2016年上海市黄浦区中考数学模拟试卷(三)

合集下载

2016年上海黄浦区初三一模数学试卷答案

2016年上海黄浦区初三一模数学试卷答案

45∘,点E是AB的中点,DE
=
, DC ∠EDC
=
,若 ∘
90
AB
=
2,则AD的长


答 案 √2
2
解 析 延长DE交CB的延长线于点F ,如图,
∵ , AD//BC
∴ , ∠ADE = ∠F
∵点E是AB的中点,
∴ , AE = BE = 1
⎧ ∠ADE = ∠F
在 和 中, , △ADE △BF E
答案
⃗ 3b

3a ⃗
解析
学生版
−−→
−−→
∵ , , AB = a⃗ AD = b ⃗
教师版
答案版
−−→ −−→ −−→
∴ , BD
=
AD

AB
=
⃗ b

a⃗
∵在△ABC中,点D是BC 边上的点,且C D = , 2BD
−−→
−−→
∴ . BC = 3BD = 3b ⃗ − 3a ⃗
编辑
目录
13.
+
bx
+
c如图所示,请结合图象中所给信息完成以下问题:
(1) 求抛物线的表达式.
答案
. 2
y = −x − 2x + 3
解析
⎧c = 3
由题意得 , ⎨ 9a − 3b + c = 0 ⎩
a+b+c=0
⎧ a = −1
解得⎨ b = −2 . ⎩
c=3
∴函数的解析式为:y
=
2 −x

2x
+
3

(2) 若该抛物线经过一次平移后过原点O,请写出一种平移方法,并写出平移后得到的新抛物线的表达式.

上海市历年中考数学试题、模拟题汇编及答案

上海市历年中考数学试题、模拟题汇编及答案

上海中考试题、模拟题汇编及答案20PP 年上海市初中毕业统一学业考试数学卷 20PP 年上海市初中毕业统一学业考试 20PP 年上海市初中毕业生统一学业考试20PP 年上海市初中毕业生统一学业考试数学试题及答案评分要点20PP 年上海市中考数学试题及答案上海市黄浦区20PP 年九年级数学学业 考试模拟考试 上海市青浦区20PP 学年度九年级数学学业 模拟考试 20PP 上海金山中考 数学模拟试卷--数学 20PP 上海浦东新中考数学预测卷--数学20PP 年上海市初中毕业统一学业考试数学卷(满分150分,考试时间100分钟)、选择题(本大题共 6题,每题4分,满分24分)1. 下列实数中,是无理数的为(C )A. 3.14B. 1C. . 3【解析】无理数即为无限不循环小数,则选 C 。

k2. 在平面直角坐标系中,反比例函数 P = - ( k v 0 )图像的两支分别在(XA.第一、三象限B.第二、四象限C.第一、二象限【解析】设K=-1,则P=2时,P= _丄,点在第四象限;当 P=-2时,P=丄,在第二象限,所以图像过2 2第二、四象限,即使选 B 3.已知一元二次方程 P 2+ P —1 = 0 ,下列判断正确的是( B )A .该方程有两个相等的实数根 B.该方程有两个不相等的实数根 C.该方程无实数根D.该方程根的情况不确定【解析】根据二次方程的根的判别式: A=b 2—4ac=(1 j —4心江(―1 )=5>0,所以方程有两个不相等的实数根,所以选 B4. 某市五月份连续五天的日最高气温分别为 23、20、20、21、26 (单位:°C),这组数据的中位数和众数分别是(D ) A. 22 C, 26°CB. 22 C, 20°CC. 21 C, 26°CD. 21 C, 20°C【解析】中位数定义:将所有数学按从小到大顺序排列后,当数字个数为奇数时即中间那个数为中位 数,当数字的个数为偶数时即中间那两个数的平均数为中位数。

2016年上海市静安区中考数学一模试卷及参考答案

2016年上海市静安区中考数学一模试卷及参考答案

2016年上海市静安区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)的相反数是()A.B.﹣C.D.﹣2.(4分)下列方程中,有实数解的是()A.x2﹣x+1=0B.=1﹣x C.=0D.=1 3.(4分)化简(x﹣1﹣1)﹣1的结果是()A.B.C.x﹣1D.1﹣x4.(4分)如果点A(2,m)在抛物线y=x2上,将抛物线向右平移3个单位后,点A同时平移到点A′,那么A′坐标为()A.(2,1)B.(2,7)C.(5,4)D.(﹣1,4)5.(4分)在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,那么BC的长为()A.m•tanα•cosαB.m•cotα•cosαC.D.6.(4分)如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A.=B.=C.=D.=二、填空题:(本大题共12题,每题4分,满分44分)7.(4分)化简:(﹣2a2)3=.8.(4分)函数的定义域是.9.(4分)方程=x﹣1的根为.10.(4分)如果函数y=(m﹣3)x+1﹣m的图象经过第二、三、四象限,那么常数m的取值范围为.11.(4分)二次函数y=x2﹣6x+1的图象的顶点坐标是.12.(4分)如果抛物线y=ax2﹣2ax+5与y轴交于点A,那么点A关于此抛物线对称轴的对称点坐标是.13.(4分)如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.14.(4分)在Rt△ABC中,∠C=90°,点G是重心,如果sin A=,BC=2,那么GC的长等于.15.(4分)已知在梯形ABCD中,AD∥BC,BC=2AD,设=,=,那么=.(用向量,的式子表示)16.(4分)如图,在▱ABCD中,AE⊥BC,垂足为E,如果AB=5,BC=8,sin B =,那么tan∠CDE=.17.(4分)将▱ABCD(如图)绕点A旋转后,点D落在边AB上的点D′,点C落到C′,且点C′、B、C在一直线上.如果AB=13,AD=3,那么∠A 的余弦值为.三、解答题:(本大题7题,满分78分)18.(10分)化简:÷,并求当x=时的值.19.(10分)用配方法解方程:2x2﹣3x﹣3=0.20.(10分)如图,直线y=x与反比例函数的图象交于点A(3,a),第一象限内的点B在这个反比例函数图象上,OB与x轴正半轴的夹角为α,且tanα=.(1)求点B的坐标;(2)求△OAB的面积.21.(10分)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P 的仰角是26.6°,向前走30米到达B点,测得杆顶端点P和杆底端点Q的仰角分别是45°和33.7°,求该电线杆PQ的高度(结果精确到1米)(备用数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50,cot26.6°=2.00;sin33.7°=0.55,cos33.7°=0.83,tan33.7°=0.67,cot33.7°=1.50)22.(12分)已知:如图,在△ABC中,点D、E分别在边BC、AB上,BD=AD=AC,AD与CE相交于点F,AE2=EF•EC.(1)求证:∠ADC=∠DCE+∠EAF;(2)求证:AF•AD=AB•EF.23.(12分)如图,直线y=x+1与x轴、y轴分别相交于点A、B,二次函数的图象与y轴相交于点C,与直线y=x+1相交于点A、D,CD∥x轴,∠CDA=∠OCA.(1)求点C的坐标;(2)求这个二次函数的解析式.24.(14分)已知:在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC上,且CE=AD,BE的延长线与射线AD、射线CD分别相交于点F、G,设AD=x,△AEF的面积为y.(1)求证:∠DCA=∠EBC;(2)如图,当点G在线段CD上时,求y关于x的函数解析式,并写出它的定义域;(3)如果△DFG是直角三角形,求△AEF的面积.2016年上海市静安区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)的相反数是()A.B.﹣C.D.﹣【解答】解:根据相反数定义得:的相反数为:﹣,分子分母同乘得:﹣.故选:D.2.(4分)下列方程中,有实数解的是()A.x2﹣x+1=0B.=1﹣x C.=0D.=1【解答】解:A、∵△=1﹣4=﹣3<0,∴原方程无实数根,B、当1﹣x<0,即x>1时,原方程无实数根,C、当x2﹣x=0,即x=1,或x=0时,原方程无实数根,D、∵=1,∴x=﹣1.故选:D.3.(4分)化简(x﹣1﹣1)﹣1的结果是()A.B.C.x﹣1D.1﹣x【解答】解:原式=(﹣1)﹣1=()﹣1=.故选:A.4.(4分)如果点A(2,m)在抛物线y=x2上,将抛物线向右平移3个单位后,点A同时平移到点A′,那么A′坐标为()A.(2,1)B.(2,7)C.(5,4)D.(﹣1,4)【解答】解:把A(2,m)代入y=x2得m=4,则A点坐标为(2,4),把点A (2,4)向右平移3个单位后所得对应点A′的坐标为(5,4).故选:C.5.(4分)在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,那么BC的长为()A.m•tanα•cosαB.m•cotα•cosαC.D.【解答】解:∵在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,∴tanα=,∴CD=m•tanα,∵∠ACB=∠A+∠B=90°,∠BDC=∠B+∠BCD=90°,∠A=α,∴∠BCD=α,∴cos∠BCD=,即cos,BC=.故选:C.6.(4分)如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A.=B.=C.=D.=【解答】解:∵∠BAC=∠D,,∴△ABC∽△ADE.故选:C.二、填空题:(本大题共12题,每题4分,满分44分)7.(4分)化简:(﹣2a2)3=﹣8a6.【解答】解:(﹣2a2)3=(﹣2)3•(a2)3=﹣8a6.故答案为:﹣8a6.8.(4分)函数的定义域是x≠﹣2.【解答】解:根据题意得:x+2≠0解得x≠﹣2.故答案为x≠﹣2.9.(4分)方程=x﹣1的根为4.【解答】解:由二次根式性质得:x+5≥0且x﹣1≥0,∴x≥1.将=x﹣1两边平方得:x+5=x2﹣2x+1,整理得:x2﹣3x﹣4=0,分解因式:(x﹣4)(x+1)=0,得:x1=4,x2=﹣1,∵x≥1,∴x=4.故答案为:4.10.(4分)如果函数y=(m﹣3)x+1﹣m的图象经过第二、三、四象限,那么常数m的取值范围为1<m<3.【解答】解:∵函数y=(m﹣3)x+1﹣m的图象经过第二、三、四象限,∴,解得1<m<3.故答案为:1<m<3.11.(4分)二次函数y=x2﹣6x+1的图象的顶点坐标是(3,﹣8).【解答】解:∵y=x2﹣6x+1=(x﹣3)2﹣8,∴抛物线顶点坐标为(3,﹣8).故答案为:(3,﹣8).12.(4分)如果抛物线y=ax2﹣2ax+5与y轴交于点A,那么点A关于此抛物线对称轴的对称点坐标是(2,5).【解答】解:∵抛物线y=ax2﹣2ax+5与y轴交于点A坐标为(0,5),对称轴为x=﹣=1,∴点A(0,5)关于此抛物线对称轴的对称点坐标是(2,5).故答案为:(2,5).13.(4分)如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.【解答】解:∵AE=1,CE=2,∴AC=3,∵DE∥BC,∴△ADE∽△ABC,∴=,∵DE∥BC,∴△DEF∽△BCF,∴=,故答案为:1:3.14.(4分)在Rt△ABC中,∠C=90°,点G是重心,如果sin A=,BC=2,那么GC的长等于2.【解答】解:如图所示,∵在Rt△ABC中,∠C=90°,sin A=,BC=2,∴AB=3BC=6.∵点G是重心,∴CD为△ABC的中线,∴CG=CD=×3=2.故答案为:2.15.(4分)已知在梯形ABCD中,AD∥BC,BC=2AD,设=,=,那么=﹣﹣.(用向量,的式子表示)【解答】解:如图,过点D作DE∥AB,交BC于点E,∵AD∥BC,∴四边形ABCD是平行四边形,∴BE=AD,DE=AB,∵BC=2AD,=,=,∴==,==,∴=﹣=﹣(+)=﹣(+)=﹣﹣.故答案为:﹣﹣.16.(4分)如图,在▱ABCD中,AE⊥BC,垂足为E,如果AB=5,BC=8,sin B =,那么tan∠CDE=.【解答】解:在△ABE中,AE⊥BC,AB=5,sin B=,∴BE=3,AE=4.∴EC=BC﹣BE=8﹣3=5.∵平行四边形ABCD,∴△CED为等腰三角形.∴∠CDE=∠CED.∵AD∥BC,∴∠ADE=∠CED.∴∠CDE=∠ADE.在Rt△ADE中,AE=4,AD=BC=8,∴tan∠CDE==,故答案为:.17.(4分)将▱ABCD(如图)绕点A旋转后,点D落在边AB上的点D′,点C落到C′,且点C′、B、C在一直线上.如果AB=13,AD=3,那么∠A 的余弦值为.【解答】解:∵▱ABCD绕点A旋转后得到▱AB′C′D′,∴∠DAB=∠D′AB′,AB=AB′=C′D′=13,∵AB′∥C′D′,∴∠D′AB′=∠BD′C′,∵四边形ABCD为平行四边形,∴∠C=∠DAB,∴∠C=∠BD′C′,∵点C′、B、C在一直线上,而AB∥CD,∴∠C=∠C′BD′,∴∠C′BD′=∠BD′C′,∴△C′BD′为等腰三角形,作C′H⊥D′B,则BH=D′H,∵AB=13,AD=3,∴BD′=10,∴D′H=5,∴cos∠HD′C′==,即∠A的余弦值为.故答案为.三、解答题:(本大题7题,满分78分)18.(10分)化简:÷,并求当x=时的值.【解答】解:原式=•=,当x=时,原式==7.19.(10分)用配方法解方程:2x2﹣3x﹣3=0.【解答】解:2x2﹣3x﹣3=0,x2﹣x﹣=0,x2﹣x+=+,(x﹣)2=,x﹣=±,解得:x1=,x2=.20.(10分)如图,直线y=x与反比例函数的图象交于点A(3,a),第一象限内的点B在这个反比例函数图象上,OB与x轴正半轴的夹角为α,且tanα=.(1)求点B的坐标;(2)求△OAB的面积.【解答】解:(1)∵直线y=x与反比例函数的图象交于点A(3,a),∴A(3,4),反比例函数解析式y=,∵点B在这个反比例函数图象上,设B(x,),∵tanα=,∴=,解得:x=±6,∵点B在第一象限,∴x=6,∴B(6,2).答:点B坐标为(6,2).(2)设直线OB为y=kx,(k≠0),将点B(6,2)代入得:k=,∴OB直线解析式为:y=x,过A点做AC⊥x轴,交OB于点C,如下图:则点C坐标为:(3,1),∴AC=3S△OAB的面积=S△OAC的面积+S△ACB的面积,=×|AC|×6=9.△OAB的面积为9.21.(10分)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P 的仰角是26.6°,向前走30米到达B点,测得杆顶端点P和杆底端点Q的仰角分别是45°和33.7°,求该电线杆PQ的高度(结果精确到1米)(备用数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50,cot26.6°=2.00;sin33.7°=0.55,cos33.7°=0.83,tan33.7°=0.67,cot33.7°=1.50)【解答】解:延长PQ交直线AB于点E,设PE=x米.在直角△ABE中,∠PBE=45°,则BE=PE=x米;∵∠P AE=26.6°在直角△APE中,AE=PE•cot∠P AE≈2x,∵AB=AE﹣BE=30米,则2x﹣x=30,解得:x=30.则BE=PE=30米.在直角△BEQ中,QE=BE•tan∠QBE=30×tan33.7°=30×0.67≈20.1米.∴PQ=PE﹣QE=30﹣20=10(米).答:电线杆PQ的高度是10米.22.(12分)已知:如图,在△ABC中,点D、E分别在边BC、AB上,BD=AD=AC,AD与CE相交于点F,AE2=EF•EC.(1)求证:∠ADC=∠DCE+∠EAF;(2)求证:AF•AD=AB•EF.【解答】证明:(1)∵BD=AD=AC,∴∠B=∠BAD,∠ADC=∠ACD,∵AE2=EF•EC,∴,∵∠E=∠E,∴△EAF∽△ECA,∴∠EAF=∠ECA,∴∠ADC=∠ACD=∠ACE+∠ECB=∠DCE+∠EAF;(2)∵△EAF∽△ECA,∴,即,∵∠EF A=∠BAC,∠EAF=∠B,∴△F AE∽△ABC,∴,∴F A•AC=EF•AB,∵AC=AD,∴AF•AD=AB•EF.23.(12分)如图,直线y=x+1与x轴、y轴分别相交于点A、B,二次函数的图象与y轴相交于点C,与直线y=x+1相交于点A、D,CD∥x轴,∠CDA=∠OCA.(1)求点C的坐标;(2)求这个二次函数的解析式.【解答】解:(1)∵函数y=x+1中,当y=0时,x=﹣2,∴A(﹣2,0),∵函数y=x+1中,当x=0时,y=1,∴B(0,1),∵CD∥x轴,∴∠BAO=∠ADC,∵∠CDA=∠OCA,∴∠ACO=∠BAO,∴tan∠ACO=tan∠BAO=,∴CO=4,∴C(0,4);(2)∵∠AOB=∠OCD=90°,∠BAO=∠BDC=90°,∴△CBD∽△OBA,∴=,∴=,∴CD=6,∴D(6,4),设二次函数的解析式为y=ax2+bx+c,∵图象经过A(﹣2,0),D(6,4),C(0,4),∴,解得:.∴二次函数的解析式为y=﹣x2+x+4.24.(14分)已知:在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC上,且CE=AD,BE的延长线与射线AD、射线CD分别相交于点F、G,设AD=x,△AEF的面积为y.(1)求证:∠DCA=∠EBC;(2)如图,当点G在线段CD上时,求y关于x的函数解析式,并写出它的定义域;(3)如果△DFG是直角三角形,求△AEF的面积.【解答】(1)证明:∵AD∥BC,∴∠DAC=∠ECB,在△DCA和△ECB中,,∴△DCA≌△ECB(SAS),∴∠DCA=∠EBC;(2)∵AD∥BC,∴△AEF∽△CEB,∴,即,解得:AF=,作EH⊥AF于H,如图1所示,∵cos∠ACB=,∴EH=AE=(10﹣x),=×(10﹣x)×=,∴y=S△AEF∴y=,∵点G在线段CD上,∴AF≥AD,即≥x,∴x≤5﹣5,∴0<x≤5﹣5,∴y关于x的函数解析式为:y=,(0<x≤5﹣5);(3)分两种情况考虑:①当∠FDG=90°时,如图2所示:在Rt△ADC中,AD=AC×=8,即x=8,=y==;∴S△AEF②当∠DGF=90°时,过E作EM⊥BC于点M,如图3所示,由(1)得:CE=AF=x,在Rt△EMC中,EM=x,MC=x,∴BM=BC﹣MC=10﹣x,∵∠GCE=∠GBC,∠EGC=∠CGB,∴△CGE∽△BGC,∴=,即=,∵∠EBM=∠CBG,∠BME=∠BGC=90°,∴△BME∽△BGC,∴==,∴=,即x=5,此时y==15,综上,此时△AEF的面积为或15.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文。

