离散系统的频率响应分析和零、极点分布

合集下载

频率响应零极点

频率响应零极点

频率响应零极点频率响应是指系统对不同频率的输入信号的响应情况。

在信号处理和控制系统设计中,频率响应的分析对于了解系统的稳定性、幅频特性、相频特性等非常重要。

频率响应的零极点是指系统传递函数的分母和分子中的零点和极点。

零点是使得系统的传递函数分子为零的频率,极点是使得系统的传递函数分母为零的频率。

通过分析系统的零极点,可以获得关于系统的重要信息,如系统的稳定性、滤波特性、频率选择性等。

1. 零点(Zeros):零点是使得系统传递函数的分子为零的频率。

在频率域中,零点对应于使系统的频率响应为零的点。

具体地说,零点是导致系统传递函数的分子项为零的频率值。

零点的位置对系统的频率响应有很大的影响。

当输入信号的频率接近零点时,系统的频率响应会增强,因为分子为零,从而增加输出信号的幅度。

零点的位置也决定了系统的频率选择性能,即系统对特定频率的放大或抑制程度。

2. 极点(Poles):极点是使得系统传递函数的分母为零的频率。

在频率域中,极点对应于使系统的频率响应趋于无穷大的点。

具体地说,极点是导致系统传递函数的分母项为零的频率值。

极点的位置对系统的频率响应同样具有重要影响。

当输入信号的频率接近极点时,系统的频率响应会出现共振或者不稳定的现象,因为此时传递函数的分母为零,导致输出信号无限增大或者趋于无穷大。

3. 频率响应的稳定性:零极点的位置对系统的稳定性有着直接的影响。

稳定系统的所有极点都位于左半平面,即实部为负。

如果系统的极点位于右半平面(实部为正),那么系统将是不稳定的,可能导致输出信号的增长或震荡。

4. 频率响应的滤波特性:零极点的位置还决定了系统的滤波特性。

通过控制零极点的位置,可以实现对不同频率成分的滤波。

零点对应于系统的传递函数分子的零点,可以用于增强特定频率的信号成分。

极点对应于系统的传递函数分母的零点,可以用于抑制特定频率的信号成分。

5. 频率响应的相频特性:零极点的位置还决定了系统的相频特性。

5.9 系统函数零点、极点分布与系统频率响应特性的关系(不讲)

5.9  系统函数零点、极点分布与系统频率响应特性的关系(不讲)

N2
2
p2
2
z2
2
频率特性
H j K Ke N1 N 2 N 3 M1 M 2 M 3
j 1 2 3 1 2 3
e
j 1 2 3 1 2 3
由于N1N2N3与M1M2M3相消,幅频特性等于常数K,即
H j K
•幅频特性——常数 •相频特性——不受约束 •全通网络可以保证不影响待传送信号的幅度频谱特性, 只改变信号的相位频谱特性,在传输系统中常用来进行 相位校正,例如,作相位均衡器或移相器。
3
二.最小相移网络
若网络函数在右半平面有一个或多个零点,就称为 “非最小相移函数”,这类网络称为“非最小相移网 络”。
min j 最小相移函数
j j
2 2 全通函数
5
end
谢谢大家!
6
5.9 系统函数零点、极点分布与系统频率响应特性 的关系
•全通网络 •最小相移网络 •级联
1
一.全通网络
所谓全通是指它的幅频特性为常数,对于全部频率的 正弦信号都能按同样的幅度传输系数通过。
零、极点分布
j
p1
M3 p3
M2
z1
M1
1
N1
1
N3
3
3
z3
•极点位于左半平面, •零点位于右半平面, •零点与极点对于虚轴 互为镜像
j
z1
z1
j j
j j
j j
j
பைடு நூலகம்



O
j
j
O

j j

j
O
j
j j

数字信号处理第三版西科大课后答案第2章

数字信号处理第三版西科大课后答案第2章

第2章时域离散信号和系统的频域分析2.1学习要点与重要公式2.2FT和ZT的逆变换2.3分析信号和系统的频率特性 2.4例题2.5习题与上机题解答2.1学习要点与重要公式数字信号处理中有三个重要的数学变换工具,即傅里叶变换(FT)、Z变换(ZT)和离散傅里叶变换(DFT)。

