第11章 聚合物表面与界面
材料表面与界面课后思考题 (胡福增)
第一章1.试述表面张力(表面能)产生的原因。
怎样测试液体的表面张力?(1)原因液体表面层的分子所受的力不均匀而产生的.液体表面层即气液界面中的分子受到指向液体内部的液体分子的吸引力,也受到指向气相的气体分子的吸引力,由于气相吸引力太小,这样,气液界面的分子净受到指向液体内部并垂直于表面的引力作用,即为表面张力。
这里的分子间作用力为范德华力。
(2)测试①毛细管上升法测定原理将一支毛细管插入液体中, 液体将沿毛细管上升,升到一定高度后, 毛细管内外液体将达到平衡状态,液体就不再上升了。
此时, 液面对液体所施加的向上的拉力与液体总向下的力相等。
则γ=1 /2(ρl—ρg)ghrcosθ(1)(1)式中γ为表面张力, r为毛细管的半径,h为毛细管中液面上升的高度,ρl为测量液体的密度,ρg为气体的密度( 空气和蒸气) , g为当地的重力加速度,θ为液体与管壁的接触角。
若毛细管管径很小,而且θ=0 时,则上式(1)可简化为γ=1/2ρghr (2)②Wilhelmy 盘法测定原理用铂片、云母片或显微镜盖玻片挂在扭力天平或链式天平上, 测定当片的底边平行面刚好接触液面时的压力,由此得表面张力, 公式为:W总—W片=2γlcosφ式中,W总为薄片与液面拉脱时的最大拉力,W片为薄片的重力, l为薄片的宽度,薄片与液体的接触的周长近似为2l,φ为薄片与液体的接触角。
③悬滴法测定原理悬滴法是根据在水平面上自然形成的液滴形状计算表面张力。
在一定平面上, 液滴形状与液体表面张力和密度有直接关系。
由Laplace 公式, 描述在任意的一点P 曲面内外压差为式中R1, R2 为液滴的主曲率半径;z 为以液滴顶点O为原点,液滴表面上P 的垂直坐标;P0 为顶点O处的静压力。
定义S= ds/de式中de为悬滴的最大直径,ds为离顶点距离为de处悬滴截面的直径再定义H=β(de/b)2 则得γ= (ρl—ρg)gde2/H 式中b为液滴顶点O处的曲率半径.若相对应与悬滴的S值得到的1/H为已知, 即可求出表(界) 面张力。
聚合物共混原理聚合物共混物的形态学课件
聚合物共混原理聚合物共混物的形
2
态学课件
1、非晶-非晶聚合物共混体系
1.1 单相连续的形态结构
单相连续的形态结构是指,构成聚合物共混物 的两个相或者多个相只有一个相连续。称之为 连续介质或者基体。其它的相分散于基体中, 称为分散相。
连续介质+分散相
聚合物共混原理聚合物共混物的形
3
态学课件
从分散相结构特征来看,可分为以下三种情况:
根据润湿-接触理论,粘合强度主要取决于界面张力, 张力越小,则粘合强度越大。根据扩散理论,粘合强度 主要取决于两种聚合物之间的热力学混溶性。混溶性越 大,粘合强度越高。这两种理论之间存在内在联系,是 统一的。
聚合物共混原理聚合物共混物的形
10
态学课件
两种组分都形成三维空间连续的 形态结构。典型的例子是互穿网 络聚合物(IPN)。
如图所示。注意,互穿网络聚合 物不是分子级别的的相互贯穿, 而是分子微小聚集体相互贯穿。 两组分的相容性和交联度越大, 相互贯穿网络聚合物两相结构的 相畴就越小。
白色部分为PS
聚合物共混原理聚合物共混物的形
4
态学课件
③分散相形状、大小不规则,分散相包容了大量连续相成分. 分散相成香肠状结构、胞状结构、蜂窝状结构。
如由接枝共聚共混法生产的ABS,HIPS.
