函数单调性模拟课堂

合集下载

高中数学函数的单调性15分钟片段教学省公开课获奖课件市赛课比赛一等奖课件

高中数学函数的单调性15分钟片段教学省公开课获奖课件市赛课比赛一等奖课件

f(x1) f(x2)
x
a x1 xO 2 b
f(x1) f(x2)
a x1 xO 2 b
x
⒉ 单调性与单调区间
若函数y=f(x)在某个区间是增函数或减函数,则 就说函数y=f(x)在这一区间具有(严格旳)单调性,这一 区间叫做函数y=f(x)旳单调区间.此时也说函数y=f(x) 是这一区间上旳单调函数.
§1.3.1 函数旳单调性
学习目旳:
1、经过观察某些函数图像旳升降,形成 增(减)函数旳直观认识;
2、经过详细函数值旳大小比较,认识 函数值随自变量旳增大而增大(减小) 旳规律,得出增(减)函数旳定义;
3、掌握用定义证明函数单调性旳基本措
问题1:观察下列函数图像,说说他们反应 了相应函数旳哪些变化规律?
p(V2V2 V1 V1V2
作差 变形
由V1,V2∈ (0,+∞)且V1<V2,得V1V2>0, V2- V1 >0
又k>0,于是 p(V1) p(V2 ) 0 定号
p(V2 ) p(V1 )
就是所说以,,当函体数积Vp降低Vk时,V,压(强0,p将增)是大减. 函数.也 结论
在单调区间上,增函数旳图象是上升旳,减函 数旳图象是下降旳.
例2.物理学中旳玻意耳定律 p k (k为正常数)告诉我
V
们,对于一定量旳气体,当其体积V减小时,压强p
将增大。试用函数旳单调性证明之。
证明:根据单调性旳定义,设V1,V2是定义域 取值 (0,+∞)上旳任意两个实数,且V1<V2,则
p(V1)
⑴设 x1, x2 是给定区间内旳任意两个值,且 x1 x2
⑵作差f (x1) f (x2 )并将此差式变形(要注意变形旳程度)

函数单调性课件(公开课)

函数单调性课件(公开课)

定义法
总结词
通过函数定义判断单调性
详细描述
在区间内任取两个数$x_{1}$、$x_{2}$,如果$x_{1} < x_{2}$,都有$f(x_{1}) leq f(x_{2})$,则函数在这个区间内单调递增;如果$x_{1} < x_{2}$,都有$f(x_{1}) geq f(x_{2})$,则函数在这个区间内单调递减。
感谢您的观看
03 函数单调性的应用
单调性与最值
总结词
单调性是研究函数最值的重要工 具。
详细描述
单调性决定了函数在某个区间内的 变化趋势,通过单调性可以判断函 数在某个区间内是否取得最值,以 及最值的位置。
举例
对于函数f(x)=x^2,在区间(-∞,0) 上单调递减,因此在该区间上取得 最大值0。
单调性与不等式证明
单调递减函数的图像
在单调递减函数的图像上,随着$x$的增大,$y$的值减小,图像 呈现下降趋势。
单调性转折点
在单调性转折点上,函数的导数由正变负或由负变正,对应的函数 图像上表现为拐点或极值点。
02 判断函数单调性的方法
导数法
总结词
通过求导判断函数单调性
详细描述
求函数的导数,然后分析导数的符号,根据导数的正负判断函数的增减性。如 果导数大于0,则函数在该区间内单调递增;如果导数小于0,则函数在该区间 内单调递减。
总结词
单调性是证明不等式的重要手段。
详细描述
通过比较函数在不同区间的单调性,可以证明一些不等式。例如,如果函数f(x)在区间[a,b]上 单调递增,那么对于任意x1,x2∈[a,b],有f(x1)≤f(x2),从而证明了相应的不等式。
举例
利用函数f(x)=ln(x)的单调递增性质,可以证明ln(x1/x2)≤(x1-x2)/(x1+x2)。

《函数的单调性》示范公开课教学PPT课件【高中数学人教版】

《函数的单调性》示范公开课教学PPT课件【高中数学人教版】

(2)它在定义域I上的单调性是怎样的?证明你的结论.
答案:图象略.
(1)(-∞,0)∪(0,+∞).
(2)当k>0时,y= k 在区间(-∞,0)和(0,+∞)上单调递减; x
当k<0时,y= k 在区间(-∞,0)和(0,+∞)上单调递增. x
目标检测
44.画出反比例函数y=
k x
的图象.
(1)这个函数的定义域I是什么?
新知探究
追问5 函数f(x)=|x|,f(x)=-x2各有怎样的单调性?
f(x)=|x|在区间(-∞,0]上单调递减, 在区间[0,+∞)上单调递增; f(x)=-x2在区间(-∞,0]上单调递增, 在区间[0,+∞)上是单调递减.
新知探究
问题4 如何用符号语言准确刻画函数值随自变量的增大而增大 (减小)呢?
证明:由x1,x2∈(1,+∞),得x1>1,x2>1,
所以x1x2>1,x1x2-1>0.
由x1<x2,得x1-x2<0,
于是(x1-x2)(
x1x2 1 x1 x2
)<0,即y1<y2.
所以,函数y=x+ 1 在区间(1,+∞)上的单调递增. x
新知探究
追问 你能用单调性定义探究y=x+ 1 在整个定义域内的单调性吗? x
图1
图2
图3
图1的特点是:从左至右始终保持上升;
图2与图3的特点是:从左至右有升也有降.
新知探究
★资源名称: 【数学探究】函数值的变化情况 ★使用说明:本资源通过操作展示动画,使学生观察函数值随着自变量值的变化而变化的情 况.通过交互式动画的方式,运用了本资源,可以吸引学生的学习兴趣,增加教学效果,提高教 学效率. 注:此图片为动画缩略图,如需使用资源,请于资源库调用

高中数学第二章函数3函数的单调性一课时跟踪训练含解析北师大版必

高中数学第二章函数3函数的单调性一课时跟踪训练含解析北师大版必

学习资料函数的单调性(一)[A组学业达标]1.(2019·泸县高一模拟)在区间(-∞,0)上为增函数的是()A.f(x)=-3x+2 B.f(x)=错误!C.y=|x|D.f(x)=-2x2+4解析:对于A,函数在R递减;对于B,函数在(-∞,0)递减;对于C,x<0时,y=-x,递减;对于D,函数的对称轴是x=0,开口向下,故函数f(x)在(-∞,0)递增.答案:D2.若函数y=ax与y=-错误!在区间(0,+∞)上都是减函数,则函数y=ax2+bx 在区间(0,+∞)上是()A.增函数B.减函数C.先增后减D.先减后增解析:由于函数y=ax与y=-错误!在区间(0,+∞)上都是减函数,所以a<0,-b>0,即a<0,b<0。

因为抛物线y=ax2+bx的对称轴为x=-错误!<0,且抛物线开口向下,所以y=ax2+bx在区间(0,+∞)上是减函数.答案:B3.若函数f(x)=x2+3ax+5在区间(-∞,5)上为减函数,则实数a的取值范围是()A。

错误!B。

错误!C.错误!D.错误!解析:因为函数f(x)=x2+3ax+5的单调递减区间为错误!,所以(-∞,5)⊆错误!,所以a≤-错误!.答案:A4.(2019·临猗县高一模拟)若函数f(x)=|2x+a|的单调递增区间是[3,+∞),则a的值为()A.-2 B.2 C.-6 D.6解析:∵f(x)=|2x+a|的单调递增区间错误!,∴由-a2=3得a =-6. 答案:C5.(2019·马尾区高一模拟)已知f (x )是定义在[0,+∞)上单调递增的函数,则满足f (2x -1)<f 错误!的x 取值范围是( ) A.错误! B.错误! C 。

