动量和角动量

合集下载

角动量、角动量守恒

角动量、角动量守恒

T
(3) )
m, l
联立(1)、(2)、(3)式求解 式求解 联立
mg
1 T = mg 4
例5:在光滑水平桌面上放置一个静止的质量 : 可绕中心转动的细杆, 为 M、长为 2l 、可绕中心转动的细杆,有一质 、 量为 m 的小球以速度 v0 与杆的一端发生完全弹 性碰撞, 性碰撞,求小球的反弹速度 v 及杆的转动角速 度ω。 解:在水平面上,碰撞 在水平面上, 过程中系统角动量守恒, 过程中系统角动量守恒,
∆A/ ∆t = 恒 量
两个共轴飞轮转动惯量分别为J 例1:两个共轴飞轮转动惯量分别为 1、J2, 角速度分别为 ω1 、ω2,求两飞轮啮合后共同 啮合过程机械能损失。 的角速度 ω 。啮合过程机械能损失。 J1 J2 解:两飞轮通过摩 擦达到共同速度,合 擦达到共同速度 合 外力矩为0, 外力矩为 ,系统角 动量守恒。 动量守恒。
定义:力对某点 的力矩等于力的作用点 定义:力对某点O的力矩等于力的作用点 的矢量积。 的矢径 r 与力F的矢量积。 v v
v Mo
ϕ
注意: 注意: 1)大小: o = rF sin ϕ )大小: M v v 的方向 2)方向: × F )方向: r 3)单位:牛顿米 )单位: v r 4)当 F ≠ 0 时, ) 有两种情况 Mo = 0 v A) r = 0 ) B)力的方向沿矢径的方向( sin ϕ = 0) )力的方向沿矢径的方向(
ω1 L0 = L = C J1ω1 + J2ω2 = (J1 + J2 )ω
ω2
J1ω1 + J2ω2 共同角速度 ω = J1 + J2
啮合过程机械能损失
∆E = E − E0
1 1 1 2 2 2 ∆E = (J1 + J2 )ω − ( J1ω1 + J2ω2 ) 2 2 2 J1ω1 + J2ω2 其中 ω = J1 + J2

第4章动量和角动量

第4章动量和角动量

用多大的牵引力拉车厢? (摩擦忽略不计)
解 选取车厢和车厢里的煤 m 和即将 落入车厢的煤 d m 为研究的系统。取水平
v
dm
向右为正。
m
F
t 时刻系统的水平总动量:
m v dm 0mv
t + dt 时刻系统的水平总动量: m d v m (v m d m )v
dt 时间内水平总动量的增量: d p (m d m )v m v d v m
④ 动量和力是矢量,可沿坐标轴分解,当沿某坐标方向所受合 外力为零时,总动量沿该方向的分量守恒。
N
当Fx 0时,
mivix px 常量
i=1
当Fy 0时,
N
miviy py 常 量
i=1
当Fz 0时,
N
miviz pz 常 量
i=1
⑤ 动量守恒定律只适用于惯性系。
例题4-3 质量为M,仰角为α的炮车发射了一枚质量为m的炮
dt
F dtdp — 动量定理的微分式
2)积分形式: 对上式积分,
t2
v Fdt
t1
pv2 pv1
dpv
即:
t2
v Fdt
pv
— 动量定理的积分式
t1
在一个过程中,质点所受合力的冲量等于质点动量的增量。
说明
1、反映了过程量与状态量的关系。 2、I 与p 同向3、。 只适用于惯性系。
从动量定理可以知道,在相等的冲量作用下,不同质量的物体, 其速度变化是不相同的,但它们的动量的变化却是一样的,所以从 过程角度来看,动量比速度能更能恰当地反映了物体的运动状态。 因此,一般描述物体作机械运动时的状态参量,用动量比用速度更 确切些。动量是描述物体机械状态的状态参量。

大学物理学上册资料09 动量和角动量

大学物理学上册资料09 动量和角动量

冲量的方向就不能决定于某一瞬时外力的方向,然而总 决定于这段时间内动量增量的方向。 而冲量的量值,尽管在运动过程中外力随时改变, 质点的速度也逐点不同,冲量大小却完全决定于质点在 始末两点动量矢量差的绝对值,而与运动过程中物体在 各点处的动量无关。 ② 定理在碰撞、打击问题中的应用:求平均力 碰撞:力的作用时间很短 t 冲力:随时间变化很大又很复杂 t F d t 平均冲力:冲力对碰撞时间的平均值 F
例2 两个相互作用的物体A和B,无摩擦地在一条水平直 线上运动,A的动量是PA=P0-bt。在下列两种情况下,写 出B的动量:⑴开始时,若B静止,则PB1=______; ⑵开始时,若B的动量为-P0 , 则PB2=____。 易知 (A+B)系统动量守恒: 解:
P A PB P A 0 PB 0 P B P A 0 P B 0 P A
Px F x t Py F y t Pz F z t
p1 x t1
④ 当t 很小时,由于冲力很大,有时有的有限大小的 力(如重力)可忽略不计。 ⑤ 动量与参考系有关,但动量差值与参考系无关。因 此,动量定理适用于所有惯性系。
例1:质量为 2. 5g 的乒乓球以10 m/s v2 y 的速率飞来,被板推挡后,又以 20 m/s的速率飞出。设两速度在垂直于 板面的同一平面内,且它们与板面法 30o x ˆ O n 线的夹角分别为45o和30o,求: o 45 (1)乒乓球得到的冲量; (2)若撞击时间为0.01s,求板施于 v1 球的平均冲力的大小和方向。 解: (1)分量式法取挡板和球为研究对象,忽 略重力。 设挡板对球的冲力为F 则有: I m v 2 m v 1 取坐标系,将上式投影,有:

