3=1213.答案1213考点一 等比数列基本量的运算[例1] (1)(2019·全国Ⅲ卷)各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,那么a 3=( ) A.16 B.8 C.4 D.2(2)(2020·某某一模)在数列{a n }中,满足a 1=2,a 2n =a n -1·a n +1(n ≥2,n ∈N *),S n 为{a n }的前n 项和,假设a 6=64,那么S 7的值为( )A.126B.256C.255D.254解析 (1)设等比数列{a n }的公比为q ,由a 5=3a 3+4a 1得q 4=3q 2+4,得q 2=4,因为数列{a n }的各项均为正数,所以q =2,又a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=a 1(1+2+4+8)=15,所以a 1=1,所以a 3=a 1q 2=4.(2)数列{a n }中,满足a 2n =a n -1a n +1(n ≥2), 那么数列{a n }为等比数列,设其公比为q , 又由a 1=2,a 6=64,得q 5=a 6a 1=32,那么q =2, 那么S 7=a 1〔1-27〕1-2=28-2=254.答案 (1)C (2)D规律方法 1.等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二〞,通过列方程(组)便可迎刃而解.2.等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1〔1-q n 〕1-q =a 1-a n q1-q.[训练1] (1)等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,那么S 4=( ) A.9 B.15 C.18 D.30(2)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,那么a 4=________. 解析 (1)设数列{a n }的公比为q (q >0),那么⎩⎪⎨⎪⎧2S 3=2〔a 1+a 1q +a 1q 2〕=8a 1+3a 1q ,a 1q 3=16,解得q =2,a 1=2,所以S 4=2〔1-24〕1-2=30.(2)由{a n }为等比数列,设公比为q .由⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3,得⎩⎪⎨⎪⎧a 1+a 1q =-1,①a 1-a 1q 2=-3,②显然q ≠1,a 1≠0,②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8. 答案 (1)D (2)-8考点二 等比数列的判定与证明[例2] 设数列{a n }的前n 项和为S n ,a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *). (1)求a 2,a 3的值;(2)求证:数列{S n +2}是等比数列.(1)解 因为a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *), 所以当n =1时,a 1=2×1=2; 当n =2时,a 1+2a 2=(a 1+a 2)+4, 所以a 2=4;当n =3时,a 1+2a 2+3a 3=2(a 1+a 2+a 3)+6, 所以a 3=8. 综上,a 2=4,a 3=8.(2)证明 因为a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),① 所以当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=(n -2)S n -1+2(n -1).②①-②,得na n =(n -1)S n -(n -2)S n -1+2=n (S n -S n -1)-S n +2S n -1+2=na n -S n +2S n -1+2. 所以-S n +2S n -1+2=0,即S n =2S n -1+2, 所以S n +2=2(S n -1+2).因为S 1+2=4≠0,所以S n -1+2≠0,所以S n +2S n -1+2=2,故{S n +2}是以4为首项,2为公比的等比数列.规律方法 1.证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;假设证明某数列不是等比数列,那么只要证明存在连续三项不成等比数列即可.2.在利用递推关系判定等比数列时,要注意对n =1的情形进行验证.[训练2] (2019·某某二模)S n 为等比数列{a n }的前n 项和,a 4=9a 2,S 3=13,且公比q >0. (1)求a n 及S n ;(2)是否存在常数λ,使得数列{S n +λ}是等比数列?假设存在,求λ的值;假设不存在,请说明理由.解 (1)易知q ≠1,由题意可得⎩⎪⎨⎪⎧a 1q 3=9a 1q ,a 1〔1-q 3〕1-q=13,q >0,解得a 1=1,q =3, ∴a n =3n -1,S n =1-3n 1-3=3n-12.(2)假设存在常数λ,使得数列{S n +λ}是等比数列, ∵S 1+λ=λ+1,S 2+λ=λ+4,S 3+λ=λ+13, ∴(λ+4)2=(λ+1)(λ+13),解得λ=12,此时S n +12=12×3n,那么S n +1+12S n +12=12×3n +112×3n=3,故存在常数λ=12,使得数列{S n +12}是以32为首项,3为公比的等比数列.考点三 等比数列的性质及应用[例3] (1)(2020·某某统考)等比数列{a n }的各项均为正数,且a 10a 11+a 8a 13=64,那么log 2a 1+log 2a 2+…+log 2a 20=________.(2)(一题多解)(2019·某某模拟)等比数列{a n }的前n 项和为S n ,假设S 10=20,S 30=140,那么S 40=( )A.280B.300C.320D.340解析 (1)由等比数列的性质可得a 10a 11=a 8a 13, 所以a 10a 11+a 8a 13=2a 10a 11=64, 所以a 10a 11=32,所以log 2a 1+log 2a 2+…+log 2a 20=log 2(a 1·a 2·a 3·…·a 20)=log 2[(a 1·a 20)·(a 2·a 19)·(a 3·a 18)·…·(a 10·a 11)]=log 2(a 10·a 11)10=log 23210=50. (2)法一 因为S 10=20≠0,所以q ≠-1,由等比数列性质得S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,∴(S 20-S 10)2=S 10(S 30-S 20), 即(S 20-20)2=20(140-S 20),解得S 20=60, ∴S 20-S 10S 10=60-2020=2, ∴S 40-S 30=S 10·23,∴S 40=S 30+S 10·23=300.应选B.法二 设等比数列{a n }的公比为q ,由题意易知q ≠1,所以a 1〔1-q 10〕1-q =20,a 1〔1-q 30〕1-q=140,两式相除得1-q 301-q 10=7,化简得q 20+q 10-6=0,解得q 10=2,所以S 40=S 30+S 10·q 30=140+160=300,应选B. 答案 (1)50 (2)B规律方法 1.在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“假设m +n =p +q ,那么a m ·a n =a p ·a q 〞,可以减少运算量,提高解题速度.2.在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.[训练3] (1)(2020·某某质检)在等比数列{a n }中,假设a 3,a 7是方程x 2+4x +2=0的两根,那么a 5的值是( ) A.-2 B.-2C.±2D. 2(2)(一题多解)设等比数列{a n }的前n 项和为S n ,假设S 6S 3=3,那么S 9S 6=________. 解析 (1)根据根与系数之间的关系得a 3+a 7=-4,a 3a 7=2,由a 3+a 7=-4<0,a 3a 7>0,所以a 3<0,a 7<0,即a 5<0, 由a 3a 7=a 25,得a 5=-a 3a 7=- 2.