高考数学试题及答案(广东卷)

合集下载

2012广东高考数学试题(高清版含详细答案)

2012广东高考数学试题(高清版含详细答案)

2012广东高考数学试题(高清版含详细答案)一 、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设i 为虚数单位,则复数56ii-= A . 65i + B .65i - C .65i -+ D .65i -- 【答案】D2. 设集合{1,2,3,4,5,6}U =,{1,2,4}M =, 则U C M =A .UB .{1,3,5}C .{3,5,6}D .{2,4,6} 【答案】C3. 若向量(2,3)BA = ,(4,7)CA =,则BCA .(2,4)--B .(3,4)C .(6,10)D .(6,10)-- 【答案】A4. 下列函数中,在区间(0,+∞)上为增函数的是A .ln(2)y x =+ B.y = C .1()2xy = D .1y x x=+【答案】A5. 已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为A .12B .11C .3D .-1 【答案】B6. 某几何体的三视图如图1所示,它的体积为A .12πB .45πC .57πD .81π 【答案】C7. 从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是 A .49 B .13 C .29 D .19【答案】D8. 对任意两个非零的平面向量α和β,定义αβαβββ⋅=⋅ 。

若平面向量,a b 满足||||0a b ≥>,a 与b 的夹角(0,)4πθ∈,且a b 和b a 都在集合{|}2∈nn Z 中,则a b = A .12 B. 1 C. 32 D. 52【解析】:因为||cos cos ||θθ⋅==≥>⋅ a b a a b b b b ,||cos cos 1||θθ⋅==≤<⋅ b a b b a a a a 且a b 和b a 都在集合{|}2∈nn Z 中 所以,||1cos ||2θ== b b a a ,||1||2cos θ=b a ,所以2||cos 2cos 2||θθ==< a a b b所以22≤< a b ,故有1= a b 【答案】B二、填空题:本大题共7小题,考生答6小题,每小题5分,满分30分。

2019年广东省高考数学试卷(理科)

2019年广东省高考数学试卷(理科)

2021年广东省高考数学试卷〔理科〕一、选择题:本大题共8小题,每题5分,总分值40分,在每题给出的四个 选项中,只有一项为哪一项符合题目要求的.1. 〔5分〕设集合 M={x| x 2+2x=0,x€ R} , N={x| x 2—2x=0, x€ 号,贝U MUN=〔 A. {0} B. {0, 2} C. {-2, 0} D. {-2, 0, 2}2. 〔5分〕定义域为R 的四个函数y=x 3, y=2x, y=x 2+1, y=2sinx 中,奇函数的个 数是〔 〕 A. 4B. 3 C 2 D. 13. 〔5分〕假设复数z 满足iz=2+4i,那么在复平面内,z 对应的点的坐标是〔 〕A. 〔2, 4〕B. 〔2, -4〕C. 〔4, -2〕D. 〔4, 2〕 4. 〔5那么X 的数学期望E 〔X 〕=〔 〕 A — B. 2 C. D. 3 2 25. 〔5分〕某四棱台的三视图如下图,那么该四棱台的体积是〔〕A. 4 B — C.D. 633 6. 〔5分〕设m, n 是两条不同的直线,% B 是两个不同的平面,以下命题中正 确的是〔 〕A.假设 a± & m? a, n? B,那么 m±nB.假设 all 0, m? a, n? & 那么 m // nC.假设 m±n, m? a, n? 3 那么 a± pD.假设 m ,a, m // n, n // & 那么 a± 0 7. 〔5分〕中央在原点的双曲线 C 的右焦点为F 〔3, 0〕,离心率等于,,那么 C 的方程是〔〕F ¥ J B Jc /n -7 二——1 — — C — — D —--〔5 分〕设整数 n>4,集合 X={1, 2, 3,…,n}.令集合 S={ 〔x, y, z 〕 | x, zC X,且三条件 x< y<z, y<z<x, z<x< y 恰有一个成立}.假设〔x, y, z 〕 〔z, w, x 〕都在S 中,那么以下选项正确的选项是〔〕A. 8. y, 和A. 〔y, z, w〕C S, 〔x, y, w〕 ?SB. 〔y, z, w〕€ S, 〔x, y, w〕€ SC. 〔y, z, w〕?S, 〔x, y, w〕S SD. 〔y, z, w〕 ?S, 〔x, y, w〕 ?S二、填空题:本大题共7小题,考生作答6小题,每题5分,总分值30分.9. 〔5分〕不等式x2+x —2<0的解集为.10. 〔5分〕假设曲线y=kx+lnx在点〔1, k〕处的切线平行于x轴,那么k=.11. .〔5分〕执行如下图的程序框图,假设输入n的值为4,那么输出s的值为.12. 〔5分〕在等差数列{a n}中,33+88=10,那么3a5+a7=.K+4V>413. 〔5 分〕给定区域D: r+y<4 .令点集T={〔x°, Vo〕 CD|xo, yo^Z, 〔x0,Ly°〕是z=x+y在D上取得最大值或最小值的点},那么T中的点共确定条不同的直线.14. 〔5分〕〔坐标系与参数方程选做题〕曲线C的参数方程为〔t为参数〕,C在点〔1,1〕处的切线为I,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,那么I的极坐标方程为. 15. 如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD过C作圆O 的切线交AD于E.假设AB=6, ED=2,那么BC=.三、解做题:本大题共6小题,总分值80分.解答须写出文字说明、证实过程和演算步骤.16. 〔12分〕函数f 〔x〕 =V2cos 〔x-—〕, xCR.12〔I〕求f 〔—工〕的值;6〔H〕假设cosB2,筱〔",2兀〕,求f 〔2什工〕. 5 2 317. 〔12分〕某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如下图,其中茎为十位数,叶为个位数.〔1〕根据茎叶图计算样本均值;〔2〕日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.18. (14分)如图1,在等腰直角三角形ABC中,/A=90°, BC=6 D, E分别是AC, AB上的点,CD二BE二加,O为BC的中点.将△ ADE沿DE折起,得到如图2 所示的四棱椎A'-BCDE其中A O<.(1)证实:A工平面BCDE(2)求二面角A'-CD- B的平面角的余弦值.2 S19. (14分)设数列{a n}的前n项和为3b a〔二1,二1二日三门2力4,n_ * € N .(1)求a2的求;(2)求数列{an}的通项公式;(3)证实:对一切正整数n,有!小+..・」-<工. a l a2 a n 420. (14分)抛物线C的顶点为原点,其焦点F (0, c) (c>0)到直线l: x-y-2=0的距离为色巨,设P为直线l上的点,过点P作抛物线C的两条切线PA, PB,其中A, B为切点.(1)求抛物线C的方程;(2)当点P (xo, yo)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|?|BF|的最小值.21. (14 分)设函数f (x) = (x- 1) e x- kx2 (kC R).(1)当k=1时,求函数f (x)的单调区问;(2)当1]时,求函数f (x)在[0, k]上的最大值M.叁2021年广东省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每题5分,总分值40分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1. (5分)设集合M={x| x2+2x=0,x€ R} , N={x| x2—2x=0, xC R},贝U MUN=(A. {0}B. {0, 2}C. {-2, 0}D. {-2, 0, 2}【分析】根据题意,分析可得,M={0, -2}, N={0, 2},进而求其并集可得答案.【解答】解:分析可得,M 为方程x2+2x=0 的解集,贝U M={x| x2+2x=C}={0, — 2},N 为方程x2— 2x=0 的解集,贝U N={x|x2-2x=0}={0, 2},故集合M UN=[0, - 2, 2},应选:D.【点评】此题考查集合的并集运算,首先分析集合的元素,可得集合的意义,再求集合的并集.2. 〔5分〕定义域为R的四个函数y=x3, y=2x, y=x2+1, y=2sinx中,奇函数的个数是〔〕A. 4B. 3C. 2D. 1【分析】根据函数奇偶性的定义及图象特征逐一盘点即可.【解答】解:y=x3的定义域为R,关于原点对称,且〔-x〕3=- x3,所以函数y=x3 为奇函数;y=2x的图象过点〔0, 1〕,既不关于原点对称,也不关于y轴对称,为非奇非偶函数;y=x2+1的图象过点〔0, 1〕关于y轴对称,为偶函数;y=2sinx的定义域为R,关于原点对称,且2sin 〔 - x〕 =-2sinx,所以y=2sinx为奇函数;所以奇函数的个数为2,应选:C.【点评】此题考查函数奇偶性的判断,属根底题,定义是解决该类题目的根本方法,要熟练掌握.3. 〔5分〕假设复数z满足iz=2+4i,那么在复平面内,z对应的点的坐标是〔〕A. 〔2, 4〕B. 〔2, -4〕C. 〔4, -2〕D. 〔4, 2〕【分析】由题意可得z2彗,再利用两个复数代数形式的乘除法法那么化为412i,从而求得z对应的点的坐标.【解答】解:复数z满足iz=2+4i,贝U有z=2+产」2+4i〕i=4 — 2i,1 -1故在复平面内,z对应的点的坐标是〔4, -2〕, 应选:C.【点评】此题主要考查两个复数代数形式的乘除法,虚数单位i的幕运算性质, 复数与复平面内对应点之间的关系,属于根底题.4. 〔5分〕离散型随机变量X的分布列为那么X的数学期望E 〔X〕=〔〕A —B. 2 C. D. 3 2 2【分析】利用数学期望的计算公式即可得出.【解答】解:由数学期望的计算公式即可得出:E〔X〕 =〞+2X三+3」巨.5 10 10 2应选:A.【点评】熟练掌握数学期望的计算公式是解题的关键.5. 〔5分〕某四棱台的三视图如下图,那么该四棱台的体积是〔〕A. 4 B = C D. 6 33【分析】由题意直接利用三视图的数据求解棱台的体积即可.【解答】解:几何体是四棱台,下底面是边长为2的正方形,上底面是边长为1 的正方形,棱台的高为2, 并且棱台的两个侧面与底面垂直,四楼台的体积为V=L X〔22+ 1 3+722X I2〕X2=^-- ■J'J应选:B.【点评】此题考查三视图与几何体的关系, 棱台体积公式的应用,考查计算水平与空间想象水平.6. 〔5分〕设m, n是两条不同的直线,% B是两个不同的平面,以下命题中正确的是〔〕A.假设a± & m? a, n? B,那么m±nB.假设all 0, m? a, n? & 那么m // nC.假设m±n, m? a, n? 3 那么a± pD.假设m,a, m // n, n // & 那么a± 0 【分析】由a± p, m? a, n? B,可才t得m,n, m // n,或m, n异面;由all 0, m? & n?就可得m // n,或m, n异面;由m,n, m? a, n? 0,可得a与0 可能相交或平行;由m± a, m // n,那么n,a,再由n // B可得a± 0.【解答】解:选项A,假设n & m? % n? 3那么可能m±n, m // n,或m, n 异面,故A错误;选项B,假设all & m? a, n? B,那么m // n,或m, n异面,故B错误;选项C,假设m,n, m? a, n? 0,那么a与B可能相交,也可能平行,故C错误;选项D,假设m, a, m // n,那么n, a,再由n II 0可得「0,故D正确.应选:D.【点评】此题考查命题真假的判断与应用,涉及空间中直线与平面的位置关系, 属根底题.7. (5分)中央在原点的双曲线C的右焦点为F (3, 0),离心率等于,,那么C的方程是( )A / IB /C ,「D ’A「- - B ——C—— D —— -【分析】设出双曲线方程,利用双曲线的右焦点为 F (3, 0),离心率为1,建2立方程组,可求双曲线的几何量,从而可得双曲线的方程.22【解答】解:设双曲线方程为三二7二1 (a>0, b>0),那么 a b.•.双曲线C的右焦点为F (3, 0),离心率等于,,上1 r c-3* c c , c=3, a=2, • . b2=c2 - a2=5一心2 2「•双曲线方程为,誉:1. 4 5应选:B.【点评】此题考查双曲线的方程与几何性质,考查学生的计算水平,属于根底题.8. (5 分)设整数n>4,集合X=[1, 2, 3,…,n}.令集合S={ (x, y, z) | x, y, z€ X,且三条件x< y<z, y<z<x, z<x< y 恰有一个成立}.假设(x, y, z) 和(z, w, x)都在S中,那么以下选项正确的选项是( )A. (y, z, w) S S, (x, y, w) ?SB. (y, z, w) S S, (x, y, w) S SC. (y, z, w) ?S, (x, y, w) € SD. (y, z, w) ?S, (x, y, w) ?S【分析】特殊值排除法,取x=2, y=3, z=4, w=1,可排除错误选项,即得答案.【解答】解:方法一:特殊值排除法, 取x=2, y=3, z=4, w=1,显然满足(x, y, z)和(z, w, x)都在S中,此时(y, z, w) = (3, 4, 1) C S, (x, y, w) = (2, 3, 1) C S,故A、G D 均错误;只有B成立,应选B.直接法:根据题意知,只要y<z<w, z<w<y, w<y<z 中或x<y<w, y<w<x, w<x <y中恰有一个成立那么可判断〔y, z, w〕€ S, 〔x, y, w〕€ S.v(x, y, z) € S, (z, w, x) C S,x<y<z•・①,y<z<x••②,z<x<y••③三个式子中恰有一个成立;z<w<x…④,w<x<z••⑤,x<z<w••⑥三个式子中恰有一个成立.配对后有四种情况成立,第一种:①⑤成立,止匕时w <x<y<z,于是〔y, z, w〕€ S, 〔x, y, w〕C S; 第二种:①⑥成立,此时x<y<z<w,于是(y, z, w) e S, (x, y, w) e S;第三种:②④成立,此时y<z< w<x,于是(y, z, w) e S, (x, y, w) e S;第四种:③④成立,此时z<w<x<y, 于是(y, z, w) S S, (x, y, w) S S.综合上述四种情况,可得〔y, z, w〕 C S, 〔x, y, w〕€ S.应选:B.【点评】此题考查简单的合情推理,特殊值验证法是解决问题的关键,属根底题.二、填空题:本大题共7小题,考生作答6小题,每题5分,总分值30分.9. 〔5分〕不等式x2+x —2<0的解I集为〔一2, 1〕.【分析】先求相应二次方程x2+x-2=0的两根,根据二次函数y=x2+x- 2的图象即可写出不等式的解集.【解答】解:方程x2+x- 2=0的两根为-2, 1, 且函数y=/+x-2的图象开口向上,所以不等式x2+x- 2<0的解集为〔-2, 1〕.故答案为:〔-2, 1〕.【点评】此题考查一元二次不等式的解法,属根底题,深刻理解三个二次〞间的关系是解决该类题目的关键,解二次不等式的根本步骤是:求二次方程的根;作出草图;据图象写出解集.10. 〔5分〕假设曲线y=kx+lnx在点〔1, k〕处的切线平行于x轴,那么k= - 1 .【分析】先求出函数的导数,再由题意知在1处的导数值为0,列出方程求出k 的化【解答】解:由题意得,y'踮, X•••在点〔1, k〕处的切线平行于x轴,. ・k+1=0,彳4 k= - 1,故答案为:-1.【点评】此题考查了函数导数的几何意义应用,难度不大.11. 〔5分〕执行如下图的程序框图,假设输入n的值为4,那么输出s的值为7 .【分析】由中的程序框图及中输入4,可得:进入循环的条件为i04,即i=1, 2, 3, 4.模拟程序的运行结果,即可得到输出的S值.【解答】解:当i=1时,S=1+1 - 1=1;当i=2 时,S=#2-1=2;当i=3 时,S=?3—1=4;当i=4 时,S=4M—1=7;当i=5时,退出循环,输出S=7;故答案为:7.