2016年上海市各区县中考数学一模压轴题图文解析第24、25题

2016年上海市各区县中考数学一模压轴题图文解析第24、25题

2016年上海市各区县中考数学一模压轴题图文解析目录第一部分第24、25题图文解析2016年上海市崇明县中考数学一模第24、25题/ 22016年上海市奉贤区中考数学一模第24、25题/ 52016年上海市虹口区中考数学一模第24、25题/ 82016年上海市黄浦区中考数学一模第24、25题/ 112016年上海市嘉定区中考数学一模第24、25题/ 142016年上海市静安区青浦区中考数学一模第24、25题/ 172016年上海市闵行区中考数学一模第24、25题/ 202016年上海市浦东新区中考数学一模第24、25题/ 242016年上海市普陀区中考数学一模第24、25题/ 282016年上海市松江区中考数学一模第24、25题/ 312016年上海市徐汇区中考数学一模第24、25题/ 342016年上海市杨浦区中考数学一模第24、25题/ 382016年上海市闸北区中考数学一模第24、25题/ 412016年上海市长宁区金山区中考数学一模第24、25题/ 452016年上海市宝山区中考数学一模第25、26题/ 48如图1,在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于点C,其中B(3, 0),C(0, 4),点A在x轴的负半轴上,OC=4OA.(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P是x轴正半轴上的一个动点,过点P作PM//BC交射线AC于M,联结CP,若△CPM的面积为2,则请求出点P的坐标.图1动感体验请打开几何画板文件名“16崇明一模24”,拖动点P在x轴的正半轴上运动,可以体验到,有两个时刻,△CPM的面积为2.满分解答(1)由C(0, 4),OC=4OA,得OA=1,A(-1, 0).设抛物线的解析式为y=a(x+1)(x-3),代入点C(0, 4),得4=-3a.解得43a=-.所以244(1)(3)(23)33y x x x x=-+-=---2416(1)33x=--+.顶点坐标为16 (1)3,.(2)如图2,设P(m, 0),那么AP=m+1.所以S△CP A=12AP CO⋅=1(1)42m+⨯=2m+2.由PM//BC,得CM BPCA BA=.又因为CPMCPAS CMS CA=△△,所以S△CPM =(22)BPmBA+.①如图2,当点P在AB上时,BP=3-m.解方程3(22)4mm-+=2,得m=1.此时P(1, 0).②如图3,当点P在AB的延长线上时,BP=m-3.解方程3(22)4mm-+=2,得1m=±P(1+.图2 图3如图1,已知矩形ABCD 中,AB =6,BC =8,点E 是BC 边上一点(不与B 、C 重合),过点E 作EF ⊥AE 交AC 、CD 于点M 、F ,过点B 作BG ⊥AC ,垂足为G ,BG 交AE 于点H .(1)求证:△ABH ∽△ECM ; (2)设BE =x ,EHEM=y ,求y 关于x 的函数解析式,并写出定义域; (3)当△BHE 为等腰三角形时,求BE 的长.图1 备用图动感体验请打开几何画板文件名“16崇明一模25”,拖动点E 在BC 上运动,可以体验到,有三个时刻,△BHE 可以成为为等腰三角形.满分解答(1)如图2,因为∠1和∠2都是∠BAC 的余角,所以∠1=∠2. 又因为∠BAH 和∠CEM 都是∠AEB 的余角,所以∠BAH =∠CEM . 所以△ABH ∽△ECM .图2 图3(2)如图3,延长BG 交AD 于N .在Rt △ABC 中,AB =6,BC =8,所以AC =10. 在Rt △ABN 中,AB =6,所以AN =AB tan ∠1=34AB =92,BN =152. 如图2,由AD //BC ,得92AH AN EH BE x ==. 由△ABH ∽△ECM ,得68AH AB EM EC x ==-. 所以y =EHEM=AH AH EM EH ÷=6982x x ÷-=12729x x -. 定义域是0<x <8.(3)如图2,由AD//BC,得92NH ANBH BE x==.所以292BN xBH x+=.所以215292xBHx=⨯+=1529xx+.在△BHE中,BE=x,cos∠HBE=35,1529xBHx=+.分三种情况讨论等腰三角形BHE:①如图4,当BE=BH时,解方程1529xxx=+,得x=3.②如图5,当HB=HE时,1cos2BE BH B=⋅∠.解方程11532295xxx=⨯+,得92x=.③如图6,当EB=EH时,1cos2BH BE B=⋅∠.解方程11532295xxx⨯=+,得74x=.图4 图5 图6如图1,二次函数y=x2+bx+c的图像经过原点和点A(2, 0),直线AB与抛物线交于点B,且∠BAO=45°.(1)求二次函数的解析式及顶点C的坐标;(2)在直线AB上是否存在点D,使得△BCD为直角三角形,若存在,求出点D的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16奉贤一模24”,可以体验到,以BC为直径的圆恰好经过点A,直角三角形BCD存在两种情况.满分解答(1)因为抛物线y=x2+bx+c与x轴交于O、A(2, 0)两点,所以y=x(x-2)=(x-1)2-1.顶点C的坐标为(1,-1).(2)如图2,作BH⊥x轴于H.设B(x, x2-2x).由于∠BAH=45°,所以BH=AH.解方程x2-2x=2-x,得x=-1,或x=2.所以点B的坐标为(-1, 3).图2①∠BDC=90°.如图3,由A(2, 0)、C(1,-1),可得∠CAO=45°.因此∠BAC=90°.所以当点D与点A(2, 0)重合时,△BCD是直角三角形.②∠BCD=90°.由A(2, 0)、B(-1, 3),可得直线AB的解析式为y=-x+2.【解法一】如图4,过点C作BC的垂线与直线AB交于点D.设D(m,-m+2 ).由BD2=BC2+CD2,得(m+1)2+(-m-1)2=22+42+(m-1)2+(-m+3)2.解得73m=.此时点D的坐标为71(,)33-.【解法二】构造△BMC∽△CND,由BM CNMC ND=,得4123mm-=-+.解得73m=.图2 图3 图4如图1,在Rt △ABC 中,∠ACB =90°,AB =5,BC =3,点D 是斜边AB 上任意一点,联结DC ,过点C 作CE ⊥CD ,联结DE ,使得∠EDC =∠A ,联结BE .(1)求证:AC ·BE =BC ·AD ;(2)设AD =x ,四边形BDCE 的面积为S ,求S 与x 之间的函数关系式,并写出定义域;(3)当S △BDE =14S △ABC 时,求tan ∠BCE 的值.图1 备用图动感体验请打开几何画板文件名“16奉贤一模25”,拖动点E 在AD 边上运动,可以体验到,△ABC 与△DEC 保持相似,△ACD 与△BCE 保持相似,△BDE 是直角三角形.满分解答(1)如图2,在Rt △BAC 和Rt △EDC 中,由tan ∠A =tan ∠EDC ,得BC ECAC DC=. 如图3,已知∠ACB =∠DCE =90°,所以∠1=∠2. 所以△ACD ∽△BCE .所以AC BCAD BE=.因此AC ·BE =BC ·AD .图2 图3(2)在Rt △ABC 中,AB =5,BC =3,所以AC =4.所以S △ABC =6.如图3,由于△ABC 与△ADC 是同高三角形,所以S △ADC ∶S △ABC =AD ∶AB =x ∶5. 所以S △ADC =65x .所以S △BDC =665x -. 由△ADC ∽△BEC ,得S △ADC ∶S △BEC =AC 2∶BC 2=16∶9.所以S △BEC =916S △ADC =96165x ⨯=2740x . 所以S =S 四边形BDCE =S △BDC +S △BEC =6276540x x -+=21640x -+.定义域是0<x <5.(3)如图3,由△ACD ∽△BCE ,得AC BCAD BE=,∠A =∠CBE . 由43x BE =,得BE =34x . 由∠A =∠CBE ,∠A 与∠ABC 互余,得∠ABE =90°(如图4).所以S △BDE =1133(5)(5)2248BD BE x x x x ⋅=-⨯=--. 当S △BDE =14S △ABC =13642⨯=时,解方程33(5)82x x --=,得x =1,或x =4.图4 图5 图6作DH ⊥AC 于H .①如图5,当x =AD =1时,在Rt △ADH 中,DH =35AD =35,AH =45AD =45. 在Rt △CDH 中,CH =AC -AH =416455-=,所以tan ∠HCD =DHCH =316.②如图6,当x =AD =4时,在Rt △ADH 中,DH =35AD =125,AH =45AD =165.在Rt △CDH 中,CH =AC -AH =164455-=,所以tan ∠HCD =DHCH=3. 综合①、②,当S △BDE =14S △ABC 时, tan ∠BCE 的值为316或3.如图1,在平面直角坐标系中,抛物线y =ax 2+bx +3与x 轴分别交于点A (2, 0)、点B (点B 在点A 的右侧),与y 轴交于点C ,tan ∠CBA =12. (1)求该抛物线的表达式;(2)设该抛物线的顶点为D ,求四边形ACBD 的面积; (3)设抛物线上的点E 在第一象限,△BCE 是以BC 为一条直角边的直角三角形,请直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16虹口一模24”,可以体验到,以BC 为直角边的直角三角形BCE 有2个.满分解答(1)由y =ax 2+bx +3,得C (0, 3),OC =3. 由tan ∠CBA =OC OB =12,得OB =6,B (6, 0). 将A (2, 0)、B (6, 0)分别代入y =ax 2+bx +3,得4230,36630.a b a b ++=⎧⎨++=⎩解得14a =,b =-2.所以221123(4)144y x x x =-+=--. (2)如图2,顶点D 的坐标为(4,-1).S 四边形ACBD =S △ABC +S △ABD =1123+2122⨯⨯⨯⨯=4.(3)如图3,点E 的坐标为(10, 8)或(16, 35).思路如下:设E 21(,23)4x x x -+. 当∠CBE =90°时,过点E 作EF ⊥x 轴于F ,那么2EF BOBF CO==.所以EF =2BF . 解方程21232(4)4x x x -+=-,得x =10,或x =4.此时E (10, 8). 当∠BCE =90°时,EF =2CF . 解方程21224x x x -=,得x =16,或x =0.此时E (16, 35).图2 图3如图1,在平行四边形ABCD 中,E 为BC 的中点,F 为线段AE 上一点,联结BF 并延长交边AD 于点G ,过点G 作AE 的平行线,交射线DC 于点H .设AD EFx AB AF==. (1)当x =1时,求AG ∶AB 的值; (2)设GDHEBAS S △△=y ,求y 关于x 的函数关系式,并写出x 的取值范围; (3)当DH =3HC 时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16虹口一模25”,拖动点B 可以改变平行四边形的邻边比,可以体验到,当菱形ABCD 时,G 是AD 的中点,△GDH 与△EBA 保持相似.还可以体验到,DH =3HC 存在两种情况.满分解答(1)如图2,当x =1时,AD =AB ,F 是AE 的中点. 因为AD //CB ,所以AG =BE =12BC =12AD =12AB . 所以AG ∶AB =1∶2.(2)如图3,已知AD EF x AB AF ==,设AB =m ,那么AD =xm ,BE =12xm . 由AD //BC ,得BE EFx AG AF ==.所以12BE AG m x ==.所以DG =12xm m -.图2 图3 图4 如图4,延长AE 交DC 的延长线于M . 因为GH //AE ,所以△GDH ∽△ADM . 因为DM //AB ,所以△EBA ∽△ADM . 所以△GDH ∽△EBA .所以y =GDH EBA S S △△=2()DG BE =2211()()22xm m xm -÷=22(21)x x -. (3)如图5,因为GH //AM ,所以11()2122DH DG xm m m x HM GA ==-÷=-. 因为DM //AB ,E 是BC 的中点,所以MC =AB =DC . DH =3HC 存在两种情况:如图5,当H 在DC 上时,35DH HM =.解方程3215x -=,得45x =. 如图6,当H 在DC 的延长线上时,3DH HM =.解方程213x -=,得45x =.图5 图6如图1,在平面直角坐标系中,抛物线y =ax 2-3ax +c 与x 轴交于A (-1, 0)、B 两点(点A 在点B 左侧),与y 轴交于点C (0, 2).(1)求抛物线的对称轴及点B 的坐标; (2)求证:∠CAO =∠BCO ;(3)点D 是射线BC 上一点(不与B 、C 重合),联结OD ,过点B 作BE ⊥OD ,垂足为△BOD 外一点E ,若△BDE 与△ABC 相似,求点D 的坐标.图1动感体验请打开几何画板文件名“16黄浦一模24”,拖动点D 在射线BC 上运动,可以体验到,当点E 在△BOD 外时,有两个时刻,Rt △BDE 的两条直角边的比为1∶2.满分解答(1)由y =ax 2-3ax +c ,得抛物线的对称轴为直线32x =. 因此点A (-1, 0)关于直线32x =的对称点B 的坐标为(4, 0). (2)如图2,因为tan ∠CAO =2CO AO =,tan ∠BCO =2BOCO=,所以∠CAO =∠BCO .(3)由B (4, 0)、C (0, 2),得直线BC 的解析式为122y x =-+.设D 1(,2)2x x -+.以∠ABC (∠OBC )为分类标准,分两种情况讨论:①如图3,当∠OBC =∠DBE 时,由于∠OBC 与∠OCB 互余,∠DBE 与∠ODC 互余,所以∠OCB =∠ODC .此时OD =OC =2.根据OD 2=4,列方程221+(2)42x x -+=.解得x =0,或85x =.此时D 86(,)55. ②如图4,当∠OBC =∠EDB 时,OD =OB =4. 根据OD 2=16,列方程221+(2)162x x -+=.解得x =4,或125x =-.此时D 1216(,)55-.图2 图3 图4如图1,已知直线l1//l2,点A是l1上的点,B、C是l2上的点,AC⊥BC,∠ABC=60°,AB=4,O是AB的中点,D是CB的延长线上的点,将△DOC沿直线CO翻折,点D与点D′重合.(1)如图1,当点D落在直线l1上时,求DB的长;(2)延长DO交直线l1于点E,直线OD′分别交直线l1、l2于点M、N.①如图2,当点E在线段AM上时,设AE=x,DN=y,求y关于x的解析式及定义域;②若△DON AE的长.图1 图2动感体验请打开几何画板文件名“16黄浦一模25”,拖动点D在CB的延长线上运动,可以体验到,CD′与AB保持平行,△BON与△BDO保持相似.还可以体验到,有两个时刻DN=3.满分解答(1)如图3,在Rt△ABC中,∠ABC=60°,AB=4,O是AB的中点,所以△OBC是边长为2的等边三角形.又因为△DOC与△D′OC关于CO对称,所以∠BCD′=120°,CD′=CD.所以AB//D′C.当点D′ 落在直线l1上时,AD′//BC.所以四边形ABCD′是平行四边形.所以CD′=BA=4.此时BD=CD-CB=CD′-CB=4-2=2.图3(2)①如图4,由于AE//BD,O是AB的中点,所以AE=BD=x.因为AB//D′C,所以∠AOM=∠2.又因为∠AOM=∠BON,∠2=∠1,所以∠BON=∠1.又因为∠OBN=∠DBO,所以△BON∽△BDO.所以BO BDBN BO=.因此22xx y=+.于是得到24xyx-=.定义域是0<x≤2.②在△DON中,DN当S△DON DN=3.有两种情形:情形1,如图4,当D在BN上时,DN=24xyx-==3,解得x=1,或x=-4.此时AE=1.情形2,如图5,当D在BN的延长线上时,由BO BDBN BO=,得22xx y=-.于是得到24xyx-=.当DN=24xyx-==3时,解得x=4,或x=-1.此时AE=4.图4 图5如图1,在平面直角坐标系中,抛物线212y x bx c =++经过点A (4, 0)、点C (0,-4),点B 与点A 关于这条抛物线的对称轴对称.(1)用配方法求这条抛物线的顶点坐标; (2)联结AC 、BC ,求∠ACB 的正弦值;(3)点P 是这条抛物线上的一个动点,设点P 的横坐标为m (m >0),过点P 作y 轴的垂线PQ ,垂足为Q ,如果∠QPO =∠BCO ,求m 的值.图1动感体验请打开几何画板文件名“16嘉定一模24”,可以体验到,QO ∶QP =OB ∶OC .满分解答(1)将A (4, 0)、C (0,-4)分别代入212y x bx c =++,得840,4.b c c ++=⎧⎨=-⎩解得b =-1,c =-4.所以2142y x x =--=1(2)(4)2x x +-=219(1)22x --. 点B 的坐标是(-2, 0),顶点坐标是9(1,)2-.(2)由A (4, 0)、B (-2, 0)、C (0,-4),得AC =BC =AB =6,CO =4. 作BH ⊥AC 于H .由S △ABC =12AB CO ⋅=12AC BH ⋅.得AB CO BH AC ⋅==因此sin ∠ACB =BH BC .(3)点P 的坐标可以表示为21(,4)2m m m --. 由tan ∠QPO =tan ∠BCO ,得12QO OB QP OC ==. 所以QP =2QO .解方程212(4)2m m m =--,得m =图2所以点P 的横坐标m .如图1,已知△ABC 中,∠ABC =90°,tan ∠BAC =12.点D 在AC 边的延长线上,且DB 2=DC ·DA .(1)求DCCA的值; (2)如果点E 在线段BC 的延长线上,联结AE ,过点B 作AC 的垂线,交AC 于点F ,交AE 于点G .①如图2,当CE =3BC 时,求BFFG的值; ②如图3,当CE =BC 时,求BCDBEGS S △△的值.图1动感体验请打开几何画板文件名“16嘉定一模25”,拖动点E 运动,可以体验到,当CE =3BC 时,BD //AE ,BG 是直角三角形ABE 斜边上的中线.当CE =BC 时,△ABF ≌△BEH ,AF =2EH =4CF .满分解答(1)如图1,由DB 2=DC ·DA ,得DB DADC DB=. 又因为∠D 是公共角,所以△DBC ∽△DAB .所以DB BC CDDA AB BD==. 又因为tan ∠BAC =BC AB =12,所以12CD BD =,12BD DA =.所以14CD DA =.所以13DCCA=. (2)①如图4,由△DBC ∽△DAB ,得∠1=∠2. 当BF ⊥CA 时,∠1=∠3,所以∠2=∠3.因为13DC CA =,当CE =3BC 时,得DC BCCA CE =.所以BD //AE . 所以13BD EA =,∠2=∠E .所以∠3=∠E .所以GB =GE .于是可得G B 是Rt △ABE 斜边上的中线.所以23BD GA =.所以23BF BD FG GA ==.②如图5,作EH⊥BG,垂足为H.当CE=BC时,CF是△BEH的中位线,BF=FH.设CF=m.由tan∠1=tan∠3=12,得BF=2m,AF=4m.所以FH=2m,EH=2m,DC=1533CA m=.因此422FG AF mHG EH m===.所以2433FG FH m==.所以103BG m=.于是5121321102323BCDBEGm mDC BFSS BG EH m m⨯⋅===⋅⨯△△.图4 图5如图1,直线121+=x y 与x 轴、y 轴分别相交于点A 、B ,二次函数的图像与y 轴相交于点C ,与直线121+=x y 相交于点A 、D ,CD //x 轴,∠CDA =∠OCA . (1)求点C 的坐标;(2)求这个二次函数的解析式.图1动感体验请打开几何画板文件名“16静安青浦一模24”,可以体验到,△AOB 与△COA 相似.满分解答(1)由121+=x y ,得A (-2, 0),B (0, 1).所以OA =2,OB =1. 由于CD //x 轴,所以∠CDA =∠1.又已知∠CDA =∠OCA ,所以∠1=∠OCA . 由tan ∠1=tan ∠OCA ,得OB OAOA OC=. 所以122OC=. 解得OC =4.所以C (0, 4).(2)因为CD //x 轴,所以y D =y C =4. 图2 解方程1142x +=,得x =6.所以D (6, 4). 所以抛物线的对称轴为直线x =3.因此点A (-2, 0)关于直线x =3的对称点为(8, 0). 设抛物线的解析式为y =a (x +2)(x -8).代入点C (0, 4),得4=-16a . 解得14a =-.所以2113(2)(8)4442y x x x x =-+-=-++.如图1,在梯形ABCD 中,AD //BC ,AC =BC =10,cos ∠ACB =45,点E 在对角线AC 上,且CE =AD ,BE 的延长线与射线AD 、射线CD 分别相交于点F 、G .设AD =x ,△AEF 的面积为y .(1)求证:∠DCA =∠EBC ;(2)当点G 在线段CD 上时,求y 关于x 的函数解析式,并写出它的定义域; (3)如果△DFG 是直角三角形,求△AEF 的面积.图1动感体验请打开几何画板文件名“16静安青浦一模25”,拖动点D 运动,可以体验到,直角三角形DFG 存在两种情况.满分解答(1)如图2,因为AD //BC ,所以∠DAC =∠ECB .又因为AC =CB ,AD =CE ,所以△ADC ≌△CEB .所以∠DCA =∠EBC . (2)如图3,作EH ⊥BC 于H . 在Rt △EHC 中,CE =x ,cos ∠ECB =45,所以CH =45x ,EH =35x . 所以S △CEB =12BC EH ⋅=131025x ⨯⨯=3x . 因为AD //BC ,所以△AEF ∽△CEB .所以2()AEF CEB S AE S CE=△△. 所以22103(10)()3AEF x x y S x x x--==⨯=△.定义域是0<x≤5. 定义域中x=5的几何意义如图4,D 、F 重合,根据AD AECB CE=,列方程1010x xx-=.图2 图3 图4(3)①如图5,如果∠FGD=90°,那么在Rt△BCG和Rt△BEH中,tan∠GBC=335104504xGC HE xGB HB x x ===--.由(1)得∠ACD=∠CBE.由cos∠ACD=cos∠CBE,得GC GBCE BC=.所以10GC CE xGB BC==.因此350410x xx=-.解得x=5.此时S△AEF=23(10)15xyx-==.②如图6,如果∠FDG=90°,那么在Rt△ADC中,AD=AC cos∠CAD=4105⨯=8.此时S△AEF=23(10)32xyx-==.图5 图6例 2016年上海市闵行区中考一模第24题如图1,在平面直角坐标系中,二次函数y =x 2+bx +c 的图像与x 轴交于A 、B 两点,点B 的坐标为(3, 0),与y 轴交于点C (0,-3),点P 是直线BC 下方的抛物线上的任意一点.(1)求这个二次函数的解析式;(2)联结PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP ′C ,如果四边形POP ′C 为菱形,求点P 的坐标;(3)如果点P 在运动过程中,使得以P 、C 、B 为顶点的三角形与△AOC 相似,请求出此时点P 的坐标.图1动感体验请打开几何画板文件名“16闵行一模24”,拖动点P 在直线BC 下方的抛物线上运动,可以体验到,当四边形POP ′C 为菱形时,PP ′垂直平分OC .还可以体验到,当点P 与抛物线的顶点重合时,或者点P 落在以BC 为直径的圆上时,△PCB 是直角三角形.满分解答(1)将B (3, 0)、C (0,-3)分别代入y =x 2+bx +c ,得930,3.b c c ++=⎧⎨=-⎩.解得b =-2,c =-3.所以二次函数的解析式为y =x 2-2x -3.(2)如图2,如果四边形POP ′C 为菱形,那么PP ′垂直平分OC ,所以y P =32-.解方程23232x x --=-,得22x =.所以点P 的坐标为23()22-.图2 图3 图4(3)由y =x 2-2x -3=(x +1)(x -3)=(x -1)2-4,得A (-1, 0),顶点M (1,-4). 在Rt △AOC 中,OA ∶OC =1∶3.分两种情况讨论△PCB 与△AOC 相似:①如图3,作MN⊥y轴于N.由B(3, 0)、C(0,-3),M(1,-4),可得∠BOC=∠MCN=45°,所以∠BCM=90°.又因为CM∶CB=1∶3,所以当点P与点M(1,-4)重合时,△PCB∽△AOC.②如图4,当∠BPC=90°时,构造△AEP∽△PFB,那么CE PF EP FB=.设P(x, x2-2x-3),那么22(3)(23)3(23)x x xx x x-----=---.化简,得1(2)1xx--=+.解得x=.此时点P的横坐标为x=.而2(23)32CB NB x xxCP MP x x---===-++是个无理数,所以当∠BPC=90°时,△PCB与△AOC不相似.例 2016年上海市闵行区中考一模第25题如图1,在直角梯形ABCD 中,AB //CD ,∠ABC =90°,对角线AC 、BD 交于点G ,已知AB =BC =3,tan ∠BDC =12,点E 是射线BC 上任意一点,过点B 作BF ⊥DE ,垂足为F ,交射线AC 于点M ,交射线DC 于点H .(1)当点F 是线段BH 的中点时,求线段CH 的长;(2)当点E 在线段BC 上时(点E 不与B 、C 重合),设BE =x ,CM =y ,求y 关于x 的函数解析式,并指出x 的取值范围;(3)联结GF ,如果线段GF 与直角梯形ABCD 中的一条边(AD 除外)垂直时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16闵行一模25”,拖动点E 在射线BC 上运动,可以体验到,点G 是BD 的一个三等分点,CH 始终都有CE 的一半.还可以体验到,GF 可以与BC 垂直,也可以与DC 垂直.满分解答(1)在Rt △BCD 中,BC =3,tan ∠BDC =BC DC =12,所以DC =6,DB =.如图2,当点F 是线段BH 的中点时,DF 垂直平分BH ,所以DH =DB =.此时CH =DB -DC =6.图2 图3(2)如图3,因为∠CBH 与∠CDE 都是∠BHD 的余角,所以∠CBH =∠CDE . 由tan ∠CBH =tan ∠CDE ,得CH CE CB CD =,即336CH x-=. 又因为CH //AB ,所以CH MC AB MA =,即3CH =.因此36x -=.整理,得)3x y x -=+.x 的取值范围是0<x <3. (3)如图4,不论点E 在BC 上,还是在BC 的延长线上,都有12BG AB GD DC ==, 12CH CE =. ①如图5,如果GF ⊥BC 于P ,那么AB //GF //DH .所以13BP PF BG BC CH BD ===.所以BP =1,111(3)366PF CH CE x ===-. 由PF //DC ,得PF PE DC CE =,即12(3)(3)363x x x---=-. 整理,得242450x x -+=.解得21x =±21BE =- ②如图6,如果GF ⊥DC 于Q ,那么GF //BE . 所以23QF DQ DG CE DC DB ===.所以DQ =4,2(3)3QF x =-. 由QF //BC ,得QF QH BC CH =,即21(3)2(3)3213(3)2x x x ---=-. 整理,得223450x x --=.解得x =34BE +=.图4 图5 图6如图1,抛物线y =ax 2+2ax +c (a >0)与x 轴交于A (-3,0)、B 两点(A 在B 的左侧),与y 轴交于点C (0,-3),抛物线的顶点为M .(1)求a 、c 的值; (2)求tan ∠MAC 的值;(3)若点P 是线段AC 上的一个动点,联结OP .问:是否存在点P ,使得以点O 、C 、P 为顶点的三角形与△ABC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16浦东一模24”,拖动点P 在线段AC 上运动,可以体验到,△COP 与△ABC 相似存在两种情况.满分解答(1)将A (-3,0)、C (0,-3)分别代入y =ax 2+2ax +c ,得960,3.a a c c -+=⎧⎨=-⎩解得a =1,c =-3.(2)由y =x 2+2x -3=(x +1)2-4,得顶点M 的坐标为(-1,-4). 如图2,作MN ⊥y 轴于N .由A (-3,0)、C (0,-3)、M (-1,-4),可得OA =OC =3,NC =NM =1.所以∠ACO =∠MCN =45°,AC =MC . 所以∠ACM =90°.因此tan ∠MAC =MC AC=13. (3)由y =x 2+2x -3=(x +3)(x -1),得B (1, 0).所以AB =4.如图3,在△COP 与△ABC 中,∠OCP =∠BAC =45°,分两种情况讨论它们相似:当CP ABCO AC =时,3CP =CP =P 的坐标为(-2,-1).当CP AC CO AB =时,3CP =CP =.此时点P 的坐标为93(,)44--.图2 图3如图1,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与A 、D 不重合),∠EBM =45°,BE 交对角线AC 于点F ,BM 交对角线于点G ,交CD 于点M .(1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DECG的值; (2)如图2,联结EG ,设AE =x ,EG =y ,求y 关于x 的函数解析式,并写出函数的定义域;(3)当M 为边DC 的三等分点时,求S △EGF 的面积.图1 图2动感体验请打开几何画板文件名“16浦东一模25”,拖动点E 在AD 边上运动,可以体验到, △EBD 与△GBC 保持相似,△EBG 保持等腰直角三角形.满分解答(1)如图3,因为∠EBM =∠DBC =45°,所以∠1=∠2. 又因为∠EDB =∠GCB =45°,所以△DEB ∽△CGB .因此DE DBCG CB==图3 图4(2)如图3,由△DEB ∽△CGB ,得EB DBGB CB=. 又因为∠EBM =∠DBC =45°,所以△EBG ∽△DBC (如图4). 所以△EBG 是等腰直角三角形.如图4,在Rt △ABE 中,AB =6,AE =x ,所以BE所以y =EG =2BE . 定义域是0<x <6.(3)如图5,由于S △EGB =12EG 2=2364x +,EGF EGB S EF S EB =△△, 所以2364EGFEF x S EB +=⨯△. 由(1)知,DE,所以 x =AE =AD -DE=6.①如图6,当13CM CD =时,13CG CM AG AB ==.所以1144CG CA ==⨯此时x =AE=6-=3.所以3162EF AE BF CB ===.所以13EF EB =.所以2364EGF EF x S EB +=⨯△=2133634+⨯=154. ②如图7,当23CM CD =时,23CG CM AG AB ==.所以2255CG CA ==⨯=此时x =AE=6-=65.所以61655EF AE BF CB ==÷=.所以16EF EB =.所以2364EGFEF x S EB +=⨯△=26()361564+⨯=3925.图5 图6 图7第(2)题也可以这样证明等腰直角三角形EBG : 如图8,作GH ⊥EB 于H ,那么△GBH 是等腰直角三角形.一方面2GB CB EB DB ==,另一方面cos 452HB GB =︒=,所以GB HBEB GB=. 于是可得△EBG ∽△GBH .所以△EBG 是等腰直角三角形. 如图9,第(2)题也可以构造Rt △EGN 来求斜边EG =y : 在Rt △AEN 中,AE =x ,所以AN =ENx . 又因为CG)x -,所以GN =AC -AN -CG=所以y=EG.如图10,第(2)题如果构造Rt△EGQ和Rt△CGP,也可以求斜边EG=y:由于CG)x-,所以CP=GP=1(6)2x-=132x-.所以GQ=PD=16(3)2x--=132x+,EQ=16(3)2x x---=132x-.所以y=EG.图8 图9 图10如图1,已知二次函数273y ax x c =-+的图像经过A (0, 8)、B (6, 2)、C (9, m )三点,延长AC 交x 轴于点D .(1)求这个二次函数的解析式及m 的值; (2)求∠ADO 的余切值;(3)过点B 的直线分别与y 轴的正半轴、x 轴、线段AD 交于点P (点A 的上方)、M 、Q ,使以点P 、A 、Q 为顶点的三角形与△MDQ 相似,求此时点P的坐标. 图1动感体验请打开几何画板文件名“16普陀一模24”,拖动点Q 在线段AD 上运动,可以体验到,△APQ 与△MDQ 相似只存在一种情况.满分解答(1)将A (0, 8)、B (6, 2)分别代入273y ax x c =-+,得8,3614 2.c a c =⎧⎨-+=⎩ 解得29a =,c =8.所以二次函数的解析式为227893y x x =-+. 所以227(9)818218593m f x x ==-+=-+=.(2)由A (0, 8)、C (9, 5),可得直线AC 的解析式为183y x =-+.所以D (24, 0).因此cot ∠ADO =OD OA =248=3.(3)如图2,如果△APQ 与△MDQ 相似,由于∠AQP =∠MQD ,∠P AQ 与∠DMQ 是钝角,因此只存在一种情况,△APQ ∽△MDQ .因此∠APQ =∠D .作BN ⊥y 轴于N ,那么∠BPN =∠D .因此cot ∠BPN =cot ∠D =3.所以PN =3BN =18.此时点P 的坐标为(0, 20).图2如图1,已知锐角∠MBN 的正切值等于3,△PBD 中,∠BDP =90°,点D 在∠MBN 的边BN 上,点P 在∠MBN 内,PD =3,BD =9.直线l 经过点P ,并绕点P 旋转,交射线BM 于点A ,交射线DN 于点C ,设CAx CP=. (1)求x =2时,点A 到BN 的距离;(2)设△ABC 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (3)当△ABC 因l 的旋转成为等腰三角形时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16普陀一模25”,拖动点C 运动,可以体验到,AH 与BH 的比值=tan ∠B =3为定值,AH 与PD 的比值=CA ∶CP =x .满分解答(1)如图2,作AH ⊥BC 于H ,那么PD //AH . 因此2AH CAx PD CP===. 所以AH =2PD =6,即点A 到BN 的距离为6.图2 图3(2)如图3,由AH CAx PD CP ==,得AH =xPD =3x . 又因为tan ∠MBN =AHBH =3,所以BH =x .设BC =m .由CH CA x CD CP ==,得9m xx m -=-.整理,得81xm x =-.所以y =S △ABC =12BC AH ⋅=18321xx x ⨯⨯-=2121x x -. 定义域是0<x ≤9.x =9的几何意义是点C 与点H 重合,此时CA =27,CP =3.(3)在△ABC 中,BA ,cos ∠ABC BC =81x x -.①如图4,当BA =BC 81x x =-,得1x = ②如图5,当AB =AC 时,BC =2BH .解方程821xx x =-,得x =5.③如图6,当CA =CB 时,由cos ∠ABC ,得12AB =.解方程1821x x =-,得135x =.图4 图5 图6如图1,已知抛物线y =ax 2+bx -3与x 轴交于A 、B 两点,与y 轴交于点C ,O 是坐标原点,已知点B 的坐标是(3, 0),tan ∠OAC =3.(1)求该抛物线的函数表达式;(2)点P 在x 轴上方的抛物线上,且∠P AB =∠CAB ,求点P 的坐标;(3)点D 是y 轴上的一动点,若以D 、C 、B 为顶点的三角形与△ABC 相似,求出符合条件的点D 的坐标.图1动感体验请打开几何画板文件名“16松江一模24”,拖动点D 在y 轴正半轴上运动,可以体验到,△BCD 与△ABC 相似存在两种情况.满分解答(1)由y =ax 2+bx -3,得C (0,-3),OC =3. 由tan ∠OAC =3,得OA =1,A (-1, 0).因为抛物线与x 轴交于A (-1, 0)、B (3, 0)两点,设y =a (x +1)(x -3). 代入点C (0,-3),得a =1.所以y =(x +1)(x -3)=x 2-2x -3. (2)如图2,作PH ⊥x 轴于H .设P (x , (x +1)(x -3)). 由tan ∠P AB =tan ∠CAB ,得3PH CO AH AO ==.所以(1)(3)31x x x +-=+. 解得x =6.所以点P 的坐标为(6, 21).(3)由A (-1, 0)、B (3, 0)、C (0,-3),得BA =4,BC =ABC =∠BCO =45°. 当点D 在点C 上方时,∠ABC =∠BCD =45°.分两种情况讨论△BCD 与△ABC 相似: 如图3,当CD BACB BC=时,CD =BA =4.此时D (0, 1).如图4,当CD BCCB BA =4=92CD =.此时D 3(0,)2.图2 图3 图4已知等腰梯形ABCD 中,AD //BC ,∠B =∠BCD =45°,AD =3,BC =9,点P 是对角线AC 上的一个动点,且∠APE =∠B ,PE 分别交射线AD 和射线CD 于点E 和点G .(1)如图1,当点E 、D 重合时,求AP 的长;(2)如图2,当点E 在AD 的延长线上时,设AP =x ,DE =y ,求y 关于x 的函数解析式,并写出它的定义域;(3)当线段DG 时,求AE 的长.图1 图2动感体验请打开几何画板文件名“16松江一模25”,拖动点P 在AC 上运动,可以体验到,DGDE 也存在两种情况.满分解答(1)如图3,作AM ⊥BC ,DN ⊥BC ,垂足分别为M 、N ,那么MN =AD =3.在Rt △ABM 中,BM =3,∠B =45°,所以AM =3,AB =在Rt △AMC 中,AM =3,MC =6,所以CA = 如图4,由AD //BC ,得∠1=∠2.又因为∠APE =∠B ,当E 、D 重合时,△APD ∽△CBA .所以AP CBAD CA =.因此3AP =AP =5. (2)如图5,设(1)中E 、D 重合时点P 的对应点为F . 因为∠AFD =∠APE =45°,所以FD //PE .所以AF AD AP AE =33y=+.因此33y x =-.定义域是5<x ≤.图3 图4 图5(3)如图6,因为CA =AF =,所以FC =.由DF //PE ,得13FP DG FC DC ===.所以FP =.由DF //PE ,9552AD AF DE FP ==÷=.所以2293DE AD ==. ①如图6,当P 在AF 的延长线上时,233AE AD DE =+=. ②如图7,当P 在AF 上时,123AE AD DE =-=.图6 图7例 2016年上海市徐汇区中考一模第24题如图1,在Rt △AOB 中,∠AOB =90°,已知点A (-1,-1),点B 在第二象限,OB=抛物线235y x bx c =++经过点A 和B . (1)求点B 的坐标; (2)求抛物线235y x bx c =++的对称轴; (3)如果该抛物线的对称轴分别和边AO 、BO 的延长线交于点C 、D ,设点E 在直线AB 上,当△BOE 和△BCD 相似时,直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16徐汇一模24”,拖动点E 在射线BA 上运动,可以体验到,△BOE 和△BCD 相似存在两种情况.满分解答(1)由A (-1,-1),得OA 与x 轴负半轴的夹角为45°.又因为∠AOB =90°,所以OB 与x 轴负半轴的夹角也为45°. 当OB=B 到x 轴、y 轴的距离都为2. 所以点B 的坐标为(-2,2).(2)将A (-1,-1)、B (-2,2)分别代入235y x bx c =++,得31,5122 2.5b c b c ⎧-+=-⎪⎪⎨⎪-+=⎪⎩解得65b =-,145c =-.所以23614555y x x =--.抛物线的对称轴是直线x =1.(3)如图2,由A (-1,-1)、B (-2,2)、C (1, 1)、D (1,-1),以及∠AOB =90°,可得BO 垂直平分AC ,BO=,BA =BCBD=如图3,过点A 、E 作y 轴的平行线,过点B 作y 轴的垂线,构造Rt △ABM 和Rt △EBN ,那么BA BM MA BE BN NE==. 设点E 的坐标为(x , y )1322x y==+-.图2 图3当点E 在射线BA 上时,∠EBO =∠DBC .分两种情况讨论相似:①当BE BCBO BD ==BE =1322x y==+-.解得x =43-,y =0.所以E 4(,0)3-(如图4).②当BE BDBO BC ==BE =1322x y==+-.解得x =45-,y =85-.所以E 48(,)55--(如图5).图4 图5例 2016年上海市徐汇区中考一模第25题如图1,四边形ABCD 中,∠C =60°,AB =AD =5,CB =CD =8,点P 、Q 分别是边AD 、BC 上的动点,AQ 与BP 交于点E ,且∠BEQ =90°-12∠BAD .设A 、P 两点间的距离为x .(1)求∠BEQ 的正切值; (2)设AEPE=y ,求y 关于x 的函数解析式及定义域; (3)当△AEP 是等腰三角形时,求B 、Q 两点间的距离.图1动感体验请打开几何画板文件名“16徐汇一模25”,拖动点P 在AD 边上运动,可以体验到, ∠AEP =∠BEQ =∠ABH =∠ADH ,△ABF ∽△BEF ∽△BDP ,△AEP ∽△ADF .满分解答(1)如图2,联结BD 、AC 交于点H .因为AB =AD ,CB =CD ,所以A 、C 在BD 的垂直平分线上. 所以AC 垂直平分BD .因此∠BAH =12∠BAD . 因为∠BEQ =90°-12∠BAD , 所以∠BEQ =90°-∠BAH =∠ABH .在Rt △ABH 中,AB =5,BH =4,所以AH =3. 所以tan ∠BEQ =tan ∠ABH =34. 图2 (2)如图3,由于∠BEQ =∠ABH ,∠BEQ =∠AEP ,∠ABH =∠ADH , 所以∠AEP =∠BEQ =∠ABH =∠ADH .图3 图4 图5如图3,因为∠BF A 是公共角,所以△BEF ∽△ABF . 如图4,因为∠DBP 是公共角,所以△BEF ∽△BDP .所以△ABF ∽△BDP .所以AB BD BF DP =.因此585BF x=-. 所以5(5)8BF x =-.所以518(5)(539)88FD BD BF x x =-=--=+.如图5,因为∠DAF 是公共角,所以△AEP ∽△ADF . 所以5401539(539)8AE AD y PE FD x x ====++.定义域是0≤x ≤5. (3)分三种情况讨论等腰△AEP :①当EP =EA 时,由于△AEP ∽△ADF ,所以DF =DA =5(如图6). 此时BF =3,HF =1. 作QM ⊥BD 于M .在Rt △BMQ 中,∠QBM =60°,设BQ =m ,那么12BM m =,QM =. 在Rt △FMQ 中,132FM m =-,tan ∠MFQ =tan ∠HF A =3,所以QM =3FM .13(3)2m =-,得BQ =m=9- ②如图7,当AE =AP 时,E 与B 重合,P 与D 重合,此时Q 与B 重合,BQ =0. ③不存在PE =P A 的情况,因为∠P AE >∠P AH >∠AEP .图6 图7如图1,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于A 、B 两点,与y轴交于点C ,直线y =x +4经过A 、C 两点.(1)求抛物线的表达式;(2)如果点P 、Q 在抛物线上(点P 在对称轴左边),且PQ //AO ,PQ =2AO ,求点P 、Q 的坐标;(3)动点M 在直线y =x +4上,且△ABC 与△COM相似,求点M 的坐标. 图1动感体验请打开几何画板文件名“16杨浦一模24”,拖动点M 在射线CA 上运动,可以体验到,△ABC 与△COM 相似存在两种情况.满分解答(1)由y =x +4,得A (-4, 0),C (0, 4). 将A (-4, 0)、C (0, 4)分别代入212y x bx c =-++,得840,4.b c c --+=⎧⎨=⎩ 解得b =-1,c =4.所以抛物线的表达式为2142y x x =--+. (2)如图2,因为PQ //AO ,所以P 、Q 关于抛物线的对称轴对称. 因为抛物线的对称轴是直线x =-1,PQ =2AO =8,所以x P =-5,x Q =3.当x =3时,2142y x x =--+=72-.所以P 7(5,)2--,Q 7(3,)2-. (3)由2114(4)(2)22y x x x x =--+=-+-,得B (2, 0).由A (-4, 0)、B (2, 0)、C (0, 4),得AB =6,AC =,CO =4.当点M 在射线CA 上时,由于∠MCO =∠BAC =45°,所以分两种情况讨论相似:①当CM ABCO AC =时,4CM =CM =M (-3, 1)(如图3).②当CM AC CO AB =时,46CM =CM =M 84(,)33-(如图4).图2 图3 图4如图1,已知菱形ABCD的边长为5,对角线AC的长为6,点E为边AB上的动点,点F在射线AD上,且∠ECF=∠B,直线CF交直线AB于点M.(1)求∠B的余弦值;(2)当点E与点A重合时,试画出符合题意的图,并求BM的长;(3)当点M在AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式,并写出定义域.图1 备用图动感体验请打开几何画板文件名“16杨浦一模25”,拖动点E在AB上慢慢运动,可以体验到,∠1=∠2=∠3,△MCE与△MBC保持相似.满分解答(1)如图2,作AN⊥BC于N,联结BD交AC于O,那么BO垂直平分AC.在Rt△ABO中,AB=5,AO=3,所以BO=4.因为S菱形ABCD=12AC BD⋅=BC AN⋅,所以64=5AN⨯⨯.解得AN=245.在Rt△ABN中,AB=5,AN=245,所以BN=75.因此cos∠B=BNAB=725.(2)如图3,当点E与点A重合时,由于∠ECF=∠B,∠FEC=∠1,所以△ECF∽△ABC.所以EF ACEC AB=,即665EF=.解得365EF=.由BC//AF,得AM AFBM BC=,即53625BMBM+=.解得12511BM=.图2 图3(3)如图4,因为∠ECF =∠ABC ,根据等角的邻补角相等,得∠MCE =∠MBC . 如图5,因为∠M 是公共角,所以△MCE ∽△MBC . 所以MC MBME MC=.因此22()MC MB ME y x y xy y =⋅=+=+. 作MH ⊥BC ,垂足为H .在Rt △MBH 中,MB =y ,cos ∠MBH =725,所以BH =725y ,MH =2425y .在Rt △MCH 中,根据勾股定理,得MC 2=MH 2+CH 2.因此222247()(5)2525xy y y y +=++. 整理,得125514y x =-.定义域是145<x ≤5.定义域中x =145的几何意义如图6所示,此时D 、F 重合,AB //CF .由CF =CE ,CF =CB ,得CE =CB . 所以1cos 2BE BC B =⋅.解得BE =72525⨯⨯=145.图4 图5 图6例 2016年上海市闸北区中考一模第24题如图1,在平面直角坐标系中,已知抛物线与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0, 2),对称轴为直线x =1,对称轴交x 轴于点E .(1)求该抛物线的表达式,并写出顶点D 的坐标;(2)设点F 在抛物线上,如果四边形AEFD 是梯形,求点F 的坐标;(3)联结BD ,设点P 在线段BD 上,若△EBP 与△ABD 相似,求点P 的坐标.图1动感体验请打开几何画板文件名“16闸北一模24”,梯形AEFD 只存在一种情况.拖动点P 在BD 边上运动,可以体验到,△EBP 与△ABD 相似存在两种情况.满分解答(1)点A (-1,0)关于直线x =1的对称点B 的坐标为(3, 0).设抛物线的解析式为y =a (x +1)(x -3),代入点C (0, 2),得2=-3a . 解得23a =-.所以2222428(1)(3)2(1)33333y x x x x x =-+-=-++=--+. 顶点D 的坐标为8(1,)3. (2)过△ADE 的三个顶点分别画对边的平行线,只有经过点E 的直线与抛物线有另外的交点,在第一象限内的交点就是梯形AEFD 的顶点F .设F 224(,2)33x x x -++. 作FH ⊥x 轴于H ,那么∠FEH =∠DAE . 由tan ∠FEH =tan ∠DAE ,得43FH DE EH AE ==.所以43FH EH =.解方程22442(1)333x x x -++=-,得x =F .图2 图3 图4。