(2)法一 由等比数列的性质S 3,S 6-S 3,S 9-S 6仍成等比数列,由得S 6=3S 3, ∴S 6-S 3S 3=S 9-S 6S 6-S 3,即S 9-S 6=4S 3,S 9=7S 3,∴S 9S 6=73. 法二 因为{a n }为等比数列,由S 6S 3=3,设S 6=3a ,S 3=a (a ≠0),所以S 3,S 6-S 3,S 9-S 6为等比数列,即a ,2a ,S 9-S 6成等比数列,所以S 9-S 6=4a ,解得S 9=7a ,所以S 9S 6=7a 3a =73.答案 (1)B (2)73数学运算、数学抽象——等差(比)数列性质的应用1.数学运算是指在明晰运算对象的基础上,依据运算法那么解决数学问题的一种素养.本系列数学运算主要表现为:理解数列问题;掌握数列运算法那么;探究运算思路;求得运算结果.通过对数列性质的学习,发展数学运算能力,促进数学思维发展.2.数学抽象是指能够在熟悉的情境中直接抽象出数学概念和规那么,能够在特例的基础上归纳形成简单的数学命题,能够在解决相似的问题中感悟数学的通性通法,体会其中的数学思想.类型1 等差数列两个性质的应用 在等差数列{a n }中,S n 为{a n }的前n 项和: (1)S 2n -1=(2n -1)a n ;(2)设{a n }的项数为2n ,公差为d ,那么S 偶-S 奇=nd .[例1] (1)等差数列{a n }的前n 项和为S n ,a m -1+a m +1-a 2m =0,S 2m -1=38,那么m =________. (2)一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和的比为32∶27,那么数列的公差d =________.解析 (1)由a m -1+a m +1-a 2m =0,得2a m -a 2m =0,解得a m =0或2.又S 2m -1=〔2m -1〕〔a 1+a 2m -1〕2=(2m -1)a m =38,显然可得a m ≠0,所以a m =2.代入上式可得2m -1=19,解得m =10.(2)设等差数列的前12项中奇数项和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.答案 (1)10 (2)5类型2 等比数列两个性质的应用在等比数列{a n }中,(1)假设m +n =p +q (m ,n ,p ,q ∈N *),那么a n ·a m =a p ·a q ;(2)当公比q ≠-1时,S n ,S 2n -S n ,S 3n -S 2n ,…成等比数列(n ∈N *).[例2] (1)等比数列{a n }中,a 4=2,a 5=5,那么数列{lg a n }的前8项和等于( ) A.6 B.5 C.4 D.3(2)设等比数列{a n }中,前n 项和为S n ,S 3=8,S 6=7,那么a 7+a 8+a 9等于( ) A.18B.-18C.578D.558解析 (1)数列{lg a n }的前8项和S 8=lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 1·a 8)4=lg(a 4·a 5)4=lg(2×5)4=4.(2)因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18,所以a 7+a 8+a 9=18.答案 (1)C (2)A类型3 等比数列前n 项和S n 相关结论的活用(1)项的个数的“奇偶〞性质:等比数列{a n }中,公比为q . 假设共有2n 项,那么S 偶∶S 奇=q . (2)分段求和:S n +m =S n +q nS m (q 为公比).[例3] (1)等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,那么公比q =________.(2){a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,那么数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为________.解析 (1)由题意,得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2. (2)设等比数列{a n }的公比q ,易知S 3≠0. 那么S 6=S 3+S 3q 3=9S 3,所以q 3=8,q =2.所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,其前5项和为1-⎝ ⎛⎭⎪⎫1251-12=3116.答案 (1)2 (2)3116A 级 基础巩固一、选择题1.{a n }是等比数列,a 2=2,a 5=14,那么公比q 等于( )A.-12B.-2C.2D.12解析 由题意知q 3=a 5a 2=18,即q =12.答案 D2.(2019·马某某质检)等比数列{a n }满足a 1=1,a 3·a 5=4(a 4-1),那么a 7的值为( ) A.2 B.4 C.92D.6解析 根据等比数列的性质得a 3a 5=a 24,∴a 24=4(a 4-1),即(a 4-2)2=0,解得a 4=2. 又∵a 1=1,a 1a 7=a 24=4,∴a 7=4. 答案 B3.(2020·某某一模)等比数列{a n }的前n 项和S n =a ·3n -1+b ,那么a b=( )A.-3B.-1C.1D.3解析 ∵等比数列{a n }的前n 项和S n =a ·3n -1+b ,∴a 1=S 1=a +b ,a 2=S 2-S 1=3a +b -a -b =2a ,a 3=S 3-S 2=9a +b -3a -b =6a ,∵等比数列{a n }中,a 22=a 1a 3, ∴(2a )2=(a +b )×6a ,解得ab=-3. 答案 A4.在数列{a n }中,a 1=1,a n +1=2a n ,那么S n =a 21-a 22+a 23-a 24+…+a 22n -1-a 22n 等于( ) A.13(2n -1) B.15(1-24n ) C.13(4n -1) D.13(1-2n ) 解析 在数列{a n }中,由a n +1=2a n ,a 1=1,得a n +1a n=2, 所以{a n }是等比数列,所以a n =2n -1,那么S n =a 21-a 22+a 23-a 24+…+a 22n -1-a 22n =1-4+16-64+…+42n -2-42n -1=1-〔-4〕2n1-〔-4〕=15(1-42n )=15(1-24n ). 答案 B5.(2020·湘赣十四校联考)中国古代著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见末日行里数,请公仔细算相还.〞其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问最后一天走了( ) A.6里 B.12里 C.24里 D.96里解析 由题意可得,每天行走的路程构成等比数列,记作数列{a n },设等比数列{a n }的首项为a 1,公比为q ,那么q =12,依题意有a 1〔1-q 6〕1-q =378,解得a 1=192,那么a 6=192×⎝ ⎛⎭⎪⎫125=6,最后一天走了6里,应选A. 答案 A 二、填空题6.等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,那么a 13+a 14a 14+a 15=________.解析 设数列{a n }的公比为q .由题意得a 1+2a 2=a 3, 那么a 1(1+2q )=a 1q 2,q 2-2q -1=0,所以q =1+2(舍负). 那么a 13+a 14a 14+a 15=1q=2-1.答案2-17.假设等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,那么a 2b 2=________. 解析 {a n }为等差数列,a 1=-1,a 4=8=a 1+3d =-1+3d ,∴d =3,∴a 2=a 1+d =-1+3=2.{b n }为等比数列,b 1=-1,b 4=8=b 1·q 3=-q 3,∴q =-2,∴b 2=b 1·q =2,那么a 2b 2=22=1. 答案 18.设{a n }是由正数组成的等比数列,S n 是{a n }的前n 项和,a 2a 4=16,S 3=28,那么当a 1a 2…a n 最大时,n 的值为________.