2019版一轮复习理数通用版:高考达标检测(五十七) 坐标系
(全国通用版)2019版高考数学一轮复习选考部分坐标系与参数方程学案理
坐标系与参数方程第1课坐标系[过双基]1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换 φ:⎩⎪⎨⎪⎧x ′=λ·x λ>,y ′=μ·yμ>的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标①极径:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ. ②极角:以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ. ③极坐标:有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ). 3.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ;⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x x4.常见曲线的极坐标方程1.点P 的直角坐标为(1,-3),则点P 的极坐标为________.解析:因为点P (1,-3)在第四象限,与原点的距离为2,且OP 与x 轴所成的角为-π3,所以点P 的极坐标为⎝⎛⎭⎪⎫2,-π3.答案:⎝⎛⎭⎪⎫2,-π32.在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为________. 解析:把圆ρ=2cos θ的方程化为(x -1)2+y 2=1知,圆的垂直于极轴的两条切线方程分别为x =0和x =2,从而得这两条切线的极坐标方程为θ=π2(ρ∈R)和ρcos θ=2.答案:θ=π2(ρ∈R)和ρcos θ=23.(2017·北京高考)在极坐标系中,点A 在圆ρ2-2ρcos θ-4ρsin θ+4=0上,点P 的坐标为(1,0),则|AP |的最小值为________.解析:将圆的极坐标方程化为直角坐标方程为x 2+y 2-2x -4y +4=0,即(x -1)2+(y -2)2=1,圆心为(1,2),半径r =1.因为点P (1,0)到圆心的距离d =-2+-2=2>1,所以点P 在圆外,所以|AP |的最小值为d -r =2-1=1.答案:14.(2017·天津高考)在极坐标系中,直线4ρcos ⎝ ⎛⎭⎪⎫θ-π6+1=0与圆ρ=2sin θ 的公共点的个数为________.解析:依题意,得4ρ⎝⎛⎭⎪⎫32cos θ+12sin θ+1=0,即23ρcos θ+2ρsin θ+1=0, 所以直线的直角坐标方程为23x +2y +1=0. 由ρ=2sin θ,得ρ2=2ρsin θ, 所以圆的直角坐标方程为x 2+y 2=2y , 即x 2+(y -1)2=1,其圆心(0,1)到直线23x +2y +1=0的距离d =|2×1+1|32+22=34<1,则直线与圆相交,故直线与圆的公共点的个数是2. 答案:25.在极坐标系中,过点A ⎝ ⎛⎭⎪⎫1,-π2引圆ρ=8sin θ的一条切线,则切线长为________.解析:点A ⎝ ⎛⎭⎪⎫1,-π2的极坐标化为直角坐标为A (0,-1),圆ρ=8sin θ的直角坐标方程为x 2+y 2-8y =0, 圆的标准方程为x 2+(y -4)2=16, 点A 与圆心C (0,4)的距离为|AC |=5, 所以切线长为|AC |2-r 2=3. 答案:3[清易错]1.极坐标方程与直角坐标方程的互化易错用互化公式.在解决此类问题时考生要注意两个方面:一是准确应用公式,二是注意方程中的限制条件.2.在极坐标系下,点的极坐标不唯一性易忽视.注意极坐标(ρ,θ)(ρ,θ+2k π)(k ∈Z),(-ρ,π+θ+2k π)(k ∈Z)表示同一点的坐标.1.若圆C 的极坐标方程为ρ2-4ρcos ⎝ ⎛⎭⎪⎫θ-π3-1=0,若以极点为原点,以极轴为x轴的正半轴建立相应的平面直角坐标系xOy ,则在直角坐标系中,圆心C 的直角坐标是________.解析:因为ρ2-4ρcos ⎝ ⎛⎭⎪⎫θ-π3-1=0,所以ρ2-2ρcos θ-23ρsin θ-1=0,即x 2+y 2-2x -23y -1=0,因此圆心坐标为(1,3).答案:(1,3)2.圆ρ=5cos θ-53sin θ的圆心的极坐标为________. 解析:将方程 ρ=5cos θ-53sin θ两边都乘以ρ得: ρ2=5ρcos θ-53ρsin θ,化成直角坐标方程为x 2+y 2-5x +53y =0. 圆心的坐标为⎝ ⎛⎭⎪⎫52,-532,化成极坐标为⎝⎛⎭⎪⎫5,5π3.答案:⎝⎛⎭⎪⎫5,5π3(答案不唯一)平面直角坐标系下图形的伸缩变换[典例] (1)在同一平面直角坐标系中,已知伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y .求点A ⎝ ⎛⎭⎪⎫13,-2经过φ变换所得的点A ′的坐标.(2)求直线l :y =6x 经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,变换后所得到的直线l ′的方程.[解] (1)设A ′(x ′,y ′),由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得到⎩⎪⎨⎪⎧x ′=3x ,y ′=12y ,由于点A 的坐标为⎝ ⎛⎭⎪⎫13,-2,于是x ′=3×13=1,y ′=12×(-2)=-1,∴A ′(1,-1)为所求.