挑战中考数学压轴题(全套含答案)之欧阳术创编

挑战中考数学压轴题(全套含答案)之欧阳术创编

第一部分函数图象中点的存在性问题§1.1因动点产生的相似三角形问题例1 2014年衡阳市中考第28题例2 2014年益阳市中考第21题例3 2015年湘西州中考第26题例4 2015年张家界市中考第25题例5 2016年常德市中考第26题例6 2016年岳阳市中考第24题例7 2016年上海市崇明县中考模拟第25题例8 2016年上海市黄浦区中考模拟第26题§1.2因动点产生的等腰三角形问题例9 2014年长沙市中考第26题例10 2014年张家界市第25题例11 2014年邵阳市中考第26题例12 2014年娄底市中考第27题例13 2015年怀化市中考第22题例14 2015年长沙市中考第26题例15 2016年娄底市中考第26题例16 2016年上海市长宁区金山区中考模拟第25题例17 2016年河南省中考第23题例18 2016年重庆市中考第25题§1.3因动点产生的直角三角形问题例19 2015年益阳市中考第21题例20 2015年湘潭市中考第26题例21 2016年郴州市中考第26题例22 2016年上海市松江区中考模拟第25题例23 2016年义乌市绍兴市中考第24题§1.4因动点产生的平行四边形问题例24 2014年岳阳市中考第24题例25 2014年益阳市中考第20题例26 2014年邵阳市中考第25题例27 2015年郴州市中考第25题例28 2015年黄冈市中考第24题例29 2016年衡阳市中考第26题例30 2016年上海市嘉定区宝山区中考模拟中考第24题例31 2016年上海市徐汇区中考模拟第24题§1.5因动点产生的面积问题例32 2014年常德市中考第25题例33 2014年永州市中考第25题例34 2014年怀化市中考第24题例36 2015年株洲市中考第23题例37 2015年衡阳市中考第28题例38 2016年益阳市中考第22题例39 2016年永州市中考第26题例40 2016年邵阳市中考第26题例41 2016年陕西省中考第25题§1.6因动点产生的相切问题例42 2014年衡阳市中考第27题例43 2014年株洲市中考第23题例44 2015年湘潭市中考第25题例45 2015年湘西州中考第25题例46 2016年娄底市中考第25题例47 2016年湘潭市中考第26题例48 2016年上海市闵行区中考模拟第24题例49 2016年上海市普陀区中考模拟中考第25题§1.7因动点产生的线段和差问题例50 2014年郴州市中考第26题例51 2014年湘西州中考第25题例52 2015年岳阳市中考第24题例53 2015年济南市中考第28题例54 2015年沈阳市中考第25题例56 2016年张家界市中考第24题例57 2016年益阳市中考第21题第二部分图形运动中的函数关系问题§2.1由比例线段产生的函数关系问题例1 2014年常德市中考第26题例2 2014年湘潭市中考第25题例3 2014年郴州市中考第25题例4 2015年常德市中考第25题例5 2015年郴州市中考第26题例6 2015年邵阳市中考第25题例7 2015年娄底市中考第26题例8 2016年郴州市中考第25题例9 2016年湘西州中考第26题例10 2016年上海市静安区青浦区中考模拟第25题例11 2016年哈尔滨市中考第27题第三部分图形运动中的计算说理问题§3.1代数计算及通过代数计算进行说理问题例1 2014年长沙市中考第25题例2 2014年怀化市中考第23题例3 2014年湘潭市中考第26题例4 2014年株洲市中考第24题例6 2015年娄底市中考第25题例7 2015年永州市中考第26题例8 2015年长沙市中考第25题例9 2015年株洲市中考第24题例10 2016年怀化市中考第22题例11 2016年邵阳市中考第25题例12 2016年株洲市中考第26题例13 2016年长沙市中考第25题例14 2016年长沙市中考第26题§3.2几何证明及通过几何计算进行说理问题例15 2014年衡阳市中考第26题例16 2014年娄底市中考第26题例17 2014年岳阳市中考第23题例18 2015年常德市中考第26题例19 2015年益阳市中考第20题例20 2015年永州市中考第27题例21 2015年岳阳市中考第23题例22 2016年常德市中考第25题例23 2016年衡阳市中考第25题例24 2016年永州市中考第27题例25 2016年岳阳市中考第23题例27 2016年湘潭市中考第25题第四部分图形的平移、翻折与旋转§4.1图形的平移例1 2015年泰安市中考第15题例2 2015年咸宁市中考第14题例3 2015年株洲市中考第14题例4 2016年上海市虹口区中考模拟第18题§4.2图形的翻折例5 2016年上海市奉贤区中考模拟第18题例6 2016年上海市静安区青浦区中考模拟第18题例7 2016年上海市闵行区中考模拟第18题例8 2016年上海市浦东新区中考模拟第18题例8 2016年上海市普陀区中考模拟第18题例10 2016年常德市中考第15题例11 2016年张家界市中考第14题例12 2016年淮安市中考第18题例13 2016年金华市中考第15题例14 2016年雅安市中考第12题§4.3图形的旋转例15 2016年上海昂立教育中学生三模联考第18题例16 2016年上海市崇明县中考模拟第18题例17 2016年上海市黄浦区中考模拟第18题例18 2016年上海市嘉定区宝山区中考模拟第18题例19 2016年上海市闸北区中考模拟第18题例20 2016年邵阳市中考第13题例21 2016年株洲市中考第4题§4.4三角形例22 2016年安徽省中考第10题例23 2016年武汉市中考第10题例24 2016年河北省中考第16题例25 2016年娄底市中考第10题例26 2016年苏州市中考第9题例27 2016年台州市中考第10题例28 2016年陕西省中考第14题例29 2016年内江市中考第11题例30 2016年上海市中考第18题§4.5四边形例31 2016年湘西州中考第11题例32 2016年益阳市中考第4题例33 2016年益阳市中考第6题例34 2016年常德市中考第16题例35 2016年成都市中考第14题例36 2016年广州市中考第13题例37 2016年福州市中考第18题例38 2016年无锡市中考第17题例39 2016年台州市中考第15题§4.6圆例40 2016年滨州市中考第16题例41 2016年宁波市中考第17题例42 2016年连云港市中考第16题例43 2016年烟台市中考第17题例44 2016年烟台市中考第18题例45 2016年无锡市中考第18题例46 2016年武汉市中考第9题例47 2016年宿迁市中考第16题例48 2016年衡阳市中考第17题例49 2016年邵阳市中考第18题例50 2016年湘西州中考第18题例51 2016年永州市中考第20题§4.7函数的图象及性质例52 2015年荆州市中考第9题例53 2015年德州市中考第12题例54 2015年烟台市中考第12题例55 2015年中山市中考第10题例56 2015年武威市中考第10题例57 2015年呼和浩特市中考第10题例58 2016年湘潭市中考第18题例59 2016年衡阳市中考第19题例60 2016年岳阳市中考第15题例61 2016年株洲市中考第9题例62 2016年永州市中考第19题例63 2016年岳阳市中考第8题例64 2016年岳阳市中考第16题例65 2016年益阳市中考第14题例66 2016年株洲市中考第10题例67 2016年株洲市中考第17题例68 2016年东营市中考第15题例69 2016年成都市中考第13题例70 2016年泰州市中考第16题例71 2016年宿迁市中考第15题例72 2016年临沂市中考第14题例73 2016年义乌市绍兴市中考第9题例74 2016年淄博市中考第12题例75 2016年嘉兴市中考第16题§1.1 因动点产生的相似三角形问题课前导学相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分AB DE=AC DF和AB DF=两种情况列方程.AC DE应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好.如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢?我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减.图1例 1 2014年湖南省衡阳市中考第28题二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(-3, 0)、B(1, 0)两点,与y轴交于点C(0,-3m)(m>0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图1,当m=2时,点P为第三象限内抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x 之间的函数关系式及S的最大值;(3)如图2,当m取何值时,以A、D、C三点为顶点的三角形与△OBC相似?图1 图2动感体验请打开几何画板文件名“14衡阳28”,拖动点P运动,可以体验到,当点P运动到AC的中点的正下方时,△APC的面积最大.拖动y轴上表示实数m的点运动,抛物线的形状会改变,可以体验到,∠ACD和∠ADC都可以成为直角.思路点拨1.用交点式求抛物线的解析式比较简便.2.连结OP,△APC可以割补为:△AOP与△COP的和,再减去△AOC .3.讨论△ACD 与△OBC 相似,先确定△ACD 是直角三角形,再验证两个直角三角形是否相似.4.直角三角形ACD 存在两种情况.图文解析(1)因为抛物线与x 轴交于A(-3, 0)、B(1, 0)两点,设y =a(x +3)(x -1).代入点C(0,-3m),得-3m =-3a .解得a =m .所以该二次函数的解析式为y =m(x +3)(x -1)=mx2+2mx -3m .(2)如图3,连结OP .当m =2时,C(0,-6),y =2x2+4x -6,那么P(x, 2x2+4x -6).由于S △AOP =1()2P OA y ⨯-=32-(2x2+4x -6)=-3x2-6x +9,S △COP =1()2P OC x ⨯-=-3x ,S △AOC =9, 所以S =S △APC =S △AOP +S △COP -S △AOC =-3x2-9x =23273()24x -++. 所以当32x =-时,S 取得最大值,最大值为274. 图3 图4 图5(3)如图4,过点D 作y 轴的垂线,垂足为E .过点A 作x 轴的垂线交DE 于F .由y =m(x +3)(x -1)=m(x +1)2-4m ,得D(-1,-4m). 在Rt △OBC 中,OB ∶OC =1∶3m .如果△ADC 与△OBC 相似,那么△ADC 是直角三角形,而且两条直角边的比为1∶3m .①如图4,当∠ACD =90°时,OA OC EC ED =.所以331m m =.解得m =1. 此时3CA OC CD ED ==,3OC OB =.所以CA OC CD OB=.所以△CDA ∽△OBC .②如图5,当∠ADC =90°时,FA FD ED EC =.所以421m m=.解得22m =. 此时222DA FD DC EC m ===,而3232OC m OB ==.因此△DCA 与△OBC 不相似.综上所述,当m =1时,△CDA ∽△OBC .考点伸展第(2)题还可以这样割补:如图6,过点P 作x 轴的垂线与AC交于点H .由直线AC :y =-2x -6,可得H(x,-2x -6).又因为P(x, 2x2+4x -6),所以HP =-2x2-6x .因为△PAH 与△PCH 有公共底边HP ,高的和为A 、C 两点间的水平距离3,所以S =S △APC =S △APH +S △CPH =32(-2x2-6x) =23273()24x -++. 图6 例 2 2014年湖南省益阳市中考第21题如图1,在直角梯形ABCD 中,AB//CD ,AD ⊥AB ,∠B =60°,AB =10,BC =4,点P 沿线段AB 从点A 向点B 运动,设AP =x .2·1·c·n·j·y(1)求AD 的长;(2)点P 在运动过程中,是否存在以A 、P 、D 为顶点的三角形与以P 、C 、B为顶点的三角形相似?若存在,求出x 的值;若不存在,请说明理由;(3)设△ADP 与△PCB 的外接圆的面积分别为S1、S2,若S =S1+S2,求S 的最小值.动感体验图1请打开几何画板文件名“14益阳21”,拖动点P 在AB 上运动,可以体验到,圆心O 的运动轨迹是线段BC 的垂直平分线上的一条线段.观察S 随点P 运动的图象,可以看到,S 有最小值,此时点P 看上去象是AB 的中点,其实离得很近而已. 思路点拨1.第(2)题先确定△PCB 是直角三角形,再验证两个三角形是否相似.2.第(3)题理解△PCB 的外接圆的圆心O 很关键,圆心O 在确定的BC 的垂直平分线上,同时又在不确定的BP 的垂直平分线上.而BP 与AP 是相关的,这样就可以以AP 为自变量,求S 的函数关系式.图文解析(1)如图2,作CH ⊥AB 于H ,那么AD =CH .在Rt △BCH 中,∠B =60°,BC =4,所以BH =2,CH =AD =(2)因为△APD 是直角三角形,如果△APD 与△PCB 相似,那么△PCB 一定是直角三角形.①如图3,当∠CPB =90°时,AP =10-2=8.所以APAD ,而PC PB △APD 与△PCB 不相似.图2 图3 图4②如图4,当∠BCP =90°时,BP =2BC =8.所以AP =2.所以APAD ∠APD =60°.此时△APD ∽△CBP .综上所述,当x =2时,△APD ∽△CBP .(3)如图5,设△ADP 的外接圆的圆心为G ,那么点G 是斜边DP 的中点.设△PCB 的外接圆的圆心为O ,那么点O 在BC 边的垂直平分线上,设这条直线与BC 交于点E ,与AB 交于点F .设AP =2m .作OM ⊥BP 于M ,那么BM =PM =5-m . 在Rt △BEF 中,BE =2,∠B =60°,所以BF =4.在Rt △OFM 中,FM =BF -BM =4-(5-m)=m -1,∠OFM =30°,所以OM 1)m -. 所以OB2=BM2+OM2=221(5)(1)3m m -+-.在Rt △ADP 中,DP2=AD2+AP2=12+4m2.所以GP2=3+m2.于是S =S1+S2=π(GP2+OB2) =22213(5)(1)3m m m π⎡⎤++-+-⎢⎥⎣⎦=2(73285)3m m π-+. 所以当167m =时,S 取得最小值,最小值为1137π. 图5 图6考点伸展关于第(3)题,我们再讨论个问题.问题1,为什么设AP =2m 呢?这是因为线段AB =AP +PM +BM =AP +2BM =10.这样BM =5-m ,后续可以减少一些分数运算.这不影响求S 的最小值.问题2,如果圆心O 在线段EF 的延长线上,S 关于m 的解析式是什么?如图6,圆心O 在线段EF 的延长线上时,不同的是FM =BM -BF =(5-m)-4=1-m .此时OB2=BM2+OM2=221(5)(1)3m m -+-.这并不影响S 关于m 的解析式.例 3 2015年湖南省湘西市中考第26题如图1,已知直线y =-x +3与x 轴、y 轴分别交于A 、B 两点,抛物线y =-x2+bx +c 经过A 、B 两点,点P 在线段OA 上,从点O 出发,向点A 以每秒1个单位的速度匀速运动;同时,点Q 在线段AB 上,从点A 出发,向点B 以每秒2个单位的速度匀速运动,连结PQ ,设运动时间为t 秒.(1)求抛物线的解析式;(2)问:当t 为何值时,△APQ 为直角三角形;(3)过点P 作PE//y 轴,交AB 于点E ,过点Q 作QF//y 轴,交抛物线于点F ,连结EF ,当EF//PQ 时,求点F 的坐标;(4)设抛物线顶点为M ,连结BP 、BM 、MQ ,问:是否存在t 的值,使以B 、Q 、M 为顶点的三角形与以O 、B 、P 为顶点的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“15湘西26”,拖动点P 在OA 上运动,可以体验到,△APQ 有两个时刻可以成为直角三角形,四边形EPQF 有一个时刻可以成为平行四边形,△MBQ 与△BOP 有一次机会相似.思路点拨1.在△APQ 中,∠A =45°,夹∠A 的两条边AP 、AQ 都可以用t 表示,分两种情况讨论直角三角形APQ .2.先用含t 的式子表示点P 、Q 的坐标,进而表示点E 、F 的坐标,根据PE =QF 列方程就好了.3.△MBQ 与△BOP 都是直角三角形,根据直角边对应成比例分两种情况讨论.图文解析(1)由y =-x +3,得A(3, 0),B(0, 3).将A(3, 0)、B(0, 3)分别代入y =-x2+bx +c ,得930,3.b c c -++=⎧⎨=⎩ 解得2,3.b c =⎧⎨=⎩所以抛物线的解析式为y =-x2+2x +3.(2)在△APQ 中,∠PAQ =45°,AP =3-t ,AQ. 分两种情况讨论直角三角形APQ :①当∠PQA =90°时,APAQ .解方程3-t =2t ,得t =1(如图2).②当∠QPA =90°时,AQt (3-t),得t =1.5(如图3).图2 图3(3)如图4,因为PE//QF ,当EF//PQ 时,四边形EPQF 是平行四边形.所以EP =FQ .所以yE -yP =yF -yQ .因为xP =t ,xQ =3-t ,所以yE =3-t ,yQ =t ,yF =-(3-t)2+2(3-t)+3=-t2+4t .因为yE -yP =yF -yQ ,解方程3-t =(-t2+4t)-t ,得t =1,或t =3(舍去).所以点F 的坐标为(2, 3).图4 图5(4)由y =-x2+2x +3=-(x -1)2+4,得M(1, 4).由A(3, 0)、B(0, 3),可知A 、B 两点间的水平距离、竖直距离相等,AB =.由B(0, 3)、M(1, 4),可知B 、M 两点间的水平距离、竖直距离相等,BM所以∠MBQ =∠BOP =90°.因此△MBQ 与△BOP 相似存在两种可能:①当BMOB BQ OP =3t=.解得94t =(如图5).②当BMOPBQ OB =3t =.整理,得t2-3t +3=0.此方程无实根.考点伸展 第(3)题也可以用坐标平移的方法:由P(t, 0),E(t, 3-t),Q(3-t, t),按照P→E方向,将点Q向上平移,得F(3-t, 3).再将F(3-t, 3)代入y=-x2+2x+3,得t=1,或t=3.§1.2 因动点产生的等腰三角形问题课前导学我们先回顾两个画图问题:1.已知线段AB=5厘米,以线段AB为腰的等腰三角形ABC有多少个?顶点C的轨迹是什么?2.已知线段AB=6厘米,以线段AB为底边的等腰三角形ABC有多少个?顶点C的轨迹是什么?已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C.已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外.在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB =AC ,直接列方程;②如图2,如果BA =BC ,那么1cos 2AC AB A =∠;③如图3,如果CA =CB ,那么1cos 2AB AC A =∠. 代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x 的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.图1 图2 图3例 9 2014年长沙市中考第26题如图1,抛物线y =ax2+bx +c (a 、b 、c 是常数,a≠0)的对称轴为y 轴,且经过(0,0)和1)16两点,点P 在该抛物线上运动,以点P 为圆心的⊙P 总经过定点A(0, 2).(1)求a 、b 、c 的值;(2)求证:在点P 运动的过程中,⊙P 始终与x 轴相交;(3)设⊙P 与x 轴相交于M(x1, 0)、N(x2, 0)两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标.图1动感体验请打开几何画板文件名“14长沙26”,拖动圆心P 在抛物线上运动,可以体验到,圆与x 轴总是相交的,等腰三角形AMN 存在五种情况.思路点拨1.不算不知道,一算真奇妙,原来⊙P 在x 轴上截得的弦长MN =4是定值.2.等腰三角形AMN 存在五种情况,点P 的纵坐标有三个值,根据对称性,MA =MN 和NA =NM 时,点P 的纵坐标是相等的.图文解析(1)已知抛物线的顶点为(0,0),所以y =ax2.所以b =0,c =0. 将1)16代入y =ax2,得2116a =.解得14a =(舍去了负值).(2)抛物线的解析式为214y x =,设点P 的坐标为21(,)4x x .已知A(0, 2),所以PA =214x . 而圆心P 到x 轴的距离为214x ,所以半径PA >圆心P 到x 轴的距离.所以在点P 运动的过程中,⊙P 始终与x 轴相交.(3)如图2,设MN 的中点为H ,那么PH 垂直平分MN .在Rt △PMH 中,2241416PM PA x ==+,22411()416PH x x ==,所以MH2=4.所以MH =2.因此MN =4,为定值.等腰△AMN 存在三种情况:①如图3,当AM =AN 时,点P 为原点O 重合,此时点P 的纵坐标为0.图2 图3②如图4,当MA =MN 时,在Rt △AOM 中,OA =2,AM =4,所以OM =此时x =OH =22.所以点P 的纵坐标为222112)1)444x =+==+ 如图5,当NA =NM 时,根据对称性,点P 的纵坐标为也为4+图4 图5③如图6,当NA =NM =4时,在Rt △AON 中,OA =2,AN =4,所以ON =此时x =OH =22.所以点P 的纵坐标为222112)1)444x =-=-=- 如图7,当MN =MA =4时,根据对称性,点P 的纵坐标也为4-图6 图7考点伸展如果点P 在抛物线214y x =上运动,以点P 为圆心的⊙P 总经过定点B(0, 1),那么在点P 运动的过程中,⊙P 始终与直线y =-1相切.这是因为:设点P 的坐标为21(,)4x x .已知B(0, 1),所以2114PB x ===+.而圆心P 到直线y =-1的距离也为2114x +,所以半径PB =圆心P 到直线y =-1的距离.所以在点P 运动的过程中,⊙P 始终与直线y =-1相切.例 10 2014年湖南省张家界市中考第25题如图1,在平面直角坐标系中,O 为坐标原点,抛物线y =ax2+bx +c (a≠0)过O 、B 、C 三点,B 、C 坐标分别为(10, 0)和1824(,)55-,以OB 为直径的⊙A 经过C 点,直线l 垂直x 轴于B 点.(1)求直线BC 的解析式;(2)求抛物线解析式及顶点坐标;(3)点M 是⊙A 上一动点(不同于O 、B ),过点M 作⊙A 的切线,交y 轴于点E ,交直线l 于点F ,设线段ME 长为m ,MF 长为n ,请猜想mn 的值,并证明你的结论;(4)若点P 从O 出发,以每秒1个单位的速度向点B 作直线运动,点Q 同时从B 出发,以相同速度向点C 作直线运动,经过t (0<t≤8)秒时恰好使△BPQ 为等腰三角形,请求出满足条件的t 值.图图1动感体验请打开几何画板文件名“14张家界25”,拖动点M 在圆上运动,可以体验到,△EAF 保持直角三角形的形状,AM 是斜边上的高.拖动点Q 在BC 上运动,可以体验到,△BPQ 有三个时刻可以成为等腰三角形.思路点拨1.从直线BC 的解析式可以得到∠OBC 的三角比,为讨论等腰三角形BPQ 作铺垫.2.设交点式求抛物线的解析式比较简便.3.第(3)题连结AE 、AF 容易看到AM 是直角三角形EAF 斜边上的高.4.第(4)题的△PBQ 中,∠B 是确定的,夹∠B 的两条边可以用含t 的式子表示.分三种情况讨论等腰三角形. 图文解析(1)直线BC 的解析式为31542y x =-. (2)因为抛物线与x 轴交于O 、B(10, 0)两点,设y =ax(x -10).代入点C 1824(,)55-,得241832()555a -=⨯⨯-.解得524a =. 所以2255255125(10)(5)2424122424y x x x x x =-=-=--. 抛物线的顶点为125(5,)24-. (3)如图2,因为EF 切⊙A 于M ,所以AM ⊥EF .由AE =AE ,AO =AM ,可得Rt △AOE ≌Rt △AME .所以∠1=∠2.同理∠3=∠4.于是可得∠EAF =90°.所以∠5=∠1.由tan ∠5=tan ∠1,得MAMEMF MA =.所以ME·MF =MA2,即mn =25.图2(4)在△BPQ 中,cos ∠B =45,BP =10-t ,BQ =t .分三种情况讨论等腰三角形BPQ :①如图3,当BP =BQ 时,10-t =t .解得t =5.②如图4,当PB =PQ 时,1cos 2BQ BP B =∠.解方程14(10)25t t =-,得8013t =.③如图5,当QB =QP 时,1cos 2BP BQ B =∠.解方程14(10)25t t -=,得5013t =.图3 图4 图5考点伸展在第(3)题条件下,以EF 为直径的⊙G 与x 轴相切于点A .如图6,这是因为AG 既是直角三角形EAF 斜边上的中线,也是直角梯形EOBF 的中位线,因此圆心G 到x 轴的距离等于圆的半径,所以⊙G与x轴相切于点A.图6例 11 2014年湖南省邵阳市中考第26题在平面直角坐标系中,抛物线y=x2-(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C.(1)若m=2,n=1,求A、B两点的坐标;(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,-1),求∠ACB的大小;(3)若m=2,△ABC是等腰三角形,求n的值.动感体验请打开几何画板文件名“14邵阳26”,点击屏幕左下方的按钮(2),拖动点A在x轴正半轴上运动,可以体验到,△ABC 保持直角三角形的形状.点击屏幕左下方的按钮(3),拖动点B在x轴上运动,观察△ABC的顶点能否落在对边的垂直平分线上,可以体验到,等腰三角形ABC有4种情况.思路点拨1.抛物线的解析式可以化为交点式,用m,n表示点A、B、C的坐标.2.第(2)题判定直角三角形ABC,可以用勾股定理的逆定理,也可以用锐角的三角比.3.第(3)题讨论等腰三角形ABC,先把三边长(的平方)罗列出来,再分类解方程.图文解析(1)由y=x2-(m+n)x+mn=(x-m)(x-n),且m>n,点A位于点B的右侧,可知A(m, 0),B(n, 0).若m=2,n=1,那么A(2, 0),B(1, 0)..(2)如图1,由于C(0, mn),当点C的坐标是(0,-1),mn =-1,OC=1.若A、B两点分别位于y轴的两侧,那么OA·OB=m(-n)=-mn=1.所以OC2=OA·OB.所以OC OB=.OA OC所以tan∠1=tan∠2.所以∠1=∠2.又因为∠1与∠3互余,所以∠2与∠3互余.所以∠ACB=90°.图1 图2 图3(3)在△ABC中,已知A(2, 0),B(n, 0),C(0, 2n).讨论等腰三角形ABC,用代数法解比较方便:由两点间的距离公式,得AB2=(n-2)2,BC2=5n2,AC2=4+4n2.①当AB=AC时,解方程(n-2)2=4+4n2,得4n=-(如3图2).②当CA=CB时,解方程4+4n2=5n2,得n=-2(如图3),或n=2(A、B重合,舍去).③当BA=BC时,解方程(n-2)2=5n2,得n=(如图4),或n=(如图5).图4 图5考点伸展第(2)题常用的方法还有勾股定理的逆定理.由于C(0, mn),当点C的坐标是(0,-1),mn=-1.由A(m, 0),B(n, 0),C(0,-1),得AB2=(m-n)2=m2-2mn+n2=m2+n2+2,BC2=n2+1,AC2=m2+1.所以AB2=BC2+AC2.于是得到Rt△ABC,∠ACB=90°.第(3)题在讨论等腰三角形ABC时,对于CA=CB的情况,此时A、B两点关于y轴对称,可以直接写出B(-2, 0),n =-2.例 12 2014年湖南省娄底市中考第27题如图1,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连结PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图2,连结PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;(3)当t为何值时,△APQ是等腰三角形?图1 图2动感体验请打开几何画板文件名“14娄底27”,拖动点Q在AC上运动,可以体验到,当点P运动到AB的中点时,△APQ的面积最大,等腰三角形APQ存在三种情况.还可以体验到,当QC =2HC时,四边形PQP′C是菱形.思路点拨1.在△APQ中,∠A是确定的,夹∠A的两条边可以用含t的式子表示.2.四边形PQP′C的对角线保持垂直,当对角线互相平分时,它是菱形,.图文解析(1)在Rt△ABC中,AC=4,BC=3,所以AB=5,sinA=35,cosA=45.作QD⊥AB于D,那么QD=AQ sinA=35t.所以S =S △APQ =12AP QD ⋅=13(5)25t t -⨯=23(5)10t t --=23515()+1028t --. 当52t =时,S 取得最大值,最大值为158. (2)设PP′与AC 交于点H ,那么PP ′⊥QC ,AH =APcosA =4(5)5t -. 如果四边形PQP′C 为菱形,那么PQ =PC .所以QC =2HC . 解方程4424(5)5t t ⎡⎤-=⨯--⎢⎥⎣⎦,得2013t =. 图3 图4(3)等腰三角形APQ 存在三种情况:①如图5,当AP =AQ 时,5-t =t .解得52t =. ②如图6,当PA =PQ 时,1cos 2AQ AP A =.解方程14(5)25t t =-,得4013t =. ③如图7,当QA =QP 时,1cos 2AP AQ A =.解方程14(5)25t t -=,得2513t =. 图5 图6 图7考点伸展在本题情境下,如果点Q 是△PP′C 的重心,求t 的值.如图8,如果点Q 是△PP′C 的重心,那么QC =23HC .解方程2444(5)35t t ⎡⎤-=⨯--⎢⎥⎣⎦,得6023t =. 图8例 13 2015年湖南省怀化市中考第22题如图1,已知Rt △ABC 中,∠C =90°,AC =8,BC =6,点P 以每秒1个单位的速度从A 向C 运动,同时点Q 以每秒2个单位的速度从A→B→C 方向运动,它们到C 点后都停止运动,设点P 、Q 运动的时间为t 秒.(1)在运动过程中,求P 、Q 两点间距离的最大值;(2)经过t 秒的运动,求△ABC 被直线PQ 扫过的面积S 与时间t 的函数关系式;(3)P ,Q 两点在运动过程中,是否存在时间t ,使得△PQC 为等腰三角形.若存在,求出此时的t 值,若不存在,请说明理由.(24.25≈,结果保留一位小数)图1动感体验请打开几何画板文件名“15怀化22”,拖动点P 在AC 上运动,可以体验到,PQ 与BD 保持平行,等腰三角形PQC 存在三种情况.思路点拨1.过点B 作QP 的平行线交AC 于D ,那么BD 的长就是PQ 的最大值.2.线段PQ 扫过的面积S 要分两种情况讨论,点Q 分别在AB 、BC 上.3.等腰三角形PQC 分三种情况讨论,先罗列三边长. 图文解析(1)在Rt △ABC 中,AC =8,BC =6,所以AB =10. 如图2,当点Q 在AB 上时,作BD//PQ 交AC 于点D ,那么22AB AQ t AD AP t===. 所以AD =5.所以CD =3.如图3,当点Q 在BC 上时,16228CQ t CP t-==-. 又因为623CB CD ==,所以CQ CB CP CD =.因此PQ//BD .所以PQ 的最大值就是BD .在Rt △BCD 中,BC =6,CD =3,所以BD=.所以PQ的最大值是. 图2 图3 图4(2)①如图2,当点Q 在AB 上时,0<t≤5,S △ABD =15.由△AQP ∽△ABD ,得2()AQP ABD S AP S AD =△△.所以S =S △AQP =215()5t ⨯=235t . ②如图3,当点Q 在BC 上时,5<t≤8,S △ABC =24. 因为S △CQP =12CQ CP ⋅=1(162)(8)2t t --=2(8)t -, 所以S =S △ABC -S △CQP =24-(t -8)2=-t2+16t -40.(3)如图3,当点Q 在BC 上时,CQ =2CP ,∠C =90°,所以△PQC 不可能成为等腰三角形.当点Q 在AB 上时,我们先用t 表示△PQC 的三边长:易知CP =8-t .如图2,由QP//BD ,得QP APBD AD =5t =.所以QP =. 如图4,作QH ⊥AC 于H .在Rt △AQH 中,QH =AQ sin ∠A =65t ,AH =85t . 在Rt △CQH 中,由勾股定理,得CQ ==分三种情况讨论等腰三角形PQC :(1)①当PC =PQ 时,解方程8t -=,得10t =≈3.4(如图5所示).②当QC =QP 时,=.整理,得2111283200t t -+=. 所以(11t -40)(t -8)=0.解得4011t =≈3.6(如图6所示),或t =8(舍去).③当CP =CQ 时,8t -=25160t t -=. 解得165t ==3.2(如图7所示),或t =0(舍去).综上所述,当t 的值约为3.4,3.6,或等于3.2时,△PQC 是等腰三角形.图5 图6 图7考点伸展第(1)题求P、Q两点间距离的最大值,可以用代数计算说理的方法:①如图8,当点Q在AB上时,PQ.当Q与B重合时,PQ最大,此时t=5,PQ的最大值为②如图9,当点Q在BC上时,PQ)t-.当Q与B重合时,PQ最大,此时t=5,PQ的最大值为.综上所述,PQ的最大值为§1.3 因动点产生的直角三角形问题课前导学我们先看三个问题:1.已知线段AB,以线段AB为直角边的直角三角形ABC 有多少个?顶点C的轨迹是什么?2.已知线段AB,以线段AB为斜边的直角三角形ABC有多少个?顶点C的轨迹是什么?3.已知点A(4,0),如果△OAB是等腰直角三角形,求符合条件的点B的坐标.图1 图2 图3如图1,点C在垂线上,垂足除外.如图2,点C在以AB。