解析 由数列{a n }是各项为正数的等比数列,且a 2a 4=16,可得a 3=4.又S 3=a 3⎝ ⎛⎭⎪⎫1q2+1q+1=28,所以1q 2+1q +1=7,即⎝ ⎛⎭⎪⎫1q -2·⎝ ⎛⎭⎪⎫1q +3=0,解得q =12⎝ ⎛⎭⎪⎫q =-13舍去,故a n =a 3q n -3=25-n,那么a 1a 2…a n =24×23×…×25-n =2〔9-n 〕n 2,所以当〔9-n 〕n2取得最大值时,a 1a 2…a n 取得最大值,此时整数n =4或5. 答案 4或5 三、解答题9.(2018·全国Ⅲ卷)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.假设S m =63,求m . 解 (1)设数列{a n }的公比为q ,由题设得a n =qn -1.由得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故{a n }的通项公式为a n =(-2)n -1或a n =2n -1.(2)假设a n =(-2)n -1,那么S n =1-〔-2〕n3.由S m=63得(-2)m=-188,此方程没有正整数解.假设a n=2n-1,那么S n=2n-1.由S m=63得2m=64,解得m=6.综上,m=6.10.(2020·某某省级名校联考)S n是数列{a n}的前n项和,且满足S n-2a n=n-4.(1)证明:{S n-n+2}为等比数列;(2)求数列{S n}的前n项和T n.(1)证明因为a n=S n-S n-1(n≥2),所以S n-2(S n-S n-1)=n-4(n≥2),那么S n=2S n-1-n+4(n≥2),所以S n-n+2=2[S n-1-(n-1)+2](n≥2),又由题意知a1-2a1=-3,所以a1=3,那么S1-1+2=4,所以{S n-n+2}是首项为4,公比为2的等比数列.(2)解由(1)知S n-n+2=2n+1,所以S n=2n+1+n-2,于是T n=(22+23+…+2n+1)+(1+2+…+n)-2n=4〔1-2n〕1-2+n〔n+1〕2-2n=2n+3+n2-3n-82.B级能力提升11.(2020·东北三省四校联考)数列{a n}为正项等比数列,a2=2,a3=2a1,那么a1a2+a2a3+…+a n a n+1=( )A.(2+2)[1-(2)n]B.(2+2)[(2)n-1]C.2(2n-1)D.2(1-2n)解析由{a n}为正项等比数列,且a2=2,a3=2a1,可得a1=1,公比q=2,所以数列{a n a n+1}是以2为首项,2为公比的等比数列,那么a1a2+a2a3+…+a n a n+1=2〔1-2n〕1-2=2(2n-1).应选C.答案 C12.等比数列{a n }的各项均为正数且公比大于1,前n 项积为T n ,且a 2a 4=a 3,那么使得T n >1的n 的最小值为( )A.4B.5C.6D.7解析 ∵数列{a n }是各项均为正数的等比数列,且a 2a 4=a 3,∴a 23=a 3,∴a 3=1.又∵q >1,∴a 1<a 2<1,a n >1(n >3),∴T n >T n -1(n ≥4,n ∈N *),T 1<1,T 2=a 1·a 2<1,T 3=a 1·a 2·a 3=a 1a 2=T 2<1,T 4=a 1a 2a 3a 4=a 1<1,T 5=a 1·a 2·a 3·a 4·a 5=a 53=1,T 6=T 5·a 6=a 6>1,故n 的最小值为6.答案 C13.(2020·华大新高考联盟质检)设等比数列{a n }的前n 项和为S n ,假设a 3a 11=2a 25,且S 4+S 12=λS 8,那么λ=______.解析 ∵数列{a n }是等比数列,a 3a 11=2a 25, ∴a 27=2a 25,∴q 4=2,∵S 4+S 12=λS 8,∴a 1〔1-q 4〕1-q +a 1〔1-q 12〕1-q =λa 1〔1-q 8〕1-q,∴1-q 4+1-q 12=λ(1-q 8), 将q 4=2代入计算可得λ=83.答案 8314.(开放题)(2020·某某模考)在①b 1+b 3=a 2,②a 4=b 4,③S 5=-25这三个条件中任选一个,补充在下面问题中,假设问题中的k 存在,求k 的值;假设k 不存在,说明理由.设等差数列{a n }的前n 项和为S n ,{b n }是等比数列,________,b 1=a 5,b 2=3,b 5=-81,是否存在k ,使得S k >S k +1,且S k +1<S k +2?注:如果选择多个条件分别解答,按第一个解答计分. 解 ∵等比数列{b n }中b 2=3,b 5=-81, ∴b n =-(-3)n -1,b 1=-1,∴a 5=b 1=-1.假设S k >S k +1,那么只需S k >S k +a k +1, 即a k +1<0,同理,假设S k +1<S k +2, 那么只需S k +1<S k +1+a k +2,即a k +2>0.假设选①:b 1+b 3=a 2时,a 2=-1-9=-10, ∴a n =3n -16.当k =4时,a 5<0,a 6>0,S k >S k +1,且S k +1<S k +2成立. 假设选②:a 4=b 4=27,∵a 5=-1,∴{a n }为递减数列,故不存在a k +1<0,a k +2>0, 即不存在k ,使得S k >S k +1,且S k +1<S k +2成立. 假设选③:S 5=-25,S 5=5〔a 1+a 5〕2=5a 3=-25,∴a 3=-5.∴a n =2n -11.当k =4时,a 5<0,a 6>0,S k >S k +1,且S k +1<S k +2成立.C 级 创新猜想15.(新背景题)(2019·某某质检)某市利用第十六届省运会的契机,鼓励全民健身,从2018年7月起向全市投放A ,B 两种型号的健身器材.7月份投放A 型健身器材300台,B 型健身器材64台,计划从8月起,A 型健身器材每月的投放量均为a 台,B 型健身器材每月的投放量比上一月多50%,假设12月底该市A ,B 两种健身器材投放总量不少于2 000台,那么a 的最小值为( )A.243B.172C.122D.74 解析 将每个月的投放量列表如下:那么有64×(1.5+1.52+1.53+1.54+1.55)+64+300+5a ≥2 000,解得a ≥74,所以a 的最小值为74,应选D. 答案 D。
高考数学一轮总复习第六单元数列与算法课时3等比数列的概念及基本运算教案文含解析新人教A版
高考数学一轮总复习第六单元数列与算法课时3等比数列的概念及基本运算教案文含解析新人教A 版等比数列的概念及基本运算1.理解等比数列的概念.2.掌握等比数列的通项公式,前n 项和公式及其性质. 3.能运用等比数列的概念、公式及性质解决相关问题.知识梳理 1.等比数列的概念(1)定义:如果一个数列从第二项起, 每一项与前一项的比 等于同一个常数,这个数列叫做等比数列,首项记作a 1,公比记作q .(2)表示形式:a n +1a n=q (n ∈N *) . (3)等比中项:如果三个数a ,G ,b 成 等比数列 ,那么G 叫做a ,b 的等比中项,即G 2=ab .(4)通项公式:设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n = a 1·q n -1.2.等比数列的常用性质 (1)通项公式的推广:a n =a m · qn -m(m ,n ∈N *).(2)在等比数列{a n }中,若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m ·a n = a p ·a q .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列.3.等比数列前n 项和公式(1)等比数列{a n }的公比为q ,其前n 项和公式为S n , 当q =1时,S n = na 1 ;当q ≠1时,S n = a 11-q n 1-q = a 1-a n q1-q.(2)等比数列前n 项和公式的性质:若{a n }是公比为q (q ≠-1)的等比数列,则S n ,S 2n-S n ,S 3n -S 2n ,…仍为等比数列,且公比为 q n.1.等比数列{a n }的单调性(1)满足⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1时,{a n }是递增数列.