中考专项训练梯形(填空选择题)

合集下载

2020年中考数学第二轮复习 第22讲 梯形 强基训练+真题(后含答案)

2020年中考数学第二轮复习 第22讲 梯形  强基训练+真题(后含答案)

一腰与底的梯形叫做直角梯2020年中考数学第二轮复习教案第二十二讲梯形【强基知识】一、梯形的定义、分类和面积:1、定义:一组对边平行,而另一组对边的四边形,叫做梯形。

其中,平行的两边叫做,不平行的两边叫做,两底间的距离叫做梯形的。

2、分类:⎪⎩⎪⎨⎧⎩⎨⎧直角梯形:等腰梯形:特殊梯形一般梯形梯形3、梯形的面积:S梯形=12(上底+下底)×高【注意:要判定一个四边形是梯形,除了要证明它有一组对边外,还需注明另一组对边不平行或平行的这组对边不相等】二、等腰梯形的性质和判定:1、性质:⑴等腰梯形的两腰相等,相等⑴等腰梯形的对角线⑴等腰梯形是对称图形2、判定:⑴用定义:先证明四边形是梯形,再证明其两腰相等⑴同一底上两个角的梯形是等腰梯形⑴对角线的梯形是等腰梯形【注意:1、梯形的性质和判定中“同一底上的两个角相等”不能说成“两底角相等”2、等腰梯形所有的判定方法都必须先证它是梯形3、解决梯形问题的基本思路是通过做辅助线将梯形转化为形或形常见的辅助线作法有要注意根据题目的特点灵活选用辅助线】两腰的梯形叫做等腰梯【中考真题考点例析】考点一:梯形的基本概念和性质例1 (广州)如图所示,四边形ABCD是梯形,AD⑴BC,CA是⑴BCD的平分线,且AB⑴AC,AB=4,AD=6,则tanB=()A.23B.22C.114D.55强基训练1-1 (宁波)如图,梯形ABCD中,AD⑴BC,AB=52,BC=4,连结BD,⑴BAD的平分线交BD于点E,且AE⑴CD,则AD的长为()A.3B.2C.3D.2答案:B考点二:等腰梯形的性质例2 (柳州)如图,四边形ABCD为等腰梯形,AD⑴BC,连结AC、BD.在平面内将⑴DBC沿BC翻折得到⑴EBC.(1)四边形ABEC一定是什么四边形?(2)证明你在(1)中所得出的结论.强基训练2-1 (杭州)如图,在等腰梯形ABCD中,AB⑴DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:⑴GAB是等腰三角形.考点三:等腰梯形的判定例3 (钦州)如图,梯形ABCD中,AD⑴BC,AB⑴DE,⑴DEC=⑴C,求证:梯形ABCD是等腰梯形.强基训练3-1 (上海)在梯形ABCD中,AD⑴BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是()A.⑴BDC=⑴BCD B.⑴ABC=⑴DAB C.⑴ADB=⑴DAC D.⑴AOB=⑴BOC考点四:梯形的综合应用例4 (扬州)如图1,在梯形ABCD中,AB⑴CD,⑴B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⑴PA交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;(3)如图2,若m=4,将⑴PEC沿PE翻折至⑴PEG位置,⑴BAG=90°,求BP长.强基训练4-1 (青岛模拟)如图,在等腰梯形ABCD中,AB=DC=5cm,AD=4cm,BC=10cm,点E从点C出发,以1cm/s的速度沿CB向点B移动,点F从点B出发以2cm/s 的速度沿BA方向向点A移动,当点F到达点A时,点E停止运动;设运动的时间为t(s)(0<t<2.5).问:(1)当t为何值时,EF平分等腰梯形ABCD的周长?(2)若⑴BFE的面积为S(cm2),求S与t的函数关系式;(3)是否存在某一时刻t,使五边形AFECD的面积与⑴BFE的面积之比是3:2?若存在求出t的值;若不存在,说明理由.(4)在点E、F运动的过程中,若线段EF=15154cm,此时EF能否垂直平分AB?强基训练4-2 (2019浙江绍兴)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A. 245B.325C.1234D.2034第二十讲梯形参考答案【中考真题考点例析】考点一:梯形的基本概念和性质 例1 答案:B 解:⑴CA 是⑴BCD 的平分线, ⑴⑴DCA=⑴ACB , 又⑴AD⑴BC , ⑴⑴ACB=⑴CAD , ⑴⑴DAC=⑴DCA , ⑴DA=DC ,如图,过点D 作DE⑴AB ,交AC 于点F ,交BC 于点E , ⑴AB⑴AC ,⑴DE⑴AC (等腰三角形三线合一的性质), ⑴点F 是AC 中点, ⑴AF=CF ,⑴EF 是⑴CAB 的中位线,⑴EF=12AB=2, ⑴AF DF FC EF==1, ⑴EF=DF=2, 在Rt⑴ADF 中,AF=2242AD DF -=,则AC=2AF=82,tanB=82224AC AB ==. 强基训练1-1 答案:B 考点二:等腰梯形的性质 例2 答案:(1)解:四边形ABEC 一定是平行四边形; (2)证明:⑴四边形ABCD 为等腰梯形,AD⑴BC , ⑴AB=DC ,AC=BD ,由折叠的性质可得:EC=DC ,DB=BE , ⑴EC=AB ,BE=AC , ⑴四边形ABEC 是平行四边形. 强基训练2-1 答案:证明:⑴在等腰梯形中ABCD 中,AD=BC , ⑴⑴D=⑴C ,⑴DAB=⑴CBA ,在⑴ADE 和AD BC D C DE CF =⎧⎪∠=∠⎨⎪=⎩, ⑴BCF 中,⑴⑴ADE⑴⑴BCF (SAS ),⑴⑴DAE=⑴CBF , ⑴⑴GAB=⑴GBA , ⑴GA=GB ,即⑴GAB 为等腰三角形. 考点三:等腰梯形的判定 例3 答案: 证明:⑴AB⑴DE , ⑴⑴DEC=⑴B , ⑴⑴DEC=⑴C , ⑴⑴B=⑴C ,⑴梯形ABCD 是等腰梯形. 强基训练3-1 答案:C 考点四:梯形的综合应用 例4 答案:解:(1)⑴⑴APB+⑴CPE=90°,⑴CEP+⑴CPE=90°, ⑴⑴APB=⑴CEP ,又⑴⑴B=⑴C=90°, ⑴⑴ABP⑴⑴PCE , ⑴AB BPPC CE=,即2x m x y =-, ⑴y=-21x 2+2mx .(2)⑴y=-21x 2+2m x=-21(x -2m )2+28m ,⑴当x=2m时,y 取得最大值,最大值为28m .⑴点P 在线段BC 上运动时,点E 总在线段CD 上,⑴28m ≤1,解得m≤22. ⑴m 的取值范围为:0<m≤22.(3)由折叠可知,PG=PC ,EG=EC ,⑴GPE=⑴CPE , 又⑴⑴GPE+⑴APG=90°,⑴CPE+⑴APB=90°, ⑴⑴APG=⑴APB .⑴⑴BAG=90°,⑴AG⑴BC , ⑴⑴GAP=⑴APB , ⑴⑴GAP=⑴APG , ⑴AG=PG=PC . 解法一:如解答图所示,分别延长CE 、AG ,交于点H,则易知ABCH为矩形,HE=CH-CE=2-y,GH=AH-AG=4-(4-x)=x,在Rt⑴GHE中,由勾股定理得:GH2+HE2=GH2,即:x2+(2-y)2=y2,化简得:x2-4y+4=0⑴由(1)可知,y=-12x2+2mx,这里m=4,⑴y=-12x2+2x,代入⑴式整理得:x2-8x+4=0,解得:x=23或x=2,⑴BP的长为23或2.解法二:如解答图所示,连接GC.⑴AG⑴PC,AG=PC,⑴四边形APCG为平行四边形,⑴AP=CG.易证⑴ABP⑴GNC,⑴CN=BP=x.过点G作GN⑴PC于点N,则GH=2,PN=PC-CN=4-2x.在Rt⑴GPN中,由勾股定理得:PN2+GN2=PG2,即:(4-2x)2+22=(4-x)2,整理得:x2-8x+4=0,解得:x=23或x=2,⑴BP的长为23或2.解法三:过点A作AK⑴PG于点K,⑴⑴APB=⑴APG,⑴AK=AB.易证⑴APB⑴⑴APK,⑴PK=BP=x,⑴GK=PG-PK=4-2x.在Rt⑴AGK中,由勾股定理得:GK2+AK2=AG2,即:(4-2x)2+22=(4-x)2,整理得:x2-8x+4=0,解得:x=23或x=2,⑴BP的长为23或2.强基训练4-1 答案:解:(1)⑴EF平分等腰梯形ABCD的周长,⑴BE+BF=12(AD+BC+CD+AB)=12,⑴10-t+2t=12,t=2;答:当t为2s时,EF平分等腰梯形ABCD的周长;(2)如图,过A作AN⑴BC于N,过F作FG⑴BC于G,则BN=2(BC-AD)=2×(10-4)=3(cm),⑴AN⑴BC ,FG⑴BC , ⑴FG⑴AN ,⑴ABN⑴⑴FGB ,⑴FG BFAN AB =, ⑴245FG t =,FG=85t ,⑴S ⑴BEF =12×BE×FG=12(10-t )•85t ,S=-45t 2+8t ;(3)假设存在某一时刻t ,使五边形AFECD 的面积与⑴BFE 的面积之比是3:2, S 五边形AFECD =S 梯形ABCD -S ⑴BFE =12×(4+10)×4-(-45t 2+8t )=28+45t 2-8t , 即2(28+45t 2-8t )=3(-45t 2+8t ),解得:(大于2.5,舍去),t=5;即存在某一时刻t ,使五边形AFECD 的面积与⑴BFE 的面积之比是3:2,t 的值是(5)s ;(4)假设存在EF 垂直平分AB , 则⑴ABN⑴⑴BEF ,EF DFAN DN =,4EF =EF=3即线段,此时EF 不能垂直平分AB . 强基训练4-2答案:A解:过点C 作CF⑴BG 于F ,如图所示:设DE=x ,则AD=8-x ,根据题意得:12(8-x+8)×3×3=3×3×6, 解得:x=4, ⑴DE=4, ⑴⑴E=90°,由勾股定理得:CD=2222=4+3=5DE CE +, ⑴⑴BCE=⑴DCF=90°, ⑴⑴DCE=⑴BCF , ⑴⑴DEC=⑴BFC=90°, ⑴⑴CDE⑴⑴BCF ,⑴CE CDCF CB =, 即358CF =, ⑴CF=245.故选A .【聚焦中考真题】 一、选择题1.(绵阳)下列说法正确的是( ) A .对角线相等且互相垂直的四边形是菱形 B .对角线互相垂直的梯形是等腰梯形 C .对角线互相垂直的四边形是平行四边形 D .对角线相等且互相平分的四边形是矩形2.(十堰)如图,梯形ABCD 中,AD⑴BC ,AB=DC=3,AD=5,⑴C=60°,则下底BC 的长为( ) A .8 B .9 C .10 D .11 二、填空题3.(烟台)如图,四边形ABCD 是等腰梯形,⑴ABC=60°,若其四边满足长度的众数为5,平均数为254,上、下底之比为1:2,则BD= . 4.(临沂)如图,等腰梯形ABCD 中,AD⑴BC ,DE⑴BC ,BD⑴DC ,垂足分别为E ,D ,DE=3,BD=5,则腰长AB= .5.(扬州)如图,在梯形ABCD中,AD⑴BC,AB=AD=CD,BC=12,⑴ABC=60°,则梯形ABCD的周长为.6.(盘锦)如图,等腰梯形ABCD,AD⑴BC,BD平分⑴ABC,⑴A=120°.若梯形的周长为10,则AD的长为.7.(六盘水)如图,梯形ABCD中,AD⑴BC,AD=4,AB=5,BC=10,CD的垂直平分线交BC于E,连接DE,则四边形ABED的周长等于.8.(长沙)如图,在梯形ABCD中,AD⑴BC,⑴B=50°,⑴C=80°,AE⑴CD交BC于点E,若AD=2,BC=5,则边CD的长是.9.(曲靖)如图,在直角梯形ABCD中,AD⑴BC,⑴B=90°,⑴C=45°,AD=1,BC=4,则CD= .10.(南京)如图,在梯形ABCD中,AD⑴BC,AB=DC,AC与BD相交于P.已知A(2,3),B(1,1),D(4,3),则点P的坐标为.三、解答题11.(滨州模拟)我们知道“连接三角形两边中点的线段叫三角形的中位线”,“三角形的中位线平行于三角形的第三边,且等于第三边的一半”.类似的,我们把连接梯形两腰中点的线段叫做梯形的中位线.如图,在梯形ABCD中,AD⑴BC,点E,F分别是AB,CD的中点,那么EF就是梯形ABCD的中位线.通过观察、测量,猜想EF和AD、BC有怎样的位置和数量关系?并证明你的结论.12.(玉林)如图,在直角梯形ABCD中,AD⑴BC,AD⑴DC,点A关于对角线BD的对称点F刚好落在腰DC上,连接AF交BD于点E,AF的延长线与BC的延长线交于点G,M,N分别是BG,DF的中点.(1)求证:四边形EMCN是矩形;(2)若AD=2,S梯形ABCD=152,求矩形EMCN的长和宽.13.(深圳)如图,在等腰梯形ABCD中,已知AD⑴BC,AB=DC,AC与BD交于点O,廷长BC到E,使得CE=AD,连接DE.(1)求证:BD=DE.(2)若AC⑴BD,AD=3,S ABCD=16,求AB的长.14.(安溪)已知等腰梯形中,AB=DC=2,AD⑴BC,AD=3,腰与底相交所成的锐角为60°,动点P在线段BC上运动(点P不与B、C点重合),并且⑴APQ=60°,PQ交射线CD于点Q,若CQ=y,BP=x,(1)求下底BC的长.(2)求y与x的函数解析式,并指出当点P运动到何位置时,线段CQ最长,最大值为多少?(3)在(2)的条件下,当CQ最长时,PQ与AD交于点E,求QE的长.第二十讲梯形参考答案【聚焦中考真题】一、选择题1答案:D2答案:A二、填空题3答案:354答案:4155答案:306答案:27答案:198答案:39答案:2310答案:(3,37) 三、解答题11答案:解:结论为:EF⑴AD⑴BC ,EF=12(AD+BC ).理由如下: 连接AF 并延长交BC 于点G .⑴AD⑴BC ,⑴⑴DAF=⑴G ,在⑴ADF 和⑴GCF 中, DAF G DFA CFG DF FC ∠=∠⎧⎪∠=∠⎨⎪=⎩,⑴⑴ADF⑴⑴GCF (AAS ),⑴AF=FG ,AD=CG .又⑴AE=EB ,⑴EF⑴BG ,EF=12BG , 即EF⑴AD⑴BC ,EF=12(AD+BC ). 12答案:(1)证明:⑴点A 、F 关于BD 对称,⑴AD=DF ,DE⑴AF ,又⑴AD⑴DC ,⑴⑴ADF 、⑴DEF 是等腰直角三角形,⑴⑴DAF=⑴EDF=45°,⑴AD⑴BC ,⑴⑴G=⑴GAD=45°,⑴⑴BGE 是等腰直角三角形,⑴M ,N 分别是BG ,DF 的中点,⑴EM⑴BC ,EN⑴CD ,又⑴AD⑴BC ,AD⑴DC ,⑴BC⑴CD ,⑴四边形EMCN 是矩形;(2)解:由(1)可知,⑴EDF=45°,BC⑴CD , ⑴⑴BCD 是等腰直角三角形,⑴BC=CD ,⑴S 梯形ABCD =12(AD+BC )•CD=12(2+CD )•CD=152, 即CD 2+2CD -15=0,解得CD=3,CD=-5(舍去),⑴⑴ADF 、⑴DEF 是等腰直角三角形,⑴DF=AD=2,⑴N 是DF 的中点,⑴EN=DN=12DF=12×2=1, ⑴CN=CD -DN=3-1=2,⑴矩形EMCN 的长和宽分别为2,1.13答案:(1)证明:⑴AD⑴BC ,CE=AD ,⑴四边形ACED 是平行四边形,⑴AC=DE ,⑴四边形ABCD 是等腰梯形,AD⑴BC ,AB=DC , ⑴AC=BD ,⑴BD=DE .(2)解:过点D 作DF⑴BC 于点F ,⑴四边形ACED 是平行四边形,⑴CE=AD=3,AC⑴DE ,⑴AC⑴BD ,⑴BD⑴DE ,⑴BD=DE ,⑴S ⑴BDE =12BD•DE=12BD 2=12BE•DF=12(BC+CE )•DF=12(BC+AD )•DF=S 梯形ABCD =16, ⑴BD=42,⑴BE=2BD=8,⑴DF=BF=EF=12BE=4, ⑴CF=EF -CE=1, ⑴AB=CD=2217CF DF -=.14答案:解:(1)如图1,过点D 作DE⑴AB ,交BC 于E , ⑴AD⑴BC ,⑴四边形ABED 是平行四边形,⑴BE=AD=3,DE=AB=DC=2, ⑴DE⑴AB , ⑴⑴DEC=⑴B=60°, ⑴⑴DEC 为等边三角形, ⑴EC=DC=2, ⑴BC=BE+EC=3+2=5;(2)如图2,在⑴CPQ 与⑴BAP 中, ⑴6012120-3C B ∠=∠=︒⎧⎨∠=∠=︒∠⎩,⑴⑴CPQ⑴⑴BAP , ⑴CQ :BP=CP :BA ,即y :x=(5-x ):2, ⑴y=-12x 2+52x , 当x=552122()2-=⨯-,即当点P 运动到BC 中点时,线段CQ 最长, 此时最大值为250()252184()2-=⨯-; (3)如图3,在(2)的条件下,当CQ 最长时,BP=CP=52,CQ=258, ⑴QD=CQ -CD=258-2=98. ⑴DE⑴CP ,⑴⑴QDE⑴⑴QCP , ⑴QE :QP=DE :CP=QD :QC , 即QE :QP=DE :52=98:258=9:25, ⑴可设QE=9k ,QP=25k ,且DE=910, ⑴PE=QP -QE=16k ,AE=AD -DE=3-910=2110. 在⑴DEQ 与⑴PEA 中,⑴60QDE APE QED AEP ∠=∠=︒⎧⎨∠=∠⎩, ⑴⑴DEQ⑴⑴PEA ,⑴DE :PE=EQ :EA ,⑴910:16k=9k :2110,,解得k=40⑴QE=9k=.40。