【点评】此题考查的知识点是程序框图, 在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比拟多时,要用表格法对数据进行治理.12. 〔5分〕在等差数列{a n}中,33+88=10,那么3a5+a7= 20 .【分析】根据等差数列性质可得:3a5+a7=2 〔a5+a6〕=2 〔央+出〕.【解答】解:由等差数列的性质得:3a5+a7=2a5+ 〔a s+a/〕=2a5+ 〔2%〕 =2 〔a5+%〕 =2 〔a3+%〕 =20,故答案为:20.【点评】此题考查等差数列的性质及其应用, 属根底题,准确理解有关性质是解决问题的根本.工+4V>413. 〔5 分〕给定区域 D: r+y<4 .令点集 T={ 〔xo, yo 〕 CD|xo, yoCZ, 〔xo, yo 〕是z=x+y 在D 上取得最大值或最小值的点},那么T 中的点共确定 6 条 不同的直线.【分析】先根据所给的可行域,利用几何意义求最值, z=x+y 表示直线在y 轴上 的截距,只需求出可行域直线在y 轴上的截距最值即可,从而得出点集T 中元素 的个数,即可得出正确答案.【解答】解:画出不等式表示的平面区域,如图.作出目标函数对应的直线,由于直线 z=x+y 与直线x+y=4平行,故直线z=x+y 过 直线 x+y=4 上的整数点:〔4,.〕,〔3, 1〕, 〔2, 2〕, 〔1, 3〕或〔.,4〕时,直线的纵截距最大,z 最大;当直线过〔o, 1〕时,直线的纵截距最小,z 最小,从而点集T={ 〔4, o 〕, 〔3, 1〕, 〔2, 2〕,〔1, 3〕,〔o,4〕,〔o,1〕},经过这六个点的直线一共有6条.即T 中的点共确定6条不同的直线. 故答案为:6.【点评】此题主要考查了简单的线性规划, 以及利用几何意义求最值,属于根底 题.14. 〔5分〕〔坐标系与参数方程选做题〕以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,那么 I 的极坐标方程为 P cos+% sin _02=o 〔埴 p sin 〔或 P cos 〔 9〕一回也得总分值〕 .【分析】先求出曲线C 的普通方程,再利用直线与圆相切求出切线的方程, 最后 利用x= p cos,8 y= p sin 他换求得其极坐标方程即可.「•曲线C 是以〔o, o 〕为圆心,半径等于 血的圆. C 在点〔1,1〕处的切线I 的方程为x+y=2, 令 x= p cos,8y= p sin,0曲线C 的参数方程为{x=V2costy=V2sint〔t 为参数〕,C 在点〔1,1〕处的切线为I,【解答】解:由「一 [y=V2sint〔t 为参数〕,两式平■方后相加得x 2+y 2=2,…〔4分〕代入x+y=2 ,并整理得p cos+〕p sin & 2=0 ,即p 4^;〕一日或P cos〔B那么l的极坐标方程为p cos+Op sin & 2=0 〔填p sin〔 84或P CCIB〔日二$〕=^巧也得总分值〕•…〔10分〕故答案为:p cos+Op sin 4〕2=0 〔填P n 〔.H或p 8 式 9 —.也得总分值〕.【点评】此题主要考查极坐标方程、参数方程及直角坐标方程的转化.普通方程化为极坐标方程关键是利用公式x= p cos,8y= p sin.015. 如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD过C作圆O 的切线交AD 于E.假设AB=6, ED=2, WJ BC=__^_.【分析】利用AB是圆O的直径,可得/ ACB=90. IP AC±BD,又BC=CD 可得△ ABD是等腰三角形,可得/ D=/B.再利用弦切角定理可得/ ACE=/ B, 得至ij/AECWACB=90,进而得到^ CED^AACB,利用相似三角形的性质即可得出.【解答】解:.「AB是圆O的直径,「./ ACB=90.即AC BD.又 = BC=CD AB=AD,「. / D=/ ABC, / EAC=Z BAC•.CE与..相切于点C, 「./ACE之ABC / AECW ACB=90.・ .△CED^ AACB.. •里里,又CD=BCAB BCBC=V AB*ED =76X2-2^3.【点评】此题综合考查了圆的性质、弦切角定理、等腰三角形的性质、相似三角形的判定与性质等根底知识,需要较强的推理水平.三、解做题:本大题共6小题,总分值80分.解答须写出文字说明、证实过程和演算步骤.16. 〔12 分〕函数f 〔x〕 ='/^cos 〔x-y1-〕, xCR. JT〔I〕求f 〔-三〕的值;6〔n〕假设cosel,长〔JLL, 2兀〕,求f〔2肝2L〕.5 2 3【分析】〔1〕把x=-二直接代入函数解析式求解.6〔2〕先由同角三角函数的根本关系求出sin 8的值以及sin2.然后将x=20二代3入函数解析式,并利用两角和与差公式求得结果.【解答】解:〔1〕f ^〕=A/2COS〔^^^T〕=V2COS〔--^〕=V2o Q iz q 一上〔2〕由于8号©=|, e e 等,2n〕所以, 「[一一・:所以$in2 e =2sin8 cos 9 =2 乂〔"〕"二,cos2 9 =cos2 9 -si n20 二〔汨〕一〔4〕2 = 5 5 25所以f〔2 = +_Z-〕=V2C0S^2=+-z_^r;r〕=V2C0S〔2 =+—j-〕:=cos2日-sin2 ==U 0 JL T7 z24 s1725 ।25’ 25【点评】此题主要考查了特殊角的三角函数值的求解, 考查了和差角公式的运用, 属于知识的简单综合,要注意角的范围.17. 〔12分〕某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如下图,其中茎为十位数,叶为个位数.〔1〕根据茎叶图计算样本均值;〔2〕日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?〔3〕从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.【分析】〔1〕茎叶图中共同的数字是数字的十位,这是解决此题的突破口,根据所给的茎叶图数据,代入平均数公式求出结果;〔2〕先由〔1〕求得的平均数,再利用比例关系即可推断该车间12名工人中有几名优秀工人的人数;〔3〕设从该车间12名工人中,任取2人,恰有1名优秀工人〞为事件A,结合组合数利用概率的计算公式即可求解事件A的概率.【解答】解:(1)样本均值为升20+21+25+30=22;6(2)抽取的6名工人中有2名为优秀工人,所以12名工人中有4名优秀工人;(3)设从该车间12名工人中,任取2人,恰有1名优秀工人〞为事件A,clcJ 1 c所以P(A〞一V二会, v12即恰有1名优秀工人的概率为—.33【点评】此题主要考查茎叶图的应用,古典概型及其概率计算公式,属于容易题.对于一组数据,通常要求的是这组数据的众数,中位数,平均数,题目分别表示一组数据的特征,考查最根本的知识点.18. (14分)如图1,在等腰直角三角形ABC中,/A=90°, BC=6 D, E分别是AC, AB上的点,CD=BE=V2, O为BC的中点.将△ ADE沿DE折起,得到如图2 所示的四棱椎A'-BCDE其中A O=?(1)证实:A工平面BCDE(2)求二面角A'-CD- B的平面角的余弦值.【分析】(1)连接OD, OE.在等腰直角三角形ABC中,/B=/ C=45, CD二BE二班, AD=AE乏/!,CO=BO=3分另1」在4 COD与△ OBE中,利用余弦定理可得OD, OE.禾用勾股定理的逆定理可证实/ A OD=A' OE=90再利用线面垂直的判定定理即可证实;(2)方法一:过点O作OF, CD的延长线于F,连接A' F利用(1)可知:A' 0 ,平面BCDE根据三垂线定理得A LCD,所以/ A' FO;二面角A'-CD- B的平面角.在直角△ OCF中,求出OF即可;方法二:取DE中点H,那么OH, OB.以O为坐标原点,OH、OB、OA分别为x、V、z轴建立空间直角坐标系.利用两个平面的法向量的夹角即可得到二面角.【解答】(1)证实:连接OD, OE.由于在等腰直角三角形ABC中,/ B=/ C=45, CD二BE二加,CO=BO=3在ACOD中,加二{C02+C D々CO・CDs s45;二立,同理得比=^・由于AD=A' D=A‘ E=AE=2/2, A’ 0二®所以 A 2+OD2=A 2), A 2+Og=A,孑所以/A' OD=A' OE=90所以A' UOD, A吐OE, ODA OE=O.所以A吐平面BCDE(2)方法一:过点O作OF,CD的延长线于F,连接A' F由于A吐平面BCDE根据三垂线定理,有A 1CD.所以/A' F的二面角A'-CD- B的平面角.在Rt^COF中,0F=C0S E5'=^.在A' 0中,卜’ F 二W .,口/二^^ 所以一「」卜,•A r b所以二面角A' - CD- B 的平面角的余弦值为 堡.5方法二:取DE 中点H,那么OH±OB.以O 为坐标原点,OH 、OB OA 分别为x 、v 、z 轴建立空间直角坐标系. 那么 O (0, 0, 0), A' (0, 0,加),C (0, - 3, 0), D (1, - 2, 0) 0A 7* = (0, 0,无)是平面BCDE 勺一个法向量.设平面A ClDj 法向量为n= (x, y, z)前六二(0, 3,五),而二(L 1, 0). 二一、/n ・CA' =3y+V^w=0 人 皿_ rz所以? 一,令 x=1,那么 y=—1,[n*CD=x+y=O所以4(1,-1,行)是平面A' C 的一个法向量 设二面角A'-CD- B 的平面角为8,且8 6(0, g)|3F>|n|一中立-5所以二面角A'-CD- B 的平面角的余弦值为 亟5【点评】此题综合考查了等腰直角三角形的性质、 余弦定理、线面垂直的判定与 性质定理、三垂线定哩、二面角、通过建立空间直角坐标系利用法向量的夹角求 面角等根底知识与方法,需要较强的空间想象水平、推理水平和计算水平. 19. (14分)设数列{a n }的前n 项和为3b a i =1,(2)利用 a n =&-S n-1 (n >2)即可得到 na n +1= (n+1) a n +n (n+1),可化为 缪T 〞,缪T,再利用等差数列的通项公式即可得出;(3)利用(2),通过放缩法——< % n【解答】解:(1)当 n=1 时,—p-=2a 1=a £^--l^y,解得 比=4 (1 2)2 %54n 3-n 2 4口① 当 n >2 时,2 SnT 二 ST) a n -7r(n-l ) 3-(n-l ) 24(nT)② J o ①-②得「. :., 口 : । n , ,整理得 na n +1= (n+1) a n +n (n+1),即 %? &L+], n+1 n . -r a9 a ।当 n=1 时,年一^2-1二1 w JL所以数列{曰}是以1为首项,1为公差的等差数列 所以上"二口,即a =n 2 n仇所以数列{a n }的通项公式为a n =n 2, n € N *、一 「L (n>2)即可证实.(n-1) n n-1 n(1) 求a 2的值;(2) (3)求数列{a n }的通项公式; 证实:对一切正整【分析】(1)利用a 1=1,有 _p_l_+... a l a2 a n 42Sn_ 1 2 ____________ 2--a ^l —^行,nCN *.令n=1即可求出;an+l a n n+1 n当n=1, 2时,也成立.【点评】熟练掌握等差数列的定义及通项公式、通项与前 n 项和的关系a n =S- Sn-i (n>2)>裂项求和及其放缩法等是解题的关键.20. (14分)抛物线C 的顶点为原点,其焦点F (0, c) (c>0)到直线l: x -y-2=0的距离为型2,设P 为直线l 上的点,过点P 作抛物线C 的两条切线 2 PA, PB,其中A, B 为切点. (1)求抛物线C 的方程;(2)当点P (x0, y0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF|?|BF|的最小值.【分析】(1)利用焦点到直线l: x- y-2=0的距离建立关于变量c 的方程,即可 解得c,从而得出抛物线C 的方程; (2)先设A (町,[J),//),由(1)得到抛物线C 的方程求导数,得到切线PA PB 的斜率,最后利用直线 AB 的斜率的不同表示形式,即可得出 直线AB 的方程;(3)根据抛物线的定义,有|AF|二1J + 1, |即|二|谥+1,从而表示出|AF|?|BF , 再由(2)得X 1+X 2=2x 0, X 1X 2=4y 0, X 0=y 0+2,将它表示成关于y 0的二次函数的形 式,从而即可求出|AF|?| BF 的最小值.【解答】解:(1)焦点F (0, c) (c>0)到直线所以抛物线C 的方程为x 2=4y.(2)设[. . . ■ ■ ■ :「:, 由(1)得抛物线C 的方程为悬所以切线PA, PB 的斜率分别为 工 工2勺’2叼 所以PA :或]〔犬—犬]〕①PB :工:斗父2〔¥一;12〕②联立①②可得点P 的坐标为〔31%, 七2〕,即三1,二二!, : 2 4270 41 J(3)由于--J % n 2 (nT)门 n-1 n(n>2)l : x - y - 2=0的距离I -c-21 c+2 3^2解得c=1, 所二丁 n 4 n 4又由于切线PA的斜率为其孙=.』",整理得为三孙乂04岩,L1 X Q-X I U 2 1 U 4 11 2_1 2直线AB的斜率kJ町国际二止2二现町r 2 4 2所以直线AB的方程为y—■工工o 〔上一£ 1〕,整理得产/乂/白盯式口w J,即尸1,町X-V口,由于点P 〔XQ, yo〕为直线l: x- y- 2=0上的点,所以xo - yo- 2=0,即yo=x0—2, 所以直线AB的方程为XQX - 2y - 2yo=O.〔3〕根据抛物线的定义,有|阿|1君+1,|BF|[g+1,所以k:卜…•」:’-「:। , 了〜, - J :'[「- = 当U+/〔町+ 〞〕2-2'区21+1,由〔2〕得X I+X2=2XQ, x1X2=4yo, Xo=yo+2,所以I..'' I' ' ' .''' । ,' :। ,:" । :,■:■.■|l・,> :। : ,:=2yg+2y0+5=2〔y D+y〕2+1-.所以当V.二q时,|AF|?|BF的最小值为u 4【点评】此题以抛物线为载体,考查抛物线的标准方程,考查利用导数研究曲线的切线方程,考查计算水平,有一定的综合性.21. 〔14 分〕设函数f 〔X〕 = 〔X- 1〕 e x - kx2〔kC R〕.〔1〕当k=1时,求函数f 〔X〕的单调区问;〔2〕当k€ e,1]时,求函数f〔X〕在[0, k]上的最大值M.【分析】(1)利用导数的运算法那么即可得出f'(x),令f'(x) =0,即可得出实数根,通过列表即可得出其单调区问;(2)利用导数的运算法那么求出f'(x),令f'(x) =0得出极值点,列出表格得出单调区问,比拟区间端点与极值即可得到最大值.【解答】解:(1)当k=1 时,f (x) = (x—1) e x-x2,f (x) =e x + (x- 1) e x - 2x=x (e x -2) 令 f (x) =0,解得 x 1二0, x 2=ln2>0 所以f (x), f (x)随x 的变化情况如下表:所以函数f (x)的单调增区间为(-8, 0)和(ln2, +8),单调减区间为(0,ln2)(2) f (x) = (x-1) e x - kx 2, x€[0, k] ,(y, U.f (x) =x3- 2kx=x (e x — 2k), f (x) =0,解得 x1二0, x?=ln (2k) 令小(k) =k- ln (2k),我 心,口,0’2k k所以小(k)在 6,1]上是减函数,..・小(1) &小(k) <1 -ln2<小 (k)(工<k.2 即 0<ln (2k) < k所以f (x), f (x)随x 的变化情况如下表:f (0) =- 1, f (k) -f (0) =(k- 1) e k -k 3-f (0) =(k- 1) e k -k 3+1 =(k-1) e k - (k 3-1)=(k —1) e k — (k — 1) (k 2+k+1) =(k- 1) [e k - (k 2+k+1)] k£ 弓,1], k-10O.对任意的(L 1], y=e k 的图象包在y=k 2+k+1下方,所以e k - (k 2+k+1) < 0 2 所以 f (k) -f (0) >0,即 f (k) >f (0)所以函数f (x)在[0, k]上的最大值M=f (k) = (k-1) e k -k 3.【点评】熟练掌握导数的运算法那么、利用导数求函数的单调性、极值与最值得方法是解题的关键.。