(2)设直线l ′上任意一点P ′(x ′,y ′), 由上述可知,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入y =6x 得2y ′=6×⎝ ⎛⎭⎪⎫13x ′,∴y ′=x ′,即y =x 为所求. [方法技巧]伸缩变换的解题方法平面上的曲线y =f (x )在变换φ:⎩⎪⎨⎪⎧x ′=λx λ,y ′=μy μ的作用下得到的方程的求法是将⎩⎪⎨⎪⎧x =x ′λ,y =y ′μ代入y =f (x ),得y ′μ=f ⎝⎛⎭⎪⎫x ′λ,整理之后得到y ′=h (x ′),即为所求变换之后的方程.[即时演练]1.求椭圆x 24+y 2=1,经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=y后的曲线方程.解:由⎩⎪⎨⎪⎧x ′=12x ,y ′=y得⎩⎪⎨⎪⎧x =2x ′,y =y ′.①将①代入x 24+y 2=1,得4x ′24+y ′2=1,即x ′2+y ′2=1.因此椭圆x 24+y 2=1经伸缩变换后得到的曲线方程是x 2+y 2=1. 2.若函数y =f (x )的图象在伸缩变换φ:⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 的作用下得到曲线的方程为y ′=3sin ⎝⎛⎭⎪⎫x ′+π6,求函数y =f (x )的最小正周期.解:由题意,把变换公式代入曲线y ′=3sin ⎝⎛⎭⎪⎫x ′+π6得3y =3sin ⎝⎛⎭⎪⎫2x +π6,整理得y =sin ⎝ ⎛⎭⎪⎫2x +π6,故f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6. 所以y =f (x )的最小正周期为2π2=π.极坐标与直角坐标的互化[典例] 系.直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫π4-θ=22,直线与曲线C :ρsin 2θ=8cos θ相交于不同的两点A ,B ,求|AB |的值.[解] l :ρsin ⎝⎛⎭⎪⎫π4-θ=22⇒22ρcos θ-22ρsin θ=22⇒x -y -1=0,C 的直角坐标方程是y 2=8x .由⎩⎪⎨⎪⎧y 2=8x ,x -y -1=0,可得x 2-10x +1=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=10,x 1x 2=1, 所以AB 的长为1+1·102-4=8 3. [方法技巧]1.极坐标与直角坐标互化公式的3个前提条件(1)取直角坐标系的原点为极点. (2)以x 轴的非负半轴为极轴. (3)两种坐标系规定相同的长度单位. 2.直角坐标化为极坐标的注意点(1)根据终边相同的角的意义,角θ的表示方法具有周期性,故点M 的极坐标(ρ,θ)的形式不唯一,即一个点的极坐标有无穷多个.当限定ρ≥0,θ∈[0,2π)时,除极点外,点M 的极坐标是唯一的.(2)当把点的直角坐标化为极坐标时,求极角θ应注意判断点M 所在的象限(即角θ的终边的位置),以便正确地求出角θ∈[0,2π)的值.[即时演练]在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π3=1(0≤θ<2π),M ,N 分别为C 与x 轴,y 轴的交点. (1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解:(1)由ρcos ⎝⎛⎭⎪⎫θ-π3=1,得ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1,即x +3y -2=0.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N ⎝ ⎛⎭⎪⎫233,π2.(2)M 点的直角坐标为(2,0).N 点的直角坐标为⎝ ⎛⎭⎪⎫0,233. 所以P 点的直角坐标为⎝ ⎛⎭⎪⎫1,33, 则P 点的极坐标为⎝⎛⎭⎪⎫233,π6. 所以直线OP 的极坐标方程为θ=π6(ρ∈R).极坐标方程的应用[典例] 已知曲线C 1:x +3y =3和C 2:⎩⎨⎧x =6cos φ,y =2sin φ(φ为参数).以原点O为极点,x 轴的正半轴为极轴建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C 1和C 2的方程化为极坐标方程;(2)设C 1与x ,y 轴交于M ,N 两点,且线段MN 的中点为P .若射线OP 与C 1,C 2交于P ,Q 两点,求P ,Q 两点间的距离.[解] (1)C 1:ρsin ⎝ ⎛⎭⎪⎫θ+π6=32,C 2:ρ2=61+2sin 2θ. (2)∵M (3,0),N (0,1), ∴P ⎝⎛⎭⎪⎫32,12, ∴OP 的极坐标方程为θ=π6,把θ=π6代入ρsin ⎝ ⎛⎭⎪⎫θ+π6=32得ρ1=1,P ⎝ ⎛⎭⎪⎫1,π6. 把θ=π6代入ρ2=61+2sin 2θ得ρ2=2,Q ⎝ ⎛⎭⎪⎫2,π6. ∴|PQ |=|ρ2-ρ1|=1,即P ,Q 两点间的距离为1. [方法技巧]曲线的极坐标方程的求解策略在已知极坐标方程求曲线交点、距离、线段长等几何问题时,如果不能直接用极坐标解决,或用极坐标解决较麻烦,可将极坐标方程转化为直角坐标方程解决.[即时演练]在直角坐标系xOy 中,圆C 的普通方程为(x -1)2+y 2=1.