中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案一、选择题1. 以下哪一个数是最小的无理数?A. √2B. πC. 3.14D. √9答案:A2. 若一个等差数列的首项是2,公差是3,则第8项是多少?A. 17B. 18C. 19D. 20答案:A3. 一个二次函数的图像开口向上,顶点坐标为(3,-4),则该二次函数的一般式为:A. y = x² + 6x - 13B. y = x² - 6x + 13C. y = -x² + 6x - 13D. y = -x² - 6x + 13答案:B4. 在三角形ABC中,a = 5,b = 7,C = 60°,则边c 的长度等于:A. 6B. 8C. 10D. 12答案:C二、填空题1. 已知a = 3,b = 4,则a² + b² = _______。

答案:252. 已知一个等差数列的前5项和为35,首项为7,求公差d = _______。

答案:23. 在梯形ABCD中,AB // CD,AB = 6,CD = 8,AD = BC = 5,求梯形的高h = _______。

答案:34. 若函数f(x) = x² - 2x + 1的最小值为m,求m =_______。

答案:0三、解答题1. 已知一元二次方程x² - 4x - 12 = 0,求解该方程。

解:首先,将方程因式分解为(x - 6)(x + 2) = 0。

然后,解得x = 6或x = -2。

答案:x = 6或x = -22. 已知一个长方体的长为a,宽为b,高为c,且a、b、c成等差数列。

若长方体的体积为V,求V的表达式。

解:由题意可知,a + c = 2b,所以c = 2b - a。

长方体的体积V = abc = ab(2b - a)。

答案:V = ab(2b - a)3. 已知三角形ABC,AB = AC,∠BAC = 40°,BC = 6,求三角形ABC的周长。

中考数学试题章节汇编-第27章梯形

中考数学试题章节汇编-第27章梯形

全国各地100份中考数学试卷分类汇编第27章 梯形一、选择题A. 1个B. 2个C. 3个D. 4个【答案】B 2. (山东滨州,12,3分)如图,在一张△ABC 纸片中, ∠C=90°, ∠B=60°,DE 是中位线,现把纸片沿中位线DE 剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为( )A.1B.2C.3D.4【答案】C3. (山东烟台,6,4分)如图,梯形ABCD 中,AB ∥CD ,点E 、F 、G 分别是BD 、AC 、DC 的中点.已知两底差是6,两腰和是12,则△EFG 的周长是( )A.8B.9C.10D.12【答案】B4. (浙江台州,7,4分)如图,在梯形ABCCD 中,AD ∥BC ,∠ABC=90º,对角线BD 、AC 相交于点O 。

下列条件中,不能判断对角线互相垂直的是( )A . ∠1=∠4B . ∠1=∠3C . ∠2=∠3D .OB 2+OC 2=BC 2【答案】B5. (台湾台北,15)图(五)为梯形纸片ABCD ,E点在BC 上,且︒=∠=∠=∠90D C AEC ,AD =3,BC=9,CD =8。

若以AE 为折线,将C 折至BE 上,使得CD 与AB 交于F 点,则BF 长度为何?ED CB A(第12题图)A B CDEF(第6题图)A . 4.5B 。

5C 。

5.5D .6【答案】B6. (2011山东潍坊,11,3分)已知直角梯形ABCD 中, A D ∥BC ,∠BCD=90°, BC = CD=2AD , E 、F 分别是BC 、CD 边的中点,连接BF 、DE 交于点P ,连接CP 并延长交AB 于点Q ,连接AF ,则下列结论不正..确.的是() A . CP 平分∠BCDB. 四边形 ABED 为平行四边形C. CQ 将直角梯形 ABCD 分为面积相等的两部分D. △ABF 为等腰三角形【答案】C7. (山东临沂,12,3分)如图,梯形ABCD 中,AD ∥BC ,AB =CD ,AD =2,BC =6,∠B =60°,则梯形ABCD 的周长是( )A .12B .14C .16D .18 【答案】CA.2B. 243cmAC. 2233cm D. 223cm【答案】A9. (湖北武汉市,7,3分)如图,在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是A.40°.B.45°.C.50°.D.60°.【答案】C10.(湖北宜昌,12,3分)如图,在梯形ABCD中,AB∥CD,AD=BC,点E,F,G,H分别是AB,BC,CD,DA的中点,则下列结论一定正确的是( ).A. ∠HGF = ∠GHEB. ∠GHE = ∠HEFC. ∠HEF = ∠EFGD. ∠HGF = ∠HEF(第12题图)【答案】D12.二、填空题1.(福建福州,13,4分)如图4,直角梯形ABCD中,AD∥BC,90C∠=,则A B C∠+∠+∠=度.【答案】2702. ( 浙江湖州,14,4)如图,已知梯形ABCD,AD∥BC,对角线AC,BD相交于点O,△AOD与△BOC的面积之比为1:9,若AD=1,则BC的长是.【答案】33. (湖南邵阳,16,3分)如图(六)所示,在等腰梯形ABCD中,AB∥CD,AD=BC,AC⊥BC,∠B=60°,BC=2cm,则上底DC的长是_______cm。

2011中考数学真题解析88 梯形(含答案)

2011中考数学真题解析88 梯形(含答案)
A、6 B、8
C、10﹣2 D、10+2
考点:梯形;菱形的性质。
专题:计算题。
分析:利用菱形和正方形的性质分别求得HE和ID、DE的长,利用梯形的面积计算方法算得梯形的面积即可.
解答:解:四边形ABCD为菱形且∠A=60°⇒∠ADE=180°﹣60°=120°,
又AD∥HE⇒∠DEH=180°﹣120°=60°,
8.(2011山东济南,11,3分)如图,在等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,下列结论不一定正确的是()
A.AC=BDB.∠OBC=∠OCB
C.S△AOB=S△DOCD.∠BCD=∠BDC
考点:等腰梯形的性质。
分析:由四边形ABCD是等腰梯形,AD∥BC,根据等腰梯形的对角线相等,即可证得AC=BD,又由△ABC≌△DCB与△AOB≌△DOC,证得B与C正确,利用排除法即可求得答案.
6.(2011江苏连云港,7,3分)如图,在正五边形ABCDE中,对角线AD,AC与EB分别交于点M,N.下列说法错误的是()
A.四边形EDCN是菱形B.四边形MNCD是等腰梯形
C.△AEM与△CBN相似D.△AEN与△EDM全等
考点:相似三角形的判定;全等三角形的判定;菱形的判定;等腰梯形的判定。
专题:计算题。
分析:过D作DE∥AB交BC于E,推出平行四边形ABED,得出AD=BE=2cm,AB=DE=DC,推出等边三角形DEC,求出EC的长,根据BC=EB+EC即可求出答案.
解答:
解:过D作DE∥AB交BC于E,
∵DE∥AB,AD∥BC,
∴四边形ABED是平行四边形,
∴AD=BE=2cm,DE=AB=4cm,∠DEC=∠B=60°,AB=DE=DC,

中考数学专项复习《梯形(1)》练习(无答案) 浙教版(2021年整理)

中考数学专项复习《梯形(1)》练习(无答案) 浙教版(2021年整理)

2017年中考数学专项复习《梯形(1)》练习(无答案)浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学专项复习《梯形(1)》练习(无答案)浙教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学专项复习《梯形(1)》练习(无答案)浙教版的全部内容。

梯形(01)一、选择题1.如图的灰色小三角形为三个全等大三角形的重迭处,且三个大三角形各扣掉灰色小三角形后分别为甲、乙、丙三个梯形.若图中标示的∠1为58°,∠2为62°,∠3为60°,则关于甲、乙、丙三梯形的高的大小关系,下列叙述何者正确?( )A.乙>甲>丙B.乙>丙>甲C.丙>甲>乙D.丙>乙>甲2.如图,梯形ABCD中,AD∥BC,E点在BC上,且AE⊥BC.若AB=10,BE=8,DE=6,则AD 的长度为( )A.8 B.9 C.6D.63.如图,梯形ABCD中,AD∥BC,AB=,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为()A.B.C.D.24.如图,已知等腰梯形ABCD中,AD∥BC,AB=DC,AC与BD相交于点O,则下列判断不正确的是()A.△ABC≌△DCB B.△AOD≌△COB C.△ABO≌△DCO D.△ADB≌△DAC5.装有一些液体的长方体玻璃容器,水平放置在桌面上时,液体的深度为6,其正面如图1所示,将容器倾斜,其正面如图2所示.已知液体部分正面的面积保持不变,当AA1=4时,BB1=( )A.10 B.8 C.6 D.46.如图,已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,梯形中位线EF与对角线BD相交于点M,且BD⊥CD,则MF的长为()A.1.5 B.3 C.3.5 D.4。

中考数学---几何选择填空压轴题精选1

中考数学---几何选择填空压轴题精选1

中考数学---几何选择填空压轴题精选1一.选择题:1.如下图1,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为()①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A. 1个B. 2个C. 3个D. 4个2、如上图2,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个3.如上图3,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S▭DHGE;④图中有8个等腰三角形.其中正确的是()A.①③ B.②④ C.①④ D.②③4.如下图1,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为()A.B. C. D.5、如上图2,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个 B.2个 C.3个 D.4个6.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下图1,下列结论:①(BE+CF)=BC;②S△AEF ≤S△ABC;③S四边形AEDF=AD•EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个B.2个C.3个D.4个7.如上图2,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.下列结论①∠ADG=22.5°;②tan∠AED=2;③S△AGD =S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有()A.①④⑤B.①②④C.③④⑤D.②③④8.如上图3,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接并延长AE 交CD于F,连接BD分别交CE、AF于G、H,下列结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正确的结论是()A.①②③B.①②④C.①②⑤D.②④⑤9.如下图1,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有()A.①②③B.①②④C.①③④D.①②③④10.正方形ABCD、正方形BEFG和正方形RKPF的位置如上图2所示,点G在线段DK上,正方形BEFG 的边长为4,则△DEK的面积为()A. 10B. 12C. 14D. 16二.填空题1.如下图1,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形, 图4中有30个菱形…,则第6个图中菱形的个数是 个.2.如下图2,在△ABC 中,∠A=α.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1; ∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2; …;∠A 2011BC 与∠A 2011CD 的平分线相交于点A 2012,得∠A 2012,则∠A 2012= .3.如下图1,已知Rt △ABC 中,AC=3,BC=4,过直角顶点C 作CA 1⊥AB ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直做下去,得到了一组线段CA 1,A 1C 1,C 1A 2,…,则CA 1= ,= .4、如上图2,点A 1,A 2,A 3,A 4,…,A n 在射线OA 上,点B 1,B 2,B 3,…,B n ﹣1在射线OB 上, 且A 1B 1∥A 2B 2∥A 3B 3∥…∥A n ﹣1B n ﹣1,A 2B 1∥A 3B 2∥A 4B 3∥…∥A n B n ﹣1,△A 1A 2B 1,△A 2A 3B 2,…,△A n ﹣1A n B n ﹣1为阴影三角形,若△A 2B 1B 2,△A 3B 2B 3的面积分别为1、4,则△A 1A 2B 1的面为 ; 面积小于2011的阴影三角形共有 个. 5、如下图1,已知点A 1(a ,1)在直线l :上,以点A 1为圆心,以为半径画弧,交x 轴于点B 1、B 2,过点B 2作A 1B 1的平行线交直线l 于点A 2,在x 轴上取一点B 3,使得A 2B 3=A 2B 2,再过点B 3作A 2B 2的平行线交直线l 于点A 3,在x 轴上取一点B 4,使得A 3B 4=A 3B 3,按此规律继续作下去, 则①a= ;②△A 4B 4B 5的面积是 .6、如下图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有.7、如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为.8、如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于.9.如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD =15cm2,S△BQC=25cm2,则阴影部分的面积为cm2.中考数学---几何选择填空压轴题精选1答案一.选择题:1、解:作EJ⊥BD于J,连接EF①∵BE平分∠DBC ∴EC=EJ,∴△DJE≌△ECF ∴DE=FE∴∠HEF=45°+22.5°=67.5°∴∠HFE==22.5°∴∠EHF=180°﹣67.5°﹣22.5°=90°∵DH=HF,OH是△DBF的中位线∴OH∥BF ∴OH=BF②∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,∵CE=CF,∴Rt△BCE≌Rt△DCF,∴∠EBC=∠CDF=22.5°,∴∠BFH=90°﹣∠CDF=90°﹣22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,∴∠HCF=90°﹣∠DCH=90°﹣22.5°=67.5°,∴∠CHF=180°﹣∠HCF﹣∠BFH=180°﹣67.5°﹣67.5°=45°,故②正确;③∵OH是△BFD的中位线,∴DG=CG=BC,GH=CF,∵CE=CF,∴GH=CF=CE∵CE<CG=BC,∴GH<BC,故此结论不成立;④∵∠DBE=45°,BE是∠DBF的平分线,∴∠DBH=22.5°,由②知∠HBC=∠CDF=22.5°,∴∠DBH=∠CDF,∵∠BHD=∠BHD,∴△DHE∽△BHD,∴=∴DH=HE•HB,故④成立;所以①②④正确.故选C.(第5题图)2、解:根据BE=AE,∠GBE=∠CAE,∠BEG=∠CEA可判定①△BEG≌△AEC;用反证法证明②∠GAC≠∠GCA,假设∠GAC=∠GCA,则有△AGC为等腰三角形,F为AC的中点,又BF⊥AC,可证得AB=BC,与题设不符;由①知△BEG≌△AEC 所以GE=CE 连接ED、四边形ABED为平行四边形,∵∠ABC=45°,AE⊥BC于点E,∴∠GED=∠CED=45°,∴△GED≌△CED,∴DG=DC;④设AG为X,则易求出GE=EC=2﹣X 因此,S△AGC =SAEC﹣SGEC=﹣+x=﹣(x2﹣2x)=﹣(x2﹣2x+1﹣1)=﹣(x﹣1)2+,当X取1时,面积最大,所以AG等于1,所以G是AE中点,故G为AE中点时,GF最长,故此时△AGC的面积有最大值.故正确的个数有3个.故选C.3、解:∵DF=BD,∴∠DFB=∠DBF,∵AD∥BC,DE=BC,∴∠DEC=∠DBC=45°,∴∠DEC=2∠EFB,∴∠EFB=22.5°,∠CGB=∠CBG=22.5°,∴CG=BC=DE,∵DE=DC,∴∠DEG=∠DCE,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∠DGE=180°﹣(∠BGD+∠EGF)=180°﹣(∠BGD+∠BGC),=180°﹣(180°﹣∠DCG)÷2=180°﹣(180°﹣45°)÷2=112.5°,∴∠GHC=∠DGE,∴△CHG≌△EGD,∴∠EDG=∠CGB=∠CBF,∴∠GDH=∠GHD,∴S△CDG =S▭DHGE.故选D.4、解:∵矩形ABCD的对角线互相平分,面积为5,∴平行四边形ABC1O1的面积为,∵平行四边形ABC1O1的对角线互相平分,∴平行四边形ABC2O2的面积为×=,…,依此类推,平行四边形ABC2009O2009的面积为.故选B.5、解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,正确;③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;(见上图)④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形;∴BN=PB=PC,正确.故选D.6、解:∵Rt△ABC中,AB=AC,点D为BC中点,∴∠C=∠BAD=45°,AD=BD=CD,∵∠MDN=90°,∴∠ADE+∠ADF=∠ADF+∠CDF=90°,∴∠ADE=∠CDF.在△AED与△CFD中,∵,∴△AED≌△CFD(ASA),∴AE=CF,在Rt△ABD中,BE+CF=BE+AE=AB==BD=BC.故①正确;设AB=AC=a,AE=CF=x,则AF=a﹣x.∵S△AEF =AE•AF=x(a﹣x)=﹣(x﹣a)2+a2,∴当x=a时,S△AEF有最大值a2,又∵S△ABC =×a2=a2,∴S△AEF≤S△ABC.故②正确;EF2=AE2+AF2=x2+(a﹣x)2=2(x﹣a)2+a2,∴当x=a时,EF2取得最小值a2,∴EF≥a(等号当且仅当x=a时成立),而AD=a,∴EF≥AD.故④错误;由①的证明知△AED≌△CFD,∴S四边形AEDF =S△AED+S△ADF=S△CFD+S△ADF=S△ADC=AD2,∵EF≥AD,∴AD•EF≥AD2,∴AD•EF>S四边形AEDF故③错误;当E、F分别为AB、AC的中点时,四边形AEDF为正方形,此时AD与EF互相平分.故⑤正确.综上所述,正确的有:①②⑤,共3个.故选C.7、解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵tan∠AED=,由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴tan∠AED=>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD >S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∴其中正确结论的序号是:①④⑤.故选:A.8、解:①由∠ABC=90°,△BEC为等边三角形,△ABE为等腰三角形,∠AEB+∠BEC+∠CEH=180°,可求得∠CEH=45°,此结论正确;②由△EGD≌△DFE,EF=GD,再由△HDE为等腰三角形,∠DEH=30°,得出△HGF为等腰三角形,∠HFG=30°,可求得GF∥DE,此结论正确;③由图可知2(OH+HD)=2OD=BD,所以2OH+DH=BD此结论不正确;④如图,过点G作GM⊥CD垂足为M,GN⊥BC垂足为N,设GM=x,则GN=x,进一步利用勾股定理求得GD=x,BG=x,得出BG=GD,此结论不正确;⑤由图可知△BCE和△BCG同底不等高,它们的面积比即是两个三角形的高之比,由④可知△BCE的高为(x+x)和△BCG的高为x,因此S△BCE :S△BCG=(x+x):x=,此结论正确;故正确的结论有①②⑤.故选C.9、解:(1)连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.(上图2)(2)∵FH⊥AE,FH=AF,∴∠HAE=45°.(3)连接AC交BD于点O,可知:BD=2OA,(上图3)∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.(4)延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,根据△MEC≌△CIM,(见下图2)可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故(1)(2)(3)(4)结论都正确.故选D.10、解:如下图1,连DB,GE,FK,则DB∥GE∥FK,在梯形GDBE中,S△DGE =S△GEB(同底等高的两三角形面积相等),同理S△GKE=S△GFE.∴S阴影=S△DGE+S△GKE=S△GEB+S△GEF=S正方形GBEF=4×4=16 故选D.二.填空题:1、解:观察图形,发现规律:图1中有1个菱形,图2中有1+22=5个菱形,图3中有5+32=14个菱形,图4中有14+42=30个菱形,则第5个图中菱形的个数是30+52=55,第6个图中菱形的个数是55+62=91个.故答案为91.2、解:∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,∴∠A1+∠A1BC=∠A1+∠ABC=(∠A+∠ABC),整理得,∠A1=∠A=,同理可得,∠A2=∠A1=×=,…,∠A2012=.故答案为:.3、解:在Rt△ABC中,AC=3,BC=4,∴AB=,又因为CA1⊥AB,∴AB•CA1=AC•BC,即CA1===.∵C4A5⊥AB,∴△BA5C4∽△BCA,∴,∴==.所以应填和.4、解:由题意得,△A2B1B2∽△A3B2B3,∴==,==,又∵A1B1∥A2B2∥A3B3,∴===,==,∴OA1=A1A2,B1B2=B2B3继而可得出规律:A1A2=A2A3=A3A4…;B1B2=B2B3=B3B4…又△A2B1B2,△A3B2B3的面积分别为1、4,∴S△A1B1A2=,S△A2B2A3=2,继而可推出S△A3B3A4=8,S△A4B4A5=32,S△A5B5A6=128,S△A6B6A7=512,S△A7B7A8=2048,故可得小于2011的阴影三角形的有:△A1B1A2,△A2B2A3,△A3B3A4,△A4B4A5,△A5B5A6,△A6B6A7,共6个.故答案是:;6.5、解:如图所示:①将点A1(a,1)代入直线1中,可得,所以a=.②△A1B1B2的面积为:S==;因为△OA1B1∽△OA2B2,所以2A1B1=A2B2,又因为两线段平行,可知△A1B1B2∽△A2B2B3,所以△A2B2B3的面积为S1=4S;以此类推,△A4B4B5的面积等于64S=.6、解:∵梯形ABCD中,AD∥BC,EA⊥AD,∴AE⊥BC,即②正确.∵∠MBE=45°,∴BE=ME.在△ABE与△CME中,∵∠BAE=∠MCE,∠AEB=∠CEM=90°,BE=ME,∴△ABE≌△CME,∴AB=CM,即①正确.∵∠MCE=∠BAE=90°﹣∠ABE<90°﹣∠MBE=45°,∴∠MCE+∠MBC<90°,∴∠BMC>90°,即③⑤错误.∵∠AEB=∠CEM=90°,F、G分别是AB、CM的中点,∴EF=AB,EG=CM.又∵AB=CM,∴EF=EG,即④正确.故正确的是①②④.7、解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM==,∴AC=,同理可得AC1=AC=()2,AC2=AC1=3=()3,按此规律所作的第n个菱形的边长为()n﹣1故答案为()n﹣1.8、解:∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,(见上图3)同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形.∴EH=FG(矩形的对边相等);又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得HF=,∴HF=5,又∵HE•EF=HF•EM,∴EM=,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=,∴AD:AB=5:=.故答案为:.9、解:如图,连接EF;∵△ADF与△DEF同底等高,∴S△ADF =S△DEF即S△ADF﹣S△DPF=S△DEF﹣S△DPF,即S△APD =S△EPF=15cm2,同理可得S△BQC=S△EFQ=25cm2,∴阴影部分的面积为S△EPF+S△EFQ=15+25=40cm2.故答案为40.。