聚合物共混原理聚合物共混物的形
5
态学课件
例 如 : 通 过 熔 融 共 混 法 制 备 了 苯 乙 烯 - 马 来 酸 酐 共 聚 物 (SMA) 增 容 的 尼 龙 6(Nylon-6)/ABS共混物。研究了SMA增容的Nylon-6/ABS共混物的相形态与 性能.发现在Nylon-6/ABS共混体系中,分散相易聚集,相界面清晰,断裂面光 滑,呈脆性断裂,相容性差。加入少量SMA后,共混物由共连续相结构转变为 典型的"海-岛"结构,分散相分布均匀,界面粘接程度增加,表明SMA对Nylon6/ABS体系有显著的增容效果-高分子学报,2007 / /5
聚合物材料的表面与界面特性
聚合物材料的表面与界面特性随着材料科学的不断发展,聚合物材料已经成为了很多领域的核心材料。
聚合物材料通常具有良好的可塑性,高强度和化学稳定性。
特别是在电子、光电、能源等领域,聚合物材料已经得到了广泛的应用。
然而,聚合物材料的性能很大程度上取决于其表面和界面特性。
本文将从表面和界面两个方面,探讨聚合物材料的特性。
一、聚合物材料的表面特性表面特性是指一种物体在表面的某些性质,与体积内大不相同。
在聚合物材料中,表面特性对于其性能影响很大,常常占据主导地位。
1.接触角接触角是指家在液滴与固体表面的夹角。
对于聚合物材料而言,接触角的大小与其表面的疏水性有关。
通常情况下,疏水性较强的聚合物表面会使接触角变大,表面的润湿性较弱,易产生近似于球形的液滴。
相反,疏水性较弱的聚合物表面会使接触角变小,表面的润湿性较强,液滴更容易在其上展开。
2.表面能表面能是指表面分子在膜层表面留下的自由表面能。
聚合物材料的表面能可以影响其表面吸附性(如对水气泡、尘埃和异物的起伏状况)和粘附性(如与别的聚合物、金属、涂料等接触时的反应强度)。
疏水性的聚合物表面,表面能往往较低;而疏水性较差的聚合物表面,表面能通常较高。
3.形貌结构聚合物表面的形貌结构也是其表面特性之一。
如表面粗糙度、表面纹理等。
这些形貌结构变化不仅影响聚合物表面的外观,还会影响聚合物的力学性能、光学性能等。
二、聚合物材料的界面特性除了表面特性外,聚合物材料的界面特性也很重要。
界面是两个或更多物体或相转移层之间的分界面。
在聚合物材料中,界面是很常见的,如聚合物复合材料、聚合物涂料等。
1.粘附强度粘附强度是指界面两侧所负责粘附的抵抗分子间互相分离的强度。
聚合物材料的粘附强度与其界面粘合性能密切相关。
通常情况下,聚合物材料的粘附强度越高,其界面粘合性能也会越好。
2.界面应力界面应力是指交界处材料和结构间不同应力场所产生的现象。
聚合物材料的界面应力对于聚合物的力学性能、热学性能、及光学性能有着重要意义。
聚合物表面与界面技术.1
第1章聚合物表面的表征物体的表面是物质存在的一种客观形式,固体从体相延伸到表面,最终在表面形成原子及其电子分布的终端,从而导致表面具有体相所不具备的新的特点和新的特征。
同时也破坏了物体的连续性,因此,研究物体的表面比研究物体的体相有更大的难度。
在表面分析中,由于表面层的光学干涉、表面缺陷、粒度大小等表面变化为微观变化,实测结果往往与常规观察的判断有很大的区别。
表面分析实际上是物质的近表面区域的分析(表面分析、薄膜分析和体相分析)。
聚合物因自身的特点,其表面的特性在许多技术中都是非常重要的。
就聚合物商品的最终用途而言,许多情况下表面性质是关键,其中包括黏结性能、电性能、光学性能和生物体的相容性,以及透气性、化学反映能力等。
这些性质的优劣将取决于聚合物表面具有的物理和化学结构。
而理解表面特性就需要对聚合物的表面从成分和结构上进行表征,对聚合物进行改性及加入添加剂以满足所需的要求同样需要对聚合物表面进行分析。