2016上海各区初三数学一模18题解析

2016上海各区初三数学一模18题解析

2016年上海市各区县中考数学一模压轴题图文解析目录第二部分第18题图文解析2016年上海市崇明县中考数学一模第18题/ 12016年上海市奉贤区中考数学一模第18题/ 22016年上海市虹口区中考数学一模第18题/ 32016年上海市黄浦区中考数学一模第18题/ 42016年上海市嘉定区中考数学一模第18题/ 52016年上海市静安区青浦区中考数学一模第18题/ 62016年上海市闵行区中考数学一模第18题/ 72016年上海市浦东新区中考数学一模第17、18题/ 82016年上海市普陀区中考数学一模第18题/ 102016年上海市松江区中考数学一模第18题/ 112016年上海市徐汇区中考数学一模第18题/ 122016年上海市杨浦区中考数学一模第18题/ 132016年上海市闸北区中考数学一模第18题/ 142016年上海市长宁区金山区中考数学一模第18题/ 152016年上海市宝山区中考数学一模第18题/ 16例 2016年上海市崇明县中考一模第18题如图1,等边三角形ABC中,D是BC边上的一点,且BD∶DC=1∶3,把△ABC折叠,使点A落在BC边上的点D处,那么AMAN的值为__________.图1动感体验请打开几何画板文件名“16崇明一模18”,拖动点D在BC边上运动,可以体验到,△MBD与△DCN保持相似.答案57.思路如下:如图2,因为∠MDC=∠B+∠1=60°+∠1,∠MDC=∠MDN+∠2=60°+∠2,所以∠1=∠2.又因为∠B=∠C=60°,所以△MBD∽△DCN.所以DM MBD AB BD ND DCN AC DC+==+△的周长△的周长.如图3,设等边三角形ABC的边长为4,当BD∶DC=1∶3时,415437 AM DMAN ND+===+.图2 图3例 2016年上海市奉贤区中考一模第18题如图1,已知平行四边形ABCD 中,AB =AD =6,cot B =12,将边AB 绕点A 旋转,使得点B 落在平行四边形ABCD 的边上,其对应点为B ′(点B ′不与点B 重合),那么sin ∠CAB ′=________________.图1动感体验请打开几何画板文件名“16奉贤一模18”,可以体验到,点B 旋转以后得到的点B ′可以落在BC 边上,也可以落在AD 边上..思路如下:如图2,在Rt △ABE 中,由AB =cot B =12,可得BE =2,AE =4.在Rt △ACE 中,由AE =4,CE =BC -BE =6-2=4,可得AC =ACE =45°. ①如图3,当点B ′在BC 边上时,B ′E =BE =2.在等腰直角三角形B ′CH 中,B ′C =2,所以B ′H =CH在Rt △A B ′H ,B ′H =AH =AC -CH =AB ′=此时sin ∠CAB ′=''B HAB ==②如图4,当点B ′在AD 边上时,∠CAB ′=45°.此时sin ∠CAB ′=2.图2 图3 图4例 2016年上海市虹口区中考一模第18题如图1,在矩形ABCD 中,AB =6,AD =10,点E 是BC 的中点,联结AE ,若将△ABE 沿AE 翻折,点B 落在点F 处,联结FC ,则cos ∠ECF =__________.图1动感体验请打开几何画板文件名“16虹口一模18”,可以体验到,FC //AE .如图2,由EB =EC =EF ,可知∠BFC =90°. 又因为AE 垂直平分BF ,所以∠BOE =90°. 所以FC //AE .所以∠ECF =∠BEA .在Rt △ABE 中,AB =6,BE =4,所以AE =cos ∠ECF =BE AE图2例 2016年上海市黄浦区中考一模第18题如图1,在梯形ABCD中,AD//BC,∠B=45°,点E是AB的中点,DE=DC,∠EDC =90°,若AB=2,则AD的长是___________.图1动感体验请打开几何画板文件名“16黄浦一模18”,拖动点D可以改变梯形ABCD和直角三角形CDE的形状,可以体验到,△EMD∽△DNC.当DE=DC时,△EMD≌△DNC..思路如下:在Rt△AEM中,AE=1,∠EAM=45°,所以EM=AM=..由△EMD≌△DNC,得MD=NC=2EM=AD=2图2例 2016年上海市嘉定区区中考一模第18题如图1,在梯形ABCD中,AD//BC,∠ABC=90°,AB=CB,tan∠C=43.点E在CD边上运动,联结BE.如果EC=EB,那么DECD的值是_________.图1动感体验请打开几何画板文件名“16嘉定一模18”,拖动点E在CD上运动,可以体验到,点H 是BC的四等分点,当EC=EB时,EG垂直平分BC.答案13.思路如下:如图2,由AB=CB,tan∠C=43,可得DHCH=ABCH=CBCH.所以34CD CF=.如图3,当EC=EB时,EG垂直平分BC,所以E是CF的中点.所以14DE CF=.所以DECD=13.图2 图3例 2016年上海市静安区青浦区中考一模第18题如图1,将平行四边形ABCD 绕点A 旋转后,点D 落在边AB 上的点D ′,点C 落到C ′,且点C ′、B 、C 在一直线上,如果AB =13,AD =3,那么∠A 的余弦值为.图1动感体验请打开几何画板文件名“16静安青浦一模18”,拖动点D 绕着点A 旋转,可以体验到,∠1=∠2=∠3=∠4=∠保持不变(如图2).当点C ′、B 、C 在一直线上时,△C ′D ′B 是等腰三角形(如图3).答案135.思路如下: 如图3,在等腰三角形C ′D ′B 中,C ′D ′=CD =13,BD ′=13-3=10. 在Rt △C ′D ′E 中,ED ′=5,C ′D ′=13,所以cos ∠1=135.例 2016年上海市闵行区中考一模第18题将一副三角尺如图1摆放,其中在Rt △ABC 中,∠ACB =90°,∠B =60°.在Rt △EDF 中,∠EDF =90°,∠E =45°.点D 为边AB 的中点,DE 交AC 于点P ,DF 经过点C .将△EDF 绕点D 顺时针旋转角α(0°<α<60°),后得到△E ′DF ′,DE ′交AC 于点M ,DF ′交BC 于点N ,那么PMCN的值为_________.图1动感体验请打开几何画板文件名“16闵行一模18”,拖动点F ′绕着点D 旋转,可以体验到,△PDM 与△CDN 保持相似,对应边的比等于30°角的直角三角形PDC 的直角边的比..思路如下:如图2,在Rt △PCD 中,∠PCD =∠A =30°,所以3PD CD =如图3,由△PDM ∽△CDN ,得PM PD CN CD ==图2 图3例 2016年上海市浦东新区中考一模第17题若抛物线y=ax2+c与x轴交于A(m, 0)、B(n, 0)两点,与y轴交于点C(0, c),则称△ABC 为“抛物三角形”.特别地,当mnc<0时,称△ABC为“正抛物三角形”;当mnc>0时,称△ABC为“倒抛物三角形”.那么当△ABC为“倒抛物三角形”时,a、c应分别满足条件_________.动感体验请打开几何画板文件名“16浦东一模17”,拖动点C在y轴上运动,可以体验到,当点C在y轴负半轴时,△ABC为“倒抛物三角形”.答案a>0,c<0.思路如下:因为A(m, 0)、B(n, 0)两点关于y轴对称,所以mn<0.当mnc<0时,c>0,这时抛物线开口向下,所以a<0(如图1所示).当mnc>0时,c<0,这时抛物线开口向上,所以a>0(如图2所示).图1 正抛物三角形图2 倒抛物三角形例 2016年上海市浦东新区中考一模第18题在△ABC 中,AB =5,AC =4,BC =3.D 是边AB 上的一点,E 是边AC 上的一点(D 、E 均与端点不重合),如果△CDE 与△ABC 相似,那么CE =_________.动感体验请打开几何画板文件名“16浦东一模18”,拖动点E 在AC 上运动,可以体验到,△CDE 与△ABC 相似存在4种情况,其中有一种情况点E 与点A 重合.答案2,3625或258.思路如下:如图1,当E 为直角顶点,∠DCE =∠A 时,DA =DC ,因此E 是AC 的中点.此时CE =2. 如图2,当E 为直角顶点,∠DCE =∠B 时,CD ⊥AB .此时CE =3625.图1 图2如图3,当D 为直角顶点,∠DCE =∠A 时,DA =DC ,因此点D 在AC 的垂直平分线上, CD 是直角三角形ABC 斜边上的中线.此时CE =258. 如图4,当D 为直角顶点,∠DCE =∠B 时,点E 与点A 重合.图3 图4已知点A (3, 2)是平面直角坐标系中的一点,点B 是x 轴负半轴上一动点,联结AB ,并以AB 为边在x 轴上方作矩形ABCD ,且满足BC ∶AB =1∶2,设点C 的横坐标为a ,如果用含a 的代数式表示点D 的坐标,那么点D 的坐标是__________.动感体验请打开几何画板文件名“16普陀一模18”,可以体验到,△AFD ≌△CHB ∽△BGA .答案1(2,3)2a -.思路如下:如图1,构造矩形ABCD 的外接矩形EFGH ,那么△AFD ≌△CHB ∽△BGA . 设C (a , y ),B (b , 0),根据12CH BH CB BG AG BA ===,得1322y b a b -==-. 解得b =a +1,112y a =-.因此DF =BH =b -a =1,AF =CH =y =112a -. 于是x D =3-1=2,y D =FG =AG +AF =2+112a -=132a -.图1例 2016年上海市松江区中考一模第18题已知在△ABC中,∠C=90°,BC=3,AC=4,点D是AB边上一点,将△ABC沿着直线CD翻折,点A落在直线AB上的点A′处,则sin∠A′CD=_________.动感体验请打开几何画板文件名“16松江一模18”,拖动点D在AB上运动,可以体验到,当点A′落在直线AB上时,CD⊥AB.答案4.思路如下:5如图1,△ACD与△A′CD关于直线DC对称.如图2,当点A′落在直线AB上时,CD⊥AB.此时∠A′CD=∠ACD=∠ABC.图1 图2如图1,在Rt△ABC中,∠BAC=90°,AB=3,cos B=35,将△ABC绕着点A旋转得△ADE,点B的对应点D落在边BC上,联结CE,那么CE的长是________.图1动感体验请打开几何画板文件名“16徐汇一模18”,拖动点E绕着点A旋转,可以体验到,等腰三角形ABD与等腰三角形ACE保持相似(如图2),当点D落在BC上时,△ABD的三边比是5∶5∶6(如图3).答案245.思路如下:在Rt△ABC中,AB=3,cos B=35,所以BC=4,AC=4.如图3,在△ACE中,56ACCE=,所以62455CE AC==.例 2016年上海市杨浦区中考一模第18题如图1,已知△ABC 沿角平分线BE 所在直线翻折,点A 恰好落在BC 边的中点M 处,且AM =BE ,那么∠EBC 的正切值为_________.图1动感体验请打开几何画板文件名“16杨浦一模18”,拖动点A 运动,可以体验到,AB =AD ,点E 是BD 的三等分点,点G 是BD 的中点.答案23.思路如下:如图2,由∠1=∠2=∠3,可得AB =AD .又因为AB =MB ,M 是BC 的中点,所以AD =MB =MC .所以1BG MB DG AD ==,2BE BCDE AD==(如图3). 所以23BE BD =,12BG BD =.所以43BE BG =.当AM =BE 时,12MG BE =.此时tan ∠EBC =1223MG BE BG BG =⨯=.图2 图3如图1,将一张矩形纸片ABCD沿着过点A的折痕翻折,使点B落在AD边上的点F,折痕交BC于点E,将折叠后的纸片再次沿着另一条过点A的折痕翻折,点E恰好与点D重合,此时折痕交DC于点G,则CG∶GD的值为________.图1动感体验请打开几何画板文件名“16闸北一模18”,拖动点D可以改变矩形ABCD的形状,可以体验到,△ABE是等腰直角三角形保持不变,EG与E′G保持相等,当点E′与点D重合时,△CEG是等腰直角三角形.答案1如图4,当点E′与点D重合时,△CEG是等腰直角三角形,CG∶EG=1例 2016年上海市长宁区金山区中考一模第18题如图1,四边形ABCD为正方形,E为BC上一点,将正方形折叠,使点A与点E重合,折痕为MN,如果tan∠AEN=13,DC+CE=10,那么△ANE的面积为_________.图1动感体验请打开几何画板文件名“16长宁金山一模18”,可以体验到,根据对称性,∠AEN=∠EAN,AN=EN.答案103.思路如下:如图2,根据对称性,∠AEN=∠EAN,当tan∠AEN=tan∠EAN=13,设BE=m,那么正方形的边长为3m.当DC+CE=10时,2m+3m=10.解得m=2.设AN=EN=n,在Rt△BEN中,由勾股定理,得n2=(6-n)2+22.解得n=103.所以S△ANE=12AN BE=103.图2如图1,抛物线y=x2-2x-3交x轴于A、B两点,交y轴于点C,M是抛物线的顶点.现将抛物线沿平行于y轴的方向向上平移三个单位,则曲线CMB在平移过程中扫过的面积为_____________(面积单位).图1动感体验请打开几何画板文件名“16宝山一模18”,拖动点M ′上下运动,可以体验到,夹在两条抛物线之间的竖直线段的长与MM′保持相等,因此曲线CMB在平移过程中扫过的面积等于平行四边形CMM ′C′和平行四边形BMM ′B′的和.答案9.思路如下:由y=x2-2x-3=(x+1)(x-3),得A(-1, 0),B(3, 0),C(0,-3).如图3,当CC′=3时,S平行四边形CMM ′C′+S平行四边形BMM ′B′=MM ′×OB=9.。

历年上海市黄埔区初三数学中考模拟卷及答案

历年上海市黄埔区初三数学中考模拟卷及答案

黄浦区初中毕业生学业考试数学模拟试卷一、填空题:(本题共12小题,每小题3分,满分36分) 1、-1的相反数的倒数是 ;2、=43)(x -____________;3、不等式)1(335+>-x x 的解集是______________;4、在实数范围内因式分解:=+232x x -_____________________;5、若x x 82=,则 x = ;6、函数81+x y =的自变量x 的取值范围是____________________;7、若等边三角形的边长为a ,则它的面积为____________.;8、如果直线b x y +-=2在y 轴上的截距为-2,那么这条直线一定不经过第 象限;9、已知a b =c d =e f =35 ,b +d +f =50,那么a +c +e = ; 10、正多边形的中心角是360,则这个正多边形的边数是 ;11、两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 ; 12、△ABC 是等腰直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转 后,能与△ACP ′重合。

如果AP=3,那么PP ′的长等于 。

ABCP ′ P二、单项选择题:(本题共4小题,每小题4分,满分16分)【每题列出的四个答案中,只有一个是正确的,把正确答案的代号填入括号内】13、在Rt △ABC 中,∠C=90°,∠A 的对边为a ,已知∠A 和边a ,求边c ,则下列关系中正确的是( )(A) c=asinA ( B) c= a sinA (C) c=acosA (D) c= acosA14、在平面直角坐标中,点P (1,-3)关于x 轴的对称点坐标是:(A )(1,-3) (B )(-1,3) (C )(-1,-3) (D )(1,3)15、一批运动服按原价八五折出售,每套a 元,则它的原价为: (A )0.85a 元 (B )a 1720元 (C )0.15a 元 (D )a 320元16、如图,A D ∥BC ,∠D=90°,DC=7,AD=2,BC=4.若在边DC 上有点P 使△PAD 和△PBC 相似,则这样的点P 存在的个数有 ( )(A) 1 ( B) 2 (C) 3 (D) 4三、简答题:(本题共5小题,第19、20题,每小题9分,第21、22、23题,每小题10分,满分48分)17、计算: 1212)31(201-)-(--++-πD C BA18、用换元法解方程:xx x x 3121322-=--19、某区在5000名初三学生的数学测试成绩中,随机抽取了部分学生的成绩,经过整理后分成六组,绘制出的频率分布直方图(如图,图中还缺少90~100小组的小长方形),已知从左到右的第一至第五组的频率依次为0.05、0.1、0.3、0.25、0.2,第六小组的频数为25。

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

2016年上海市黄浦区中考一模数学试卷

2016年上海市黄浦区中考一模数学试卷

2015学年度第一学期九年级期终调研测试数学试卷2016年1月(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.如果两个相似三角形的周长比为1∶4,那么这两个三角形的相似比为()(A )1∶2; (B )1∶4; (C )1∶8; (D )1∶16. 2.已知线段a 、b 、c ,其中c 是b a 、的比例中项,若cm a 9=,cm b 4=,则线段c 长()(A )18cm ;(B )5cm ; (C )6cm ; (D )6cm ±.3.如果向量a 与向量b 方向相反,且3a b =,那么向量a 用向量b 表示为() (A )3a b =; (B )3a b =-; (C )13a b =;(D )13a b =-.4.在直角坐标平面内有一点P (3,4),OP 与x 轴正半轴的夹角为α,下列结论正确的是()(A )4tan 3α=; (B )4cot 5α=;(C )3sin 5α=;(D )5cos 4α=.5.下列函数中不是二次函数的有()(A )()1y x x =-;(B )221y x =-;(C )2y x =-;(D )()224y x x =+-.6.如图1,在△ABC 中,点D 、E 分别在边AB 、AC 上,如果DE ∥BC ,且D C EB∠=∠,CE那么下列说法中,错误的是()(A )△ADE ∽△ABC ;(B )△ADE ∽△ACD ;(C )△ADE ∽△DCB ;(D )△DEC ∽△CDB .二、填空题:(本大题共12题,每题4分,满分48分) 7.如果3sin 2α=,那么锐角α=°. 8.已知线段a 、b 、c 、d ,如果23a cb d ==,那么ac b d+=+.9.计算:()312422a b a b --+=.10.在Rt △ABC 中,90C ︒∠=,AC =2,1cot 3A =,则BC =.11.如图2,已知AD 、BC 相交于点O ,AB ∥CD ∥EF ,如果CE =2,EB =4,FD =1.5,那么AD =.12.如图3,在△ABC 中,点D 是BC 边上的点,且CD =2BD ,如果AB a =,AD b =,那么BC =(用含a 、b 的式子表示).13.在△ABC 中,点O 是重心,DE 经过点O 且平行于BC 交边AB 、AC 于点D 、E ,则:ADE ABC S S ∆∆=.14.如图4,在△ABC 中,D 、E 分别是边AC 、AB 上的点,且AD =2,DC =4,AE =3,EB =1,则DE :BC =.15.某水库水坝的坝高为10米,迎水坡的坡度为1:2.4,则该水库迎水坡的长度为米.16.如图5,AD 、BE 分别是△ABC 中BC 、AC 边上的高,AD =4,AC =6,则s i n EBC ∠=.17.已知抛物线12()ya x m k =-+与22()y a x m k =++()0m ≠关于y 轴对称,我们称1y 与2y 互为“和谐抛物线”.请写出抛物线2467y x x =-++的“和谐抛物线”.18.如图6,在梯形ABCD 中,AD ∥BC ,∠B =45°,点E 是AB 的中点,DE =DC ,∠EDC =90°,若AB =2,则AD 的长是.三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:22tan30cos 45cot 302sin60︒︒-+︒︒. 20.(本题满分10分)如图7,已知△ABC 中,点D 、E 分别在ABCDE图5ABCDE 图6图7ABCD E FABCD图3ABCDEF图2图4EABCDO边AB 和AC 上,DE //BC ,点F 是DE 延长线上的点,AD DE BDEF=,联结FC ,若23AE AC=,求AD FC的值.21.(本题满分10分)已知抛物线2y ax b x c =++如图8所示,请结合图像中所给信息完成以下问题:(1)求抛物线的表达式;(2)若该抛物线经过一次平移后过原点O ,请写出一种平移方法,并写出平移后得到的新抛物线的表达式.22.(本题满分10分)如图9,已知四边形ABCD 的对角线AC 、BD 交于点F ,点E 是BD 上一点,且BCA ADE ∠=∠,∠CBD =∠BAE .(1)求证:ABC ∆∽AED ∆;(2)求证:AB CD AC BE ⋅=⋅.23.(本题满分12分)如图10,一条细绳系着一个小球在平面内摆动.已知细绳从悬挂点O 到球心的长度为50厘米,小球在A 、B 两个位置时达到最高点,且最高点高度相同(不计空气阻力),在C 点位置时达到最低点.达到左侧最高点时与最低点时细绳相应所成的角度为37°,细绳在右侧达到最高点时与一个水平放置的挡板DE 所成的角度为30°.(6.037sin ≈︒,8.037cos ≈︒,75.037tan ≈︒)(1)求小球达到最高点位置与最低点位置时的高度差.(2)求OD 这段细绳的长度.24.(本题满分12分,其中第(1)小题3分,第(2)小题3分,第(3)小题6分)在平面直角坐标系xOy 中,抛物线c ax ax y +-=32与x 轴交于)0,1(-A 、B 两点(A 点在B 点左侧),与y 轴交于点)2,0(C .(1)求抛物线的对称轴及B 点的坐标;(2)求证:∠CAO =∠BCO ;(3)点D 是射线BC 上一点(不与B 、C 重合),联结OD ,过点B 作BE ⊥OD ,垂足为BOD ∆外一点E ,若BDE ∆与ABC ∆相似,求点D 的坐标.25.(本题满分14分,其中第(1)小题4分,第(2)小题6分,第(3)小题4分)已知直线1l 、2l ,1l ∥2l ,点A 是1l 上的点,B 、C 是图OxyABCDOE图10BCD'D O1l 2l A图A BCD 'D O1l 2l MNE图ABCDE F图9图8Oxy-- 13 142 -2l 上的点,AC ⊥BC ,∠ABC =60°,AB =4,O 是AB 的中点,D 是CB 延长线上的点,将DOC ∆沿直线CO 翻折,点D 与'D 重合(1)如图12,当点'D 落在直线1l 上时,求DB 的长;(2)延长DO 交1l 于点E ,直线'OD 分别交1l 、2l 于点M 、N .①如图13,当点E 在线段AM 上时,设x AE =,y DN =,求y 关于x 的函数解析式及其定义域;②若DON ∆的面积为323时,求AE 的长.2016年上海市黄浦区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分) 1.(4分)(2016?黄浦区一模)如果两个相似三角形的周长比为1:4,那么这两个三角形的相似比为( ) A .1:2 B .1:4 C .1:8 D .1:16 【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比解答即可. 【解答】解:∵两个相似三角形的周长比为1:4, ∴这两个三角形的相似比为1:4, 故选:B .【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比是解题的关键. 2.(4分)(2016?黄浦区一模)已知线段a 、b 、c ,其中c 是a 、b 的比例中项,若a=9cm ,b=4cm ,则线段c 长( ) A .18cm B .5cm C .6cm D .±6cm 【考点】比例线段.【分析】由c 是a 、b 的比例中项,根据比例中项的定义,列出比例式即可得出线段c 的长,注意线段不能为负. 【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c 2=4×9,解得c=±6(线段是正数,负值舍去), 故选C .【点评】此题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数. 3.(4分)(2016?黄浦区一模)如果向量与向量方向相反,且,那么向量用向量表示为( )A .B .C .D .【考点】*平面向量. 【分析】由向量与向量方向相反,且,可得3=﹣,继而求得答案.【解答】解:∵向量与向量方向相反,且,∴3=﹣,∴=﹣.故选D .【点评】此题考查了平面向量的知识.注意根据题意得到3=﹣是解此题的关键.4.(4分)(2016?黄浦区一模)在直角坐标平面内有一点P (3,4),OP 与x 轴正半轴的夹角为α,下列结论正确的是( ) A .tanα=B .cotα=C .sinα=D .cosα=【考点】锐角三角函数的定义;坐标与图形性质.【分析】根据在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,可得答案.【解答】解:斜边为=5,A、tanα=,故A正确;B、cotα=,故B错误;C、sinα=,故C错误;D、cosα=,故D错误;故选:A.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.(4分)(2016?黄浦区一模)下列函数中不是二次函数的有()A.y=x(x﹣1)B.y=﹣1 C.y=﹣x2D.y=(x+4)2﹣x2【考点】二次函数的定义.【分析】依据二次函数的定义回答即可.【解答】解:A、整理得y=x2﹣x,是二次函数,与要求不符;B、y=﹣1是二次函数,与要求不符;C、y=﹣x2是二次函数,与要求不符;D、整理得:y=8x+16是一次函数,与要求相符.故选:D.【点评】本题主要考查的是二次函数的定义,掌握二次函数的定义是解题的关键.6.(4分)(2016?黄浦区一模)如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且∠DCE=∠B,那么下列说法中,错误的是()A.△ADE∽△ABC B.△ADE∽△ACD C.△ADE∽△DCB D.△DEC∽△CDB【考点】相似三角形的判定.【分析】由相似三角形的判定方法得出A、B、D正确,C不正确;即可得出结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∠BCD=∠CDE,∠ADE=∠B,∠AED=∠ACB,∵∠DCE=∠B,∴∠ADE=∠DCE,又∵∠A=∠A,∴△ADE∽△ACD;∵∠BCD=∠CDE,∠DCE=∠B,∴△DEC∽△CDB;∵∠B=∠ADE,但是∠BCD<∠AED,且∠BCD≠∠A,∴△ADE与△DCB不相似;正确的判断是A、B、D,错误的判断是C;故选:C.【点评】本题考查了相似三角形的判定方法;熟练掌握相似三角形的判定方法,由两角相等得出三角形相似是解决问题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2016?黄浦区一模)如果sinα=,那么锐角α=60°.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:由sinα=,得锐角α=60°,故答案为:60.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.8.(4分)(2016?黄浦区一模)已知线段a、b、c、d,如果,那么=.【考点】比例的性质.【分析】根据等比性质:?=,可得答案.【解答】解:由等比性质,得=,故答案为:.【点评】本题考查了比例的性质,利用等比性质是解题关键.9.(4分)(2016?黄浦区一模)计算:=+.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解:=﹣3﹣+4=+.故答案为:.【点评】此题考查了平面向量的运算法则.注意去括号时符号的变化.10.(4分)(2016?黄浦区一模)在Rt△ABC中,∠C=90°,AC=2,cotA=,则BC=6.【考点】锐角三角函数的定义.【分析】根据余切等于邻边比对边,可得答案.【解答】解:Rt△ABC中,∠C=90°,AC=2,cotA==,得BC=3AC=3×2=6,故答案为:6.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,余切等于邻边比对边.11.(4分)(2016?黄浦区一模)如图,已知AD、BC相交于点O,AB∥CD∥EF,如果CE=2,EB=4,FD=1.5,那么AD= 4.5.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例、比例的基本性质求得AF=3,则AD=AF+FD=4.5即可.【解答】解:∵AB∥EF,∴,则,又EF∥CD,∴,则,∴,即,解得:AF=3,∴AD=AF+FD=3+1.5=4.5,即AD的长是4.5;故答案为:4.5.【点评】本题考查了平行线分线段成比例、比例的性质;由平行线分线段成比例定理得出比例式求出AF是解决问题的关键.12.(4分)(2016?黄浦区一模)如图,在△ABC中,点D是BC边上的点,且CD=2BD,如果,,那么=3﹣3(用含、的式子表示).【考点】*平面向量.【分析】由,,直接利用三角形法则即可求得,再由CD=2BD,即可求得答案.【解答】解:∵,,∴=﹣=﹣,∵在△ABC中,点D是BC边上的点,且CD=2BD,∴=3=3﹣3.故答案为:.【点评】此题考查了平面向量的知识.注意掌握三角形法则的应用是解此题的关键.13.(4分)(2016?黄浦区一模)在△ABC中,点O是重心,DE经过点O且平行于BC交边AB、AC于点D、E,则S△ADE:S△ABC=4:9.【考点】三角形的重心.【分析】根据三角形的重心的性质得到=,根据相似三角形的面积比等于相似比的平方交点即可.【解答】解:∵点O是重心,∴=,∵DE∥BC,∴==,△ADE∽△ABC,∴S△ADE:S△ABC=4:9,故答案为:4:9.【点评】本题考查的是三角形的重心的概念和性质、相似三角形的性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.14.(4分)(2016?黄浦区一模)如图,在△ABC中,D、E分别是边AC、AB上的点,且AD=2,DC=4,AE=3,EB=1,则DE:BC=.【考点】相似三角形的判定与性质.【分析】根据已知条件得到,由于∠A=∠A,推出△ADE∽△ABC,根据相似三角形的性质即可得到结论.【解答】解:∵AD=2,DC=4,AE=3,EB=1,∴AC=6,AB=4,∴,,∴,∵∠A=∠A,∴△ADE∽△ABC,∴DE:BC=AD:AB=1:2,故答案为:.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.15.(4分)(2016?黄浦区一模)某水库水坝的坝高为10米,迎水坡的坡度为1:2.4,则该水库迎水坡的长度为26米.【考点】解直角三角形的应用-坡度坡角问题.【分析】因为tanα(坡度)=垂直距离÷水平距离,可得水平距离为24米,根据勾股定理可得背水面的坡长为26米.【解答】解:∵大坝高10米,背水坝的坡度为1:2.4,∴水平距离=10×2.4=24(米).根据勾股定理,可得背水面的坡长为:=26(米).故答案为:26.【点评】此题主要考查了坡度问题应用,此题的关键是熟悉且会灵活应用公式:tanα(坡度)=垂直距离÷水平距离.16.(4分)(2016?黄浦区一模)如图,AD、BE分别是△ABC中BC、AC边上的高,AD=4,AC=6,则sin∠EBC=.【考点】解直角三角形.【专题】推理填空题.【分析】根据AD、BE分别是△ABC中BC、AC边上的高,可以求得∠EBC和∠DAC的关系,AD=4,AC=6,可以求得CD的长,从而可以求出∠DAC的三角函数值,进而可以得到∠EBC的三角函数值,本题得以解决.【解答】解:∵AD、BE分别是△ABC中BC、AC边上的高,∴∠BDA=∠ADC=90°,∴∠CBE=∠DAC,∵∠ADC=90°,AD=4,AC=6,∴CD=,∴sin,∴sin∠EBC=,故答案为:.【点评】本题考查解直角三角形,解题的关键找出各个角之间的关系,利用等角的三角函数值相等,可以求得所求的角的三角函数值.17.(4分)(2016?黄浦区一模)已知抛物线y1=a(x﹣m)2+k与y2=a(x+m)2+k(m≠0)关于y轴对称,我们称y1与y2互为“和谐抛物线”.请写出抛物线y=﹣4x2+6x+7的“和谐抛物线”y=﹣4x2﹣6x+7.【考点】二次函数图象与几何变换.【专题】新定义.【分析】根据关于y轴对称的点的坐标规律:纵坐标相同,横坐标互为相反数,可得答案【解答】解:抛物线y=﹣4x2+6x+7的“和谐抛物线”是y=﹣4(﹣x)2+6(﹣x)+7,化简,得y=﹣4x2﹣6x+7,故答案为:y=﹣4x2﹣6x+7.【点评】本题考查了二次函数图象与几何变换,利用了关于y轴对称的点的坐标规律.18.(4分)(2016?黄浦区一模)如图,在梯形ABCD中,AD∥BC,∠B=45°,点E是AB的中点,DE=DC,∠EDC=90°,若AB=2,则AD的长是.【考点】相似三角形的判定与性质;全等三角形的判定与性质.【专题】计算题;图形的相似.【分析】延长DE交CB的延长线于点F,将AD替换成BF,再由三角形相似,借助比的特性,即能得出结论.【解答】解:延长DE交CB的延长线于点F,如图,∵AD∥BC,∴∠ADE=∠F,∵点E是AB的中点,∴AE=BE=1,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS),∴AD=BF,DE=EF,∵∠B=∠F+∠BEF=45°,DE=DC,∠EDC=90°,∴∠CED=∠F+∠ECF=45°,CE=DE,∴∠BEF=∠ECF,∵∠F=∠F,∴△BEF∽△ECF,∴=,即=,∴=,∴AD=.故答案为:.【点评】本题考查全等三角形的判定和性质以及相似三角形的判定和性质,解题的关键是巧妙的利用比的特性,化未知为已知,从而得出结论.三、解答题:(本大题共7题,满分78分)19.(10分)(2016?黄浦区一模)计算:cos245°﹣+cot230°.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=()2﹣+()2=﹣+3=.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.20.(10分)(2016?黄浦区一模)如图,已知△ABC中,点D、E分别在边AB和AC上,DE∥BC,点F是DE延长线上的点,,联结FC,若,求的值.【考点】平行线分线段成比例.【分析】由平行线分线段成比例定理和已知条件得出,证出AB∥CF,再由平行线分线段成比例定理和比例的性质即可得出结果.【解答】解:∵DE∥BC,∴,又∵,∴,∴AB∥CF,∴=,∵,∴=2,∴=2.【点评】本题考查了平行线分线段成比例定理以及逆定理;熟练掌握平行线分线段成比例定理,证明AB∥CF是解决问题的关键.21.(10分)(2016?黄浦区一模)已知抛物线y=ax2+bx+c如图所示,请结合图象中所给信息完成以下问题:(1)求抛物线的表达式;(2)若该抛物线经过一次平移后过原点O,请写出一种平移方法,并写出平移后得到的新抛物线的表达式.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【分析】(1)根据题意和图形列出三元一次方程组,解方程组得到答案.(2)由于平移前后的二次项系数不变,而平移后的抛物线过原点,则平移后的抛物线解析式中常数项为0,然后根据这两个条件写出一个解析式即可.【解答】解:(1)由题意得,解得.∴函数的解析式为:y=﹣x2﹣2x+3;(2)平移抛物线y=﹣x2﹣2x+3,使它经过原点,则平移后的抛物线解析式可为y=﹣x2﹣2x.故向下平移3个单位,即可得到过原点O的抛物线.【点评】本题考查的是待定系数法求二次函数的解析式和二次函数图象与交换变换,掌握待定系数法和平移的规律是解题的关键.22.(10分)(2016?黄浦区一模)如图,已知四边形ABCD的对角线AC、BD交于点F,点E是BD上一点,且∠BCA=∠ADE,∠CAD=∠BAE.(1)求证:△ABC∽△AED;(2)求证:BE?AC=CD?AB.【考点】相似三角形的判定与性质.【专题】证明题.【分析】(1)根据已知条件和角的和差得到∠BAC=∠DAE,由于∠ACB=∠ADE,即可得到结论;(2)根据相似三角形的性质得到,由∠BAE=∠CAD,推出△ABE∽△ACD,由相似三角形的性质即可得到结论.【解答】证明:(1)∵∠BAE=∠DAC,∠BAC=∠BAE﹣∠CAE,∠DAE=∠DAC﹣∠CAE,∴∠BAC=∠DAE,∵∠ACB=∠ADE,∴△ABC∽△AED;(2)∵△ABC∽△AED,∴,∵∠BAE=∠CAD,∴△ABE∽△ACD,∴,即:BE?AC=CD?AB.【点评】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定和性质是解题的关键.23.(12分)(2016?黄浦区一模)如图,一条细绳系着一个小球在平面内摆动.已知细绳从悬挂点O到球心的长度为50厘米,小球在A、B两个位置时达到最高点,且最高点高度相同(不计空气阻力),在C点位置时达到最低点.达到左侧最高点时与最低点时细绳相应所成的角度为37°,细绳在右侧达到最高点时与一个水平放置的挡板DE所成的角度为30°.(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)(1)求小球达到最高点位置与最低点位置时的高度差.(2)求OD这段细绳的长度.【考点】解直角三角形的应用.【分析】(1)根据题意得出CF=OC﹣OF=OC﹣OAcos37°,进而得出答案;(2)根据题意得出CF=CD﹣DF=BD﹣BD?cos60°=10,进而得出DC的长,进而得出答案.【解答】解:(1)连接AB交OC于点F,可知,AB⊥OC,由题意可得:∠AOC=37°,则CF=OC﹣OF=OC﹣OAcos37°=50﹣50×0.8=10(cm),故A,C之间的高度差为10cm;(2)由(1)知,B,C的高度差也是10cm,故CF=CD﹣DF=BD﹣BD?cos60°=10(cm),解得:CD=20,则OD=OC﹣BD=50﹣20=30(cm),答:OD这段细绳的长度为30cm.【点评】此题主要考查了解直角三角形的应用,根据题意得出OF与OA的关系是解题关键.24.(12分)(2016?黄浦区一模)在平面直角坐标系xOy中,抛物线y=ax2﹣3ax+c与x轴交于A(﹣1,0)、B两点(A点在B点左侧),与y轴交于点C(0,2).(1)求抛物线的对称轴及B点的坐标;(2)求证:∠CAO=∠BCO;(3)点D是射线BC上一点(不与B、C重合),联结OD,过点B作BE⊥OD,垂足为△BOD外一点E,若△BDE与△ABC相似,求点D的坐标.【考点】二次函数综合题.【分析】(1)根据待定系数法,可得函数解析式,根据配方法,可得对称轴,根据函数值相等的两点关于对称轴对称,可得B点坐标;(2)根据正切函数值相等的两锐角相等,可得答案;(3)根据两角对应相等的两个三角形相似,可得①∠EBD=∠CBA,根据余角的性质,可得∠EDB=∠CAB=∠OCD=∠ODC,根据等腰三角形的判定,可得OD的长,根据勾股定理,可得a的值,根据a的值OH的长,可得D点坐标;②根据等腰三角形的判定,可得OD的长,根据勾股定理,可得m的值,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)将A、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2+x+2=﹣(x﹣)2+,对称轴为x=,A到对称轴的距离是﹣(﹣1)=,B点的横坐标为,+=4,B点坐标为(4,0);(2)证明:如图1,∵AO=1,OC=2,BO=4,∴tan∠CAO==2,tan∠BCO=2,∴tan∠CAO=tan∠BCO,∴∠CAO=∠BCO;(3)垂足为△BOD外一点E,得△BOD为钝角三角形,∠BED=∠ACB=90°,①∠EBD=∠CBA时,如图2,过D作DH⊥OB于H,∠EDB=∠CAB=∠OCD=∠ODC,OD=OC=2.tan∠CBO===,设DH=a,HB=2a,OH=4﹣2a,OD2=OH2+DH2,即4=(4﹣2a)2+a2,解得a=,a=2(舍),当a=时,OH=4﹣2a=,D点坐标为(,);②∠EDB=∠CBA时,如图3,此时OD=OB=4,BC:y=﹣x+2,设D(m,﹣m+2),m2+(﹣m+2)2=16,解得m=﹣,m=4(舍),当m=﹣时,﹣m+2=,D(﹣,),综上所述:D点坐标为(,),(﹣,).【点评】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用正切函数值相等的两锐角相等是解题关键;利用两角对应相等的两个三角形相似得出①∠EBD=∠CBA,②∠EDB=∠CBA是解题关键,又利用了勾股定理.25.(14分)(2016?黄浦区一模)已知直线l1、l2,l1∥l2,点A是l1上的点,B、C是l2上的点,AC⊥BC,∠ABC=60°,AB=4,O是AB的中点,D是CB延长线上的点,将△DOC沿直线CO翻折,点D与D′重合.(1)如图1,当点D′落在直线l1上时,求DB的长;(2)延长DO交l1于点E,直线OD′分别交l1、l2于点M、N.①如图2,当点E在线段AM上时,设AE=x,DN=y,求y关于x的函数解析式及其定义域;②若△DON的面积为时,求AE的长.【考点】相似形综合题.【专题】综合题;图形的相似.【分析】(1)过D′作D′H⊥l2,如图1所示,可得DH=AC,由折叠的性质及平角定义得到∠D′CH=60°,D′C=DC,求出D′C的长,即为DC的长,再由三角形BOC为等边三角形,且OC等于斜边AB的一半,求出BC的长,由DC﹣BC 求出BD的长即可;(2)①利用两对角相等的三角形相似得到△BOD∽△CND′,由相似得比例列出关系式,即可确定出y与x的函数解析式,并求出定义域即可;②过O作OP⊥BC,如图3所示,由OP的长及已知三角形DON的面积,求出DN的长,分两种情况考虑:当点E 在线段AM上时,如图3所示,根据DN的长,求出AE的长即可;当点E在线段AM的延长线上时,如图4所示,同理可得△BOD∽△CND′,由相似得比例求出此时AE的长即可.【解答】解:(1)过D′作D′H⊥l2,如图1所示,可得DH=AC=2,∵∠DCO=∠D′CO=60°,∴∠D′CH=60°,∴CD=CD′=4,∵∠DCO=∠ABC=∠D′CO=60°,∴△OBC为等边三角形,即BO=CO=BC,∵O为Rt△ABC斜边AB上的中点,∴OC=AB=2,即BC=2,∴BD=CD﹣BC=2;(2)①∵∠DCO=∠D′CO=∠BOC=60°,∴∠OBD=∠NCD′=120°,∵∠ODC=∠ODC′,∴△BOD∽△CND′,∴=,即=,则y=﹣x(0<x≤2);②过O作OP⊥BC,如图3所示,∴S△DON=DN?OP=,OP=,∴DN=3,当点E在线段AM上时,如图3所示,可得DN=y=3,∴﹣x=3,解得:x=1(负值舍去),即AE=1;当点E在线段AM的延长线上时,如图4所示,同理可得△BOD∽△CND′,∴=,即=,解得:AE=4,综上,AE的长为1或4.。