2022全国各地中考数学真题分类汇编-梯形

2022全国各地中考数学真题分类汇编-梯形

2022全国各地中考数学真题分类汇编-梯形一.选择题1.(2020无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边形ABED的周长等于()A. 17 B. 18 C. 19 D.20考点:梯形;线段垂直平分线的性质。

分析:由CD的垂直平分线交BC于E,依照线段垂直平分线的性质,即可得DE=CE,即可得四边形ABED的周长为AB+BC+AD,继而求得答案.解答:解:∵CD的垂直平分线交BC于E,∴DE=CE,∵AD=3,AB=5,BC=9,∴四边形ABED的周长为:AB+BE+DE+AD=AB+BE+EC+AD=AB+BC+AD=5+9+3=17.故选A.点评:此题考查了线段垂直平分线的性质.此题比较简单,注意把握数形结合思想与转化思想的应用是解此题的关键.2.(2020呼和浩特)已知:在等腰梯形ABCD中,AD∥BC,AC⊥BD,AD=3,BC=7,则梯形的面积是A. 25B. 50 C2D.3024【解析】作DE∥AC,交BC的延长线于E,作DF⊥BE于F。

∵四边形ABCD是等腰梯形∴AD∥CE,AC=BD又∵DE∥AC,AC⊥BD∴四边形ACED是平行四边形,BD⊥DE∴DE=AC,AD=CE=3∴△BDE是等腰直角三角形又∵DF⊥BE∴BF=EF=DF=12BE=12(BC+CE)=12(BC+AD)=12(7+3)=5∴S梯形ABCD=12(AD+BC)·DF=25m(3+7)×5=25A DB C EF【答案】A【点评】本题考查了梯形作辅助线的方法,见对角线互相垂直,则平移对角线,利用平移后形成的直角三角形求解。

此题关键是做辅助线的方法。

3.(2020•台湾)如图,梯形ABCD中,∠DAB=∠ABC=90°,E点在CD上,且DE:EC=1:4.若AB=5,BC=4,AD=8,则四边形ABCE的面积为何?()A.24 B.25 C. 26 D.27考点:直角梯形;三角形的面积。

中考数学 第五章四边形第22讲 梯形精品课件(含11真题和12预测题)

中考数学 第五章四边形第22讲 梯形精品课件(含11真题和12预测题)

(2011·广东)如图所示,在直角梯形纸片ABCD中, AD∥BC,∠A=90°,∠C=30°.折叠纸片使BC经过点D, 点C落在点E处,BF是折痕,且BF=CF=8.
(1)求∠BDF的度数; (2)求AB的长. 【点拨】在直角三角形中求线段的长度,常运用锐角三角函数求解. 折叠的本质是轴对称. 【解答】(1)∵FB=FC,∠C=30°,∴∠FBC=∠C=30°. 由折叠的性质得∠DBF=∠FBC=30°.又∵∠DFB=∠C+∠FBC=60° ,∴∠BDF=180°-∠DBF-∠DFB=180°-30°-60°=90°.
【解析】CD=DE=AB=6,CE=BC-BE=BC-AD=8-5= 3.∴△CDE的周长=DE+DC+EC=6+6+3=15.
【答案】15
15.(2011·呼和浩特)如图,在梯形ABCD中,AD∥BC,CE是∠BCD 的平分线,且CE⊥AB,E为垂足,BE=2AE,若四边形AECD的面积为1, 则梯形ABCD的面积为________.
考点三 梯形的中位线 1.定义:连接梯形 两腰中点 的线段叫做梯形中位线. 2.判定:(1)经过梯形一腰中点与 底平行 的直线必平分另一腰; (2)定义法. 3.性质:梯形的中位线平行于两底,并且等于两底和 的一半.
考点四 解决梯形问题的基本思路及辅助线的作法
1.基本思路:梯形问题分割―转、―化→拼接三角形或平行四边形. 2.常见辅助线的作法:
【答案】A
9.(2011·潍坊)如图,已知直角梯形ABCD中,AD∥BC,∠BCD= 90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P ,连接CP并延长交AB于点Q,连接AF,则下列结论不正确的是( )
A.CP平分∠BCD B.四边形ABED为平行四边形 C.CQ将直角梯形ABCD分为面积相等的两部分 D.△ABF为等腰三角形

中考数学试题梯形专题02

中考数学试题梯形专题02

中考数学试题专题梯形真题试题汇编一、选择题1.(2010安徽芜湖)如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD 于点O ,AE ⊥BC ,DF ⊥BC ,垂足分别为E 、F ,AD =4,BC =8,则AE +EF 等于()A .9B .10C .11D .12【答案】B2.(2010山东日照)已知等腰梯形的底角为45o ,高为2,上底为2,则其面积为(A )2 (B )6 (C )8 (D )12【答案】C3.(2010山东烟台)如图,小区的一角有一块形状为等梯形的空地,为了美化小区,社区居委会计划在空地上建一个四边形的水池,使水池的四个顶点恰好在梯形各边的中点上,则水池的形状一定是A 、等腰梯形B 、矩形C 、菱形D 、正方形【答案】C4.(2010山东威海)如图,在梯形ABCD 中,AB ∥CD ,AD =BC ,对角线AC ⊥BD ,垂足为O .若CD =3,AB =5,则AC 的长为A .24B .4C .33D .52 【答案】A 5.(2010台湾)如图(十五)梯形ABCD 的两底长为AD =6,BC =10,中线为EF , C A B DO且∠B=90︒,若P 为AB 上的一点,且PE 将梯形ABCD 分成面积相同的两区域,则△EFP 与梯形ABCD 的面积比为何?(A) 1:6 (B) 1:10 (C) 1:12 (D) 1:16 。

【答案】D6.(2010 浙江省温州)用若干根相同的火柴棒首尾顺次相接围成一个梯形(提供的火柴棒全部用完),下列根数的火柴棒不能围成梯形的是(▲) .A .5B .6C .7D .8【答案】B7.(2010 浙江台州市)梯形ABCD 中,AD ∥BC ,AB=CD=AD=2,∠B=60°,则下底BC 的长是(▲)A .3B .4C . 23D .2+23【答案】B8.(2010浙江金华) 如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC ⊥BC ,∠B =60º,BC =2cm ,则梯形ABCD的面积为( ▲ ) A .33cm2 B .6 cm2C .36cm2D .12 cm2 【答案】A9.(2010湖北省咸宁)如图,菱形ABCD 由6个腰长为2,且全等的等腰梯形镶嵌而成, 则线段AC 的长为A .3B .6 C. D.【答案】D10.(2010湖北恩施自治州)如图5,EF 是△ABC 的中位线,将△AEF 沿中线AD 方向平移 D C BAE F P图(十五) ACBD (第10题图)到△A 1E 1F 1的位置,使E 1F 1与BC 边重合,已知△AEF 的面积为7,则图中阴影部分的面积为:A. 7B. 14C. 21D. 28【答案】B11.(2010四川内江)(2010四川内江,12,3分)如图,梯形ABCD 中,AD ∥BC , 点E 在BC 上,AE =BE ,点F 是CD 的中点,且AF ⊥AB ,若AD =2.7,AF =4,AB =6,则CE 的长为A .2 2B .23-1C .2.5D .2.3【答案】D12.(2010 湖南湘潭)在△ABC 中,D 、E 分别是AB 、AC 的中点,若DE=2cm ,则BC 的长是A .2cmB .3cmC .4cmD .5cm【答案】C13.(2010湖北十堰)如图,已知梯形ABCD 的中位线为EF ,且△AEF 的面积为6cm2,则梯形ABCD 的面积为( )A .12 cm2B .18 cm2C .24 cm2D .30 cm2【答案】C14.(2010 湖北咸宁)如图,菱形ABCD 由6个腰长为2,且全等的等腰梯形镶嵌而成, 则线段AC 的长为A .3B .6 C. D.AD BC EF (第7题) A B C DE F【答案】D15.(2010四川达州) 如图4,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C 的小路(M 、N 分别是AB 、CD 中点).极少数同学为了走“捷径”,沿线段AC 行走,破坏了草坪,实际上他们仅少走了图4A. 7米B. 6米C. 5米D. 4米【答案】B16.(2010湖南娄底)下列说法中错误的是( )A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直C. 菱形的对角线互相垂直平分D. 等腰梯形的对角线相等【答案】B1二、填空题1.(2010甘肃兰州) 如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD = 2,将腰CD 以D 为中心逆时针旋转90°至DE ,连接AE 、CE ,△ADE 的面积为3,则BC 的长为 .【答案】52.(2010浙江宁波)如图,在等腰梯形ABCD 中,AD ∥BC ,AB=AD=CD. 若∠ABC=60°,BC=12,则梯形ABCD 的周长为 ▲.图4DCBA【答案】303.(2010湖南长沙)等腰梯形的上底是4cm,下底是10cm,一个底角是60 ,则等腰梯形的腰长是cm.【答案】64.(2010江苏无锡)如图,梯形ABCD中,AD∥BC,EF是梯形的中位线,对角线AC 交EF于G,若BC=10cm,EF=8cm,则GF的长等于▲cm.【答案】35.(2010 黄冈)如图,在等腰梯形ABCD中,AC⊥BD,AC=6cm,则等腰梯形ABCD的面积为_____cm2.【答案】186.(2010湖北武汉)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD⊥DC,BD=DC,CE平分∠BCD,交AB于点E,交BD于点H,EN∥DC交BD于点N,下列结论:①BH=DH;②CH=)1EH;③EBHENHS EHS EC∆∆=.其中正确的是()A、①②③B、只有②③C、只有②D、只有③G FEDC BA(第17题)【答案】 B7.(2010湖南怀化)如图5,在直角梯形ABCD 中,AB ∥CD ,AD ⊥CD ,AB=1cm , AD=6cm ,CD=9cm ,则BC= cm .【答案】108.(2010江苏扬州)如图,在直角梯形ABCD 中,∠ABC =90°,AD ∥BC ,AD =4,AB =5,BC =6,点P 是AB 上一个动点,当PC +PD 的和最小时,PB 的长为__________. 【答案】39.(2010湖北随州)如图,在等腰梯形ABCD 中,AC ⊥BD ,AC =6cm ,则等腰梯形ABCD 的面积为_____cm 2.【答案】1810.(2010云南昆明)如图,在△ABC 中,点D 、E 、F 分别是AB 、BC 、CA 的中点, 若△ABC 的周长为10 cm ,则△DEF 的周长是 cm .【答案】511.(2010陕西西安)如图,在梯形ABCD 中,DC ∥AB ,∠A +∠B=90°。