聚合物表面分析研究的范围很广,主要包括:①表面的组成和表面状态的研究,即对表面上的元素定性、定量分析、元素存在的价态及化学键的研究;②表面电子结构和几何结构的研究;③聚合物的黏性、改性、老化、接枝等的性能和结构方面的信息。
现在应用于聚合物表面分析的技术有很多,基于一个时期以来谱仪的开发,仪器性能及谱图阐释方面的诸多进展,许多表面表征方法趋于成熟。
本章将分别介绍红外光谱、X射线能谱、二次质子离谱、扫描电镜显微镜、透射电子显微镜、原子力显微镜等技术在聚合物表面表征方面的应用。
1.1 红外光谱1.1.1 红外光谱基本原理红外光谱简称IR。
通过红外光照射到物质分子只能激发分子内原子核之间的振动和转动能级的跃迁,因此红外光谱是通过测定这两种能级跃迁的信息来研究分子结构。
在红外光谱中,以波长或波数为横坐标,以强度或其他随波长变化的性质为纵坐标。
红外辐射光的波数可分为近红外区(10000—4000cm-1)、中红外区(4000—400cm-1)和远红外区(400—10 cm-1)。
高分子物理课件11聚合物表面与界面
§11.1 聚合物表面与界面
表面(surface):暴露于真空的材料最外层部分。 界面(inteface):不同物体或相同物质不同相间相互接触
的过渡部分。 表面处理:用化学或物理方法改变表面分子的化学结构, 来提高或聚合物表面张力
11 聚合物的表面与界面
§11.2 聚合物表面与界面的热力学
三、粘结薄弱层及内应力 1、薄弱层:低内聚强度。 2、内应力的产生: (1)固化过程中胶粘剂体积收缩; (2)胶粘剂与基体线形膨胀系数不同。
11 聚合物的表面与界面
3、减小内应力的措施 (1)降低固化过程的收缩率; (2)提高内应力松弛速率,如加增塑剂或与弹性体混 合来降低弹性模量; (3)消除胶粘剂同基体间线形膨胀系数的差异; (4)用热处理消除热应力。 四、结构胶粘剂 内聚强度高,可达6.9MPa,用来粘结结构材料。常用 热固性交联聚合物。
11 聚合物的表面与界面
4、界面张力(与共混体系有关) (1)存在上临界共溶温度的体系,随温度升高,界面 张力降低。 (2)存在下临界共溶温度的体系,随温度降低,界面 张力降低。 (二)润湿
sv sl lv cos
(1)θ<90°,润湿。 (2) θ> 90°不润湿。
11 聚合物的表面与界面
11 聚合物的表面与界面
五、弹性体胶粘剂 日常生活中使用最广泛,如压敏胶带。 具有干粘性与永久粘性,只需用手指的压力即可粘
结,不需要其他能源来活化,具有足够的粘结强度粘结 在被粘物上,具有足够的内聚强度,能够完全从被粘物 上剥离。
其粘性是通过向弹性体中加某种小分子物质产生的, 小分子物质称为增粘剂。
11 聚合物的表面与界面
§11.8 粘接
一、胶粘剂的分类 1、通过溶剂蒸发固化。如动物胶、淀粉、PVA、聚乙 酸乙烯酯。 2、通过化学反应固化,如环氧树脂、酚醛树脂。 3、通过相转变固化,如聚乙酸乙烯酯热熔胶。 二、粘结理论与机理 1、机械粘接,起辅助作用。
聚合物的表面与界面
1、聚合物表面张力大小的影响因素:
(1)温度影响聚合物材料表面张力,一般情况下,表面张力随着温度升高而降低,而且近似一种线性关系。
(2)相对分子质量影响表面张力,一般情况,表面张力随分子量增大而降低。
(3)聚合物种类、聚合物物态、内聚能、溶解度参数。
界面张力小的含义:聚合物与聚合物相容性较好、界面层厚度较厚、溶解度参数接近。
反之,界面之间张力越大,两相之间相容性越差。
两相质点间结合力越大,界面能越小,界面张力就越小;两相间结合力小,界面张力就大。