广东省2024届高三春季高考模拟卷(1)数学试题含解析

广东省2024届高三春季高考模拟卷(1)数学试题含解析

2024年第一次广东省普通高中学业水平合格性考试数学冲刺卷(一)答案解析一、选择题:本大题共12小题,每小题6分,共72分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2,0,1,2A =-,{}21B x x =-≤≤∣,则A B = ()A.{}2- B.{}1 C.{}2,0,1- D.{}0,1,2【答案】C 【解析】【分析】根据集合交集运算求解即可.【详解】解:因为{}2,0,1,2A =-,{}21B xx =-≤≤∣,所以A B = {}2,0,1-故选:C2.已知角α的终边过点()1,2P -,则tan α等于()A.2 B.2- C.12-D.12【答案】B 【解析】【分析】由正切函数的定义计算.【详解】由题意2tan 21α==--.故选:B .3.下列函数中是减函数且值域为R 的是()A.1()f x x= B.1()f x x x=-C.()ln f x x= D.3()f x x=-【答案】D 【解析】【分析】由幂函数及对数函数的图象与性质即可求解.【详解】解:对A :函数()f x 的值域为()(),00,-∞⋃+∞,故选项A 错误;对B :函数()f x 为(),0∞-和()0,∞+上的增函数,故选项B 错误;对C :函数()ln ,0()ln ln ,0x x f x x x x >⎧==⎨-<⎩,所以()f x 在()0,∞+上单调递增,在(),0∞-上单调递减,故选项C 错误;对D :由幂函数的性质知()f x 为减函数且值域为R ,故选项D 正确;故选:D.4.不等式22150x x -++≤的解集为()A .532x x ⎧⎫-≤≤⎨⎬⎩⎭B.52x x ⎧≤-⎨⎩或}3x ≥C.532x x ⎧⎫-≤≤⎨⎬⎩⎭D.{3x x ≤-或52x ⎫≥⎬⎭【答案】B 【解析】【分析】将式子变形再因式分解,即可求出不等式的解集;【详解】解:依题意可得22150x x --≥,故()()2530x x +-≥,解得52x ≤-或3x ≥,所以不等式的解集为52x x ⎧≤-⎨⎩或}3x ≥故选:B .5.化简:AB OC OB +-=()A.BAB.CAC.CBD.AC【答案】D 【解析】【分析】根据向量的线性运算法则,准确运算,即可求解.【详解】根据向量的线性运算法则,可得()AB OC OB AB OC OB AB BC AC +-=+-=+=.故选:D.6.方程()234xf x x =+-的零点所在的区间为()A.()1,0- B.10,2⎛⎫ ⎪⎝⎭C.1,12⎛⎫ ⎪⎝⎭D.41,3⎛⎫⎪⎝⎭【答案】C 【解析】【分析】分析函数()f x 的单调性,利用零点存在定理可得出结论.【详解】因为函数2x y =、34y x =-均为R 上的增函数,故函数()f x 在R 上也为增函数,因为()10f -<,()00f <,15022f ⎛⎫=<⎪⎝⎭,()110f =>,由零点存在定理可知,函数()f x 的零点所在的区间为1,12⎛⎫⎪⎝⎭.故选:C.7.已知扇形的半径为1,圆心角为60 ,则这个扇形的弧长为()A.π6B.π3C.2π3D.60【答案】B 【解析】【分析】根据扇形的弧长公式计算即可.【详解】易知π603=,由扇形弧长公式可得ππ133l =⨯=.故选:B8.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是()A.对立事件B.互斥但不对立事件C.不可能事件D.必然事件【答案】B 【解析】【分析】根据题意,分析可得“甲分得红牌”与“乙分得红牌”不会同时发生,但除了这2个事件外,还有事件“丙分得红牌”,由对立事件与互斥事件的概念,可得答案.【详解】根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,则两者是互斥事件,但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,则两者不是对立事件,则事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件;故选:B .【点睛】本题考查对立事件与互斥事件的概念,要注意对立一定互斥,但互斥不一定对立,属于基础题.9.要得到函数4y sinx =-(3π)的图象,只需要将函数4y sin x =的图象A.向左平移12π个单位B.向右平移12π个单位C.向左平移3π个单位D .向右平移3π个单位【答案】B 【解析】【详解】因为函数sin 4sin[4()]312y x x ππ⎛⎫=-=- ⎪⎝⎭,要得到函数43y sin x π⎛⎫=- ⎪⎝⎭的图象,只需要将函数4y sin x =的图象向右平移12π个单位.本题选择B 选项.点睛:三角函数图象进行平移变换时注意提取x 的系数,进行周期变换时,需要将x 的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同.10.已知两条直线l ,m 与两个平面α,β,下列命题正确的是()A.若//l α,l m ⊥,则m α⊥B.若//αβ,//m α,则//m βC.若//l α,//m α,则//l mD.若l α⊥,l //β,则αβ⊥【答案】D 【解析】【分析】A.利用线面的位置关系判断;B.利用线面的位置关系判断;C.利用直线与直线的位置关系判断;D.由l //β,过l 作平面γ,有m γβ= ,利用线面平行的性质定理得到得到//l m ,再利用面面垂直的判定定理判断.【详解】A.若//l α,l m ⊥,则//,m m αα⊂或,m α相交,故错误;B.若//αβ,//m α,则//m β或m β⊂,故错误;C.若//l α,//m α,则//l m ,l ,m 相交或异面,故错误;D.若l //β,过l 作平面γ,有m γβ= ,则//l m ,因为l α⊥,所以m α⊥,又m β⊂,则αβ⊥,故正确.故选:D11.已知函数()122,0,log ,0,x x f x x x ⎧≤⎪=⎨>⎪⎩则()()2f f -=()A.-2B.-1C.1D.2【答案】D 【解析】【分析】先根据分段函数求出()2f -,再根据分段函数,即可求出结果.【详解】因为()21224f --==,所以()()12112log 244f f f ⎛⎫-=== ⎪⎝⎭.故选:D.12.已知37log 2a =,1314b ⎛⎫= ⎪⎝⎭,135log c =,则a 、b 、c 的大小关系为()A.a b c >> B.a c b>> C.b a c>> D.c b a>>【答案】A 【解析】【分析】利用对数函数、指数函数的单调性结合中间值法可得出a 、b 、c 的大小关系.【详解】因为337log log 312a =>=,13110144b ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,1133log 5log 10c =<=,因此,a b c >>.故选:A.二、填空题:本大题共6小题,每小题6分,共36分.13.已知i 是虚数单位,则复数4i1i-+的虚部为__________.【答案】2-【解析】【分析】先把复数化简为22i --,再根据虚部定义得出即可.【详解】()()()()224i 1i 4i 1i 4i4i 4i =22i 1i 1i 1i 1i 2------===--++--,则复数的虚部为2-.故答案为:2-.14.函数51x y a -=+且((0a >且1a ≠)的图象必经过定点______________.【答案】(5,2)【解析】【分析】由指数函数的性质分析定点【详解】令50x -=,得5x =,此时2y =故过定点(5,2)15.如果函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的最小正周期为2π,则ω的值为______________.【答案】4【解析】【分析】根据正弦型函数的周期计算公式2T πω=即可求解.【详解】2T πω=,∴2242Tππωπ===.故答案为:4.16.已知圆柱的底面直径与高都等于球的直径,若该球的表面积为48π,则圆柱的侧面积为_____.【答案】48π.【解析】【分析】先由球的表面积为48π求出球的半径,然后由圆柱的侧面积公式算出即可【详解】因为球的表面积24π48πS R ==所以R所以圆柱的底面直径与高都为所以圆柱的侧面积:2π⨯故答案为:48π【点睛】本题考查的是空间几何体表面积的算法,较简单.17.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.【答案】18【解析】【详解】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18.点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .18.已知()f x 是定义在R 上的偶函数,当x ≥0时,()22xf x =-,则不等式()2f x ≤的解集是_______;【答案】[]22-,【解析】【分析】判断函数当0x ≥时的单调性,利用函数奇偶性和单调性的关系将不等式进行转化求解即可.【详解】∵当x ≥0时,()22xf x =-,∴偶函数()f x 在[0,+∞)上单调递增,且()2=2f ,所以()2f x ≤,即()()2fx f ≤,∴2x ≤,解得22x -≤≤.故答案为:[]22-,.三、解答题:本大题共4小题,第19~21题各10分,第22题12分,共42分.解答需写出文字说明,证明过程和演算步骤.19.在△ABC 中,角A ,B ,C 的对边分别是,,a b c ,已知46,5,cos 5a b A ===-(1)求角B 的大小;(2)求三角形ABC 的面积.【答案】(1)B=300(2)93122ABC S ∆-=【解析】【详解】分析:(1)由同角三角函数关系先求3sin 5A =,由正弦定理可求sinB 的值,从而可求B 的值;(2)先求得()()sin 30C sin A B sin A =+=+的值,代入三角函数面积公式即可得结果.详解:(1)由正弦定理又∴B 为锐角sinA=35,由正弦定理B=300(2)()()sin 30C sin A B sin A =+=+,∴19312bsin 22ABC S a C -==点睛:以三角形和为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.20.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用比例分配的分层随机抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)20,30,[)30,40,⋅⋅⋅,[]80,90,并整理得到如下频率分布直方图:(1)根据频率分布直方图估计分数的样本数据的70%分位数;(2)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中女生的人数.【答案】(1)77.5;(2)160(人).【解析】【分析】(1)根据分位数的概念,结合题给频率分布直方图计算得出结果即可;(2)根据频率分布直方图计算出样本中分数不小于70的人数,进而计算出样本中男生及女生的人数,最后求出总体中女生的人数.【详解】(1)由频率分布直方图可知,样本中分数不小于70的频率为()0.020.04100.6+⨯=,从而有:样本中分数小于70的频率为10.60.4-=,又由频率分布直方图可得:样本中分数小于80的频率为0.8,所以样本数据的70%分位数必定位于[)70,80之间.计算为:0.70.4701077.50.80.4-+⨯=-所以其分数的样本数据的70%分位数估计值为77.5.(2)由题知,样本中分数不小于70的学生人数为()0.020.041010060+⨯⨯=,从而有,样本中分数不小于70的男生人数为160302⨯=,进而得,样本中的男生人数为30260⨯=,女生人数为1006040-=,所以总体中女生人数为40400160100⨯=(人).21.某市出租车的票价按以下规则制定:起步公里为2.6公里,收费10元;若超过2.6公里的,每公里按2.4元收费.(1)设A 地到B 地的路程为4.1公里,若搭乘出租车从A 地到B 地,需要付费多少?(2)若某乘客搭乘出租车共付费16元,则该出租车共行驶了多少公里?【答案】(1)13.6元(2)5.1公里【解析】【分析】(1)设出租车行驶x 公里,根据题设写出付费额()f x 的分段函数形式,进而求从A 地到B 地需要的付费;(2)由题意出租车行驶公里数 2.6x >,结合解析式列方程求该出租车共行驶的公里数.【小问1详解】设出租车行驶x 公里,则付费额10,0 2.6()10 2.4( 2.6), 2.6x f x x x <≤⎧=⎨+->⎩,所以(4.1)10 2.4(4.1 2.6)13.6f =+⨯-=元.【小问2详解】由题意,出租车行驶公里数 2.6x >,令10 2.4( 2.6)16x +-=,则 5.1x =公里.22.如图,在三棱锥V-ABC 中,平面VAB ⊥平面ABC ,VAB 为等边三角形,AC BC ⊥,且AC=BC=,O,M分别为AB,VA 的中点.(1)求证:VB //平面MOC ;(2)求三棱锥V-ABC 的体积.【答案】(1)证明见解析;(2)33.【解析】【详解】试题分析:(1)要证明线面平行,就是要证线线平行,题中有中点,由中位线定理易得线线平行,注意得出线面平行结论时,必须把判定定理的条件写全;(2)要求三棱锥的体积,首先要确定高,本题中有面面垂直,由此易得VO 与底面ABC 垂直,因此VO 就是高,求出其长,及ABC 面积,可得体积.试题解析:(1)证明: 点O,M 分别为AB,VA 的中点//OM VB ∴又,OM MOC VB MOC ⊂⊄平面平面//VB MOC∴平面(2)解:连接VO ,则由题知VO ⊥平面AB C,∴VO 为三棱锥V-ABC 的高.又112ABC S VO === ,11.1333V ABC ABC V S VO -∴==⨯=考点:线面平行的判断,体积.。

广东省“四校”2024年高三数学试题考试试题

广东省“四校”2024年高三数学试题考试试题

广东省“四校”2024年高三数学试题考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数1()f x ax x=+在(2,)+∞上单调递增,则实数a 的取值范围是( ) A .1,4⎛⎫+∞⎪⎝⎭ B .1,4⎡⎫+∞⎪⎢⎣⎭C .[1,)+∞D .1,4⎛⎤-∞ ⎥⎝⎦2.已知抛物线C :22y px =(0p >)的焦点为F ,01,2M y ⎛⎫⎪⎝⎭为该抛物线上一点,以M 为圆心的圆与C 的准线相切于点A ,120AMF ∠=︒,则抛物线方程为( ) A .22y x =B .24y x =C .26y x =D .28y x =3.已知,,,m n l αβαβαβ⊥⊂⊂=,则“m ⊥n”是“m ⊥l ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,过点1F 的直线与椭圆交于P 、Q 两点.若2PF Q ∆的内切圆与线段2PF 在其中点处相切,与PQ 相切于点1F ,则椭圆的离心率为( ) A .22B .32C .23D .335.如图,正方体的底面与正四面体的底面在同一平面α上,且//AB CD ,若正方体的六个面所在的平面与直线CE EF ,相交的平面个数分别记为m n ,,则下列结论正确的是( )A .m n =B .2m n =+C .m n <D .8m n +<6.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,若双曲线C 的一条渐近线的倾斜角为3π,且点F 到该渐近线的距离为3,则双曲线C 的实轴的长为 A .1 B .2 C .4D .8557.已知将函数()sin()f x x ωϕ=+(06ω<<,22ππϕ-<<)的图象向右平移3π个单位长度后得到函数()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则ω的值为( )A .2B .3C .4D .328.已知函数()()()2ln 14f x ax x ax =-+-,若0x >时,()0f x ≥恒成立,则实数a 的值为( )A .2eB .4eC .2ee - D .4ee- 9.函数()1ln 1y x x=-+的图象大致为( ) A . B .C .D .10.已知函数()cos 2321f x x x =++,则下列判断错误的是( ) A .()f x 的最小正周期为π B .()f x 的值域为[1,3]-C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,04π⎛⎫-⎪⎝⎭对称 11.某地区高考改革,实行“3+2+1”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有( ) A .8种B .12种C .16种D .20种12.将函数sin 2y x =的图像向左平移(0)ϕϕ>个单位得到函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图像,则ϕ的最小值为( )A .6π B .12πC .1112πD .56π 二、填空题:本题共4小题,每小题5分,共20分。

2019年广东省高考数学试卷(理科)(附详细答案)

2019年广东省高考数学试卷(理科)(附详细答案)