(2)满足⎩⎪⎨⎪⎧a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }是递减数列.(3)满足⎩⎪⎨⎪⎧a 1≠0,q =1时,{a n }是常数列.(4)满足q <0时,{a n }是摆动数列. 2.等比数列前n 项和公式的特征:当等比数列的公比q ≠1时,S n =Aq n+B ⇔A +B =0. 热身练习1.等比数列-12,14,-18,…的通项公式是(A)A .a n =(-12)nB .a n =(-12)n +1C .a n =-(12)nD .a n =-(12)n +1因为数列是等比数列,又a 1=-12,公比q =-12,所以a n =a 1·qn -1=(-12)n.2.(2018·北京卷)设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的(B)A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件a ,b ,c ,d 是非零实数,若a <0,d <0,b >0,c >0,且ad =bc ,则a ,b ,c ,d 不成等比数列(可以假设a =-2,d =-3,b =2,c =3).若a ,b ,c ,d 成等比数列,则由等比数列的性质可知ad =bc .所以“ad =bc ”是“a ,b ,c ,d 成等比数列”的必要而不充分条件.3.(2015·全国卷Ⅱ)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=(B) A .21 B .42 C .63 D .84设等比数列的公比为q ,则a 1+a 1q 2+a 1q 4=21.又因为a 1=3,所以q 4+q 2-6=0,解得q 2=2, 所以a 3+a 5+a 7=(a 1+a 3+a 5)q 2=42.4.对任意等比数列{a n },下列说法一定正确的是(D) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列从项的下标入手寻找规律,下标成等差数列,对应的项成等比数列.因为a 26=a 3a 9,所以a 3,a 6,a 9成等比数列.5.等比数列{a n }中,a 3=7,前3项的和为S 3=21,则公比q 的值为(C) A .1 B .-12C .1或-12D .-1或12当q =1时,a 1=a 2=a 3=7,S 3=21,故q =1满足,排除B ,D ;当q =-12时,a 1=a 3q 2=28,a 2=a 3q=-14,S 3=a 1+a 2+a 3=21,所以q =-12也满足,故选C.等比数列的基本量的运算等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =____________. (方法一)当q =1时,S 3=3a 1,S 2=2a 1, 由S 3+3S 2=0得,9a 1=0,所以a 1=0与{a n }是等比数列矛盾,故q ≠1. 当q ≠1时,由S 3+3S 2=0得,a 11-q 31-q +3a 11-q21-q=0,解得q =-2.(方法二)由S 3+3S 2=0得,a 1(1+q +q 2)+3a 1(1+q )=0,因为a 1≠0,所以q 2+4q +4=0,所以q =-2.-2(1)解决等比数列问题,关键是抓住首项a 1和公比q ,求解时,要注意方程思想的运用.(2)运用等比数列求和公式时,要注意公比q 是否为1.当n 较小时,直接利用前n 项和的意义展开,不仅可避开公比q 的讨论,还可使求解过程简捷.1.(2017·江苏卷)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8= 32 .设{a n }的首项为a 1,公比为q ,显然q ≠1,所以⎩⎪⎨⎪⎧a 11-q 31-q =74,a11-q 61-q=634,解得⎩⎪⎨⎪⎧a 1=14,q =2,所以a 8=14×27=25=32.等比数列的性质及应用(1)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10= A .7 B .5C .-5D .-7(2)公比不为1的等比数列{a n }中前10项的和S 10=10,前20项的和S 20=30,则S 30=__________.(1)(方法一)利用等比数列的通项公式求解.由题意得⎩⎪⎨⎪⎧a 4+a 7=a 1q 3+a 1q 6=2,a 5a 6=a 1q 4×a 1q 5=-8,所以⎩⎪⎨⎪⎧q 3=-2,a 1=1,或⎩⎪⎨⎪⎧ q 3=-12,a 1=-8.所以a 1+a 10=a 1(1+q 9)=-7. (方法二)利用等比数列的性质求解.由⎩⎪⎨⎪⎧a 4+a 7=2,a 5a 6=a 4a 7=-8,解得⎩⎪⎨⎪⎧a 4=-2,a 7=4,或⎩⎪⎨⎪⎧a 4=4,a 7=-2,所以⎩⎪⎨⎪⎧q 3=-2,a 1=1,或⎩⎪⎨⎪⎧q 3=-12,a 1=-8.所以a 1+a 10=a 1(1+q 9)=-7.(2)(方法一)设公比为q ,则⎩⎪⎨⎪⎧a 11-q 101-q=10,a11-q 201-q=30,得1+q 10=3,所以q 10=2.所以S 30=a 11-q 301-q =a 11-q 101-q(1+q 10+q 20)=10(1+2+22)=70.(方法二)因为S 10,S 20-S 10,S 30-S 20仍成等比数列, 又S 10=10,S 20=30, 所以S 30-30=30-10210=40,所以S 30=70.(1)D (2)70在等比数列的计算时,要注意性质的运用和整体代入,以简化运算.等比数列的常用性质:(1)若m +n =p +q ,则a m a n =a p a q .(2)等比数列连续k 项的和仍成等比数列,即S k ,S 2k -S k ,S 3k -S 2k 仍成等比数列,公比为q k.2.在等比数列{a n }中:(1)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6的值为 4 ;(2)若a n >0,且a 5a 6=9,则log 3a 1+log 3a 2+…+log 3a 10的值为 10 .(1)由等比数列的性质知:a 1+a 2,a 3+a 4,a 5+a 6也成等比数列, 所以(a 3+a 4)2=(a 1+a 2)(a 5+a 6),所以a 5+a 6=a 3+a 42a 1+a 2=362324=4. (2)因为{a n }是等比数列,所以a 1·a 10=a 2·a 9=a 3·a 8=a 4·a 7=a 5·a 6=9, 所以log 3a 1+log 3a 2+…+log 3a 10 =log 3(a 1·a 2·a 3·…·a 10)=log 3(a 5·a 6)5=5log 3(a 5·a 6)=5log 39=10.等比数列的判断与证明已知数列{a n }的前n 项和为S n ,且a n +S n =n . (1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{a n }的通项公式.(1)证明:因为a n +S n =n ,① 所以a n +1+S n +1=n +1,②②-①得a n +1-a n +a n +1=1,即2a n +1=a n +1, 所以2(a n +1-1)=a n -1, 所以a n +1-1a n -1=12,又a 1+S 1=2a 1=1,所以a 1=12. 因为c n =a n -1,所以首项c 1=a 1-1=-12,公比q =12,所以{c n }是以-12为首项,以12为公比的等比数列.(2)由(1)可知c n =(-12)·(12)n -1=-(12)n,所以a n =1-(12)n.(1)判断或证明一个数列是等差或等比数列的基本方法是运用定义.(2)在解决等差、等比数列的综合问题时,要树立目标意识:“需要什么,就求什么”,根据目标的需要去变形,去构造,才能快速找到解题途径,达到解决问题的目的.(3)一般地,若a n +1=pa n +q (p ,q 是常数),则可变形为a n +1-λ=p (a n -λ),利用待定系数法可确定其中的λ.3.(2016·全国卷Ⅰ)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n+1+b n +1=nb n .(1)求{a n }的通项公式; (2)求{b n }的前n 项和.