以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是ρ(sin θ+3cos θ)=33,射线OM :θ=π3与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)因为圆C 的普通方程为(x -1)2+y 2=1, 又x =ρcos θ,y =ρsin θ, 所以圆C 的极坐标方程是ρ=2cos θ. (2)设(ρ1,θ1)为点P 的极坐标, 则有⎩⎪⎨⎪⎧ρ1=2cos θ1,θ1=π3,解得⎩⎪⎨⎪⎧ρ1=1,θ1=π3.设(ρ2,θ2)为点Q 的极坐标,则有⎩⎪⎨⎪⎧ρ2θ2+3cos θ2=33,θ2=π3,解得⎩⎪⎨⎪⎧ρ2=3,θ2=π3.由于θ1=θ2,所以|PQ |=|ρ1-ρ2|=2,即线段PQ 的长为2.1.(2017·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.解:(1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ.由|OM |·|OP |=16,得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0),由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积 S =12|OA |·ρB ·sin∠AOB =4cos α·⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3 =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2α-π3-32≤2+ 3.当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3.2.(2015·全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解:(1)因为x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.3.(2016·北京高考改编)在极坐标系中,直线ρcos θ-3ρsin θ-1=0与圆ρ=2cos θ交于A ,B 两点,求|AB |.解:∵x =ρcos θ,y =ρsin θ, ∴直线的直角坐标方程为x -3y -1=0. ∵ρ=2cos θ,∴ρ2(sin 2θ+cos 2θ)=2ρcos θ, ∴x 2+y 2=2x .∴圆的直角坐标方程为(x -1)2+y 2=1. ∵圆心(1,0)在直线x -3y -1=0上, ∴AB 为圆的直径,∴|AB |=2.4.(2015·安徽高考改编)在极坐标系中,求圆ρ=8sin θ上的点到直线θ=π3(ρ∈R)距离的最大值.解:圆ρ=8sin θ即ρ2=8ρsin θ, 化为直角坐标方程为x 2+(y -4)2=16, 直线 θ=π3即tan θ=3,化为直角坐标方程为3x -y =0, 圆心(0,4)到直线的距离为|-4|4=2,所以圆上的点到直线距离的最大值为2+4=6.5.(2015·北京高考改编)在极坐标系中,求点⎝⎛⎭⎪⎫2,π3到直线ρ(cos θ+3sin θ)=6的距离.解:点⎝⎛⎭⎪⎫2,π3的直角坐标为()1,3,直线ρ(cos θ+3sin θ)=6的直角坐标方程为x +3y -6=0. 所以点(1,3)到直线的距离d =|1+3×3-6|12+32=22=1.1.在极坐标系中,直线ρ(sin θ-cos θ)=a 与曲线ρ=2cos θ-4sin θ相交于A ,B 两点,若|AB |=23,求实数a 的值.解:直线的极坐标方程化为直角坐标方程为x -y +a =0, 曲线的极坐标方程化为直角坐标方程为(x -1)2+(y +2)2=5, 所以圆心C 的坐标为(1,-2),半径r =5, 所以圆心C 到直线的距离为 |1+2+a |2= r 2-⎝⎛⎭⎪⎫|AB |22=2,解得a =-5或a =-1. 故实数a 的值为-5或-1.2.在极坐标系中,求直线ρcos ⎝ ⎛⎭⎪⎫θ+π6=1与圆ρ=4sin θ的交点的极坐标. 解:ρcos ⎝ ⎛⎭⎪⎫θ+π6=1化为直角坐标方程为3x -y =2,即y =3x -2.ρ=4sin θ可化为x 2+y 2=4y , 把y =3x -2代入x 2+y 2=4y , 得4x 2-83x +12=0, 即x 2-23x +3=0, 所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为⎝⎛⎭⎪⎫2,π6. 3.(2018·长春模拟)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以x 2+y 2=4; 因为ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2,所以ρ2-22ρ⎝⎛⎭⎪⎫cos θcos π4+sin θsin π4=2,所以x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝ ⎛⎭⎪⎫θ+π4=22. 4.已知曲线C 的参数方程为⎩⎨⎧x =2+5cos α,y =1+5sin α(α为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)设l 1:θ=π6,l 2:θ=π3,若l 1,l 2与曲线C 相交于异于原点的两点 A ,B ,求△AOB 的面积.解:(1)∵曲线C 的参数方程为⎩⎨⎧x =2+5cos α,y =1+5sin α(α为参数),∴曲线C 的普通方程为(x -2)2+(y -1)2=5,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,代入并化简得ρ=4cos θ+2sin θ,即曲线C 的极坐标方程为ρ=4cos θ+2sin θ. (2)在极坐标系中,C :ρ=4cos θ+2sin θ, ∴由⎩⎪⎨⎪⎧θ=π6,ρ=4cos θ+2sin θ,得|OA |=23+1,同理:|OB |=2+ 3. 