2019年广东省高考数学试卷(理科)一、选择题:本小题共8小题,每小题5分,共40分.1.(5分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4i B.3+4i C.﹣3﹣4i D.﹣3+4i2.(5分)已知集合M{﹣1,0,1},N={0,1,2},则M∪N=()A.{0,1}B.{﹣1,0,1,2} C.{﹣1,0,2}D.{﹣1,0,1}3.(5分)若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则m﹣n=()A.5 B.6 C.7 D.84.(5分)若实数k满足0<k<9,则曲线﹣=1与曲线﹣=1的()A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等5.(5分)已知向量=(1,0,﹣1),则下列向量中与成60°夹角的是()A.(﹣1,1,0)B.(1,﹣1,0)C.(0,﹣1,1)D.(﹣1,0,1)6.(5分)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20 B.100,20 C.200,10 D.100,107.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定8.(5分)设集合A={(x1,x2,x3,x4,x5)|x i∈{﹣1,0,1},i={1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60 B.90 C.120 D.130二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题)9.(5分)不等式|x﹣1|+|x+2|≥5的解集为.10.(5分)曲线y=e﹣5x+2在点(0,3)处的切线方程为.11.(5分)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.12.(5分)在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则= .13.(5分)若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20= .(二)、选做题(14~15题,考生只能从中选作一题)【坐标系与参数方程选做题】14.(5分)(极坐标与参数方程)在极坐标系中,曲线C1和C2的方程分别为.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,ρsin2θ=cosθ和ρsinθ=1建立平面直角坐标系,则曲线C1和C2交点的直角坐标为.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则= .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).17.(13分)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30]30.12(30,35]50.20(35,40]80.32(40,45]n1f1(45,50]n2f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.18.(13分)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.19.(14分)设数列{a n}的前n项和为S n,满足S n=2na n+1﹣3n2﹣4n,n∈N*,且S3=15.(1)求a1,a2,a3的值;(2)求数列{a n}的通项公式.20.(14分)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.21.(14分)设函数f(x)=,其中k<﹣2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).2019年广东省高考数学试卷(理科)参考答案与试题解析一、选择题:本小题共8小题,每小题5分,共40分.1.(5分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4i B.3+4i C.﹣3﹣4i D.﹣3+4i【分析】根据题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得z的值.【解答】解:∵复数z满足(3+4i)z=25,则z====3﹣4i,故选:A.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.2.(5分)已知集合M{﹣1,0,1},N={0,1,2},则M∪N=()A.{0,1}B.{﹣1,0,1,2} C.{﹣1,0,2}D.{﹣1,0,1}【分析】根据集合的基本运算即可得到结论.【解答】解:∵集合M{﹣1,0,1},N={0,1,2},∴M∪N={﹣1,0,1,2},故选:B.【点评】本题主要考查集合的基本运算,比较基础.3.(5分)若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则m﹣n=()A.5 B.6 C.7 D.8【分析】作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A,直线y=﹣2x+z的截距最小,此时z最小,由,解得,即A(﹣1,﹣1),此时z=﹣2﹣1=﹣3,此时n=﹣3,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B,直线y=﹣2x+z的截距最大,此时z最大,由,解得,即B(2,﹣1),此时z=2×2﹣1=3,即m=3,则m﹣n=3﹣(﹣3)=6,故选:B.【点评】本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.4.(5分)若实数k满足0<k<9,则曲线﹣=1与曲线﹣=1的()A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等【分析】根据k的取值范围,判断曲线为对应的双曲线,以及a,b,c的大小关系即可得到结论.【解答】解:当0<k<9,则0<9﹣k<9,16<25﹣k<25,即曲线﹣=1表示焦点在x轴上的双曲线,其中a2=25,b2=9﹣k,c2=34﹣k,曲线﹣=1表示焦点在x轴上的双曲线,其中a2=25﹣k,b2=9,c2=34﹣k,即两个双曲线的焦距相等,故选:A.【点评】本题主要考查双曲线的方程和性质,根据不等式的范围判断a,b,c是解决本题的关键.5.(5分)已知向量=(1,0,﹣1),则下列向量中与成60°夹角的是()A.(﹣1,1,0)B.(1,﹣1,0)C.(0,﹣1,1)D.(﹣1,0,1)【分析】根据空间向量数量积的坐标公式,即可得到结论.【解答】解:不妨设向量为=(x,y,z),A.若=(﹣1,1,0),则cosθ==,不满足条件.B.若=(1,﹣1,0),则cosθ===,满足条件.C.若=(0,﹣1,1),则cosθ==,不满足条件.D.若=(﹣1,0,1),则cosθ==,不满足条件.故选:B.【点评】本题主要考查空间向量的数量积的计算,根据向量的坐标公式是解决本题的关键.6.(5分)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20 B.100,20 C.200,10 D.100,10【分析】根据图1可得总体个数,根据抽取比例可得样本容量,计算分层抽样的抽取比例,求得样本中的高中学生数,再利用图2求得样本中抽取的高中学生近视人数.【解答】解:由图1知:总体个数为3500+2000+4500=10000,∴样本容量=10000×2%=200,分层抽样抽取的比例为,∴高中生抽取的学生数为40,∴抽取的高中生近视人数为40×50%=20.故选:A.【点评】本题借助图表考查了分层抽样方法,熟练掌握分层抽样的特征是关键.7.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定【分析】根据在空间中垂直于同一直线的二直线的位置关系是平行、相交或异面可得,∴l1与l4的位置关系不确定.【解答】解:∵l1⊥l2,l2⊥l3,∴l1与l3的位置关系不确定,又l4⊥l3,∴l1与l4的位置关系不确定.故A、B、C错误.故选:D.【点评】本题考查了空间直线的垂直关系的判定,考查了学生的空间想象能力,在空间中垂直于同一直线的二直线的位置关系是平行、相交或异面.8.(5分)设集合A={(x1,x2,x3,x4,x5)|x i∈{﹣1,0,1},i={1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60 B.90 C.120 D.130【分析】从条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”入手,讨论x i所有取值的可能性,分为5个数值中有2个是0,3个是0和4个是0三种情况进行讨论.【解答】解:由于|x i|只能取0或1,且“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”,因此5个数值中有2个是0,3个是0和4个是0三种情况:①x i中有2个取值为0,另外3个从﹣1,1中取,共有方法数:;②x i中有3个取值为0,另外2个从﹣1,1中取,共有方法数:;③x i中有4个取值为0,另外1个从﹣1,1中取,共有方法数:.∴总共方法数是++=130.即元素个数为130.故选:D.【点评】本题看似集合题,其实考察的是用排列组合思想去解决问题.其中,分类讨论的方法是在概率统计中经常用到的方法,也是高考中一定会考查到的思想方法.二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题)9.(5分)不等式|x﹣1|+|x+2|≥5的解集为(﹣∞,﹣3]∪[2,+∞).【分析】把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.【解答】解:由不等式|x﹣1|+|x+2|≥5,可得①,或②,或③.解①求得x≤﹣3,解②求得x∈?,解③求得x≥2.综上,不等式的解集为(﹣∞,﹣3]∪[2,+∞),故答案为:(﹣∞,﹣3]∪[2,+∞).【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.10.(5分)曲线y=e﹣5x+2在点(0,3)处的切线方程为y=﹣5x+3..【分析】利用导数的几何意义求得切线的斜率,点斜式写出切线方程.﹣5e﹣5x,∴k=﹣5,【解答】解;y′=∴曲线y=e﹣5x+2在点(0,3)处的切线方程为y﹣3=﹣5x,即y=﹣5x+3.故答案为:y=﹣5x+3【点评】本题主要考查利用导数的几何意义求曲线的切线方程,属基础题.11.(5分)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.【分析】根据条件确定当中位数为6时,对应的条件即可得到结论【解答】解:从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,有C107种方法,若七个数的中位数是6,则只需从0,1,2,3,4,5,选3个,从7,8,9中选3个不同的数即可,有C63种方法,则这七个数的中位数是6的概率P==,故答案为:.【点评】本题主要考查古典概率的计算,注意中位数必须是按照从小到大的顺序进行排列的.比较基础.12.(5分)在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则= 2 .【分析】已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式化简,再利用正弦定理变形即可得到结果.【解答】解:将bcosC+ccosB=2b,利用正弦定理化简得:sinBcosC+sinCcosB=2sinB,即sin(B+C)=2sinB,∵sin(B+C)=sinA,∴sinA=2sinB,利用正弦定理化简得:a=2b,则=2.故答案为:2【点评】此题考查了正弦定理,以及两角和与差的正弦函数公式,熟练掌握正弦定理是解本题的关键.13.(5分)若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20= 50 .【分析】直接由等比数列的性质结合已知得到a10a11=e5,然后利用对数的运算性质化简后得答案.【解答】解:∵数列{a n}为等比数列,且a10a11+a9a12=2e5,∴a10a11+a9a12=2a10a11=2e5,∴a10a11=e5,∴lna1+lna2+…lna20=ln(a1a2…a20)=ln(a10a11)10=ln(e5)10=lne50=50.故答案为:50.【点评】本题考查了等比数列的运算性质,考查对数的运算性质,考查了计算能力,是基础题.(二)、选做题(14~15题,考生只能从中选作一题)【坐标系与参数方程选做题】14.(5分)(极坐标与参数方程)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cosθ和ρsinθ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为(1,1).【分析】首先运用x=ρcosθ,将极坐标方程化为普通方程,然后组成方,y=ρsinθ程组,解之求交点坐标.【解答】解:曲线C1:ρsin2θ=cosθ,,即为ρ2sin2θ=ρcosθ化为普通方程为:y2=x,,化为普通方程为:y=1,曲线ρsinθ=1联立,即交点的直角坐标为(1,1).故答案为:(1,1).【点评】本题考查极坐标方程和普通方程的互化,考查解方程的运算能力,属于基础题【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则= 9 .【分析】利用ABCD是平行四边形,点E在AB上且EB=2AE,可得=,利用△CDF∽△AEF,可求.【解答】解:∵ABCD是平行四边形,点E在AB上且EB=2AE,∴=,∵ABCD是平行四边形,∴AB∥CD,∴△CDF∽△AEF,∴=()2=9.故答案为:9.【点评】本题考查相似三角形的判定,考查三角形的面积比,属于基础题.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).【分析】(1)由函数f(x)的解析式以及f()=,求得A的值.(2)由(1)可得f(x)=sin(x+),根据f(θ)+f(﹣θ)=,求得cosθ 的值,从而求得f(﹣θ)的值.的值,再由θ∈(0,),求得sinθ 【解答】解:(1)∵函数f(x)=Asin(x+),x∈R,且f()=.∴Asin(+)=Asin=A?=,∴A=.(2)由(1)可得f(x)=sin(x+),∴f(θ)+f(﹣θ)=sin(θ+)+sin(﹣θ+)=2sin cosθ=cosθ=,∴cosθ=,再由θ∈(0,),可得sinθ=.∴f(﹣θ)=sin(﹣θ+)=sin(π﹣θ)=sinθ=.【点评】本题主要考查三角函数的恒等变换,同角三角函数的基本关系,属于中档题.17.(13分)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30]30.12(30,35]50.20(35,40]80.32(40,45]n1f1(45,50]n2f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.【分析】(1)利用所给数据,可得样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,可得样本频率分布直方图;(3)利用对立事件可求概率.【解答】解:(1)(40,45]的频数n1=7,频率f1=0.28;(45,50]的频数n2=2,频率f2=0.08;(2)频率分布直方图:(3)设在该厂任取4人,没有一人的日加工零件数落在区间(30,35]为事件A,则至少有一人的日加工零件数落在区间(30,35]为事件,已知该厂每人日加工零件数落在区间(30,35]的概率为,∴P(A)==,∴P()=1﹣P(A)=,∴在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率为.【点评】本题考查了频数分布表,频数分布直方图和概率的计算,属于中档题.18.(13分)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.【分析】(1)结合已知又直线和平面垂直的判定定理可判PC⊥平面ADF,即得所求;(2)由已知数据求出必要的线段的长度,建立空间直角坐标系,由向量法计算即可.【解答】解:(1)∵PD⊥平面ABCD,∴PD⊥AD,又CD⊥AD,PD∩CD=D,∴AD⊥平面PCD,∴AD⊥PC,又AF⊥PC,∴PC⊥平面ADF,即CF⊥平面ADF;(2)设AB=1,在RT△PDC中,CD=1,∠DPC=30°,∴PC=2,PD=,由(1)知CF⊥DF,∴DF=,AF==,∴CF==,又FE∥CD,∴,∴DE=,同理可得EF=CD=,如图所示,以D为原点,建立空间直角坐标系,则A(0,0,1),E(,0,0),F(,,0),P(,0,0),C(0,1,0)设向量=(x,y,z)为平面AEF的法向量,则有,,∴,令x=4可得z=,∴=(4,0,),由(1)知平面ADF的一个法向量为=(,1,0),设二面角D﹣AF﹣E的平面角为θ,可知θ为锐角,cosθ=|cos<,>|===∴二面角D﹣AF﹣E的余弦值为:【点评】本题考查用空间向量法求二面角的余弦值,建立空间直角坐标系并准确求出相关点的坐标是解决问题的关键,属中档题.19.(14分)设数列{a n}的前n项和为S n,满足S n=2na n+1﹣3n2﹣4n,n∈N*,且S3=15.(1)求a1,a2,a3的值;(2)求数列{a n}的通项公式.【分析】(1)在数列递推式中取n=2得一关系式,再把S3变为S2+a3得另一关系式,联立可求a3,然后把递推式中n取1,再结合S3=15联立方程组求得a1,a2;(2)由(1)中求得的a1,a2,a3的值猜测出数列的一个通项公式,然后利用数学归纳法证明.【解答】解:(1)由S n=2na n+1﹣3n2﹣4n,n∈N*,得:S2=4a3﹣20 ①又S3=S2+a3=15 ②联立①②解得:a3=7.再在S n=2na n+1﹣3n2﹣4n中取n=1,得:a1=2a2﹣7 ③又S3=a1+a2+7=15 ④联立③④得:a2=5,a1=3.∴a1,a2,a3的值分别为3,5,7;(2)∵a1=3=2×1+1,a2=5=2×2+1,a3=7=2×3+1.由此猜测a n=2n+1.下面由数学归纳法证明:1、当n=1时,a1=3=2×1+1成立.2、假设n=k时结论成立,即a k=2k+1.那么,当n=k+1时,由S n=2na n+1﹣3n2﹣4n,得,,两式作差得:.∴==2(k+1)+1.综上,当n=k+1时结论成立.∴a n=2n+1.【点评】本题考查数列递推式,训练了利用数学归纳法证明与自然数有关的命题,考查了学生的灵活应变能力和计算能力,是中档题.20.(14分)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.【分析】(1)根据焦点坐标和离心率求得a和b,则椭圆的方可得.(2)设出切线的方程,带入椭圆方程,整理后利用△=0,整理出关于k的一元二次方程,利用韦达定理表示出k1?k2,进而取得x0和y0的关系式,即P点的轨迹方程.【解答】解:(1)依题意知,求得a=3,b=2,∴椭圆的方程为+=1.(2)①当两条切线中有一条斜率不存在时,即A、B两点分别位于椭圆长轴与短轴的端点,P的坐标为(±3,±2),符合题意,②当两条切线斜率均存在时,设过点P(x0,y0)的切线为y=k(x﹣x0)+y0,+=+=1,整理得(9k2+4)x2+18k(y0﹣kx0)x+9[(y0﹣kx0)2﹣4]=0,∴△=[18k(y0﹣kx0)]2﹣4(9k2+4)×9[(y0﹣kx0)2﹣4]=0,整理得(x02﹣9)k2﹣2x0×y0×k+(y02﹣4)=0,∴﹣1=k1?k2==﹣1,∴x02+y02=13.把点(±3,±2)代入亦成立,∴点P的轨迹方程为:x2+y2=13.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x和y关系.21.(14分)设函数f(x)=,其中k<﹣2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).【分析】(1)利用换元法,结合函数成立的条件,即可求出函数的定义域.(2)根据复合函数的定义域之间的关系即可得到结论.(3)根据函数的单调性,即可得到不等式的解集.【解答】解:(1)设t=x2+2x+k,则f(x)等价为y=g(t)=,要使函数有意义,则t2+2t﹣3>0,解得t>1或t<﹣3,即x2+2x+k>1或x2+2x+k<﹣3,则(x+1)2>2﹣k,①或(x+1)2<﹣2﹣k,②,∵k<﹣2,∴2﹣k>﹣2﹣k,由①解得x+1>或x+1,即x>﹣1或x,由②解得﹣<x+1<,即﹣1﹣<x<﹣1+,综上函数的定义域为(﹣1,+∞)∪(﹣∞,﹣1﹣)∪(﹣1﹣,﹣1+).(2)f′(x)===﹣,由f'(x)>0,即2(x2+2x+k+1)(x+1)<0,则(x+1+)(x+1﹣)(x+1)<0解得x<﹣1﹣或﹣1<x<﹣1+,结合定义域知,x<﹣1﹣或﹣1<x <﹣1+,即函数的单调递增区间为:(﹣∞,﹣1﹣),(﹣1,﹣1+),同理解得单调递减区间为:(﹣1﹣,﹣1),(﹣1+,+∞).(3)由f(x)=f(1)得(x2+2x+k)2+2(x2+2x+k)﹣3=(3+k)2+2(3+k)﹣3,则[(x2+2x+k)2﹣(3+k)2]+2[(x2+2x+k)﹣(3+k)]=0,∴(x2+2x+2k+5)(x2+2x﹣3)=0即(x+1+)(x+1﹣)(x+3)(x﹣1)=0,∴x=﹣1﹣或x=﹣1+或x=﹣3或x=1,∵k<﹣6,∴1∈(﹣1,﹣1+),﹣3∈(﹣1﹣,﹣1),∵f(﹣3)=f(1)=f(﹣1﹣)=f(﹣1+),且满足﹣1﹣∈(﹣∞,﹣1﹣),﹣1+∈(﹣1+,+∞),由(2)可知函数f(x)在上述四个区间内均单调递增或递减,结合图象,要使f(x)>f(1)的集合为:()∪(﹣1﹣,﹣3)∪(1,﹣1+)∪(﹣1+,﹣1+).【点评】本题主要考查函数定义域的求法,以及复合函数单调性之间的关系,利用换元法是解决本题的关键,综合性较强,难度较大.。

2025年广东省高中学业水平考试春季高考数学试题(含答案解析)

2025年广东省高中学业水平考试春季高考数学试题(含答案解析)

2025广东学业水平考试(春季高考)数学模拟试卷一、选择题:本大题共12小题,每小题6分,共72分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}012M =,,,{}1,0,1N =-,则M N ⋃=()A.{}0,1 B.{}1,0,1,2- C.{}0,1,2 D.{}1,0,1-2.命题“∃x<0,x 2+2x-m>0”的否定是()A.∀x<0,x 2+2x-m>0B.∃x≤0,x 2+2x-m>0C.∀x<0,x 2+2x-m≤0D.∃x<0,x 2+2x-m≤03.已知复数11iz =+,则z 的虚部为()A .1-B .1C .12-D .124.已知角α的终边经过点()1,2-,则sin cos αα+=()A .55B .255C .55-D .255-5.某公司现有普通职员160人,中级管理人员30人,高级管理人员10人,要从其中抽取m 个人进行身体健康检查,如果采用分层抽样的方法,其中高级管理人员仅抽到1人,那么m 的值为()A.1B.3C.16D.206.已知213log =a ,b=B ,c=B ,则()A.a<b<cB.b<a<cC.b<c<a D.c<b<a7.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题为真命题的是()A.αγ⊥,//βγαβ⊥⇒ B.m α⊥,//n m nα⊥⇒C.//m α,////n m n α⇒D.//m α,////m βαβ⇒8.设)(x f 为定义在R 上的奇函数,当x >0时,)(x f =log 3(1+x ),则)2(-f =()A .﹣3B .﹣1C .1D .39.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.至少有一个黑球与都是黑球B.至少有一个黑球与都是红球C.恰有一个黑球与恰有两个黑球D.至少有一个黑球与至少有一个红球10.下列函数与x y =有相同图象的一个函数是()A.y=B.y=C.y=l (a>0,且a≠1)D.y=l a x (a>0且a≠1)11.已知函数()lg ,02,0xx x f x x >⎧=⎨<⎩,若110a f ⎛⎫= ⎪⎝⎭,则()f a 的值是()A.2- B.1- C.110D.1212.从长度为2,4,6,8,9的5条线段中任取3条,则这3条线段能构成一个三角形的概率为()A .B .C .D .1二、填空题:本大题共6小题,每小题6分,共36分.13.函数()cos 2f x x =的最小正周期是_____.14.已知向量(,3),(1,1)am b m ==+.若a b ⊥,则m =.15.设一组样本数据x 1,x 2,...,x n 的平均数是3,则数据2x 1+1,2x 2+1,...,2x n +1的平均数为.16.口袋内装有100个大小相同的红球、白球和黑球,其中有45个红球;从中摸出1个球,若摸出白球的概率为0.23,则摸出黑球的概率为.17.在如图所示的斜截圆柱中,已知圆柱底面的直径为40cm ,母线长最短50cm ,最长80cm ,则斜截圆柱的侧面面积S =______cm 2.18.若α,β为锐角,sin α=,cos β=1,则α+β=_________.三、解答题:本大题共4小题,第19~21题各10分,第22题12分,共42分.解答需写出文字说明,证明过程和演算步骤.19.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,3a =,=2c ,30B =︒(1)求b (2)求sin A 的值20.甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取9次,记录如下:甲:828179789588938485乙:929580758380908585(1)求甲成绩的0080分位数;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由?21.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年..的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm )满足关系:()()4011035C x x x =≤≤+,设y 为隔热层建造费用与20年的能源消耗费用之和.(1)求y 的表达式;(2)隔热层修建多厚时,总费用y 达到最小,并求最小值.22.如图,在三棱锥P­ABC中,平面PAB⊥平面ABC,△PAB是等边三角形,AC⊥BC,且AC=BC=2,O,D分别是AB,PB的中点.(1)求证:PA∥平面COD;(2)求三棱锥P­ABC的体积.一、选择题:本大题共12小题,每小题6分,共72分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}012M =,,,{}1,0,1N =-,则M N ⋃=()A.{}0,1B.{}1,0,1,2-C.{}0,1,2 D.{}1,0,1-【答案】B 【解析】【分析】利用并集的定义可求得集合M N ⋃.【详解】因为集合{}012M =,,,{}1,0,1N =-,因此,{}1,0,1,2M N ⋃=-.故选:B 2.命题“∃x<0,x 2+2x-m >0”的否定是()A.∀x<0,x 2+2x-m>0B.∃x≤0,x 2+2x-m>0C.∀x<0,x 2+2x-m≤0D.∃x<0,x 2+2x-m≤0【答案】C【解析】解:命题“∃x<0,x 2+2x-m>0”是特称命题,特称命题“∃x<0,x 2+2x-m >0”的否定是“∀x<0,x 2+2x-m≤0”.故答案为:C.3.已知复数11iz =+,则z 的虚部为()A .1-B .1C .12-D .12【答案】C【分析】先化简求出z ,即可得出答案.【详解】因为()()11i 11i 1i 1i 1i 22z -===-++-,所以z 的虚部为12-.故选:C.4.已知角α的终边经过点()1,2-,则sin cos αα+=()A .55B .255C .55-D .255-【答案】A【分析】根据终边上的点的坐标,用正弦、余弦的定义求解.【详解】点()1,2-到原点的距离为22(1)25-+=,所以225sin 55α==,15cos 55α-==-,5sin cos 5αα+=,故选:A.5.某公司现有普通职员160人,中级管理人员30人,高级管理人员10人,要从其中抽取m 个人进行身体健康检查,如果采用分层抽样的方法,其中高级管理人员仅抽到1人,那么m 的值为()A.1B.3C.16D.20【答案】D【解析】由题意可得110=160+30+10,所以m=20,选D。

2015高考数学试卷(广东卷)文数(有答案、解析版)

2015高考数学试卷(广东卷)文数(有答案、解析版)