要求{a n }的通项公式,关键是确定a 1,要求{b n } 的前n 项和,关键是判断{b n } 是怎样的数列.因此,解决问题的突破口就是用好条件“a n b n +1+b n +1=nb n ”,这一条件,揭示了{a n }与{b n } 的联系,通过b 1,b 2可确定a 1,从而确定{a n }的通项公式;确定了a n ,则得到了{b n }的递推关系,由此可确定{b n } 是怎样的数列,从而求出{b n } 的前n 项和.(1)由已知a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2.所以数列{a n }是首项为2,公差为3的等差数列,通项公式为a n =3n -1. (2)由(1)知a n b n +1+b n +1=nb n ,得b n +1=b n3,因此{b n }是首项为1,公比为13的等比数列.记{b n }的前n 项和为S n , 则S n =1-13n1-13=32-12×3n -1.1.在等比数列中,无论是首项a 1、公比q ,还是通项a n 均不会为零,公比q =1时的等比数列是常数列,即a n =a 1.2.等比数列与等差数列之间存在着一种运算的对偶关系.因此,等比数列的复习可类比等差数列的复习进行.例如,在等比数列中,通项公式与前n 项和公式也包含有五个量,。
高考数学一轮复习 第5章 数列 第3节 等比数列及其前n项和教学案 理(含解析)新人教A版-新人教A
第三节 等比数列及其前n 项和[考纲传真] 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系.1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的数学表达式为a n +1a n=q (n ∈N *,q 为非零常数). (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇒a ,G ,b 成等比数列⇒G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1=a m qn -m.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1q =1,a 11-q n 1-q=a 1-a n q1-q q ≠1.[常用结论]1.在等比数列{a n }中,若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k .2.若数列{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍然是等比数列.3.等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n,其中当公比为-1时,n 为偶数时除外.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)G 为a ,b 的等比中项⇔G 2=ab .( )(3)若{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( )(4)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a 1-a n1-a.( )[答案](1)× (2)× (3)× (4)×2.已知{a n }是等比数列,a 2=2,a 5=14,则公比q =( )A .-12B .-2C .2 D.12D [由通项公式及已知得a 1q =2①,a 1q 4=14②,由②÷①得q 3=18,解得q =12.故选D.]3.已知数列{a n }满足a n =12a n +1,若a 3+a 4=2,则a 4+a 5=( )A.12 B .1 C .4 D .8 C [∵a n =12a n +1,∴a n +1a n=2.∴a 4+a 5=2(a 3+a 4)=2×2=4.故选C.]4.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13 C.19 D .-19C [∵S 3=a 2+10a 1,∴a 1+a 2+a 3=a 2+10a 1,∴a 3=9a 1,即公比q 2=9,又a 5=a 1q 4,∴a 1=a 5q 4=981=19.故选C.] 5.在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =__________. 6 [∵a 1=2,a n +1=2a n ,∴数列{a n }是首项为2,公比为2的等比数列. 又∵S n =126,∴21-2n1-2=126,解得n =6.]等比数列的基本运算1.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =( ) A .3 B .4 C .5D .6B [因为3S 3=a 4-2,3S 2=a 3-2,所以两式相减,得3(S 3-S 2)=(a 4-2)-(a 3-2),即3a 3=a 4-a 3,得a 4=4a 3,所以q =a 4a 3=4.]2.等比数列{a n }的各项均为实数,其前n 项和为S n ,已知a 3=32,S 3=92,则a 2=________.-3或32 [法一:∵数列{a n }是等比数列,∴当q =1时,a 1=a 2=a 3=32,显然S 3=3a 3=92.当q ≠1时,由题意可知⎩⎪⎨⎪⎧a 11-q 31-q =92,a 1q 2=32,解得q =-12或q =1(舍去).∴a 2=a 3q =32×(-2)=-3.综上可知a 2=-3或32.法二:由a 3=32得a 1+a 2=3.∴a 3q 2+a 3q=3, 即2q 2-q -1=0, ∴q =-12或q =1.∴a 2=a 3q =-3或32.]3.(2019·某某模拟)已知等比数列{a n }的前n 项和为S n 且a 1+a 3=52,a 2+a 4=54,则S na n =________.2n-1 [设等比数列的公比为q ,则 (a 1+a 3)q =(a 2+a 4),即q =5452=12,由a 1+a 3=a 1(1+q 2)=52可知a 1=2.∴a n =2·⎝ ⎛⎭⎪⎫12n -1=12n -2.S n =2⎝ ⎛⎭⎪⎫1-12n 1-12=4⎝ ⎛⎭⎪⎫1-12n .∴S n a n =4⎝ ⎛⎭⎪⎫1-12n 12n -2=2n -1.] [规律方法]1等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程组便可迎刃而解.2等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和等比数列的判定与证明【例1】 (2018·全国卷Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式. [解](1)由条件可得a n +1=2n +1na n . 将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12.从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列. 由条件可得a n +1n +1=2a nn ,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.[规律方法]1证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可. 2利用递推关系时要注意对n =1时的情况进行验证.已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若b n =a n +1-2a n ,(1)求证:{b n }是等比数列. (2)求{a n }的通项公式.[解](1)因为a n +2=S n +2-S n +1=4a n +1+2-4a n -2=4a n +1-4a n , 所以b n +1b n =a n +2-2a n +1a n +1-2a n=4a n +1-4a n -2a n +1a n +1-2a n =2a n +1-4a na n +1-2a n=2.因为S 2=a 1+a 2=4a 1+2,所以a 2=5. 所以b 1=a 2-2a 1=3.