错误!D.错误!解析:∵f (x )是定义在[0,+∞)上单调递增的函数, ∴不等式f (2x -1)<f 错误!等价为0≤2x -1<错误!, 即错误!≤x <错误!,即不等式的解集为错误!. 答案:C6.(2019·海淀区高一模拟)写出函数f (x )=-x 2+2|x |的单调递增区间是________. 解析:由题意,函数 f (x )=-x 2+2|x |=错误! 作出函数f (x )的图像如图所示:由图像知,函数f (x )的单调递增区间是(-∞,-1)和(0,1). 答案:(-∞,-1)和(0,1)7.已知函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )是增函数,当x ∈(-∞,-2)时,f (x )是减函数,则f (1)=________。

课堂互动探究单调性——函数单调性课堂教学教案

课堂互动探究单调性——函数单调性课堂教学教案

课堂互动探究单调性——函数单调性课堂教学教案1. 教学目标与要求在本次教学活动中,我们将通过多元化的教学方式,让学生们了解函数单调性的概念,认识单调性的性质,学会如何进行单调性的证明,并且通过实际算例进行理解和探索,在激发学生的主动性和动手能力的同时,让学生掌握函数单调性相关的基本概念、基本方法和基本技巧,提高学生的数学素养和解决实际问题能力。

2. 教学内容与重点2.1 函数单调性的定义和性质2.1.1 函数单调性的基本概念及性质2.1.2 单调性的分类2.1.3 单调性与函数增减性的关系2.2 函数单调性的探究和证明2.2.1 函数单调性的初步探究2.2.2 单调性的证明方法2.2.3 案例分析与总结3. 教学方法与手段3.1 想象模拟法3.1.1 视觉模拟3.1.2 语音模拟3.2 实际探究法3.2.1 实际数学模型的构建3.2.2 软件模拟仿真3.3 互动教学法3.3.1 学生讨论交流3.3.2 班级竞赛小组合作3.3.3 教师情景讲解4. 教学过程与重难点4.1 教学过程4.1.1 函数单调性的定义及性质讲解 4.1.2 案例分析及交流4.1.3 实际探究验证及总结4.1.4 单调性证明方法和技巧4.1.5 课堂练习和解答4.2 教学重点与难点4.2.1 函数单调性的概念及性质4.2.2 单调性的分类4.2.3 单调性与函数增减性的关系 4.2.4 单调性的证明方法和技巧5. 课后作业与答案解析5.1 课堂习题解答及讲评5.2 预习练习和自主学习任务5.3 学生小组探究报告6. 教学效果与评价6.1 教学效果展示及分析6.2 学生评价和教师评价6.3 教学反思和改进建议本文主要介绍了函数单调性的相关知识,包括其定义、性质、分类、证明方法与技巧,以及教学目标和要求,教学重点与难点,教学方法和手段等。

通过多元化的教学方式,如想象模拟法、实际探究法、互动教学法等,让学生主动参与探究和交流,提高其数学素养和解决实际问题的能力。

函数单调性课件(公开课)ppt

函数单调性课件(公开课)ppt
函数单调性课件(公开课)
目录
• 函数单调性的定义与性质 • 判断函数单调性的方法 • 单调性在解决实际问题中的应用 • 函数单调性的深入理解 • 函数单调性的实际案例分析
01 函数单调性的定义与性质
函数单调性的定义
函数单调性是指函数在某个区间内的增减性。如果函数在某个区间内单调递增, 则表示函数值随着自变量的增加而增加;如果函数在某个区间内单调递减,则表 示函数值随着自变量的增加而减小。
的计算过程。
单调性与微分方程的关系
要点一
单调性决定了微分方程解的稳定 性
对于一阶线性微分方程,如果其系数函数在某区间内单调 递增(或递减),则该微分方程的解在此区间内是稳定的 。
要点二
单调性是研究微分方程的重要工 具
通过单调性可以判断微分方程解的存在性和唯一性,以及 研究解的动态行为。
05 函数单调性的实际案例分 析
总结词
利用单调性证明或解决不等式问题
详细描述
单调性在解决不等式问题中起到关键作用。通过分析函数的单调性,我们可以证明不等式或解决与不等式相关的 问题。例如,利用单调性可以证明数学归纳法中的不等式,或者在比较大小的问题中利用单调性进行判断。
单调性在函数极值问题中的应用
总结词
利用单调性求解函数的极值
详细描述
函数单调性的定义可以通过函数的导数来判断。如果函数的导数大于0,则函数在该 区间内单调递增;如果函数的导数小于0,则函数在该区间内单调递减。
函数单调性的性质
函数单调性具有传递性,即如果函数在区间I上单调递增,且 在区间J上单调递增,则函数在区间I和J的交集上也是单调递 增的。
函数单调性具有相对性,即如果函数在区间I上单调递增,且 另一个函数在区间J上单调递增,则这两个函数在区间I和J的 交集上也是单调递增的。

函数的单调性(公开课课件)

函数的单调性(公开课课件)
详细描述
单调减函数是指函数在某个区间内,对于任意两个自变量$x_1$和$x_2$($x_1 < x_2$),如果$x_1$和$x_2$ 都在这区间内,那么函数值$f(x_1) geq f(x_2)$。也就是说,函数的图像随着$x$的增加而下降。
严格单调函数的定义
总结词
严格单调函数是指函数在某个区间内,严格满足单调增或单调减条件的函数。
利用单调性解方程
利用函数的单调性,可以求解方程。
通过分析函数的单调性,可以确定方程解的范围,从而求解方程。例如,对于一元二次方程$ax^2 + bx + c = 0$,如果$a > 0$,则函数$f(x) = ax^2 + bx + c$在区间$(-infty, -frac{b}{2a})$上单调递减,在区间$(-frac{b}{2a}, +infty)$上单调递增 ,因此方程的解必定落在$(-frac{b}{2a}, +infty)$区间内。
函数单调性的反例
04
单调增函数的反例
总结词
非严格单调增函数
详细描述
有些函数在其定义域内并非严格单调递增,即存在某些区间内函数值先减小后 增大。例如,函数$f(x) = x^3$在区间$(-2, -1)$内是单调减函数。
单调减函数的反例
总结词
非严格单调减函数
详细描述
有些函数在其定义域内并非严格单调递减,即存在某些区间 内函数值先增大后减小。例如,函数$f(x) = frac{1}{x}$在区 间$(1, +infty)$内是单调增函数。
详细描述
单调增函数是指函数在某个区间内,对于任 意两个自变量$x_1$和$x_2$($x_1 < x_2$ ),如果$x_1$和$x_2$都在这区间内,那么 函数值$f(x_1) leq f(x_2)$。也就是说,函数 的图像随着$x$的增加而上升。

函数的单调性(公开课课件)

函数的单调性(公开课课件)

VS
单调性与极值大小的关系
单调性可以用来比较不同区间上的极值大 小。
单调性与最值的关系
单调性与最值点的关系
单调性可以用来判断函数在某点是否为最值 点。
单调性与最值大小的关系
单调性可以用来比较不同区间上的最值大小 。
THANKS FOR WATCHING感Biblioteka 您的观看CHAPTER 03
函数单调性的应用
利用单调性求参数范围
通过函数的单调性,我们可以确定参数的取值范围,进而解决一些数学问题。
在函数中,如果函数在某区间内单调递增或递减,那么我们可以根据函数值的变化趋势,确定参数的取值范围。例如,如果 函数$f(x)$在区间$(a, b)$内单调递增,且$f(x_0) = 0$,那么对于任意$x in (a, b)$,都有$f(x) > 0$,从而可以得出参数的 取值范围。
单调性可以通过函数的导数来判断,如果函数的导数大于等于0,则函数在该区 间内单调递增;如果函数的导数小于等于0,则函数在该区间内单调递减。
单调增函数和单调减函数
01
单调增函数是指函数在某个区间 内随着自变量的增加而增加。
02
单调减函数是指函数在某个区间 内随着自变量的增加而减少。
函数单调性的几何意义
导数与函数单调性
总结词
导数可以判断函数的单调性,当导数大于0时,函数单调递增;当导数小于0时 ,函数单调递减。
详细描述
导数表示函数在某一点的切线斜率。如果导数大于0,说明切线斜率为正,函数 在该区间内单调递增;如果导数小于0,说明切线斜率为负,函数在该区间内单 调递减。
复合函数的单调性
总结词
复合函数的单调性取决于内外层 函数的单调性以及复合方式。