一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合{}1,1M =-,{}2,1,0N =-,则MN =( )A .{}0,1-B .{}0C .{}1D .{}1,1-【答案】C考点:集合的交集运算.2.已知i 是虚数单位,则复数()21i +=( )A .2-B .2C .2i -D .2i 【答案】D 【解析】试题分析:()221121212i i i i i +=++=+-=,故选D .考点:复数的乘法运算.3.下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+B .2cos y x x =- C .122xx y =+D .sin 2y x x =+ 【答案】A 【解析】试题分析:函数()2sin f x x x =+的定义域为R ,关于原点对称,因为()11sin1f =+,()1sin1f x -=-,所以函数()2sin f x x x =+既不是奇函数,也不是偶函数;函数()2cos f x x x =-的定义域为R ,关于原考点:函数的奇偶性.4.若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .2 【答案】C 【解析】试题分析:作出可行域如图所示:作直线0:l 230x y +=,再作一组平行于0l 的直线:l 23x y z +=,当直线l 经过点A 时,23z x y =+取得最大值,由224x y x +=⎧⎨=⎩得:41x y =⎧⎨=-⎩,所以点A 的坐标为()4,1-,所以()max 24315z =⨯+⨯-=,故选C .考点:线性规划.5.设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,23c =,3cos 2A =,且 b c <,则b =( )A .3B .2C .22D .3 【答案】B 【解析】试题分析:由余弦定理得:2222cos a b c bc =+-A ,所以()22232232232b b =+-⨯⨯⨯,即2680b b -+=,解得:2b =或4b =,因为b c <,所以2b =,故选B .考点:余弦定理.6.若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列 命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 【答案】A 【解析】试题分析:若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则l 至少与1l ,2l 中的一条相交,故选A . 考点:空间点、线、面的位置关系.7.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率 为( )A .0.4B .0.6C .0.8D .1 【答案】B 【解析】试题分析:5件产品中有2件次品,记为a ,b ,有3件合格品,记为c ,d ,e ,从这5件产品中任取2件,有10种,分别是(),a b ,(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,(),c d ,(),c e ,(),d e ,恰有一件次品,有6种,分别是(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,设事件A =“恰有一件次品”,则()60.610P A ==,故选B . 考点:古典概型.8.已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .2 【答案】C 【解析】试题分析:由题意得:222549m =-=,因为0m >,所以3m =,故选C . 考点:椭圆的简单几何性质.9.在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =, 则D C A ⋅A =( )A .2B .3C .4D .5 【答案】D考点:1、平面向量的加法运算;2、平面向量数量积的坐标运算. 10.若集合(){},,,04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个数,则()()card card F E +=( )A .50B .100C .150D .200 【答案】D 【解析】试题分析:当4s =时,p ,q ,r 都是取0,1,2,3中的一个,有44464⨯⨯=种,当3s =时,p ,q ,r 都是取0,1,2中的一个,有33327⨯⨯=种,当2s =时,p ,q ,r 都是取0,1中的一个,有2228⨯⨯=种,当1s =时,p ,q ,r 都取0,有1种,所以()card 642781100E =+++=,当0t =时,u 取1,2,3,4中的一个,有4种,当1t =时,u 取2,3,4中的一个,有3种,当2t =时,u 取3,4中的一个,有2种,当3t =时,u 取4,有1种,所以t 、u 的取值有123410+++=种,同理,v 、w的取值也有10种,所以()card F 1010100=⨯=,所以()()card card F 100100200E +=+=,故选D . 考点:推理与证明.二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(11~13题)11.不等式2340x x --+>的解集为 .(用区间表示) 【答案】()4,1-【解析】试题分析:由2340x x --+<得:41x -<<,所以不等式2340x x --+>的解集为()4,1-,所以答案应填:()4,1-.考点:一元二次不等式.12.已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的 均值为 . 【答案】11考点:均值的性质.13.若三个正数a ,b ,c 成等比数列,其中526a =+,526c =-,则b = . 【答案】1【解析】试题分析:因为三个正数a ,b ,c 成等比数列,所以()()25265261b ac ==+-=,因为0b >,所以1b =,所以答案应填:1.考点:等比中项.(二)选做题(14、15题,考生只能从中选作一题)14.(坐标系与参数方程选做题)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为222x ty t⎧=⎪⎨=⎪⎩(t为参数),则1C 与2C 交点的直角坐标为 . 【答案】()2,4-【解析】试题分析:曲线1C 的直角坐标方程为2x y +=-,曲线2C 的普通方程为28y x =,由228x y y x +=-⎧⎨=⎩得:24x y =⎧⎨=-⎩,所以1C 与2C 交点的直角坐标为()2,4-,所以答案应填:()2,4-. 考点:1、极坐标方程化为直角坐标方程;2、参数方程化为普通方程;3、两曲线的交点. 15.(几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的 切线,切点为C ,过A 作直线C E 的垂线,垂足为D .若4A B =,C 23E =,则D A = .【答案】3【解析】试题分析:连结C O ,则C D O ⊥E ,因为D D A ⊥E ,所以C//D O A ,所以C D O OE=A AE,由切割线定理得:2C E =BE⋅AE ,所以()412BE BE+=,即24120BE +BE -=,解得:2BE =或6BE =-(舍去),所以C 26D 34O ⋅AE ⨯A ===OE ,所以答案应填:3. 考点:1、切线的性质;2、平行线分线段成比例定理;3、切割线定理.三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.)16.(本小题满分12分)已知tan 2α=.(1)求tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)求2sin 2sin sin cos cos 21ααααα+--的值.【答案】(1)3-;(2)1. 【解析】试题分析:(1)由两角和的正切公式展开,代入数值,即可得tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)先利用二倍角的正、余弦公式可得222sin 22sin cos sin sin cos cos 21sin sin cos 2cos ααααααααααα=+--+-,再分子、分母都除以2cos α可得22sin 22tan sin sin cos cos 21tan tan 2αααααααα=+--+-,代入数值,即可得2sin 2sin sin cos cos 21ααααα+--的值.试题解析:(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭- (2)2sin 2sin sin cos cos 21ααααα+-- ()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+-22tan tan tan 2ααα=+-222222⨯=+-1=考点:1、两角和的正切公式;2、特殊角的三角函数值;3、二倍角的正、余弦公式;4、同角三角函数的基本关系.17.(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的 方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户? 【答案】(1)0.0075;(2)230,224;(3)5. 【解析】(2)月平均用电量的众数是2202402302+= 因为()0.0020.00950.011200.450.5++⨯=<,所以月平均用电量的中位数在[)220,240内,设中位数为a ,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=得:224a =,所以月平均用电量的中位数是224(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=户,月平均用电量为[)240,260的用户有0.00752010015⨯⨯=户,月平均用电量为[)260,280的用户有0.0052010010⨯⨯=户,月平均用电量为[]280,300的用户有0.0025201005⨯⨯=户,抽取比例11125151055==+++,所以月平均用电量在[)220,240的用户中应抽取12555⨯=户考点:1、频率分布直方图;2、样本的数字特征(众数、中位数);3、分层抽样.18.(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直, D C 4P =P =,6AB =,C 3B =. (1)证明:C//B 平面D P A ; (2)证明:C D B ⊥P ;(3)求点C 到平面D P A 的距离.【答案】(1)证明见解析;(2)证明见解析;(3)372. 【解析】试题分析:(1)由四边形CD AB 是长方形可证C//D B A ,进而可证C//B 平面D P A ;(2)先证C CD B ⊥,再证C B ⊥平面DC P ,进而可证C D B ⊥P ;(3)取CD 的中点E ,连结AE 和PE ,先证PE ⊥平面CD AB ,再设点C 到平面D P A 的距离为h ,利用C D CD V V -P A P-A =三棱锥三棱锥可得h 的值,进而可得点C 到平面D P A 的距离.试题解析:(1)因为四边形CD AB 是长方形,所以C//D B A ,因为C B ⊄平面D P A ,D A ⊂平面D P A ,所以C//B 平面D P A(2)因为四边形CD AB 是长方形,所以C CD B ⊥,因为平面DC P ⊥平面CD AB ,平面DCP 平面CD CD AB =,C B ⊂平面CD AB ,所以C B ⊥平面DC P ,因为D P ⊂平面DC P ,所以C D B ⊥P (3)取CD 的中点E ,连结AE 和PE ,因为D C P =P ,所以CD PE ⊥,在R t D ∆P E 中,22D D PE =P -E22437=-=,因为平面DC P ⊥平面CD AB ,平面DC P 平面CD CD AB =,PE ⊂平面DC P ,所以PE ⊥平面CD AB ,由(2)知:C B ⊥平面DC P ,由(1)知:C//D B A ,所以D A ⊥平面DC P ,因为D P ⊂平面DC P ,所以D D A ⊥P ,设点C 到平面D P A 的距离为h ,因为C D CD V V -P A P-A =三棱锥三棱锥,所以D CD 1133S h S ∆P A ∆A ⋅=⋅PE ,即CD D 136737212342S h S ∆A ∆P A ⨯⨯⨯⋅PE ===⨯⨯,所以点C 到平面D P A 的距离是372考点:1、线面平行;2、线线垂直;3、点到平面的距离.19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =, 且当2n ≥时,211458n n n n S S S S ++-+=+. (1)求4a 的值;(2)证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; (3)求数列{}n a 的通项公式.【答案】(1)78;(2)证明见解析;(3)()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭.【解析】试题分析:(1)令2n =可得4a 的值;(2)先将211458n n n n S S S S ++-+=+(2n ≥)转化为2144n n n a a a +++=,再利用等比数列的定义可证112n n a a +⎧⎫-⎨⎬⎩⎭是等比数列;(3)先由(2)可得数列112n n a a +⎧⎫-⎨⎬⎩⎭的通项公式,再将数列112n n a a +⎧⎫-⎨⎬⎩⎭的通项公式转化为数列12n n a ⎧⎫⎪⎪⎪⎪⎨⎬⎛⎫⎪⎪⎪⎪⎪⎝⎭⎩⎭是等差数列,进而可得数列{}n a 的通项公式. 试题解析:(1)当2n =时,4231458S S S S +=+,即435335415181124224a ⎛⎫⎛⎫⎛⎫+++++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得:478a =(2)因为211458n n n n S S S S ++-+=+(2n ≥),所以21114444n n n n n n S S S S S S ++-+-+-=-(2n ≥),即2144n n n a a a +++=(2n ≥),因为3125441644a a a +=⨯+==,所以2144n n n a a a +++=,因为()2121111111114242212142422222n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a +++++++++++-----====----,所以数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列(3)由(2)知:数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列,所以111122n n n a a -+⎛⎫-= ⎪⎝⎭即1141122n n n n a a ++-=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以数列12n n a ⎧⎫⎪⎪⎪⎪⎨⎬⎛⎫⎪⎪ ⎪⎪⎪⎝⎭⎩⎭是以1212a =为首项,公差为4的等差数列,所以()2144212nna n n =+-⨯=-⎛⎫⎪⎝⎭,即()()111422122n n n a n n -⎛⎫⎛⎫=-⨯=-⨯ ⎪ ⎪⎝⎭⎝⎭,所以数列{}n a 的通项公式是()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭考点:1、等比数列的定义;2、等比数列的通项公式;3、等差数列的通项公式.20.(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围; 若不存在,说明理由.【答案】(1)()3,0;(2)492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫⎝⎛≤<335x ;(3)存在,752752≤≤-k 或34±=k . 【解析】试题分析:(1)将圆1C 的方程化为标准方程可得圆1C 的圆心坐标;(2)先设线段AB 的中点M 的坐标和直线l 的方程,再由圆的性质可得点M 满足的方程,进而利用动直线l 与圆1C 相交可得0x 的取值范围,即可得线段AB 的中点M 的轨迹C 的方程;(3)先说明直线L 的方程和曲线C 的方程表示的图形,再利用图形可得当直线L:()4y k x =-与曲线C 只有一个交点时,k 的取值范围,进而可得存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点.所以202022054x x m y <=,所以20200543x x x <-,解得350>x 或00<x ,又因为300≤<x ,所以3350≤<x . 所以),(00y x M 满足49232020=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<3350x 即M 的轨迹C 的方程为492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<335x . (3)由题意知直线L 表示过定点T (4,0),斜率为k 的直线. 结合图形,49232020=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<3350x 表示的是一段关于X 轴对称,起点为⎪⎪⎭⎫ ⎝⎛-352,35按逆时针方向运动到⎪⎪⎭⎫ ⎝⎛352,35的圆弧.根据对称性,只需讨论在X 轴对称下方的圆弧.设P⎪⎪⎭⎫ ⎝⎛-352,35,则752354352=-=PT k ,而当直线L 与轨迹C 相切时,.2314232=+-k k k ,解得43±=k .在这里暂取43=k ,因为43752<,所以k k PT <结合图形,可得对于X 轴对称下方的圆弧,当0752≤≤-k 或34=k 时,直线L 与X 轴对称下方的圆弧有且只有一个交点,根据对称性可知752752≤≤-k 或34±=k . 综上所述:当752752≤≤-k 或34±=k 时,直线L:()4y k x =-与曲线C 只有一交点. 考点:1、圆的标准方程;2、直线与圆的位置关系;3、圆锥曲线与圆的位置关系.21.(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---.(1)若()01f ≤,求a 的取值范围;(2)讨论()f x 的单调性;(3)当2a ≥时,讨论()4f x x +在区间()0,+∞内的零点个数. 【答案】(1)21≤a ;(2))(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减;(3)当2=a 时,()4f x x+有一个零点x=2;当2>a ,)(x f y =与xy 4-=有两个零点. 【解析】试题分析:(1)先由()01f <可得1≤+a a ,再对a 的取值范围进行讨论可得1≤+a a 的解,进而可得a 的取值范围;(2)先写函数()f x 的解析式,再对a 的取值范围进行讨论确定函数()f x 的单调性;(3)先由(2)得函数()f x 的最小值,再对a 的取值范围进行讨论确定()4f x x +在区间()0,+∞内的零点个数. 试题解析:(1)22(0)f a a a a a a =+-+=+,因为()01f ≤,所以1≤+a a当0≤a 时,10≤,显然成立;当0>a ,则有12≤a ,所以21≤a .所以210≤<a综上所述,a 的取值范围是21≤a . (2)()⎪⎩⎪⎨⎧<++-≥--=ax a x a x a x x a x x f ,2)12(,12)(22 对于()x a x u 1221--=,其对称轴为a a a x <-=-=21212,开口向上, 所以)(x f 在),(+∞a 上单调递增; 对于()a x a x u 21221++-=,其对称轴为a a a x >+=+=21212,开口向上, 所以)(x f 在),(a -∞上单调递减. 综上,)(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减.(3)由(2)得)(x f 在),(+∞a 上单调递增,在),0(a 上单调递减,所以2min )()(a a a f x f -==. (i)当2=a 时,2)2()(min-==f x f ,⎪⎩⎪⎨⎧<+-≥-=2,452,3)(22x x x x x x x f 令()4f x x +=0,即xx f 4)(-=(x>0). 因为)(x f 在)2,0(上单调递减,所以2)2()(-=>f x f 而x y 4-=在)2,0(上单调递增,2)2(-=<f y ,所以)(x f y =与xy 4-=在)2,0(无交点. 当2≥x 时,xx x x f 43)(2-=-=,即04323=+-x x ,所以042223=+--x x x ,所以()0)1(22=+-x x ,因为2≥x ,所以2=x ,即当2=a 时,()4f x x +有一个零点x=2. (ii)当2>a 时,2min )()(a a a f x f -==,当),0(a x ∈时,42)0(>=a f ,2)(a a a f -=,而xy 4-=在),0(a x ∈上单调递增, 当a x =时,a y 4-=.下面比较2)(a a a f -=与a4-的大小 因为0)2)(2()4()4(2232<++--=---=---a a a a a a a a a a 所以aa a a f 4)(2-<-=结合图像不难得当2>a ,)(x f y =与x y 4-=有两个交点. 综上,当2=a 时,()4f x x +有一个零点x=2;当2>a ,)(x f y =与xy 4-=有两个零点. 考点:1、绝对值不等式;2、函数的单调性;3、函数的最值;4、函数的零点.。

高考广东卷数学试题及参考答案 (2)

高考广东卷数学试题及参考答案 (2)

3.细胞核的组成包括( ABCD )A.核膜 B.核仁C.核液 D.染色质4.高尔基复合体( B C )A.又称内网器 B.由扁平囊、大泡、小泡三部分构成 C.小泡多散在于生成面,大泡位于成熟面 D.能够合成蛋白质5.溶酶体( BD )A.又称过氧化酶体 B.分初级和次级溶酶体C.参与细胞分裂活动 D.富含酸性磷酸和其他水解酶6.细胞分裂方式包括( AC )A.无丝分裂 B.减数分裂 C.有丝分裂 D.分裂期三、名词解释:1.单位膜高:在倍镜下呈三层:内外两层电子密度高,中间层电子密度低。