所以数列{b n }是首项为3,公比为2的等比数列. (2)由(1)知b n =a n +1-2a n =3·2n -1,所以a n +12n +1-a n 2n =34,故⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列.所以a n 2n =12+(n -1)·34=3n -14,所以a n =(3n -1)·2n -2.等比数列性质的应用【例2】 (1)等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15的值为( )A .1B .2C .3D .5(2)(2019·某某调研)在各项均为正数的等比数列{a n }中,若a m ·a m +2=2a m +1(m ∈N *),数列{a n }的前n 项积为T n ,且T 2m +1=128,则m 的值为( ) A .3 B .4 C .5D .6(3)等比数列{a n }满足a n >0,且a 2a 8=4,则log 2a 1+log 2a 2+log 2a 3+…+log 2a 9=________. (1)C (2)A (3)9 [(1)因为{a n }为等比数列,所以a 5+a 7是a 1+a 3与a 9+a 11的等比中项, 所以(a 5+a 7)2=(a 1+a 3)(a 9+a 11),故a 9+a 11=a 5+a 72a 1+a 3=428=2; 同理,a 9+a 11是a 5+a 7与a 13+a 15的等比中项, 所以(a 9+a 11)2=(a 5+a 7)(a 13+a 15),故a 13+a 15=a 9+a 112a 5+a 7=224=1. 所以a 9+a 11+a 13+a 15=2+1=3.(2)因为a m ·a m +2=2a m +1,所以a 2m +1=2a m +1,即a m +1=2,即{a n }为常数列.又T 2m +1=(a m +1)2m +1,由22m +1=128,得m =3,故选A.(3)由题意可得a 2a 8=a 25=4,a 5>0,所以a 5=2,则原式=log 2(a 1a 2……a 9)=9log 2a 5=9.] [规律方法]1在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.2等比数列的性质可以分为三类:一是通项公式的变形;二是等比中项的变形;三是前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(1)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________. (2)(2019·某某模拟)在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8a 9=-98,则1a 7+1a 8+1a 9+1a 10=________.(1)-12 (2)-53 [(1)由S 10S 5=3132,a 1=-1知公比q ≠1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,所以q =-12.(2)因为1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,由等比数列的性质知a 7a 10=a 8a 9, 所以1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 8a 9=158÷⎝ ⎛⎭⎪⎫-98=-53.]1.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏D .9盏B [设塔的顶层的灯数为a 1,七层塔的总灯数为S 7,公比为q ,则由题意知S 7=381,q =2,∴S 7=a 11-q 71-q =a 11-271-2=381,解得a 1=3.故选B.]2.(2015·全国卷Ⅱ)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63D .84B [∵a 1=3,a 1+a 3+a 5=21,∴3+3q 2+3q 4=21. ∴1+q 2+q 4=7.解得q 2=2或q 2=-3(舍去). ∴a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42.故选B.]3.(2017·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. -8 [设等比数列{a n }的公比为q , ∵a 1+a 2=-1,a 1-a 3=-3, ∴a 1(1+q )=-1,①a 1(1-q 2)=-3.②②÷①,得1-q =3,∴q =-2.∴a 1=1,∴a 4=a 1q 3=1×(-2)3=-8.]4.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.64 [设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8. 故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n·⎝ ⎛⎭⎪⎫12n -1n2=23n -n 22+n2=2-n 22+72n .记t =-n 22+7n2=-12(n 2-7n ),结合n ∈N *可知n =3或4时,t 有最大值6.又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64.]5.(2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . [解](1)设{a n }的公比为q ,由题设得a n =qn -1.由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1--2n3.由S m =63得(-2)m=-188,此方程没有正整数解. 若a n =2n -1,则S n =2n-1.由S m =63得2m=64,解得m =6. 综上,m =6.。
新课标人教版高三数学第一轮复习全套教学案
新课标人教版高三数学第一轮复习全套教学案引言本教学案旨在帮助高三学生进行数学第一轮复,以应对新课标人教版高考数学考试。
以下是教学案的详细内容。
目标1. 复并巩固高三数学的核心知识点。
2. 提供高质量的练题和解析,以帮助学生熟悉考试形式和题型,提高解题能力。
3. 培养学生的数学思维和分析能力,以便他们能够在考试中灵活应用知识。
教学内容教学内容主要包括以下部分:1. 数系与代数- 实数与复数- 集合与命题- 数列与数列极限- 等差数列与等比数列2. 函数与方程- 函数与方程基本概念- 一次函数与二次函数- 指数与对数- 三角函数与三角方程3. 解析几何与向量- 平面与空间几何- 二次曲线与常平面- 直线与平面的位置关系- 向量与向量运算4. 概率与统计- 随机事件与概率- 离散型随机变量与连续型随机变量- 统计与抽样调查- 相关与回归分析教学方法为了最有效地进行数学复,我们将采用以下教学方法:1. 系统性研究:按照教学内容的顺序进行研究,逐步巩固知识点。
2. 理论与实践相结合:注重理论知识的讲解,并提供大量的练题和解析,以帮助学生巩固理论知识并提高解题能力。
3. 互动教学:鼓励学生积极参与课堂讨论和提问,激发学生的研究兴趣和数学思维。
4. 小组合作研究:安排学生进行小组合作研究,提倡彼此讨论和合作解题,培养学生的团队合作精神和交流能力。
教学评估为了评估学生的研究效果和掌握程度,我们将采用以下评估方法:1. 阶段性测试:安排定期的阶段性测试,检验学生对各个知识点的理解和掌握情况。
2. 作业批改:及时批改学生的作业,给予针对性的指导和建议。
3. 课堂互动评估:评估学生在课堂上的积极参与程度和表现。
4. 模拟考试:进行模拟考试,让学生体验真实考试环境,以便他们熟悉考试形式和提高应试能力。
结语通过本教学案的实施,相信学生们在第一轮数学复习中将取得良好的成绩。
希望学生们能够认真学习、勤于练习,并与老师和同学们积极合作,共同进步。
高考数学一轮复习等比数列精品课件文新人教A版
返回目录
由A1=2,A1qn+A1q2n=12, q2n+qn-6=0,则qn=2或qn=-3. 由得A1q3n+A1q4n+A1q5n =A1q3n(1+qn+q2n)=2·q3n·7=14·q3n
112 (qn=2) =
学案3 等 比 数 列
考纲解读
考向预测
填填知学情
课内考点突破
规律探究
考纲解读
1.理解等比数列的概念.