函数的单调性公开课课件

函数的单调性公开课课件

在函数值比较中的应用
1 2
利用单调性比较函数值大小
对于同一区间内的两个函数值,如果函数在该区 间内单调,则可以直接比较它们的大小。
确定函数值的范围
通过判断函数的单调性,可以确定函数在某个区 间内的取值范围。
3
举例
比较sin(π/4)和sin(π/6)的大小。由于正弦函数 在[0, π/2]区间内单调递增,因此sin(π/4) > sin(π/6)。
06
复合函数的单调性
复合函数的定义和性质
复合函数的定义
设函数$y=f(u)$的定义域为$D_f$, 函数$u=g(x)$的定义域为$D_g$, 且$g(D_g) subseteq D_f$,则称函 数$y=f[g(x)]$为$x$的复合函数。
复合函数的性质
复合函数保持原函数的定义域、值域 、周期性、奇偶性等基本性质。
以直观地判断函数在各个 区间内的单调性。
判断单调区间
根据图像的形状和走势, 确定函数在各个区间内的 单调性。
图像的绘制
通过描点法、图像变换法 等方法,绘制出函数的图 像。
04
常见函数的单调性
一次函数
一次函数单调性
一次函数$f(x) = ax + b$($a neq 0$)在其定 义域内单调增加或减少,取决于系数$a$的正负。
总结与展望
课程总结
函数的单调性定义
详细解释了函数单调性的定义,包括增函数、减函数以及常数函 数的特性。
判断函数单调性的方法
介绍了如何通过导数、二阶导数以及函数的图像来判断函数的单调 性。
函数单调性的应用
举例说明了函数单调性在解决实际问题中的应用,如优化问题、经 济学中的边际分析等。

函数的单调性及单调区间(预习讲义)(教师版)

函数的单调性及单调区间(预习讲义)(教师版)