通用版2020年中考数学热身梯形含解析48

通用版2020年中考数学热身梯形含解析48

梯形一、选择题1.下列结论正确的是()A.四边形可以分成平行四边形和梯形两类B.梯形可分为直角梯形和等腰梯形两类C.平行四边形是梯形的特殊形式D.直角梯形和等腰梯形都是梯形的特殊形式2.四边形ABCD中,若∠A:∠B:∠C:∠D=2:2:1:3,则这个四边形是()A.梯形 B.等腰梯形 C.直角梯形 D.任意四边形3.如图,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC,BD相交于O点,∠BCD=60°,则下列说法错误的是()A.梯形ABCD是轴对称图形B.BC=2ADC.梯形ABCD是中心对称图形D.AC平分∠DCB二、填空题4.等腰梯形ABCD对角线交于O点,∠BOC=120°,∠BDC=80°,则∠DAB= .5.一梯形是上底为4cm,过上底的一顶点,作一直线平行于一腰,并与下底相交组成一个三角形,若三角形的周长为12cm,则梯形的周长是.6.在梯形ABCD中,AD∥BC,∠B=50°,∠C=80°,BC=5,AD=3,则CD= .7.如图,在梯形ABCD中,AD∥BC,E为BC上一点,DE∥AB,AD的长为1,BC的长为2,则CE的长为.8.梯形的中位线长为3,高为2,则该梯形的面积为.三、解答题9.如图,在等腰梯形ABCD中,AD∥BC,M是AD的中点,求证:BM=MC.10.如图,在△ABC中,∠B=∠C,点D、E分别在边AB、AC上,且AD=AE,那么四边形BCED是什么形状的图形呢?11.如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=,BC=4,求DC的长.12.已知:如图,梯形ABCD中,AD∥BC,∠B=60°,∠C=30°,AD=2,BC=8.求:梯形两腰AB、CD的长.13.梯形ABCD中,AB∥CD,AB>CD,CE∥DA,交AB于E,且△BCE的周长为7cm,CD为3cm,求梯形ABCD的周长.14.如图所示,在梯形ABCD中,上底AD=1cm,下底BC=4cm,对角线BD⊥AC,交点为E,且BD=3cm,AC=4cm.(1)求ABCD面积;(2)求△BEC面积.15.在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE.16.已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.梯形参考答案与试题解析一、选择题1.下列结论正确的是()A.四边形可以分成平行四边形和梯形两类B.梯形可分为直角梯形和等腰梯形两类C.平行四边形是梯形的特殊形式D.直角梯形和等腰梯形都是梯形的特殊形式【考点】多边形.【分析】平行四边形和梯形是特殊的四边形,直角梯形和等腰梯形是特殊的梯形,平行四边形是两边互相平行的四边形,梯形是一组对边互相平行,另一组对边不平行的四边形.【解答】解:A、四边形可以分成平行四边形和梯形两类,说法错误;B、梯形可分为直角梯形和等腰梯形两类,说法错误;C、平行四边形是梯形的特殊形式,说法错误;D、直角梯形和等腰梯形都是梯形的特殊形式,说法正确;故选:D.【点评】此题主要考查了多边形,关键是掌握梯形、平行四边形、直角梯形、等腰梯形与四边形的关系.2.四边形ABCD中,若∠A:∠B:∠C:∠D=2:2:1:3,则这个四边形是()A.梯形 B.等腰梯形 C.直角梯形 D.任意四边形【考点】直角梯形.【分析】设四角的度数分别为:2X,2X,X,3X,根据四边形的内角和公式即可求得各角的度数,从而便可求得该四边形的形状.【解答】解:由题意,设四角的度数分别为:2X,2X,X,3X,由四边形的内角和为360°,得X+2X+2X+3X=360°,解得X=45°,四角分别为:90度,90度,45度,135度,有两个邻角为90度,所以是直角梯形.故选C.【点评】本题通过设适当的参数,根据四边形的内角和建立方程,求得各角的度数进行判定.3.如图,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC,BD相交于O点,∠BCD=60°,则下列说法错误的是()A.梯形ABCD是轴对称图形B.BC=2ADC.梯形ABCD是中心对称图形D.AC平分∠DCB【考点】梯形.【专题】压轴题.【分析】利用已知条件,对四个选逐个验证,即可得到答案.【解答】解:A、根据已知条件AB=CD,则该梯形是等腰梯形,等腰梯形是轴对称图形,正确;B、过点D作DE∥AB交BC于点E,得到平行四边形ABED和等边三角形CDE.所以BC=2AD,正确;C、根据中心对称图形的概念,等腰梯形一定不是中心对称图形,错误;D、根据等边对等角和平行线的性质,可得AC平分∠BCD,正确.故选C.【点评】要熟悉这个上底和腰相等且底角是60°的等腰梯形的性质;理解轴对称图形和中心对称图形的概念.二、填空题4.等腰梯形ABCD对角线交于O点,∠BOC=120°,∠BDC=80°,则∠DAB= 110°.【考点】等腰梯形的性质.【分析】首先根据题意画出图形,分别从AD∥BC与AB∥CD去分析求解,由图(1)可证得△ABC≌△DCB,即可求得∠ACB的度数,继而可求得答案;由图(2)可得不符合要求.【解答】解:如图(1),若AD∥BC,AB=CD,则AC=BD,在△ABC和△DCB中,,∴△ABC≌△DCB(SSS),∴∠ACB=∠DBC,∠BAC=∠BDC=80°,∵∠BOC=120°,∴∠ACB=30°,∴∠DAC=∠ACB=30°,∴∠DAB=∠DAC+∠BAC=110°.如图(2),若AB∥CD,AD=BC,则AC=BD,在△ACD和△BDC中,,∴△ACD≌△BDC(SSS),∴∠ACD=∠BDC=80°,∴∠BOC=∠BDC+∠ACD=160°≠120°(不符合要求,舍去).故答案为:110°.【点评】此题考查了等腰梯形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想与分类讨论思想的应用.5.一梯形是上底为4cm,过上底的一顶点,作一直线平行于一腰,并与下底相交组成一个三角形,若三角形的周长为12cm,则梯形的周长是20cm .【考点】梯形.【专题】计算题;数形结合;转化思想.【分析】首先根据题意画出图形,由一梯形是上底为4cm,过上底的一顶点,作一直线平行于一腰,并与下底相交组成一个三角形,易得四边形AECD是平行四边形,又由△BCE的周长为12cm,CD为4cm,即可得形ABCD的周长=△BCE的周长+AE+CD.【解答】解:如图,∵梯形ABCD中,AB∥CD,CE∥DA,∴四边形AECD是平行四边形,∴AE=CD=4cm,CE=AD,∵△BCE的周长为12cm,即CE+BE+CD=12cm,∴AD+BE+BC=12cm,∴梯形ABCD的周长为:AB+BC+CD+AD=AD+AE+BE+BC+CD=AD+BE+BC+4+4=12+4+4=20(cm).故答案为:20cm.【点评】此题考查了梯形的性质以及平行四边形的判定与性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.6.在梯形ABCD中,AD∥BC,∠B=50°,∠C=80°,BC=5,AD=3,则CD= 2 .【考点】梯形.【分析】已知∠B=50°,∠C=80°,过A点作AE∥CD,交BC于E点,利用平移将两个角“移”到同一个三角形中,证明△ABE为等腰三角形,得出线段的相等关系及和差关系.【解答】解:过A点作AE∥CD,交BC于E点,∵AD∥BC,∴四边形ADCE为平行四边形,CD=AE,AD=EC;又∵∠C=80°,∴∠AEB=80°,在△ABE中,∠BAE=180°﹣∠B﹣∠AEB=50°∴AE=BE,CD=BE=BC﹣EC=BC﹣AD=2.【点评】本题考查了梯形常用的作辅助线的方法:平移一腰,等腰三角形的判定及性质的运用.7.如图,在梯形ABCD中,AD∥BC,E为BC上一点,DE∥AB,AD的长为1,BC的长为2,则CE的长为 1 .【考点】梯形.【分析】根据已知证明四边形ABED为平行四边形,利用平行四边形的对边相等得BE=AD,从而可求CE.【解答】解:∵AD∥BC,DE∥AB,∴四边形ABED为平行四边形,BE=AD,∴CE=BC﹣BE=BC﹣AD=2﹣1=1.【点评】本题考查了梯形常用的作辅助线的方法,平行四边形的判定与性质.8.梯形的中位线长为3,高为2,则该梯形的面积为 6 .【考点】梯形中位线定理.【分析】结合梯形的中位线定理以及梯形的面积公式,得梯形的面积等于中位线长和高的乘积.【解答】解:根据题意,得该梯形的面积为3×2=6.【点评】熟记梯形的面积公式:梯形的面积=两底和的一半×高=梯形的中位线×高.三、解答题9.如图,在等腰梯形ABCD中,AD∥BC,M是AD的中点,求证:BM=MC.【考点】等腰梯形的性质;全等三角形的判定与性质.【专题】证明题.【分析】欲证MB=MC,可利用等腰梯形的性质“两腰相等;同一底边上的两个角相等”证△ABM≌△DCM,然后由全等三角形对应边相等得出.【解答】证明:∵四边形ABCD是等腰梯形,∴AB=DC,∠A=∠D.∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM(SAS).∴MB=MC.【点评】本题主要考查等腰梯形的性质的应用.10.(2011秋•安溪县校级期末)如图,在△ABC中,∠B=∠C,点D、E分别在边AB、AC上,且AD=AE,那么四边形BCED是什么形状的图形呢?【考点】等腰梯形的判定.【分析】根据已知条件中AD=AE及∠B=∠C可推得∠ADE=∠B,则DE∥BC.而由∠B=∠C,可得AB=AC,又因为BD与CE交于点A,故BD不平行与CE,所以四边形BCED是等腰梯形.【解答】可以猜测四边形BCED是等腰梯形.解:∵AD=AE,∴∠ADE=∠AED=(180°﹣∠A),又∵∠B=∠C=(180°﹣∠A),∴∠ADE=∠B,∴DE∥BC.由BD与CE交于点A,∴BD不平行与CE,∴四边形BCED是梯形.∵∠B=∠C,∴AB=AC,又∵AD=AE,∴BD=CE,∴四边形BCED是等腰梯形.【点评】此题主要考查了等腰梯形的判定.要说明四边形BCED是等腰梯形必须先说明BCED是梯形,根据梯形的定义,论证DE∥BC,同时要说明DB与EC不平行,这一点容易被遗漏.11.如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=,BC=4,求DC的长.【考点】梯形;勾股定理;等腰直角三角形;矩形的性质.【分析】要求DC的长,根据已知条件可将它转化为直角三角形的边,由勾股定理即可求得.【解答】解:解法一:如图1,分别过点A,D作AE⊥BC于点E,DF⊥BC于点F.∴AE∥DF.又AD∥BC,∴四边形AEFD是矩形.∴EF=AD=.∵AB⊥AC,∠B=45°,BC=4,∴AB=AC.∴AE=EC=BC=2.∴DF=AE=2,CF=EC﹣EF=在Rt△DFC中,∠DFC=90°,∴DC=.解法二:如图2,过点D作DF∥AB,分别交AC,BC于点E,F.∵AB⊥AC,∴∠AED=∠BAC=90度.∵AD∥BC,∴∠DAE=180°﹣∠B﹣∠BAC=45度.在Rt△ABC中,∠BAC=90°,∠B=45°,BC=4,∴AC=BC•sin45°=4=4在Rt△ADE中,∠AED=90°,∠DAE=45°,AD=,∴DE=AE=1.∴CE=AC﹣AE=3.在Rt△DEC中,∠CED=90°,∴DC=.【点评】统观北京及全国各地中考试卷,几何中的计算往往会与两个知识点有关:①圆;②梯形.本题考点:等腰直角三角形的性质、特殊四边形的性质、勾股定理.12.已知:如图,梯形ABCD中,AD∥BC,∠B=60°,∠C=30°,AD=2,BC=8.求:梯形两腰AB、CD的长.【考点】梯形.【分析】平移一腰,得到平行四边形和30°的直角三角形,根据它们的性质进行计算.【解答】解:作DE∥AB交BC于点E,则四边形ABED是平行四边形.∴AB=DE,AD=BE,∠DEC=∠B=60°,∵∠C=30°,∴∠EDC=180°﹣60°﹣30°=90°,∵CE=BC﹣BE=BC﹣AD=6,∴DE=3,CD=3,即AB=3,CD=,【点评】本题考查与梯形有关的问题,平移一腰是梯形中常见的辅助线,再根据平行四边形的性质和三角形的性质进行分析.13.梯形ABCD中,AB∥CD,AB>CD,CE∥DA,交AB于E,且△BCE的周长为7cm,CD为3cm,求梯形ABCD的周长.【考点】梯形.【专题】计算题.【分析】首先根据题意画出图形,由梯形ABCD中,AB∥CD,AB>CD,CE∥DA,易得四边形AECD是平行四边形,又由△BCE的周长为7cm,CD为3cm,即可得形ABCD的周长=△BCE的周长+AE+CD.【解答】解:如图,∵梯形ABCD中,AB∥CD,CE∥DA,∴四边形AECD是平行四边形,∴AE=CD=3cm,CE=AD,∵△BCE的周长为7cm,即CE+BE+CD=7cm,∴AD+BE+BC=7cm,∴梯形ABCD的周长为:AB+BC+CD+AD=AD+AE+BE+BC+CD=AD+BE+BC+3+3=7+3+3=13(cm).【点评】此题考查了梯形的性质以及平行四边形的判定与性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.14.如图所示,在梯形ABCD中,上底AD=1cm,下底BC=4cm,对角线BD⊥AC,交点为E,且BD=3cm,AC=4cm.(1)求ABCD面积;(2)求△BEC面积.【考点】相似三角形的判定与性质;平行四边形的判定与性质;梯形.【分析】(1)首先过点D作DF∥AC交BC的延长线于F点.易证得四边形ACFD为平行四边形.由BD⊥AC,即可得BD⊥DF,又由在Rt△BDF中,BD=3cm,DF=4cm,BF=5cm,即可求得BC边上的高,继而求得四边形ABCD面积;(2)由AD∥BC,即可证得△ADE∽△CBE,然后由相似三角形的对应边成比例,求得BE与CE的长,继而求得△BEC面积.【解答】解:(1)过点D作DF∥AC,交BC的延长线于F点.∵AD∥BC,∴四边形ACFD为平行四边形.∴DF=AC=4cm,AC∥DF,CF=AD=1cm,∴BF=BC+CF=4+1=5(cm),∵AC⊥BD,∴BD⊥DF,在Rt△BDF中,BD=3cm,DF=4cm,BF=5cm,∴BC边上的高h为:(cm),∴S四边形ABCD=(AD+BC)h=×(1+4)×=6(cm2);(2)∵AD∥BC,∴△ADE∽△CBE,∴,∴,,∴DE=cm,AE=cm,∴BE=3﹣DE=3﹣(cm),EC=4﹣AE=(cm),S△BEC=BE•EC=(cm2).【点评】此题考查了相似三角形的判定与性质、梯形的性质、平行四边形的判定与性质以及直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.15.在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE.【考点】直角梯形.【专题】证明题.【分析】延长CE交BA的延长线于点G,那么可得△CED≌△GEA,那么CE=GE,AE=DE,进而可得BC=BG,那么CE⊥BE.【解答】证明:延长CE交BA的延长线于点G,即交点为G,∵E是AD中点,∴AE=ED,∵AB∥CD,∴∠CDE=∠GAE,∠DCE=∠AGE,∴△CED≌△GEA,∴CE=GE,AG=DC,∴GB=BC=3,∴EB⊥EC.【点评】考查梯形的常用辅助线方法的应用;碰到中点问题时构造全等三角形是常用的辅助线方法.16.已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.【考点】全等三角形的判定与性质;梯形.【专题】证明题.【分析】(1)由CF平分∠BCD可知∠BCF=∠DCF,然后通过SAS就能证出△BFC≌△DFC.(2)要证明AD=DE,连接BD,证明△BAD≌△BED则可.AB∥DF⇒∠ABD=∠BDF,又BF=DF⇒∠DBF=∠BDF,∴∠ABD=∠EBD,BD=BD,再证明∠BDA=∠BDC则可,容易推理∠BDA=∠DBC=∠BDC.【解答】证明:(1)∵CF平分∠BCD,∴∠BCF=∠DCF.在△BFC和△DFC中,∴△BFC≌△DFC(SAS).(2)连接BD.∵△BFC≌△DFC,∴BF=DF,∴∠FBD=∠FDB.∵DF∥AB,∴∠ABD=∠FDB.∴∠ABD=∠FBD.∵AD∥BC,∴∠BDA=∠DBC.∵BC=DC,∴∠DBC=∠BDC.∴∠BDA=∠BDC.又∵BD是公共边,∴△BAD≌△BED(ASA).∴AD=DE.【点评】这道题是主要考查全等三角形的判定和性质,涉及的知识比较多,有点难度.。

中考数学复习《梯形》练习题(含答案)

中考数学复习《梯形》练习题(含答案)

中考数学复习《梯形》练习题(含答案)一、选择题1.下列命题中,正确的是( )(A )对顶角相等 (B )梯形的对角线相等 (C )同位角相等 (D )平行四边形对角线相等2.如图,梯形ABCD 的对角线AC 、BD 相交于点O ,△ADO 的面积记作S 1, △BCO 的面积记作S 2,△ABO 的面积记作S 3,△CDO 的面积记作S 4,则下列关系正确是( )A. S 1= S 2B. S 1 × S 2= S 3 × S 4C. S 1 + S 2 = S 4 + S 3D. S 2= 2S 33.如图,在梯形ABCD 中,AB ∥CD ,∠A =60°, ∠B =30°, 若AD =CD =6,则AB 的长等于( ). A .9B .12C .633D .184.如图1,在直角梯形ABCD 中,∠B=90°,DC ∥AB ,动点P 从B 点出发,沿折线B →C →D →A 运动,点P 运动的速度为2个单位长度/秒,若设点P 运动的时间为x 秒,△ABP 的面积为y ,如果y 关于x 的函数图像如图2所示,则M 点的纵坐标为(▲ ) A .16 B .48C .24D .64 答案 B5. 在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =BC ,E 为AB 边上一点,∠BCE =15°,且AE =AD ,连接DE 交对角线AC 于H ,连接BH .下列结论:①△ACD ≌△ACE ;②△CDE 为等边三角形;③EHBE =2;④S △EBC S △EHC =AH CH .其中结论正确的是( )A .只有①②B .只有①②④C .只有③④D .①②③④ 6.如图,,过上到点的距离分别为的点作的垂线与S 2S 3S 4S 1O DCB ADCPBA图1 ABDE H第5题相交,得到并标出一组黑色梯形,它们的面积分别为.观察图中的规律,求出第10个黑色梯形的面积( )A.32B.54C.76D.86二、填空题1.如图,在梯形ABCD 中,AD ∥BC ,点E 、F 、G 、H 是两腰上的点,AE =EF =FB ,CG =GH =HD , 且四边形EFGH 的面积为6cm 2,则梯形ABCD 的面积为 ▲ cm 2.2.如图,直角梯形ABCD 中, BA CD ,,2AB BC AB ⊥= ,将腰DA 以A 为旋转中心逆时针旋转90°至AE ,连接,,BE DE ABE ∆的面积为3,则CD 的长为 ﹡ .3.如图,在直角梯形ABCD 中,A B ⊥BC ,AD ∥BC ,EF 为中位线,若AB =2b ,EF =a ,则阴影部分的面积 .4.如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4, AB =33,则下底BC 的长为 __________.D BCE F A G H (第1题图)60°30°D A5.已知等腰梯形ABCD 的中位线EF 的长为5,腰AD 的长为4,则这个等腰梯形的周长为 ;6.如图,在梯形ABCD 中,AB ∥CD ,AD =BC ,对角线AC ⊥BD ,垂足为O .若CD =3,AB =5,则AC 的长为 .7.如图,n+1个上底、两腰长皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P 1M 1N 1N 2面积为S 1,四边形P 2M 2N 2N 3的面积为S 2,……,四边形P n M n N n N n+1的面积记为S n ,则S n = ▲8.如图有一直角梯形零件ABCD ,AD ∥BC ,斜腰DC 的长为10cm ,∠D =120 ,则该零件另一腰AB 的长是 m.答案: 选择题 1、A 2、B 3、D 4、B 5、A 6、C填空题1、答案:182、答案:53、答案:ab4、答案:105、答案18(第6题图)CABDOA B CD第8题图67、答案:31 21 nn++8、答案:5。

初中数学中考梯形问题(含答案解析)

初中数学中考梯形问题(含答案解析)