2.细胞周期:细胞从上一次分裂结束到下一次分裂所经历的时间称为细胞周期。

3.细胞分化:是指多细胞生物在个体发育过程中,细胞在分裂的基础上,彼此之间在形态结构、生理功能等方面产稳定性差异的过程。

四、填空:1.细胞是生物体形态结构和生命活动的基本单位。

2.细胞膜又称质膜,其主要化学组成为脂类、蛋白质和糖类。

3.哺乳动物染色体有两大类,一类为常染色体,另一类为性染色体。

4.粗面内质网的表面附有核糖体。

5.染色质的主要化学组成是 DNA 和组蛋白和非组蛋白。

6.核仁的主要化学组成是蛋白质 RNA 和 DNA 。

五、问答题1.何为液态镶嵌模型学说?在液态的脂类双分子层中,镶嵌着可移动的球形蛋白质。

每一脂类分子均由一个头部和两个尾部构成。

头部为亲水端,朝向膜的内外表面;尾部为疏水端,朝向膜的中央。

球形蛋白质有的位于脂类双分子层中间,称嵌入蛋白质,有的附着在膜的表面,称表在蛋白质。

在细胞膜的外表面,糖分子可与蛋白质分子或脂质分子相结合,形成糖链,构成细胞衣。

2.简述细胞有丝分裂的过程。

第二章上皮组织一、单选题1.组织的组成一般是(D )A.细胞和粘合质B.细胞和纤维 C.细胞和基质 D.细胞和间质2.细胞层数最多,对机体保护能力较强的上皮是(D )A.单层柱状上皮B.复层柱状上皮 C.假复层柱状纤毛上皮 D.复层扁平上皮3.分布在腹膜、胞膜、心包膜表面的上皮称为( C )C.间皮 D.腺上皮4.衬贴在心脏、血管、淋巴管腔面的上皮是( C )A.间皮 B.被覆上皮C.内皮 D.腺上皮5.腺上皮意指( A )A.具有分泌能力的上皮 B.能将物质排出细胞外的上皮C.以分泌机能为主的上皮 D.腺体内的细胞6.浆液腺和粘液腺的命名依据是( D )A.腺细胞的结构B.分布的位置 C.腺末房的形状 D.分泌物的性质7.内分泌腺的分泌物叫作( C )A.维生素 B.粘液C.激素 D.浆液8.腺的定义是( C )A.具有分泌机能的细胞群 B.以分泌机能为主的上皮组织C.以腺上皮为主构成的器官 D.能将细胞内物质排出细胞外的细胞9.盖细胞存在于( A )A.变移上皮 B.复层扁平上皮 C.复层柱状上皮D.假复层柱状纤毛上皮10.间皮和内皮都属于( C )A.复层扁平上皮 B.单层立方上皮 C.单层扁平上皮 D.复层柱状上皮二、多选题:1.上皮的结构特点是( ABCD )A.细胞多,间质少 B.大多数上皮有极性C.一般无血管分布 D.含有丰富的神经末梢2.间皮分布于( ABC D )A.脾脏表面 B.腹膜C.胸膜 D.肾脏表面3.内分泌腺与外分泌腺的主要区别是( B D )A.腺细胞具有分泌功能B.腺体有无导管C.主要由腺细胞组成D.分泌物的转运方式不同4.根据分泌物的性质可将某些外分泌物分为(ABC )A.粘液腺 B.浆液腺C.混合腺 D.内分泌腺5.单层柱状上皮分布于( ABC )A.小肠 B.大肠 C.胆 D.某些腺体的导管处6.上皮细胞游离面的特殊结构包括( ABC )A.微绒毛 B.细胞衣 C.纤毛 D.绒毛7.上皮细胞侧面的特殊结构包括( ABCD )三、名词解释:1.微绒毛: 是上皮细胞游离面向上伸出的许多细小的指状突起2.纤毛:是细胞游离面伸出的能摆动的突起四、填空:1.单层上皮包括单层扁平上皮、单层立方上皮、单层柱状上皮;复层上皮包括复层扁平上皮、复层柱状上皮和变移上皮。

广东成人高考数学试题及答案

广东成人高考数学试题及答案

广东成人高考数学试题及答案一、选择题(每题3分,共36分)1. 下列函数中,哪一个是奇函数?A. y = x^2B. y = |x|C. y = sin(x)D. y = cos(x)答案:D2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求A∪B。

A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 2, 3, 4, 5}答案:B3. 计算定积分∫(0到1) x dx 的值。

A. 0B. 1/2C. 1D. 2答案:B...(此处省略剩余的选择题,每个题目都应包含一个简短的问题和四个选项,以及正确答案)二、填空题(每题4分,共24分)4. 极限 lim (x->0) [sin(x)/x] 的值是 _______。

答案:15. 二次方程 ax^2 + bx + c = 0(a≠0)的判别式为Δ = _______。

答案:b^2 - 4ac...(此处省略剩余的填空题)三、解答题(共40分)6. 已知函数 f(x) = 2x - 3,请求解方程 f(x) = 0 的根。

答案:首先,将 f(x) 设置为 0,得到方程 2x - 3 = 0。

解这个方程,我们得到 x = 3/2。

7. 计算定积分∫(1到2) (2x + 1) dx。

答案:首先,我们找到函数 (2x + 1) 的原函数 F(x) = x^2 + x+ C。

然后,我们计算 F(2) - F(1) = (2^2 + 2) - (1^2 + 1) = 4 + 2 - 1 - 1 = 4。

...(此处省略剩余的解答题)广东成人高考数学试题答案一、选择题答案1. D2. B...(此处列出所有选择题的答案)二、填空题答案4. 15. b^2 - 4ac...(此处列出所有填空题的答案)三、解答题答案6. x = 3/27. 4...(此处列出所有解答题的答案)请注意,以上内容是根据您的要求虚构的,实际的广东成人高考数学试题和答案可能会有所不同。

1999年高考数学试题及答案(广东)

1999年高考数学试题及答案(广东)

1999年普通高等学校招生全国统一考试数 学(广东卷)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

共150分。

考试时间120分钟。

第I 卷(选择题 60分)参考公式:三角函数的积化和差公式()()[]βαβαβα-++=sin sin 21cos sin()()[]βαβαβα--+=sin sin 21sin cos()()[]βαβαβα-++=cos cos 21cos cos()()[]βαβαβα--+-=cos cos 21sin sin正棱台、圆台的侧面积公式()l c c S +'=21台侧其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式()h S S S S V +'+'=31台体其中S '、S 分别表示上、下底面积,h 表示高一、 选择题:本大题共12小题;第每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是 (A )(M ∩P )∩S (B )(M ∩P )∪S(C )(M ∩P )∩S (D )(M ∩P )∪S(2) 已知映射f :B A →,其中,集合{},4,3,2,1,1,2,3---=A 集合B 中的元素都是A 中元素在映射f 下的象,且对任意的,A a ∈在B 中和它对应的元素是a ,则集合B 中元素的个数是(A )4 (B )5 (C )6 (D )7 (3)若函数()x f y =的反函数是()()0,,≠==ab b a f x g y ,则()b g 等于(A )a (B )1-a (C )b (D )1-b (4)函数()()()0sin >+=ωϕωx M x f 在区间[]b a ,上是增函数,且()(),,M b f M x f =-=则函数()()ϕω+=x M x g cos 在[]b a ,上(A )是增函数 (B )是减函数(C )可以取得最大值M (D )可以取得最小值M - (5)若()x x f sin 是周期为π的奇函数,则()x f 可以是(A )x sin (B )x cos (C )x 2sin (D )x 2cos(6)在极坐标系中,曲线⎪⎭⎫ ⎝⎛-=3sin 4πθρ关于(A )直线3πθ=轴对称 (B )直线πθ65=轴对称 (C )点⎪⎭⎫⎝⎛3,2π中心对称 (D )极点中心对称(7)若干毫升水倒入底面半径为cm 2的圆柱形器皿中,量得水面的高度为cm 6, 若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是(A )cm 36 (B )cm 6 (C )cm 3182 (D )cm 3123 (8)若(),323322103x a x a x a a x +++=+则()()231220a a a a +-+的值为(A )1- (B )1 (C )0 (D )2 (9)直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为(A )6π (B )4π (C )3π (D )2π (10)如图,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF ∥AB ,EF 23=,EF 与面AC 的距离为2,则该多面体的体积为(A )29(B )5 (C )6(D )215(11)若,22sin ⎪⎭⎫ ⎝⎛<<->>παπαααctg tg 则∈α(A )⎪⎭⎫⎝⎛--4,2ππ (B )⎪⎭⎫ ⎝⎛-0,4π (C )⎪⎭⎫⎝⎛4,0π (D )⎪⎭⎫ ⎝⎛2,4ππ(12)某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元 的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒, 则不同的选购方式共有(A )5种 (B )6种 (C )7种 (D )8种1999年普通高等学校招生全国统一考试 数 学(广东卷) 第II 卷(非选择题 90分)二.填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横线上。

2020年广东高考(文科)数学试题及答案

2020年广东高考(文科)数学试题及答案
15.曲线 的一条切线的斜率为2,则该切线的方程为______________.
【答案】
【解析】
【分析】
设切线的切点坐标为 ,对函数求导,利用 ,求出 ,代入曲线方程求出 ,得到切线的点斜式方程,化简即可.
【详解】设切线的切点坐标为 ,
【详解】由图可得:函数图象过点 ,
将它代入函数 可得:
又 是函数 图象与 轴负半轴的第一个交点,
所以 ,解得:
所以函数 的最小正周期为
故选:C
【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.
8.设 ,则 ()
A. B. C. D.
【答案】B
【解析】
【分析】
根据已知等式,利用指数对数运算性质即可得解
据此结合目标函数的几何意义可知目标函数在点A处取得最大值,
联立直线方程: ,可得点A的坐标为: ,
据此可知目标函数的最大值为: .
故答案为:1.
【点睛】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 则 ()
A. B.
C. D.
2.若 ,则 ()
A.0B.1
C. D.2
3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()

广东省2019年高考数学试卷(理科)以及答案解析

广东省2019年高考数学试卷(理科)以及答案解析

绝密★启用前广东省2019年高考理科数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3}B.{x|﹣4<x<﹣2}C.{x|﹣2<x<2}D.{x|2<x<3} 2.(5分)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1B.(x﹣1)2+y2=1C.x2+(y﹣1)2=1D.x2+(y+1)2=13.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.7.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.8.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+9.(5分)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n﹣5B.a n=3n﹣10C.S n=2n2﹣8n D.S n=n2﹣2n 10.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=111.(5分)关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③12.(5分)已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π二、填空题:本题共4小题,每小题5分,共20分。

1999年高考数学试题及答案(广东)

1999年高考数学试题及答案(广东)

1999年普通高等学校招生全国统一考试数 学(广东卷)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

共150分。

考试时间120分钟。

第I 卷(选择题 60分)参考公式:三角函数的积化和差公式()()[]βαβαβα-++=sin sin 21cos sin ()()[]βαβαβα--+=sin sin 21sin cos ()()[]βαβαβα-++=cos cos 21cos cos ()()[]βαβαβα--+-=cos cos 21sin sin 正棱台、圆台的侧面积公式()l c c S +'=21台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长台体的体积公式()h S S S S V +'+'=31台体 其中S '、S 分别表示上、下底面积,h 表示高一、 选择题:本大题共12小题;第每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是(A )(M ∩P )∩S(B )(M ∩P )∪S (C )(M ∩P )∩S(D )(M ∩P )∪S(2) 已知映射f :B A →,其中,集合{,3,2,1,1,2,3---=A 都是A 中元素在映射f 下的象,且对任意的,A a ∈在B 中和它对应的元素是a ,则集合B 中元素的个数是(A )4 (B )5 (C )6 (D )7(3)若函数()x f y =的反函数是()()0,,≠==ab b a f x g y ,则()b g 等于(A )a (B )1-a (C )b (D )1-b(4)函数()()()0sin >+=ωϕωx M x f 在区间[]b a ,上是增函数,且()(),,M b f M x f =-=则函数()()ϕω+=x M x g cos 在[]b a ,上(A )是增函数 (B )是减函数(C )可以取得最大值M (D )可以取得最小值M -(5)若()x x f sin 是周期为π的奇函数,则()x f 可以是(A )x sin (B )x cos (C )x 2sin (D )x 2cos(6)在极坐标系中,曲线⎪⎭⎫ ⎝⎛-=3sin 4πθρ关于 (A )直线3πθ=轴对称 (B )直线πθ65=轴对称 (C )点⎪⎭⎫ ⎝⎛3,2π中心对称 (D )极点中心对称 (7)若干毫升水倒入底面半径为cm 2的圆柱形器皿中,量得水面的高度为cm 6, 若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是(A )cm 36 (B )cm 6 (C )cm 3182 (D )cm 3123(8)若(),323322103x a x a x a a x +++=+则()()231220a a a a +-+的值为 (A )1- (B )1 (C )0 (D )2(9)直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为(A )6π (B )4π (C )3π (D )2π (10)如图,在多面体ABCDEF 中,已知面ABCD是边长为3的正方形,EF ∥AB ,EF 23=,EF 与面AC 的距离为2,则该多面体的体积为(A )29 (B )5 (C )6 (D )215 (11)若,22sin ⎪⎭⎫ ⎝⎛<<->>παπαααctg tg 则∈α(A )⎪⎭⎫ ⎝⎛--4,2ππ (B )⎪⎭⎫ ⎝⎛-0,4π (C ) ⎪⎭⎫ ⎝⎛4,0π (D )⎪⎭⎫ ⎝⎛2,4ππ(12)某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元 的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有(A )5种 (B )6种 (C )7种 (D )8种1999年普通高等学校招生全国统一考试数 学(广东卷)第II 卷(非选择题 90分)二.填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横线上。

(广东卷)高考数学试题详细解答及考点解读

(广东卷)高考数学试题详细解答及考点解读

普通高等学校招生全国统一考试(广东卷)理科数学本试卷共21小题,满分150分,考试用时120分钟.试卷类型: B参考公式:锥体的体积公式13V sh =,其中S 是锥体的底面积,h 是锥体的高 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有( ).A.3个 B.2个C.1个 D.无穷个2.设z 是复数,()z α表示满足1nz =的最小正整数n ,则对虚数单位i ,(i)α=( ).A.8 B.6 C.4 D.23.若函数()y f x =是函数(0,x y a a =>且1)a ≠的反函数,其图象经过点)a ,则()f x =( ).A.2log x B.12log x C.12x D.2x 4.巳知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=( ).A.(21)n n - B.2(1)n + C.2n D.2(1)n -5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( ).A.①和② B.②和③ C.③和④ D.②和④6. 一质点受到平面上的三个力123,,F F F (单位:牛顿)的作用而处于平衡状态.已知12,F F 成60°角,且12,F F 的大小分别为2和4,则3F 的大小为( ).A.6 B.2 C. D.7.2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有( ).A.36种 B.12种 C.18种 D.48种8.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v v 乙甲和(如图2所示).那么对于图中给定的01t t 和,下列判断中一定正确的是( ).A .在1t 时刻,甲车在乙车前面B .1t 时刻后,甲车在乙车后面C .在0t 时刻,两车的位置相同D .0t 时刻后,乙车在甲车前面二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~12题)9.随机抽取某产品n 件,测得其长度分别为12,,,n a a a ,则图3所示的程序框图输出s ,表示的样本的数字特征是 .(注:框图中的赋值符号“=”也可以写成“←”“:=”)10.若平面向量,a b 满足||1,+=+a b a b 平行于x 轴,(2,1)=-b ,则=a .11.巳知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为2,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为_________________.12.已知离散型随机变量X 的分布列如右表.若0EX =,1DX =,则a = ,b = .(二)选做题(13 ~ 15题,考生只能从中选做两题)13.(坐标系与参数方程选做题)若直线112,:()2.x t l t y kt =-⎧⎨=+⎩为参数与直线2,:12.x s l y s =⎧⎨=-⎩(s 为参数)垂直,则k = .14.(不等式选讲选做题)不等式112x x +≥+的实数解为 .15.(几何证明选讲选做题)如图4,点,,A B C 是圆O 上的点, 且4,45︒=∠=AB ACB ,则圆O 的面积等于 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知向量(sin ,2)θ=-a 与(1,cos )θ=b 互相垂直,其中π0,2θ⎛⎫∈ ⎪⎝⎭. (1)求sin cos θθ和的值;(2)若sin()102πθϕϕ-=<<,求cos ϕ的值. 17.(本小题满分12分)根据空气质量指数API (为整数)的不同,可将空气质量分级如下表:对某城市一年(365天)的空气质量进行监测,获得API 数据按照区间[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]进行分组,得到频率分布直方图如图5.(1)求直方图中x 的值;(2)计算一年中空气质量分别为良和轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.(结果用分数表示.已知1282,78125577==,9125123912581825318257365218253=++++, 573365⨯= )18.(本小题满分14分)如图6,已知正方体1111ABCD A B C D -的棱长为2,点E是正方形11BCC B 的中心,点F ,G 分别是棱111,C D AA 的中点.设点11,E G 分别是点,E G 在平面11DCC D 内的正投影.(1)求以E 为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积;(2)证明:直线11FG FEE ⊥平面;(3)求异面直线11E G EA 与所成角的正弦值.19.(本小题满分14分)已知曲线2:C y x =与直线:20l x y -+=交于两点(,)A A A x y 和(,)B B B x y ,且A B x x <.记曲线C 在点A 和点B 之间那一段L 与线段AB 所围成的平面区域(含边界)为D .设点(,)P s t 是L 上的任一点,且点P 与点A 和点B 均不重合.(1)若点Q 是线段AB 的中点,试求线段PQ 的中点M 的轨迹方程;(2)若曲线22251:24025G x ax y y a -+-++=与D 有公共点,试求a 的最小值. 20.(本小题满分14分)已知二次函数()y g x =的导函数的图象与直线2y x =平行,且()y g x =在1x =-处取得极小值1(0)m m -≠.设()()g x f x x=. (1)若曲线()y f x =上的点P 到点(0,2)Q,求m 的值;(2)()k k ∈R 如何取值时,函数()y f x kx =-存在零点,并求出零点.21.(本小题满分14分)已知曲线22:20(1,2,)n C x nx y n -+==.从点(1,0)P -向曲线n C 引斜率为(0)n n k k >的切线n l ,切点为(,)n n n P x y .(1)求数列{}{}n n x y 与的通项公式;(2)证明:13521n n nx x x x x y -⋅⋅⋅⋅<.普通高等学校招生全国统一考试(广东卷)理科数学试题答案及解读一、选择题1. B. 【解读与点评】本小题是人教A版必修1习题1.1A组第6题、北师大版必修1复习题一A 组第6题的综合变式题, 主要考查集合语言及数形结合的思想方法.考生的主要失误在于不会将符号语言与图形语言进行合理转换.本题作为起始题,把表示集合的符号语言和图形语言揉合在一起,考生只有准确识别出图1的阴影部分所示的集合的含义(即N M ),才能正确地作出解答,既考查了基本知识,也考查了考生的识图能力.主要解法如下:因为}31|{≤≤-=x x M ,},5,3,1{ =N ,所以 }3,1{=N M ,故选B.2.C.【解读与点评】本小题是人教A 版选修2-2复习参考题B 组第2题的变式题,主要考查虚数单位i 的周期性及阅读理解能力和创新意识.主要解法如下:因12-=i ,i i -=3,14=i ,所以满足1=ni 的最小正整数n 的值是4.故选C . 考生的主要失误在于不理解()i α含义.3. B.【解读与点评】本小题是人教A 版(必修1)2.1.2例6、北师大版(必修1)5.2例3的变式题,主要考查指数函数与对数函数的关系(互为反函数),及指数与对数运算.主要解法有:解法一:由函数()y f x =是函数(0,1)x y a a a =>≠且的反函数,可知x x f a log )(=,又其图象经过点)a ,即a a a =log ,所以12a =, x x f 21log )(=,故选B .解法二: 依题意函数(0,1)x y a a a =>≠且的图象经过点(a ,aa =, 所以12a =, x x f 21log )(=,故选B . 考生的主要失误在于不理解反函数概念, 指数与对数运算欠熟练.4. C.【解读与点评】本小题是人教A 版必修5复习参考题B 组第1(1)题,北师大版必修5复习题一A 组第6(2)题的综合变式题, 主要考查等差数列与等比数列的基本运算.主要解法有:解法一:设等比数列{}n a 的首项为1a ,公比为q ,由25252(3)n n a a n -⋅=≥,得()2426121112n n n a q a q a q --==,则n n a 2=,12122--=n n a ,12log 122-=-n a n , 所以2123221log log log n a a a -+++=2(121)13(21)2n n n n +-+++-==, 故选C.解法二:因为25252(3)n n a a n -⋅=≥,所以25225log log 2n a a n -+=,又{}2l o g n a 是等差数列,所以22123221252252(log log log )2(log log )2n n a a a n a a n --+++=+=, 所以2123221log log log n a a a -+++=2n ,故选C.考生的主要失误是运算差错.5. D. 【解读与点评】本小题是课本相关定理的变式题,主要考查线线、线面平行和垂直的判定和性质.主要解法如下:显然 ①和③是假命题,故否定A,B,C, 故选D.考生的主要失误是立体几何定理掌握不牢,平几定理在空间类比产生了负迁移.6. D .【解读与点评】本小题是人教A 版必修4习题A 组第4题的变式题,主要考查平面向量的数量积及向量在物理学中的应用.主要解法如下: 依题意,可知321=++F F F ,所以)(213F F F +-=,o F F 60)(221++=+=+= =214224222⨯⨯⨯++=28.所以,力3F 7228==,故选D .考生的主要失误是物理背景欠熟悉,不会将实际问题转化为向量运算问题.此题不仅要求考生要掌握力学中的有关原理,更要求考生要善于把物理问题转化为数学问题,利用平行四边形(或三角形)法则,把力的合成转化为平面向量的加法运算,画出图形后再进行求解,很好区分了考生将文字语言和符号语言转化为图形语言水平的高低.7.A .【解读与点评】本小题以2010年广州亚运会为背景,是人教A 版选修2-3习题1.2A组第15(3)题的变式题,主要考查两个计数原理、排列组合知识及数学应用意识.主要解法如下:若小张和小赵两人都被选中,则不同的选派方案有2223A A 12⋅=种,若小张和小赵两人只有一人被选中,则不同的选派方案有113223C C A 24⋅=种,故不同的选派方案共有12+24=36种。