又∵∠AOB =π6,∴S △AOB =12|OA |·|OB |sin ∠AOB =8+534,即△AOB 的面积为8+534.5.在坐标系中,曲线C :ρ=2a cos θ(a >0),直线l :ρcos θ-π3=32,C 与l 有且只有一个公共点.(1)求a 的值;(2)若原点O 为极点,A ,B 为曲线C 上两点,且∠AOB =π3,求|OA |+|OB |的最大值.解:(1)由已知在直角坐标系中,C :x 2+y 2-2ax =0⇒(x -a )2+y 2=a 2(a >0); l :x +3y -3=0.因为C 与l 只有一个公共点,所以l 与C 相切, 即|a -3|2=a ,则a =1. (2)设A (ρ1,θ),则B ⎝⎛⎭⎪⎫ρ2,θ+π3, ∴|OA |+|OB |=ρ1+ρ2=2cos θ+2cos ⎝ ⎛⎭⎪⎫θ+π3=3cos θ-3sin θ=23cos ⎝⎛⎭⎪⎫θ+π6.所以,当θ=-π6时,(|OA |+|OB |)max =2 3.6.在平面直角坐标系xOy 中,直线C 1:3x +y -4=0,曲线C 2:x 2+(y -1)2=1,以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若曲线C 3的极坐标方程为θ=α⎝⎛⎭⎪⎫ρ>0,0<α<π2,且曲线C 3分别交C 1,C 2于点A ,B ,求|OB ||OA |的最大值. 解:(1)∵x =ρcos θ,y =ρsin θ,∴C 1:3ρcos θ+ρsin θ-4=0,C 2:ρ=2sin θ. (2)曲线C 3为θ=α⎝ ⎛⎭⎪⎫ρ>0,0<α<π2, 设A (ρ1,α),B (ρ2,α),ρ1=43cos α+sin α,ρ2=2sin α,则|OB ||OA |=ρ2ρ1=14×2sin α(3cos α+sin α) =142sin2α-π6+1, ∴当α=π3时,⎝ ⎛⎭⎪⎫|OB | |OA |max =34. 7.平面直角坐标系xOy 中,曲线C 1的方程为x 23+y 2=1,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4sin ⎝ ⎛⎭⎪⎫θ+π3,射线OM 的极坐标方程为θ=α0(ρ≥0).(1)写出曲线C 1的极坐标方程和曲线C 2的直角坐标方程;(2)若射线OM 平分曲线C 2,且与曲线C 1交于点A ,曲线C 1上的点满足∠AOB =π2,求|AB |.解:(1)曲线C 1的极坐标方程为ρ2=31+2sin 2θ, 曲线C 2的直角坐标方程为(x -3)2+(y -1)2=4. (2)曲线C 2是圆心为(3,1),半径为2的圆, ∴射线OM 的极坐标方程为θ=π6(ρ≥0),代入ρ2=31+2sin 2θ,可得ρ2A =2. 又∠AOB =π2,∴ρ2B =65,∴|AB |=|OA |2+|OB |2=ρ2A +ρ2B =455.8.已知在一个极坐标系中点C 的极坐标为⎝⎛⎭⎪⎫2,π3.(1)求出以C 为圆心,半径长为2的圆的极坐标方程(写出解题过程)并画出图形; (2)在直角坐标系中,以圆C 所在极坐标系的极点为原点,极轴为x 轴的正半轴建立直角坐标系,点P 是圆C 上任意一点,Q (5,-3),M 是线段PQ 的中点,当点P 在圆C 上运动时,求点M 的轨迹的普通方程.解:(1)作出图形如图所示,设圆C 上任意一点A (ρ,θ),则∠AOC =θ-π3或π3-θ.由余弦定理得,4+ρ2-4ρcos θ-π3=4,∴圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎪⎫θ-π3. (2)在直角坐标系中,点C 的坐标为(1,3),可设圆C 上任意一点P (1+2cos α,3+2sin α),设M (x ,y ),由Q (5,-3),M 是线段PQ 的中点,得点M的轨迹的参数方程为⎩⎪⎨⎪⎧x =6+2cos α2,y =2sin α2(α为参数),即⎩⎪⎨⎪⎧x =3+cos α,y =sin α(α为参数),∴点M 的轨迹的普通方程为(x -3)2+y 2=1.第2课参数方程[过双基]1.参数方程的概念一般地,在平面直角坐标系中,如果曲线C 上任意一点P 的坐标x ,y 是某个变数t 的函数:⎩⎪⎨⎪⎧x =f t ,y =g t ,并且对于t 的每一个允许值,由函数式⎩⎪⎨⎪⎧x =ft ,y =g t所确定的点P (x ,y )都在曲线C 上,那么方程⎩⎪⎨⎪⎧x =ft ,y =g t叫做这条曲线的参数方程,变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).[小题速通] 1.参数方程⎩⎪⎨⎪⎧x =2-t ,y =-1-2t(t 为参数)与极坐标方程ρ=sin θ所表示的图形分别是________.解析:将参数方程⎩⎪⎨⎪⎧x =2-t ,y =-1-2t 消去参数t ,得2x -y -5=0,对应图形为直线.由ρ=sin θ,得ρ2=ρsin θ,即x 2+y 2=y ,即x 2+⎝ ⎛⎭⎪⎫y -122=14,对应图形为圆.答案:直线、圆2.曲线⎩⎪⎨⎪⎧x =sin θ,y =sin 2θ(θ为参数)与直线y =x +2的交点坐标为________.解析:曲线的直角坐标方程为y =x 2.将其与直线方程联立得⎩⎪⎨⎪⎧y =x 2,y =x +2,∴x 2-x -2=0,∴x =-1或x =2.由x =sin θ知,x =2不合题意.∴x =-1,y =1,∴交点坐标为(-1,1).