初中数学中考梯形问题(含解析答案)一.解答题(共29小题)1.已知,如图,在直角梯形COAB中,CB∥OA,以O为原点建立平面直角坐标系,A、B、C的坐标分别为A(10,0)、B(4,8)、C(0,8),D为OA的中点,动点P自A点出发沿A→B→C→O的路线移动,速度为每秒1个单位,移动时间记为t秒.(1)求过点O、B、A三点的抛物线的解析式;(2)求AB的长;若动点P在从A到B的移动过程中,设△APD的面积为S,写出S与t 的函数关系式,并指出自变量t的取值范围;(3)动点P从A出发,几秒钟后线段PD将梯形COAB的面积分成1:3两部分?求出此时P点的坐标.2.(2008•黄冈)已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC 的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的;(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;(4)试探究:当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD 为矩形?并求出此时动点P的坐标.3.如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y 轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止运动,设P、Q运动的时间为t秒(t>0).(1)试求出△APQ的面积S与运动时间t之间的函数关系式;(2)在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.求出此时△APQ的面积.(3)在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯形?若存在,求出点E的坐标;若不存在,请说明理由.(4)伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB﹣BO ﹣OP于点F.当DF经过原点O时,请直接写出t的值.4.如图,在Rt△ABO中,OB=8,tan∠OBA=.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点C在x轴负半轴上,且OB=4OC.若抛物线y=ax2+bx+c经过点A、B、C.(1)求该抛物线的解析式;(2)设该二次函数的图象的顶点为P,求四边形OAPB的面积;(3)有两动点M,N同时从点O出发,其中点M以每秒2个单位长度的速度沿折线OAB 按O→A→B的路线运动,点N以每秒4个单位长度的速度沿折线按O→B→A的路线运动,当M、N两点相遇时,它们都停止运动.设M、N同时从点O出发t秒时,△OMN的面积为S.①请求出S关于t的函数关系式,并写出自变量t的取值范围;②判断在①的过程中,t为何值时,△OMN的面积最大?5.如图(1),以梯形OABC的顶点O为原点,底边OA所在的直线为轴建立直角坐标系.梯形其它三个顶点坐标分别为:A(14,0),B(11,4),C(3,4),点E以每秒2个单位的速度从O点出发沿射线OA向A点运动,同时点F以每秒3个单位的速度,从O点出发沿折线OCB向B运动,设运动时间为t.(1)当t=4秒时,判断四边形COEB是什么样的四边形?(2)当t为何值时,四边形COEF是直角梯形?(3)在运动过程中,四边形COEF能否成为一个菱形?若能,请求出t的值;若不能,请简要说明理由,并改变E、F两点中任一个点的运动速度,使E、F运动到某时刻时,四边形COEF是菱形,并写出改变后的速度及t的值6.如图,已知在平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(12,0),点D的坐标为(8,4),动点E从点A出发,沿y轴正方向以每秒1个单位的速度移动;同时动点F从点A出发,在线段AD上以每秒2个单位的速度向点D移动.当点F与点D重合时,E、F两点同时停止移动.设点E移动时间为t秒.(1)求当t为何值时,三点C、E、F在同一直线上;(2)设顺次连接OCFE,设这个封闭图形的面积为S,求出S与t之间的函数关系及自变量t的取值范围;(3)求当t为何值时,以O、E、F为顶点的三角形是等腰三角形?7.如图,已知A,B两点坐标分别为(28,0)和(0,28),动点P从A开始在线段AO上以每秒3个单位长度的速度向原点O运动.动直线EF从x轴开始以每秒1个单位长度的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E,F,连接FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)当t=1秒时,求梯形OPFE的面积;(2)t为何值时,梯形OPFE的面积最大,最大面积是多少?(3)当梯形OPFE的面积等于△APF的面积时,求线段PF的长.8.如图,在平面直角坐标系中,已知直线AB:y=﹣x+3分别与x轴、y轴分别交于点A、点B.动点P、Q分别从O、A同时出发,其中点P以每秒1个点位长度的速度沿OA方向向A点匀速运动,到达A点后立即以原速度沿AO返向;点Q以每秒1个单位长度的速度从A点出发,沿A﹣B﹣O方向向O点匀速运动.当点Q到达点O时,P、Q两点同时停止运动.设运动时间为t(秒).(1)求点A与点B的坐标;(2)如图1,在某一时刻将△APQ沿PQ翻折,使点A恰好落在AB边的点C处,求此时△APQ的面积;(3)若D为y轴上一点,在点P从O向A运动的过程中,是否存在某一时刻,使得四边形PQBD为等腰梯形?若存在,求出t的值与D点坐标;若不存在,请说明理由;(4)如图2,在P、Q两点运动过程中,线段PQ的垂直平分线EF交PQ于点E,交折线QB﹣BO﹣OP于点F.问:是否存在某一时刻t,使EF恰好经过原点O?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.9.如图,在平面直角坐标系中,O是原点,A、B、C三点的坐标分别为A(30,0),B(24,6),C(8,6).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒3个单位,点Q沿OC、CB向终点B运动,速度为每秒2个单位.当这两点有一点达到自己的终点时,另一点也停止运动.设运动时间为t(秒).(1)当点Q在OC上运动时,试求点Q的坐标;(用t表示)(2)当点Q在CB上运动时;①当t为何值时,四边形OPQC为等腰梯形?②是否存在实数t,使得四边形PABQ为平行四边形?若存在,求出t的值;若不存在,说明理由.10.如图,在平面直角坐标系中,直角梯形ABCD的顶点A、B分别在x、y轴的正半轴上,顶点D在x轴的负半轴上.已知∠C=∠CDA=90°,AB=10,对角线BD平分∠ABC,且tan∠DBO=(1)求直线AB的解析式;(2)若动点P从点A出发,以每秒5个单位长的速度沿着线段AB向终点B运动;同时动点Q从点D出发,以每秒4个单位长的速度沿着线段DA终点A运动,过点Q作QH⊥AB,垂足为点H,当一点到达终点时,另一的也随之停止运动.设线段朋的长度为y,点P运动时间为t,求y与t的函数关系式;(请直接写出自变量t的取值范围)(3)在(2)的条件下,将△APQ沿直线PQ折叠后,AP对应线段为A’P,当t为何值时,A’P∥CD,并通过计算说明,此时以为半径的ΘP与直线QH的位置关系.11.(2008•辽宁)如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=4,另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合,两腰分别落在AB,AC上,且G,F分别是AB,AC的中点.(1)求等腰梯形DEFG的面积;(2)操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF′G′(如图2).探究1:在运动过程中,四边形BDG′G能否是菱形?若能,请求出此时x的值;若不能,请说明理由;探究2:设在运动过程中△ABC与等腰梯形DEFG重叠部分的面积为y,求y与x的函数关系式.12.如图,在等腰梯形ABCD中,AB∥DC,∠DAB=45°,AB=10cm,CD=4cm.等腰直角三角形PMN的斜边MN=10cm,A点与N点重合,MN和AB在一条直线上,设等腰梯形ABCD不动,等腰直角三角形PMN沿AB所在直线以1cm/s的速度向右移动,直到点N与点B重合为止.(1)等腰直角三角形PMN在整个移动过程中与等腰梯形ABCD重叠部分的形状由_________形变化为_________形;(2)设当等腰直角三角形PMN移动x(s)时,等腰直角三角形PMN与等腰梯形ABCD 重叠部分的面积为y(cm2),求y与x之间的函数关系式;(3)当①x=4(s),②x=8(s)时,求等腰直角三角形PMN与等腰梯形ABCD重叠部分的面积.13.如图,在等腰梯形ABCD中,AB∥CD,∠A=60°,AD=DC=CB=2,点P是AD上一动点,点Q是线段AB上一动点且AP=AQ,在等腰梯形ABCD内以PQ为一边作矩形PQMN,点N在CD上.设AQ=x,矩形PQMN的面积为y.(1)求等腰梯形ABCD的面积;(2)求y与x之间的函数关系式;(3)当x为何值时,矩形PQMN是正方形;(4)矩形PQMN面积最大时,将△PQN沿NQ翻折,点P的对应点为点P’,请判断此时△BMP’的形状.14.如图,在直角坐标系内,已知等腰梯形ABCD,AD∥BC∥x轴,AB=CD,AD=2,BC=8,AB=5,B点的坐标是(﹣1,5).(1)直接写出下列各点坐标.A(,)C(,)D(,);(2)等腰梯形ABCD绕直线BC旋转一周形成的几何体的表面积(保留π);(3)直接写出抛物线y=x2左右平移后,经过点A的函数关系式;(4)若抛物线y=x2可以上下左右平移后,能否使得A,B,C,D四点都在抛物线上?若能,请说理由;若不能,将“抛物线y=x2”改为“抛物线y=mx2”,试确定m的值,使得抛物线y=mx2经过上下左右平移后能同时经过A,B,C,D四点.15.如图,在平面直角坐标系中,A、C、D的坐标分别是(1,2)、(4,0)、(3,2),点M是AD的中点.(1)求证:四边形AOCD是等腰梯形;(2)动点P、Q分别在线段OC和MC上运动,且保持∠MPQ=60°不变.设PC=x,MQ=y,求y与x的函数关系式;(3)在(2)中:试探究当点P从点O首次运动到点E(3,0)时,Q点运动的路径长.16.如图1,在等腰梯形ABCD中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC 于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A、B在第一象限内.(1)求点E的坐标;(2)点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO 交折线ABC于点N,连接PN.设PE=x.△PMN的面积为S.①求S关于x的函数关系式;②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC).现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为E′D′G′H′;探究:在运动过程中,等腰梯ABCO与直角梯形E′D′G′H′重合部分的面积y 与时间t的函数关系式.17.如图,Rt△AOB中,∠OAB=90°,以O为坐标原点,OA所在的直线为x轴建立平面直角坐标系,将△OAB沿OB折叠后,点A落在第一象限的点C处,已知B点坐标是;一个二次函数的图象经过O、C、A三个点.(1)求此二次函数的解析式;(2)直线OC上是否存在点Q,使得△AQB的周长最小?若存在请求出Q点的坐标,若不存在请说明理由;(3)若抛物线的对称轴交OB于点D,设P为线段DB上一点,过P点作PM∥y轴交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在请求出P点坐标,若不存在请说明理由.18.如图1,等腰梯形ABCD中,AD∥BC,AB=CD=,AD=5,BC=3.以AD所在的直线为x轴,过点B且垂直于AD的直线为y轴建立平面直角坐标系.抛物线y=ax2+bx+c 经过O、C、D三点.(1)求抛物线的函数表达式;(2)设(1)中的抛物线与BC交于点E,P是该抛物线对称轴上的一个动点(如图2):①若直线PC把四边形AOEB的面积分成相等的两部分,求直线PC的函数表达式;②连接PB、PA,是否存在△PAB是直角三角形?若存在,求出所有符合条件的点P的坐标,并直接写出相应的△PAB的外接圆的面积;若不存在,请说明理由.19.(2006•衢州)在等腰梯形ABCD中,已知AB=6,BC=,∠A=45°,以AB所在直线为x轴,A为坐标原点建立直角坐标系,将等腰梯形ABCD饶A点按逆时针方向旋转90°得到等腰梯形OEFG(O﹑E﹑F﹑G分别是A﹑B﹑C﹑D旋转后的对应点)(图1)(1)写出C﹑F两点的坐标;(2)等腰梯形ABCD沿x轴的负半轴平行移动,设移动后的OA=x(图2),等腰梯形ABCD 与等腰梯形OEFG重叠部分的面积为y,当点D移动到等腰梯形OEFG的内部时,求y与x 之间的关系式;(3)线段DC上是否存在点P,使EFP为等腰三角形?若存在,求出点P坐标;若不存在,请说明理由.20.(2010•梧州)如图,在平面直角坐标系中,点A(10,0),∠OBA=90°,BC∥OA,OB=8,点E从点B出发,以每秒1个单位长度沿BC向点C运动,点F从点O出发,以每秒2个单位长度沿OB向点B运动.现点E、F同时出发,当点F到达点B时,E、F两点同时停止运动.(1)求梯形OABC的高BG的长;(2)连接E、F并延长交OA于点D,当E点运动到几秒时,四边形ABED是等腰梯形;(3)动点E、F是否会同时在某个反比例函数的图象上?如果会,请直接写出这时动点E、F运动的时间t的值;如果不会,请说明理由.21.(2002•潍坊)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=13厘米,BC=16厘米,CD=5厘米,AB为⊙O的直径,动点P沿AD方向从点A开始向点D以1厘米/秒的速度运动,动点Q沿CB方向从点C开始向点B以2厘米/秒的速度运动,点P、Q分别从A、C两点同时出发,当其中一点停止时,另一点也随之停止运动.(1)求⊙O的直径;(2)求四边形PQCD的面积y关于P、Q运动时间t的函数关系式,并求当四边形PQCD 为等腰梯形时,四边形PQCD的面积;(3)是否存在某一时刻t,使直线PQ与⊙O相切?若存在,求出t的值;若不存在,请说明理由.22.(2004•荆州)如图1,在等腰梯形ABCD中,BC∥AD,BC=8,AD=20,AB=DC=10,点P从A点出发沿AD边向点D移动,点Q自A点出发沿A→B→C的路线移动,且PQ∥DC,若AP=x,梯形位于线段PQ右侧部分的面积为S.(1)分别求出点Q位于AB、BC上时,S与x之间函数关系式,并写出自变量x的取值范围;(2)当线段PQ将梯形ABCD分成面积相等的两部分时,x的值是多少?(3)在(2)的条件下,设线段PQ与梯形ABCD的中位线EF交于O点,那么OE与OF 的长度有什么关系?借助备用图2说明理由;并进一步探究:对任何一个梯形,当一直线l 经过梯形中位线的中点并满足什么条件时,其一定平分梯形的面积?(只要求说出条件,不需证明)23.(2006•恩施州)现有边长为180厘米的正方形铁皮,准备将它设计并制成一个开口的水槽,使水槽能通过的水的流量最大.某校九年级(2)班数学兴趣小组经讨论得出结论:在水流速度一定的情况下,水槽的横截面面积越大,则通过水槽的水的流量越大.为此,他们对水槽的横截面,进行了如下探索:(1)方案①:把它折成横截面为矩形的水槽,如图.若∠ABC=90°,设BC=x厘米,该水槽的横截面面积为y厘米2,请你写出y关于x的函数关系式(不必写出x的取值范围),并求出当x取何值时,y的值最大,最大值又是多少?方案②:把它折成横截面为等腰梯形的水槽,如图.若∠ABC=1 20°,请你求出该水槽的横截面面积的最大值,并与方案①中的y的最大值比较大小.(2)假如你是该兴趣小组中的成员,请你再提供一种方案,使你所设计的水槽的横截面面积更大.画出你设计的草图,标上必要的数据(不要求写出解答过程).24.(2006•济南)某校数学研究性学习小组准备设计一种高为60cm的简易废纸箱.如图1,废纸箱的一面利用墙,放置在地面上,利用地面作底,其它的面用一张边长为60cm的正方形硬纸板围成.经研究发现:由于废纸箱的高是确定的,所以废纸箱的横截面图形面积越大,则它的容积越大.(1)该小组通过多次尝试,最终选定下表中的简便且易操作的三种横截面图形,如图2,是根据这三种横截面图形的面积y(cm2)与x(cm)(见表中横截面图形所示)的函数关系式而绘制出的图象.请你根据有信息,在表中空白处填上适当的数、式,并完成y取最大值时的设计示意图;(2)在研究性学习小组展示研究成果时,小华同学指出:图2中“底角为60°的等腰梯形”的图象与其他两个图象比较,还缺少一部分,应该补画.你认为他的说法正确吗?请简要说明理由.25.如图(1),四边形ABCD内部有一点P,使得S△APD+S△BPC=S△PAB+S△PCD,那么这样的点P叫做四边形ABCD的等积点.(1)如果四边形ABCD内部所有的点都是等积点,那么这样的四边形叫做等积四边形.①请写出你知道的等积四边形:_________,_________,_________,_________,(四例)②如图(2),若四边形ABCD是平行四边形且S△ABP=8,S△APD=7,S△BPC=15,则S△PCD= _________.(2)如图(3),等腰梯形ABCD,AD=4,BC=10,AB=5,直线l为等腰梯形的对称轴,分别交AD于点E,交BC于点F.①请在直线l上找到等腰梯形的等积点,并求出PE的长度.②请找出等腰梯形ABCD内部所有的等积点,并画图表示.26.(2010•锦州)如图,直角梯形ABCD和正方形EFGC的边BC、CG在同一条直线上,AD∥BC,AB⊥BC于点B,AD=4,AB=6,BC=8,直角梯形ABCD的面积与正方形EFGC 的面积相等,将直角梯形ABCD沿BG向右平行移动,当点C与点G重合时停止移动.设梯形与正方形重叠部分的面积为S.(1)求正方形的边长;(2)设直角梯形ABCD的顶点C向右移动的距离为x,求S与x的函数关系式;(3)当直角梯形ABCD向右移动时,它与正方形EFGC的重叠部分面积S能否等于直角梯形ABCD面积的一半?若能,请求出此时运动的距离x的值;若不能,请说明理由.27.(2005•龙岩)已知二次函数图象的顶点坐标为M(2,0),直线y=x+2与该二次函数的图象交于A、B两点,其中点A在y轴上(如图示)(1)求该二次函数的解析式;(2)P为线段AB上一动点(A、B两端点除外),过P作x轴的垂线与二次函数的图象交于点Q,设线段PQ的长为l,点P的横坐标为x,求出l与x之间的函数关系式,并求出自变量x的取值范围;(3)在(2)的条件下,线段AB上是否存在一点P,使四边形PQMA为梯形?若存在,求出点P的坐标,并求出梯形的面积;若不存在,请说明理由.28.如图1所示,直角梯形OABC的顶点C在x轴正半轴上,AB∥OC,∠ABC为直角,过点A、O作直线l,将直线l向右平移,设平移距离为t(t≥0),直角梯形OABC被直线l 扫过的面积(图中阴影部分)为s,s关t的函数图象如图2所示,OM为线段,MN为抛物线的一部分,NQ为射线.(1)求梯形上底AB的长及直角梯形OABC的面积;(2)如图3,矩形ODEF的两边OD、OF分别落在坐标轴上,且OD=4,OF=3,将矩形ODEF沿x轴的正半轴平行移动,设矩形ODEF的顶点O向右平移的距离为x(0<x<7),求矩形ODEF与梯形OABC重叠部分面积S与x的函数关系式.(3)当平移距离x=_________时,重叠部分面积S取最大值_________.29.(2009•娄底)如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3(1)延长HF交AB于G,求△AHG的面积.(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图).探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系.2013年3月刘笑天的初中数学组卷参考答案与试题解析一.解答题(共29小题)1.已知,如图,在直角梯形COAB中,CB∥OA,以O为原点建立平面直角坐标系,A、B、C的坐标分别为A(10,0)、B(4,8)、C(0,8),D为OA的中点,动点P自A点出发沿A→B→C→O的路线移动,速度为每秒1个单位,移动时间记为t秒.(1)求过点O、B、A三点的抛物线的解析式;(2)求AB的长;若动点P在从A到B的移动过程中,设△APD的面积为S,写出S与t 的函数关系式,并指出自变量t的取值范围;(3)动点P从A出发,几秒钟后线段PD将梯形COAB的面积分成1:3两部分?求出此时P点的坐标.考点:二次函数综合题.专题:探究型.分析:(1)设所求抛物线的解析式为y=ax2+bx+c(a≠0),把A(10,0)、B(4,8)、C(0,8)三点代入即可求出a、b、c的值,进而得出该抛物线的解析式;(2)作BE⊥OA与E,OE=BC=4,在Rt△ABE中利用勾股定理求出AB的长,作OF⊥AB于F,DH⊥AB于H,由OA•BE=AB•OF可求出OF及DH的长,进而可得出结论;(3)先求出COAB的面积,由于点P的位置不能确定,故应分两种情况进行讨论:(i)当点P在AB上时,设点P的坐标为(x,y),由S△APD=S梯形COAB,得OD•y=×56故可求出y的值,由S△APD=AP•DH=t×4=14求出t的值,作BG⊥OA于G,由勾股定理即可得出x的值,进而得出结论;(ii)当点P在OC上时,设点P的坐标为(0,y).由S△APD=S梯形COAB,得AD•y=×56故可求出y的值,此时t=10+4+(8﹣)=16,由此可得出点P2的坐标.解答:解:(1)设所求抛物线的解析式为y=ax2+bx+c(a≠0)依题意,得,解得,故所求抛物线的解析式为y=﹣x2+x;(2)作BE⊥OA与E,OE=BC=4,∵在Rt△ABE中,AE=OA﹣OE=6,BE=OC=8,∴AB==10.解法一:作OF⊥AB于F,DH⊥AB于H,∵OA•BE=AB•OF,∴OF==8,DH=OF=4,∴S=AP•DH=t×4=2t(0≤t≤10);解法二:∵=,S△ABD=AD•BE=×5×8=20.∴=,∴S=2t(0≤t≤10);(3)点P只能在AB或OC上才能满足题意,S梯形COAB=(BC+OA)•OC=×(4+10)×8=56,(ⅰ)当点P在AB上时,设点P的坐标为(x,y),由S△APD=S梯形COAB,得OD•y=×56,解得y=,由S△APD=AP•DH=t×4=14,得t=7.此时,作BG⊥OA于G,由勾股定理得(AO﹣x)2+y2=AP2,即(10﹣x)2+()2=72,解得x=,即在7秒时有点P1(,)满足题意;(ⅱ)当点P在OC上时,设点P的坐标为(0,y).由S△APD=S梯形COAB,得AD•y=×56,解得y=,此时t=10+4+(8﹣)=16.即在t=16秒时,有点P2(0,)满足题意;综上,在7秒时有点P1(,),在16秒时有点P2(0,)使PD将梯形COAB 的面积分成1:3的两部分.点评:本题考查的是二次函数综合题,此题涉及到用待定系数法求二次函数的解析式、梯形的面积公式及三角形的面积公式,根据题意作出辅助线,构造出三角形及梯形的高是解答此题的关键.2.(2008•黄冈)已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC 的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的;(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;(4)试探究:当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD 为矩形?并求出此时动点P的坐标.考点:一次函数综合题;矩形的判定;直角梯形;相似三角形的判定与性质.专题:综合题;压轴题;动点型;分类讨论.分析:(1)可根据点B,C的坐标,用待定系数法来求出直线BC的解析式;(2)可先计算出梯形面积的,也就求出了四边形COPD的面积.有OC的长,D是BC的中点,如果过D作梯形的中位线,可求出三角形OCD中,OC边上的高应该是4,由此可求出三角形OCD的面积,也就能表示出OPD的面积,然后再用OP的值表示出三角形OPD的面积,得出关于t的方程,即可求出此时t的值;(3)本题要分三种情况进行讨论:①当P在OA上时,即0<t<8时,如果过D作OA的垂线DE,垂直为E,那么DE 就是梯形的中位线,即DE=7,要表示三角形OPD的面积,还需知道OP的长,可以根据P点的速度,用时间t表示出OP,这样可根据三角形的面积公式求出关于S,t 的函数关系式.②当P在AB上时,即8≤t<18时,三角形OPD的面积可以用四边形OAPD的面积﹣三角形OAP的面积来表示,而四边形OAPD的面积可分成梯形DEAP和三角形OED两部分来求,而OE,AE,DE,AB都是定值,因此可求出四边形OAPD的面积,三角形OAP中,可用t表示出AP的长,进而可用t表示出三角形OAP的面积,然后根据三角形OPD的面积S=四边形OAPD的面积﹣三角形OAP的面积,即可得出关于S,t的函数关系式;③当P在BD上时,即18<t<23时,三角形OPD的面积可用三角形OCP的面积﹣三角形OCD的面积来求,三角形OPC中,可过P作OC的垂线PH,可根据AB∥OC,得出∠BCH的正弦值,然后用t表示出CP,那么在直角三角形OPH中可以求出OC 边上的高PH的表达式,那么就能表示出三角形OPC的面积,三角形OCD中,OC 的值已知,而OC边上的高就是OE,那么也可求出三角形OCD的面积,然后可根据三角形OPD的面积=三角形OPC的面积﹣三角形OCD的面积来求出关于S,t的函数关系式;(4)先假设存在这样的点P,那么四边形CQPD是矩形,可得出CD=QP=BD=5,∠QPD=∠PDC=90°,要求此时t的值,首先就要求出AP的长,根据∠QPD=∠BDP=∠QAP=90°,不难得出三角形AQP与三角形DPB相似,那么可得出关于BD,BP,AP,QP的比例关系,而BD,QP的长已求出,AP+PB=AB=10,因此可求出此时AP,PB的长,然后判定一下此时四边形QPDC是矩形的结论是否成立,如果成立可根据AP的长求出t的长.解答:解:(1)设BC所在直线的解析式为y=kx+b,因为直线BC过B(8,10),C(0,4)两点,可得:,解得k=,b=4,因此BC所在直线的解析式是y=x+4;(2)过D作DE⊥OA,则DE为梯形OABC的中位线,OC=4,AB=10,则DE=7,又OA=8,得S梯形OABC=56,则四边形OPDC的面积为16,S△COD=8,∴S△POD=8,即•t×7=8,得t=;(3)分三种情况①0<t≤8,(P在OA上)S三角形OPD=t②8<t≤18,(P在AB上)S三角形OPD=S梯形OCBA﹣S三角形OCD﹣S三角形OAP﹣S三角形PBD=56﹣8﹣4(t﹣8)﹣2(18﹣t)=44﹣2t(此时AP=t﹣8,BP=18﹣t)③过D点作DM垂直y轴与M点∴CM=3,DM=4,CD=5,∴∠BCH的正弦值为CP长为28﹣t∴PH=22.4﹣0.8tS三角形OPD=S三角形OPC﹣S三角形ODC=×4(22.4﹣0.8t)﹣8=﹣t;(4)不能.理由如下:作CM⊥AB交AB于M,则CM=OA=8,AM=OC=4,∴MB=6.∴在Rt△BCM中,BC=10,∴CD=5,若四边形CQPD为矩形,则PQ=CD=5,且PQ∥CD,∴Rt△PAQ∽Rt△BDP,设BP=x,则PA=10﹣x,∴,化简得x2﹣10x+25=0,x=5,即PB=5,∴PB=BD,这与△PBD是直角三角形不相符因此四边形CQPD不可能是矩形.点评:本题主要考查了梯形的性质,矩形的判定,相似三角形的判定和性质以及一次函数的综合应用,要注意的是(3)中,要根据P点的不同位置进行分类求解.3.如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y 轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止运动,设P、Q运动的时间为t秒(t>0).(1)试求出△APQ的面积S与运动时间t之间的函数关系式;(2)在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.求出此时△APQ的面积.(3)在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯形?若存在,求出点E的坐标;若不存在,请说明理由.(4)伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB﹣BO ﹣OP于点F.当DF经过原点O时,请直接写出t的值.考点:平行线分线段成比例;全等三角形的判定与性质;勾股定理;等腰梯形的性质;解直角三角形.专题:应用题;分段函数.。