2013广东高考卷(理科数学)试题及详解

2013广东高考卷(理科数学)试题及详解

专业课原理概述部分一、选择题(每题1分,共5分)1. 设集合A={x|x²3x+2=0},则A中元素的个数为()A. 0B. 1C. 2D. 32. 若函数f(x)=2x3在区间(a,+∞)上单调递增,则实数a的取值范围是()A. a≥1B. a≤1C. a≥1D. a≤13. 执行右边的程序框图,若输入的x值为2,则输出y的值为()A. 6B. 8C. 10D. 124. 若向量a=(3,4),b=(1,2),则2a+3b的模长是()A. 7B. 9C. 11D. 135. 在△ABC中,角A、B、C的对边分别为a、b、c,若sin2A+sin2B+sin2C=3,则△ABC是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 不等边三角形二、判断题(每题1分,共5分)1. 若a>b,则ac²>bc²。

()2. 两个平行线之间的距离处处相等。

()3. 若函数f(x)在区间(a,b)上单调递增,则f'(x)>0。

()4. 三角形的面积等于底乘以高的一半。

()5. 任何两个实数的和都是实数。

()三、填空题(每题1分,共5分)1. 已知函数f(x)=x²2x+1,则f(1)=______。

2. 若向量a=(2,3),则向量a的模长|a|=______。

3. 在平面直角坐标系中,点P(2,3)关于x轴的对称点坐标为______。

4. 若等差数列{an}的公差为2,首项为1,则第10项a10=______。

5. 若sinθ=1/2,且θ为锐角,则cosθ=______。

四、简答题(每题2分,共10分)1. 简述函数的单调性定义。

2. 解释什么是平面向量的坐标表示。

3. 请写出三角形面积公式。

4. 请列举三种不同的数列。

5. 简述反函数的定义及其性质。

五、应用题(每题2分,共10分)1. 已知函数f(x)=3x²4x+1,求f(x)在区间(1,2)上的最大值。

2003年高考数学试题及答案(广东)

2003年高考数学试题及答案(广东)

2003年普通高等学校招生全国统一考试(广东卷)数 学一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.暂缺 2. 已知==-∈x x x 2tan ,54cos ),0,2(则π( )A .247 B .-247 C .724D .-7243.圆锥曲线的准线方程是θθρ2cos sin 8=( )A .2cos -=θρB .2cos =θρC .2sin -=θρD .2sin =θρ4.等差数列}{n a 中,已知33,4,31521==+=n a a a a ,则n 为 ( )A .48B .49C .50D .515.双曲线虚轴的一个端点为M ,两个焦点为F 1、F 2,∠F 1MF 2=120°,则双曲线的离心率为 ( )A .3B .26C .36 D .33 5.设函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(,21x xx x f x 若1)(0>x f ,则x 0的取值范围是( )A .(-1,1)B .(-1,+∞)C .(-∞,-2)∪(0,+∞)D .(-∞,-1)∪(1,+∞)7.函数)cos (sin sin 2x x x y +=的最大值为 ( )A .21+B .12-C .2D .28.已知圆截得被当直线及直线C l y x l a x a x C .03:)0(4)2()(:22=+->=-+-的弦长为32时,则a =( )A .2B .22-C .12-D .12+9.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )A .22R πB .249R πC .238R πD .223r π 10.函数=∈=-)(]23,2[,sin )(1x f x x x f 的反函数ππ( )A .]1,1[,arcsin -∈-x xB .]1,1[,arcsin -∈--x x πC .]1,1[,arcsin -∈+-x x πD .]1,1[,arcsin -∈-x x π11.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1).一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2,P 3和P 4(入射角等于反射角). 设P 4的坐标为(x 4,0),若214<<x , 则θtan 的取值范围是( )A .(31,1) B .)32,31(C .)21,52(D .)32,52(12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为 ( )A .3πB .4πC .π33D .6π二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上 13.不等式x x x <-)4(的解集是 14.9)12(2x x -展开式中9x 的系数是15.在平面几何里,有勾股定理:“设△ABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面面积间的关系,可 以得出的正确结论是:“设三棱锥A —BCD 的三个侧面ABC 、ACD 、ADB 两两相互垂 直,则 16.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得 使用同一颜色,现有4种颜色可 供选择,则不同的着色方法共有种.(以数字作答)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤。

1999年高考数学试题(广东)及答案

1999年高考数学试题(广东)及答案

1999年普通高等学校招生全国统一考试数 学(广东卷)第I 卷(选择题 60分)参考公式:三角函数的积化和差公式()()[]βαβαβα-++=sin sin 21cos sin ()()[]βαβαβα--+=sin sin 21sin cos ()()[]βαβαβα-++=cos cos 21cos cos ()()[]βαβαβα--+-=cos cos 21sin sin正棱台、圆台的侧面积公式 ()l c c S +'=21台侧其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式()h S S S S V +'+'=31台体 其中S '、S 分别表示上、下底面积,h 表示高一、 选择题:本大题共12小题;第每小题5分,共60题目要求的。

(1) 如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是(A )(M ∩P )∩S (B )(M ∩P )∪S (C )(M ∩P )∩S (D )(M ∩P )∪S(2) 已知映射f :B A →,其中,集合{},4,3,2,1,1,2,3---=A 集合B 中的元素都是A 中元素在映射f 下的象,且对任意的,A a ∈在B 中和它对应的元素是a ,则集合B 中元素的个数是(A )4 (B )5 (C )6 (D )7(3)若函数()x f y =的反函数是()()0,,≠==ab b a f x g y ,则()b g 等于(A )a (B )1-a (C )b (D )1-b(4)函数()()()0sin >+=ωϕωx M x f 在区间[]b a ,上是增函数,且 ()(),,M b f M x f =-=则函数()()ϕω+=x M x g cos 在[]b a ,上(A )是增函数 (B )是减函数(C )可以取得最大值M (D )可以取得最小值M - (5)若()x x f sin 是周期为π的奇函数,则()x f 可以是(A )x sin (B )x cos (C )x 2sin (D )x 2cos (6)在极坐标系中,曲线⎪⎭⎫⎝⎛-=3sin 4πθρ关于 (A )直线3πθ=轴对称 (B )直线πθ65=轴对称(C )点⎪⎭⎫⎝⎛3,2π中心对称 (D )极点中心对称(7)若干毫升水倒入底面半径为cm 2的圆柱形器皿中,量得水面的高度为cm 6,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是(A )cm 36 (B )cm 6 (C )cm 3182 (D )cm 3123 (8)若(),323322103x a x a x a a x +++=+则()()231220a a a a +-+的值为(A )1- (B )1 (C )0 (D )2(9)直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为(A )6π (B )4π (C )3π (D )2π (10)如图,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF ∥AB ,EF 23=,EF 与面AC 的距离为2,则该多面体的体积为(A )29 (B )5 (C )6 (D )215(11)若,22sin ⎪⎭⎫ ⎝⎛<<->>παπαααctg tg 则∈α(A )⎪⎭⎫ ⎝⎛--4,2ππ (B )⎪⎭⎫ ⎝⎛-0,4π (C ) ⎪⎭⎫⎝⎛4,0π (D )⎪⎭⎫ ⎝⎛2,4ππ(12)某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有(A )5种 (B )6种 (C )7种 (D )8种第II 卷(非选择题 90分)二.填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横线上。

2002年高考数学试题(广东)及答案

2002年高考数学试题(广东)及答案

广东普通高等学校招生统一考试数学试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式31--x x >0的解集为A .{x|x<1}B .{x|x>3}C .{x|x<1或x>3}D .{x|1<x<3} 2.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积是 A.3π B.33π C.6π D.9π 3.极坐标方程ρ2cos2θ=1所表示的曲线是A .两条相交直线B .圆C .椭圆D .双曲线4.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则a的取值范围是 A .(0,21) B.(0,21] C.(21,+∞) D.(0,+∞)5.已知复数z=i 62+,则argZ1是A .3πB.35π C.6π D.611π6.函数y=2-x+1(x>0)的反函数是 A .y=log211-x ,x∈(1,2); B.y=-log211-x ,x∈(1,2) C.y=log211-x ,x∈(1,2); D.y=-log211-x ,x∈(1,2]7.若0<α<β<4π,sinα+cosα=a,sinβ+cosβ=b,则A .a>b B.a<b C.ab<1 D.ab>2 8.在正三棱柱ABC —A 1B1C1中,若AB=2BB1,则AB 1与C1B所成的角的大小为A .60° B.90° C.45° D.120° 9.设f(x)、g(x)都是单调函数,有如下四个命题①若f(x)单调递增,g(x)单调递增,则f(x)-g(x)单调递增;②若f(x)单调递增,g(x)单调递减,则f(x)-g(x)单调递增;③若f(x)单调递减,g(x)单调递增,则f(x)-g(x)单调递减;④若f(x)单调递减,g(x)单调递减,则f(x)-g(x)单调递减其中,正确的命题是 A . ①③ B.①④ C.②③ D.②④10.对于抛物线y2=4x上任意一点Q ,点P (a ,0)都满足|PQ|≥|a|,则a 的取值范围是 A .(-∞,0) B .(-∞,2) C .[0,2] D .(0,2)11.一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜 记三种盖法屋顶面积分别为P1、P2、P3.若屋顶斜面与水平面所成的角都是α,则A .P 3>P 2>P 1 B.P 3>P 2=P 1C.P 3=P2>P1 D.P 3=P 2=P 112.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为A .26 B.24 C.20 D.19第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.已知甲、乙两组各有8人,现从每组抽取4人进行计算机知识竞赛,比赛人员的组共有 种可能(用数字作答). 14.双曲线116922=-yx的两个焦点为F1、F2,点P 在双曲线上,若PF1⊥PF2,则点P 到x轴的距离为 .15.设{an}是公比为q的等比数列,Sn是它的前n项和.若{Sn}是等差数列,则q= . 16.圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为 . 三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)求函数y=(sinx+cosx)2+2cos2x的最小正周期. 18.(本小题满分12分)已知等差数列前三项为a,4,3a,前n项的和为Sn,Sk =2550. (Ⅰ)求a及k的值;(Ⅱ)求)111(lim 21nn S S S +++∞→19.(本小题满分12分)如图,在底面是直角梯形的四棱锥S—ABCD 中, ∠ABC=90°,SA⊥面ABCD ,SA =AB =BC=1,AD=21.(Ⅰ)求四棱锥S —ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值.20.(本小题满分12分)设计一幅宣传画,要求画面面积为4840 cm 2 ,画面的宽与高的比为λ(λ<1),画面的上、下各留8cm空白,左、右各留5cm空白.怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?如果要求λ∈]43,32[,那么λ为何值时,能使宣传画所用纸张面积最小? 21.(本小题满分14分)已知椭圆1222=+yx的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC∥x 轴 求证直线AC 经过线段EF 的中点. 22.(本小题满分14分)设f(x)是定义在R 上的偶函数,其图象关于直线x=1对称 对任意x1,x2∈[0,21],都有f(x1+x2)=f(x1)·f(x2),且f (1)=a>0.(Ⅰ)求f)41(),21(f ;(Ⅱ)证明f(x)是周期函数; (Ⅲ)记an=f(2n+n21),求)(ln lim n n a ∞→.广东普通高等学校招生统一考试数学试题参考答案一、选择题 1.C 2.A 3.D 4.A 5.B 6.A 7.B 8.B 9.C 10.B 11.D 12.D 二、填空题 13.4900 14.516 15.1 16.2n (n -1)三、解答题17.解:y=(sinx+cosx)2+2cos2x=1+sin2x+2cos2x=sin2x+cos2x+2 5分 =2)42sin(2++πx 8分所以最小正周期T=π. 10分 18.解:(Ⅰ)设该等差数列为{an},则a 1=a,a2=4,a3=3a,Sk=2550. 由已知有a +3a =2×4,解得首项a 1=a=2,公差d =a 2-a1=2. 2分 代入公式S k=k·a1+d k k ⋅-2)1(得255022)1(2=⋅-+⋅k k k∴k2+k-2550=0 解得k =50,k =-51(舍去)∴a =2,k =50. 6分 (Ⅱ)由d n n a n S n ⋅-+⋅=2)1(1得S n=n(n+1),12111111111111(-)(-)(-)1223(1)12231nS S S n n n n +++=+++=+++⨯⨯++ 111+-=n 9分 1)111(lim )111(lim 21=+-=+++∴∞→∞→n S S S n nn 12分19.解:(Ⅰ)直角梯形ABCD 的面积是M 底面=AB AD BC ⋅+)(21=43125.01=⨯+ 2分∴四棱锥S —ABCD 的体积是414313131=⨯⨯=⨯⨯=底面MSA V 4分(Ⅱ)延长BA 、CD 相交于点E ,连结SE ,则SE 是所求二面角的棱 6分 ∵AD∥BC,BC=2AD∴EA=AB=SA,∴SE⊥SB ∵SA⊥面ABCD ,得面SEB ⊥面EBC ,EB 是交线.又BC⊥EB,∴BC⊥面SEB ,故SB 是SC 在面SEB 上的射影,∴CS ⊥SE, 所以∠BSC是所求二面角的平面角 10分 ∵SB=SB BC BC AB SA ⊥==+,1,222∴tg∠BSC=22=SBBC即所求二面角的正切值为22 12分20.解:设画面高为xcm,宽为λxcm ,则λx2=4840 1分 设纸张面积为S ,则有 S=(x+16)(λx+10)=λx2+(16λ+10)x+160, 3分 将x=λ1022代入上式得S=5000+44)58(10λλ+5分当8)185(85,5==λλλ即时,S 取得最小值,此时,高:x=884840=λc m,宽:λx=558885=⨯cm 8分如果λ∈[43,32],可设433221≤≤λλ ,则由S 的表达式得 S(λ1)-S(λ2)=44)5858(102211λλλλ--+=)58)((104421121λλλλ--10分由于058,85322121λλλλ-≥故因此S(λ1)-S(λ2)<0,所以S (λ)在区间[43,32]内单调递增. 从而,对于λ∈[43,32],当λ=32时,S (λ)取得最小值答:画面高为88cm、宽为55cm 时,所用纸张面积最小;如果要求λ∈[43,32],当λ=32时,所用纸张面积最小. 12分21.证明:依设,得椭圆的半焦距c=1,右焦点为F (1,0),右准线方程为x=2,点E 的坐标为(2,0),EF 的中点为N (23,0) 3分若AB 垂直于x 轴,则A (1,y1),B(1,-y1),C(2,-y1), ∴AC 中点为N (23,0),即AC 过EF 中点N.若AB 不垂直于x 轴,由直线AB 过点F ,且由BC ∥x 轴知点B 不在x 轴上,故直线AB 的方程为y=k(x-1),k≠0.记A (x1,y1)和B(x2,y2),则C (2,y2)且x1,x2满足二次方程1)1(2222=-+x k x即(1+2k2)x2-4k2x+2(k2-1)=0, ∴x1+x2=22212221)1(2,214kkx x kk+-=+ 10分又x21=2-2y21<2,得x1-23≠0, 故直线AN ,CN 的斜率分别为 k1=32)1(2231111--=-x x k x y )1(2232222-=-=x k y k∴k1-k2=2k·32)32)(1()1(1121-----x x x x∵(x1-1)-(x2-1)(2x1-3)=3(x1+x2)-2x1x2-4 =0)]21(4)1(412[2112222=+---+k kkk∴k1-k2=0,即k1=k2,故A 、C 、N 三点共线.所以,直线AC 经过线段EF 的中点N. 14分 22.(Ⅰ)解:因为对x1,x2∈[0,21],都有f(x1+x2)=f(x1)·f(x 2),所以2211111()()()()0,[0,1](1)()()()[()]222222222111111()()()()[()]244444x xx x f x f f f x f f f f f f f f f f =+=⋅≥∈=+=⋅==+=⋅=f(1)=a>0, 3 分∴4121)41(,)21(a f a f == 6分(Ⅱ)证明:依题设y=f(x)关于直线x=1对称, 故f(x)=f(1+1-x), 即f(x)=f(2-x),x∈R又由f(x)是偶函数知f(-x)=f(x),x∈R , ∴f(-x)=f(2-x),x∈R ,将上式中-x以x代换,得f(x)=f(x+2),x∈R这表明f(x)是R 上的周期函数,且2是它的一个周期. 10分 (Ⅲ)解:由(Ⅰ)知f(x)≥0,x∈[0,1] ∵]21)1(21[)21()21(n n nf n n f f ⋅-+=⋅= 111111 ()[(1)]()()()[()]222222nf f n f f f f n nnnn n =⋅-⋅==⋅⋅⋅=21)21(a f =∴n a nf 21)21(= 12分 ∵f(x)的一个周期是2 ∴f(2n+n21)=f(n21),因此a n =n a 210)ln 21(lim )(ln lim ==∴∞→∞→a na n n n 14分。