物理学概念知识:动量定理和动量角动量定理

物理学概念知识:动量定理和动量角动量定理

物理学概念知识:动量定理和动量角动量定理动量定理和动量角动量定理是物理学中非常基本的两个概念。

它们的内容涉及到我们对物体运动规律的认识,不仅有助于我们更好地理解物理学知识,还可以应用于现实生活中的一些问题。

下面,我们将分别介绍这两个概念及其应用。

一、动量定理动量定理是描述物体运动过程中动量变化的一个基本定理。

它指出:在总外力作用下,物体的动量就会发生变化,这种变化的大小跟作用力和时间的乘积成正比。

这个定理的表达方式为:Δp=Ft其中,Δp表示物体动量的变化量,F表示物体所受的总外力,t 表示外力作用的时间。

式子的意义是:在总外力作用下,物体动量的变化量等于总外力作用时间的乘积。

重物移动时,如果外力越大,或者作用时间越长,那么物体的动量就会发生更大的变化。

从而可以更快地推动物体运动起来。

同样,如果要让运动中的物体停下来,也可以利用动量定理的知识。

通过对物体施加一个与它的运动方向相反的恒定力,也就是反向加速度,可以让物体的动量逐渐减小,直到物体停下来。

二、动量角动量定理动量角动量定理是物理学中另一个基本的概念。

它是通过描述物体绕某一点旋转的行为,来了解物体运动过程中动量变化的定理。

它指出:在物体绕某一点旋转时,物体的角动量就会发生变化,这种变化的大小跟作用力矩和时间的乘积成正比。

这个定理的表达方式为:ΔL=Mt其中,ΔL表示物体角动量的变化量,M表示作用力矩,t表示外力作用的时间。

式子的意义是:在物体绕某一点旋转时,物体角动量的变化量等于力矩作用时间的乘积。

个陀螺时,如果外力越大,或者作用时间越长,那么陀螺的角动量也会发生更大的变化。

从而可以更快地让陀螺旋转。

同样,如果要让旋转中的陀螺停下来,也可以利用动量角动量定理的知识。

通过对陀螺施加一个与它的旋转方向相反的外力矩,也就是反向加速度矩,可以让陀螺的角动量逐渐减小,直到陀螺停下来。

总之,动量定理和动量角动量定理是物理学中非常重要的两个概念。

它们既可以帮助我们更好地理解物理学知识,也可以用于实际生活中的问题解决。

动量守恒定律和角动量守恒定律辨析

动量守恒定律和角动量守恒定律辨析

动量守恒定律和角动量守恒定律辨析
牛顿动量守恒定律:牛顿动量守恒定律认为,物体对外力的作用与动量的变化之间有一定的联系,也就是说,动量守恒定律要求物体作用外力时,物体的动量平衡不变。

角动量守恒定律:角动量守恒定律认为,物体受到外力作用时,可能会受到旋转扭转影响,产生角动量,角动量的总量也是不变的。

牛顿动量守恒定律和角动量守恒定律之间具有明显的不同:
1、它们所涉及的物理量不同:牛顿动量守恒定律涉及的物理量是物体的动量,而角动量守恒定律涉及的是物体的角动量。

2、它们的守恒的内容不同:牛顿动量守恒定律要求物体作用外力时,物体的动量平衡不变,而角动量守恒定律则要求物体受到外力作用时,可能会受到旋转扭转影响,产生角动量,角动量的总量也是不变的。

3、它们的应用领域不同:牛顿动量守恒定律可以用来描述物体作用外力后的运动状态,而角动量守恒定律则可以用来描述物体在受到外力作用后,受到正好用来反作用外力的转动情况。

从上面的对比可以看出,牛顿动量守恒定律和角动量守恒定律各有其适用的范围,牛顿动量守恒定律适合于物体作用外力后的线性运动学状态,而角动量守恒定律则可以描述物体受到外力
作用后受到旋转变形的状态,能够更好地说明物体之间的相互作用状态。