相反,同一金属(或合金)液固之间,由于两者容易结合,界面张力就小
9.表面张力与界面张力有何异同点?界面张力与界面两侧(两相)质点间结合力的大小有何关系?答:界面张力与界面自由能的关系相当于表面张力与表面自由能的关系,即界面张力与界面自由能的大小和单位也都相同。
表面与界面的差别在于后者泛指两相之间的交界面,而前者特指液体或固体与气体之间的交界面,但更严格说,应该是指液体或固体与其蒸汽的界面。
广义上说,物体(液体或固体)与气相之间的界面能和界面张力为物体的表面能和表面张力。
当两个相共同组成一个界面时,其界面张力的大小与界面两侧(两相)质点间结合力的大小成反比,两相质点间结合力
越大,界面能越小,界面张力就越小;两相间结合力小,界面张力就大。
相反,同一金属(或合金)液固之间,由于两者容易结合,界面张力就小。
物体的界面张力不变,界面自由能不变,界面结合力不变。
第十一章 聚合物的力学性能
第 十 一 章
聚合物的力学性能
第 11章
聚合物的力学性能
聚 合 物 的 力学 性 能
聚合物的力学性能指的是其受力后的响应,即材料在外力作 用下的形变及破坏特性,如形变大小、形变的可逆性及抗破损 性能等,这些响应可用一些基本的指标来表征。
11.1 表征力学性能的基本物理量 (1)应变与应力
理想弹性体(如弹簧)在外力作用下平衡形变瞬间达 到,与时间无关;理想粘性流体(如水)在外力作用下形变 随时间线性发展。
聚合物的形变与时间有关,但不成线性关系,两
者的关系介乎理想弹性体和理想粘性体之间,聚合物
的这种性能称为粘弹性。
聚合物的力学性能随时间的变化统称为力学松弛。
最基本的力学松弛现象包括蠕变、应力松弛、滞后和
在规定试验温度、湿度和实验速度下,在标准试样上沿轴向 施加拉伸负荷,直至试样被拉断。
P
宽度b
厚度d
P
试样断裂前所受的最大负荷P与试样横截面积之比为抗张 强度t: t = P / b • d
(ii)抗弯强度 也称挠曲强度或弯曲强度。抗弯强度的测定是在规定的试 验条件下,对标准试样施加一静止弯曲力矩,直至试样断裂。 设试验过程中最大的负荷为P,则抗弯强度f为: f = 1.5Pl0 / bd2
强迫高弹形变产生的原因 原因在于在外力的作用下,玻璃态聚合物中本来被冻结 的链段被强迫运动,使高分子链发生伸展,产生大的形变。 但由于聚合物仍处于玻璃态,当外力移去后,链段不能再 运动,形变也就得不到恢复原,只有当温度升至Tg附近, 使链段运动解冻,形变才能复原。这种大形变与高弹态的 高弹形变在本质上是相同的,都是由链段运动所引起。 根据材料的力学性能及其应力-应变曲线特征,可将非晶态 聚合物的应力-应变曲线大致分为六类:
抗盐聚合物与表面活性剂复合体系的体相和界面性能及协同增效原理
抗盐聚合物与表面活性剂复合体系的体相和界面性能及协同增效原理水溶性聚合物和表面活性剂均是应用十分广泛的功能性添加剂,一直是物理化学领域中值得深入研究的焦点,聚合物主要用于维持较高的体相粘度,表面活性剂主要用来降低表/界面张力。
已有研究表明,聚合物和表面活性剂复配后可展现出优于单一组分的体相或界面性能,利用二者的协同作用,可使复合体系的性能得到进一步优化,在三次采油及日用化学等领域具有重要应用前景。
然而,已见报道的具有协同增效作用的复合体系中的聚合物和表面活性剂大多带相反电荷,此类体系的相互作用依赖于pH、电解质浓度及聚合物或表面活性剂分子的电荷密度,通常只能在很窄的聚合物和表面活性剂的比例范围内实现增效,且复配后易产生沉淀,因此其应用受到一定的限制。
而对于聚合物和表面活性剂间存在弱相互作用的复合体系,有可能通过界面和体相中的弱相互作用实现协同增效,并可避免强相互作用复合体系的风险。