函数的单调性及单调区间(预习讲义)考察函数y x =、2y x =、1y x=的图象你能发现每个图象中函数值y 随着x 的变化而变化的情况吗?【答案】对于y x =,y 随着x 的增大而增大;对于2y x =,当0x <时,y 随着x 的增大而减小,当0x >时,y 随着x 的增大而增大;对于1y x=,当0x <时,y 随着x 的增大而减小,当0x >时,y 随着x 的增大而减小.一、函数单调性的定义1、改变量:在函数()y f x =的图象上任取两点1122(,),(,)A x y B x y ,记21,x x x ∆=-2121()()y f x f x y y ∆=-=-.则x ∆表示自变量x 的改变量,y ∆表示因变量y 的改变量. 2、增函数:一般地,设函数()y f x =的定义域为A ,区间M A ⊆.如果取区间M 中的任意两个12,x x ,改变量210x x x ∆=->,2121()()0y f x f x y y ∆=-=->,则称函数()y f x =在区间M 上是增函数.如图所示:知识导引知识讲解3、减函数:一般地,设函数()y f x =的定义域为A ,区间M A ⊆.如果取区间M 中的任意两个12,x x ,改变量210x x x ∆=->,21()()0y f x f x ∆=-<,则称函数()y f x =在区间M 上是减函数.如图所示:4、单调性:如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性.区间M 称为单调区间.二、用定义法证明函数单调性的一般步骤1、取值:即设12,x x 是该区间内的任意两个值,且12x x <,210x x x ∆=->2、作差变形:通过因式分解、配方,有理化等方法,向有利于判断差的符号的方向变形.3、定号:确定21()()y f x f x ∆=-的符号,若符号不确定,可以进行分类讨论.4、下结论:根据定义得出结论,注意下结论时不要忘记说明区间.三、函数的平均变化率因变量的改变量与自变量的改变量的比即2121y y y x x x -∆=∆-叫做函数()y f x =从1x 到2x 之间的平均变化率.四、 重要结论1、若在区间M 上函数()y f x =是增函数,12x x <⇔12()()f x f x <12(,)x x M ∈;若在区间M 上函数()y f x =是减函数,12x x <⇔12()()f x f x >.12(,)x x M ∈ 2、在区间M 上函数()y f x =是增函数⇔0yx∆>∆; 在区间M 上函数()y f x =是减函数⇔0y x∆<∆五、特殊函数的单调性1、一次函数(0)y kx b k =+≠,0k y kx b >⇔=+为增函数;0k y kx b <⇔=+为减函数.2、反比例函数(0)k y k x =≠,0kk y x>⇔=在区间(,0),(0,)-∞+∞上为减函数;0kk y x<⇔=在区间(,0),(0,)-∞+∞上为增函数. 想一想:能说(0)ky k x =>在区间(,0)(0,)-∞+∞上为减函数吗?说明理由.【答案】不能,反例:取1211x x =-=,,则12(0)(0)x x ∈-∞+∞,,,,且12x x <又12y k y k =-=,, 因为0k >,所以12y y <,与减函数定义矛盾.3、二次函数2(0)y ax bx c a =++≠,0a >⇔2y ax bx c =++在区间(,)2ba--∞上为减函数,在区间 (,)2ba-+∞上为增函数. 0a <⇔2y ax bx c =++在区间(,)2b a --∞上为增函数,在区间(,)2ba-+∞上为减函数. 4、函数y x a =-在区间(,)a -∞上为减函数,在区间(,)a +∞上为增函数. 5、对勾函数1y x x=+在区间(),1,(1,)-∞-+∞上为增函数,在区间(1,0),(0,1)-上为减函数;一般地,对勾函数(0)ky x k x=+>在区间(,)-∞+∞上为增函数,在区间(上为减函数;五、函数的最值1、函数的最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()y f x =的最大值(maximum value )2、函数的最小值:一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥; (2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()y f x =的最小值(minimum value )一、我们知道,函数1y x=在(0)-∞,,(0)+∞,上单调递减,函数21y x =+在(0)-∞,上单调递减,在(0)+∞,上单调递增,那么函数211y x =+的单调性是怎样的呢? 【答案】任取12(0)x x ∈-∞,,,且12x x <, 210x x x ∆=->2212121221222222212121()()11011(1)(1)(1)(1)x x x x x x y y y x x x x x x --+∆=-=-==>++++++ 所以211y x =+在(0)-∞,上单调递增; 同理,可证得,211y x =+在(0)+∞,上单调递减. 二、 复合函数的单调性1、若函数()y f u =在其定义域上是增函数,()u g x =在其定义域上是增函数,则复合函数(())y f g x =的单调性是怎样的?【答案】复合函数(())y f g x =在定义域上单调递增;2、若函数()y f u =在其定义域上是增函数,()u g x =在其定义域上是减函数,则复合函数(())y f g x =的单调性是怎样的?【答案】复合函数(())y f g x =在定义域上单调递减;3、若函数()y f u =在其定义域上是减函数,()u g x =在其定义域上是增函数,则复合函数(())y f g x =的单调性是怎样的?【答案】复合函数(())y f g x =在定义域上单调递减;4、若函数()y f u =在其定义域上是减函数,()u g x =在其定义域上是减函数,则复合函数(())y f g x =的单调性是怎样的?【答案】复合函数(())y f g x =在定义域上单调递增;由上面的探究可知:探究对于复合函数(())y f g x =,其中()y f u =称为外函数,()u g x =称为内函数. 当内外函数单调性相同时,(())y f g x =为增函数; 当内外函数单调性相反时,(())y f g x =为减函数;【例1】 如图是定义在区间[]5,5-上的函数()y f x =,根据图象说出函数的单调区间,以及在每一个单调区间上,它是增函数还是减函数?【答案】()f x 的单调增区间是(21)-,,(35), ()f x 的单调减区间是(52)--,,(13),【例2】 试用函数单调性的定义证明函数1y x =-+,在()-∞+∞,上是减函数. 【答案】证:任取12()x x ∈-∞+∞,,,且12x x < 210x x x ∆=->212112(1)(1)0y y y x x x x ∆=-=-+--+=-<所以1y x =-+在()-∞+∞,上是减函数. 【例3】试用函数单调性的定义证明函数y =,在[0)+∞,上是增函数. 【答案】证:任取12[0)x x ∈+∞,,,且12x x < 210x x x ∆=->210y y y ∆=-===>例题精讲所以y =在[0)+∞,上是增函数. 【例4】试用函数单调性的定义证明函数y =,在[0)+∞,上是增函数. 【答案】证:任取12[0)x x ∈+∞,,,且12x x < 210x x x ∆=->210y y y ∆=-==>所以y =[0)+∞,上是增函数. 【例5】 试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性. 【答案】解:任取12(01)x x ∈,,,且12x x < 210x x x ∆=->2121121221211212222(1)2(1)2()()()11(1)(1)(1)(1)x x x x x x x x y f x f x x x x x x x ----∆=-=-==------ 因为1201x x <<<所以120x x -<,110x -<,210x -< 所以0y ∆<所以2()1xf x x =-在区间(0,1)上的单调递减. 【例6】 证明函数3y x =在定义域上是增函数.【答案】证:任取12x x ∈R ,,且12x x < 210x x x ∆=->3322221212121212121213()()()[()]24x y y y x x x x x x x x x x x x ∆=-=-=-++=-++ 因为12x x <所以210x x ->,221213()024x x x ++>,所以0y ∆>所以3y x =在定义域上是增函数.【例7】 画出下列函数的图象,并指出它们的单调区间:(1)1y x =+ (2)2y x =+【答案】(1)函数1y x =+的单调递增区间是(0)+∞,,单调递减区间是(0)-∞,; (2)函数2y x =+的单调递增区间是(2)-+∞,,单调递减区间是(2)-∞-,; 【例8】 如果函数()y f x =是R 上的减函数,证明0k <时,()kf x 在R 上是增函数.【答案】证:任取12x x ∈R ,,且12x x < 210x x x ∆=->2121()()(()())y kf x kf x k f x f x ∆=-=-因为函数()y f x =是R 上的减函数,12x x < 所以12()()f x f x > 所以21()()0f x f x -< 又0k < 所以0y ∆>所以()kf x 在R 上是增函数.【例9】 研究函数11y x =+的单调区间并画出图象. 【答案】函数11y x =+的单调递减区间为(1)-∞-,,(1)-+∞,. 【例10】 求函数212y x x =++的单调区间.【答案】解:2211172()24y x x x ==++++所以函数的定义域为R 令1y u=,22u x x =++ 因为1y u=在(0)+∞,上单调递减,22u x x =++在1()2-∞-,上单调递减,在1()2-+∞,上单调递增. 所以212y x x =++的单调递增区间是1()2-∞-,,单调递减区间是1()2-+∞,. 【例11】讨论函数y =的单调性.【答案】由2230x x +-≥,得1x ≥或3x ≤-.所以函数定义域为(3][1)-∞-+∞,,令y =223u x x =+-,由复合函数单调性判断法则,得y =在(3]-∞-,上单调递减,在[1)+∞,上单调递增.【例12】 设函数()(21)f x a x b =-+是R 上的减函数,则a 的范围为( )A .12a ≥B .12a ≤C .12a >-D .12a <【答案】D【例13】 已知函数2()2(1)2f x x a x =+-+在区间(4]-∞,上是减函数,求a 的取值范围 【答案】(3]-∞-,【例14】 函数2([0,)y x bx c x =++∈+∞)是单调函数,则b 的取值范围是( )A .0b ≥B .0b ≤C .0b >D .0b <【答案】A【例15】 下列四个函数中,在(0)+∞,上为增函数的是( )A .()3f x x =-B .2()3f x x x =-C .1()1f x x =-+ D .()f x x =-【答案】C【例16】 若函数211()11x x f x ax x ⎧-≥=⎨-<⎩,,在R 上是单调递增函数,则a 的取值范围【答案】(01],【例17】 已知函数()f x 在R 上是减函数,且(21)(2)f a f a +>--,则a 的取值范围是【答案】(1)-∞-,【例18】 已知定义在[23]-,上的减函数()f x 满足(1)(23)f a f a +>+,则a 的取值范围是【答案】(20]-,【例19】 已知()f x 在区间(,)-∞+∞上是减函数,,a b R ∈且0a b +≤,则下列表达正确的是( )A .()()[()()]f a f b f a f b +≤-+B .()()()()f a f b f a f b +≤-+-C .()()[()()]f a f b f a f b +≥-+D .()()()()f a f b f a f b +≥-+-【答案】D【例20】 若()f x 是R 上的减函数,且()f x 的图象经过点(03)A ,和点(31)B -,,则不等式|(1)1|2f x +-<的解集为( ).A .(3)-∞,B .(2)-∞,C .(03),D .