动量和角动量守恒定律

动量和角动量守恒定律

动量和角动量守恒定律动量和角动量守恒定律是物理学中两个重要的守恒定律,它们在描述物体运动过程中起到了关键作用。

本文将对动量和角动量守恒定律的概念、原理以及应用进行详细的讲解。

一、动量守恒定律动量是物体运动的核心概念,它定义为物体质量与其速度的乘积。

动量的守恒定律表明,在一个系统中,如果没有外力作用,系统的总动量将保持恒定不变。

动量守恒定律可以用数学公式表示为:Σmv = 常数,其中Σ表示对系统中所有物体的动量求和,m为物体的质量,v为物体的速度。

例如,考虑一个闭合系统,系统中有两个物体A和B,它们分别具有动量m₁v₁和m₂v₂。

根据动量守恒定律,如果没有外力作用,则系统的总动量为m₁v₁ + m₂v₂,即系统动量守恒。

动量守恒定律的应用非常广泛。

在交通事故中,当两车相撞后,虽然车辆的速度和方向可能发生了改变,但整个系统的总动量保持不变,这可以解释为车辆之间的动量传递。

二、角动量守恒定律角动量是描述物体旋转运动的重要物理量,它定义为物体的转动惯量与其角速度的乘积。

角动量的守恒定律表明,在一个系统中,如果没有外力矩作用,系统的总角动量将保持恒定不变。

角动量守恒定律可以用数学公式表示为:ΣIω = 常数,其中Σ表示对系统中所有物体的角动量求和,I为物体的转动惯量,ω为物体的角速度。

例如,考虑一个旋转的物体系统,系统中有多个物体,它们分别具有角动量I₁ω₁、I₂ω₂等。

根据角动量守恒定律,如果没有外力矩作用,则系统的总角动量为I₁ω₁ + I₂ω₂,即系统角动量守恒。

角动量守恒定律的应用也非常广泛。

例如,在天体运动中,行星绕太阳旋转的过程中,由于没有外力矩作用,它们的角动量保持不变。

三、动量和角动量守恒定律的应用动量和角动量守恒定律在解决物体运动问题时具有广泛的应用。

1. 弹性碰撞在弹性碰撞中,两个物体在碰撞过程中会发生能量和动量的交换,但整个系统的动量守恒。

通过运用动量守恒定律,可以计算出碰撞前后物体的速度和动量的变化。

角动量和动量的转化关系

角动量和动量的转化关系

角动量和动量的转化关系角动量和动量是物理学中两个重要的概念,它们之间存在着转化关系。

本文将详细解释角动量和动量的含义,并探讨它们之间的转化关系。

我们来了解一下角动量的概念。

角动量是描述物体旋转状态的物理量。

对于一个质点,其角动量可以通过其质量、速度和距离旋转轴的位置来确定。

角动量的大小与旋转物体的质量、速度和旋转半径有关。

当旋转物体的质量增加、速度增加或旋转半径增加时,角动量也会增加。

而动量是描述物体运动状态的物理量。

动量等于物体的质量乘以其速度。

动量是一个矢量量,具有大小和方向。

当物体的质量增加或速度增加时,动量也会增加。

在物理学中,角动量和动量之间存在着转化关系。

在旋转运动中,物体的角动量可以转化为动量,而动量也可以转化为角动量。

这种转化关系可以通过以下两种情况来解释:情况一:物体的角动量转化为动量。

当一个旋转物体突然停止旋转,其角动量会转化为线性动量。

这是因为旋转物体在旋转时具有角动量,当它停止旋转时,角动量会转化为物体的线性动量。

这就是我们常说的角动量守恒定律。

情况二:动量转化为角动量。

当一个物体在运动过程中受到外力的作用,其动量会转化为角动量。

这是因为外力的作用会改变物体的运动状态,使其发生旋转运动,从而产生角动量。

通过上述两种情况可以看出,角动量和动量之间存在着转化关系。

它们之间的转化是相互联系的,不可分割的。

这种转化关系在物理学中具有重要的意义,可以帮助我们更好地理解物体的运动规律。

在实际应用中,角动量和动量的转化关系被广泛应用于航天、机械工程、天文学等领域。

例如,火箭发射时,燃料的动量转化为火箭的角动量,从而使火箭得以旋转并产生推力。

再如,地球的自转使得地球具有角动量,而地球自转的角动量又转化为地球的动量,影响地球的运动轨迹。

角动量和动量是物理学中两个重要的概念,它们之间存在着转化关系。

角动量描述物体的旋转状态,而动量描述物体的运动状态。

角动量可以转化为动量,动量也可以转化为角动量。

物理动量和角动量

物理动量和角动量

02
角动量
定义
总结词
角动量是描述旋转运动的物理量,表示物体转动惯量和角速度的乘积。
详细描述
角动量是描述旋转运动的物理量,它等于物体转动惯量和角速度的乘积。转动惯量是描述物体转动惯 性的物理量,与物体的质量分布和旋转轴的位置有关。角速度是描述物体旋转快慢的物理量,等于物 体转过的角度与时间的比值。
乒乓球的旋转速度和方向决定了球的 轨迹和落点,对于比赛结果具有重要 影响。因此,乒乓球运动员需要熟练 掌握各种旋转球技术,以提高比赛水 平。
感谢您的观看
THANKS
动量的计算公式
总结词
动量的计算公式是质量与速度的乘积 。
详细描述
动量的计算公式为 P=mv,其中 P 表示 动量,m 表示质量,v 表示速度。这个 公式用于计算物体的动量,是物理学中 常用的基本公式之一。
动量的矢量性
总结词
动量是一个矢量,具有方向和大小。
详细描述
动量具有矢量性,表示物体运动的方向和大小。在物理学中,动量的方向与速度 的方向一致,大小等于质量与速度的乘积。矢量性是动量最基本的性质之一,对 于描述物体的运动状态和变化趋势非常重要。
角动量的计算公式
总结词
角动量的计算公式为 L = Iω,其中 L 是角动 量,I 是转动惯量,ω 是角速度。
详细描述
角动量的计算公式为 L = Iω,其中 L 是角动 量,I 是转动惯量,ω 是角速度。转动惯量 I 是由物体的质量分布和旋转轴的位置决定的, 可以通过质心坐标系和刚体转动轴的垂直距 离计算得出。角速度 ω 是描述物体旋转快慢 的物理量,等于物体转过的角度与时间的比
动量的守恒定律
总结词
在没有外力作用的情况下,封闭系统中的总动量保持不变。