等比数列
2.掌握等比数列的通项公式与前n项和公式.
3.能在具体的问题情境中识别数列的等比 数列,并能用有关知识解决相应的问题. 4.了解等比数列与指数函数的关系.
{an}成等比数列,则Sm,S2m-Sm,S3m-
S2m 成等比数列 ,公比为
qm
.
返回目录
考点1 等比数列基本量的计算
[和2,80a120+年a5高=0考,则浙SS江52 卷=]设Sn为等比数列{an}的( 前n)项
A.11
B.5
C.-8
D.-11
返回目录
【分析】建立关于a1,q的方程求解.
-378 (qn=-3).
返回目录
在解决等比数列的有关问题时,要注意挖掘隐含条 件,利用性质,可以减少运算量,提高解题速度,常用的性 质有(1)若m+n=p+q,m,n,p,q∈N*,则aman=apaq; (2)an=amqn-m;(3)Sm,S2m-Sm,S3m-S2m成等比数列.
高考数学一轮总复习 6.3 等比数列教案 理 新人教A版
高考数学一轮总复习 6.3 等比数列教案 理 新人教A 版典例精析题型一 等比数列的基本运算与判定【例1】数列{an}的前n 项和记为Sn ,已知a1=1,an +1=n +2n Sn(n =1,2,3,…).求证: (1)数列{Sn n}是等比数列;(2)Sn +1=4an. 【解析】(1)因为an +1=Sn +1-Sn ,a n +1=n +2nSn , 所以(n +2)Sn =n(Sn +1-Sn).整理得nSn +1=2(n +1)Sn ,所以Sn +1n +1=2·Sn n, 故{Sn n}是以2为公比的等比数列. (2)由(1)知Sn +1n +1=4·Sn -1n -1=4an n +1(n≥2), 于是Sn +1=4(n +1)·Sn -1n -1=4an(n≥2). 又a2=3S1=3,故S2=a1+a2=4.因此对于任意正整数n≥1,都有Sn +1=4an.【点拨】①运用等比数列的基本公式,将已知条件转化为关于等比数列的特征量a1、q 的方程是求解等比数列问题的常用方法之一,同时应注意在使用等比数列前n 项和公式时,应充分讨论公比q 是否等于1;②应用定义判断数列是否是等比数列是最直接,最有依据的方法,也是通法,若判断一个数列是等比数列可用an +1an=q(常数)恒成立,也可用a2n +1 =an ·an +2 恒成立,若判定一个数列不是等比数列则只需举出反例即可,也可以用反证法.【变式训练1】等比数列{an}中,a1=317,q =-12.记f(n)=a1a2…an,则当f(n)最大时,n 的值为( )A.7B.8C.9D.10【解析】an =317×(-12)n -1,易知a9=317×1256>1,a10<0,0<a11<1.又a1a2…a9>0,故f(9)=a1a2…a9的值最大,此时n =9.故选C.题型二 性质运用【例2】在等比数列{an}中,a1+a6=33,a3a4=32,an >an +1(n ∈N*).(1)求an ;(2)若Tn =lg a1+lg a2+…+lg an ,求Tn.【解析】(1)由等比数列的性质可知a1a6=a3a4=32,又a1+a6=33,a1>a6,解得a1=32,a6=1,所以a6a1=132,即q5=132,所以q =12,所以an =32·(12)n -1=26-n . (2)由等比数列的性质可知,{lg an}是等差数列,因为lg an =lg 26-n =(6-n)lg 2,lg a1=5lg 2,所以Tn =(lg a1+lg an)n 2=n(11-n)2lg 2. 【点拨】历年高考对性质考查较多,主要是利用“等积性”,题目“小而巧”且背景不断更新,要熟练掌握.【变式训练2】在等差数列{an}中,若a15=0,则有等式a1+a2+…+an =a1+a2+…+a29-n(n <29,n ∈N*)成立,类比上述性质,相应地在等比数列{bn}中,若b19=1,能得到什么等式?【解析】由题设可知,如果am =0,在等差数列中有a1+a2+…+an =a1+a2+…+a2m -1-n(n <2m -1,n ∈N*)成立,我们知道,如果m +n =p +q ,则am +an =ap +aq ,而对于等比数列{bn},则有若m +n =p +q ,则aman =apaq ,所以可以得出结论:若bm =1,则有b1b2…bn=b1b2…b2m-1-n(n <2m -1,n ∈N*)成立.在本题中则有b1b2…bn=b1b2…b37-n(n <37,n ∈N*).题型三 综合运用【例3】设数列{an}的前n 项和为Sn ,其中an≠0,a1为常数,且-a1,Sn ,an +1成等差数列.(1)求{an}的通项公式;(2)设bn =1-Sn ,问是否存在a1,使数列{bn}为等比数列?若存在,则求出a1的值;若不存在,说明理由.【解析】(1)由题意可得2Sn =an +1-a1.所以当n≥2时,有⎩⎨⎧-=-=-+11,1122a a S a a S n n n n两式相减得an +1=3an(n≥2).又a2=2S1+a1=3a1,an≠0,所以{an}是以首项为a1,公比为q =3的等比数列.所以an =a1·3n -1.(2)因为Sn =a1(1-qn)1-q =-12a1+12a1·3n ,所以bn =1-Sn =1+12a1-12a1·3n. 要使{bn}为等比数列,当且仅当1+12a1=0,即a1=-2,此时bn =3n. 所以{bn}是首项为3,公比为q =3的等比数列.所以{bn}能为等比数列,此时a1=-2.【变式训练3】已知命题:若{an}为等差数列,且am =a ,an =b(m <n ,m 、n ∈N*),则am+n =bn -am n -m.现在已知数列{bn}(bn >0,n ∈N*)为等比数列,且bm =a ,bn =b(m <n ,m ,n ∈N*),类比上述结论得bm +n = .【解析】n -m bn am.总结提高1.方程思想,即等比数列{an}中五个量a1,n,q,an,Sn,一般可“知三求二”,通过求和与通项两公式列方程组求解.2.对于已知数列{an}递推公式an与Sn的混合关系式,利用公式an=Sn-Sn-1(n≥2),再引入辅助数列,转化为等比数列问题求解.3.分类讨论思想:当a1>0,q>1或a1<0,0<q<1时,等比数列{an}为递增数列;当a1>0,0<q<1或a1<0,q>1时,{an}为递减数列;q<0时,{an}为摆动数列;q=1时,{an}为常数列.。