(12)-,【答案】C【例21】 求下列函数的最大值与最小值(1)()1[12]f x x x =-+∈-,, (2)1()[31]f x x x-=∈--,, (3)2()21[03]f x x x x =-++∈,, (4)[]2()114f x x x x =+-∈,, (5)1()[25]1f x x x =∈-,, (6)21()[35]1x f x x x -=∈+,, 【答案】(1)()f x 最大值为2,最小值为1-;(2)()f x 最大值为1,最小值为13;(3)()f x 最大值为2,最小值为2-; (4)()f x 最大值为19,最小值为1; (5)()f x 最大值为1,最小值为14; (6)()f x 最大值为32,最小值为54; 【例22】 讨论下列函数的最大值与最小值(1)2()21[11]f x x ax x =-+∈-,,,a ∈R(2)2()21f x x x =+-,[11]x a a ∈-+,,a ∈R 【答案】(1)当1a ≤-时,()f x 最大值为22a -,最小值为22a +;当10a -<≤时,()f x 最大值为22a -,最小值为21a -; 当01a <<时,()f x 最大值为22a +,最小值为21a -; 当1a ≥时,()f x 最大值为22a +,最小值为22a -.(2)当2a ≤-时,()f x 最大值为22a -,最小值为242a a ++; 当21a -<<-时,()f x 最大值为22a -,最小值为2-; 当10a -≤<时,()f x 最大值为242a a ++,最小值为2-; 当0a ≥时,()f x 最大值为242a a ++,最小值为22a -.知识总结二、 函数单调性的定义1、改变量:在函数()y f x =的图象上任取两点1122(,),(,)A x y B x y ,记21,x x x ∆=-2121()()y f x f x y y ∆=-=-.则x ∆表示自变量x 的改变量,y ∆表示因变量y 的改变量. 2、增函数:一般地,设函数()y f x =的定义域为A ,区间M A ⊆.如果取区间M 中的任意两个12,x x , 改变量210x x x ∆=->,2121()()0y f x f x y y ∆=-=->,则称函数()y f x =在区间M 上是增函数. 如图所示:3、减函数:一般地,设函数()y f x =的定义域为A ,区间M A ⊆.如果取区间M 中的任意两个12,x x ,改变量210x x x ∆=->,21()()0y f x f x ∆=-<,则称函数()y f x =在区间M 上是减函数. 如图所示:4、单调性:如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性.区间M 称为单调区间.二、 用定义法证明函数单调性的一般步骤1、取值:即设12,x x 是该区间内的任意两个值,且12x x <,210x x x ∆=->2、作差变形:通过因式分解、配方,有理化等方法,向有利于判断差的符号的方向变形.3、定号:确定21()()y f x f x ∆=-的符号,若符号不确定,可以进行分类讨论.4、下结论:根据定义得出结论,注意下结论时不要忘记说明区间. 三、函数的平均变化率因变量的改变量与自变量的改变量的比即2121y y y x x x -∆=∆-叫做函数()y f x =从1x 到2x 之间的平均变化率. 三、 重要结论:1、若在区间M 上函数()y f x =是增函数,12x x <⇔12()()f x f x <12(,)x x M ∈;若在区间M 上函数()y f x =是减函数,12x x <⇔12()()f x f x >.12(,)x x M ∈ 2、在区间M 上函数()y f x =是增函数⇔0yx∆>∆; 在区间M 上函数()y f x =是减函数⇔0y x∆<∆ 四、 特殊函数的单调性1、一次函数(0)y kx b k =+≠,0k y kx b >⇔=+为增函数;0k y kx b <⇔=+为减函数.2、反比例函数(0)k y k x =≠,0kk y x>⇔=在区间(,0),(0,)-∞+∞上为减函数;0kk y x<⇔=在区间(,0),(0,)-∞+∞上为增函数. 想一想:能说(0)ky k x =>在区间(,0)(0,)-∞+∞上为减函数吗?说明理由.3、二次函数2(0)y ax bx c a =++≠,0a >⇔2y ax bx c =++在区间(,)2b a --∞上为减函数,在区间(,)2ba-+∞上为增函数.0a <⇔2y ax bx c =++在区间(,)2b a --∞上为增函数,在区间(,)2ba-+∞上为减函数. 4、函数y x a =-在区间(,)a -∞上为减函数,在区间(,)a +∞上为增函数. 5、对勾函数1y x x=+在区间(),1,(1,)-∞-+∞上为增函数,在区间(1,0),(0,1)-上为减函数; 一般地,对勾函数(0)ky x k x=+>在区间(,)-∞+∞上为增函数,在区间(上为减函数;6、对于复合函数(())y f g x =,其中()y f u =称为外函数,()u g x =称为内函数.当内外函数单调性相同时,(())y f g x =为增函数; 当内外函数单调性相反时,(())y f g x =为减函数.五、 函数的最值1、函数的最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()y f x =的最大值(maximum value )2、函数的最小值:一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥; (2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()y f x =的最小值(minimum value )【题1】 已知函数41 1.()5 1.x x f x x x +≥⎧=⎨-<⎩,,则()f x 的递减区间是( )A .[1)+∞,B .(1)-∞,C .(0)+∞,D .(1]-∞,【答案】B【题2】函数y =的单调递增区间为( ) A .(2]-∞-,B .[52]--,C .[21]-,D .[1)+∞,【答案】B【题3】 求证:函数3()f x x x =--在()-∞+∞,上为减函数. 【答案】证:任取12()x x ∈-∞+∞,,,且12x x < 210x x x ∆=->33332122111212()()y f x f x x x x x x x x x ∆=-=--++=-+-2222222121122121211221213()()()()(1)()[()1]024x x x x x x x x x x x x x x x x x x x =-+++-=-+++=-+++< 所以3()f x x x =--在()-∞+∞,上是减函数. 【题4】 已知函数()f x 在[2)+∞,上是减函数,试比较(2)f ,2(3)f x +的大小 【答案】(2)f >2(3)f x +【题5】 求函数2()241f x x x =-+-在区间[12]-,上的值域. 课后巩固【答案】[71]-,【题6】 求函数4y x x=+在区间[24],上的最大值与最小值. 【答案】4y x x=+最大值是5,最小值是4.【题1】 函数223y x x =+-在区间[30]-,上的值域为( ) A .[43]--,B .[40]-,C .[30]-,D .[04],【答案】B【题2】 若函数21()232f x x x =-+在[0]m ,有最大值3,最小值1,则m 的取值范围是____. 【答案】[24],【题3】 用单调性定义证明函数1()g x x=在(0,)+∞上单调递减. 【答案】证:任取12(0)x x ∈+∞,,,且12x x < 210x x x ∆=->1221211211()()0x x y g x g x x x x x -∆=-=-=< 所以1()g x x=在(0,)+∞上是单调递减. 【题4】 已知函数()1xf x x =-. (I )证明:对于定义域中任意的x 均有(1)(1)2f x f x ++-=;(II )用函数单调性的定义证明函数()f x 在(1)+∞,上是减函数. 【答案】(I )证:1111(1)(1)21111x x x xf x f x x x x x+-+-++-=+=-=+---(II )证:任取12(1)x x ∈+∞,,,且12x x < 210x x x ∆=->期中对接212121211221212121()()11(1)(1)(1)(1)x x x x x x x x x x y f x f x x x x x x x --+-∆=-=-==------ 因为121x x <<所以120x x -<,110x ->,210x -> 所以0y ∆<所以函数()f x 在(1)+∞,上是减函数. 【题5】 已知函数2()41f x ax x =--.(Ⅰ)若2a =时,求当[03]x ∈,时,函数()f x 的值域;(Ⅱ)若2a =,当(01)x ∈,时,(1)(21)0f m f m ---<恒成立,求m 的取值范围; (Ⅲ)若a 为非负数,且函数()f x 是区间[03],上的单调函数,求a 的取值范围.【答案】19.(本小题满分14分)解:(Ⅰ)当时,所以在上单调递减;在上单调递增. 所以的最小值是 又因为,, 所以的值域是(Ⅱ)因为,所以由(Ⅰ)可知:在上单调递减. 因为当时,恒成立,可得解得所以的取值范围是2a =()()2224121 3.f x x x x =--=--()f x []0,1(]1,3()f x ()1 3.f =-()01f =-()35f =()f x []3,5.-2a =()f x []0,1()0,1x ∈()()1210f m f m ---<121,011,0211,m m m m ->-⎧⎪<-<⎨⎪<-<⎩12.23m <<m 12.23m <<(Ⅲ)因为,①当时, 所以在上单调递减.②当时,因为在上的单调函数,可得解得 由①、②可知,的取值范围是揭示星期几的奥秘公元321年3月7日,古罗马皇帝君士坦丁,正式宣布采用“星期制”,规定每一星期为七天,第一天为星期日,尔后星期一、星期二直至星期六,尔后再回到星期日,如此永远循环下去!君士坦丁大帝还规定,宣布的那天日子为星期一.一星期为什么定为七天?这大约是出自月相变化的缘故.天空中再没有别的天象变化得如此明显,每隔七天便一改旧貌!另外,“七”这个数,恰与古代人已经知道的日、月、金、木、水、火、土七星的数目巧合,因此在古代神话中就用一颗星作为一日的保护神,“星期”的名称也因之而起.我想读者一定很想知道历史上的某一天是星期几的奥秘!为了揭开这个奥秘,我们先从闰年的设置讲起.我们知道:一个回归年不是恰好365日,而是365日5小时48分46秒,或365.2422日.为了防止这多出的0.2422日积累起来,造成新年逐渐往后推理.因此我们每隔4年时间便设置一个闰年,这一年的二月从普通的28天改为29天.这样,闰年便有366天.不过,这样补来也不刚好,每百年差不多又多补了一天.因此又规定,遇到年数为“百年”的不设闰,扣它回来!这就是常说的“百年24闰”.但是,百年扣一天闰还是不刚好,又需要每四百年再补回来一天.因此又规定,公元年数为400倍数者设闰.就这么补来扣去,终于补得差不多刚好了!例如,1976、1988这些年数被4整除的年份为闰年;而1900、2100这些年则不设闰;2000年的年数恰能被400整除,又要设闰,如此等等.()241f x ax x =--0a =()4 1.f x x =--()f x []0,30a >()224 1.f x a x a a ⎛⎫=--- ⎪⎝⎭()f x []0,3220,3,0,aa a ⎧≤≥⎪⎨⎪>⎩或20.3a <≤a 20,.3⎡⎤⎢⎥⎣⎦数学文化闰年的设置,无疑增加了我们对星期几推算的难度.为了揭示关于星期几的奥秘,我们还要用到一个简单的数学工具——高斯函数:[]y x =.这里[]x 表示不超过数x 的最大整数.利用高斯函数,我们可以根据设闰的规律,推算出在公元x 年第y 天是星期几.这里变量x 是公元的年数;变量y 是从这一年的元旦,算到这一天为止(包含这一天)的天数.历法家已经为我们找到了这样的公式:1111[][][]4100400x x x S x y ---=-+-++ 设上式求出S 后,除以7,如果恰能除尽,则这一天为星期天;否则余数为几,则为星期几! 例如,君士坦丁大帝宣布星期制开始的第一天为公元321年3月7日.容易算得:132066x y -=⎧⎨=⎩ 320320320320[][][]664100400S =+-++ 320803066=+-++ 4631(mod7)=≡最后一个式子的符号表示463除以7余1.也就是说,这一天为星期一,这是可以预料到的,因为当初就是这么规定的!又如,我们共和国成立于1949年10月1日:11948274x y -=⎧⎨=⎩ 1948194819481948[][][]2744100400S =+-++1948487194274=+-++26946(mod7)=≡原来,这一普天同庆的日子为星期六.公元2000年1月1日,人类跨进了高度文明的21世纪,那么这一天是星期几呢?119991x y -=⎧⎨=⎩1999199919991999[][][]14100400S =+-++199********=+-++=≡24846(mod7)计算表明:这一天也是星期六!。