第03章动量与角动量

第03章动量与角动量
第3章 动量与角动量
Momentum and Angular Momentum 主要内容 冲量与动量定理 动量守恒定律 火箭飞行原理 质心 质心运动定理 质点的角动量和角动量定理 角动量守恒定律 质点系的角动量定理
1
3.1 冲量与动量定理 Impulse and the Theorem of Momentum 1.力的冲量
dM (v u) ( M dM )(v dv )
d M dv u , M
vf
Mf
dv u v
i
Mi
dM M
M vf vi u ln M i u ln N f
20
火箭体对喷射的气体的推力:
dm (v u ) dm v F dt dm u dt
SI unit: kgm2/s or Js
e.g. 质点作圆周运动. mv
o
R
大小:mvR 对圆心: L 方向:⊙
37
2.力对固定点的力矩 定义:
M r F
O
力 F 对O点的力矩
大小:Fr 方向:右手螺旋规则
r
r
k z Fz i j y Fy
F
在直角坐标系中表示
o
o
xC 6.8 10
rC 6.8 10
12
m
mi
O
y
d
o d
H C
52.3
o
12
x
52.3
o
H
3.5 质心运动定理
The Theorem of Motion of the Center of Mass
质心运动的速度为
dri mi i mi drc i dt i c dt m m