利用它们可以将信号和系统在时域空间和频域空间相互转换,这方便了对信号和系统的分析和处理。

三种变换互有联系,但又不同。

表征一个信号和系统的频域特性是用傅里叶变换。

Z 变换是傅里叶变换的一种推广,单位圆上的Z变换就是傅里叶变换。

在z域进行分析问题会感到既灵活又方便。

离散傅里叶变换是离散化的傅里叶变换,因此用计算机分析和处理信号时,全用离散傅里叶变换进行。

离散傅里叶变换具有快速算法FFT,使离散傅里叶变换在应用中更加方便与广泛。

但是离散傅里叶变换不同于傅里叶变换和Z变换,它将信号的时域和频域,都进行了离散化,这是它的优点。

但更有它自己的特点,只有掌握了这些特点,才能合理正确地使用DFT。

本章只学习前两种变换,离散傅里叶变换及其FFT将在下一章学习。

2.1.1学习要点(1)傅里叶变换的正变换和逆变换定义,以及存在条件。

(2)傅里叶变换的性质和定理:傅里叶变换的周期性、移位与频移性质、时域卷积定理、巴塞伐尔定理、频域卷积定理、频域微分性质、实序列和一般序列的傅里叶变换的共轭对称性。

(3)周期序列的离散傅里叶级数及周期序列的傅里叶变换表示式。

(4)Z变换的正变换和逆变换定义,以及收敛域与序列特性之间的关系。

(5)Z变换的定理和性质:移位、反转、z域微分、共轭序列的Z变换、时域卷积定理、初值定理、终值定理、巴塞伐尔定理。

(6)系统的传输函数和系统函数的求解。

(7)用极点分布判断系统的因果性和稳定性。

(8)零状态响应、零输入响应和稳态响应的求解。

(9)用零极点分布定性分析并画出系统的幅频特性。

2.1.2重要公式(1)这两式分别是傅里叶变换的正变换和逆变换的公式。

零极点分布对系统频率响应的影响

零极点分布对系统频率响应的影响
A=1;a=0.9;B=[1,a];%设置系统函数系数向量A和B
subplot(2,2,1);
zplane(B,A);%绘制零极点分布图
[H,w]=freqz(B,A,'whole');%计算频率响应
subplot(2,2,2);
plot(w/pi,abs(H));grid on;%绘制幅频响应曲线
实验图像:
%a=0.8
B=1;a=0.8;A=[1,-a];%设置系统函数系数向量A和B
subplot(2,2,1);
zplane(B,A);%绘制零极点分布图
[H,w]=freqz(B,A,'whole');%计算频率响应
subplot(2,2,2);
plot(w/pi,abs(H));grid on;%绘制幅频响应曲线
五、实验过程原始记录(数据、图表、计算等)
1.%a=0.7
B=1;a=0.7;A=[1,-a];%设置系统函数系数向量A和B
subplot(2,2,1);zplane(B,A);%绘制零极点分布图
[H,w]=freqz(B,A,'whole');%计算频率响应
subplot(2,2,2);plot(w/pi,abs(H));%绘制幅频响应曲线
grid on;%网格效果
xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');
subplot(2,2,4);plot(w/pi,angle(H));%绘制相频响应曲线
xlabel('\omega/\pi');ylabel('\phi(\omega)');

零极点分布对系统频率响应的影响

零极点分布对系统频率响应的影响

实验三零极点分布对系统频率响应的影响
一.实验目的
学习用分析零极点分布的几何方法分析研究信号和系统频率响应
. 二. 实验原理
1. 对(序列)信号x(n)进行ZT, 得X(z), 从而得到它的零极点分布
. 2. 对(离散)系统, 求出它的系统函数
H(z) , 也可得到它的零极点分布. 3. 按教材(3.6.13)式, 信号或系统的幅度特性由零点至单位圆周上的矢量长度和极点至单位圆周上的矢量长度之比
. 4. 极点影响频率特性的峰值
, 零点影响频率特性的谷值. 零极逾靠近单位圆
, 这些特征越明显. 如有极点410.9j z e , 则频率特性曲线在4
处出现峰值. 5. 本实验借助于计算机分析信号或系统的频率响应
, 目的是掌握用极、零点分布的几何分析法分析频率响应, 实验时需并j z e 代入相应的X(z) 或H(z) 中, 再在0~2中等
间隔的取点. 如100等分:w=[0:2*pi/100:2*pi], 再用plot 等函数作出|()|j H e 图形.
三. 实验内容
1. 设系统为()()(1)y n x n ay n , 试就0.7,0.8,0.9a , 分别在三种情况下分析系统的频率特性, 并作出幅度特性曲线
., 并作出高, 低通等判断.
2. 假设系统为: ()
1.273(1)0.81(2)()(1)y n y n y n x n x n 试分析它的频率特性
, 作出它的幅-频曲线, 估计其峰值频率和谷值频率
. 四. 实验报告要求1. 总结零、极点分布对频率响应的影响;
2. 总结零、极点分布对系统的高通、低通的影响.。