函数的单调性(习题课)课件

函数的单调性(习题课)课件

应用实例
1
例题分析
分析一些典型的应用实例,如何用单
求最值
2
调性解题。
通过函数的单调性,可以求函数的极
值和最值。
3
优化算法
讨论单调性在一些优化算法中的应用, 如二分查找法。
总结
单调性的重要性和应用 价值
总结单调性的重要性,对数学 和实际问题的研究有何帮助。
学习方法和技巧
分享一些学习函数单调性的方 法和技巧,如何更快地掌握这 个概念。
函数的单调性(习题课)ppt 课件
本次课程将教你们如何判断函数的单调性。单调性是数学中一个重要的概念, 它与函数的性质有关。学习这个概念将有助于我们更好地理解函数。
概述
单调性是指函数在定义域内自变量增大,函数值增大或减小的现象。函数的 单调性是函数的一种性质。掌握函数的单调性可以帮助我们更好地研究函数 的性质,对于解题和建模都有一定的帮助。
2
导数
通过函数的导数,可以更精确地判断函数的单调性。
3
高中数学常见函数的单调性
复习一些常见的函数的单调性。
求解单调区间
定义
若函数f(x)在区间I上单调递增或单调递减,则称I为f(x)的单调区间。
求解方法
讨论f(x)的导数正负号和零点,确定单调区间的端点。
例题答案解析
说明如何利用导数确定单调递增或单调递减的区间。
牢记注意事项
总结一些学习单调性时需要注 意的点,如何避免常见的错误。
单调递增函数
定义
如果x1 < x2,那么有f(x1) <= f(x2),则称函数f(x)在区间[a, b]上是递增函数。
判断方法
如果函数f(x)在定义域内单调递增,则它的导数f'(x)大于等于0。

函数的单调性与最值课件共20张PPT

函数的单调性与最值课件共20张PPT
那么就称函数f(x)在区间D上单 那么就称函数f(x)在区间D上单
调递增
调递减
∀x1,x2∈D 且 x1≠x2,有fxx11- -fx2x2>0(<0)或
(x1- x2)[f(x1)- f(x2)]>0(<0)⇔ f(x) 在区 间 D 上单 调递 增
(减).
复习回顾
图象 描述
自左向右看图象是上升的
解析

x2+4=t,则
t≥2,∴x2=t2-4,∴y= t2
+t 1=t+1 1,
t
设 h(t)=t+1,则 h(t)在[2,+∞)上为增函数, t
∴h(t)min=h(2)=52,∴y≤15=25(x=0 时取等号). 2
即 y 的最大值为2. 5
求函数最值的三种基本方法:
一.单调性法:先确定函数的单调性,再由单调性求最值. 二.图象法:先作出函数的图象,再观察其最高点、最低点,求出
自左向右看图象是下降的
复习回顾
(2)单调区间的定义 如果函数y=f(x)在区间D上_单__调__递__增__或_单__调__递__减__,那么就说函数y=f(x) 在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.
复习回顾 2.函数的最值
前提
设函数y=f(x)的定义域为I,如果存在实数M满足
专题一:判断、证明函数的单调性
例 1:(3)已知 f x 2x , x 2,6. (1)判断 f x 的单调性,并加以证明;(2)求 f x 的最值.
x 1
专题一:判断、证明函数的单调性 变式 3:讨论 f x ax a 0, 的单调性.
x 1
小结: 确定函数单调性的四种方法 (1)定义法;(2)导数法;(3)图象法;(4)性质法.

函数的单调性优质课课件pptx

函数的单调性优质课课件pptx

04 复合函数与反函 数单调性分析
复合函数单调性判定方法
同增异减原则
内外层函数单调性相同时 ,复合函数为增函数;内 外层函数单调性相反时, 复合函数为减函数。
求导判断法
对复合函数求导,根据导 数的正负判断函数的单调 性。
图像判断法
画出内外层函数的图像, 通过观察图像的升降来判 断复合函数的单调性。
参变量变化对实际问题解 决的影响分析
案例分析:参变量在实际 问题中的具体应用
06 总结回顾与拓展 延伸
关键知识点总结回顾
01 02
函数单调性的定义
对于函数y=f(x),如果对于区间I内的任意两个数x1, x2,当x1<x2时, 都有f(x1)≤f(x2)(或f(x1)≥f(x2)),则称函数f(x)在区间I上是单调递增 (或单调递减)的。
判断函数单调性的方法
通过求导判断函数的单调性,若f'(x)>0,则f(x)在对应区间内单调递增 ;若f'(x)<0,则f(x)在对应区间内单调递减。
03
单调性与函数图像的关系
单调递增函数的图像从左到右呈上升趋势,单调递减函数的图像从左到
右呈下降趋势。
易错难点剖析及解题技巧分享
易错点
在求导过程中忽略定义域的限制 ,导致判断错误;将函数的局部
极值点处的一阶偏导数必须为零,即 驻点。
案例分析:多元函数单调性应用
01
02
03
经济学中的应用
在生产函数中,通过判断 多元函数的单调性可以确 定生产要素的投入量对产 出的影响。
工程学中的应用
在优化设计中,利用多元 函数的单调性可以找到最 优的设计方案。
数学建模中的应用
在解决实际问题时,通过 建立多元函数模型并利用 其单调性进行分析,可以 得到问题的解决方案。

函数的单调性教学课堂实录

函数的单调性教学课堂实录

函数的单调性(一)创设情境,引入课题老师:实例科考队对沙漠气候进行科学考察,下图是某天气温随时间的变化曲线。

请你根据曲线图说说气温的变化情况?学生:可以看出气温的最值,还有某时刻的气温,某时间段气温的升降变化等。

老师:图象在某区间上(从左往右)“上升”或“下降”的趋势反映了函数的一个基本性质——单调性(板书课题)。

函数是描述事物变化规律的数学模型。

如果清楚了函数的变化规律,那么就基本把握了相应实物的变化规律。

在事物变化过程中,保存不变的特征就是这个事物的性质。

因此,研究函数的变化规律是非常有意义的。

老师:问题1:观察下列函数图象,请你说说这些函数有什么变化趋势?学生:(1)函数图像逐渐上升;(2)函数图像先下降后上升;(3)函数图像下降;老师:规范表达“函数在哪个区间上具有怎样的单调性”。

借此强调函数的单调性是相对某区间而言的,是函数的局部性质。

老师:设函数的定义域为I,区间D I⊆。

在区间D上,若函数的图象(从左向右)总是上升的,即y随x的增大而增大,则称函数在区间D上是递增的,区间D称为函数的单调增区间;(学生类比定义“递减”,接着推出下图,让学生准确回答单调性。

)(二)引导探索,生成概念老师:问题2(1)下图是函数()=+为例),它在定义域Rf x xy f x=的图象(以()0.0011上是递增的吗?(2)函数1=+在区间(0,+)∞上有何单调性?()f x xx学生:是递增的。

老师:函数图象虽然直观,但是缺乏精确性,必须结合函数解析式;但仅凭解析式常常也难以判断其单调性。

(设计意图:借此认知冲突,让学生意识到学习符号化定义的必要性。

自然开始探索。

)老师:问题3(1)如何用数学符号描述函数图象的“上升”特征,即“y 随x 的增大而增大..”? 以二次函数2()f x x =在区间[0,)+∞上的单调性为例,用几何画板动画演示“y 随x 的增大而增大”,生成表格(每一秒生成一对数据)。