圆周运动中的动量守恒和角动量守恒定律

圆周运动中的动量守恒和角动量守恒定律

圆周运动中的动量守恒和角动量守恒定律在物理学中,圆周运动是指物体沿着一个圆形轨道运动。

当物体进行圆周运动时,存在着动量守恒和角动量守恒的定律。

动量守恒和角动量守恒是物理学中的基本原理之一,也是研究运动规律和力学原理的重要工具。

一、动量守恒定律动量守恒定律是指在没有外力作用的情况下,物体的总动量保持不变。

对于圆周运动而言,动量守恒定律可以适用于各个时刻。

动量是物体的质量乘以速度,即p=mv,其中p表示物体的动量,m 表示物体的质量,v表示物体的速度。

在圆周运动中,物体沿着圆形轨道做运动,速度的方向会不断改变,但动量的大小保持不变。

这是因为当物体在圆周运动中改变速度方向时,速度的变化会导致动量方向的改变,从而使得总动量保持不变。

二、角动量守恒定律角动量守恒定律是指在没有外力矩作用的情况下,物体的总角动量保持不变。

对于圆周运动而言,角动量守恒定律同样适用。

角动量是物体的转动惯量乘以角速度,即L=Iω,其中L表示物体的角动量,I表示物体的转动惯量,ω表示物体的角速度。

在圆周运动中,物体围绕圆心旋转,角速度的大小和方向会随着物体位置的变化而改变,但角动量的大小保持不变。

这是因为当物体在圆周运动中改变角速度时,角速度的变化会导致角动量的方向的改变,从而使得总角动量保持不变。

三、动量守恒和角动量守恒的应用动量守恒和角动量守恒定律在物理学中有着广泛的应用。

在圆周运动中,这两个定律具有重要的意义。

首先,动量守恒定律可以用来分析各个时刻物体的速度和动量之间的关系。

当物体进行圆周运动时,可以根据动量守恒定律计算物体在不同位置处的速度,从而探究物体在圆周运动中的动态变化。

其次,角动量守恒定律可以用来解释物体的稳定性和旋转运动的特点。

在圆周运动中,当物体的角动量守恒时,可以得出物体旋转的稳定性条件,进一步推导出绕心轴转动的物体的运动规律。

此外,动量守恒和角动量守恒还可以应用于机械装置和工程设计中。

通过分析物体在圆周运动中的动力学特性,可以优化设计并提高装置的效率和稳定性。

角动量和动量的转化关系

角动量和动量的转化关系

角动量和动量的转化关系一、引言角动量和动量是物理学中两个重要的概念,它们在描述物体运动时起着关键的作用。

本文将通过深入探讨角动量和动量之间的转化关系,以展示它们之间的联系和相互关系。

二、角动量和动量的定义2.1 角动量的定义角动量是描述物体旋转运动的物理量。

它是由物体的质量、角速度和旋转轴决定的。

根据刚体的定义,刚体是指其内部任意两点之间的距离保持不变的物体。

对于一个刚体,其角动量的表达式可表示为:L=I⋅ω其中,L表示角动量,I表示物体的转动惯量,ω表示物体的角速度。

转动惯量是刚体质量分布的一种度量,其大小与物体的形状和质量分布有关。

2.2 动量的定义动量是描述物体线性运动的物理量。

它是由物体的质量和速度决定的。

根据牛顿第二定律,物体的动量的表达式可表示为:p=m⋅v其中,p表示动量,m表示物体的质量,v表示物体的速度。

动量是一个矢量,它的方向与速度的方向一致。

三、角动量和动量的转化关系3.1 转动惯量与质量之间的关系在刚体的转动运动中,转动惯量是描述物体抵抗转动的性质。

对于一个质点的转动惯量,其定义可表示为:I=m⋅r2其中,I表示转动惯量,m表示质点的质量,r表示质点到转轴的距离。

可以看出,质量对转动惯量的大小有直接影响。

3.2 角速度和线速度之间的关系在刚体的转动运动中,角速度和线速度之间存在一定的关系。

对于一个刚体的线速度和角速度,其关系可以表示为:v=ω⋅r其中,v表示线速度,ω表示角速度,r表示质点到转轴的距离。

可以看出,角速度和线速度之间存在着一定的比例关系。

3.3 角动量和动量之间的转化关系在刚体的转动运动中,角动量和动量之间存在着转化关系。

根据定义可得到:L=I⋅ωp=m⋅v将角动量的定义式和动量的定义式相对比,可以发现它们之间的形式非常相似。

通过进一步分析可以得出:L=p⋅r也就是说,角动量等于动量乘以质点到转轴的距离。

这一关系表明,角动量和动量之间存在着直接的转化关系。

四、角动量和动量的实际应用角动量和动量的转化关系在物理学中具有广泛的应用。

角动量和动量的转化关系

角动量和动量的转化关系

角动量和动量的转化关系角动量和动量是物理学中非常重要的概念,它们之间有着紧密的联系和转化关系。

下面我们来详细探讨一下这个问题。

首先,我们需要了解什么是角动量和动量。

角动量是指物体围绕某一点旋转时所具有的动量,它可以用公式L=Iω来表示,其中L表示角动量,I表示物体的转动惯量,ω表示物体的角速度。

而动量则是指物体运动时所具有的能够产生作用力的属性,它可以用公式p=mv来表示,其中p表示动量,m表示物体的质量,v表示物体的速度。

接下来我们考虑角动量和动量之间的转化关系。

在一个封闭系统中,当没有外力作用时,系统总角动量和总动量都是守恒的。

这意味着如果一个物体在某一方向获得了一定大小和方向的角动量,则系统中必然会出现相应大小和方向的反向角动量以保持总角动量为零;同样地,在某一方向上获得了一定大小和方向的动量,则系统中必然会出现相应大小和方向的反向动量以保持总动量为零。

在具体计算过程中,我们可以通过将角速度和线速度之间的关系代入角动量和动量的公式中,得到它们之间的转化关系。

例如,对于一个质量为m、半径为r、角速度为ω的物体,它的角动量可以表示为L=mvr,而它的动量则可以表示为p=mv。

将ω代入L中可得L=mvr=mr²ω,而将v代入p中可得p=mv=m(rω),即p=L/r。

因此我们可以看到,在这个例子中,角动量和动量之间存在着简单的线性关系。

总结一下,角动量和动量之间存在着紧密的联系和转化关系,在封闭系统中它们都是守恒的。

在具体计算过程中,我们可以通过代入不同变量之间的关系来求解它们之间的转化关系。

这些知识不仅在物理学研究中有着广泛应用,在工程技术领域和日常生活中也都有着重要作用。

动量和角动量

动量和角动量

x20 - x10 = l
整理后得:
A
t
ΔX1
x
O
m1 (x20 x10 ) = 1 + v1dt 0 m2
l
ΔX2
B
x = x1 = x10 + v1dt
0
m1 t l = 1 + 0 v1dt m2
t
m 2l 0 v1dt = m1 + m2
F = 400 4 10 t/3 = 0
5
得:t=0.003s
0.003 0
2)由冲量定义: I=

0.003
0
Fdt =
(400 4 105 t/3)dt
0.003
= 400t 2 10 t /3 0
5 2
= 0.6N s
3)由动量定理:
I=
0.003
0
Fdt = ΔP = mv = 0.6N s
合外力 合内力
fij = f ji
F
+
0
=
d P dt
总动量
dP 质点系的动力学方程: F = dt
质点系的动量定理的微分形式: Fdt
= dP
ii
t1→t2 积分,得质点系的动量定理积分形式:
( F )dt = p p
t2 t1 i if i i i
总冲量
或:
末、始时刻的总动量
F1
t 1Δt 1Δt 2
F2
Δt i
Fi
t2
ΔIi = F(t i )Δti
F(t )Δt
i i
i
I
近似为 t1→t2 时间段的冲量