数字信号处理实验之离散系统的频率响应分析和零、极点分布

数字信号处理实验之离散系统的频率响应分析和零、极点分布

《数字信号处理A 》实验报告实验三 实验名称:离散系统的频率响应分析和零、极点分布专业及班级:电子131 姓名:XXX 学号:XXXXXX一、实验目的加深对离散系统的频率响应分析和零、极点分布的概念理解。

二、实验步骤(附源代码及仿真结果图)求如下系统的零、极点和幅度频率响应和相位响应。

54321543212336.09537.08801.14947.28107.110528.0797.01295.01295.00797.00528.0)(-----------+-+-+++++=z z z z z z z z z z z H 零点与极点:num=[0.0528 0.0797 0.1295 0.1295 0.797 0.0528]; den=[1 -1.8107 2.4047 -1.8801 0.9537 -0.2336];[z,p,k]=tf2zp(num,den);% 求得有理分式形式的系统转移函数的零、极点 disp('零点');disp(z); %显示矩阵 disp('极点');disp(p); disp('增益系数');disp(k);sos=zp2sos(z,p,k);% 将高阶系统分解为2阶系统的串联 disp('二阶节');disp(real(sos));zplane(num,den)% 直接绘出有理分式形式的系统转移函数的零、极点分布图零点:-1.5870 + 1.4470i -1.5870 - 1.4470i0.8657 + 1.5779i 0.8657 - 1.5779i -0.0669 极点:0.1984 + 0.9076i 0.1984 - 0.9076i 0.4431 + 0.5626i 0.4431 - 0.5626i 0.5277 增益系数: 0.0528 二阶节:0.0528 0.0035 0 1.0000 -0.5277 0 1.0000 3.1740 4.6125 1.0000 -0.8862 0.51291.0000 -1.7315 3.2392 1.0000 -0.3968 0.8631 极点图如下图所示:-2-1.5-1-0.500.511.5-1.5-1-0.50.511.5Real PartI m a g i n a r y P a r t幅度频率响应和相位响应:k=255;num=[0.0528 0.0797 0.1295 0.1295 0.797 0.0528];den=[1 -1.8107 2.4047 -1.8801 0.9537 -0.2336];w=0:pi/k:pi;h=freqz(num,den,w);% 系统的频率响应,w是频率的计算点subplot(2,2,1);plot(w/pi,real(h));gridtitle('实部')xlabel('\omega/\pi');ylabel('幅度')subplot(2,2,2);plot(w/pi,imag(h));gridtitle('虚部')xlabel('\omega/\pi');ylabel('Amplitude')subplot(2,2,3);plot(w/pi,abs(h));gridtitle('幅度谱')xlabel('\omega/\pi');ylabel('幅值')subplot(2,2,4);plot(w/pi,angle(h));gridtitle('相位谱')xlabel('\omega/\pi');ylabel('弧度')0.51-50510实部ω/π幅度0.51-10-505虚部ω/πA m p l i t u d e0.5102468幅度谱ω/π幅值0.51-4-2024相位谱ω/π弧度三、总结与体会通过这次实验,加深了使我对MATLAB 软件的熟练程度,并且加深了对离散系统的频率响应分析和零、极点分布的概念理解,对课本上知识的回顾让我更加的理解并且掌握,对于幅度频率谱和相位谱的有了更深的理解,只要把实验的例题弄懂那么实验其实也不是很难,就跟公式一样,万变不离其宗,变化的是参数,这次实验真的体会到了很多东西。

常见离散信号的MATLAB产生和图形显示

常见离散信号的MATLAB产生和图形显示

实验一 常见离散信号的MATLAB 产生和图形显示实验目的:加深对常用离散信号的理解; 实验原理:1.单位抽样序列⎩⎨⎧=01)(n δ≠=n n 在MATLAB 中可以利用zeros()函数实现。

;1)1();,1(==x N zeros x如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ≠=n kn2.单位阶跃序列⎩⎨⎧01)(n u00<≥n n 在MATLAB 中可以利用ones()函数实现。

);,1(N ones x =3.正弦序列)/2sin()(ϕπ+=Fs fn A n x在MATLAB 中)/***2sin(*1:0fai Fs n f pi A x N n +=-=4.复正弦序列n j e n x ϖ=)(在MATLAB 中)**ex p(1:0n w j x N n =-=5.指数序列n a n x =)(在MATLAB 中na x N n .^1:0=-=实验内容:编制程序产生上述5种信号(长度可输入确定),并绘出其图形。