因此,复合体系弱相互作用机制的研究十分重要,但现有文献报道较少。
另外,聚合物/表面活性剂复合体系在实际应用中常涉及到无机盐浓度较高的情况,如油田化学和日用化学领域中常用的聚合物即因抗盐性不理想,在实际应用中受到了极大限制。
因此,采用具有抗盐性的聚合物和表面活性剂组成复合体系,研究其分子行为和相互作用机理,揭示优化其体相和界面性能的理论机制,对于指导聚合物和表面活性剂复合体系的实际应用,以及探索降本增效的技术途径均具有深远的影响,不仅具有较高的理论意义,也具有较高的应用价值。
为此,本文选择了具有较强抗盐性的新型合成聚合物(疏水改性聚丙烯酰胺(HA-PAM))以及天然聚合物(一种深海细菌分泌的胞外多糖(EPS)和卡拉胶),研究它们与油田化学和日用化学领域中常用的几种抗盐性好的表面活性剂组成的复合体系的性能,结合分子模拟手段和实验研究方法,考察聚合物和表面活性剂的分子行为和相互作用,揭示了基于氢键或疏水作用力等弱相互作用优化体系体相和界面性能的机理,并考察了各种因素如聚合物、表面活性剂以及电解质浓度和温度等的影响,所取得研究成果丰富了对聚合物和表面活性剂相互作用的科学认识,并为新型聚合物和表面活性剂复合体系在二元驱、泡沫驱及日用化学品中的应用提供了科学依据。
生物材料的表面与界面材料表界面ppt课件
3.3 生物相容性的研究意义
生物相容性是生物材料极其重要的性能,是区 别于其他材料的标志,是生物医用材料能否安 全使用的关键性能。
控制和改善生物材料的表面性质,是促进材料 表面与生物体间的有利相互作用、抑制不利相 互作用的关键途径。
如何提高材料的生物相容性
?
生物材料的表面工程是一种非常重要的方法!
国内从事生物材料表界面研究的课题组
生物材料的表面改性与功能化;
蛋白质、细胞与材料表面的相互作用;
苏州大学陈红教授课题组
➢Combining surface topography wi生 polymer chemistry: exploring new interfacial biological phenomena. Polym. Chem., 2013, DOI: 10.1039/C3PY00739A ➢Aptamer-Modified Micro/Nanostructured Surfaces: Efficient Capture of Ramos Cells in Serum Environment. ACS Appl. Mater. Interfaces, 2013, 5, 3816.
第一部分:生物材料表界面学科的诞生
1. 生物材料的概念(Biomaterials):
与生物体相接触的、或移入生物体内起某种取代、 修复活组织,增进或恢复其功能的特殊材料。
2. 生物材料的发展阶段
➢最初:一些临床应用的生物材料并不专门针对医用设计 (实现基本临床功能,也带来了不良的生物反应)
➢20世纪60-70年代:第一代生物材料(惰性生物材料) (物理性能适宜、对宿主反应较小;寿命延长5-25年)
其他领域的表面工 程技术和材料引入 生物材料领域或基 于体内物质的初步 模仿
表面与界面习题讲解
Chapter 11、表面与界面的定义。
1)表面:固体与真空的界面;2)界面:相邻两个结晶空间的交界面称为“界面”。
2、叙述表面与本体的不同点。
表面与本体:结构、化学组成、性质都存在不同。
材料与外界的相互作用是通过表面来进行的。
因此,表面具有特殊性,它的性质将直接影响材料的整体性质。
材料的性质虽然与组成的本体有关,但其表面对性能的影响却占很大的比重。