2023年上海市黄浦区中考一模数学试卷(解析版)

2023年上海市黄浦区中考一模数学试卷(解析版)

九年级数学一、选择题(本大题共6题)1.在直角坐标平面内,如果点()41P ,,点P 与原点O 的连线与x 轴正半轴的夹角是α,那么cot α的值是()A.4B.14C.17D.17【答案】A 【解析】【分析】由锐角的余切定义,即可求解.【详解】解:如图,∵点()41P ,,∴4cot 41α==.故选∶A【点睛】本题考查解直角三角形,坐标与图形的性质,关键是掌握锐角的三角函数定义.2.关于抛物线()212y x =--以下说法正确的是()A.抛物线在直线=1x -右侧的部分是上升的B.抛物线在直线=1x -右侧的部分是下降的C.抛物线在直线1x =右侧的部分是上升的D.抛物线在直线1x =右侧的部分是下降的【答案】C【解析】【分析】根据题目中的抛物线解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:∵抛物线()212y x =--,∴抛物线在直线1x =右侧的部分是上升,故选项A 、B 错误,不符合题意;抛物线在直线1x =右侧的部分是上升的,故选项C 正确,符合题意,选项D 错误,不符合题意;故选∶C .【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.3.二次函数2285y x x =++的图像的顶点位于()A.第一象限 B.第二象限C.第三象限D.第四象限【答案】C 【解析】【分析】利用配方法把二次函数解析式配成顶点式,然后利用二次函数的性质求解.【详解】解:2285y x x =++()224445x x =++-+()224485x x =++-+,()2223x =+-,∴顶点坐标为()23--,,∴二次函数2285y x x =++的图像的顶点位于第三象限,故选C .【点睛】本题考查二次函数的性质,解答本题的关键是将题目中的函数解析式化为顶点式.4.如图,梯形ABCD 中,AD BC ∥,点E 、F 分别在腰AB 、CD 上,且EF BC ∥,下列比例成立的是()A.AE ADAB EF= B.AE EFAB BC= C.AE DFAB FC= D.AE DFAB DC=【答案】D 【解析】【分析】根据平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例,即可得到结论.【详解】解:∵AD BC ∥,EF BC ∥,∴AD BC EF ∥∥,∴AE DFAB DC=,故选D .【点睛】本题主要考查平行线分线段成比例,掌握平行线所分线段对应成比例是解题的关键.5.矩形ABCD 的对角线AC 与BD 相交于点O ,如果BC a =,DC b =,那么()A.()12DO a b =-B.()12DO b a =-C.DO a b=- D.()12DO b a =+【答案】B 【解析】【分析】求出BD a b =-,再根据12DO DB =r uuu r 即可得到结果.【详解】解:如图所示:∵BD BC CD=+BC DC =- a b=- ∴()1212DO DB b a -==,故选:B .【点睛】本题主要考查了平面向量,矩形的性质,本题侧重考查知识点的理解能力.6.下列条件中,不能判定ABC 与DEF 相似的是()A.70A D ∠=∠=︒,50B E ∠=∠=︒B.70A D ∠=∠=︒,50B ∠=︒,60E ∠=︒C.A E ∠=∠,12AB =,15AC =,4DE =,5EF =D.A E ∠=∠,12AB =,15BC =,4DE =,5DF =【答案】D 【解析】【分析】由相似三角形的判定依次判断,可求解.【详解】解∶A .∵70A D ∠=∠=︒,50B E ∠=∠=︒,∴ABC 与DEF 相似,故选项A 不合题意;B .∵70A D ∠=∠=︒,50B ∠=︒,∴180705060C ∠=︒-︒-︒=︒,∴60C E ∠=∠=︒,∴ABC 与DEF 相似,故选项B 不合题意;C .31AB ACDE EF==,A E ∠=∠,∴ABC 与DEF 相似,故选项C 不合题意;D .31AB BCDE DF==,但B ∠与D ∠不一定相等,ABC 与DEF 不一定相似,故选项D 符合题意;故选∶D .【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.二、填空题:(本大题共12题)7.计算:()()3232a b a b --+=______.【答案】35a b -##53b a-+【解析】【分析】根据向量的运算法则可直接进行解答.【详解】解:()()3232a b a b--+6332a b a b =---35a b=- ,故答案为:35a b -.【点睛】本题考查的是平面向量的知识,熟悉向量的相关性质是解题的关键.8.如果一个二次函数的图像的对称轴是y 轴,且这个图像经过平移后能与232y x x =+重合,那么这个二次函数的解析式可以是______.(只要写出一个)【答案】()2323y x =++【解析】【分析】先设原抛物线的解析式为()2y a x h k =++,根据二次函数的图像平移性质知3a =,据此写出符合要求的解析式即可.【详解】解∶先设原抛物线的解析式为()2y a x h k =++,经过平移后能与抛物线23y x x =+重合,∴3a =,∴这个二次函数的解析式可以是()2323y x =++(答案不唯一).【点睛】本题考查二次函数的图像与几何变换,熟知二次函数图像平移中不变的性质是解答的关键.9.已知两个矩形相似,第一个矩形的两边长分别是3和4,第二个矩形较短的一边长是4,那么第二个矩形较长的一边长是______.【答案】163##153【解析】【分析】设第二个矩形较长的一边长是a ,根据相似多边形的性质得出344a=,再求出a 即可.【详解】解:设第二个矩形较长的一边长是a ,∵两个矩形相似,第一个矩形的两边长分别是3和4,第二个矩形较短的一边长是4,∴344a=,解得∶163a =,即第二个矩形较长的一边长是163,故答案为∶163.【点睛】本题考查了相似多边形的性质,能熟记相似多边形的性质(相似多边形的对应边的比相等)是解此题的关键.10.已知点P 是线段AB 的黄金分割点,且4AP BP AB >=,,那么AP =___________.【答案】2-##2-+【解析】【分析】根据黄金分割点的定义,知AP 是较长线段;则512AP AB =,代入数据即可得出AP 的长.【详解】解:∵P 为线段AB 的黄金分割点,且AP 是较长线段;∴122AP AB -==-.故答案为:2-.【点睛】本题考查了黄金分割的概念.应该识记黄金分割的公式:较短的线段=原线段的32,较长的线段=原线段的12.11.已知ABC 的三边长分别为2、3、4,DEF 与ABC 相似,且DEF 周长为54,那么DEF 的最短边的长是______.【答案】12【解析】【分析】先计算出ABC 的周长,进而得出相似比为16∶,进而得出答案.【详解】解:∵ABC 的三边长分别为2、3、4,∴ABC 的周长为:9∵DEF 与ABC 相似,且DEF 周长为54,∴ABC 与DEF 的周长比为95416=∶∶,∴ABC 与DEF 的相似比为16∶,设DEF 的最短边的长是x ,则:216x =∶∶,解得∶12x =.故答案为∶12.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的周长比等于相似比是解题的关键.12.如图是一个零件的剖面图,已知零件的外径为10cm ,为求出它的厚度x ,现用一个交叉卡钳(AC 和BD 的长相等)去测量零件的内孔直径AB .如果13==OC OD OA OB ,且量得CD 的长是3cm ,那么零件的厚度x 是______cm .【答案】12##0.5【解析】【分析】根据相似三角形的判定和性质,可以求得AB 的长,再根据某零件的外径为10cm ,即可求得x 的值.【详解】解∶∵13==OC OD OA OB COD AOB ∠=∠,∴COD AOB ∽ ,∴13CD AB =,∵CD 的长是3cm ,∴9cm AB =,∵零件的外径为10cm ,∴零件的厚度为∶()1091cm 22x -==,故答案为:12.【点睛】本题考查相似三角形的应用,解答本题的关键是求出AB 的值.13.在Rt ABC △中,90C = ∠,已知A ∠的正弦值是23,那么B ∠的正弦值是______.【答案】53##【解析】【分析】根据锐角三角函数的定义以及勾股定理进行计算即可.【详解】解:Rt ABC ∆中,90C ∠=︒,∠A 的正弦值是23即23BC AB =,∴设2BC k =,则3AB k =,由勾股定理得AC ==,∴sin 3AC B AB ==,故答案为∶53.【点睛】本题考查锐角三角函数、勾股定理,掌握锐角三角函数的定义以及勾股定理是正确解答的前提.14.如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为______.【答案】1:1.5【解析】【详解】解:∵202tan 303B ∠==,∴斜面AB 的坡度为2:3=1:1.5,故答案为:1:1.5.【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度是坡面的铅直高度h 和水平宽度l 的比是解题的关键.15.在一块底边长为20厘米的等腰直角三角形铁皮上截一块矩形铁皮,如果矩形的一边与等腰三角形的底边重合且长度为x 厘米,矩形另两个顶点分别在等腰直角三角形的两腰上,设矩形面积为y 平方厘米,那么y 关于x 的函数解析式是______.(不必写定义域)【答案】21102x x y -+=【解析】【分析】根据几何关系先把矩形的另一边用x 表示出来,再利用矩形面积公式得到y 与x 的表达式.【详解】解:如图所示,由题意,45B C ∠=∠=︒,90DFB EGC ∠=∠=︒,FG x=∴BDF 和CEG 都是等腰直角三角形,∴,BF DF CG EG ==,由矩形可知,DF EG =,∴BF CG DF EG ===,∴2011022x DF BF x -===-,∴矩形面积为211·101022y DF FG x x x x ⎛⎫==-=-+ ⎪⎝⎭,故答案为∶21102x x y -+=.【点睛】本题考查等腰直角三角形、矩形的性质和函数表达式,解题关键是熟知等腰直角三角形和矩形的性质.16.已知G 是ABC 的重心,G 作GD AC ∥交边AB 于点D ,作GE AB 交边AC 于点E ,如果四边形ADGE 的面积为2,那么ABC 的面积是______.【答案】9【解析】【分析】延长BG 交AC 于F 点,连接AG ,先证四边形ADGE 为平行四边形得112122ADG ADGE S S ==⨯=四边形 ,由G 是ABC 的重心,得2BG GF =,BF 为AC 边上的中线,再根据平行线分线段成比例可证2BD BGAD GF ==,从而即可求解.【详解】解:延长BG 交AC 于F 点,连接AG ,如图,∵GD AC ∥,GE AB ,∴四边形ADGE 为平行四边形,∴112122ADG ADGE S S ==⨯=四边形 ∵G 是ABC 的重心,∴2BG GF =,BF 为AC 边上的中线,∵GD AC ∥,∴2BD BG AD GF==,∴22BDG ADG S S == ,∴213ABG S =+= ,∵2BG GF =,∴1322AGF ABG S S == ,∴92ABF ABG AGF S S S =+=,∵BF 为AC 边上的中线,∴92292ABC ABF S S ==⨯= .故答案为∶9.【点睛】本题考查了三角形的重心∶三角形的重心到顶点的距离与重心到对边中点的距离之比为21∶,也考查了平行四边形的判定与性质和平行线分线段成比例,熟练掌握平行线分线段成比例定理是解题的关键.17.如图,在矩形ABCD 中,过点D 作对角线AC 的垂线,垂足为E ,过点E 作BE 的垂线,交边AD 于点F ,如果3AB =,5BC =,那么DF 的长是______.【答案】95【解析】【分析】利用矩形的性质求出AC ,利用三角形的面积、勾股定理求出DE 、CE 的长,再利用等角的余角相等说明BAE ADE ∠=∠、AEB DEF ∠=∠,得DEF AEB ∽ ,最后利用相似三角形的性质得结论.【详解】解:∵四边形ABCD 是矩形,∴90ABC ADC ∠=∠=︒,3AB CD ==,5BC AD ==,AB CD ∥,∴AC ===∵1122ADC S AD CD AC DE ∆=⋅=⋅,∴153434DE =,∵DEAC ⊥,∴CE ==34=,∴253434AE AC CE =-=,∵AB CD ∥,∴BAE DCA ∠=∠,90DCA CDE CDE ADE ∠+∠=∠+∠=︒ ,∴BAE ADE ∠=∠,∵BE EF ⊥,DEAC ⊥,∴90BEA AEF AEF FED ∠+∠=∠+∠=︒,∴BEA FED ∠=∠,∴DEF AEB ∽ ,∴DF DEAB AE=∴95DE AB DF AE ⋅==,【点睛】本题主要考查了相似三角形,掌握相似三角形的性质与判定、三角形的内角和定理及勾股定理是解决本题的关键.18.将一张直角三角形纸片沿一条直线剪开,将其分成一张三角形纸片与一张四边形纸片,如果所得四边形纸片ABCD 如图所示,其中90A C ∠=∠= ,7AB =厘米,9BC =厘米,2CD =厘米,那么原来的直角三角形纸片的面积是______平方厘米.【答案】983或54【解析】【分析】先由勾股定理求得6AD =厘米,再分情况讨论,利用三角形相似求解即可.【详解】解:连接BD ,∵90A C ∠=∠= ,7AB =厘米,9BC =厘米,2CD =厘米,∴22222BD BC CD AD AB =+=+即2222927AD +=+,∴6AD =厘米,①如下图,延长AD ,BC 相交于点N ,设NC x =厘米,∵90NCD A ∠=∠=︒,N ∠=∠,9BN x =+厘米,∴NCD NAB ∽ ,∴ND NC CD NB NA AB ==即2967ND x x ND ==++,∴83x =厘米,103ND =厘米,111098672233ANB S AN AB ⎛⎫=⨯=⨯+⨯= ⎪⎝⎭ 平方厘米;②如下图,延长CD,BA 相交于点M ,设MD y =厘米,∵90MAD C ∠=∠=︒,M M ∠=∠,2CM y =+厘米,∴MAD MCB ∽ ,∴MA MD ADMC MB CB ==即6279MA y y AM ==++,∴10y =厘米,()1110295422CMB S CM BC =⨯=⨯+⨯= 平方厘米,故答案为983或54.【点睛】本题主要考查了相似三角形的判定及性质,勾股定理,熟练掌握相似三角形的判定及性质是解题的关键.三、解答题(本大题共7题)19.计算:tan45cot45sin45cos30︒︒︒︒++.【答案】-【解析】【分析】将特殊角的三角函数值代入求解.【详解】解:tan45cot45sin45cos30︒︒︒︒++===【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.20.已知:如图,平行四边形ABCD 中,点M 、N 分别在边DC 、BC 上,对角线BD 分别交AM 、AN 于点E 、F ,且::1:2:1DE EF BF =.(1)求证:MN BD ∥;(2)设AM a =,AN b = ,请直接写出BD关于a、b的分解式.【答案】(1)证明见解析;(2)3322BD a b =- .【解析】【分析】(1)由平行四边形的性质可得,DM AB BN AD ∥,∥,AB CD =,AD BC =,进而得DEM BEA ∽ ,BFN DFA ∽ ,得13DM DC BN BC ==∶∶∶,再证MCN DCB ∽ 得CMN CDB ∠=∠,从而即可得证;(2)由向量的差可知,NM AM AN a b =-=- ,再证32BD MN =,从而3322BD a b =- .【小问1详解】证明:∵::1:2:1DE EF BF =∴13DE BE =∶∶,13BF DF =∶∶∵四边形ABCD 是平行四边形,∴DM AB ∥,BN AD ∥,AB CD =,AD BC =',∴DEM BEA ∽ ,BFN DFA ∽ ,∴13DM DC DM AB DE BE ===∶∶∶∶,13BN BC BN AD BF BD ===∶∶∶∶,∴13DM DC BN BC ==∶∶∶,∴23CM DC CN BC ==∶∶∶,∵MCN DCB ∠=∠,∴MCN DCB ∽ ,∴CMN CDB ∠=∠,∴MN BD ∥;【小问2详解】解:∵AM a = ,AN b = ,∴NM AM AN a b =-=-,由(1)知,MN BD ∥,MCN DCB ∽ ,23CM DC =∶∶,,∴23MN BD CM DC ==∶∶∶,∴32BD MN =,∴3322BD a b =- .【点睛】本题主要考查相似三角形的性质与判定,平行线分线段成比例,平面向量的计算等相关知识,熟练掌握相关知识是解题关键.21.在平面直角坐标系xOy 中,已知抛物线2y x mx m =++.(1)如果拋物线经过点()19,,求该拋物线的对称轴;(2)如果抛物线的顶点在直线y x =-上,求m 的值.【答案】(1)2x =-;(2)0或2.【解析】【分析】(1)把已知点的坐标代入函数解析式,列出关于系数的方程,解方程求得m 的值;然后将所求的抛物线解析式转化为顶点式,直接得到拋物线的对称轴;(2)根据题意可以求得抛物线的顶点坐标,然后将顶点坐标代入y x =-,从而可以求得m 的值.【小问1详解】解:把点()19,代入2y x mx m =++,得291m m =++.解得4m =,则该抛物线解析式为:()22442y x x x =++=+.∴该拋物线的对称轴是2x =-;【小问2详解】解:∵22224m m m y x mx m x ⎛⎫+-=+=+ ⎪⎝+⎭,∴抛物线2y x mx m =++的顶点坐标是242m m m ⎪-+⎛⎫- ⎝⎭,,∵抛物线2y x mx m =++的顶点在直线y x =-上,∴224m m m -=+,解得∶0m =或2m =.【点睛】本题考查了二次函数的性质,函数图象上点的坐标特征,顶点式2()y a x h k =-+,顶点坐标是()h k ,,对称轴是直线x h =,此题考查了学生的应用能力,熟练掌握二次函数的性质是解题的关键.22.圭表(如图1)是我国古代度量日影长度的天文仪器,它包括一根直立的杆(称为“表”)和一把南北方向水平放置且与杆垂直的标尺(称为“圭”).当正午的阳光照射在“表”上时,“表”的影子便会投射在“圭”上.我国古代很多地区通过观察“表”在“圭”上的影子长度来测算二十四节气,并以此作为指导农事活动的重要依据.例如,我国古代历法将一年中白昼最短的那一天(当日正午“表”在“圭”上的影子长度为全年最长)定为冬至;白昼最长的那一天(当日正午“表”在“圭”上的影子长度为全年最短)定为夏至.某地发现一个圭表遗迹(如图2),但由于“表”已损坏,仅能测得“圭”上记录的夏至线与冬至线间的距离(即AB 的长)为11.3米.现已知该地冬至正午太阳高度角(即CBD ∠)为3534︒',夏至正午太阳高度角(即CAD ∠)为8226︒',请通过计算推测损坏的“表”原来的高度(即CD 的长)约为多少米?(参考数据见表1,结果精确到个位)表1αsin αcos αtan α3534︒'0.580.810.728226︒'0.990.137.5(注:表1中三角比的值是近似值)【答案】表CD 的高度是9米.【解析】【分析】利用CBD ∠和CAD ∠的正切,用CD 表示出BD 和AB ,得到一个只含有CD 的关系式,再解答即可.【详解】解:∵在Rt ADC 中,tan82267.5CD AD ︒'==,在Rt BDC 中,tan35340.72CDBD︒'==,∴215AD CD =,2518BD CD =,∵2521131815CD CD -=.,∴9CD =(米)答∶表CD 的高度是9米.【点睛】本题主要考查了三角函数,熟练掌握建模思想是解决本题的关键.23.已知:如图,点D 、F 分别在等边三角形ABC 的边CB 的延长线与反向延长线上,且满足2BD CF BC ⋅=.求证:(1)ADB FAC ∽△△;(2)AF AD BC DF ⋅=⋅.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由三角形的性质证AB BC AC ==,DBA ACF ∠=∠,再由2BD CF BC ⋅=得BD BAAC CF=,即可得证;(2)证明FAC FDA ∽ 即可得证.【小问1详解】证明:∵ABC 是等边三角形,∴AB BC AC ==,60ABC ACB CAB ∠=∠=∠=︒,∴180120180DBA ABC ACB ACF ∠=︒-∠=︒=︒-∠=∠,∵2BD CF BC ⋅=,∴BD BC BC CF =即BD BAAC CF=,∴ADB FAC ∽△△;【小问2详解】证明:由(1)得ADB FAC ∽△△,∴FAC D ∠=∠,∵F F ∠=∠,∴FAC FDA ∽ ,∴AF ACDF AD=,∵AC BC =,∴AF AD BC DF ⋅=⋅,【点睛】本题主要考查了等边三角形的性质、相似三角形的判定及性质,熟练掌握相似三角形的判定及性质是解题的关键.24.在平面直角坐标系xOy 中,点()11A y -,,()20B y ,,()31C y ,,()42D y ,在抛物线2y x bx c =-++上.(1)当10y =,23y y =时,①求该抛物线的表达式;②将该抛物线向下平移2个单位,再向左平移m 个单位后,所得的新抛物线经过点()10-,,求m 的值;(2)若20y =,且1y 、3y 、4y 中有且仅有一个值大于0,请结合抛物线的位置和图像特征,先写出一个满足条件的b 的值,再求b 的取值范围.【答案】(1)①22y x x =-++;②1m =或2m =;(2)可取2b =-,1b <-或12b <≤.【解析】【分析】(1)①先求得对称轴为12x =,再根据待定系数法即可求得抛物线的表达式;②根据平移得()()222y x m x m =-++++-,又由抛物线过点()10-,,即可得解;(2)由20y =得抛物线2y x bx =-+,又由点()11A y -,,()31C y ,,()42D y ,在抛物线2y x bx =-+上,且使得1y 、3y 、4y 中有且仅有一个值大于0,从而可取2b =-,此时10y >,30y <,40y <,分抛物线的对称轴在y 轴的左侧时和抛物线的对称轴在y 轴的右侧两种情况讨论求解b 的取值范围.【小问1详解】解:①∵抛物线2y x bx c =-++过点()20B y ,,()31C y ,,23y y =,∴点B 、C 为对称点,其对称轴为01122x +==,∴122b x ==,∴1b =,∴2y x x c =-++,∵2y x x c =-++过点()11A y -,,10y =,∴()011c =-+-+,解得2c =,∴抛物线的表达式为22y x x =-++,②抛物线22y x x =-++向下平移2个单位,再向左平移m 个单位后得()()222y x m x m =-++++-,∵()()222y x m x m =-++++-过点()10-,,∴()()201122m m =--++-++-,解得1m =或2m =;【小问2详解】解:∵20y =,∴抛物线过点()00B ,,∴抛物线2y x bx=-+∵点()11A y -,,()31C y ,,()42D y ,在抛物线2y x bx =-+上,且使得1y 、3y 、4y 中有且仅有一个值大于0,∴可取2b =-,此时10y >,30y <,40y <,当抛物线的对称轴在y 轴的左侧时,∵抛物线2y x bx =-+开口向下,∴10y >,30y <,40y <,∴()210b --->,210b -+<,2220b -+<,∴1b <-,当抛物线的对称轴在y 轴的右侧时,∵抛物线2y x bx =-+开口向下,∴10y <,30y <,40y >,∴()210b ---<,210b -+>,2220b -+≤,∴1b >-,1b >,2b ≤,∴12b <≤,综上得,1b <-或12b <≤.【点睛】本题主要考查了二次函数的图像及性质,待定系数法求解二次函数的解析式以及二次函数与坐标轴的交点,熟练掌握二次函数的图像及性质式解题的关键.25.已知,如图1,在四边形ABCD 中,90BAC ADC ∠=∠=︒,4CD =,4cos 5ACD ∠=.(1)当BC AD ∥时(如图2),求AB 的长;(2)连接BD ,交边AC 于点E ,①设CE x =,AB y =,求y 关于x 的函数解析式并写出定义域;②当BDC 是等腰三角形时,求AB 的长.【答案】(1)203;(2)AB 的长为103或125-.【解析】【分析】(1)在Rt ACD △中,解直角三角形得5AC =,3AD =,再证BAC CDA ∽ 即可得解;(2)①先求得5AE x =-,165EN x =-,根据0AE >,0EN >可得定义域,证明BAC CDA ∽ 可得y 关于x 的函数解析式;②分两类讨论求解,当BD BC =时,作BQ CD ⊥于点Q ,作AP BQ ⊥于点P ,证BPA CDA ∽ 得解,当4BD CD ==时,作BN 垂直直线AD 于点N ,证NBA DAC ∽ 得解.【小问1详解】解:∵在Rt ACD △中,4cos 5ACD A CD C ∠==,4CD =,∴5AC =,3AD ==,∵BC AD ∥,∴ACB DAC ∠=∠,∵90BAC ADC ∠=∠=︒,∴BAC CDA ∽ ,∴BA AC CD AD =即543BA =,∴203AB =;【小问2详解】解:①如图2,作DN AC ⊥于点N ,∵1122ADC S AC DN AD CD =⨯=⨯ ,4CD =,5AC =,3AD =,∴125DN =,∴165CN ==,95AN AC CN =-=,∵CE x =,∴5AE x =-,165EN x =-,∵0AE >,0EN >,∴165x 5<<,∵90BAE DNE ∠=∠=︒,AEB NED ∠=∠,∴AEB NED ∽ ,∴AE AB NE DN =,即5161255x y x -=-,∴6012516xy x -=-1655x ⎛⎫<< ⎪⎝⎭,②∵90BAC ADC ∠=∠=︒,∴BC AC CD >>,∴BC CD ≠,当BD BC =时,作BQ CD ⊥于点Q ,作AP BQ ⊥于点P ,如下图,易知四边形APQD是矩形,∴2AP DQ CQ ===,90PAD PAC CAD ∠=∠+∠=︒,∵90BAC BAP PAC ∠=∠+∠=︒,∴BAP CAD ∠=∠,∵90BPA CDA ∠=∠=︒,∴BPA CDA ∽ ,∴AB AP AC AD =即253AB =,∴103AB =;当4BD CD ==时,作BN 垂直直线AD 于点N ,如下图,∴90N ADC ∠=∠=︒,∴90NAB NBA ∠+∠=︒,∵90BAC ∠=︒,∴90NAB CAD ∠+∠=︒,∴NBA CAD ∠=∠,∴NBA DAC ∽ ,∴AN AB CD AC =即45AN AB =,∴45AN AB =,∵BN ⊥AD ,∴222241635BN BD DN AB ⎛⎫=-=-+ ⎪⎝⎭,2222245BN AB AN AB AB ⎛⎫=-=- ⎪⎝⎭,∴2224416355AB AB AB ⎛⎫⎛⎫-+=- ⎪ ⎪⎝⎭⎝⎭,解得125AB -=或125AB =(舍去),综上AB 的长为103或319125-.【点睛】本题主要考查了解直角三角形、勾股定理、求函数解析式、矩形的判定及性质以及相似三角形的判定及性质,熟练掌握勾股定理以及相似三角形的判定及性质是解题的关键.第24页/共24页。

2016年上海市徐汇区中考一模数学试卷(含详细解析)

2016年上海市徐汇区中考一模数学试卷(含详细解析)