初中中考复习之梯形(精编含答案)

初中中考复习之梯形(精编含答案)

∴AE=EB=BF=FC。
在△ABF和△CBE中,∵AB=CB,∠ABF=∠CBE, BF=BE,
∴△ABF≌△CBE(SAS)。∴∠BAF=∠BCE,AF=CE。
在△AME和△CMF中,
∵∠BAF=∠BCE,∠AME=∠CMF ,AE=CF,
∴△AME≌△CMF(AAS)。∴EM=FM。
在△BEM和△BFM中,∵BE=BF,BM=BM,
点,∴BE=CE。
在△ABE和△DCE中,
∵AB=DC,∠B=∠C
,BE=CE,
∴△ABE≌△DCE(SAS)。∴AE=DE。
7、证明:∵ABCD是等腰梯形,AD∥BC,∴∠B=∠BCD, ∠BCD =∠EDC。
∴∠B=∠EDC。又∵CE=CD。∴∠EDC=∠E。∴∠B=∠E。
8、解:(1)180°-2α。
(1)∠BEF=_____(用含α的代数式表示); (2)当AB=AD时,猜想线段ED、EF的数量关系,并证明你的猜想;
(3)当AB≠AD时,将“点E在AD上”改为“点E在AD的延长线上,且 AE>AB,AB=mDE,AD=nDE”,其他条件不变(如图2),求 的值(用含m、n的代数式表示)。
9.我们知道“连接三角形两边中点的线段叫三角形的中位线”,“三角 形的中位线平行于三角形的第三边,且等于第三边的一半”.类似的, 我们把连接梯形两腰中点的线段叫做梯形的中位线.如图,在梯形ABCD 中,AD∥BC,点E,F分别是AB,CD的中点,那么EF就是梯形ABCD的中位 线.通过观察、测量,猜想EF和AD、BC有怎样的位置和数量关系?并证 明你的结论.
6.如图,在等腰梯形ABCD中,点E为底边BC的中点,连结AE、DE.求 证:AE=DE.
7.如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上的一点,且 CE=CD,求证:∠B=∠E

中考数学总复习练习题附答案 (5)

中考数学总复习练习题附答案 (5)

中考总复习数学练习题一、选择题1.下列算式中,积为正数的是( )A .(-2)×(+21)B .(-6)×(-2)C .0×(-1)D .(+5)×(-2) 答案:D解析:B; 2.化简甲,乙两同学的解法如下:甲:=乙:=对他们的解法,正确的判断是( )A .甲、乙的解法都正确B .甲的解法正确,乙的解法不正确C .乙的解法正确,甲的解法不正确D .甲、乙的解法都不正确答案:A解析:【答案】A ;【解析】甲是分母有理化了,乙是 把3化为 (52)(52)+-了.二、填空题3.在图形的平移中,下列说法中错误的是( ).A .图形上任意点移动的方向相同;B .图形上任意点移动的距离相同C .图形上可能存在不动点;D .图形上任意对应点的连线长相等答案:C解析:【答案】C.4.如图是一个包装纸盒的三视图(单位:cm ),则制作一个纸盒所需纸板的面积是( )A .275(13)cm +B .217513cm 2⎛⎝ C .275(23)cm +D .217523cm 2⎛⎫+⎪⎝⎭答案:C 解析:【答案】C ;【解析】由三视图知此包装纸盒是一个正六棱柱,其全面积22356255675315075(23)cm S =⨯⨯⨯+⨯⨯=+=+. 二、填空题5.(2014•天水)如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在C ′处,折痕为EF ,若AB=1,BC=2,则△ABE 和BC ′F 的周长之和为( )A .3B .4C .6D .8答案:C解析:【答案】C .【解析】将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在C ′处,折痕为EF ,由折叠特性可得,CD=BC ′=AB ,∠FC ′B=∠EAB=90°,∠EBC ′=∠ABC=90°,∵∠ABE+∠EBF=∠C ′BF+∠EBF=90°∴∠ABE=∠C ′BF在△BAE 和△BC ′F 中,∴△BAE ≌△BC ′F (ASA ),∵△ABE 的周长=AB+AE+EB=AB+AE+ED=AB+AD=1+2=3,△ABE 和△BC ′F 的周长=2△ABE 的周长=2×3=6.故选:C .6.(2012•孝感)如图,在菱形ABCD 中,∠A=60°,E 、F 分别是AB ,AD 的中点,DE 、BF 相交于点G ,连接BD ,CG .有下列结论:①∠BGD=120°;②BG+DG=CG ;③△BDF ≌△CGB ;④S △ABD =AB 2其中正确的结论有( ). A .1个 B .2个 C .3个 D .4个答案:C解析:【答案】C .【解析】①由菱形的性质可得△ABD 、BDC 是等边三角形,∠DGB=∠GBE+∠GEB=30°+90°=120°,故①正确;②∵∠DCG=∠BCG=30°,DE ⊥AB ,∴可得DG=CG (30°角所对直角边等于斜边一半)、BG=CG ,故可得出BG+DG=CG ,即②也正确;③首先可得对应边BG ≠FD ,因为BG=DG ,DG >FD ,故可得△BDF 不全等△CGB ,即③错误; ④S △ABD =AB •DE=AB •(BE )=AB •AB=AB 2,即④正确.综上可得①②④正确,共3个.7.(2015•武汉模拟)二次函数y=kx 2﹣6x+3的图象与x 轴有交点,则k 的取值范围是( )A .k <3B . k <3且k≠0C . k≤3D . k≤3且k≠0 答案:D解析:【答案】D ;【解析】∵二次函数y=kx 2﹣6x+3的图象与x 轴有交点,∴方程kx 2﹣6x+3=0(k≠0)有实数根,即△=36﹣12k≥0,k≤3,由于是二次函数,故k≠0,则k 的取值范围是k≤3且k≠0. 故选D .8.若123A(-3,y )B(-2,y )C(-1,y )、、,三点都在函数1y x=-的图象上,则123y y y 、、的大小关系是( )A. 123y y y <<B. 123==y y yC. 132y y y <<D. 123y y y >> 答案:A解析:【答案】A ;【解析】主要考查反比例函数的图象和性质.解答时,应先画出1y x=-的图象,如图,然后把 123A(-3,y )B(-2,y )C(-1,y )、、三点在图中表示出来,依据数轴的特性,易知123y y y <<,故应选A.9.(2014•杭州模拟)如图,在△ABC 中,∠ACB=90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD ,若AC=2,∠ADC=30°,①四边形ACED 是平行四边形;②△BCE 是等腰三角形;③四边形ACEB 的周长是10+2;④四边形ACEB 的面积是16.则以上结论正确的是( )A .①②③B .①②④C .①③④D .②④答案:D 解析:【答案】D .【解析】①∵∠ACB=90°,DE ⊥BC ,∴∠ACD=∠CDE=90°,∴AC ∥DE ,∵CE ∥AD ,∴四边形ACED 是平行四边形,故①正确;②∵D 是BC 的中点,DE ⊥BC ,∴EC=EB ,∴△BCE 是等腰三角形,故②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=2,∵四边形ACED是平行四边形,∴CE=AD=4,∵CE=EB,∴EB=4,DB=2,∴CB=4,∴AB==2,∴四边形ACEB的周长是10+2故③正确;④四边形ACEB的面积:×2×4+×4×2=8,故④错误,故选:A.二.填空题队付款的等待时间,并绘制成如图所示的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其他类同).这个时间段内顾客等待时间不少于6分钟的人数为( )A.5 B.7 C.6 D.33第1题第2题第3题答案:B解析:【答案】B;【解析】由频数直方图可以看出:顾客等待时间不少于6分钟的人数即最后两组的人数为5+2=7人.故选B.11.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A 与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A 与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()A.B.C.D.答案:A解析:【答案】A;【解析】由题意得,AD=BC=,AD1=AD﹣DD1=,AD2=,AD3=,…,AD n=,又AP n=AD n,故AP1=,AP2=,AP3=…APn=,故可得AP6=.故选A.二、填空题二、填空题12.已知两数差是25,减数比7的相反数小5,则被减数是 .解析:13;提示:由已知可知减数为-12,则被减数为25+(-12)=13;13.如图1,边长为3的正方形ABCD绕点C按顺时针方向旋转30 °后得到正方形EFCG,EF 交AD于点H,那么DH的长为________.HGFEDCBA解析:314.(2012•咸宁)如图,在梯形ABCD中,AD∥BC,∠C=90°,BE平分∠ABC且交CD于E,E为CD的中点,EF∥BC交AB于F,EG∥AB交BC于G,当AD=2,BC=12时,四边形BGEF的周长为_________.答案:【答案】28【解析】先根据EF∥BC交AB于FEG∥AB交BC于G得出四边形BGEF是平行四边形再由BE平分∠ABC且交CD于E可得出∠FBE=∠EBC由EF∥BC可知∠EBC=∠FEB 故∠FBE=解析:【答案】28.【解析】先根据EF∥BC交AB于F,EG∥AB交BC于G得出四边形BGEF是平行四边形,再由BE平分∠ABC且交CD于E可得出∠FBE=∠EBC,由EF∥BC可知,∠EBC=∠FEB,故∠FBE=FEB,由此可判断出四边形BGEF是菱形,再根据E为CD的中点,AD=2,BC=12求出EF 的长,进而可得出结论.15.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则tan ∠OBE=.答案:【答案】;【解析】连接EC根据圆周角定理∠ECO=∠OBE在Rt△EOC中OE=4OC=5则tan∠ECO=故tan∠OBE=解析:【答案】;【解析】连接EC.根据圆周角定理∠ECO=∠OBE.在Rt△EOC中,OE=4,OC=5,则tan∠ECO=.故tan∠OBE=.16.(1)若211()x x x y --=+-,则x y -的值为 .(2)若5,3,x y xy +==则x y y x+的值为 . 答案:【答案】(1)2;(2);【解析】(1)由知x=1∴(x+y)2=0∴y=-1∴x-y=2(2) 解析:【答案】(1)2; (2)533; 【解析】(1)由11x x ---,知x =1,∴(x +y )2=0,∴y =-1,∴x -y =2. (2)55,3,0,0, 3.3xy xy x y x y xy x y xy xy ++==∴∴=+==>>原式 17.如图,在锐角AOB ∠内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;……照此规律,画10条不同射线,可得锐角 个.答案:【答案】66【解析】按如图这样画n 条射线得到的锐角个数为三解答题解析:【答案】66.【解析】按如图这样画n 条射线得到的锐角个数为(1)(2)2n n ++.三、解答题三、解答题18.物体位于地面上空2米处,下降3米后又下降5米,最后物体在地面之下多少米处? 解析:2-3-5=-6米;19.在图1到图3中,点O 是正方形ABCD 对角线AC 的中点,△MPN 为直角三角形,∠MPN=90°.正方形ABCD 保持不动,△MPN 沿射线AC 向右平移,平移过程中P 点始终在射线AC 上,且保持PM 垂直于直线AB 于点E ,PN 垂直于直线BC 于点F .(1)如图1,当点P 与点O 重合时,OE 与OF 的数量关系为______;(2)如图2,当P 在线段OC 上时,猜想OE 与OF 有怎样的数量关系与位置关系?并对你的猜想结果给予证明;(3)如图3,当点P 在AC 的延长线上时,OE 与OF 的数量关系为_______;位置关系为_________.解析:【解析】(1)OE=OF (相等);(2)OE=OF ,OE ⊥OF ;证明:连接BO ,∵在正方形ABCD 中,O 为AC 中点, ∴BO=CO ,BO ⊥AC ,∠BCA=∠ABO=45°, ∵PF ⊥BC ,∠BCO=45°,∴∠FPC=45°,PF=FC .∵正方形ABCD ,∠ABC=90°,∵PF ⊥BC ,PE ⊥AB ,∴∠PEB=∠PFB=90°.∴四边形PEBF 是矩形,∴BE=PF .∴BE=FC .∴△OBE ≌△OCF ,∴OE=OF ,∠BOE=∠COF ,∵∠COF+∠BOF=90°,∴∠BOE+∠BOF=90°,∴∠EOF=90°,∴OE ⊥OF .(3)OE=OF (相等),OE ⊥OF (垂直).20.设12211=112S ++,22211=123S ++,32211=134S ++,…, 2211=1(1)n S n n +++ 设12...n S S S S +S 的值 (用含n 的代数式表示,其中n 为正整数).【答案与解析】一、选择题解析:【答案与解析】22111(1)n S n n =+++=21111[]2(1)(1)n n n n +-+⨯++=2111[]2(1)(1)n n n n ++⨯++ =21[1](1)n n ++ ∴S=1(1)12+⨯+1(1)23+⨯+1(1)34+⨯+…+1(1)(1)n n ++ 1111111=1223341n n n +-+-+-++-+ 1=11n n +-+ 122++=n n n . (利用拆项111(1)1n n n n =-++即可求和). 21.对于任何实数,我们规定符号c ad b 的意义是:c a d b =bc ad -.按照这个规定请你计算:当0132=+-x x时,21-+x x 13-x x的值.解析:【答案与解析】22.如图,已知中,厘米,厘米,点为的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,与是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使与全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿三边运动,求经过多长时间点P 与点Q 第一次在的哪条边上相遇?解析:【答案与解析】 (1)①∵秒,∴,∵,点为的中点,∴.)2(3)1)(1(1321---+=--+x x x x x x x x .162631222-+-=+--=x x x x x .1121)32.13,013222=-=---=∴-=-∴=+-x x x x x x (原式又∵,∴,∴.又∵,∴,∴.②∵,∴,又∵,,则,∴点,点运动的时间秒,∴.(2)设经过秒后点与点第一次相遇,由题意,得,解得.∴点共运动了.∵,∴点、点在边上相遇,∴经过秒点与点第一次在边上相遇.23.行驶中的汽车,在刹车后由于惯性的作用,还要继续向前滑行一段距离才停止,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能(车速不超过140km/h),对这种汽车进行测试,测得数据如下表:刹车时车速0 10 20 30 40 50 60(km/h)刹车距离(m) 0 0.3 1.0 2.1 3.6 5.5 7.8 (1)线连结这些点,得到函数的大致图象;(2)观察图象,估计函数的类型,并确定一个满足这些数据的函数解析式;(3)该型号汽车在国道上发生了一次交通事故,现场测得刹车距离为46.5m,请推测刹车时的速度是多少?请问在事故发生时,汽车是超速行驶还是正常行驶?解析:【答案与解析】(1)603010204050yx(2)依据图象,设函数解析式为y=ax2+bx+c,将表中的前三组数值代入,得⎪⎩⎪⎨⎧=++=++=0.120400,3.010100,0cbacbac解得⎪⎩⎪⎨⎧===,01.0,002.0cba∴函数的解析式为y=0.002x2+0.01x (0≤x≤140) .经检验,表中的其他各组值也符合此解析式.(3)当y=46.5时,即0.002x2+0.01x=46.5,∴ x2+5x-23250=0.解得 x1=150,x2=-155(舍去) .∴推测刹车时的速度为150km/h.∵150>140,∴发生事故时,汽车超速行驶.24.如下表所示,是按一定规律排列的方程组和它的解的对应关系,若方程组自左至右依次记作方程组1、方程组2、方程组3、…、方程组n.(1)将方程组1的解填入表中.(2)请依据方程组和它的解的变化规律,将方程组n和它的解直接填入表中;解析:【答案与解析】显然该方程组不符合(2)中的规律.25.如图(a),梯形ABCD中,AD∥BC,∠ABC=90°, AD=9,BC=12,AB=a,在线段BC 上任取一点P(P不与B,C重合),连接DP,作射线.PE⊥DP,PE与直线AB交于点E.(1)试确定CP=3时,点E的位置;(2)若设CP=x(x>0),BE=y(y>0),试写出y关于自变量x的函数关系式;(3)若在线段BC上能找到不同的两点P1,P2,使按上述作法得到的点E都与点A重合,试求出此时a的取值范围.解析:【答案与解析】解:(1)作DF⊥BC,F为垂足.当CP=3时,四边形ADFB是矩形,则CF=3.∴点P与点F重合.又∵BF⊥FD,∴此时点E与点B重合.(2)(i)当点P在BF上(不与B,F重合)时,(见图(a))∵∠EPB+∠DPF=90°,∠EPB+∠PEB=90°,∴∠DPF=∠PEB.∴Rt△PEB∽△ARt△DPF.∴BE FPBP FD=.①又∵ BE=y,BP=12-x,FP=x-3,FD=a,代入①式,得3 12y xx a-=-∴1(12)(3)y x xa=--,整理,得21(1536)(312)y x x x a=-+<< ② (ii)当点P 在CF 上(不与C ,F 重合)时,(见上图(b))同理可求得BE FPBP FD=. 由FP =3-x 得21(1536)(03)y x x x a=-+<<. ∴ 221(1536)(03)1(1536)(312).x x x ay x x a⎧--+<<⎪⎪=⎨⎪--+<<⎪⎩(3)解法一:当点E 与A 重合时,y =EB =a ,此时点P 在线段BF 上. 由②式得21(1536)a x x a=--+. 整理得2215360x x a -++=. ③∵在线段BC 上能找到两个不同的点P 1与P 2满足条件, ∴方程③有两个不相等的正实根. ∴△=(-15)2-4×(36+a 2)>0. 解得2814a <. 又∵a >0, ∴902a <<. 解法二:当点E 与A 重合时, ∵∠APD =90°,∴点P 在以AD 为直径的圆上.设圆心为M ,则M 为AD 的中点. ∵在线段BC 上能找到两个不同的点P 1与P 2满足条件, ∴线段BC 与⊙M 相交.即圆心M 到BC 的距离d 满足02ADd <<. ④ 又∵AD ∥BC , ∴d =a . ∴由④式得902a <<.。