实验要求:讨论复指数序列的性质。

实验过程: 1. 单位冲击序列:>> n=0:10;>> x1=[1 zeros(1,10)];>> x2=[zeros(1,8) 1 zeros(1,8)]; >> subplot(1,2,1); >> stem(n,x1);>> xlabel ('时间序列n'); >> ylabel('幅度');>> title('单位冲激序列δ(n )'); >> subplot(1,2,2); >> stem(x2);>> xlabel('时间序列n'); >> ylabel('幅度');>> title('延时了8个单位的冲激序列δ(n-8)'); >>>> n=0:10;>> u=[ones(1,11)];>> stem(n,u);>> xlabel ('时间序列n');>> ylabel('信号幅度');>> title('单位阶跃序列u(n)');>>3.正弦序列:>> n=1:30;>> x=2*sin(pi*n/6+pi/4);>> stem(n,x);>> xlabel ('时间序列n');>> ylabel('振幅');>> title('正弦函数序列x=2*sin(pi*n/6+pi/4)'); >>>> n=1:30;>> x=5*exp(j*3*n);>> stem(n,x);>> xlabel ('时间序列n');>> ylabel('振幅');>> title('复指数序列x=5*exp(j*3*n)');>>5.指数序列:>> n=1:30;>> x=1.8.^n;>> stem(n,x);>> xlabel ('时间序列n');>> ylabel('振幅');>> title('指数序列x=1.8.^n');>>复指数序列的周期性讨论:为了研究复指数序列的周期性质,我们分别作了正弦函数x1=1.5sin(0.3πn)和x2=sin(0.6n); 的幅度特性图像。

离散系统稳定性分析

离散系统稳定性分析

实验一 离散系统稳定性分析实验学时:2 实验类型:常规 实验要求:必作一、实验目的:(1)掌握利用MATLAB 绘制系统零极点图的方法; (2)掌握离散时间系统的零极点分析方法;(3)掌握用MATALB 实现离散系统频率特性分析的方法; (4)掌握逆Z 变换概念及MATLAB 实现方法; (5)掌握用MATLAB 分析离散系统稳定性。

二、实验原理:1、离散系统零极点图及零极点分析;线性时不变离散系统可用线性常系数差分方程描述,即()()NMiji j a y n i b x n j ==-=-∑∑ (8-1)其中()y k 为系统的输出序列,()x k 为输入序列。

将式(8-1)两边进行Z 变换的00()()()()()Mjjj Nii i b zY z B z H z X z A z a z-=-====∑∑ (8-2) 将式(8-2)因式分解后有:11()()()Mjj Nii z q H z Cz p ==-=-∏∏ (8-3)其中C 为常数,(1,2,,)j q j M =为()H z 的M 个零点,(1,2,,)i p i N =为()H z 的N个极点。

系统函数()H z 的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。

因此,系统函数的零极点分布对离散系统特性的分析具有非常重要意义。

通过对系统函数零极点的分析,可以分析离散系统以下几个方面的特性:● 系统单位样值响应()h n 的时域特性; ● 离散系统的稳定性;离散系统的频率特性; 1.1、零极点图的绘制设离散系统的系统函数为则系统的零极点可用MA TLAB 的多项式求根函数roots()来实现,调用格式为:p=roots(A)其中A 为待根求多项式的系数构成的行矩阵,返回向量p 则是包含多项式所有根的列向量。

如多项式为231()48B z z z =++,则求该多项式根的MA TLAB 命令为为: A=[1 3/4 1/8];P=roots(A) 运行结果为: P =-0.5000 -0.2500需注意的是,在求系统函数零极点时,系统函数可能有两种形式:一种是分子、分母多项式均按z 的降幂次序排列;另一种是分子、分母多项式均按1z -的升幂次序排列。

3.系统函数和频率响应

3.系统函数和频率响应

2)由于系统为因果稳定系统, 1 故收敛域: z 2
2013-9-12
1/ 3
0.5
0.25
Re[ z ]
0
1
电子工程系
3) 对H(z)求z反变换即得单位脉冲响应h(n),
1 (z )z 3 H z 1 1 1 1 1 1 (1 z )(1 z ) ( z )( z ) 2 4 2 4 1 10 7 z H z 3 3 3 1 1 1 1 z ( z )( z ) z z 2 4 2 4
零点矢量极点矢量2015711电子工程系系统的频率响应2015711电子工程系零点位置影响频响的谷点位置及形状零点在单位圆上谷值为零零点靠近单位圆谷值趋向于零极点位置影响频响的峰值位置及尖锐程度极点在单位圆上系统不稳定极点靠近单位圆峰值趋向于无穷2015711电子工程系已知试定性画出系统的幅频特性
2.9 离散系统的系统函数和频率响 应
极点位置影响频响的峰值位置及尖锐程度 极点在单位圆上,系统不稳定 极点靠近单位圆,峰值趋向于无穷
电子工程系