因为,不少性能是通过表面来实现的,如表面硬度、表面电导,同时,材料某些性能将通过表面受到外界环境的影响。
3、什么叫相界面?有哪几类?1)相界面:相邻相之间的交界面成为相界面。
2)分为3类:固相与固相的界面,固相与气相的界面,固相与液相的界面。
4、材料表面与界面的表征手段有哪些?材料表面与界面的表征主要通过对比表面积、表面张力(表面能)等测定来实现1)比表面积a 静态吸附法(BET )(测量准确度和精度都很好,但达到吸附平衡慢,仪器装置较复杂,需要高真空系统,并且要使用大量的汞,逐步被动态吸附法所取代)b 动态吸附法:常压流动法,气相色谱法(操作简单而快速 )2)表面张力a 高聚物熔体表面张力外推法(γ∝T 成直线关系,测定不同温度下高聚物熔体的表面张力,外推到20℃时的表面张力)b Zisman 的浸润临界表面张力法(测定固体在已知表面张力的液体中的接触角 )C 还有几何平均方程求解法、状态方程测求法等等d 理论计算:等张比容法、内聚能密度法、Tg 参数计算法5、试述表面张力产生的原因。
材料的表面结构和性质与其本体有明显的差别,这是因为位于材料本体的原子受到周围原子的相互作用是相同的,处于对称力场之中,总的作用之和等于0;而处于表面的原子只有局部受到与本体相同的相互作用,而其余的部分则完全不同,表面由此产生表面张力。
6、单位体积的物体所具有的表面积称为比表面,请得 出下列结果:(1)半径为r 的球形颗粒,其比表面为:(2)质量为m ,密度为ρ的球形颗粒的比表面:(3) 边长为L 的立方体的比表面为:(4) 质量为m ,密度为ρ的立方体的比表面为:7.水蒸气迅速冷却至25℃会发生过饱和现象。
第十一章.化学驱提高采收率
Carreau
1
2
0
n 1
2
—极限剪切粘度;
n-1——剪切变稀区直线斜率; ——流变性转变参数,第一牛顿 区向剪切变稀区转变时对应的剪 切速率的倒数。
在Carreau中当»,0 » 时的极限情况 应用于较宽范围内的
通常取溶剂粘度
部分孔隙体积所占岩石总孔隙体积的百分数 .
三、聚合物驱油室内评价
3.聚合物的滞留和不可入孔隙体积 测定方法:
确定聚合物IPV和RPV的方法按注入聚合 物段塞的数量可分为两种:
单段塞法 双段塞法
三、聚合物驱油室内评价
单段塞法
在岩芯充分饱和模拟地层水的基础上,注入一个浓度为C0的聚合物段塞, 再用模拟地层水进行后续水驱至出口端聚合物浓度远小于C0。因只向岩芯中注 入一个聚合物段塞,因此叫单段塞法。假设注入聚合物段塞体积为j个PV,岩 芯中残余油饱和度为Sor,浓度剖面曲线如下图所示:
( CH2
CH )n CONH2
( CH2 CH )( CH2 CH ) x n-x COO_ CONH2
主链为碳氢链 分子链上的-COO-在水中易溶解,且羧基之间有静电斥力,水中 分子链较伸展,使其增粘性好;另外羧基带负电,故在砂岩表面吸附 较少,因此,最适合于流度控制。
一、驱油用聚合物
1.常用聚合物——生物聚合物黄胞胶Xanthan
物驱油有重要贡献,其意义在于不增加聚合物
浓度(不提高使用成本)的条件下,利用聚合
物溶液的粘弹性能够提高微观驱油效率,利用 滞留聚合物分子的粘弹性能够进一步降低岩石 渗透率,粘弹性越强,对驱油越有利。
二、聚合物溶液特性
4.聚合物溶液的粘弹性——测试方法
界面化学
界面化学1前言界面就是任何两个互不相溶物体(两个相)的接触区域。
物质界面上的性质往往与物质内部的性质不同,特别是在分散体系界面很大的情况下,这种界面性质或现象,就表现得愈为突出。
改变界面结构,不一定涉及到物质内部的性质,也往往能使物质产生截然不同的表现和结果,因此,研究界面已成为当前科学发展和生产需要的重要课题。