力学动量与角动量

力学动量与角动量

力学动量与角动量在物理学中,力学动量和角动量是两个重要的概念。

它们描述了物体或系统的运动特性,并且在许多物理问题的分析中起着至关重要的作用。

本文将深入探讨力学动量和角动量的定义、性质以及在力学中的应用。

一、力学动量力学动量是描述物体线性运动状态的物理量。

它由物体的质量和速度决定,可以用数学公式p = mv来表示,其中p表示动量,m表示质量,v表示速度。

动量的单位是千克·米/秒(kg·m/s),在国际单位制中被广泛采用。

动量具有一些重要的性质。

首先,动量是矢量量,具有大小和方向。

其次,根据牛顿第一定律(惯性定律),一个物体的动量在不受外力作用的情况下保持恒定。

第三,根据牛顿第二定律(力学定律),物体所受外力等于动量的变化率,即F = dp/dt,其中F表示力,t表示时间。

力学动量在力学中具有重要的应用。

例如,在碰撞问题中,动量守恒定律指出,碰撞前后物体的总动量保持不变。

这个定律帮助我们理解物体碰撞时的运动情况。

此外,在运动过程中,动量变化率可以帮助我们分析物体所受的力和物体的运动轨迹。

二、角动量角动量是描述物体旋转运动状态的物理量。

它由物体的质量、速度和距离旋转轴的距离决定,可以用公式L = Iω表示,其中L表示角动量,I表示质量关于旋转轴的转动惯量,ω表示角速度。

角动量的单位是千克·米^2/秒(kg·m^2/s^2)。

角动量也具有一些重要的性质。

与动量类似,角动量也是矢量量,具有大小和方向。

在没有外力矩作用的情况下,角动量守恒,即角动量的大小和方向保持不变。

对于刚体的旋转运动,由于质量分布的不同,转动惯量会有所变化,从而影响角动量的大小。

角动量在力学中也有广泛的应用。

例如,在天体力学中,角动量守恒定律有助于我们研究行星和卫星的运动。

此外,在旋转体的稳定性分析、陀螺仪的原理以及核物理中的粒子自旋等问题中,角动量也发挥着重要的作用。

三、力学动量与角动量的关系力学动量和角动量之间存在一定的联系。

动量和角动量的名词解释

动量和角动量的名词解释

动量和角动量的名词解释在物理学中,动量和角动量是两个重要的概念,用来描述物体运动的性质和规律。

它们可以帮助我们理解物体在空间中的运动和相互作用,以及解释自然界中的种种现象。

本文将详细解释动量和角动量的含义和相关概念,探讨它们在物理学中的应用以及它们之间的相互关系。

一、动量的概念和性质动量是描述物体运动的物理量,从数学上可以定义为物体质量与物体速度的乘积。

动量的数学表达式为:动量 = 质量 ×速度。

动量的单位是千克·米/秒(kg·m/s),在国际单位制中常用此单位表示。

动量的性质有以下几个重要特点:1. 动量是矢量量,具有方向性。

矢量量表示物理量有大小和方向。

动量的方向与物体速度的方向一致。

2. 动量是守恒的。

在不受外力作用的系统中,总动量守恒。

也就是说,不论系统中个别物体之间如何互相碰撞,总动量的大小和方向都保持不变。

3. 动量定理。

动量定理表明,当一个物体受到外力作用时,其动量会发生变化。

外力作用时间越长,物体所受动量变化越大。

4. 动量和冲量的联系。

动量变化的大小与作用力及作用时间有关,通常用冲量来描述。

冲量是力对物体作用的效果,它的大小等于力乘以时间,与动量的变化量相等。

二、角动量的概念和性质角动量是描述旋转物体运动的物理量,从数学上可以定义为物体质量的转动惯量与物体角速度的乘积。

角动量的数学表达式为:角动量 = 转动惯量 ×角速度。

角动量的单位是千克·米²/秒(kg·m²/s),在国际单位制中常用此单位表示。

角动量的性质有以下几个重要特点:1. 角动量也是矢量量,具有方向性。

它的方向与物体旋转轴的方向一致。

2. 角动量同样是守恒的。

在没有外力矩作用的封闭系统中,总角动量守恒。

也就是说,不论系统中个别物体的旋转如何变化,总角动量的大小和方向都保持不变。

3. 角动量定理。

角动量定理表明,当一个物体受到外力矩作用时,其角动量会发生变化。

动量与角动量

动量与角动量

注:质心位矢rc 与坐标系的选择有,
其相对于质点系内各质点的相对位 置是不会随坐标系的选择而变化的, 即质心是相对于质点系本身的一个 特定位置。
i
m
二. 质心的计算
z
C
rC
y x
图3.4 N个质点组成的质点系
质量连续分布的物体 (微元?)
xdm xC m ydm yC m zdm zC m
y
dm
0
x
y
b
xC
xdm
m

O
x dx
动力学30
a
x
例3.9一段均匀铁丝弯成半圆形,其半 径为R,求半圆形铁丝的质心。

作业:3.12
3.5 质心运动定理
一、质心运动定理
rC
mi ri
i
m
dri mi drc dt i vc dt m

mi vi
矢量法
I F t (mv1 ) 2 (mv2 ) 2 2mv1mv2 cos120 3mv
3mv 3 0.14 40 F 8.1103 N t 1.2 103
例3.3一辆装煤车以v=3m/s的速率从煤斗下面通过,每秒 落入车厢的煤为△m=500kg。如果使车厢的速率保持 不变,应用多大的牵引力拉车厢?
以F 表示喷出气体对火箭体推力
根据动量定理: Fdt ( M dm) (v dv) v Mdv
又由 udM Mdv 0 可得Mdv udM udm dm F u dt 上式表明,火箭发动机的推力与燃料燃烧速率
(dm / dt )及喷出气体的相对速度u成正比。

动量和角动量守恒原理

动量和角动量守恒原理

动量和角动量守恒原理一、动量守恒原理动量是描述物体运动状态的物理量,它等于物体的质量乘以速度,用数学公式表示为:动量= 质量× 速度。

动量守恒原理指的是,在一个孤立系统中,系统的总动量在相互作用过程中保持不变。

动量守恒原理可由牛顿第二定律推导得到。

根据牛顿第二定律,物体的加速度与施加在物体上的合外力成正比,与物体的质量成反比。

当物体的质量不变时,可以得到物体的加速度与物体受到的合力成正比。

根据牛顿第三定律,物体受到的合力等于其他物体对它施加的力的矢量和。

因此,在相互作用过程中,物体受到的合力等于其他物体对它施加的力的矢量和,根据物体的加速度与物体受到的合力成正比的关系,可以得到物体的加速度等于其他物体对它施加的力的矢量和除以物体的质量。