2013-9-12
例. 频特性。
H ( z ) 1 z N,试定性画出系统的幅 已知
解: H ( z ) 1 z N
z N 1 N z
j 2 k N
H(z)的极点为z=0(N阶)。 H(z)的零点有N个:z e
(1)频率响应的几何确定法 对系统函数H(z)因式分解得到
2013-9-12 电子工程系
H ( z)
br z r
M
ar z
r 0
r 0 N
A
(1 cr z 1 ) (1 d r z 1 )
r 1 r 1 N

离散系统的频率响应分析和零极点分布

离散系统的频率响应分析和零极点分布

离散系统的频率响应分析和零极点分布离散系统的幅频响应描述了系统对不同频率信号的放大或压缩能力。

幅频响应一般用幅度响应曲线表示,即以输入信号频率为横轴,以输出信号幅度为纵轴绘制的曲线。

幅频响应曲线可以展示离散系统的增益特性,即在不同频率下系统对信号的放大或压缩程度。

幅频响应曲线上的波动和变化可以反映系统对不同频率信号的响应情况。

离散系统的相频响应描述了系统对不同频率信号的相位差。

相频响应也是以输入信号频率为横轴,以输出信号相位为纵轴绘制的曲线。

相频响应可以展示离散系统对不同频率信号的相位延迟或提前情况,即输入信号和输出信号之间的相位差。

相频响应的变化可以反映系统对不同频率信号相位的变化情况。

在频率响应分析中,零极点分布也是非常重要的。

零点是指离散系统传递函数的分子多项式为零的根,极点是指传递函数的分母多项式为零的根。

零极点的分布对离散系统的频率响应和系统特性有着重要的影响。

具体来说,零点会在幅频响应曲线上产生波动或峰值,影响系统的放大或压缩程度。

零点的频率越高,波动或峰值的位置越靠近高频,反之亦然。

而极点会导致幅频响应曲线的趋势变化,影响系统的稳定性和阻尼特性。

极点越接近单位圆,系统越不稳定;极点越远离单位圆,系统越稳定。

相频响应同样受到零点和极点的影响。

零点的频率越高,在相频响应曲线上引起的相位变化越明显。

而极点的频率越接近单位圆,相频响应曲线呈现明显的相位延迟。

极点越远离单位圆,相频响应曲线呈现相位提前的情况。

因此,频率响应分析和零极点分布是研究离散系统特性的重要方法。

通过频率响应分析和零极点分布,我们可以了解离散系统对不同频率输入信号的响应情况、系统的稳定性特点以及系统的放大和压缩能力。

这对于离散系统的设计、控制和优化都有着重要的指导意义。

数字信号处理习题答案及matlab实验详解.pdf

数字信号处理习题答案及matlab实验详解.pdf

(2) 由 H(z)的表达式,不难求出, 当 w=0 时, H (e j0 ) 1/ 0.51 2;
当 w=π时, H (e j ) 1/ 2.77 0.36;

w=±π/4
时,
H
(e
j
4
)
1/ 0.256
4 ,峰值。
B=1; A=[1,-1.13,0.64]; [H,w]=freqz(B,A,256,'whole',1); figure(1); subplot(2,1,1); plot(w,abs(H)) subplot(2,1,2); plot(w,angle(H))
12
实验 2-3 离散系统的频率响应分析和零、极点分布 实验目的:加深对离散系统的频率响应分析和零、极点分布的概念理解。
在 MATLAB 中,可以用函数[z,p,K]=tf2zp(num,den)求得有理分式形式的 系统转移函数的零、极点,用函数 zplane(z,p)绘出零、极点分布图;也可以 用函数 zplane(num,den)直接绘出有理分式形式的系统转移函数的零、极点分 布图。
m
m0
即 y(0) 1, y(1) 0.75, y(2) 0.4375, y(3) 0.2344, y(4) 0.1211,......
利用函数 h=impz(b,a,N)和 y=filter(b,a,x)分别绘出冲激和阶跃响应: b=[1,-1]; a=[1,0.75,0.125]; x=ones(1,100); h=impz(b,a,100); y1=filter(b,a,x); figure(1) subplot(2,1,1); plot(h); subplot(2,1,2); plot(y1);
z 2

实验四_Z变换

实验四_Z变换

实验四 Z 变换【实验目的】通过MATLAB 仿真离散时间系统,研究其时频域特性,加深对离散系统的冲激响应,频率响应分析和零极点分布概念和理解。

【实验原理】 1.Z 变换原理 (1).Z 变换在数字信号处理的分析方法中,除时域分析方法外,还有变换域分析方法。

后者通常指Z 变换和傅里叶变换法。

变换域分析的最大优点是将离散系统的差分方程转化为简单的代数方程,使其求解大大简化,也使得对系统的特性分析更为方便。

对于离散时间信号,设序列为x (n ),则其Z 变换定义为:∑+∞-∞=-=n nzn x z X )()( ,其中z 为复变量,是一个以时部为横坐标,虚部为纵坐标构成的平面上的变量。