设计说明:先借助图形、动画和表格等直观感受“y 随x 的增大而增大”,然后让学生思考、讨论得出,若12x x <,则必须有12y y <。

函数的单调性与最大最小值乐乐课堂

函数的单调性与最大最小值乐乐课堂

函数的单调性与最大最小值乐乐课堂1、单调性:设函数y=)(x f的定义域为A,区间A M?、如果取区间M上的任意两个值x 1,x 2,改变量12x x x-=?>0,则当)()(12x f x f y-=?>0时,就称函数)(x f在区间M上是增函数;)()(12x f x f y-=?<0时,就称函数)(x f在区间M上是增函数.如果一个函数在某个区间M上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性(区间M称为单调区间).(x?,y?同号,平均变化率2、函数的单调性常应用于如下三类问题:(1)利用函数的单调性比较函数值的大小.(2)利用函数的单调性解不等式,常见题型是,已知函数的单调性,给出两个函数的大小,求含于自变量中的某个特定的系数,这时就应该利用函数的单调性“脱”去抽象的函数“外衣”,以实现不等式间的转化.(3)利用函数的单调性确定函数的值域,求函数的最大值和最小值.若函数)(x f y=在定义域()b a,上递增,则函数值域为()(a f,)(b f);若函数)(x f y=在定义域()b a,上递减,则函数值域为()(b f,)(a f);若函数)(x f y=在定义域[]b a,上递增,则函数值域为[)(a f,)(b f];若函数)(x f y=在定义域[]b a,上递减,则函数值域为[)(b f,)(a f];若函数)(x f y=在定义域[]b a,上递增,则函数的最大值为)(b f,最小值为)(a f;若函数)(x f y=在定义域[]b a,上递减,则函数的最大值为)(a f,最小值为)(b f;3、最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M,那么,称M是函数y=f(x)的最大值最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M 满足:(1)对于任意的x∈I,都有f(x)≥M;(2)存在x0∈I,使得f(x0)=M,那么,称M是函数y=f(x)的最小值注意:1、函数最大(小)值首先应该是某一个函数值,即存在x0∈I,使得f(x0)=M;2、函数最大(小)值应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M).4、利用函数单调性判断函数的最大(小)值的方法:1、利用二次函数的性质(配方法)求函数的最大(小)值;2、利用图象求函数的最大(小)值;3、利用函数单调性判断函数的最大(小)值;如果函数y=f(x)在区间[a,b]上单调递增,则函数y=f(x)在x=a处有最小值f(a),在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b)。

函数的单调性与导数课堂导入

函数的单调性与导数课堂导入

2ax
1 x2
,x
0,1 若f
x在
x 0,1上是增函数,求a的取值范围.
解:由已知得
f
'(x )
2a
2 x3
因为函数在(0,1]上单调递增,
f
x
0,即a
1 x3
在x
0,1上恒成立,
而g
x
1 x3
在(0,1]上单调递增,
g xmax g 1 1
a 1.
当a
1时,f
'(x)
2
2 x3
对x 0,1也有f ' x>0
2
2
当 f (x)
单调递减.
0
,
1

2
17
x
1 2
17
时,
函数 f
(x)
例3 、如图, 水以常速(即单位时间内注入水的体积相同)注 入下面四种底面积相同的容器中, 请分别找出与各容器对应 的水的高度h与时间t的函数关系图象.
分析:以容器(2)为例,由于容器上细 下粗,所以水以常速注入时,开始阶段高 度反h 增映(1加在) 得图慢象,(h A以()2后) 上高.度增h 加(3得) 越来越h (快4) ,
f ' x 1 1 cos x 0,
2
f x 在, 上是单调函数,
而当x 0时,f x 0,
方程x 1 sin x 0有唯一的根x 0. 2
题型三 构造函数证明不等式
例4、已知:m,n N ,且1 m n.
求证:1 mn 1 nm .
解: 1 m n,m,n N ,
练习:P93
4、求证: 函数 f (x) 2x3 6x2 7
减函数. 解: f (x) 2x3 6x2 7 f (x) 6x2 12x.

函数的单调性 习题PPT教学课件

函数的单调性 习题PPT教学课件
保证实施的是等价 转化
1 x 1 1 x 1 x2 1 0 x2 2 0 x 2 x 0或x 1
1 x 2
点此播放讲课视频
题型四:利用函数单调性解题
例4:已知f(x)在其定 解: f ( xy) f ( x ) f ( y ) 义域R+上为增函数, f ( 4) f ( 2) f ( 2) 2 f(2)=1,f(xy)=f(x)+f(y). f ( 8) f ( 4) f ( 2) 3 解不等式 f(x)+f(x-2) ≤3 又f ( x ) f ( x 2) f ( x 2 2 x )
点此播放讲课视频
题型三:利用已知函数单调性进行判断
结论3:若f(x)与g(x)在 R上是增函数,则 f(x)+g(x)也是增函数。 结论5:若f(x)(其中 f(x)>0)在某个区间上 为增函数,则
n
结论4:若f(x) 在R上是增函数, g(x)在R上是减函数,则 f(x) -g(x)也是增函数 结论6:复合函数f[g(x)]由 f(x)和g(x)的单调性共同决定。 它们之间有如下关系: f(x) g(x)
4、求函数单调区间的题 型(包括求复合函数单调 区间)
点此播放讲课视频

解得x 2, 4
题型五:复合函数单调区间的求法
例1:设y=f(x)的单 增区间是(2,6),求 函数y=f(2-x)的单 调区间。
解:令t ( x ) 2 x , 则由已知得 f ( t )在t 2, ( 6)上是增函数, 而t ( x ) 2 x 2, ( 6) x (-4, 0) 又t ( x ) 2 x在x ( 4,0)上 是单减的, 由复合函数单调性可知 , f ( 2 x ) f [t ( x )]在x (-4, 0) 上是单调递减的。 f (2 x )的单减区间是(-, 4 0)

高三函数的单调性(高职)

高三函数的单调性(高职)

函数的单调性1.函数单调性的判断方法:(1)图像法:增函数 减函数图像呈上升趋势. 图像呈下降趋势例1:已知正比例函数y =(k+1)x 在定义域内是增函数,求k 取值范围.课堂练习:1.设函数y=(k+1)x+b 在R 上是增函数则( )A.k ≥-1 B.k ≤-1 C.k>-1 D.K<-12.若y =(2k -1)x +b 是R 上的减函数,则有 ( ) A. 21>k B. 21<k C. 21->k D. 21-<k3.函数y=-2x+1在定义域R 内是( )A 、减函数B 、增函数C 、非增非减函数D 、既增又减函数例2:函数y=1x-2 的单调区间是( )A 、RB 、(-∞,0)C 、(-∞,2),(2,+∞)D 、(-∞,2)⋃(2,+∞)课堂练习:函数13+=x y 的单调区间是( ) A 、R B 、(-∞,-1)C 、(-∞,-1)⋃(1,+∞)D 、(-∞,-1),(-1,+∞)例3:讨论下列函数的单调性。