(新人教)高三数学第一轮复习教案3.4.2等比数列2
一.课题:等比数列(2)二.教学目标:1.明确等比中项概念;2.进一步熟练掌握等比数列通项公式;3.培养学生应用意识。
三.教学重、难点:1.等比中项的理解与应用、等比数列定义及通项公式的应用;2.灵活应用等比数列定义及通项公式解决一些相关问题。
四.教学过程: (一)复习:等比数列定义:1(0)n na q q a +=≠和等比数列通项公式:)0,(111≠⋅=-q a q a a n n . (二)新课讲解:1.等比数列性质:与等差数列对照,看等比数列是否也具有类似性质?(1)等比中项:如果在b a 与中间插入一个数G ,使b G a ,,成等比数列,那么G 叫做b a 与的等比中项(两个符号相同的非零实数,都有两个等比中项)。
如果在b a 与中间插入一个数G ,使b G a ,,成等比数列,即G b a G = ∴2G ab =, ∴b G a ,,成等比数列2 G ab ⇒=(注意这里不是充要条件,为什么?)(2)由定义得:111n 1 , m n m a a q a a q --==,111q 1 ,p q p a a q a a q --==⋅,故221m n m n a a a q +-⋅=且221p q p q a a a q +-⋅=若m n p q +=+(,,,)m n q p N +∈,则q p n m a a a a ⋅=⋅;(3)由等比数列的通项公式知:若{}n a 为等比数列,则m n m na q a -= .2.例题分析:例1.已知{}n a 为GP ,且578,2a a ==,该数列的各项都为正数,求{}n a 的通项公式。
解:设该数列的公比为q ,由7575a q a -=得22184q ==,又数列的各项都是正数,故12q =, 则58118()()22n n n a --=⨯= . 例2.已知三个数成等比数列,它们的积为27,它们的平方和为91,求这三个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(新课标)高考数学一轮复习名校尖子生培优大专题等比数列教案新人教A
版
【考纲解读】
1.理解等比数列的概念.
2.掌握等比数列的通项公式与前项和公式.
3.了解等比数列与指数函数的关系.
【考点预测】
高考对此部分内容考查的热点与命题趋势为:
1.数列是历年来高考重点内容之一, 在选择题、填空题与解答题中均有可能出现,一般考查一个大题一个小题,难度中低高都有,在解答题中,经常与不等式、函数等知识相结合,在考查数列知识的同时,又考查转化思想和分类讨论等思想,以及分析问题、解决问题的能力.
2.高考将会继续保持稳定,坚持考查数列与其他知识的结合,或在选择题、填空题中继续搞创新,命题形式会更加灵活.
【要点梳理】
1. 定义: 数列{a n}从第2项起,每一项与它前一项的比等于同一个常数的数列称作等比数列.常数叫公比.
2.通项公式:a n=a1q n-1,
推广形式:a n=a m q n-m.
变式:q=(n、m∈N*).
3.前n项和S n=
注:q≠1时,=.
4.等比中项:若a、b、c成等比数列,则b为a、c的等比中项,且b=±.
5.三个数或四个数成等比数列且又知积时,则三个数可设为、a、aq,四个数可设为、、aq、aq3为好.
6.证明等比数列的方法:
(1)定义法:只需证=非零常数;(2)等比中项法:只需a n+12=a n·a n+2或=.
【例题精析】
考点一基本量的计算
例1.已知等比数列中,若,则= .
1.已知是递增等比数列,,则此数列的公比.
考点二等比数列的性质
例2.(2010年高考全国Ⅰ卷文科4)已知各项均为正数的等比数列{},=5,=10,则
=()
(A) (B) 7 (C) 6 (D)
【名师点睛】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.
【变式训练】
2. 在等比数列{a n}中,a n>0(n∈N﹡),且,,则{a n}的前6项和是.
问题:忽略对公比和的讨论
例.求和(.
1.若等比数列{a n}满足a n a n+1=16n,则公比为()
(A)2 (B)4 (C)8 (D)16
2.已知为等比数列,,,则()
【答案】D
【解析】,
3.数列中,已知对任意…则…等于( )
A. B. C.
D.
4.设是首项大于零的等比数列,则“”是“数列是递增数列”的()(A)充分而不必要条件(B)必要而不充分条件
(C)充分必要条件(D)既不充分也不必要条件
5.设为等比数列的前n项和,则()
(A)-11 (B)-8
(C)5 (D)11
6. 设等比数列的公比=2,前项
1.公比为2的等比数列{} 的各项都是正数,且,则=()
(A) 1 (B)2 (C) 4 (D)8
2.已知为等比数列,下面结论种正确的是()
(A)a1+a3≥2a2 (B)(C)若a1=a3,则a1=a2(D)若a3>a1,则a4>a2
3.、定义在(-∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”。
现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f
(x)=x²;②f(x)=2x;③;④f(x)=ln|x |.则其中是“保等比数列函数”的f(x)的序号为( )
A.①②
B.③④
C.①③
D.②④
4.已知等比数列{a n}为递增数列.若a1>0,且2(a n+a n+2)=5a n+1,则数列{a n}的公比q = _____________________.
【答案】2
【解析】
因为数列为递增数列,且
5.若等比数列{a n}满足,则.
6.等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q=_______
7.首项为1,公比为2的等比数列的前4项和
8.等比数列{a n}的前n项和为S n,公比不为1。
若a1=1,且对任意的都有a n+2+a n+1-2a n=0,则
S5=_________________。
【答案】11
【解析】由已知可得公比q=-2,则a1=1可得S5。
9.已知等比数列的公比为q=-.
(1)若=,求数列的前n项和;
(Ⅱ)证明:对任意,,,成等差数列.。