Z 变换记作])([ )(n x z X Z =,X (z )存在的z 的集合称为收敛域(ROC ),一般为+-<<x x R z R由于ROC 是由z 定义的,因此一般为环形区域。

根据ROC 的特点,可以判定序列是右边序列、左边序列、双边序列等。

Z 变换具有一些重要的特性,是傅里叶变换的推广,包括线性、时移特性、频移特性、尺度变换、共轭、翻褶、Z 域微分、序列相乘、序列卷积等一系列性质。

(2).系统函数离散线性时不变(LTI )系统的系统函数H (z )定义为:H (z ) = Z[h (n )] =∑+∞-∞=-n nzn h )( (4.4)若用差分方程表示系统,则有)k -n (b)k -n (a Mk kN 0k x y k ∑∑===如果系统起始状态为零,直接对上式的两边Z 变换,并利用移位特性,有∑∑=-=-==NM0)()()(k k kk kkzaz bZ X z Y z H因此,系统函数H (z )的分子和分母的系数正好等于差分方程的系数。

归一化0a ,即使得y (n )前的参数为1,此时可以对上式的分子、分母进行因式分解,可得∏∏=-=-=Nk k Mm z z z H 1111m )p -(1)c -(1K)(得到系统的增益函数K 、零点m c 、极点k p 。

《数字信号处理》实验指导书

《数字信号处理》实验指导书

的相角, Ai 就是极点 pi 到单位圆上的点 e jω 的矢量长度(距离),而θ i 就是该矢量 的相角,因此有:
M
∏ B e j(ψ1 +ψ 2 +⋅⋅⋅⋅+ψ M ) j
H (e jω ) =
j =1 N
= H (e jω ) e jϕ (ω )
∏ A e j(θ1+θ2 +⋅⋅⋅⋅+θ N ) i
(1) 设有直流信号 g(t)=1,现对它进行均匀取样,形成序列 g(n)=1。试讨 论若对该序列分别作加窗、补零,信号频谱结构有何变化。 四、实验过程及结果(含程序)
12
13
14
15
16
实验三 IIR 数字滤波器的设计
一、实验目的 (1)掌握双线性变换法及脉冲相应不变法设计 IIR 数字滤波器的具体设计 方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和 带通 IIR 数字滤波器的计算机编程。 (2)观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双 线性变换法及脉冲响应不变法的特点。 (3)熟悉 Butterworth 滤波器、Chebyshev 滤波器和椭圆滤波器的频率特 性
《数字信号处理》
实验指导书
班级: 学号: 姓名: 苏州科技学院 电子教研室
实验一 信号、系统及系统响应
一、实验目的
(1) 熟悉 MATLAB 平台的使用,掌握离散信号、离散系统的 MATLAB 实现。 (2)掌握根据系统函数绘制系统零极点分布图的基本原理和方法。 (3)理解离散系统频率特性分析的基本原理,掌握根据系统函数零极点分布来分 析离散系统频率响应的几何矢量法。
17
变换类型 低通
Байду номын сангаас

实验4Z变换和系统频域特性的MATLAB实现

实验4Z变换和系统频域特性的MATLAB实现

实验4Z变换和系统频域特性的MATLAB实现⼩实验4 Z 变换和系统频域特性的MATLAB 实现1. 实验⽬的学习通过Z 变换来分析离散系统的频率响应,并⽤MATLAB 实现。

加深对系统的零、极点分布概念的理解。

2. 实例分析2.1通过Z 变换分析求解系统的冲激响应()h n已知⽤线性常系数差分⽅程:1()()()NMk r k r y n a y n k b x n r ===-+-∑∑表⽰的线性时不变系统其系统函数为:01()()()1Mrr r N kk k b zY z H z X z a z-=-===-∑∑ (3-1)上式为两个关于1z -的多项式之⽐,即()H z 为有理分式。

同时,式可以表⽰成部分分式的形式:110()1NM Nkk k k k k R H z C z p z ---===+-∑∑ 则可以通过所熟悉的常见序列的Z 变换形式求得()H z 的Z 反变换,从⽽求得系统的冲激响应函数()h n 。