2016年上海市徐汇区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)下列各题的四个选项中,有且只有一个选项是正确的1.下列两个图形一定相似的是()A.两个菱形 B.两个矩形 C.两个正方形D.两个等腰梯形2.如图,如果AB∥CD∥EF,那么下列结论正确的是()A.=B.=C.=D.=3.将抛物线y=2(x+1)2﹣2向右平移2个单位,再向上平移2个单位所得新抛物线的表达式是()A.y=2(x+3)2B.y=(x+3)2C.y=(x﹣1)2D.y=2(x﹣1)24.点G是△ABC的重心,如果AB=AC=5,BC=8,那么AG的长是()A.1 B.2 C.3 D.45.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向6.如图,梯形ABCD中,AD∥BC,∠BAC=90°,AB=AC,点E是边AB上的一点,∠ECD=45°,那么下列结论错误的是()A.∠AED=∠ECB B.∠ADE=∠ACE C.B E=AD D.BC=CE二、填空题(本大题共12题,每题4分,满分48分)7.计算:2(2+3)﹣+=.8.如果=,那么=.9.已知二次函数y=2x2﹣1,如果y随x的增大而增大,那么x的取值范围是.10.如果两个相似三角形的面积比是4:9,那么它们对应高的比是.11.如图所示,一皮带轮的坡比是1:2.4,如果将货物从地面用皮带轮送到离地10米的平台,那么该货物经过的路程是米.12.已知点M(1,4)在抛物线y=ax2﹣4ax+1上,如果点N和点M关于该抛物线的对称轴对称,那么点N的坐标是.13.点D在△ABC的边AB上,AC=3,AB=4,∠ACD=∠B,那么AD的长是.14.如图,在▱ABCD中,AB=6,AD=4,∠BAD的平分线AE分别交BD、CD于F、E,那么=.15.如图,在△ABC中,AH⊥BC于H,正方形DEFG内接于△ABC,点D、E分别在边AB、AC 上,点G、F在边BC上.如果BC=20,正方形DEFG的面积为25,那么AH的长是.16.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,tan∠ACD=,AB=5,那么CD的长是.17.如图,在梯形ABCD中,AD∥BC,BC=2AD,点E是CD的中点,AC与BE交于点F,那么△ABF和△CEF的面积比是.18.如图,在Rt△ABC中,∠BAC=90°,AB=3,cosB=,将△ABC绕着点A旋转得△ADE,点B 的对应点D落在边BC上,联结CE,那么CE的长是.三、(本大题共7题,第19-22题每题10分;第23、24题每题12分;第25题14分;满分78分)19.计算:4sin45°﹣2tan30°cos30°+.20.抛物线y=x2﹣2x+c经过点(2,1).(1)求抛物线的顶点坐标;(2)将抛物线y=x2﹣2x+c沿y轴向下平移后,所得新抛物线与x轴交于A、B两点,如果AB=2,求新抛物线的表达式.21.如图,在△ABC中,点D、E分别在边AB、AC上,=,AE=3,CE=1,BC=6.(1)求DE的长;(2)过点D作DF∥AC交BC于F,设=,=,求向量(用向量、表示)22.如图,热气球在离地面800米的A处,在A处测得一大楼顶C的俯角是30°,热气球沿着水平方向向此大楼飞行400米后达到B处,从B处再次测得此大楼楼顶C的俯角是45°,求该大楼CD 的高度.参考数据:≈1.41,≈1.73.23.如图,在△ABC中,AC=BC,点D在边AC上,AB=BD,BE=ED,且∠CBE=∠ABD,DE与CB交于点F.求证:(1)BD2=AD•BE;(2)CD•BF=BC•DF.24.如图,在Rt△AOB中,∠AOB=90°,已知点A(﹣1,﹣1),点B在第二象限,OB=2,抛物线y=x2+bx+c经过点A和B.(1)求点B的坐标;(2)求抛物线y=x2+bx+c的对称轴;(3)如果该抛物线的对称轴分别和边AO、BO的延长线交于点C、D,设点E在直线AB上,当△BOE 和△BCD相似时,直接写出点E的坐标.25.如图,四边形ABCD中,∠C=60°,AB=AD=5,CB=CD=8,点P、Q分别是边AD、BC上的动点,AQ和BP交于点E,且∠BEQ=90°﹣∠BAD,设A、P两点的距离为x.(1)求∠BEQ的正切值;(2)设=y,求y关于x的函数解析式及定义域;(3)当△AEP是等腰三角形时,求B、Q两点的距离.2016年上海市徐汇区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)下列各题的四个选项中,有且只有一个选项是正确的1.下列两个图形一定相似的是()A.两个菱形 B.两个矩形 C.两个正方形D.两个等腰梯形【考点】相似图形.【分析】根据相似图形的定义:对应角相等,对应边成比例的两个图形一定相似,结合选项,用排除法求解.【解答】解:A、两个菱形,对应边成比例,对应角不一定相等,不符合相似的定义,故不符合题意;B、两个矩形,对应角相等,对应边不一定成比例,不符合相似的定义,故不符合题意;C、两个正方形,对应角相等,对应边一定成比例,一定相似,故符合题意;D、两个等腰梯形同一底上的角不一定相等,对应边不一定成比例,不符合相似的定义,故不符合题意;故选:C.【点评】本题考查相似形的定义,熟悉各种图形的性质是解题的关键.2.如图,如果AB∥CD∥EF,那么下列结论正确的是()A.=B.=C.=D.=【考点】平行线分线段成比例.【分析】由AB∥CD∥EF,根据平行线分线段成比例定理求解即可求得答案.注意排除法在解选择题中的应用.【解答】解:A、∵AB∥CD∥EF,∴,故错误;B、∵AB∥CD∥EF,∴,故正确;C、∵AB∥CD∥EF,∴,故错误;D、∵AB∥CD∥EF,∴,∴AC•DF=BD•CE,故错误.故选B.【点评】此题考查了平行线分线段成比例定理.注意掌握各线段的对应关系.3.将抛物线y=2(x+1)2﹣2向右平移2个单位,再向上平移2个单位所得新抛物线的表达式是()A.y=2(x+3)2B.y=(x+3)2C.y=(x﹣1)2D.y=2(x﹣1)2【考点】二次函数图象与几何变换.【分析】先根据二次函数的性质得到抛物线y=2(x+1)2﹣2的顶点坐标为(﹣1,﹣2),再利用点平移的规律,点(﹣1,﹣2)平移后的对应点的坐标为(1,0),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=2(x+1)2﹣2的顶点坐标为(﹣1,﹣2),把点(﹣1,﹣2)向右平移2个单位,向上平移2个单位得到对应点的坐标为(1,0),所以平移后的抛物线解析式为y=2(x﹣1)2.故选d.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4.点G是△ABC的重心,如果AB=AC=5,BC=8,那么AG的长是()A.1 B.2 C.3 D.4【考点】三角形的重心.【分析】根据题意画出图形,连接AG并延长交BC于点D,由等腰三角形的性质可得出AD⊥BC,再根据勾股定理求出AD的长,由三角形重心的性质即可得出AG的长.【解答】解:如图所示:连接AG并延长交BC于点D,∵G是△ABC的重心,AB=AC=5,BC=8,∴AD⊥BC,BD=BC=×8=4,∴AD===3,∴AG=AD=×3=2.故选B.【点评】本题考查的是三角形的重心,熟知重心到顶点的距离与重心到对边中点的距离之比为2:1是解答此题的关键.5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向【考点】方向角.【分析】根据题意正确画出图形进而分析得出从乙船看甲船的方向.【解答】解:如图所示:可得∠1=30°,∵从甲船看乙船,乙船在甲船的北偏东30°方向,∴从乙船看甲船,甲船在乙船的南偏西30°方向.故选:A.【点评】此题主要考查了方向角,根据题意画出图形是解题关键.6.如图,梯形ABCD中,AD∥BC,∠BAC=90°,AB=AC,点E是边AB上的一点,∠ECD=45°,那么下列结论错误的是()A.∠AED=∠ECB B.∠ADE=∠ACE C.BE=AD D.BC=CE【考点】梯形.【分析】根据等腰直角三角形的性质得出BC=AC,从而证得BC≠CE,根据平行线的性质得出∠DAC=∠ACB=45°,证得∠DAC=∠ABC,因为∠ACD=∠BCE,证得△DAC∽△EBC,得出=,==,从而证得BE=AD,进一步证得△ABC∽△DEC,得出∠EDC=∠BAC=90°,从而证得A、D在以EC为直径的圆上,根据圆周角定理证得∠AED=∠ACD=∠ECB,∠ADE=∠ACE,根据以上结论即可判断.【解答】解:∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∴BC=AC,∵EC>AC,∴BC≠CE,∵AD∥BC,∠ECD=45°,∴∠DAC=∠ACB=45°,∴∠DAC=∠ABC,∠ACD=∠BCE,∴△DAC∽△EBC,∴=,∵∠ACB=∠ECD=45°,∴△ABC∽△DEC,∴∠EDC=∠BAC=90°,∴A、D在以EC为直径的圆上,∴∠AED=∠ACD,∠ADE=∠ACE,∵∠ACD=∠ECB,∴∠AED=∠ECB,∵△DAC∽△EBC,∴==,∴BE=AD,故选D.【点评】本题考查了梯形的性质,等腰直角三角形的性质,三角形相似的判定和性质,圆周角定理等,熟练掌握这些性质定理是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)7.计算:2(2+3)﹣+=+.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解:2(2+3)﹣+=4+6﹣+=+.故答案为:+.【点评】此题考查了平面向量的运算.注意掌握去括号时符号的变化是解此题的关键.8.如果=,那么=.【考点】比例的性质.【专题】计算题.【分析】利用比例的性质由=得到=,则可设a=2t,b=3t,然后把a=2t,b=3t代入中进行分式的运算即可.【解答】解:∵=,∴=,设a=2t,b=3t,∴==.故答案为.【点评】本题考查了比例的性质:常用的性质有:内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.9.已知二次函数y=2x2﹣1,如果y随x的增大而增大,那么x的取值范围是x≥0.【考点】二次函数的性质.【分析】由于抛物线y=2x2﹣1的对称轴是y轴,所以当x≥0时,y随x的增大而增大.【解答】解:∵抛物线y=2x2﹣1中a=2>0,∴二次函数图象开口向上,且对称轴是y轴,∴当x≥0时,在对称轴的右边,y随x的增大而增大.故答案为:x≥0.【点评】本题考查了抛物线y=ax2+b的性质:①图象是一条抛物线;②开口方向与a有关;③对称轴是y轴;④顶点(0,b).10.如果两个相似三角形的面积比是4:9,那么它们对应高的比是2:3.【考点】相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方求出相似比,根据相似三角形对应高的比等于相似比解答即可.【解答】解:∵两个相似三角形的面积比是4:9,∴两个相似三角形相似比是2:3,∴它们对应高的比是2:3.故答案为:2:3.【点评】本题考查对相似三角形性质的理解.相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.11.如图所示,一皮带轮的坡比是1:2.4,如果将货物从地面用皮带轮送到离地10米的平台,那么该货物经过的路程是26米.【考点】解直角三角形的应用-坡度坡角问题.【分析】首先根据题意画出图形,根据坡度的定义,由勾股定理即可求得答案.【解答】解:如图,由题意得:斜坡AB的坡比i=1:2.4,AE=10米,AE⊥BD,∵i==,∴BE=24米,∴在Rt△ABE中,AB==26(米).故答案为:26.【点评】此题考查了解直角三角形的应用﹣坡度坡角问题.此题比较简单,注意掌握数形结合思想的应用,注意理解坡比的定义.12.已知点M(1,4)在抛物线y=ax2﹣4ax+1上,如果点N和点M关于该抛物线的对称轴对称,那么点N的坐标是(3,4).【考点】二次函数图象上点的坐标特征.【分析】首先求得抛物线y=ax2﹣4ax+1对称轴为x=﹣=2,进一步利用二次函数的对称性求得点M关于此抛物线对称轴的对称点N的坐标是即可.【解答】解:∵抛物线y=ax2﹣4ax+1对称轴为x=﹣=2,∴点M(1,4)关于该抛物线的对称轴对称点N的坐标是(3,4).故答案为:(3,4).【点评】本题考查了二次函数图象上点的坐标特征,二次函数的对称性,求得对称轴,掌握二次函数的对称性是解决问题的关键.13.点D在△ABC的边AB上,AC=3,AB=4,∠ACD=∠B,那么AD的长是.【考点】相似三角形的判定与性质.【分析】由∠A=∠A,∠ACD=∠B,得到△ABC∽△ACD,根据相似三角形的性质得到,代入数据即可得到结论.【解答】解:∵∠A=∠A,∠ACD=∠B,∴△ABC∽△ACD,∴,即:,∴AD=.故答案为:.【点评】本题考查了相似三角形的性质和判定的应用,注意:①相似三角形的对应边的比相等,②有两角对应相等的两三角形相似.14.如图,在▱ABCD中,AB=6,AD=4,∠BAD的平分线AE分别交BD、CD于F、E,那么=.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质得到AB∥CD,CD=AB=6,由平行线的性质得到∠AED=∠EAB,由角平分线的定义得到∠DAE=∠BAE,等量代换得到∠DAE=∠AED,根据等腰三角形的判定得到DE=AD=4,由相似三角形的性质得到==,【解答】解:在▱ABCD中,∵AB∥CD,CD=AB=6,∴∠AED=∠EAB,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠DAE=∠AED,∴DE=AD=4,∵DE∥AB,∴△DEF∽△ABF,∴==,故答案为:.【点评】本题考查了相似三角形的判定和性质,平行四边形的性质,角平分线的定义,熟练掌握相似三角形的判定是解题的关键.15.如图,在△ABC中,AH⊥BC于H,正方形DEFG内接于△ABC,点D、E分别在边AB、AC 上,点G、F在边BC上.如果BC=20,正方形DEFG的面积为25,那么AH的长是.【考点】相似三角形的判定与性质;正方形的性质.【分析】根据DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:由正方形DEFG得,DE∥E=GF,即DE∥BC,∵AH⊥BC,∴AP⊥DE,∵DG∥BC,∴△ADG∽△ABC,∴,即,解得:AH=.故答案为:.【点评】本题考查了相似三角形的判定与性质,正方形的性质,关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,tan∠A CD=,AB=5,那么CD的长是.【考点】解直角三角形.【分析】根据余角的性质得到∠B=∠ACD,由tan∠ACD=,得到tan∠B==,设AC=3x,BC=4x,根据勾股定理得到AC=3,BC=4,根据三角形的面积公式即可得到结论..【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=∠BCD+∠B=90°,∴∠B=∠ACD,∵tan∠ACD=,∴tan∠B==,设AC=3x,BC=4x,∵AC2+BC2=AB2,∴(3x)2+(4x)2=52,解得:x=1,∴AC=3,BC=4,∵S△ABC=,∴CD==,故答案为:.【点评】本题考查了解直角三角形,勾股定理,三角形的面积公式,熟记三角形的面积公式是解题的关键.17.如图,在梯形ABCD中,AD∥BC,BC=2AD,点E是CD的中点,AC与BE交于点F,那么△ABF和△CEF的面积比是6:1.【考点】相似三角形的判定与性质.【分析】延长BE,AD交于G,根据平行线的性质得到∠G=∠EBC,根据全等三角形的性质得到DG=BC=2AD,GE=BE,于是得到AG=3AD,通过△AGF∽△BCF,得到=,设GF=3x,BF=2x,求得,由==,得到S△ABF=S△BCF,由==4,得到S△CEF=S△BCF,即可得到结论.【解答】解:延长BE,AD交于G,∵AD∥BC,∴∠G=∠EBC,在△DGE与△BCE中,,∴DG=BC=2AD,GE=BE,∴AG=3AD,∵AD∥BC,∴△AGF∽△BCF,∴=,∴设GF=3x,BF=2x,∴BG=5x,∴BE=GE=2.5x,∴EF=x,∴,∴==,∴S△ABF=S△BCF,∵==4,∴S△CEF=S△BCF,∴△ABF和△CEF的面积比==6:1.故答案为:6:1.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,平行线的性质,正确的作出辅助线是解题的关键.18.如图,在Rt△ABC中,∠BAC=90°,AB=3,cosB=,将△ABC绕着点A旋转得△ADE,点B 的对应点D落在边BC上,联结CE,那么CE的长是.【考点】旋转的性质.【专题】计算题.【分析】先利用余弦定义计算出BC=5,再利用勾股定理计算出AC=4,接着根据旋转的性质得AB=AD,AC=AE,∠BAD=∠CAE,利用三角形内角和定理易得∠ACE=∠B,作AH⊥CE于H,由等腰三角形的性质得EH=CH,如图,在Rt△ACH中,利用cos∠ACH==可计算出CH=AC=,所以CE=2CH=.【解答】解:∵∠BAC=90°,AB=3,cosB==,∴BC=5,∴AC==4,∵△ABC绕着点A旋转得△ADE,点B的对应点D落在边BC上,∴AB=AD,AC=AE,∠BAD=∠CAE,∵∠B=(180°﹣∠BAD),∠ACE=(180°﹣∠CAE),∴∠ACE=∠B,∴cos∠ACE=cosB=,作AH⊥CE于H,则EH=CH,如图,在Rt△ACH中,∵cos∠ACH==,∴CH=AC=,∴CE=2CH=.故答案为.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决本题的关键是证明∠ACE=∠B.三、(本大题共7题,第19-22题每题10分;第23、24题每题12分;第25题14分;满分78分)19.计算:4sin45°﹣2tan30°cos30°+.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值进行计算即可.【解答】解:原式=4×﹣2××+=2﹣1+2=2+1.【点评】本题考查了特殊角的三角函数值,考查实数的综合运算能力,是各地中考题中常见的计算题型.20.抛物线y=x2﹣2x+c经过点(2,1).(1)求抛物线的顶点坐标;(2)将抛物线y=x2﹣2x+c沿y轴向下平移后,所得新抛物线与x轴交于A、B两点,如果AB=2,求新抛物线的表达式.【考点】二次函数图象与几何变换.【专题】几何变换.【分析】(1)把(2,1)代入y=x2﹣2x+c中求出c的值即可得到抛物线解析式;(2)先确定抛物线y=x2﹣2x+1的对称轴,再利用抛物线的对称性得到A(0,0),B(2,0),然后利用交点式可写出新抛物线的表达式.【解答】解:(1)把(2,1)代入y=x2﹣2x+c得4﹣4+c=1,解得c=1,所以抛物线解析式为y=x2﹣2x+1;(2)y=x2﹣2x+1=(x﹣1)2,抛物线的对称轴为直线x=1,而新抛物线与x轴交于A、B两点,AB=2,所以A(0,0),B(2,0),所以新抛物线的解析式为y=x(x﹣2),即y=x2﹣2x.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.21.如图,在△ABC中,点D、E分别在边AB、AC上,=,AE=3,CE=1,BC=6.(1)求DE的长;(2)过点D作DF∥AC交BC于F,设=,=,求向量(用向量、表示)【考点】*平面向量;平行线分线段成比例.【分析】(1)由=,AE=3,CE=1,可得==,即可证得DE∥BC,然后由平行线分线段成比例定理,即可求得DE的长;(2)由DF∥AC,可得==,再由三角形法则,即可求得答案.【解答】解:(1)∵AE=3,CE=1,∴AC=AE+CE=4,∴==,∴DE∥BC,∴==,∴DE=BC×=6×=;(2)∵DF∥AC,∴==,∴==(+)=+.【点评】此题考查了平行向量的知识以及平行线分线段成比例定理.注意掌握三角形法则以及平行四边形的法则的应用是解此题的关键.22.如图,热气球在离地面800米的A处,在A处测得一大楼顶C的俯角是30°,热气球沿着水平方向向此大楼飞行400米后达到B处,从B处再次测得此大楼楼顶C的俯角是45°,求该大楼CD 的高度.参考数据:≈1.41,≈1.73.【考点】解直角三角形的应用-仰角俯角问题.【分析】作CE⊥AB交AB的延长线于E,设CE=x米,根据正切的定义分别求出AE、BE的长,列出方程,解方程求出x的值,计算即可.【解答】解:作CE⊥AB交AB的延长线于E,设CE=x米,∵∠EBC=45°,∴BE=x米,∵∠EAC=30°,∴AE==x米,由题意得,x﹣x=400,解得x=200(+1)米,则CD=800﹣200(+1)≈254米.答:大楼CD的高度约为254米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,正确作出辅助线、构造直角三角形、熟练运用锐角三角函数的定义是解题的关键.23.如图,在△ABC中,AC=BC,点D在边AC上,AB=BD,BE=ED,且∠CBE=∠ABD,DE与CB交于点F.求证:(1)BD2=AD•BE;(2)CD•BF=BC•DF.【考点】相似三角形的判定与性质.【专题】证明题.【分析】(1)由∠CBE=∠ABD,得到∠ABC=∠DBE等量代换得到∠A=∠DBE,根据等腰三角形的性质得到∠A=∠ADB,∠DBE=∠BDE,等量代换得到∠A=∠DBE=∠BDE,推出△ABD∽△DEB,根据相似三角形的性质即可得到结论;(2)通过△ABC≌△DBE,根据全等三角形的性质得到∠C=∠E,BE=BC,由于∠CFD=∠EFB,证得△CFD∽△EFB,根据相似三角形的性质得到结论.【解答】证明:(1)∵∠CBE=∠ABD,∴∠ABC=∠DBE,∵∠A=∠ABC,∴∠A=∠DBE,∵AB=BD,∴∠A=∠ADB,∵BE=DE,∴∠DBE=∠BDE,∴∠A=∠DBE=∠BDE,∴△ABD∽△DEB,∴,即BD2=AD•BE;(2)在△ABC与△DBE中,,∴△ABC≌△DBE,∴∠C=∠E,BE=BC,∵∠CFD=∠EFB,∴△CFD∽△EFB,∴,∴,即:CD•BF=BC•DF.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质,全等三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.24.如图,在Rt△AOB中,∠AOB=90°,已知点A(﹣1,﹣1),点B在第二象限,OB=2,抛物线y=x2+bx+c经过点A和B.(1)求点B的坐标;(2)求抛物线y=x2+bx+c的对称轴;(3)如果该抛物线的对称轴分别和边AO、BO的延长线交于点C、D,设点E在直线AB上,当△BOE 和△BCD相似时,直接写出点E的坐标.【考点】二次函数综合题.【分析】(1)根据互相垂直的两直线一次项系数的乘积为﹣1,可得BO的解析式,根据勾股定理,可得B点坐标;(2)根据待定系数法,可得函数解析式,根据配方法,可得答案;(3)根据待定系数,可得AB的解析式,根据自变量与函数值的对应关系,可得E、F点的坐标,分类讨论:△BCD∽△BEO时,可得F点坐标;△BCD∽△BOE时,根据相似于同一个三角形的两个三角形相似,可得△BFO∽BOE,根据相似三角形的性质,可得BF的长,根据勾股定理,可得F 点坐标.【解答】解:(1)AO的解析式为y=x,AO⊥BO,BO的解析式为y=﹣x,设B点坐标为(a,﹣a),由OB=2,得=2.解得a=2(不符合题意,舍),或a=﹣2,B(﹣2,2);(2)将A、B点坐标代入函数解析式,得,解得,y=x2﹣x﹣=(x﹣1)2﹣,对称轴是x=1;(3)设AB的解析式为y=kx+b,将A、B点的坐标代入,得,解得,AB的解析式为y=﹣3x﹣4.当y=0时,x=﹣,即F(﹣,0).AO:y=x,当x=1时,y=1,即C(1,1);BO:y=﹣x,当x=1时,y=﹣1,即D(1,﹣1);AB=BC=,AO=OC=.①图1,∠CBD=∠ABD,∠BOF=∠BDC=45°,△BCD∽△BEO时.此时,F与E重合,E(﹣,0);②图2,设E点坐标为(b,﹣3b﹣4),△BCD∽△BOE时,∵△BCD∽△BFO,∴△BFO∽BOE,=,∴BO2=BF•BE,8=•BE,BE=,=,解得b=﹣,﹣3b﹣4=﹣3×(﹣)﹣4=﹣,∴E(﹣,﹣),综上所述:当△BOE和△BCD相似时,直接写出点E的坐标(﹣,0),(﹣,﹣).【点评】本题考查了二次函数综合题,利用互相垂直的两直线一次项系数的乘积为﹣1得出BO的解析式是解题关键;利用配方法得出对称轴是解题关键;利用相似于同一个三角形的两个三角形相似得出△BFO∽BOE,又利用了相似三角形的性质.25.如图,四边形ABCD中,∠C=60°,AB=AD=5,CB=CD=8,点P、Q分别是边AD、BC上的动点,AQ和BP交于点E,且∠BEQ=90°﹣∠BAD,设A、P两点的距离为x.(1)求∠BEQ的正切值;(2)设=y,求y关于x的函数解析式及定义域;(3)当△AEP是等腰三角形时,求B、Q两点的距离.【考点】相似形综合题.【分析】(1)求∠BEQ的正切值,要把∠BEQ放在直角三角形中进行解决,根据AB=AD=5,CB=CD=8可知,连接四边形ABCD的对角线可得到AC⊥BD,可通过∠BEQ=90°﹣∠BAD和∠ABD=90°﹣∠BAD,可知∠BEQ=∠ABD,通过求∠ABD的正切值来求得∠BEQ的正切值.(2)设AQ与BD交于点F,由(1)中的∠BEQ=∠ABD,AB=AD,CB=CD,得到∠AEP=∠ADF,从而可得△FAB∽△PBD,△APE∽△AFD.先由△FAB∽△PBD中的比例式=用含x的式子表示BF=(5﹣x),DF=BD﹣BF=,再用△APE∽△AFD中的比例式=用含x的式子表示y=(因为点P是在线段AD上移动,所以x的取值范围是0<x≤5).(3)由于题中没有说明△AEP中那两条边相等,所以要分情况讨论:①当AE=PE时,y==1 可得x=,可求出OF=1,作QH⊥BD,构造相似三角形,Rt△QHF∽Rt△AOF设BQ=a,用含有a 的式子表示BH=a,QH=a,根据==,可解得BQ=a=9﹣3;②当AP=PE时,易证△PAE∽△ABD,根据==,可得x=﹣,因为不合题意,故此种情况舍去;③当AP=AE 时,易证△AEP∽△ABD,利用==,可得AP=5,此时B、Q重合,即BQ=0.综合这三种情况可以求得B、Q两点间距离为:0或9﹣3.【解答】解:(1)连接BD、AC,交点于点O,(图1)∵AB=AD=5,CB=CD=8∴AC⊥BD,且OB=OD=BD=4∴∠ABD=90°﹣∠BAC=90°﹣∠BAD∴∠BEQ=∠ABD在Rt△ABO中,AB=5,OB=4∴tan∠BEQ=tan∠ABO==(2)设AQ与BD交于点F(图2)∵∠BEQ=∠ABD=∠AEP∠AFB=∠BFE∴△FBE∽△FAB,△FBE∽△PBD∴△FAB∽△PBD=,即=∴BF=(5﹣x),DF=BD﹣BF=又∵∠BEQ=∠ABD=∠AEP=∠ADB∠EAP=∠DAF ∴△APE∽△AFD∴y===整理得:y=(0<x≤5)(3)如图3①当AE=PE时,y==1解得x=∵y===∴DF==5∴OF=DF﹣OD=5﹣4=1作QH⊥BD,∵AO⊥BD,∠ACB=30°∴∠BQH=30°,Rt△QHF∽Rt△AOF设BQ=a,则BH=a,QH=a,则==,即=,解得BQ=a=9﹣3;②当AP=PE时,∠PAE=∠PEA∵∠AEP=∠BEQ=∠ABD=∠ADB∴△PAE∽△ABD又∵BD=BC=CD=8∴==,即=,解得x=﹣(不合题意,舍去)③当AP=AE时,∠AEP=∠APE=∠ABD=∠ADB∴△AEP∽△ABD∴==,即=,解得x=5,即AP=5此时B、Q重合,即BQ=0,综上可知,B、Q两点间距离为:0或9﹣3.【点评】本题考查的知识点有:①通过等量代换的方法把一个角放到直角三角形中求三角函数值的方法;②利用相似三角形的相似比作为等量关系,用含x的式子表示某条线段或线段比;③利用△AEP是等腰三角形,求B、Q两点的距离时,没有说清那两条边相等的情况下要分三种情况考虑问题,然后再根据相等的角或边找到对应的等量关系求x的值.。