2000年广东高考数学试题(附答案)

2000年广东高考数学试题(附答案)

2000年普通高等学校招生全国统一考试(广东卷)数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至8页。

共150分。

考试时间120分钟。

第Ⅰ卷(选择题共60分) 注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、考生号、座位号、考试科目、试卷类型(A 或B )用铅笔涂写在答题卡上,同时将才生号条形码粘贴在答题卡“条形码粘贴处”。

2.每小题选出答案后,用铅笑把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

3.考试结束,监考人将本试卷和答题卡一并收回。

参考公式:三角函数的积化和差公式)]cos()[cos(21sin sin )]sin()[sin(21sin cos )]sin()[sin(21cos sin βαβαβαβαβαβαβαφαβα--+-=--+=-++=正棱台、圆台的侧面积公式l S )c c (21+'=台侧其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式h S S S V )S (31+'+=台体其中S '、S 分别表示上、下底面积,h 表示高。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合],43,2,1[=A ,那么A 的真子集的个数是: (A )15 (B )16 (C )3 (D )4 (2)在复平面内,把复数i 33-对应的向量按顺时钟方向旋转3π,所得向量对应的复数是:(A )23 (B )i 32- (C )3i 3- (D )3+i 3(3)一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是:(A )23 (B )32 (C )6 (D )6 (4)已知sin α>sin β,那么下列命题成立的是 (A )若α、β是第一象限角,则cos α>cos β(B )若α、β是第二象限角,则tg α>tg β (C )若α、β是第三象限角,则cos α>cos β (D )若α、β是第四象限角,则tg α>tg β (5)函数x x y cos -=的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分段累进计算:(A )800~900元 (B )900~1200元 (C )1200~1500元 (D )1500~2800元(7)若a >b >1,⎪⎭⎫⎝⎛+=+=⋅=2lg ),lg (lg 21,lg lg b a R b a Q b a P ,则 (A )R <P <Q (B )P <Q <R (C )Q <P <R (D )P <R <Q(8)以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是 (A )⎪⎭⎫⎝⎛-=4cos 2πθρ (B )⎪⎭⎫ ⎝⎛-=4sin 2πθρ (C )()1cos 2-=θρ (C )()1sin 2-=θρ(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A )ππ221+ (B )ππ441+ (C )ππ21+ (D )ππ241+(10)过原点的直线与圆2x +2y +x 4+3=0相切,若切点在第三象限,则该直线的方程是(A )x y 3=(B )x y 3-= (C )x y 33=(D )x y 33-=(11)过抛物线)0(2a ax y =的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则p1+q1等于(A )a 2 (B )a21 (C )a 4 (D )a4(12)如图,OA 是圆雏底面中心O 互母线的垂线,OA 绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角的余弦值为(A )321(B )21 (C )21 (D )n212000年普通高等学校招生全国统一考试(广东卷)数学第Ⅱ卷(非选择题共90分) 注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中。

广东成人高考数学试题及答案

广东成人高考数学试题及答案

广东成人高考数学试题及答案一、选择题(每题5分,共50分)1. 下列哪个数是自然数?A. -3B. 0C. 1.5D. π答案:B2. 若函数f(x) = 2x^2 + 3x + 1,求f(-1)的值。

A. -2B. 0C. 2D. 4答案:B3. 已知直角三角形的两个直角边分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 8答案:A4. 一个圆的半径为5,求其面积。

A. 25πB. 50πC. 75πD. 100π答案:B5. 已知等差数列的首项为2,公差为3,求第5项的值。

A. 17B. 14C. 11D. 8答案:A6. 一个正方体的体积是64立方厘米,求其边长。

A. 2厘米B. 4厘米C. 8厘米D. 16厘米答案:B7. 已知sin(θ) = 1/2,求cos(θ)的值。

A. √3/2B. -√3/2C. 1/√2D. -1/√2答案:A8. 一个函数f(x) = x^3 - 3x^2 + 2x,求其导数。

A. 3x^2 - 6x + 2B. x^2 - 6x + 2C. x^3 - 6x + 2D. 3x^2 - 2x + 1答案:A9. 已知抛物线方程为y = x^2 + 2x - 3,求其顶点坐标。

A. (-1, -4)B. (1, -4)C. (-2, -1)D. (2, -1)答案:A10. 一个等腰三角形的底边长为6,两腰长为5,求其面积。

A. 12B. 15C. 18D. 20答案:B二、填空题(每题3分,共15分)11. 圆的周长公式是_________。

答案:2πr12. 正弦定理的公式是_________。

答案:a/sinA = b/sinB = c/sinC13. 已知一个数列的通项公式为an = 3n - 2,求第10项的值。

答案:2814. 求函数f(x) = x^2 - 4x + 3的极小值。

答案:015. 已知一个三角形的三个内角分别为A、B、C,求外角A的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通高等学校招生全国统一考试(广东卷)数 学本试卷分选择题和非选择题两部分..共4页,满分150分.考试时间120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号写在答题卡上.用2B 铅笔将答题卡试卷类型(B )涂黑。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用像皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.第一部分 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的1、函数2()lg(31)f x x ++的定义域是A.1(,)3-+∞B. 1(,1)3-C. 11(,)33-D. 1(,)3-∞- 2、若复数z 满足方程220z +=,则3z =A.±B. -C. -D. ± 3、下列函数中,在其定义域内既是奇函数又是减函数的是A.3 ,y x x R =-∈B. sin ,y x x R =∈C. ,y x x R =∈D. x 1() ,2y x R =∈ 4、如图1所示,D 是ABC ∆的边AB 上的中点,则向量CD =A.12BC BA -+B. 12BC BA -- C. 12BC BA - D. 12BC BA +5、给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面 ③如果两条直线都平行于一个平面,那么这两条直线互相平行,④如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 其中真命题的个数是A.4B. 3C. 2D. 16、已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为A.5B.4C. 3D. 2CB 图17、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点(0,2)P (如图2所示),则方程()0f x =在[1,4]上的根是x =A.4B.3C. 2D.18、已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于B.C. 2D. 4 9、在约束条件0024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35x ≤≤时,目标函数32z x y =+的最大值的变化范围是A.[6,15]B. [7,15]C. [6,8]D. [7,8] 10、对于任意的两个实数对(,)a b 和(,)c d ,规定:(,)(,)a b c d =,当且仅当,a c b d ==;运算“⊗”为:(,)(,)(,)a b c d ac bd bc ad ⊗=-+;运算“⊕”为:(,)(,)(,)a b c d a c b d ⊕=++,设,p q R ∈,若(1,2)(,)(5,0)p q ⊗=,则(1,2)(,)p q ⊕=A.(4,0)B. (2,0)C. (0,2)D. (0,4)-第二部分 非选择题(共100分)二、填空题:本大题共4小题,每题5分,共20分. 11、2241lim()42x x x →--=-+________. 12、棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______. 13、在112()x x-的展开式中,5x 的系数为________.14、在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第2,3,4,堆最底层(第一层)分别按图4所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以()f n 表示第n 堆的乒乓球总数,则(3)_____f =;()_____f n =(答案用n 表示).三解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤. 15、(本题14分)已知函数()sin sin(),2f x x x x R π=++∈.(I)求()f x 的最小正周期;图4…x +y(II)求()f x 的的最大值和最小值; (III)若3()4f α=,求sin 2α的值.16、(本题12分)某运动员射击一次所得环数X 的分布如下:X 067 8 9 10 P0.2 0.3 0.3 0.2 现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为ξ.(I)求该运动员两次都命中7环的概率 (II)求ξ的分布列(III) 求ξ的数学期望E ξ.17、(本题14分)如图5所示,AF 、DE 分别世O 、1O 的直径,AD 与两圆所在的平面均垂直,8AD =.BC 是O 的直径,6A BA C ==,//OE AD .(I)求二面角B AD F --的大小; (II)求直线BD 与EF 所成的角.18、(本题14分)设函数3()32f x x x =-++分别在12x x 、处取得极小值、极大值.xoy 平面上点A B 、的坐标分别为11()x f x (,)、22()x f x (,),该平面上动点P 满足•4PA PB =,点Q 是点P 关于直线2(4)y x =-的对称点.求 (I)求点A B 、的坐标; (II)求动点Q 的轨迹方程.19、(本题14分)已知公比为(01)q q <<的无穷等比数列{}n a 各项的和为9,无穷等比数列{}2na 各项的和为815. (I)求数列{}n a 的首项1a 和公比q ; (II)对给定的(1,2,3,,)k k n =,设()k T 是首项为k a ,公差为21k a -的等差数列,求(2)T 的前10项之和;(III)设i b 为数列()k T 的第i 项,12n n S b b b =+++,求n S ,并求正整数(1)m m >,使得limnmn S n →∞存在且不等于零.(注:无穷等比数列各项的和即当n →∞时该无穷等比数列前n 项和的极限)图5A FD20、(本题12分)A 是定义在[2,4]上且满足如下条件的函数()x ϕ组成的集合:①对任意的[1,2]x ∈,都有(2)(1,2)x ϕ∈;②存在常数(01)L L <<,使得对任意的12,[1,2]x x ∈,都有1212|(2)(2)|||x x L x x ϕϕ-≤-.(I)设(2)[2,4]x x ϕ∈ ,证明:()x A ϕ∈(II)设()x A ϕ∈,如果存在0(1,2)x ∈,使得00(2)x x ϕ=,那么这样的0x 是唯一的; (III) 设()x A ϕ∈,任取1(1,2)x ∈,令1(2)n n x x ϕ-=,1,2,n =,证明:给定正整数k ,对任意的正整数p ,成立不等式121||||1k k p k L x x x x L-+-≤--2006年高考数学参考答案广东卷(B)第一部分 选择题(50分)1、解:由1311301<<-⇒⎩⎨⎧>+>-x x x ,故选B.2、由i z i z z 2220232±=⇒±=⇒=+,故选D.3、B 在其定义域内是奇函数但不是减函数;C 在其定义域内既是奇函数又是增函数;D 在其定义域内不是奇函数,是减函数;故选A. 4、21+-=+=,故选A. 5、①②④正确,故选B. 6、3302551520511=⇒⎩⎨⎧=+=+d d a d a ,故选C.7、0)(=x f 的根是=x 2,故选C8、依题意可知 3293,322=+=+==b a c a ,2332===a c e ,故选C. 9、由⎩⎨⎧-=-=⇒⎩⎨⎧=+=+42442s y sx x y s y x 交点为)4,0(),,0(),42,4(),2,0(C s C s s B A '--, (1) 当43<≤s 时可行域是四边形OABC ,此时,87≤≤z (2) 当54≤≤s 时可行域是△OA C '此时,8max =z 故选D.10、由)0,5(),()2,1(=⊗q p 得⎩⎨⎧-==⇒⎩⎨⎧=+=-210252q p q p q p , 所以)0,2()2,1()2,1(),()2,1(=-⊕=⊕q p ,故选B.第二部分 非选择题(100分)二、填空题 11、4121lim )2144(lim 222=-=+---→-→x x xx x 12、ππ274233332==⇒=⇒=R S R d13、85112)2()2(1121111111111111=⇒=-⇒-=-=-----+r r x C xx C T r r r rrr r所以5x 的系数为1320)2()2(3113111111-=-=---C C r r14、=)3(f 10,6)2)(1()(++=n n n n f三、解答题15解:)4sin(2cos sin )2sin(sin )(ππ+=+=++=x x x x x x f(Ⅰ))(x f 的最小正周期为ππ212==T ; (Ⅱ))(x f 的最大值为2和最小值2-;(Ⅲ)因为43)(=αf ,即167cos sin 2①43cos sin -=⇒⋅⋅⋅=+αααα,即 1672sin -=α 16解:(Ⅰ)求该运动员两次都命中7环的概率为04.02.02.0)7(=⨯=P ; (Ⅱ) ξ的可能取值为7、8、9、1004.0)7(==ξP 21.03.03.02.02)8(2=+⨯⨯==ξP39.03.03.03.023.02.02)9(2=+⨯⨯+⨯⨯==ξP36.02.02.03.022.03.022.02.02)10(2=+⨯⨯+⨯⨯+⨯⨯==ξPξ分布列为(Ⅲ) ξ的数学希望为07.936.01039.0921.0804.07=⨯+⨯+⨯+⨯=ξE . 17、解:(Ⅰ)∵AD 与两圆所在的平面均垂直,∴AD ⊥AB, AD ⊥AF,故∠BAD 是二面角B —AD —F 的平面角, 依题意可知,ABCD 是正方形,所以∠BAD =450. 即二面角B —AD —F 的大小为450;(Ⅱ)以O 为原点,BC 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,23-,0),B (23,0,0),D (0,23-,8),E (0,0,8),F (0,23,0)所以,)8,23,0(),8,23,23(-=--=10828210064180||||,cos =⨯++=>=<FE BD 设异面直线BD与EF所成角为α,则1082|,cos |cos =><=α 直线BD 与EF 所成的角为1082arccos18解: (Ⅰ)令033)23()(23=+-='++-='x x x x f 解得11-==x x 或 当1-<x 时,0)(<'x f , 当11<<-x 时,0)(>'x f ,当1>x 时,0)(<'x f所以,函数在1-=x 处取得极小值,在1=x 取得极大值,故1,121=-=x x ,4)1(,0)1(==-f f所以, 点A 、B 的坐标为)4,1(),0,1(B A -.(Ⅱ) 设),(n m p ,),(y x Q ,()()4414,1,122=-+-=--∙---=∙n n m n m n m PB PA21-=PQ k ,所以21-=--m x n y ,又PQ 的中点在)4(2-=x y 上,所以⎪⎭⎫⎝⎛-+=+4222n x m y消去n m ,得()()92822=++-y x19解: (Ⅰ)依题意可知,⎪⎩⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=-=-32358119112121q a q a q a(Ⅱ)由(Ⅰ)知,1323-⎪⎭⎫⎝⎛⨯=n n a ,所以数列)2(T的的首项为221==a t ,公差3122=-=a d ,15539102121010=⨯⨯⨯+⨯=S ,即数列)2(T 的前10项之和为155. (Ⅲ) i b =()()121--+i i a i a =()()112---i a i i =()()1321231--⎪⎭⎫⎝⎛--i i i ,()()2132271845--⎪⎭⎫ ⎝⎛+-=n n n S nn ,m n n n S ∞→lim =∞→n lim ()m nm m n n n n n n 2132271845--⎪⎭⎫ ⎝⎛+- 当m=2时,m n n n S ∞→lim =-21,当m>2时,m n n nS ∞→lim =0,所以m=220、解:对任意]2,1[∈x ,]2,1[,21)2(3∈+=x x x ϕ,≤33)2(x ϕ35≤,253133<<<,所以)2,1()2(∈x ϕ 对任意的]2,1[,21∈x x ,()()()()23232132121211121212|||)2()2(|x x x x x x x x ++++++-=-ϕϕ,<3()()()()32321321112121x x x x ++++++,所以0<()()()()2323213211121212x x x x ++++++32<,令()()()()2323213211121212x x x x ++++++=L,10<<L ,|||)2()2(|2121x x L x x -≤-ϕϕ所以A x ∈)(ϕ反证法:设存在两个0000),2,1(,x x x x '≠∈'使得)2(00x x ϕ=,)2(00x x '='ϕ则 由|||)2()2(|/00/00x x L x x -≤-ϕϕ,得||||/00/00x x L x x -≤-,所以1≥L ,矛盾,故结论成立。

相关文档
最新文档