将物体的加速度代入动量的定义式中,可以得到物体的动量在相互作用过程中保持不变。

动量守恒原理在物理学中有广泛的应用。

例如,在碰撞过程中,根据动量守恒原理可以计算物体碰撞前后的速度和质量。

在火箭发射过程中,根据动量守恒原理可以计算火箭推进剂的质量和速度,以及火箭的推力。

在运动中的摩擦力、阻力等问题中,也可以利用动量守恒原理进行分析和计算。

二、角动量守恒原理角动量是描述物体旋转状态的物理量,它等于物体的惯性力矩乘以角速度,用数学公式表示为:角动量= 惯性力矩× 角速度。

角动量守恒原理指的是,在一个孤立系统中,系统的总角动量在相互作用过程中保持不变。

角动量守恒原理可由角动量定理推导得到。

根据角动量定理,物体的角动量的变化率等于物体所受的力矩。

当物体受到的合力矩为零时,物体的角动量保持不变。

在一个孤立系统中,由于没有外力矩的作用,因此系统的总角动量保持不变。

角动量守恒原理同样在物理学中有广泛的应用。

例如,在刚体的旋转运动中,根据角动量守恒原理可以计算刚体旋转的角速度和惯性力矩。

在天体运动中,根据角动量守恒原理可以计算行星的轨道半径和角速度。

在自行车、滑板等运动装置的稳定性问题中,也可以利用角动量守恒原理进行分析和计算。

线性动量与角动量

线性动量与角动量

线性动量与角动量动量是物体运动状态的物理量,描述了物体在空间中的运动和速度。

线性动量和角动量是动量的两种不同表现形式,它们在物理学中有着重要的作用。

一、线性动量的概念与特性线性动量是描述物体直线运动状态的物理量。

它是物体质量与速度的乘积,用公式表示为:动量(p)= 质量(m)×速度(v)其中,动量的单位是千克·米/秒(kg·m/s)或牛顿·秒(N·s)。

线性动量具有以下特性:1. 动量守恒定律:在一个封闭系统中,当外力不产生作用时,物体的总动量保持不变。

即物体在相互作用过程中,动量的代数和保持不变。

2. 动量改变率与力的关系:牛顿第二定律指出,力是物体动量改变率的原因。

力与动量的改变率成正比,可以用公式表示为:力(F)= 动量改变率(Δp)/ 时间变化率(Δt)由此可见,力的作用会改变物体的动量,使其发生加速度或减速度。

二、角动量的概念与特性角动量是描述物体旋转状态的物理量。

它是物体质量、速度和转动半径的乘积,用公式表示为:角动量(L)= 质量(m)×速度(v)×转动半径(r)其中,角动量的单位是千克·米²/秒(kg·m²/s)或牛顿·米·秒(N·m·s)。

角动量具有以下特性:1. 角动量守恒定律:在一个封闭系统中,当外力矩不产生作用时,物体的总角动量保持不变。

即物体在相互作用过程中,角动量的代数和保持不变。

2. 角动量改变率与力矩的关系:力矩是物体角动量改变率的原因。

力矩与角动量的改变率成正比,可以用公式表示为:力矩(τ)= 角动量改变率(ΔL)/ 时间变化率(Δt)根据这个关系式,力矩的作用会改变物体的角动量,使其发生加速度或减速度。

三、线性动量与角动量之间的关系线性动量和角动量之间存在着密切的关系。

对于直线运动,物体的线性动量可以看作是角动量在该直线方向上的分量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.15 10 s 。
7
质量为 m 的小球系在绳子的一端,绳穿过水平面上一小孔,使小球限制在一光滑水平面
上运动,先使小球以速度 0 绕小孔做半径为 r0 的圆周运动,然后缓慢向下拉绳使圆周半径减小为 r1 , 求此时小球的速度。

0
查看答案问题 3-8 教材图 3-11 问题 3-8 图 问题 3-9 做匀速圆周运动的质点,对于圆周上某一定点,它的角动量 是否守恒?对于通过圆心而与圆面垂直的轴上的任一点, 它的角动量是否守 恒?对于哪一个定点,它的角动量守恒? 问题 3-10 写出(1)质量为 m、长为 l 的匀质细杆绕中心或棒端的垂直 轴以角速度 转动; (2)质量为 m、半径为 R 的匀质薄圆面绕中心垂直轴 以角速度 转动时对转轴的角动量。 问题 3-11 在文艺体育活动中,有很多应用角动量守恒定律的实例如: (1) 跳水运动员完美地完成空翻动作并很好地压水; (2) 花样滑冰运动员或芭蕾舞蹈演员想加速旋转时, 先把两臂张和一条腿伸开,并绕通过足尖的垂直轴转以 0 旋转,然后再收 拢腿和臂等。说明他们做法中蕴含的物理原理。 2 查看答案问题 3-11 查看答案问题 3-10 查看答案问题 3-9
返回问题 3-2
p0 m0 j p m0 sin i m0 cos j
问题 3-3 解用图
t2 时刻
根据 I p p0 得
I (m0 sin i m0 cos j ) m0 j m0 sin i m0 (1 cos ) j
m
02 [sin ti (1 cos t ) j ] m0 sin i m0 (1 cos ) j R
问题 3-4 解 如问题 3-4 解用图, 以 B 为坐标原点建立坐标系 Ox , 设车相对于地面向右运动的距离为 S M , 则 人 相 对 于 地 面 运 动 的 距 离
Sm l SM
l ml 2 xC M m M
开始时人和车的质心 结束时人和车的质心
l M ( S M ) mS M ' 2 xC M m
质心保持静止,即 xC
' 解得 xC
问题 3-4 解用图
m M SM l , Sm l M m M m
问题 3-5
返回问题 3-4
问题 3-8
解 小球在运动过程中,除受重力、支持力这一对平衡力外,只受绳子拉力的作用,而拉力的作用 线通过孔心,力矩为零,所以小球对小孔的角动量守恒, 即
rm0 r1m1 ,解得
问题 3-9

r0 0 r1
返回问题 3-8
答 作匀速圆周运动的质点所受向心力大小不变,方向时刻在变(始终指向圆心) 。对于圆周上某一 定点 O , 如问题 3-9 解用图 1, 当质点处于圆周上任一点 P 时, 相对于该定点, 质点所受力矩垂直纸面, 质点所受的力矩大小一般不为零 (仅当质点位于 O 以及过 O 的直径的另一端点 O 时为零) , 方向在垂 直纸面向内与向外的两个方向之间变化(以图中直径 O ,所以质点的角动量不守恒。 O 为分界) 对于通过圆心而与圆面垂直的轴上的任一定点 O , 如问题 3-9 解用图 2, 质点所受的力矩大小不变、 方向沿圆周的切线,从而时刻在变,因而质点的角动量不守恒。 对于圆心,质点所受的力矩为零,所以角动量守恒(始终在垂直圆面的方向上) 。
问题 3-12 试讨论角动量守恒定律的工程应用。
查看答案问题 3-12
第 3 章 动量和角动量
问题 3-1 答 质点从点 A 到点 B 这一过程中动量的变化为
mB mA m (i ) j m i j
矢量图如问题 3-1 解用图。 问题 3-2
因为系统在水平方向不受外力,质心位置不动,即
m1 x x m2 x ' x ' 0 m1 m2
代入 x 、 x ' 和 s 的关系与具体数据得 4
返回问题 3-5
s 0.266m
问题 3-6 答 (1)4 个质点的动量分别为 角动量全部相等为 m
p1 m j , p2 mi p3 m j , p4 mi ;
(方法二)应用冲量的定义式 I = 设小球的角速度为 ,则