2023年上海市黄浦区中考二模数学试卷含详解

2023年上海市黄浦区中考二模数学试卷含详解

黄浦区2023年九年级学业水平考试模拟考数学试卷(满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24分)(下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上)1.下列各数中,最小的数是()A .0B .﹣2C .1D2.下列轴对称图形中,对称轴条数最多的是()A .等边三角形B .菱形C .等腰梯形D .圆3.设a 是一个不为零的实数,下列式子中,一定成立的是()A .32a a ->-B .32a a >C .32a a->-D .32a a >4.某校为了解学生在假期阅读课外书籍的情况,将调查所得的50个数据整理成下表:课外书籍(本)12345人数(人)10102055对于这组数据,下列判断中,正确的是()A .众数和平均数相等B .中位数和平均数相等C .中位数和众数相等D .中位数、众数和平均数都相等5.“利用描点法画出函数图像,探究函数的一些简单性质”是初中阶段研究函数的主要方式,请试着探究函数3y x =-,其图像经过()A .第一、二象限B .第三、四象限C .第一、三象限D .第二、四象限.6.要检验一个四边形的桌面是矩形,可行的测量方案是()A .任选两个角,测量它们的角度;B .测量四条边的长度;C .测量两条对角线的长度;D .测量两条对角线的交点到四个顶点的距离.二、填空题:(本大题共12题,每题4分,满分48分)7.冬季某日中午12时的气温是3℃,经过10小时后气温下降8℃,那么该时刻的气温是________℃.8=____________.9.已知()211f x x =+,那么()1f -=________.10.已知关于x 的方程230x x k -+=无实数根,那么k 的取值范围是________.11.小聪和小明两个同学玩“石头,剪刀、布“的游戏,随机出手一次是平局的概率是________.12.已知某反比例函数的图像在其所在的每个象限内,y 的值随x 的值增大而增大,那么这个反比例函数可以是________.(只需写出一个)13.已知一次函数的图像经过点()1,3,且与直线26y x =+平行,那么这个一次函数的解析式是________.14.某学校为了解七年级学生某天书面作业完成时间的情况,从该校七年级学生中随机抽取40人进行调查,调查结果绘制成如图所示的频数分布直方图(每个小组包括最小值,不包括最大值).根据图中信息,该校七年级200名学生中,这一天书面作业完成时间少于90分钟的约有________人.15.已知点G 是ABC 的重心,设CA a = ,CB b = ,那么CG 用a 、b 可表示为________.16.在直角坐标平面内,已知点()13A -,,()41B -,,将线段AB 平移得到线段11A B (点A 的对应点是点1A ,点B 的对应点是点1B ),如果点1A 坐标是()20-,,那么点1B 的坐标是________.17.七巧板是中国传统智力玩具,现用以下方法制作一副七巧板:如图所示,取一张边长为20厘米的正方形纸板,联结对角线BD ;分别取BC CD 、中点E 、F ,联结EF ;过点A 作EF 垂线,分别交BD EF 、于G 、H 两点;分别取BG DG 、中点M 、N ,联结MH NF 、,沿图中实线剪开即可得到一副七巧板.其中四边形GHFN 的面积是________平方厘米.18.我们规定:在四边形ABCD 中,O 是边BC 上的一点.如果OAB 与OCD 全等,那么点O 叫做该四边形的“等形点”.在四边形EFGH 中,90EFG ∠=︒,EF GH ∥,1EF =,3FG =,如果该四边形的“等形点”在边FG 上,那么四边形EFGH 的周长是________.三、解答题:(本大题共7题,满分78分)19.计算:2282362x x x x x x x +-⎛⎫-÷ ⎪---+⎝⎭.20.解方程组:22211x y y x y ⎧--=-⎨-=⎩①②21.小丽与妈妈去商场购物,商场正在进行打折促销,规则如下:优惠活动一:任选两件商品,第二件半价(两件商品价格不同时,低价商品享受折扣);优惠活动二:所有商品打八折.(两种优惠活动不能同享)(1)如果小丽的妈妈看中一件价格600元的衣服和一双500元的鞋子,那么她选择哪个优惠活动会更划算?请通过计算说明;(2)如果小丽的妈妈想将之前看中的鞋子换成一条裤子,当裤子价格(裤子价格低于衣服价格)低于多少元时,小丽会推荐妈妈选择优惠活动二?为什么?22.已知,如图,O 的半径为2,半径OP 被弦AB 垂直平分,交点为Q ,点C 在圆上,且 BC BP =.(1)求弦AB 的长;(2)求图中阴影部分面积(结果保留π).23.已知:如图,在正方形ABCD 中,点E 在对角线BD 的延长线上,作AF AE ⊥,且AF AE =,连接BF .(1)求证:BF DE =;(2)延长AB 交射线EF 于点G ,求证:BF AD FG AE=.24.如图,在平面直角坐标系xOy 中,直线4y x =--与x 轴、y 轴分别交于点A 、B ,抛物线2y x bx c =++经过点A 、B .(1)求抛物线的表达式;(2)设抛物线与x 轴的另一个交点为C ,点P 是ABC 的外接圆的圆心,求点P 坐标;(3)点D 坐标是()0,4,点M 、N 在抛物线上,且四边形MBND 是平行四边形,求线段MN 的长.25.如图,在菱形ABCD 中,10BC =,E 是边BC 上一点,过点E 作EH BD ⊥,垂足为点H ,点G 在边AD 上,且GD CE =,联结GE ,分别交BD CH 、于点M 、N .(1)已知3sin 5DBC ∠=,①当4EC =时,求BCH V 的面积;②以点H 为圆心,HM 为半径作圆H ,以点C 为圆心,半径为1作圆C ,圆H 与圆C 有且仅有一个公共点,求CE 的值;(2)延长AH 交边BC 于点P ,当设CE x =,请用含x 的代数式表示HP CN的值.1.B【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【详解】最小的数是﹣2,故选B .【点睛】本题考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.2.D【分析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,从而可以画出它们的对称轴.【详解】解:等边三角形有3条对称轴,菱形有2条对称轴,等腰梯形有1条对称轴,圆形有无数条对称轴,圆的对称轴条数最多,故选:D .【点睛】此题主要考查如何确定轴对称图形的对称轴条数及位置,解题的关键是掌握轴对称的概念.3.A【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A 、32a a ->-,一定成立,故本选项符合题意;B 、当0a >时,32a a >,故本选项不符合题意;C 、当a<0时,32a a ->-,故本选项不符合题意;D 、当0a >时,32a a>,故本选项不符合题意;故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式的性质是解题的关键.4.C【分析】利用数据处理中各参考量的定义求解判断即可.众数是指出现最多的数,为3;中位数是指大小排序后位于中间的一位数或中间两位数的平均值,为3;平均数为总数除以总量的值,为 110210320455 5 2.72⨯+⨯+⨯+⨯+⨯=;中位数和众数相等,只有选项C 正确.故选C .【点睛】本题考查数据处理中中位数、众数、平均数的定义和算法,熟悉数据参考量的算法和正确的计算是解题的关系.5.D【分析】根据x 的取值,判断y 的范围即可求解.【详解】解:当0x <时,0y >;此时点在二象限;当0x >时,0y <;此时点在四象限.故选:D .【点睛】本题主要考查函数的图像、描点法等知识点,掌握分类讨论思想是解答本题的关键.6.D【分析】利用矩形的判定定理逐个选项查看即可.【详解】选项A 中任意两个角只能判定一对角互补或相等,或两个直角,有可能为直角梯形,判断四边形为矩形需要3个角是直角,选项A 错误;选项B 中,四条边的关系为对边相等,可能仅是平行四边形,选项B 错误;选项C 中,对角线长度相等但是不是平行四边形时,仅为普通四边形,选项C 错误;选项D 中,根据对角线交点到四个顶点的距离分别相等,判断对角线互相平分则为平行四边形,又通过对角线相等判断为矩形.故选D .【点睛】矩形的判定定理有3条,三个角是直角的四边形;对角线相等的平行四边形;有一个角是直角的平行四边形.熟练的应用判定定理是解题的关键.7.5-用38-进行计算即可.【详解】解:由题意,得:该时刻的气温是385-=-℃;故答案为:5-.【点睛】本题考查有理数减法的实际应用.熟练掌握有理数的减法法则,是解题的关键.8.12-##0.5-【分析】如果一个数x,使得3x a=,则x就是a的立方根,据此进行求解即可得到答案.【详解】解:311 28⎛⎫-=- ⎪⎝⎭,12=-,故答案为:12-.【点睛】本题考查了立方根的计算,熟练掌握立方根的定义是解题关键.9.12##0.5【分析】根据自变量与函数值的对应关系,把=1x-代入计算可得答案.【详解】解:当=1x-时,()2111112f-==+故答案为:12【点睛】本题考查了函数值,把自变量的值代入函数解析式是解题关键.10.94k>【分析】利用一元二次方程根的判别式进行计算即可.【详解】230x x k-+=为关于x的一元二次方程,无实根则24<0b ac∆=-2(3)40k --<94k ∴>故答案为:9>4k 【点睛】本题考查一元二次方程根的判别式,须注意确保方程的二次项系数不为0,才能保证是一元二次方程,才能使用根的判别式.熟悉一元二次方程根的判别式的公式和正确的计算是解题的关键.11.13【分析】列表表示所有可能出现的结果,再确定符合条件的结果,根据概率公式计算即可.【详解】解:列表如下:石头剪子布石头(石头,石头)(石头,剪子)(石头,布)剪子(剪子,石头)(剪子,剪子)(剪子,布)布(布,石头)(布,剪子)(布,布)一共有9种可能出现的结果,每种结果出现的可能性相同,出手相同的时候即为平局,有3种,所以随机出手一次平局的概率是3193=,故答案为:13.【点睛】本题主要考查了列表求概率,掌握概率计算公式是解题的关键.12.1y x=-(答案不唯一)【分析】根据反比例函数的性质,即可求解.【详解】解:∵反比例函数的图像在其所在的每个象限内,y 的值随x 的值增大而增大,∴这个反比例函数可以是1y x=-.故答案为:1y x =-(答案不唯一)【点睛】本题主要考查了反比函数的图象和性质,熟练掌握反比例函数()0k y k x=≠,当0k >时,图象位于第一、三象限内,在每一象限内,y 随x 的增大而减小;当0k <时,图象位于第二、四象限内,在每一象限内,y 随x 的增大而增大是解题的关键.13.21y x =+##12y x=+【分析】设一次函数的解析式为y kx b =+,由题可知,2k =,再代入点()1,3求出b ,进而得出一次函数解析式.【详解】解:设一次函数解析式是y kx b =+,该一次函数与直线26y x =+平行,2k ∴=,一次函数的图象经过点()1,3,23b ∴+=,解得:1b =,∴一次函数的解析式是21y x =+.故答案为:21y x =+.【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.14.170【分析】根据频数直方图可知40人中有34人完成时间少于90分钟,求出所占百分比,再估计200人中完成时间少于90分钟的人数即可.【详解】解:由题意得:4102020017040++⨯=(人)故答案为:170.【点睛】本题主要考查样本与总体的关系,熟练掌握用样本估计总体是解决本题的关键.15.1133a b + 【分析】如图,先根据向量的减法法则求出BA a b =- ,根据D 点是AB 边的中点求出BD ,再由向量的加法法则求出CD ,然后根据G 是ABC 的重心即可求出CG .【详解】如图,D 点是AB 边的中点,G 是ABC 的重心,∵CA a = ,CB b = ,∴BA a b=- ∵D 点是AB 边的中点,∴111222BD BA a b ==- ,∴11112222CD BD CB a b b a b =+=-+=+ ,∵G 是ABC 的重心,∴211333CG CD a b ==+ .故答案为:1133a b + .【点睛】本题考查三角形的重心,向量的计算等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.()12,【分析】各对应点之间的关系是横坐标减3,纵坐标加3,那么让点B 的横坐标减3,纵坐标加3即为点1B 的坐标.【详解】解:∵()13A -,平移后对应点1A 的坐标为()20-,,∴A 点的平移方法是:先向左平移3个单位,再向上平移3个单位,∴B 点的平移方法与A 点的平移方法是相同的,∴()41B -,平移后的坐标是:()4313--+,即()12,.故答案为:()12,.【点睛】此题主要考查了点的平移规律与图形的平移,关键是掌握平移规律,左右移,纵不变,横减加,上下移,横不变,纵加减.17.50【分析】根据勾股定理求出BD ,证明四边形GHFN 是正方形,即可解得.【详解】根据勾股定理可得,BD =,∵BC CD 、中点E 、F ,联结EF ,∴EF BD ∥,12EF BD =∵N 是DG 的中点,∴GN =∵根据对称性,EF AH ⊥,∴EH HF ==∵GN HF ==,GN HF ∥,∴四边形GHFN 是平行四边形,又∵90NGH ∠=︒,∴四边形GHFN 是矩形,∵=45NDF DFN ∠∠=︒,∴DN NF ==∴四边形GHFN 是正方形,∴2GHFN S =,故答案为:50.【点睛】此题考查了正方形的证明和面积,解题的关键是熟悉正方形的性质.18.8或6【分析】根据平行线的性质,得到90FGH ∠=︒,分两种情况讨论:当OEF OHG ≌时,证明四边形EFGH 时平行四边形,据此即可求出四边形EFGH 的周长;当OEF OGH ≌时,根据全等三角形的性质,推出2GH =,90EOH ∠=︒,利用勾股定理,依次求出OE =,EH =,即可求出四边形EFGH 的周长.【详解】解:90EFG ∠=︒ ,EF GH ∥,90FGH ∴∠=︒,四边形EFGH 的“等形点”在边FG 上,如图1,当OEF OHG ≌时,则1EF HG ==,EF GH ∥ ,∴四边形EFGH 时平行四边形,3EH FG ∴==,∴四边形EFGH 的周长为()1328+⨯=;如图2,当OEF HOG ≌时,1EF OG ∴==,OF GH =,OE OH =,OEF HOG ∠=∠,3FG = ,312OF FG OG ∴=-=-=,2GH ∴=,90EFO ∠=︒ ,90OEF EOF ∴∠+∠=︒,90HOG EOF ∴∠+∠=︒,()18090EOH HOG EOF ∴∠=︒-∠+∠=︒,在Rt EFO 中,OEOE OH ∴==在Rt EOH 中,EH ,∴四边形EFGH 的周长为1326+++=+故答案为:8或6.【点睛】本题考查了全等三角形的性质,平行四边形的判定和性质,勾股定理等知识,熟练掌握全等三角形的性质是解题关键.19.23x x --【分析】把括号内通分进行减法运算,再将除法运算转化为乘法运算,然后约分即可.【详解】解:原式=()()()()()228223232x x x x x x x x ⎡⎤++-⋅⎢⎥+-+--⎢⎥⎣⎦()()()222232x x x x x -+=⋅+--23x x -=-.【点睛】本题考查了分式的混合运算,熟练掌握运算法则及运算顺序是解题的关键.20.101x y =⎧⎨=-⎩,1132x y =⎧⎨=⎩【分析】由方程②,得1x y =+③,将③代入①,得()22121y y y +--=-,解得121,2=-=y y ,将11y =-代入③,得10x =;将12y =代入③,得23x =,即可得到方程组的解【详解】解:由方程②,得1x y =+③将③代入①,得()22121y y y +--=-解,得121,2=-=y y 将11y =-代入③,得10x =;将12y =代入③,得23x =所以,原方程的解是101x y =⎧⎨=-⎩,1132x y =⎧⎨=⎩.【点睛】此题考查了二元二次方程组,熟练掌握二元二次方程组的解法是解题的关键.21.(1)选择伏惠活动一更划算,见解析(2)当裤子价格低于400元时,推荐选择优惠活动二,见解析【分析】(1)分别计算出两种优惠活动的总价格,再比较那个价格更低即可得解答;(2)按照优惠活动列出不等式解答.【详解】(1)解:选择优惠活动一更划算,理由如下:活动一价格:6005000.5850+⨯=(元),活动二价格:()6005000.8880+⨯=(元),∵850880<,∴选择优惠活动一更划算.(2)解:当裤子价低于400元时,推荐选择优惠活动二,设裤子的价格为(600)x x <元,则活动一的价格为()6000.5x +元;活动二的价格为()4800.8x +元,由题意,得6000.54800.8x x +>+,解,得400x <.∴当裤子价格低于400元时,推荐选择优惠活动二.【点睛】本题考查了方案选择问题,一元一次不等式与实际问题,审清题意找出等量关系是解题的关键.22.(1)AB =(2)23S π=阴【分析】(1)连接OB ,则2OB =,由线段垂直平分线性质得112OQ OP ==.进而由勾股定理得BQ =,再由垂径定理即可求解;(2)连接OC ,BC ,先证OBC △是等边三角形,再证PBC OBC S S =△△,利用扇形面积公式即可求解.【详解】(1)解:连接OB ,则2OB =,∵弦AB 垂直平分OP ,∴112OQ OP ==.在Rt OBQ △中,=BQ ∵半径OP 垂直AB ,∴AQ BQ=∴AB =(2)解:在Rt OBQ △中,1cos 2POB ∠=,∴60∠=︒POB .连接OC ,BC ,∵ BC BP =,∴BC BP =,60BOC POB ︒∠=∠=.又∵OC OB =,∴OBC △是等边三角形.∴60BCO ∠=︒,∵60∠=︒POB ,60BOC ∠=︒.∵180BCO POC ∠+∠= ,∴BC OP∥∴PBC OBC S S =△△,∴2602π2π3603OBC S S ==⋅=形阴扇.【点睛】本题考查垂径定理,线段垂直平分线的性质,解直角三角形,扇形面积的计算以及勾股定理关键是由条件推出阴影的面积=扇形的面积.23.(1)见解析(2)见解析【分析】(1)由正方形的性质可得90BAD ∠=︒,AB AD =,再由AF AE ⊥,90EAF ∠=︒,可得BAF EAD ∠=∠,则()SAS ABF ADE ≌,根据全等三角形的性质即可得到结论;(2)根据等腰直角三角形的性质,正方形的性质及补角的性质可得135ADE AFG ∠=∠= ,再由EAD BAF ∠=∠,推出ADE AFG ∽,根据相似三角形的性质可得DE AD FG AF=,由ABF ADE △≌△,等量代换,即可得出结论;【详解】(1)证明: 四边形ABCD 是正方形,∴90BAD ∠=︒,AB AD =,AF AE ⊥,∴90EAF ∠=︒,BAD FAD EAF FAD ∴∠-∠=∠-∠,∴BAF EAD ∠=∠,又 AF AE =,∴()SAS ABF ADE ≌∴BF DE =.(2)证明:如图,延长AB 交射线EF 于点G ,AF AE =,90EAF ∠=︒,∴45AFE AEF ∠=∠=︒,四边形ABCD 是正方形,∴45ADB BDC =∠=∠°,∴135ADE AFG ∠=∠= ,由(1)知EAD BAF ∠=∠,ADE AFG ∴ ∽,∴DE AD FG AF=,又 ABF ADE△≌△∴DE BF =,AF AE =,∴BF AD FG AE=.【点睛】本题考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握并灵活运用知识点是解题的关键.24.(1)234y x x =+-(2)点P 的坐标是33,22⎛⎫-- ⎪⎝⎭(3)MN =【分析】(1)先利用一次函数解析式求出点A 和点B 的坐标,再用待定系数法求出抛物线的表达式即可;(2)先求出抛物线的对称轴是直线32x =-,由点P 是ABC 的外接圆的圆心得到点P 在AC 的垂直平分线上,即抛物线的对称轴上.点P 横坐标是32-.设点P 坐标为3,2⎛⎫- ⎪⎝⎭a ,由PB PA =,求出32a =-,即可得到点P 的坐标;(3)先说明点M ,N 关于原点对称.设点M 的横坐标为m (0m ≥),则点M 坐标是()2,34+-m m m ,点N 坐标是()2,34m m m ---+,把点()2,34m m m ---+坐标代入234y x x =+-,解得2m =(负值已舍),得到点M 坐标是()26,,点N 坐标是()2,6--,利用两点间距离公式即可得到线段MN 的长.【详解】(1)解:把0x =代入4y x =--得4y =-,∴点B 坐标是()0,4-,把0y =代入4y x =--,得4x =-,∴点A 坐标是()4,0-,将点A 、B 坐标代入2y x bx c =++,得()()24044c b c =-⎧⎪⎨=-+-+⎪⎩,解得34b c =⎧⎨=-⎩.∴抛物线的表达式是234y x x =+-.(2)∵223253424y x x x ⎛⎫=+-=+- ⎪⎝⎭,∴抛物线的对称轴是直线32x =-,∵点P 是ABC 的外接圆的圆心.∴点P 在AC 的垂直平分线上,即抛物线的对称轴上.∴点P 横坐标是32-.设点P 坐标为3,2⎛⎫- ⎪⎝⎭a ,∵PB PA =,,解得32a =-,∴.点P 的坐标是33,22⎛⎫-- ⎪⎝⎭.(3)∵点O 是BD 中点,即O 是平行四边形MBND 对角线交点,又∵四边形MBND 是平行四边形,∴点M ,N 关于原点对称.设点M 的横坐标为m (0m ≥),则点M 坐标是()2,34+-m m m ,点N 坐标是()2,34m m m ---+,把点()2,34m m m ---+坐标代入234y x x =+-,得223434m m m m --+=--,解得2m =(负值已舍),当2m =时,223423246m m +-=+⨯-=,∴点M 坐标是()26,,点N 坐标是()2,6--,∴MN ==【点睛】此题是二次函数综合题,考查了待定系数法、平行四边形的性质、两点间距离公式、三角形的外接圆等知识,读懂题意,准确计算是解题的关键.25.(1)①725BHC S =;②258或6556(2)102xx-【分析】(1)①联结AC 交BD 于点O ,根据菱形的性质可得OC BO ⊥,再由锐角三角函数可得,CO BO 的长,再由EH CO ∥,可得245BH =,即可求解;②先证明四边形CEGD 是平行四边形,可得EG D C ∥,从而得到EG AB ∥,进而得到EMB ABD ∠=∠,继而得到BE ME =,再由EH BD ⊥,可得HM BH =,再由EH CO ∥,可得485H x r BH ==-,45OH x =,在Rt HOC △中,根据勾股定理可得HC =然后分两种情况:当两圆外切时,当两圆内切时,即可求解;(2)先证明ABH CBH ≌.BAH BCN ∠=∠.取BE 中点Q ,联结HQ ,再证明HQP CEN ∽ ,可得HP HQ CN CE=,即可求解.【详解】(1)解:①联结AC 交BD 于点O ,∵四边形ABCD 是菱形,∴OC BO ⊥.在Rt BOC 中,10BC =,3sin 5DBC ∠=,∴sin 6CO BC DBC =⋅∠=,∴8BO =,∵EH BD ⊥,∴EH CO ∥,∴BH BE BO BC =,即104810BH -=∴245BH =.∴11247262255BHC S OC BH =⨯=⨯⨯= ;②在菱形ABCD 中,AB CD ,AD BC ∥,即GD CE ,又∵GD CE =,∴四边形CEGD 是平行四边形,∴EG D C ∥,∴EG AB ∥,∴EMB ABD ∠=∠.又∵ABD CBD ∠=∠,∴EMB CBD ∠=∠,∴BE ME =.又∵EH BD ⊥,∴HM BH =,设CE x =,则10BE x =-,∵EH BD ⊥,∴EH CO ∥,∴BH BE BO BC =,即10810BH x -=,∴485H x r BH ==-,∴448855OH x ⎛⎫=--= ⎪⎝⎭,在Rt HOC △中,HC ===.当两圆外切时,8415x -+=解得258x =;当两圆内切时,4815x --=,解得6556x =;综上所述,CE 长是258或6556;(2)解:∵,AB BC ABD CBD =∠=∠,BH BH =,∴ABH CBH ≌.∴BAH BCN ∠=∠.取BE 中点Q ,联结HQ ,由(1)得:HM BH =,EG AB ∥HQ EN AB ∴∥∥,∴,HQP CEN QHP BAH BCN ∠=∠∠=∠=∠,∴HQP CEN ∽ ,∴HP HQ CN CE=,又∵EH BD⊥,∴11022x HQ BE-==.∴102HP x CN x-=.【点睛】本题主要考查了四边形的综合题,相似三角形的判定和性质,圆与圆的位置关系,勾股定理等知识,熟练掌握相似三角形的判定和性质,圆与圆的位置关系,勾股定理是解题的关键.。

浙教版2016年中考模拟数学试卷(三)

浙教版2016年中考模拟数学试卷(三)

2015---2016年中考模拟(三)一、选择题1.如图,直线l 1// l2// l3,直线AC分别交l1, l2, l3于点A.B.C;直线DF分别交l1, l2, l3于点D.E.F .AC与DF相较于点H,且AH=2,HB=1,BC=5,则的值为()A.0.5B.2C.0.6D.0.42.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l与点Q .”分别作出了下列四个图形. 其中做法错误的是()3.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A. B. C. D.4.若(+)•w=1,则w=()A.a+2(a≠﹣2)B.﹣a+2(a≠2)C.a﹣2(a≠2)D.﹣a﹣2(a≠﹣2)5.如甲、乙两图所示,恩施州统计局对2009年恩施州各县市的固定资产投资情况进行了统计,并绘成了以下图表,请根据相关信息解答下列问题:投资额60 28 24 23 14 16 15AB6.如图,设k=(a >b >0),则有( ) A .k >2 B .1<k <2 C . D .7.如图是某几何体的三视图,则该几何体的体积是( )A .B .C .D . 8.如图,小敏同学想测量一棵大树的高度.她站在B 处仰望树顶,测得仰角为30︒,再往大树的方向前进4 m ,测得仰角为60︒,已知小敏同学身高(AB )为1.6m ,则这棵树的高度为( )(结果精确到0.1m ,3≈1.73).A .3.5mB .3.6 mC .4.3mD .5.1m9.如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,点D 在BC 上,以AC 为对角线的所有□ADCE 中,DE 最小的值是( )A .2B .3C .4D .510.如图,抛物线y=-x 2+2x+m+1交x 轴于点A (a ,0)和B (B ,0),y 轴于点C ,抛物线的顶点为D.下列四个判断:①当x>0时,y>0;②若a=-1,则b=4;③抛物线上有两点P (x 1,y 1)和Q (x 2,y 2),若x 1<1< x 2,且x 1+ x 2>2,则y 1> y 2;④点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当m=2时,四边形EDFG周长的最小值为,其中正确判断的序号是( ) A.①B.②C.③D.④ 二、填空题11.公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为________.12.一张三角形纸片ABC ,AB=AC=5.折叠该纸片使点A 落在边BC 的中点上,折痕经过AC 上的点E ,则线段AE 的长为________.13.已知√a(a-√3)<0,若b=2-a ,则b 的取值范围是________ .14.在矩形ABCD 中 ,AB =4 , BC =3 , 点P 在AB 上。

上海市黄浦区2016年中考数学一模试卷(解析版)

上海市黄浦区2016年中考数学一模试卷(解析版)

2016年上海市黄浦区中考数学一模试卷
一、选择题:(本大题共6题,每题4分,满分24分)
1.如果两个相似三角形的周长比为1:4,那么这两个三角形的相似比为()
A.1:2 B.1:4 C.1:8 D.1:16
2.已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c长()
A.18cm B.5cm C.6cm D.±6cm
3.如果向量与向量方向相反,且,那么向量用向量表示为()A.B.C.D.
4.在直角坐标平面内有一点P(3,4),OP与x轴正半轴的夹角为α,下列结论正确的是()A.tanα=B.cotα=C.sinα=D.cosα=
5.下列函数中不是二次函数的有()
A.y=x(x﹣1)B.y=﹣1 C.y=﹣x2D.y=(x+4)2﹣x2
6.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且∠DCE=∠B,那么下列说法中,错误的是()
A.△ADE∽△ABC B.△ADE∽△ACD C.△ADE∽△DCB D.△DEC∽△CDB
二、填空题:(本大题共12题,每题4分,满分48分)。