MATLAB 提供了⼀个内部函数residuez( ),来计算有理多项式的留数和直接项,residuez( )函数有⼏种调⽤⽅式:(1)[R,p,C] = residuez(b,a),在已知以分⼦⾏向量b 和分母⾏向量a 下,得到列向量R 含有留数,列向量p 是极点位置,⾏向量C 包含直接项;(2)[b,a] = residuez(R,p,C),将部分分式展开式转换到分⼦⾏向量b 和分母⾏向量a.MATLAB 还提供了⼀个内部函数impz(b,a,N),在已知分⼦⾏向量b 和分母⾏向量a 下,计算N 点的单位冲激响应()h n 。

例3.1 求系统:123412340.0018360.0073440.0110160.0073740.001836()1 3.0544 3.8291 2.29250.55075z z z z H z z z z z --------++++=-+-+的单位冲激响应()h n 。

西安交通大学数字信号处理实验报告

西安交通大学数字信号处理实验报告

数字信号处理实验报告班级:硕姓名:学号:实验1 常见离散信号的MATLAB 产生和图形显示实验目的:加深对常用离散信号的理解;实验内容:(1)单位抽样序列clc;x=zeros(1,11); x(1)=1; n=0:1:10;stem(n,x, 'fill'); title('单位抽样序列'); xlabel('n'); ylabel('x[n]')延迟5个单位:clc;x=zeros(1,11); x(6)=1; n=0:1:10;stem(n,x, 'fill'); title('单位抽样序列'); xlabel('n'); ylabel('x[n]')nx [n ](2)单位阶跃序列clc;x=[zeros(1,5),ones(1,6)]; n=-5:1:5;stem(n,x,'fill'); title('单位阶跃序列'); xlabel('n'); ylabel('x[n]');nx [n ](3)正弦序列clc; N=50; n=0:1:N-1; A=1; f=1; Fs=50; fai=pi;x=A*sin(2*pi*f*n/Fs+fai); stem(n,x,'fill'); title('正弦序列'); xlabel('n'); ylabel('x[n]'); axis([0 50 -1 1]);nx [n ](4)复正弦序列clc; N=50; n=0:1:N-1; w=2*pi/50; x=exp(j*w*n); subplot(2,1,1); stem(n,real(x)); title('复正弦序列实部'); xlabel('n');ylabel('real(x[n])'); axis([0 50 -1 1]); subplot(2,1,2); stem(n,imag(x)); title('复正弦序列虚部'); xlabel('n');ylabel('imag(x[n])'); axis([0 50 -1 1]);nx [n ](5)指数序列clc; N=10; n=0:1:N-1; a=0.5; x=a.^n;stem(n,x,'fill'); title('指数序列'); xlabel('n'); ylabel('x[n]'); axis([0 10 0 1]);nr e a l (x [n ])ni m a g (x [n ])(6)复指数序列性质讨论:0(j )()enx n σω+=将复指数表示成实部与虚部为00()e cos j sin n n x n n e n σσωω=+1.当σ=0时,它的实部和虚部都是正弦序列。

实验Z变换、零极点分析

实验Z变换、零极点分析

1. 学会运用MATLAB 求离散时间信号的z 变换和z 反变换;一、 实验原理及实例分析(一)离散时间信号的Z 变换1.利用MATLAB 实现z 域的部分分式展开式MATLAB 的信号处理工具箱提供了一个对F(Z)进行部分分式展开的函数residuez(),其调用形式为:[r,p,k]=residuez(num,den)式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。

【实例1】 利用MATLAB 计算321431818)(-----+zz z z F 的部分分式展开式。

解:利用MATLAB 计算部分分式展开式程序为% 部分分式展开式的实现程序num=[18];den=[18 3 -4 -1];[r,p,k]=residuez(num,den)2.Z 变换和Z 反变换MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调用形式为)()(F iztrans f f ztrans F ==上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为()A sym S =式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。

【实例2】求(1)指数序列()n u a n 的Z 变换;(2)()()2a z az z F -=的Z 反变换。

解(1)Z 变换的MATLAB 程序% Z 变换的程序实现f=sym('a^n');F=ztrans(f)程序运行结果为:z/a/(z/a-1)可以用simplify()化简得到 :-z/(-z+a)(2)Z 反变换的MATLAB 程序% Z 反变换实现程序F=sym('a*z/(z-a)^2');f=iztrans(F)程序运行结果为f =a^n*n(二)系统函数的零极点分析1. 系统函数的零极点分布离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之比,即)()()(z X z Y z H = (3-1) 如果系统函数)(z H 的有理函数表示式为:11211121)(+-+-++++++++=n n n n m m m m a z a z a z a b z b z b z b z H (3-2) 那么,在MATLAB 中系统函数的零极点就可通过函数roots 得到,也可借助函数tf2zp 得到,tf2zp 的语句格式为:[Z,P,K]=tf2zp(B,A)其中,B 与A 分别表示)(z H 的分子与分母多项式的系数向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验3 离散系统的频率响应分析和零、极点分布
一、实验目的
加深对离散系统的频率响应分析和零、极点分布的概念理解。