答案:(-1,1)3.设曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为________.解析:∵曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),∴(x -2)2+(y +1)2=9, ∴圆心(2,-1)到直线l 的距离d =|2+3+2|1+9=710=71010.又∵71010<3,141010>3,∴有2个点.答案:24.参数方程⎩⎪⎨⎪⎧x =2t 21+t2,y =4-2t21+t2(t 为参数)化为普通方程为________.解析:∵x =2t21+t 2,y =4-2t 21+t 2=+t 2-6t 21+t 2=4-3×2t21+t 2=4-3x .又x =2t21+t 2=+t 2-21+t 2=2-21+t2∈[0,2),∴x ∈[0,2),∴所求的普通方程为3x +y -4=0(x ∈[0,2)). 答案:3x +y -4=0(x ∈[0,2))[清易错]1.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致,否则不等价.2.直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.1.直线y =x -1上的点到曲线⎩⎪⎨⎪⎧x =-2+cos θ,y =1+sin θ上的点的最近距离是________.解析:由⎩⎪⎨⎪⎧x =-2+cos θ,y =1+sin θ得⎩⎪⎨⎪⎧cos θ=x +2,sin θ=y -1,∴(x +2)2+(y -1)2=1,∴圆心坐标为(-2,1), 故圆心到直线x -y -1=0的距离d =42=22,∴直线上的点到圆上的点的最近距离是d -r =22-1. 答案:22-12.直线⎩⎪⎨⎪⎧x =4+at ,y =bt(t 为参数)与圆⎩⎨⎧x =2+3cos θ,y =3sin θ(θ为参数)相切,则切线的倾斜角为________.解析:直线的普通方程为bx -ay -4b =0,圆的普通方程为(x -2)2+y 2=3,因为直线与圆相切,则圆心(2,0)到直线的距离为3,从而有 3=|2b -a ·0-4b |a 2+b2,即3a 2+3b 2=4b 2,所以b =±3a ,而直线的倾斜角α的正切值tan α=ba,所以tan α=±3,因此切线的倾斜角π3或2π3.答案:π3或2π3参数方程与普通方程的互化[典例] 已知椭圆C :x 24+y 23=1,直线l :⎩⎨⎧x =-3+3t ,y =23+t ,(t 为参数).(1)写出椭圆C 的参数方程及直线l 的普通方程;(2)设A (1,0),若椭圆C 上的点P 满足到点A 的距离与其到直线l 的距离相等,求点P 的坐标.[解] (1)椭圆C :⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),直线l :x -3y +9=0.(2)设P (2cos θ,3sin θ),则|AP |= θ-2+3sin θ2=2-cos θ,点P 到直线l 的距离d =|2cos θ-3sin θ+9|2=2cos θ-3sin θ+92.由|AP |=d ,得3sin θ-4cos θ=5,又sin 2θ+cos 2θ=1,得sin θ=35,cos θ=-45.故P ⎝ ⎛⎭⎪⎫-85,335.[方法技巧]将参数方程化为普通方程的方法(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等,对于含三角函数的参数方程,常利用同角三角函数关系式消参,如sin 2θ+cos 2θ=1等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解. [即时演练]将下列参数方程化为普通方程. (1)⎩⎪⎨⎪⎧x =3k 1+k 2,y =6k21+k2(k 为参数);(2)⎩⎪⎨⎪⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数).解:(1)两式相除,得k =y2x ,将其代入x =3k1+k 2,得x =3·y2x1+⎝ ⎛⎭⎪⎫y 2x 2, 化简得所求的普通方程是4x 2+y 2-6y =0(y ≠6).(2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ), 得y 2=2-x .又x =1-sin 2θ∈[0,2], 故所求的普通方程为y 2=2-x ,x ∈[0,2].参数方程[典例] 种坐标系取相同的单位长度.已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为⎩⎨⎧x =-2+2t ,y =-4+2t(t 为参数),直线l 与曲线C 分别交于M ,N ,若|PM |,|MN |,|PN |成等比数列,求实数a 的值.[解] 曲线C 的直角坐标方程为y 2=2ax (a >0), 将直线l 的参数方程化为⎩⎪⎨⎪⎧x =-2+22t ′,y =-4+22t ′(t ′为参数),代入曲线C 的方程得:12t ′2-(42+2a )t ′+16+4a =0, 则Δ>0,即a >0或a <-4.设交点M ,N 对应的参数分别为t 1′,t 2′,则t 1′+t 2′=2(42+2a ),t 1′t 2′=2(16+4a ), 若|PM |,|MN |,|PN |成等比数列, 则|t 1′-t 2′|2=|t 1′t 2′|, 解得a =1或a =-4(舍去), 所以满足条件的a =1. [方法技巧](1)解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决问题.