2022年中考数学专项复习《梯形(2)》练习 浙教版

2022年中考数学专项复习《梯形(2)》练习 浙教版

梯形〔02〕一、选择题1.如图,梯形ABCD中,AD∥BC,AB=DC=3,AD=5,∠C=60°,那么下底BC的长为〔〕A.8 B.9 C.10 D.112.如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,那么AD+BC的值是〔〕A.9 B.10.5 C.12 D.153.如图,等腰梯形ABCD的底角∠B=45°,高AE=1,上底AD=1,那么其面积为〔〕A.4 B. C.1 D.24.以下说法正确的选项是〔〕A.对角线相等且互相垂直的四边形是菱形B.对角线互相垂直的梯形是等腰梯形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形5.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG.DE,FG,的中点分别是M,N,P,Q.假设MP+NQ=14,AC+BC=18,那么AB的长为〔〕A. B.C.13 D.166.在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,以下条件中,能判断梯形ABCD是等腰梯形的是〔〕A.∠BDC=∠BCD B.∠ABC=∠DAB C.∠ADB=∠DAC D.∠AOB=∠BOC7.梯形的面积一定,它的高为h,中位线的长为x,那么h与x的函数关系大致是〔〕A.B.C.D.8.如图,等腰梯形ABCD的对角线长为13,点E、F、G、H分别是边AB、BC、CD、DA的中点,那么四边形EFGH的周长是〔〕A.13 B.26 C.36 D.399.如图,四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,那么BF=〔〕A.1 B.3﹣C.﹣1 D.4﹣2二、填空题10.如图,四边形ABCD是等腰梯形,∠ABC=60°,假设其四边满足长度的众数为5,平均数为,上、下底之比为1:2,那么BD= .11.如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,那么梯形ABCD的周长为.12.如图,等腰梯形ABCD,AD∥BC,BD平分∠ABC,∠A=120°.假设梯形的周长为10,那么AD的长为.13.如下图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=12,BD=5,那么这个梯形中位线的长等于.14.如图,五边形ABCDE中,AB⊥BC,AE∥CD,∠A=∠E=120°,AB=CD=1,AE=2,那么五边形ABCDE 的面积等于.15.如图,等腰梯形ABCD中,AD∥BC,DE⊥BC,BD⊥DC,垂足分别为E,D,DE=3,BD=5,那么腰长AB= .16.如图,在等腰梯形ABCD中,AD∥BC,AB=AD=DC,∠B=60°,NC=MC=BC,现有P、Q两个动点分别从点A、N同时沿梯形的边开始移动,点P依顺时针,方向环行,点Q依逆时针方向环行,假设点P的速度与点Q的速度之比为2:3,那么点P、点Q第1次相遇的位置是点;第 2022次相遇在点.17.如图,在梯形ABCD中,AD∥BC,AB=DC,AC与BD相交于P.A〔2,3〕,B〔1,1〕,D〔4,3〕,那么点P的坐标为〔,〕.三、解答题18.如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.19.如图,梯形ABCD中,AD∥BC,AB∥DE,∠DEC=∠C,求证:梯形ABCD是等腰梯形.20.如图,四边形ABCD为等腰梯形,AD∥BC,连结AC、BD.在平面内将△DBC沿BC翻折得到△EBC.〔1〕四边形ABEC一定是什么四边形?〔2〕证明你在〔1〕中所得出的结论.21.如图,在梯形OABC中,OC∥AB,OA=CB,点O为坐标原点,且A〔2,﹣3〕,C〔0,2〕.〔1〕求过点B的双曲线的解析式;〔2〕假设将等腰梯形OABC向右平移5个单位,问平移后的点C是否落在〔1〕中的双曲线上?并简述理由.22.如图,在梯形ABCD中,AD∥BC,AB=CD,分别以AB,CD为边向外侧作等边三角形ABE和等边三角形DCF,连接AF,DE.〔1〕求证:AF=DE;〔2〕假设∠BAD=45°,AB=a,△ABE和△DCF的面积之和等于梯形ABCD的面积,求BC的长.23.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,AC与BD交于点O,延长BC到E,使得CE=AD,连接DE.〔1〕求证:BD=DE.〔2〕假设AC⊥BD,AD=3,S ABCD=16,求AB的长.24.如图,在等腰梯形ABCD中,AD∥BC,E,F,G,H分别是梯形各边的中点.〔1〕请用全等符号表示出图中所有的全等三角形〔不得添加辅助线〕,并选其中一对加以证明;〔2〕求证:四边形EFGH是菱形.25.如图,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P为BC边上一点〔不与B,C重合〕,过点P作∠APE=∠B,PE交CD于E.〔1〕求证:△APB∽△PEC;〔2〕假设CE=3,求BP的长.。

最新中考数学复习:最值问题选择填空题专项训练(带答案)

最新中考数学复习:最值问题选择填空题专项训练(带答案)

2022年中考数学复习:最值问题选择填空题专项训练一、单选题1.如图,菱形ABCD的边AB=8,∠B=60°,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点为A′.当CA′的长度最小时,CQ的长为()A.5B.7C.8D.6.52.已知线段AB及直线l,在直线l上确定一点P,使PA PB+最小,则下图中哪一种作图方法满足条件().A.B.C.D.3.如图1,在菱形ABCD中,AB=6,∠BAD=120°,点E是BC边上的一动点,点P 是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x 的函数图象,其中H(a,b)是图象上的最低点,则a+b的值为()A.B.3C.D.6 4.如图,等边∠ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是边AC上一点,若AE=2,则EM+CM的最小值为()AB .C .D .5.如图,正方形ABCD 的边长是4,点E 是DC 上一个点,且DE =1,P 点在AC 上移动,则PE +PD 的最小值是( )A .4B .4.5C .5.5D .5 6.如图,在平面直角坐标系中,二次函数y =x 2﹣2x +c 的图象与x 轴交于A 、C 两点,与y 轴交于点B (0,﹣3),若P 是x 轴上一动点,点D (0,1)在y 轴上,连接PD PD +PC 的最小值是( )A.4 B .2+C . D .327.如图,凸四边形ABCD 中,90,90,60,3,A C D AD AB ∠=︒∠=︒∠=︒==M 、N 分别为边,CD AD 上的动点,则BMN △的周长最小值为( )A.B.C.6D.38.如图,在Rt∠ABC中,∠ACB=90°,CB=7,AC=9,以C为圆心、3为半径作∠C,P为∠C上一动点,连接AP、BP,则13AP+BP的最小值为()A.7B.C.4D.9.如图,∠ACB中,CA=CB=4,∠ACB=90°,点P为CA上的动点,连BP,过点A 作AM∠BP于M.当点P从点C运动到点A时,线段BM的中点N运动的路径长为()AB C D.2π10.如图所示,已知A(1,y1),B(2,y2)为反比例函数y2=x图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大值时,点P的坐标是()A.(3,0)B.(72,0)C.(53,0)D.(52,0)二、填空题11.如图,长方形ABCD中,AB=BC=2,点E是DC边上的动点,现将△BEC 沿直线BE折叠,使点C落在点F处,则点D到点F的最短距离为________.12.如图,正∠ABC 的边长为2,过点B 的直线l ∠AB ,且∠ABC 与∠A ′BC ′关于直线l 对称,D 为线段BC ′上一动点,则AD +CD 的最小值是_____.13.如图,已知ABC ,外心为O ,18BC =,60BAC ∠=︒,分别以AB ,AC 为腰向形外作等腰直角三角形ABD △与ACE ,连接BE ,CD 交于点P ,则OP 的最小值是______.14.如图,正方形ABCD 的边长为4,点E 为边AD 上一个动点,点F 在边CD 上,且线段EF =4,点G 为线段EF 的中点,连接BG 、CG ,则BG +12CG 的最小值为 _____.15.如图,在锐角∠ABC 中,AB =2,AC ∠ABC =60°.D 是平面内一动点,且∠ADB =30°,则CD 的最小值是________16.如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠ACD=30°,AD=2,E是AC 的中点,连接DE,则线段DE长度的最小值为______.17.如图,∠O的半径为2,弦AB=2,点P为优弧AB上一动点,AC∠AP交直线PB 于点C,则∠ABC的最大面积是_________.18.如图,AB是半圆O的直径,点D在半圆O上,AB=13,AD=5,C是弧BD上的一个动点,连接AC,过D点作DH∠AC于H.连接BH,在点C移动的过程中,BH 的最小值是___.19.∠ABC中,AB=4,AC=2,以BC为边在∠ABC外作正方形BCDE,BD、CE交于点O,则线段AO的最大值为______.20.如图,点A(a,3)、B(b,1)都在双曲线y3=x上,点C、D分别是x,y轴上的动点,则四边形ABCD的周长最小值为__.21.已知:如图,边长为4的正方形ABCD中,点E为边DC上一点,且DE=1,在AC上找一点P,则DP+EP的最小值为___.22.如图,四边形ABCD为矩形,AB=AD=P为边AB上一点.以DP为折痕将∠DAP翻折,点A的对应点为点A'.连结AA',AA' 交PD于点M,点Q 为线段BC上一点,连结AQ,MQ,则AQ+MQ的最小值是________参考答案:1.B2.C3.A4.C5.D6.A7.C8.B9.A10.A11.212.413.9-14.515.3316.1),(1-171819.20.21.522.。