界面化学就是处于这样的时代要求下,在早期胶体化学的基础上,由物理化学派生出来的一门分支学科。
它的主要任务是研究物质相界面或多相界面上的物理化学性质及通过改造界面性质解决各方面有关的实际技术问题。
所以,界面化学既是一门理论性很强的学科,也是实用性很强的一门科学。
2界面化学2.1界面化学的内容界面化学的内容,主要包括:研究气—固、气—液、液—液、液—固等各相之间的界面性质,如界面能、界面结构和界面电性质等;多分散系统的稳定理论、动力学、光散射现象;吸附理论、湿润、起泡、乳化以及表面活性剂等问题。
这些内容已广泛应用于工农业生产的各个部门,渗透到各个兄弟学科,如各种化学工业、建筑科学、选矿、环境保护、石油工业、微电子学、医药工业、日用化工、冶铸、航天、原子能、农业科学、海洋科学等等。
近年来各种界面化学的理论及应用研究报导剧增,已由各类化学文献总数的第二十多位上升到第三、四位,可见其发展之迅速。
近年来,界面化学的主要发展集中在:由表面能理论研究发展起来的表面活性剂,分散体系的稳定理论,吸附理论及它们的应用。
这些研究成就已在各学科及工农业生产领域中发挥着巨大的作用,为技术改造和革新作出了很大贡献。
2.2表界面化学在无机材料中的应用表界面化学可概括许多表面或界面现象,其在人们的日常生活中非常普遍。
本文首先研究表界面在单一无机材料中的应用[2]。
(1)金属材料的腐蚀:将Cr镀在不锈钢表面,由于Cr对空气或氧以及酸类有很大的惰性,可使钢材防腐蚀。
(2)表面活性剂的开发:人们熟悉的如肥皂、洗表界面化学在材料研究中的应用涤剂、清洁剂等,都是表面有活性的物质。
《聚合物合成工艺学》复习知识点及思考题
《聚合物合成工艺学》各章重点第一章绪论1.高分子化合物的生产过程及通常组合形式原料准备与精致,催化剂配置,聚合反应过程,分离过程,聚合物后处理过程,回收过程2.聚合反应釜的排热方式有哪些夹套冷却,夹套附加内冷管冷却,内冷管冷却,反应物料釜外循环冷却,回流冷凝器冷却,反应物料部分闪蒸,反应介质部分预冷。
3. 聚合反应设备1、选用原则:聚合反应器的操作特性、聚合反应及聚合过程的特性、聚合反应器操作特性对聚合物结构和性能的影响、经济效应。
2、搅拌的功能要求及作用功能要求:混合、搅动、悬浮、分散作用:1)推动流体流动,混匀物料;2)产生剪切力,分散物料,并使之悬浮;3)增加流体的湍动,以提高传热效率;4)加速物料的分散和合并,增大物质的传递效率;5)高粘体系,可以更新表面,使低分子蒸出。
第二章聚合物单体的原料路线1.生产单体的原料路线有哪些?(教材P24-25)石油化工路线,煤炭路线,其他原料路线(主要以农副产品或木材工业副产品为基本原料)2.石油化工路线可以得到哪些重要的单体和原料?并由乙烯单体可以得到哪些聚合物产品?(教材P24-25、P26、P31)得到单体和原料:乙烯、丙烯、丁烯、丁二烯、苯、甲苯、二甲苯。
得到聚合物:聚乙烯、乙丙橡胶、聚氯乙烯、聚乙酸乙烯酯、聚乙烯醇、维纶树脂、聚苯乙烯、ABS树脂、丁苯橡胶、聚氧化乙烯、涤纶树脂。
3. 合成聚合物及单体工艺路线第三章自由基聚合生产工艺§ 3-1自由基聚合工艺基础1.自由基聚合实施方法及选择本体聚合、乳液聚合、溶液聚合、悬浮聚合。
聚合方法的选择只要取决于根据产品用途所要求的产品形态和产品成本。
2.引发剂及选择方法,调节分子量方法种类:过氧化物类、偶氮化合物,氧化还原体系。
选择方法:(1)根据聚合操作方式和反应温度条件,选择适当分解速度的引发剂。
(2)根据引发剂分解速度随温度的不同而变化,故根据反应温度选择适引发剂。
(3)根据分解速率常数选择引发剂。