上海市黄浦区2016年中考数学四模试卷含答案解析

上海市黄浦区2016年中考数学四模试卷含答案解析

上海市黄浦区2016年中考数学四模试卷(解析版)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确的代号并填涂在答题纸的相应位置上】1.4的平方根是()A.16 B.±16 C.2 D.±22.下列方程中,无实数解的是()A.2+x=0 B.2﹣x=0 C.2x=0 D.=03.下列点中,位于函数y=图象上的是()A.(1,2) B.(1,)C.(1,1) D.(2,)4.对于数据:6,3,4,7,6,0,9,下列判断中正确的是()A.这组数据的平均数是6,中位数是6B.这组数据的平均数是5,中位数是6C.这组数据的平均数是6,中位数是7D.这组数据的平均数是5,中位数是75.下列命题中,真命题的是()A.如果一个四边形两条对角线相等,那么这个四边形是矩形B.如果一个四边形两条对角线相互垂直,那么这个四边形是菱形C.如果一个四边形两条对角线平分所在的角,那么这个四边形是菱形D.如果一个四边形两条对角线相互垂直平分,那么这个四边形是矩形6.如图,一个5×5的网格ABCD,在其形内有16个网格交点,分别以A、C为圆心,AB 长(5个单位)为半径在形内画弧,两弧相交于点B、D,那么上述16个网格交点中位于两弧之间(不含弧上)的有()A.8个B.9个C.10个D.12个二、填空题:(本大题共12小题,每小题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.计算:(﹣3)2=.8.不等式组的解集是.9.方程x=的解是.10.因式分解:x2﹣y2+x+y=.11.抛物线y=x2﹣2x﹣3的顶点坐标是.12.如图,九个小朋友用抽签的方式来确定各自的座位(如图中1~9这9个座位),小明第一个抽,抽到6号座位,小华第二个抽,那么小华抽到的座位恰好和小明的座位相邻的概率是.13.如图,小明利用暑假对他家所在阳光社区的居民进行了“小区绿化”满意情况的问卷调查,他在该社区随机抽取了200户居民,根据调查结果,将“小区绿化情况”绘制成如图条形统计图,若整个阳光社区共有居民3600户,根据上述统计数据,请你估计整个阳光社区对“小区绿化”不满意的居民有户.14.已知关于x的方程x2﹣4x+2﹣k=0有两个实数根,则k的取值范围是.15.如图,AB∥DE,∠C=20°,∠B:∠D=4:3,则∠BOE=度.16.如图,D、E是△ABC边AB、AC上的两点,AD:DB=2:1,DE∥BC,记=,=,那么=(用,表示).17.如果两个等腰三角形的腰长相等、面积也相等,那么我们把这两个等腰三角形称为一对合同三角形.已知一对合同三角形的底角分别为x°和y°,则y=.(用x的代数式表示)18.如图,BC是⊙O的弦,以BC为斜边的等腰直角△ABC,圆心O位于△ABC外,如果BC=6,OA=1,那么⊙O的半径是.三、解答题:(本大题共7题,满分78分)19.(10分)(2016•黄浦区三模)先化简,再求值: ++,其中x=.20.(10分)(2016•黄浦区三模)解方程组:.21.(10分)(2016•黄浦区三模)已知A、B是直线y=x+3上的两点,点A的横坐标为1,点B的纵坐标为1,点B关于原点的对称点为B1;试求:(1)直线AB1的解析式;(2)△ABB1的面积.22.(10分)(2016•黄浦区三模)如图所示,BA和CD表示前后两幢楼,按照有感规定两幢楼间的间距不得小于楼的高度,即图中AC大于等于CD,小明想测量一下他家所著AB 楼与前面CD楼是否符合规定,于是他在AC间的点M处架了测角仪,测得CD楼顶D的仰角为45°,已知AM=4米,测角仪距地面MN=1.5米.(1)问:两楼的间距是否符合规定?并说出你的理由;(2)为了知道前面CD楼的高度,小明又到家里(点P处),用测角仪再次测得CD楼顶D的仰角为α,如果AP=7.5米,sinα=0.6,请你来计算一下CD楼的高度.23.(12分)(2016•黄浦区三模)如图,在菱形ABCD中,E、F分别为边AD、CD上的点,且AE=CF,BE和BF交AC于点M、N.(1)求证:AM=CN;(2)联结BD,如果BD是AC与MN的比例中项,求证:BE⊥AD.24.(12分)(2016•黄浦区三模)如图,一次函数y=x+2的图象在x、y轴上的交点为A、B,点P是该一次函数的图象上位于x轴上方的一点,作PQ⊥x轴于点Q,以PQ的右侧作正方形PQMN.(1)当点N位于y轴上时,求点P的坐标;(2)设点P的横坐标为x,正方形PQMN的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果将(2)中所得函数的图象画在如图中平面直角坐标系中,求当点N恰好位于(2)中所画函数的图象上时,正方形PQMN的面积.25.(14分)(2016•黄浦区三模)如图,在等腰梯形ABCD中,AD∥BC,AD=1,BC=3,∠ABC的平分线交腰CD于点E(不与点C、D重合).(1)当AB=2时,求BE的长;(2)设CE=x,DE=y,求y关于x的函数关系式,并写出定义域;(3)联结AE,若△ABE是直角三角形,求腰AB的长.2016年上海市黄浦区中考数学四模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确的代号并填涂在答题纸的相应位置上】1.4的平方根是()A.16 B.±16 C.2 D.±2【考点】平方根.【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:D.【点评】此题主要考查了平方根,正确把握平方根的定义是解题关键.2.下列方程中,无实数解的是()A.2+x=0 B.2﹣x=0 C.2x=0 D.=0【考点】分式方程的解.【分析】根据解方程,可得答案.【解答】解:A、x+2=0,解得x=﹣2,故A正确;B、2﹣x=0,解得x=2,故B正确;C、2x=0,解得x=2,故C正确;D、=0方程无解,故D错误;故选:D.【点评】本题考查了分式方程的解,解方程是解题关键.3.下列点中,位于函数y=图象上的是()A.(1,2) B.(1,)C.(1,1) D.(2,)【考点】反比例函数图象上点的坐标特征.【分析】把点的坐标代入函数解析式,看看左边和右边是否相等即可.【解答】解:A、把(1,2)代入y=得:左边=右边,所以点(1,2)在函数y=的图象上,故本选项正确;B、把(1,)代入y=得:左边≠右边,所以点(1,)不在函数y=的图象上,故本选项错误;C、把(1,1)代入y=得:左边≠右边,所以点(1,1)不在函数y=的图象上,故本选项错误;D、把(2,)代入y=得:左边≠右边,所以点(2,)不在函数y=的图象上,故本选项错误;故选A.【点评】本题考查了反比例函数图象上点的坐标特征的应用,能理解题意是解此题的关键.4.对于数据:6,3,4,7,6,0,9,下列判断中正确的是()A.这组数据的平均数是6,中位数是6B.这组数据的平均数是5,中位数是6C.这组数据的平均数是6,中位数是7D.这组数据的平均数是5,中位数是7【考点】中位数;算术平均数.【分析】根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的平均数和中位数.【解答】解:对于数据:6,3,4,7,6,0,9,这组数据按照从小到大排列是:0,3,4,6,6,7,9,这组数据的平均数是:,中位数是6,故选B.【点评】本题考查中位数和算术平均数,解题的关键是明确题意,会求一组数据的中位数和平均数.5.下列命题中,真命题的是()A.如果一个四边形两条对角线相等,那么这个四边形是矩形B.如果一个四边形两条对角线相互垂直,那么这个四边形是菱形C.如果一个四边形两条对角线平分所在的角,那么这个四边形是菱形D.如果一个四边形两条对角线相互垂直平分,那么这个四边形是矩形【考点】命题与定理.【分析】利于矩形、菱形的判定定理分别判断后即可确定正确的选项.【解答】解:A、如果一个四边形两条对角线相等,那么这个四边形不一定是矩形,还有可能是等腰梯形,故错误;B、如果一个平行四边形两条对角线相互垂直,那么这个平行四边形是菱形,故错误;C、如果一个四边形两条对角线平分所在的角,那么这个四边形是菱形,正确,是真命题;D、如果一个四边形两条对角线相互垂直平分,那么这个四边形是菱形,故错误;故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解矩形、菱形的判定定理,属于基础题,难度不大.6.如图,一个5×5的网格ABCD,在其形内有16个网格交点,分别以A、C为圆心,AB 长(5个单位)为半径在形内画弧,两弧相交于点B、D,那么上述16个网格交点中位于两弧之间(不含弧上)的有()A.8个B.9个C.10个D.12个【考点】点与圆的位置关系.【分析】根据题意画出相应的图形,即可解答本题.【解答】解:如右图所示,上述16个网格交点中位于两弧之间(不含弧上)的有10个,故选C.【点评】本题考查点与圆的位置关系,解题的关键是明确题意,画出相应的图形.二、填空题:(本大题共12小题,每小题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.计算:(﹣3)2=.【考点】有理数的乘方.【分析】原式利用乘方的意义计算即可得到结果.【解答】解:原式=9,故答案为:9【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.8.不等式组的解集是.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>﹣2,由②得,x≤,故不等式组的解集为:﹣2<x≤.故答案为:﹣2<x≤.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.方程x=的解是.【考点】无理方程.【分析】先将无理方程两边同时平方转化为有理方程,解得方程的解,最后要进行检验,即可解答本题.【解答】解:x=,两边平方,得x2=x+2,移项,得x2﹣x﹣2=0,∴(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,解得,x=2或x=﹣1,检验,当x=2时,方程左边等于右边,故x=2是原无理方程的解,当x=﹣1时,方程左边不等于右边,故x=﹣1不是原无理方程的解,故答案为:x=2.【点评】本题考查无理方程,解题的关键是明确无理方程的解法,注意解方程最后要进行检验.10.因式分解:x2﹣y2+x+y=.【考点】因式分解-分组分解法.【分析】首先将前两项利用平方差公式分解因式,进而利用提取公因式法分解因式得出答案.【解答】解:x2﹣y2+x+y=(x+y)(x﹣y)+x+y=(x+y)(x﹣y+1).故答案为:(x+y)(x﹣y+1).【点评】此题主要考查了分组分解法分解因式,正确分组是解题关键.11.抛物线y=x2﹣2x﹣3的顶点坐标是.【考点】二次函数的性质.【分析】先把原式化为顶点式的形式,再求出其顶点坐标即可.【解答】解:∵原抛物线可化为:y=(x﹣1)2﹣4,∴其顶点坐标为(1,﹣4).故答案为:(1,﹣4).【点评】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.12.如图,九个小朋友用抽签的方式来确定各自的座位(如图中1~9这9个座位),小明第一个抽,抽到6号座位,小华第二个抽,那么小华抽到的座位恰好和小明的座位相邻的概率是.【考点】列表法与树状图法.【分析】画树状展示所有8种等可能的结果数,再找出抽到的座位恰好和小明的座位相邻的结果数,然后根据概率公式求解.【解答】解:画树状图为:小华抽到的座位有8种等可能的结果数,其中抽到的座位恰好和小明的座位相邻的结果数为3,所以抽到的座位恰好和小明的座位相邻的概率=.故答案为.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.13.如图,小明利用暑假对他家所在阳光社区的居民进行了“小区绿化”满意情况的问卷调查,他在该社区随机抽取了200户居民,根据调查结果,将“小区绿化情况”绘制成如图条形统计图,若整个阳光社区共有居民3600户,根据上述统计数据,请你估计整个阳光社区对“小区绿化”不满意的居民有户.【考点】条形统计图;用样本估计总体.【分析】根据抽取中不满意的居民数除以抽取的居民,可得不满意的居民所占的百分比,根据样本估计总体,可得答案.【解答】解:不满意居民所占的百分比×100%=40%,整个阳光社区对“小区绿化”不满意的居民有3600×40%=1440户,故答案为:1440.【点评】本题考查了样本估计总体,利用样本中不满意的居民所占的百分比得出总体中不满意的居民所占的百分比是解题关键.14.已知关于x的方程x2﹣4x+2﹣k=0有两个实数根,则k的取值范围是.【考点】根的判别式;解一元一次不等式.【分析】由方程有两个实数根结合根的判别式,即可得出△=8+4k≥0,解不等式即可得出结论.【解答】解:∵关于x的方程x2﹣4x+2﹣k=0有两个实数根,∴△=(﹣4)2﹣4×1×(2﹣k)=8+4k≥0,解得:k≥﹣2.故答案为:k≥﹣2.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是由方程有实数根得出关于a的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据方程解的个数结合根的判别式得出不等式(或方程)是关键.15.如图,AB∥DE,∠C=20°,∠B:∠D=4:3,则∠BOE=度.【考点】平行线的性质.【分析】根据平行线的性质得到∠B=∠COE,根据三角形外角的性质列方程求得∠COE=80°,根据平角的定义即可得到结论.【解答】解:∵AB∥DE,∴∠B=∠COE,∵∠B:∠D=4:3,∴设∠B=4x,∠D=3x,∴∠COE=4x,∵∠COE=∠C+∠D=20°+3x=4x,∴x=20°,∴∠COE=80°,∴∠BOE=180°﹣∠COE=100°.故答案为:100.【点评】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.16.如图,D、E是△ABC边AB、AC上的两点,AD:DB=2:1,DE∥BC,记=,=,那么=(用,表示).【考点】*平面向量.【分析】由=,=,利用三角形法则即可求得,然后由AD:DB=2:1,DE∥BC,根据平行线分线段成比例定理,可求得=,继而求得答案.【解答】解:∵=,=,∴=﹣=﹣,∵DE∥BC,∴DE:BC=AD:AB,∵AD:DB=2:1,∴DE:BC=2:3,∴==(﹣)=﹣.故答案为:﹣.【点评】此题考查了平面向量的知识以及平行线分线段成比例定理.注意掌握三角形法则的应用是解此题的关键.17.如果两个等腰三角形的腰长相等、面积也相等,那么我们把这两个等腰三角形称为一对合同三角形.已知一对合同三角形的底角分别为x°和y°,则y=.(用x的代数式表示)【考点】等腰三角形的性质.【分析】分类讨论:①当这两个三角形都是锐角或钝角三角形时,求出y与x的关系,②当两个三角形一个是锐角三角形,一个是钝角三角形时,求出y与x的关系即可.【解答】解:∵两个等腰三角形的腰长相等、面积也相等,∴腰上的高相等.①当这两个三角形都是锐角或钝角三角形时,y=x,②当两个三角形应该是锐角三角形,一个是钝角三角形时,y=90°﹣x.故答案为x或90°﹣x.【点评】本题考查等腰三角形的性质,三角形的面积等知识,解题的关键是学会分类讨论,考虑问题要全面,属于中考常考题型.18.如图,BC是⊙O的弦,以BC为斜边的等腰直角△ABC,圆心O位于△ABC外,如果BC=6,OA=1,那么⊙O的半径是.【考点】等腰直角三角形.【分析】根据题意得出AD⊥BC,BD=DC,进而利用勾股定理得出答案.【解答】解:连接OA并延长交BC于点D,连接OB,OC,∵AB=AC,OB=OC,∴OA是BC的垂直平分线,∴AD⊥BC,BD=DC,∵△ABC是等腰直角形,BC=6,OA=1,∴DC=3,AD=3,OD=4,∴CO=5.故答案为:5.【点评】此题主要考查了等腰直角三角形以及勾股定理等知识,正确应用勾股定理是解题关键.三、解答题:(本大题共7题,满分78分)19.(10分)(2016•黄浦区三模)先化简,再求值: ++,其中x=.【考点】分式的化简求值.【分析】先通分,再把分子相加减,最后把x的值代入进行计算即可.【解答】解:原式=++===,当x=时,原式==+1.【点评】本题考查的是分式的化简求值,熟知异分母的分式相加减的法则是解答此题的关键.20.(10分)(2016•黄浦区三模)解方程组:.【考点】高次方程.【分析】首先对方程(1)进行因式分解,经分析得:2x+y=0或2x﹣y=0,然后与方程(2)重新组合成两个方程组,解这两个方程组即可.【解答】解:由方程①,得2x+y=0或2x﹣y=0.(2分)将它们与方程②分别组成方程组,得(Ⅰ)或(Ⅱ)(2分)方程组(Ⅰ),无实数解;(1分)解方程组(Ⅱ),得,(2分)所以,原方程组的解是,.(1分)【点评】本题主要考查解二元二次方程组,关键在于正确的对原方程的两个方程进行因式分解.21.(10分)(2016•黄浦区三模)已知A、B是直线y=x+3上的两点,点A的横坐标为1,点B的纵坐标为1,点B关于原点的对称点为B1;试求:(1)直线AB1的解析式;(2)△ABB1的面积.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)首先求得A和B的坐标,根据对称点的性质求得B1的坐标,然后利用待定系数法求得函数的解析式;(2)过A作x轴的平行线,过B作y轴的平行线,过B1作x轴、y轴的平行线,分别相交于点C、D、E.然后根据△ABB1的面积等于矩形的面积与直角三角形的面积的差求解.【解答】解:(1)在y=x+3中令x=1得y=4,则A的坐标是(1,4);在y=x+3中,令y=1得x+3=1,解得x=﹣2,则B的坐标是(﹣2,1),则B1的坐标是(2,﹣1).设AB1的解析式是y=kx+b,则,解得:.则直线AB1的解析式是y=﹣5x+9;(2)过A作x轴的平行线,过B作y轴的平行线,过B1作x轴、y轴的平行线,分别相交于点C、D、E.则C的坐标是(﹣2,4),D的坐标是(﹣2,﹣1),E的坐标是(2,4).=BC•AC=×3×3=,则S△ABC=BD•B1D=×2×4=4,S△BB1D=B1E•AE=×1×5=,S△AB1ES=4×5=20,矩形CDB1E=20﹣﹣4﹣=9.则S△ABB1【点评】本题考查了待定系数法求函数的解析式以及图形的面积的计算,可以转化为规则图形的面积的和差计算.22.(10分)(2016•黄浦区三模)如图所示,BA和CD表示前后两幢楼,按照有感规定两幢楼间的间距不得小于楼的高度,即图中AC大于等于CD,小明想测量一下他家所著AB 楼与前面CD楼是否符合规定,于是他在AC间的点M处架了测角仪,测得CD楼顶D的仰角为45°,已知AM=4米,测角仪距地面MN=1.5米.(1)问:两楼的间距是否符合规定?并说出你的理由;(2)为了知道前面CD楼的高度,小明又到家里(点P处),用测角仪再次测得CD楼顶D的仰角为α,如果AP=7.5米,sinα=0.6,请你来计算一下CD楼的高度.【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)过点N作NG⊥DC于点G,在Rt△DNG中,由∠DNG=45°得到NG=DG,比较AM+NG与DG+GC即可;(2)延长DP,GN交于H,由sinα=0.6,可得tanα=,由正切函数可求得HJ,设NG=DG=x,则HG=8+4+x=12+x,tanα=,列方程可求得结论.【解答】解:(1)过点N作NG⊥DC于点G,在Rt△DNG中,∵∠DNG=45°∴NG=DG,∵AC=AM+NG,DC=DG+GC,AM=4m,MN=1.5m,AC>DC,∴两楼的间距符合规定;(2)延长DP,GN交于H,则∠H=α,PJ=AP﹣MN=7.5m﹣1.5m=6m,∵sinα=0.6,∴tanα=,∴HJ==8m,设NG=DG=x,则HG=8+4+x=12+x,∵tanα=,∴=,解得+x=36,即DG=36m,∴DC=DG+GC=36+1.5=37.5(米),∴CD楼的高度为37.5米.【点评】本题考查了解直角三角形的应用,题目中涉及到了仰俯角和坡度角的问题,解答本题的关键是根据仰角构造直角三角形,利用三角函数的知识求解.23.(12分)(2016•黄浦区三模)如图,在菱形ABCD中,E、F分别为边AD、CD上的点,且AE=CF,BE和BF交AC于点M、N.(1)求证:AM=CN;(2)联结BD,如果BD是AC与MN的比例中项,求证:BE⊥AD.【考点】相似三角形的判定与性质;全等三角形的判定与性质;菱形的性质.【分析】(1)根据菱形的四条边都相等可得AB=BC,对角相等可得∠BAM=∠BCN,对角线平分一组对角线可得∠BAM=∠DAM=∠DCA=∠BCA,然后利用“SAS”证明△ABE和△CBF全等,然后利用全等三角形对应边相等证明即可.(2)只要证明△BOM∽△AOB,得∠OBM=∠BAO=∠DAC,再根据∠OBM+∠BMO=90°,∠AME=∠OMB,即可证明.【解答】(1)证明:如图1中,∵四边形ABCD为菱形,∴AB=BC,∠BAM=∠BCN,∠BAM=∠DAM=∠DCA=∠BCA,在△ABE和△CBF中,,∴△ABE≌△CBF(ASA),∴AE=CF.(2)如图2中,连接BD交AC于O.∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∠BAC=∠DAC,∵AM=CN(由(1)可知),∴OM=ON,∴BD=2OB,AC=2AO,MN=2OM,∵BD2=MN•AC,∴4•OB2=2OM•2OA,∴OB2=OM•OA,∴=,∵∠BOM=∠AOB=90°,∴△BOM∽△AOB,∴∠OBM=∠BAO=∠DAC,∵∠OBM+∠BMO=90°,∠AME=∠OMB,∴∠EAM+∠AME=90°,∴∠AEM=90°,即BE⊥AD.【点评】本题考查了菱形的性质,全等三角形的判定与性质,相似三角形的判定和性质,等角的余角相等的性质比例中项等知识,熟记各性质并确定出全等三角形是解题的关键,第二个问题的关键是正确寻找相似三角形解决问题,属于中考常考题型.24.(12分)(2016•黄浦区三模)如图,一次函数y=x+2的图象在x、y轴上的交点为A、B,点P是该一次函数的图象上位于x轴上方的一点,作PQ⊥x轴于点Q,以PQ的右侧作正方形PQMN.(1)当点N位于y轴上时,求点P的坐标;(2)设点P的横坐标为x,正方形PQMN的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果将(2)中所得函数的图象画在如图中平面直角坐标系中,求当点N恰好位于(2)中所画函数的图象上时,正方形PQMN的面积.【考点】一次函数综合题.【分析】(1)由点在一次函数图象上位于x轴上方的一点,设出点P的坐标,根据正方形的特点结合点N在y轴上,可得出P点的横坐标的相反数等于P点的纵坐标,由此即可得出关于m的一元一次方程,解方程急了求出m的值,将其代入点P的坐标中即可得出结论;(2)结合(1)写出点P的坐标,并找出x的取值范围,根据正方形的面积公式即可得出y 关于x的函数解析式;(3)结合(2)的结论作出二次函数y=(x>﹣4)的图象,由点P的坐标结合正方形的性质可找出点N的坐标,将点N的坐标代入二次函数解析式中得出关于x的一元二次方程,解方程即可得出x的值,将其代入二次函数解析式中求出y值即可.【解答】解:(1)∵点P在一次函数y=x+2的图象上位于x轴上方的一点,∴设点P的坐标为(m,m+2)(m+2>0).∵四边形PQMN为正方形,且点N位于y轴上,∴PQ=PN,即﹣m=m+2,解得:m=﹣,∴×(﹣)+2=.∴当点N位于y轴上时,点P的坐标为(﹣,).(2)由(1)可知点P的坐标为(x,x+2)(x+2>0),PQ=x+2,y=PQ2==.∵x+2>0,解得:x>﹣4,∴y关于x的函数关系式为y=(x>﹣4).(3)结合(2)结论画出二次函数y=(x>﹣4),如图所示.∵点P的坐标为(x,x+2),PN=PQ,∴点N的坐标为(x+2,x+2).∵点N在二次函数y=(x>﹣4)的图象上,∴x+2=,解得:x1=﹣4(舍去),x2=﹣.当x=﹣时,y==.故当点N恰好位于(2)中所画函数的图象上时,正方形PQMN的面积为.【点评】本题考查了一次函数的应用、二次函数的图象、正方形的性质以及一次函数图象上点坐标的特征,解题的关键是:(1)结合正方形的性质找出点P坐标的特征;(2)根据正方形的面积公式得出函数关系上;(3)找出点N的坐标.本题属于中档题,难度不大,解题的关键是结合正方形的性质找出点的横纵坐标之间的关系是关键.25.(14分)(2016•黄浦区三模)如图,在等腰梯形ABCD中,AD∥BC,AD=1,BC=3,∠ABC的平分线交腰CD于点E(不与点C、D重合).(1)当AB=2时,求BE的长;(2)设CE=x,DE=y,求y关于x的函数关系式,并写出定义域;(3)联结AE,若△ABE是直角三角形,求腰AB的长.【考点】四边形综合题.【分析】(1)延长BA、CD交于点F,构造等腰△BCF,由于AD∥BC,所以△ADF∽△BCF,利用对应边的比相等即可求出AF=1,所以可知△ADF是等边三角形,从而可知△FBE 是直角三角形,利用勾股定理即可求出BE;(2)延长AD,BE交于点F,利用角平分线构造等腰三角形△ABF,然后证明△DEF∽△CBE,利用对应边的比相等即可求出y与x的关系式;(3)若△ABE是直角三角形,由于题目没有说明哪一个是直角,所以要分三种情况讨论:①当∠BAE=90°;②当∠AEB=90°;③当∠ABE=90°.【解答】解:(1)如图1,延长BA、CD交于点F,∵四边形ABCD是等腰梯形,∴∠ABC=∠DCB,∵AD∥BC,∴∠FAD=∠FDA,∴△FAD是等腰三角形,∵AD∥BC,∴△ADF∽△BCF,∴=∵AB=2,AD=1,BC=3,∴AF=1,∴△FDA是等边三角形,∴∠FAD=60°∵BE平分∠ABC,∴∠FBE=30°,∴∠FEB=90°,∵BF=2,∴FE=1∴由勾股定理可知:BE=;(2)如图2,延长AD,BE交于点F,∵AF∥BC,∴∠AFB=∠FBC,∵BE平分∠ABC,∴∠ABF=∠FBC,∴∠AFB=∠ABF,∴AB=AF,∵四边形ABCD是等腰梯形,∴AB=CD=CE+ED=x+y,∴AF=x+y,∴DF=AF﹣AD=x+y﹣1,∵DF∥BC,∴△DEF∽△CBE,∴=,∴=,∴y=(1<x<3);(3)如图3,当∠BAE=90°时,过点E作EF∥BC交AB于点F,过点E作EG⊥BC于点G,∴AF=DE=y,BF=CE=x,∠FEB=∠EBC,∵BE平分∠ABC,∴AE=EG,∠ABE=∠EBC,AB=BG∴∠ABE=∠FEB,∴BF=FE,∴CE=FE,在Rt△AEF与Rt△GEC中,,∴Rt△AEF≌Rt△GEC(HL),∴AF=GC=y,∵BC=BG+GC,∴3=x+y+y,∵y=,∴解得:x=﹣2,∵1<x<3,∴x=﹣2,∴y=,∴AB=x+y=,如图4,当∠AEB=90°时,过点E作EF∥BC交AB于点F,∴AF=DE=y,BF=CE=x,∠FEB=∠EBC∵BE平分∠ABC,∴∠FBE=∠EBC,∴∠FBE=∠FEB,∴BF=EF=x,∵∠FAE=90°﹣∠FBE∠AEF=90°﹣∠FEB,∴∠FAE=∠AEF,∴AF=EF,∴y=x,∵y=,∴解得:x=2或x=0∵1<x<3,∴x=2,∴AB=x+y=2x=4,当∠ABE=90°时,∵BE平分∠ABC,∴∠ABE=∠CBE=90°,此情况不存在,综上所述,当△ABE为直角三角形时,腰AB的长为或2.【点评】本题考查等腰梯形的综合问题,涉及等腰梯形的性质,梯形常用辅助线作法,全等三角形的判定和性质,相似三角形的判定和性质,解方程等知识内容,综合程度较高,需要学生将各章内容熟练运用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年上海市黄浦区中考数学模拟试卷(三)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确的代号并填涂在答题纸的相应位置上】1.(4分)4的平方根是()A.16 B.±16 C.2 D.±22.(4分)下列方程中,无实数解的是()A.2+x=0 B.2﹣x=0 C.2x=0 D.=03.(4分)下列点中,位于函数y=图象上的是()A.(1,2) B.(1,)C.(1,1) D.(2,)4.(4分)对于数据:6,3,4,7,6,0,9,下列判断中正确的是()A.这组数据的平均数是6,中位数是6B.这组数据的平均数是5,中位数是6C.这组数据的平均数是6,中位数是7D.这组数据的平均数是5,中位数是75.(4分)下列命题中,真命题的是()A.如果一个四边形两条对角线相等,那么这个四边形是矩形B.如果一个四边形两条对角线相互垂直,那么这个四边形是菱形C.如果一个平行四边形两条对角线平分所在的角,那么这个平行四边形是菱形D.如果一个四边形两条对角线相互垂直平分,那么这个四边形是矩形6.(4分)如图,一个5×5的网格ABCD,在其形内有16个网格交点,分别以A、C为圆心,AB长(5个单位)为半径在形内画弧,两弧相交于点B、D,那么上述16个网格交点中位于两弧之间(不含弧上)的有()A.8个 B.9个 C.10个D.12个二、填空题:(本大题共12小题,每小题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.(4分)计算:(﹣3)2=.8.(4分)不等式组的解集是.9.(4分)方程x=的解是.10.(4分)因式分解:x2﹣y2+x+y=.11.(4分)抛物线y=x2﹣2x﹣3的顶点坐标是.12.(4分)如图,九个小朋友用抽签的方式来确定各自的座位(如图中1~9这9个座位),小明第一个抽,抽到6号座位,小华第二个抽,那么小华抽到的座位恰好和小明的座位相邻的概率是.13.(4分)如图,小明利用暑假对他家所在阳光社区的居民进行了“小区绿化”满意情况的问卷调查,他在该社区随机抽取了200户居民,根据调查结果,将“小区绿化情况”绘制成如图条形统计图,若整个阳光社区共有居民3600户,根据上述统计数据,请你估计整个阳光社区对“小区绿化”不满意的居民有户.14.(4分)已知关于x的方程x2﹣4x+2﹣k=0有两个实数根,则k的取值范围是.15.(4分)如图,AB∥DE,∠C=20°,∠B:∠D=4:3,则∠BOE=度.16.(4分)如图,D、E是△ABC边AB、AC上的两点,AD:DB=2:1,DE∥BC,记=,=,那么=(用,表示).17.(4分)如果两个等腰三角形的腰长相等、面积也相等,那么我们把这两个等腰三角形称为一对合同三角形.已知一对合同三角形的底角分别为x°和y°,则y=.(用x的代数式表示)18.(4分)如图,BC是⊙O的弦,以BC为斜边的等腰直角△ABC,圆心O位于△ABC外,如果BC=6,OA=1,那么⊙O的半径是.三、解答题:(本大题共7题,满分78分)19.(10分)先化简,再求值:++,其中x=.20.(10分)解方程组:.21.(10分)已知A、B是直线y=x+3上的两点,点A的横坐标为1,点B的纵坐标为1,点B关于原点的对称点为B1;试求:(1)直线AB1的解析式;(2)△ABB1的面积.22.(10分)如图所示,BA和CD表示前后两幢楼,按照有感规定两幢楼间的间距不得小于楼的高度,即图中AC大于等于CD,小明想测量一下他家所著AB楼与前面CD楼是否符合规定,于是他在AC间的点M处架了测角仪,测得CD楼顶D的仰角为45°,已知AM=4米,测角仪距地面MN=1.5米.(1)问:两楼的间距是否符合规定?并说出你的理由;(2)为了知道前面CD楼的高度,小明又到家里(点P处),用测角仪再次测得CD楼顶D的仰角为α,如果AP=7.5米,sinα=0.6,请你来计算一下CD楼的高度.23.(12分)如图,在菱形ABCD中,E、F分别为边AD、CD上的点,且AE=CF,BE和BF交AC于点M、N.(1)求证:AM=CN;(2)联结BD,如果BD是AC与MN的比例中项,求证:BE⊥AD.24.(12分)如图,一次函数y=x+2的图象在x、y轴上的交点为A、B,点P 是该一次函数的图象上位于x轴上方的一点,作PQ⊥x轴于点Q,以PQ的右侧作正方形PQMN.(1)当点N位于y轴上时,求点P的坐标;(2)设点P的横坐标为x,正方形PQMN的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果将(2)中所得函数的图象画在如图中平面直角坐标系中,求当点N 恰好位于(2)中所画函数的图象上时,正方形PQMN的面积.25.(14分)如图,在等腰梯形ABCD中,AD∥BC,AD=1,BC=3,∠ABC的平分线交腰CD于点E(不与点C、D重合).(1)当AB=2时,求BE的长;(2)设CE=x,DE=y,求y关于x的函数关系式,并写出定义域;(3)联结AE,若△ABE是直角三角形,求腰AB的长.2016年上海市黄浦区中考数学模拟试卷(三)参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确的代号并填涂在答题纸的相应位置上】1.(4分)4的平方根是()A.16 B.±16 C.2 D.±2【解答】解:4的平方根是:±=±2.故选:D.2.(4分)下列方程中,无实数解的是()A.2+x=0 B.2﹣x=0 C.2x=0 D.=0【解答】解:A、x+2=0,解得x=﹣2,故A正确;B、2﹣x=0,解得x=2,故B正确;C、2x=0,解得x=2,故C正确;D、=0方程无解,故D错误;故选:D.3.(4分)下列点中,位于函数y=图象上的是()A.(1,2) B.(1,)C.(1,1) D.(2,)【解答】解:A、把(1,2)代入y=得:左边=右边,所以点(1,2)在函数y=的图象上,故本选项正确;B、把(1,)代入y=得:左边≠右边,所以点(1,)不在函数y=的图象上,故本选项错误;C、把(1,1)代入y=得:左边≠右边,所以点(1,1)不在函数y=的图象上,故本选项错误;D、把(2,)代入y=得:左边≠右边,所以点(2,)不在函数y=的图象上,故本选项错误;故选A.4.(4分)对于数据:6,3,4,7,6,0,9,下列判断中正确的是()A.这组数据的平均数是6,中位数是6B.这组数据的平均数是5,中位数是6C.这组数据的平均数是6,中位数是7D.这组数据的平均数是5,中位数是7【解答】解:对于数据:6,3,4,7,6,0,9,这组数据按照从小到大排列是:0,3,4,6,6,7,9,这组数据的平均数是:,中位数是6,故选B.5.(4分)下列命题中,真命题的是()A.如果一个四边形两条对角线相等,那么这个四边形是矩形B.如果一个四边形两条对角线相互垂直,那么这个四边形是菱形C.如果一个平行四边形两条对角线平分所在的角,那么这个平行四边形是菱形D.如果一个四边形两条对角线相互垂直平分,那么这个四边形是矩形【解答】解:A、如果一个四边形两条对角线相等,那么这个四边形不一定是矩形,还有可能是等腰梯形,故错误;B、如果一个平行四边形两条对角线相互垂直,那么这个平行四边形是菱形,故错误;C、如果一个平行四边形两条对角线平分所在的角,那么这个平行四边形是菱形,正确,是真命题;D、如果一个四边形两条对角线相互垂直平分,那么这个四边形是菱形,故错误;故选C.6.(4分)如图,一个5×5的网格ABCD,在其形内有16个网格交点,分别以A、C为圆心,AB长(5个单位)为半径在形内画弧,两弧相交于点B、D,那么上述16个网格交点中位于两弧之间(不含弧上)的有()A.8个 B.9个 C.10个D.12个【解答】解:如右图所示,上述16个网格交点中位于两弧之间(不含弧上)的有10个,故选C.二、填空题:(本大题共12小题,每小题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.(4分)计算:(﹣3)2=9.【解答】解:原式=9,故答案为:98.(4分)不等式组的解集是﹣2<x≤.【解答】解:,由①得,x>﹣2,由②得,x≤,故不等式组的解集为:﹣2<x≤.故答案为:﹣2<x≤.9.(4分)方程x=的解是x=2.【解答】解:x=,两边平方,得x2=x+2,移项,得x2﹣x﹣2=0,∴(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,解得,x=2或x=﹣1,检验,当x=2时,方程左边等于右边,故x=2是原无理方程的解,当x=﹣1时,方程左边不等于右边,故x=﹣1不是原无理方程的解,故答案为:x=2.10.(4分)因式分解:x2﹣y2+x+y=(x+y)(x﹣y+1).【解答】解:x2﹣y2+x+y=(x+y)(x﹣y)+x+y=(x+y)(x﹣y+1).故答案为:(x+y)(x﹣y+1).11.(4分)抛物线y=x2﹣2x﹣3的顶点坐标是(1,﹣4).【解答】解:∵原抛物线可化为:y=(x﹣1)2﹣4,∴其顶点坐标为(1,﹣4).故答案为:(1,﹣4).12.(4分)如图,九个小朋友用抽签的方式来确定各自的座位(如图中1~9这9个座位),小明第一个抽,抽到6号座位,小华第二个抽,那么小华抽到的座位恰好和小明的座位相邻的概率是.【解答】解:画树状图为:小华抽到的座位有8种等可能的结果数,其中抽到的座位恰好和小明的座位相邻的结果数为3,所以抽到的座位恰好和小明的座位相邻的概率=.故答案为.13.(4分)如图,小明利用暑假对他家所在阳光社区的居民进行了“小区绿化”满意情况的问卷调查,他在该社区随机抽取了200户居民,根据调查结果,将“小区绿化情况”绘制成如图条形统计图,若整个阳光社区共有居民3600户,根据上述统计数据,请你估计整个阳光社区对“小区绿化”不满意的居民有1440户.【解答】解:不满意居民所占的百分比×100%=40%,整个阳光社区对“小区绿化”不满意的居民有3600×40%=1440户,故答案为:1440.14.(4分)已知关于x的方程x2﹣4x+2﹣k=0有两个实数根,则k的取值范围是k≥﹣2.【解答】解:∵关于x的方程x2﹣4x+2﹣k=0有两个实数根,∴△=(﹣4)2﹣4×1×(2﹣k)=8+4k≥0,解得:k≥﹣2.故答案为:k≥﹣2.15.(4分)如图,AB∥DE,∠C=20°,∠B:∠D=4:3,则∠BOE=100度.【解答】解:∵AB∥DE,∴∠B=∠COE,∵∠B:∠D=4:3,∴设∠B=4x,∠D=3x,∴∠COE=4x,∵∠COE=∠C+∠D=20°+3x=4x,∴x=20°,∴∠COE=80°,∴∠BOE=180°﹣∠COE=100°.故答案为:100.16.(4分)如图,D、E是△ABC边AB、AC上的两点,AD:DB=2:1,DE∥BC,记=,=,那么=﹣(用,表示).【解答】解:∵=,=,∴=﹣=﹣,∵DE∥BC,∴DE:BC=AD:AB,∵AD:DB=2:1,∴DE:BC=2:3,∴==(﹣)=﹣.故答案为:﹣.17.(4分)如果两个等腰三角形的腰长相等、面积也相等,那么我们把这两个等腰三角形称为一对合同三角形.已知一对合同三角形的底角分别为x°和y°,则y=x或90°﹣x.(用x的代数式表示)【解答】解:∵两个等腰三角形的腰长相等、面积也相等,∴腰上的高相等.①当这两个三角形都是锐角或钝角三角形时,y=x,②当两个三角形一个是锐角三角形,一个是钝角三角形时,y=90°﹣x.故答案为x或90°﹣x.18.(4分)如图,BC是⊙O的弦,以BC为斜边的等腰直角△ABC,圆心O位于△ABC外,如果BC=6,OA=1,那么⊙O的半径是5.【解答】解:连接OA并延长交BC于点D,连接OB,OC,∵AB=AC,OB=OC,∴OA是BC的垂直平分线,∴AD⊥BC,BD=DC,∵△ABC是等腰直角形,BC=6,OA=1,∴DC=3,AD=3,OD=4,∴CO=5.故答案为:5.三、解答题:(本大题共7题,满分78分)19.(10分)先化简,再求值:++,其中x=.【解答】解:原式=++===,当x=时,原式==+1.20.(10分)解方程组:.【解答】解:由方程①,得2x+y=0或2x﹣y=0.(2分)将它们与方程②分别组成方程组,得(Ⅰ)或(Ⅱ)(2分)方程组(Ⅰ),无实数解;(1分)解方程组(Ⅱ),得,(2分)所以,原方程组的解是,.(1分)21.(10分)已知A、B是直线y=x+3上的两点,点A的横坐标为1,点B的纵坐标为1,点B关于原点的对称点为B1;试求:(1)直线AB1的解析式;(2)△ABB1的面积.【解答】解:(1)在y=x+3中令x=1得y=4,则A的坐标是(1,4);在y=x+3中,令y=1得x+3=1,解得x=﹣2,则B的坐标是(﹣2,1),则B1的坐标是(2,﹣1).设AB1的解析式是y=kx+b,则,解得:.则直线AB1的解析式是y=﹣5x+9;(2)过A作x轴的平行线,过B作y轴的平行线,过B1作x轴、y轴的平行线,分别相交于点C、D、E.则C的坐标是(﹣2,4),D的坐标是(﹣2,﹣1),E的坐标是(2,4).=BC•AC=×3×3=,则S△ABCS△BB1D=BD•B1D=×2×4=4,S△AB1E=B1E•AE=×1×5=,S矩形CDB1E=4×5=20,则S=20﹣﹣4﹣=9.△ABB122.(10分)如图所示,BA和CD表示前后两幢楼,按照有感规定两幢楼间的间距不得小于楼的高度,即图中AC大于等于CD,小明想测量一下他家所著AB楼与前面CD楼是否符合规定,于是他在AC间的点M处架了测角仪,测得CD楼顶D的仰角为45°,已知AM=4米,测角仪距地面MN=1.5米.(1)问:两楼的间距是否符合规定?并说出你的理由;(2)为了知道前面CD楼的高度,小明又到家里(点P处),用测角仪再次测得CD楼顶D的仰角为α,如果AP=7.5米,sinα=0.6,请你来计算一下CD楼的高度.【解答】解:(1)过点N作NG⊥DC于点G,在Rt△DNG中,∵∠DNG=45°∴NG=DG,∵AC=AM+NG,DC=DG+GC,AM=4m,MN=1.5m,AC>DC,∴两楼的间距符合规定;(2)延长DP,GN交于H,则∠H=α,PJ=AP﹣MN=7.5m﹣1.5m=6m,∵sinα=0.6,∴tanα=,∴HJ==8m,设NG=DG=x,则HG=8+4+x=12+x,∵tanα=,∴=,解得+x=36,即DG=36m,∴DC=DG+GC=36+1.5=37.5(米),∴CD楼的高度为37.5米.23.(12分)如图,在菱形ABCD中,E、F分别为边AD、CD上的点,且AE=CF,BE和BF交AC于点M、N.(1)求证:AM=CN;(2)联结BD,如果BD是AC与MN的比例中项,求证:BE⊥AD.【解答】(1)证明:如图1中,∵四边形ABCD为菱形,∴AB=BC,∠BAM=∠BCN,∠BAM=∠DAM=∠DCA=∠BCA,在△ABE和△CBF中,,∴△ABE≌△CBF(ASA),∴AE=CF.(2)如图2中,连接BD交AC于O.∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∠BAC=∠DAC,∵AM=CN(由(1)可知),∴OM=ON,∴BD=2OB,AC=2AO,MN=2OM,∵BD2=MN•AC,∴4•OB2=2OM•2OA,∴OB2=OM•OA,∴=,∵∠BOM=∠AOB=90°,∴△BOM∽△AOB,∴∠OBM=∠BAO=∠DAC,∵∠OBM+∠BMO=90°,∠AME=∠OMB,∴∠EAM+∠AME=90°,∴∠AEM=90°,即BE⊥AD.24.(12分)如图,一次函数y=x+2的图象在x、y轴上的交点为A、B,点P 是该一次函数的图象上位于x轴上方的一点,作PQ⊥x轴于点Q,以PQ的右侧作正方形PQMN.(1)当点N位于y轴上时,求点P的坐标;(2)设点P的横坐标为x,正方形PQMN的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果将(2)中所得函数的图象画在如图中平面直角坐标系中,求当点N 恰好位于(2)中所画函数的图象上时,正方形PQMN的面积.【解答】解:(1)∵点P在一次函数y=x+2的图象上位于x轴上方的一点,∴设点P的坐标为(m,m+2)(m+2>0).∵四边形PQMN为正方形,且点N位于y轴上,∴PQ=PN,即﹣m=m+2,解得:m=﹣,∴×(﹣)+2=.∴当点N位于y轴上时,点P的坐标为(﹣,).(2)由(1)可知点P的坐标为(x,x+2)(x+2>0),PQ=x+2,y=PQ2==.∵x+2>0,解得:x>﹣4,∴y关于x的函数关系式为y=(x>﹣4).(3)结合(2)结论画出二次函数y=(x>﹣4),如图所示.∵点P的坐标为(x,x+2),PN=PQ,∴点N的坐标为(x+2,x+2).∵点N在二次函数y=(x>﹣4)的图象上,∴x+2=,解得:x1=﹣4(舍去),x2=﹣.当x=﹣时,y==.故当点N恰好位于(2)中所画函数的图象上时,正方形PQMN的面积为.25.(14分)如图,在等腰梯形ABCD中,AD∥BC,AD=1,BC=3,∠ABC的平分线交腰CD于点E(不与点C、D重合).(1)当AB=2时,求BE的长;(2)设CE=x,DE=y,求y关于x的函数关系式,并写出定义域;(3)联结AE,若△ABE是直角三角形,求腰AB的长.【解答】解:(1)如图1,延长BA、CD交于点F,∵四边形ABCD是等腰梯形,∴∠ABC=∠DCB,∵AD∥BC,∴∠FAD=∠FDA,∴△FAD是等腰三角形,∵AD∥BC,∴△ADF∽△BCF,∴=∵AB=2,AD=1,BC=3,∴AF=1,∴△FDA是等边三角形,∴∠FAD=60°∵BE平分∠ABC,∴∠FBE=30°,∴∠FEB=90°,∵BF=3,∴FE=∴由勾股定理可知:BE=;(2)如图2,延长AD,BE交于点F,∵AF∥BC,∴∠AFB=∠FBC,∵BE平分∠ABC,∴∠ABF=∠FBC,∴∠AFB=∠ABF,∴AB=AF,∵四边形ABCD是等腰梯形,∴AB=CD=CE+ED=x+y,∴AF=x+y,∴DF=AF﹣AD=x+y﹣1,∵DF∥BC,∴△DEF∽△CBE,∴=,∴=,∴y=(1<x<3);(3)如图3,当∠BAE=90°时,过点E作EF∥BC交AB于点F,过点E作EG⊥BC于点G,∴AF=DE=y,BF=CE=x,∠FEB=∠EBC,∵BE平分∠ABC,∴AE=EG,∠ABE=∠EBC,AB=BG∴∠ABE=∠FEB,∴BF=FE,∴CE=FE,在Rt△AEF与Rt△GEC中,,∴Rt△AEF≌Rt△GEC(HL),∴AF=GC=y,∵BC=BG+GC,∴3=x+y+y,∵y=,∴解得:x=﹣2,∵1<x<3,∴x=﹣2,∴y=,∴AB=x+y=,如图4,当∠AEB=90°时,过点E作EF∥BC交AB于点F,∴AF=DE=y,BF=CE=x,∠FEB=∠EBC∵BE平分∠ABC,∴∠FBE=∠EBC,∴∠FBE=∠FEB,∴BF=EF=x,∵∠FAE=90°﹣∠FBE∠AEF=90°﹣∠FEB,∴∠FAE=∠AEF,∴AF=EF,∴y=x,∵y=,∴解得:x=2或x=0∵1<x<3,∴x=2,∴AB=x+y=2x=4,当∠ABE=90°时,∵BE平分∠ABC,∴∠ABE=∠CBE=90°,此情况不存在,综上所述,当△ABE为直角三角形时,腰AB的长为或2.。

相关文档
最新文档