最新中考数学真题解析汇编:梯形

最新中考数学真题解析汇编:梯形

梯形一、选择题1. (2014年广西钦州,第10题3分)如图,等腰梯形ABCD的对角线长为13,点E、F、G、H分别是边AB、BC、CD、DA的中点,则四边形EFGH的周长是()A.13 B.26 C.36 D.39考点:等腰梯形的性质;中点四边形.分析:首先连接AC,BD,由点E、F、G、H分别是边AB、BC、CD、DA的中点,可得EH,FG,EF,GH是三角形的中位线,然后由中位线的性质求得答案.解答:解:连接AC,BD,∵等腰梯形ABCD的对角线长为13,∴AC=BD=13,∵点E、F、G、H分别是边AB、BC、CD、DA的中点,∴EH=GF=BD=6.5,EF=GH=AC=6.5,∴四边形EFGH的周长是:EH+EF+FG+GF=26.故选B.点评:此题考查了等腰梯形的性质以及三角形中位线的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.2.(2014衡阳,第10题3分)如图,一河坝的横断面为等腰梯形ABCD,坝i ,则坝底AD的长度为【】顶宽10米,坝高12米,斜坡AB的坡度1:1.5A.26米 B.28米 C.30米 D.46米3.二、填空题1.(2014•黑龙江龙东,第3题3分)如图,梯形ABCD中,AD∥BC,点M是AD的中点,不添加辅助线,梯形满足AB=DC(或∠ABC=∠DCB、∠A=∠D)等条件时,有MB=MC(只填一个即可).考点:梯形;全等三角形的判定.专题:开放型.分析:根据题意得出△ABM≌△△DCM,进而得出MB=MC.解答:解:当AB=DC时,∵梯形ABCD中,AD∥BC,则∠A=∠D,∵点M是AD的中点,∴AM=MD,在△ABM和△△DCM中,,∴△ABM≌△△DCM(SAS),∴MB=MC,同理可得出:∠ABC=∠DCB、∠A=∠D时都可以得出MB=MC,故答案为:AB=DC(或∠ABC=∠DCB、∠A=∠D)等.点评:此题主要考查了梯形的性质以及全等三角形的判定与性质,得出△ABM≌△△DCM是解题关键.2. (2014•青岛,第13题3分)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为2.考点:轴对称-最短路线问题;等腰梯形的性质.分析:要求PA+PB的最小值,PA、PB不能直接求,可考虑转化PA、PB的值,从而找出其最小值求解.解答:解:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,∴B点关于EF的对称点C点,∴AC即为PA+PB的最小值,∵∠BCD=60°,对角线AC平分∠BCD,∴∠ABC=60°,∠BCA=30°,∴∠BAC=90°,∵AD=2,∴PA+PB的最小值=AB•tan60°=.故答案为:2.点评:考查等腰梯形的性质和轴对称等知识的综合应用.综合运用这些知识是解决本题的关键.3. (2014•攀枝花,第16题4分)如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED的面积是.考点:相似三角形的判定与性质;等腰三角形的判定与性质;梯形.分析:首先延长BA,CD交于点F,易证得△BEF≌△BEC,则可得DF:FC=1:4,又由△ADF∽△BCF,根据相似三角形的面积比等于相似比的平方,可求得△ADF的面积,继而求得答案.解答:解:延长BA,CD交于点F,∵BE平分∠ABC,∴∠EBF=∠EBC,∵BE⊥CD,∴∠BEF=∠BEC=90°,在△BEF和△BEC中,,∴△BEF≌△BEC(ASA),∴EC=EF,S△BEF=S△BEC=2,∴S△BCF=S△BEF+S△BEC=4,∵CE:ED=2:1∴DF:FC=1:4,∵AD∥BC,∴△ADF∽△BCF,∴=()2=,∴S△ADF=×4=,∴S四边形ABCD=S△BEF﹣S△ADF=2﹣=.故答案为:.点评:此题考查了相似三角形的判定与性质、全等三角形的判定与性质以及梯形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.4.(2014•湖北黄石,第14题3分)如图,在等腰梯形ABCD中,AB∥CD,∠D=45°,AB=1,CD=3,BE∥AD交CD于E,则△BCE的周长为.第1题图考点:等腰梯形的性质.分析:首先根据等腰梯形的性质可得∠D=∠C=45°,进而得到∠EBC=90°,然后证明四边形ABED是平行四边形,可得AB=DE=1,再得EC=2,然后再根据勾股定理可得BE长,进而得到△BCE的周长.解答:解:∵梯形ABCD是等腰梯形,∴∠D=∠C=45°,∵EB∥AD,∴∠BEC=45°,∴∠EBC=90°,∵AB∥CD,BE∥AD,∴四边形ABED是平行四边形,∴AB=DE=1,∵CD=3,∴EC=3﹣1=2,∵EB2+CB2=EC2,∴EB=BC=,∴△BCE的周长为:2+2,故答案为:2+2.点评:此题主要考查了等腰梯形的性质,以及平行四边形的判定和性质,勾股定理的应用,关键是掌握等腰梯形同一底上的两个角相等.5.三、解答题1.(2014•黑龙江龙东,第26题8分)已知△ABC中,M为BC的中点,直线m绕点A旋转,过B、M、C分别作BD⊥m于D,ME⊥m于E,CF⊥m于F.(1)当直线m经过B点时,如图1,易证EM=CF.(不需证明)(2)当直线m不经过B点,旋转到如图2、图3的位置时,线段BD、ME、CF之间有怎样的数量关系?请直接写出你的猜想,并选择一种情况加以证明.考点:旋转的性质;全等三角形的判定与性质;梯形中位线定理.分析:(1)利用垂直于同一直线的两条直线平行得出ME∥CF,进而利用中位线的性质得出即可;(2)根据题意得出图2的结论为:ME= (BD+CF),图3的结论为:ME= (CF﹣BD),进而利用△DBM≌△KCM(ASA),即可得出DB=CK DM=MK即可得出答案.解答:解:(1)如图1,∵ME⊥m于E,CF⊥m于F,∴ME∥CF,∵M为BC的中点,∴E为BF中点,∴ME是△BFC的中位线,∴EM=CF.(2)图2的结论为:ME=(BD+CF),图3的结论为:ME=(CF﹣BD).图2的结论证明如下:连接DM并延长交FC的延长线于K又∵BD⊥m,CF⊥m∴BD∥CF∴∠DBM=∠KCM在△DBM和△KCM中,∴△DBM≌△KCM(ASA),∴DB=CK DM=MK由题意知:EM=FK,∴ME= (CF+CK)= (CF+DB)图3的结论证明如下:连接DM并延长交FC于K又∵BD⊥m,CF⊥m∴BD∥CF∴∠MBD=∠KCM在△DBM和△KCM中,∴△DBM≌△KCM(ASA)∴DB=CK,DM=MK,由题意知:EM=FK,∴ME=(CF﹣CK)=(CF﹣DB).点评:此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△DBM≌△KCM(ASA)是解题关键.2. (2014•乐山,第21题10分)如图,在梯形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足为点E.若AD=1,AB=2,求CE的长.考点:直角梯形;矩形的判定与性质;解直角三角形..分析:利用锐角三角函数关系得出BH的长,进而得出BC的长,即可得出CE的长.解答:解:过点A作AH⊥BC于H,则AD=HC=1,在△ABH中,∠B=30°,AB=2,∴cos30°=,即BH=ABcos30°=2×=3,∴BC=BH+BC=4,∵CE⊥AB,∴CE=BC=2.点评:此题主要考查了锐角三角函数关系应用以及直角三角形中30°所对的边等于斜边的一半等知识,得出BH的长是解题关键.3. (2014•攀枝花,第19题6分)如图,在梯形OABC中,OC∥AB,OA=CB,点O为坐标原点,且A(2,﹣3),C(0,2).(1)求过点B的双曲线的解析式;(2)若将等腰梯形OABC向右平移5个单位,问平移后的点C是否落在(1)中的双曲线上?并简述理由.考点:等腰梯形的性质;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;坐标与图形变化-平移.分析:(1)过点C作CD⊥AB于D,根据等腰梯形的性质和点A的坐标求出CD、BD,然后求出点B的坐标,设双曲线的解析式为y=(k≠0),然后利用待定系数法求反比例函数解析式解答;(2)根据向右平移横坐标加求出平移后的点C的坐标,再根据反比例函数图象上点的坐标特征判断.解答:解:(1)如图,过点C作CD⊥AB于D,∵梯形OABC中,OC∥AB,OA=CB,A(2,﹣3),∴CD=2,BD=3,∵C(0,2),∴点B的坐标为(2,5),设双曲线的解析式为y=(k≠0),则=5,解得k=10,∴双曲线的解析式为y=;(2)平移后的点C落在(1)中的双曲线上.理由如下:点C(0,2)向右平移5个单位后的坐标为(5,2),当x=5时,y==2,∴平移后的点C落在(1)中的双曲线上.点评:本题考查了等腰梯形的性质,待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,坐标与图形变化﹣平移,熟练掌握等腰梯形的性质并求出点B的坐标是解题的关键.。

2009年中考数学试题分类汇编(梯形)

2009年中考数学试题分类汇编(梯形)

2009年中考数学试题分类汇编(梯形)一、选择题1.杨伯家小院子的四棵小树E F G H 、、、刚好在其梯形院子ABCD 各边的中点上,若在四边形EFGH 种上小草,则这块草地的形状是2.如图1,在等腰梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,以下四个结论:①DCB ABC ∠=∠ ,②OA =OD ,③BDC BCD ∠=∠,④S AOB ∆=S DOC ∆,其中正确的是( )A . ①②B .①④C .②③④D .①②④ 二、填空题3.(2009 黑龙江大兴安岭)梯形ABCD 中,BC AD //, 1=AD ,4=BC ,︒=∠70C ,︒=∠40B ,则AB 的长为 .4.(2009年济宁市)在等腰梯形ABCD 中,AD ∥BC , AD =3cm , AB =4cm , ∠B =60°, 则下底BC 的长为 cm .5. (2009宁夏)如图,梯形ABCD 的两条对角线交于点E ,图中面积相等的三角形共有 对.6.(2009年南充)如图,等腰梯形ABCD 中,A D B C ∥,6047B AD BC ∠===°,,,则梯形ABCD 的周长是 .7.(2009年日照)如图,在四边形ABCD 中,已知AB 与CD 不平行,∠ABD =∠ACD ,请你添加一个条件: ,使得加上这个条件后能够推出AD ∥BC 且AB =CD .8.(2009年泸州)如图4,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,AB =3,BC =4,则梯形ABCD 的面积是A DBE (5题图)BCDAO(第7题图) D C A B9. (2009年四川省内江市)如图,梯形ABCD 中,AD //BC ,两腰BA 与CD 的延长线相交于P ,PE ⊥BC ,AD =2,BC =5,EF =3,则PF =____________。

10.(2009年陕西省)如图,在梯形ABCD 中,DC ∥AB ,DA =CB ,若AB =10,DC =4,tanA =2,则这个梯形的面积是______.11(2009山西省太原市)如图,在等腰梯形ABCD 中,AD BC ∥,BC =4AD=B ∠=45°.直角三角板含45°角的顶点E 在边BC 上移动,一直角边始终经过点A ,斜边与CD 交于点F .若ABE △为等腰三角形,则CF 的长等于 .12.(2009年宁波市)如图,梯形ABCD 中,AD BC ∥,7040B C ∠=∠=°,°,作DE AB ∥交BC 于点E ,若3AD =,10BC =,则CD 的长是 .13.(2009年济宁市)在等腰梯形ABCD 中,AD ∥BC , AD =3cm , AB =4cm , ∠B =60°, 则下底BC 的长为 cm . 三、解答题14. (2009年重庆市江津区)如图,在梯形ABCD 中,AD ∥BC ,AB =AD =DC ,∠B =60º. (1)求证:AB ⊥AC ;(2)若DC =6,求梯形ABCD 的面积 .15.(2009年北京市)如图,在梯形ABCD 中,AD ∥BC ,∠B =90,∠C =45, AD =1,BC =4,E 为AB 中点,EF ∥DC 交BC 于点F ,求EF 的长.14题图AB CD16.(2009仙桃)如图,直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,已知AD =AB =3,BC =4,动点P 从B 点出发,沿线段BC 向点C 作匀速运动;动点Q 从点D 出发,沿线段DA 向点A 作匀速运动.过Q 点垂直于AD 的射线交AC 于点M ,交BC 于点N .P 、Q 两点同时出发,速度都为每秒1个单位长度.当Q 点运动到A 点,P 、Q 两点同时停止运动.设点Q 运动的时间为t 秒. (1)求NC ,MC 的长(用t 的代数式表示);(2)当t 为何值时,四边形PCDQ 构成平行四边形?(3)是否存在某一时刻,使射线QN 恰好将△ABC 的面积和周长同时平分?若存在,求出此时t 的值;若不存在,请说明理由; (4)探究:t 为何值时,△PMC 为等腰三角形?17.(2009年桂林市、百色市)如图:在等腰梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O . (1)图中共有 对全等三角形;(2)写出你认为全等的一对三角形,并证明.18. (2009年上海市)如图,在梯形ABCD 中, AD ∥BC ,AB =DC =8,∠B =60°,BC =12,联结AC . (1)求tan ACB 的值;(2)若M N 、分别是AB DC 、的中点,联结MN ,求线段MN 的长.19.(2009年杭州市)如图,在等腰梯形ABCD 中,∠C =60°,AD ∥BC ,且AD =DC ,E 、F 分别在AD 、DC 的延长线上,且DE =CF ,AF 、BE 交于点P .(1)求证:AF =BE ; (2)请你猜测∠BPF 的度数,并证明你的结论.20.(2009泰安)如图所示,在直角梯形ABCD 中,∠ABC =90°,AD ∥BC ,AB =BC ,E 是AB 的中点,CE ⊥BD 。

中考专项训练之常规中考题(梯形与圆)

中考专项训练之常规中考题(梯形与圆)

中考专项训练之常规中考题(梯形与圆)知识点:1. 梯形中常见的辅助线我们可以看到,梯形本身的性质并不多,所以实际解梯形的问题时,往往通过添加辅助线将梯形分成三角形或平行四边形,三角形是最简单的直线形,而平行四边形具有很好的对称性质.下面给出几个常见的添加辅助线的方法.1. 作梯形的高:一般是过梯形的一个顶点作高,其好处是将梯形分成一个直角三角形和一个直角梯形,从而可以用勾股定理,如果过梯形的两个顶点分别作高,则会出现矩形.2. 过梯形的一个顶点作另一腰的平行线:这样便将梯形分成了一个平行四边形和一个三角形,这样做的好处是可以将两条腰拉到同一个三角形中,并且三角形的另一条边恰好是梯形的两底之差,从而将问题集中到三角形中.3. 延长梯形的两腰交于一点:这样做可以同样地使问题转化为三角形的问题.4. 过梯形一腰的中点作另一腰的平行线:可以将梯形等积变换成一个平行四边形.5. 连接梯形一个顶点和另一腰上的中点并延长交另一底边:可以将梯形等积变换成一个三角形.常见的辅助线添加方式如下:梯形中的辅助线较多,其实质是采用割补法将梯形问题划归为三角形、平行四边形问题处理.解题时要根据题目的条件和结论来确定作哪种辅助线.题型一:四边形有关计算【例1】如图,在梯形ABCD中,AD∥BC,∠B=60°,∠ADC=105°,AD=6,且AC⊥AB,求AB的长.【例2】 已知:如图,直角梯形ABCD 中,AD AB CDA BCD =︒=∠︒=∠,,6090,4,2AB DF ==,求BF 的长.【例3】 如图,四边形ABCD 是边长为9的正方形纸片,B '为CD 边上的点,C B '=3.将纸片沿某条直线折叠,使点B 落在点B '处,点A 的对应点为A ',折痕分别与A D ,BC 边交于点M ,N .⑴求BN 的长;⑵求四边形ABNM 的面积.A DCBFEDCB AABCDB'A'MN【例4】 已知:等腰梯形ABCD 中,AD ∥BC ,2=AD ,6=BC ,将线段DC 绕点D逆.时针旋转︒90,得到线段C D '. ⑴求△C AD '的面积; ⑵若52tan ='∠C DA ,求AB 的长.【例5】 如图,梯形ABCD 中,AD BC P ,5BC =,3AD =,对角线AC BD ⊥,且30DBC ∠=︒,求梯形ABCD 的高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

梯形
一、选择题
1.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移 动,则当P A +PD 取最小值时,△APD 中边AP 上的高为( ) A 、17
17
2
B 、
17174 C 、 17
178
D 、
3
2. 如图,梯形ABCD 中,∠ABC 和∠DCB 的平分线相交于梯形中位线EF 上的一点P ,若EF =3,则梯形ABCD 的周长为( C ) A .9
B .10.5
C .12
D .15
3.梯形ABCD 中,AD BC ∥,1AD =,4BC =,70C ∠=°,40B ∠=°,则AB 的长为( ) A .2 B .3 C .4 D .5
4.如图(十),等腰梯形ABCD 中,AD =5,AB =CD =7, BC =13,且CD 之中垂线L 交BC 于P 点,连接PD 。

求四边形ABPD 的周长为何?
A . 24
B .25
C . 26
D .27
5. 在△ABC 中,BC =10,B 1 、C 1分别是图①中AB 、AC 的中点,在图②中,2
12
1
、C 、C 、B B 分别是AB ,AC 的三等分点,在图③中92192
1;C 、C C B 、、B
B 分别是AB 、A
C 的
10等分点,则992211C B C B C B +++ 的值是 ( ) A . 30 B . 45 C .55 D .60
D
B C L
P A 圖(十) A
B
C
D E
F
P
(第8题)
D
A C
B
A '
① ② ③
6.在直角梯形ABCD 中,AD BC ∥,90ABC AB BC E ∠==°
,,为AB 边上一点,15BCE ∠=°,且AE AD =.连接DE 交对角线AC 于H ,连接BH .下列结论:
①ACD ACE △≌△; ②CDE △为等边三角形; ③
2EH BE =; ④EDC EHC S AH
S CH
=△△. 其中结论正确的是( )
A .只有①②
B .只有①②④
C .只有③④
D .①②③④
7.在梯形ABCD 中,AB ∥CD ,∠A =60°,∠B =30°,AD =CD =6,则AB 的长度为( ) A .9
B .12
C .18
D
.6+8.等腰梯形ABCD 中,E 、F 、G 、H 分别是各边的中点,则四边形EFGH 的形状是( ) A .平行四边形 B .矩形 C .菱形 D .正方形 9..如图,在等腰梯形ABCD 中,AB =DC ,AC 、BD 交于点O ,则图中全等三角形共有( )B A .2对 B .3对
C .4对
D .5对
10.如图,在等腰梯形ABCD 中,A D B C ∥,对角线A C B D ⊥于点O ,AE BC DF BC ⊥⊥,,垂足分别为E 、F ,设AD =a ,BC =b ,则四边形AEFD 的周长是( ) A .3a b +
B .2()a b +
C .2b a +
D .4a b +
11.如图,梯形ABCD 中,AD ∥BC ,DC ⊥BC ,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点A ´处,若∠A ´BC =20°,则∠A ´BD 的度数为( ). (A )15° (B )20° (C ) 25° (D )30°
D C A
B
E F
O
D
C B
E A
H
12.如图,在梯形ABCD 中,AB //DC ,∠D =90o
,AD =DC =4,AB =1,F 为AD 的中点,则点F 到BC 的距离是 A .2 B .4 C .8 D .1
13..杨伯家小院子的四棵小树E F G H 、、、刚好在其梯形院子ABCD 各边的中点上,若在四边形EFGH 种上小草,则这块草地的形状是( ) A .平行四边形 B .矩形 C .正方形 D .菱形
14.,在等腰梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,以下四个结论:①DCB ABC ∠=∠ ,②OA =OD ,③BDC BCD ∠=∠,④S AOB ∆=S DOC ∆,其中正确的是
A . ①②
B .①④
C .②③④
D .①②④ 二、填空题
15.梯形ABCD 中,BC AD //, 1=AD ,4=BC ,︒=∠70C ,︒=∠40B , 则AB 的长为 .
16.在等腰梯形ABCD 中,AD ∥BC , AD =3cm , AB =4cm , ∠B =60°, 则下底BC 的长为 cm .
17..如图,梯形ABCD 的两条对角线交于点E ,图中面积相等的三角形共有 对.
18..如图,等腰梯形ABCD 中,AD BC ∥,6047B AD BC ∠===°
,,,则梯形ABCD 的周长是 .
A D
B
E (14题图)
19.如图,在四边形ABCD 中,已知AB 与CD 不平行,∠ABD =∠ACD ,请你添加一个条件: ,使得加上这个条件后能够推出AD ∥BC 且AB =CD .
20.如图4,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,AB =3,BC =4,则梯形ABCD 的面积是
21.如图,梯形ABCD 中,AD //BC ,两腰BA 与CD 的延长线相交于P ,PE ⊥BC ,AD =2,BC =5,EF =3,则PF =____________。

22 14
.如图,在梯形ABCD 中,DC ∥AB ,DA =CB ,若AB =10,DC =4,tanA =2,则这个梯形的面积是______.
23.如图,在等腰梯形ABCD 中,AD BC ∥,BC =4AD
=B =45°.直角三角板含45°角的顶点E 在边BC 上移动,一直角边始终经过点A ,斜边与CD 交于点F .若ABE
△为等腰三角形,则CF 的长等于 .
P
A
B F B
C
D
A
O
(第15题图)
D
C A
B
24.如图,梯形ABCD 中,AD BC ∥,7040B C ∠=∠=°
,°,作DE AB ∥交BC 于点E ,若
3AD =,10BC =,则CD 的长是 .
25.如图,在四边形ABCD 中,已知AB 与CD 不平行,∠ABD =∠ACD ,请你添加一个条件: ,使得加上这个条件后能够推出AD ∥BC 且AB =CD .
26在等腰梯形ABCD 中,AD ∥BC , AD =3cm , AB =4cm , ∠B =60°, 则下
底BC 的长为 cm .
A
B C
D
B C
D
A
O
(第15题图)。

相关文档
最新文档