二、实验原理
离散系统的时域方程为
∑∑==-=-M
k k N k k k n x p k n y d
00)()( 其变换域分析方法如下:
频域 )()()(][][][][][ΩΩ=Ω⇔-=
*=∑∞
-∞=H X Y m n h m x n h n x n y m 系统的频率响应为 Ω
-Ω-Ω
-Ω-++++++=ΩΩ=ΩjN N j jM M j e d e d d e p e p p D p H ......)()()(1010 Z 域 )()()(][][][][][z H z X z Y m n h m x n h n x n y m =⇔-=
*=∑∞
-∞= 系统的转移函数为 N N M M z
d z d d z p z p p z D z p z H ----++++++==......)()()(110110 分解因式 ∏-∏-=∑∑==-=-=-=-N i i M i i N i i k M i i k z z K z d z p z H 11110
)
1()1()(λξ , 其中i ξ和i λ称为零、极点。

在MATLAB 中,可以用函数[z ,p ,K]=tf2zp (num ,den )求得有理分式形式的系统转移函数的零、极点,用函数zplane (z ,p )绘出零、极点分布图;也可以用函数zplane (num ,den )直接绘出有理分式形式的系统转移函数的零、极点分布图。

使h=freqz(num,den,w)函数可求系统的频率响应,w 是频率的计算点,如w=0:pi/255:pi, h 是复数,abs(h)为幅度响应,angle(h)为相位响应。

另外,在MATLAB 中,可以用函数 [r ,p ,k]=residuez (num ,den )完成部分分式展开计算;可以用函数sos=zp2sos
(z,p,K)完成将高阶系统分解为2阶系统的串联。

例1:求下列直接型系统函数的零、极点,并将它转换成二阶节形式
解:用MATLAB计算程序如下
num=[1 -0.1 -0.3 -0.3 -0.2];
den=[1 0.1 0.2 0.2 0.5];
[z,p,k]=tf2zp(num,den);%求得有理分式形式的系统转移函数的零、极点
disp('零点');disp(z); %显示矩阵
disp('极点');disp(p);
disp('增益系数');disp(k);
sos=zp2sos(z,p,k);% 将高阶系统分解为2阶系统的串联
disp('二阶节');disp(real(sos));
zplane(num,den)% 直接绘出有理分式形式的系统转移函数的零、极点分布图
在上面的例程中,输入到“num”和“den”的数据分别是分子和分母多项式的系数。

解算出零、极点、增益系数和二阶节的系数,如下所示:
零点
0.9615
-0.5730
-0.1443 + 0.5850i
-0.1443 - 0.5850i
极点
0.5276 + 0.6997i
0.5276 - 0.6997i
-0.5776 + 0.5635i
-0.5776 - 0.5635i
增益系数
1
二阶节
1.0000 -0.3885 -0.5509 1.0000 1.1552 0.6511
1.0000 0.2885 0.3630 1.0000 -1.0552 0.7679
系统函数的二阶节形式为:
()2
12
121217679.00552.113630.02885.016511.01552.115509.03885.01--------+-++⋅++--=z z z z z z z z z H 极点图如下图所示:
例2:差分方程如下
所对应的系统的频率响应。

解:差分方程所对应的系统函数为
3213
216.045.07.0102.036.044.08.0)(--------+++-=z
z z z z z z H 用MATLAB 计算的程序如下:
k=256;
num=[0.8 -0.44 0.36 0.02];
den=[1 0.7 -0.45 -0.6];
w=0:pi/k:pi;
h=freqz(num,den,w); % 系统的频率响应,w 是频率的计算点
subplot(2,2,1);
plot(w/pi,real(h));grid
title('实部')
xlabel('\omega/\pi');ylabel('幅度')
subplot(2,2,2);
plot(w/pi,imag(h));grid
title('虚部')
xlabel('\omega/\pi');ylabel('Amplitude')
subplot(2,2,3);
plot(w/pi,abs(h));grid
title('幅度谱')
xlabel('\omega/\pi');ylabel('幅值')
subplot(2,2,4);
plot(w/pi,angle(h));grid
title('相位谱') xlabel('\omega/\pi');ylabel('弧度')
实验内容:
求如下系统的零、极点和幅度频率响应和相位响应。

543215
43212336.09537.08801.14947.28107.110528.0797.01295.01295.00797.00528.0)(-----------+-+-+++++=z z z z z z z z z z z H
实验要求:编程实现系统参数输入,绘出幅度频率响应和相位响应曲线和零、极点分布图。

相关文档
最新文档