(1)y=x 2+2x+5; (2)y=9-2x-x 2.课堂练习:讨论下列函数的单调性。

(1)5422--=x x y ; (2)322++-=x x y例4:求函数245x x y --=的单调递增区间?课堂练习:求函数22--=x x y 的单调递减区间?例5:函数),2[,32)(2+∞-∈+-=x mx x x f 当时是增函数,则m 的取值范围是( )A . [-8,+∞)B .[8,+∞)C .(-∞,- 8]D .(-∞,8]课堂练习:若函数()()2122+-+=x a x x f 在区间()4,∞-上是减函数,则实数a 的取值范()A.3-≤aB.3-≥aC.5≤aD.3≥a1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当21x x < 时,都有))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课后作业
判断 思考下列说法是否正确,并说明理由:
4. 已知f(x)在[2,5]上是增函数,且2<x1<x2<5,则必有f(x1)<f(x2)
(
) ( )
5. 已知f(x)在[2,5]上是增函数,且x1、x2∈[2,5]时有f(x1)<f(x2),则必有x1<x2
注意3:
已知f(x)是增(减)函数,且x1<x2,则必有f(x1)<f(x2) (f(x1)>f(x2))
函数单调性
温故知新
构建概念
深化新知
应用新知
归纳小结
课后作业
判断 思考下列说法是否正确,并说明理由:
1. f(x)=x²在x=3上是增函数
(
)
注意1:f(x)在一个点上不具有单调性
f(x)
f(x)
是增函数
X轴
不是增函数
X轴
函数单调性
温故知新
构建概念
深化新知
应用新知
归纳小结
课后作业
判断 思考下列说法是否正确,并说明理由:
在R上,f(x)随x的增大而增大
函数单调性
温故知新
构建概念
深化新知
应用新知
归纳小结
课后作业
函数单调性
温故知新
构建概念
深化新知
应用新知
归纳小结
课后作业
函数单调性
温故知新
构建概念
深化新知
应用新知
归纳小结
课后作业
增函数
减函数
如果函数y=f(x)在区间D上是增函数或减函数,那么 就说函数y=f(x)在这一区间具有单调性,区间D叫做 f(x)的单调区间。
注意4:单调区间一 般都写成左闭右开的形式
函数单调性
例1
温故知新
构建概念
深化新知
应用新知
归纳小结
课后作业
函数 t(时间)-T(温度)的单调性和单调区间是什么?
可以说这个函数在区间[0,6) ∪ [19,24)上单调递减吗?
函数单调性
例1
温故知新
构建概念
深化新知
应用新知
归纳小结
课后作业
函数 t(时间)-T(温度)的单调性和单调区间是什么?
图像法
可以说这个函数在区间[0,6) ∪ [19,24)上单调递减吗?
注意5:两个不同的单调增区间不能用“∪”连接,要用“,”或者“和”来连接
函数单调性
例2
温故知新
构建概念
深化新知
应用新知
归纳小结
课后作业
函数单调性
增函数
温故知新
构建概念
深化新知
应用新知
归纳小结
课后作业
• 函数图象变化趋势 -- 在区间D上呈上升趋势 • 在区间D上,f(x)随x增大而增 大
对于y=x的函数图像,怎么用数学符号语言描述“x增大”
问题3: 在R上取两个点,如x=-1、2,f(x)满足f(-1)<f(2), 能说明在f(x)在R上随x的增大而增大吗?
在R上,f(x)随x的增大而增大
函数单调性
y y=x²
温故知新
构建概念
深化新知
应用新知
归纳小结
课后作业
x
f(x)=x²
-1
1
已知f(x)是增(减)函数,且f(x1)<f(x2),则必有x1<x2( x1>x2 )
函数单调性
例1
温故知新
构建概念
深化新知
应用新知
归纳小结
课后作业
函数 t(时间)-T(温度)的单调性和单调区间是什么?
在 [0,6) 上单调递减 单调减区间: [0,6),[19,24)
在 [6,19)上单调递增
函数图像的变化趋势
函数单调性
函数单调性
温故知新
构建概念
深化新知
应用新知
归纳小结
课后作业
函数y=x和y=x²的图像是怎么样的?
函数单调性
温故知新
构建概念
深化新知
应用新知
归纳小结
课后作业
y y=x
O
图像呈逐渐上升趋势
x
y
y=x²
图像呈逐渐下降趋势
y
y随x的增大而增大
O
y随x的增大而减小
x
y=x²
O
x
在 [19,24) 上单调递减
单调增区间:[6,19)
函数单调性
例1
温故知新
构建概念
深化新知
应用新知
归纳小结
课后作业
函数 t(时间)-T(温度)的单调性和单调区间是什么?
在 [0,6) 上单调递减 单调减区间: [0,6),[19,24)
在 [6,19)上单调递增
在 [19,24) 上单调递减
单调增区间:[6,19)
1. f(x)=x²在x=3上是增函数
(
)
注意1:函数f(x)在单个点上不具有又单调性
3. 定义在R上的函数f(x)满足f(2)>f(1),则函数f(x)在R上不是减函数
(
)
注意2:用定义来判断f(x)是否为增(减)函数时,两个自变量x1,x2要任意 取
函数单调性
温故知新
构建概念
深化新知
应用新知
归纳小结
?
?
问题1:怎么用数学中的符号语言准确的描述“y随x的增大而增大”、“y随x的增大而减小” 这两句 话?
函数单调性
y
温故知新
构建概念
深化新知
应用新知
归纳小结
课后作业
f(x)=x
问题2: 【“增大” 体现的是一种相对性】
x x x y=f(x)
-3 -3 -2 -2 -1 -1 1 1 2 2 3 3
函数单调性,我们还要注意3点
函数单调性
复习引入
构建概念
深化新知
应用新知
归纳小结
课后作业
1. 局部特征
(1)函数的单调区间一定要在函数的定义域内
(2)函数在单个点上没有单调性可言的
3.区间书写
(1)单调区间一般都写成左闭右开的形式
(2)两个不同的单调区间不能用“∪”连接,要用“,”或者“和”来连接
此外,求函数单调性还有两种方法: 图像法和定义法
减函数
• 函数图象变化趋势 -- 在区间D上呈下降趋势
• 在区间D上,f(x)随x增大而减小
函数单调性
复习引入
构建概念
深化新知
应用新知
归纳小结
课后作业
如果函数y=f(x)在区间D上是增函数或减函数,
那 么 就 说 函 数 y = f ( x ) 在 这 一 区 间 具 有单 调 性 ,
区间D叫做f(x)的单调区间
观察这个日气温图,它是一个函数图像吗?
函数单调性
温故知新
构建概念
深化新知
应用新知Βιβλιοθήκη 归纳小结课后作业2016年7月11日新疆的日气温图 34
函数的定义: A、B是两个非空数集,如果按照某种确定的对应关系 f,使得对A中任意一个数x,在B中有唯一一个确定的数f(x)与它对应, 那就称f:A→B为集合A到集合B的一个函数。记y=f(x),x∈A
t ( 时 间 ) - T ( 温 度 ) 函 数图 像 的 变 化 趋 势 - - 先 下 降 、 再 上 升 、 再 下 降
(下降\上升)的趋势
函数单调性
温故知新
构建概念
深化新知
应用新知
归纳小结
课后作业
2016年7月11日新疆的日气温图
34
14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 t(时)
14 0
A
x
f
f(x)
B
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 t(时)
函数单调性
温故知新
构建概念
深化新知
应用新知
归纳小结
课后作业
2016年7月11日新疆的日气温图
34
14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 t(时)
深化新知
应用新知
归纳小结
课后作业
x f(x)=x²
-1 1
2 4
3 9
… …
n n²
… …
0
x
问题6:我们在R上要怎么取点,才能严格的说明f(x)在R上随x的增大而增大?
函数单调性
温故知新
构建概念
深化新知
应用新知
归纳小结
课后作业
为了保证在R上都有f(x)随x增大而增大,我们需要在R上任取 点
严格
刻画
§1.3.1 函数单调性
选自人教版A版数学必修一
第一章第三节第一小节
第一课时
函数单调性
温故知新
构建概念
深化新知
应用新知
归纳小结
课后作业
早穿棉袄午穿纱
围着火炉吃西瓜
昼 夜 温 差 大
函数单调性
温故知新
构建概念
深化新知
应用新知
归纳小结
课后作业
2016年7月11日新疆的日气温图
34
14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 t(时)
2
4
3
9
0
x
问题3:在R上取两个点,如x=-1、2,f(x)满足f(-1)<f(2), 能说明在f(x)在R上随x的增大而增大吗? 问题4:在R上取三个点,如x=-1、2、3,f(x)满足f(-1)<f(2) <f(3) , 能说明f(x)在R上随x的增大
相关文档
最新文档