(2)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数).当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题. [即时演练]已知直线l :x +y -1=0与抛物线y =x 2相交于A ,B 两点,求线段AB 的长度和点M (-1,2)到A ,B 两点的距离之积.解:因为直线l 过定点M ,且l 的倾斜角为3π4,所以它的参数方程为⎩⎪⎨⎪⎧x =-1+t cos 3π4,y =2+t sin 3π4(t 为参数),即⎩⎪⎨⎪⎧x =-1-22t ,y =2+22t (t 为参数),把它代入抛物线的方程,得t 2+2t -2=0, 由根与系数的关系得t 1+t 2=-2,t 1·t 2=-2, 由参数t 的几何意义可知|AB |=|t 1-t 2|=10, |MA |·|MB |=|t 1t 2|=2.[典例] (2017·全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =mk(m 为参数).设l 1与l 2的交点为P ,当k变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.[解] (1)消去参数t 得l 1的普通方程l 1:y =k (x -2); 消去参数m 得l 2的普通方程l 2:y =1k(x +2).设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k x -,y =1kx +消去k 得x 2-y 2=4(y ≠0).所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎨⎧ρ22θ-sin 2θ=4,ρθ+sin θ-2=0得cos θ-sin θ=2(cos θ+sin θ). 故tan θ=-13,从而cos 2θ=910,sin 2θ=110.代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5, 所以交点M 的极径为 5.[方法技巧]处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.[即时演练]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为:ρ=4cos θ1-cos 2θ,直线的参数方程是⎩⎪⎨⎪⎧x =2+t cos α,y =2+t sin α.(α为参数,0≤α<π).(1)求曲线C 的直角坐标方程;(2)设直线与曲线C 交于两点A ,B ,且线段AB 的中点为M (2,2),求α.解:(1)曲线C :ρ=4cos θ1-cos 2θ,即ρsin 2θ=4cos θ,于是有ρ2sin 2θ=4ρcos θ,化为直角坐标方程为y 2=4x .(2)法一: 把x =2+t cos α,y =2+t sin α代入y 2=4x , 得(2+t sin α)2=4(2+t cos α), 即t 2sin 2α+(4sin α-4cos α)t -4=0.由AB 的中点为M (2,2)得t 1+t 2=0,有4sin α-4cos α=0,所以k =tan α=1. 由0≤α<π,得α=π4.法二:设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2⇒(y 1+y 2)(y 1-y 2)=4(x 1-x 2).∵y 1+y 2=4,∴k 1=tan α=y 1-y 2x 1-x 2=1, 由0≤α<π,得α=π4.1.(2017·全国卷Ⅰ)在直角坐标系xOy 中,曲线C的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . 解:(1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0,由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎪⎨⎪⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝ ⎛⎭⎪⎫-2125,2425.(2)直线l 的普通方程为x +4y -a -4=0, 故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17. 当a ≥-4时,d 的最大值为a +917.由题设得a +917=17,解得a =8;当a <-4时,d 的最大值为-a +117. 由题设得-a +117=17,解得a =-16.综上,a =8或a =-16.2.(2016·全国卷Ⅱ)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为 ρ2+12ρcos θ+11=0.(2)法一:在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R). 设A ,B 所对应的极径分别为ρ1,ρ2, 将l 的极坐标方程代入C 的极坐标方程得 ρ2+12ρcos α+11=0,于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=ρ1+ρ22-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以直线l 的斜率为153或-153. 