Fdt
t0
t

t ,0 R
2 F m 0 (cos ti sin tj ) R t 2 I m 0 (cos ti sin tj )dt 0 R
3
返回问题 3-3
返回问题 3-11
返回问题 3-12
6
问题 3-11 答 (1)当跳水运动员完美地完成空翻动作准备入水时,由于身体已经
返回问题 3-10
尽可能打开了,他(或她)对其质心的转动惯量最大,根据角动量守恒定律,转动角速度最小,故很好 地压水; (2) 花样滑冰运动员或芭蕾舞蹈演员收拢腿和臂时, 其转动惯量将减小, 根据角动量守恒定律, 他(或她)绕通过足尖的垂直轴转动的角速度将增大,可以看到他(或她)越转越快的现象。 问题 3-12 答 如啮合器等。
y
2 1 x
3
O
查看答案问题 3-6
3
教材图 3-11 问题 3-6 图
问题 3-7 地球绕太阳的运动可以近似地看作是匀速圆周运动,求地球对太阳中心的角动量。已知地 球的质量 me
6.0 1024 kg ,地球到太阳的距离 d 1.5 1011 m ,地
查看答案 问题 3-7
球绕太阳公转周期 T 问题 3-8
返回问题 3-6
l l l 如对质点 1,L1 i m j m k k 。 2 2 2
(2)动量不变,角动量增大。 问题 3-7
L me d 2

6.0 1024 1.5 1011
2
2 3.15 107
返回问题 3-7
2.69 1040 (kg m 2 /s)
水的阻力不计, 求起重杆 OA 与铅直位置成角 2 300 时船移动的位移。
A
G2
查看答案问题 3-5
O
G1
教材图 3-7 问题 3-5 图
1
问题 3-6 如图 3-11,两刚性轻杆互相垂直,且在中点 O 处固接,4 个质量均为 m 的质点分别固定于 两杆的 4 个端点。如系统绕过 O 点且与两杆均垂直的轴做逆时针转动。 (1)当处于如图情况时,写出每 杆的长度均为 l 。 个质点的动量、角动量,设质点的速率为 。 (2)如系统做加速转动,系统的动量和角动量变化吗?设
解 取浮动起重机、起重杆和重物组成的系统为研究对象,系统质心位置为原点,向右为位移的正方 向。初始时,船的质心坐标为 x ,物体的质心坐标为 x ' ,有
m1 x m2 x ' 0 m1 m2
设船相对于地面向左运动的距离为 s ,则位移 x
s ,重物的位移
x' s l sin 600 l sin 300
O
r
O
FN
P
O
r
O
P
FN
M

O
问题 3-9 解用图 1
问题 3-9 解用图 2
返回问题 3-9
5
问题 3-10 答 (1)匀质细杆绕中心转动时,角动量 L 1 ml 2 ;绕棒端的垂直轴转动时, L 1 ml 2 。 (2)
12
3
1 L mR 2 。 2
第 3 章 动量和角动量
问题 3-1 如图 3-1,质点 m 以速率 绕坐标原点 O 沿逆时针方向作半径为 R 的匀速圆周运动,试 计算质点从点 A 到点 B 这一过程中动量的变化。
教材图 3-1 问题 3-1 图 教材图 3-1 问题 3-1 图 问题 3-2 一个人躺在地上,身上压一块重石板,另一人用锤猛击石板,但见石 板碎裂,而下面的人却毫无损伤。何故? 问题 3-3 质量为 m 的小球在水平面内作速率为 0 的匀速圆周运动。请用(1) 动量定理; (2)冲量的定义式 I = 到的冲量。 问题 3-4 用“原来处于静止的质点系,当其所受合外力等于零时,质心位置保 持不变(即质心保持静止) ”的结论,重新计算例 3-3。 问题 3-5 如图 3-7,浮动起重船的质量 m1 的质量 m2
查看答案问题 3-1
查看答案问题 3-2

Fdt 分别求转过任意角 的过程中,小球所受
t0
t

查看答案问题 3-3
查看答案 问题 3-4
,起吊物体 2 104 kg ,起重杆长 l 8m (质量不计)
0 设开始起吊时整个系统处于静止, 起重杆 OA 与铅直位置的夹角为 1 60 , 2 103 kg 。
返回问题 3-1
答 锤猛击石板, “猛击”之意是二者碰撞力很大而碰撞时间极短。碰撞力很大而锤与石板撞击面积 较小,进一步增大了被打击处单位面积的受力,从而使得石板破碎;碰撞时间极短说明重石板获得的动 量很小(由于石板质量远大于重锤) 。在此时间,由于石板惯性很大,向下位移较小,不足以造成人的损 伤。同时也由于人是弹性体,延长了作用时间,和石板的静态压力相比平 均冲击力不太大,所以下面的人毫无损伤。 问题 3-3 解 (方法一)应用动量定理 建立如问题 3-3 解用图坐标系,设小 球在 t1 时刻在点 A , t2 时刻转过角 至点 B 。 则 t1 时刻
相关文档
最新文档