法二:由直线l 的参数方程⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),消去参数得y =x ·tan α.设直线l 的斜率为k , 则直线l 的方程为kx -y =0. 由圆C 的方程(x +6)2+y 2=25知, 圆心坐标为(-6,0),半径为5.又|AB |=10,由垂径定理及点到直线的距离公式得 |-6k |1+k2=25-⎝ ⎛⎭⎪⎫1022,即36k 21+k 2=904,整理得k 2=53,解得k =±153,即直线l 的斜率为±153. 3.(2015·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0, 曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎪⎫32,32. (2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0), 其中0≤α<π.因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α). 所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.4.(2014·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆. 因为G 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32.1.(2017·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t 2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s(s 为参数).设P 为曲线C上的动点,求点P 到直线l 的距离的最小值.解:直线l 的普通方程为x -2y +8=0. 因为点P 在曲线C 上,设P (2s 2,22s ), 从而点P 到直线l 的距离d =|2s 2-42s +8|12+-2=s -22+45.当s =2时,d min =455.因此当点P 的坐标为(4,4)时,曲线C 上点P 到直线l 的距离取到最小值455.2.已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎪⎨⎪⎧x =3+2t ,y =-2+t(t 为参数)的距离的最小值.解:(1)曲线C 1:(x +4)2+(y -3)2=1,曲线C 2:x 264+y 29=1,曲线C 1是以(-4,3)为圆心,1为半径的圆;曲线C 2是以坐标原点为中心,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (2)当t =π2时,P (-4,4),Q (8cos θ,3sin θ),故M -2+4cos θ,2+32sin θ.曲线C 3为直线x -2y -7=0,M 到C 3的距离d =55|4cos θ-3sin θ-13|,从而当cos θ=45,sin θ=-35时,d 取最小值855.3.在平面直角坐标系xOy 中,C 1的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =1+22t (t 为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,C 2的极坐标方程ρ2-2ρcos θ-3=0.(1)说明C 2是哪种曲线,并将C 2的方程化为普通方程;(2)C 1与C 2有两个公共点A ,B ,点P 的极坐标⎝⎛⎭⎪⎫2,π4,求线段AB 的长及定点P 到A ,B 两点的距离之积.解:(1)C 2是圆,C 2的极坐标方程ρ2-2ρcos θ-3=0, 化为普通方程为x 2+y 2-2x -3=0,即(x -1)2+y 2=4. (2)点P 的直角坐标为(1,1),且在直线C 1上, 将C 1的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =1+22t (t 为参数)代入x 2+y 2-2x -3=0,得⎝ ⎛⎭⎪⎫1-22t 2+⎝ ⎛⎭⎪⎫1+22t 2-2⎝⎛⎭⎪⎫1-22t -3=0,化简得t 2+2t -3=0. 设A ,B 对应的参数分别为t 1,t 2, 则t 1+t 2=-2,t 1·t 2=-3, 所以|AB |=|t 1-t 2|=t 1+t 22-4t 1t 2=2+12=14,定点P 到A ,B 两点的距离之积|PA |·|PB |=|t 1t 2|=3.4.在平面直角坐标系xOy 中,已知圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =2sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =5-2t ,y =3-t (t 为参数),定点P (1,1).(1)以原点O 为极点,x 轴的非负半轴为极轴,单位长度与平面直角坐标系下的单位长度相同建立极坐标系,求圆C 的极坐标方程;(2)已知直线l 与圆C 相交于A ,B 两点,求||PA |-|PB ||的值. 解:(1)依题意得圆C 的一般方程为(x -1)2+y 2=4,将x =ρcos θ,y =ρsin θ代入上式得ρ2-2ρcos θ-3=0, 所以圆C 的极坐标方程为ρ2-2ρcos θ-3=0.(2)因为定点P (1,1)在直线l 上,所以直线l 的参数方程可表示为⎩⎪⎨⎪⎧x =1-255t ,y =1-55t (t 为参数).代入(x -1)2+y 2=4,得t 2-255t -3=0. 设点A ,B 分别对应的参数为t 1,t 2, 则t 1+t 2=255,t 1t 2=-3.所以t 1,t 2异号,不妨设t 1>0,t 2<0, 所以|PA |=t 1,|PB |=-t 2, 所以||PA |-|PB ||=|t 1+t 2|=255.5.已知直线l :⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),曲线C 1:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)设l 与C 1相交于A ,B 两点,求|AB |;(2)若把曲线C 1上各点的横坐标压缩为原来的12倍,纵坐标压缩为原来的32倍,得到曲线C 2,设点P 是曲线C 2上的一个动点,求它到直线l 距离的最小值.解:(1)由已知得l 的普通方程为y =3(x -1),C 1的普通方程为x 2+y 2=1, 联立方程⎩⎨⎧y =3x -,x 2+y 2=1解得l 与C 1的交点为A (1,0),B ⎝ ⎛⎭⎪⎫12,-32,则|AB |=1.(2)由题意,得C 2的参数方程为⎩⎪⎨⎪⎧x =12cos θ,y =32sin θ(θ为参数),故点P 的坐标为⎝ ⎛⎭⎪⎫12cos θ,32sin θ,从而点P 到直线l 的距离是 d =⎪⎪⎪⎪⎪⎪32cos θ-32sin θ-32=342sin ⎝⎛⎭⎪⎫θ-π4+2,当sin ⎝ ⎛⎭⎪⎫θ-π4=-1时,d 取得最小值,且最小值为23-64.6.在直角坐标系xOy 中,直线l的参数方程为⎩⎪⎨⎪⎧x =t -1,y =t +2(t 为参数).在以原点O为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=31+2cos 2θ.(1)直接写出直线l 的普通方程、曲线C 的直角坐标方程; (2)设曲线C 上的点到直线l 的距离为d ,求d 的取值范围. 解:(1)直线l 的普通方程为x -y +3=0,曲线C 的直角坐标方程为3x 2+y 2=3. (2)∵曲线C 的直角坐标方程为3x 2+y 2=3, 即x 2+y 23=1,∴曲线C 上的点的坐标可表示为(cos α,3sin α), ∴d =|cos α-3sin α+3|2=⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫π6-α+32=2sin ⎝ ⎛⎭⎪⎫π6-α+32.∴d 的最小值为12=22,d 的最大值为52=522.∴22≤d ≤522,即d 的取值范围为⎣⎢⎡⎦⎥⎤22,522. 7.平面直角坐标系xOy 中,曲线C :(x -1)2+y 2=1.直线l 经过点P (m,0),且倾斜角为π6,以O 为极点,x 轴正半轴为极轴,建立极坐标系. (1)写出曲线C 的极坐标方程与直线l 的参数方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|PA |·|PB |=1,求实数m 的值.解:(1)曲线C 的直角坐标方程为:(x -1)2+y 2=1,即x 2+y 2=2x ,即ρ2=2ρcos θ, 所以曲线C 的极坐标方程为ρ=2cos θ. 直线l 的参数方程为⎩⎪⎨⎪⎧x =m +32t ,y =12t (t 为参数).(2)设A ,B 两点对应的参数分别为t 1,t 2,将直线l 的参数方程代入x 2+y 2=2x 中, 得t 2+(3m -3)t +m 2-2m =0, 所以t 1t 2=m 2-2m , 由题意得|m 2-2m |=1,解得m =1或m =1+2或m =1- 2. 8.已知直线的参数方程是⎩⎪⎨⎪⎧x =22t ,y =22t +42(t 是参数),圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎪⎫θ+π4.(1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值. 解:(1)∵ρ=4cos ⎝ ⎛⎭⎪⎫θ+π4=22cos θ-22sin θ, ∴ρ2=22ρcos θ-22ρsin θ,∴圆C 的直角坐标方程为x 2+y 2-22x +22y =0, 即(x -2)2+(y +2)2=4, ∴圆心的直角坐标为(2,-2). (2)直线l 上的点向圆C 引切线,则切线长为⎝ ⎛⎭⎪⎫22t -22+⎝ ⎛⎭⎪⎫22t +42+22-4 =t 2+8t +48=t +2+32≥42,∴直线l 上的点向圆C 引的切线长的最小值为4 2.。
2019版高考数学一轮复习第12章选4系列12.1坐标系课件理
π 2 , 6
,则
)
(2)(2016· 北京高考)在极坐标系中,直线ρcosθ- 3 ρsinθ-1=0与圆ρ=2cosθ交于A,B两点,则|AB|= 2 ________.
解析 将ρcosθ- 3 ρsinθ-1=0化为直角坐标方程为x - 3 y-1=0,将ρ=2cosθ化为直角坐标方程为(x-1)2+y2 =1,圆心坐标为(1,0),半径r=1,又(1,0)在直线x- 3 y- 1=0上,所以|AB|=2r=2.
解 (1)设(x1,y1)为圆上的点,在已知变换下变为曲线 C上点(x,y),
x=x1, 依题意,得 y=2y1,
y 2 2 2 由x2 + y = 1 得 x + =1, 1 1 2 2 y 2
故曲线C的方为x + 4 =1.
2 y2 x + =1, 4 (2)由 2x+y-2=0,
第12章
选4系列
12.1
坐标系
基础知识过关
[知识梳理] 1.伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换 x′=λxλ>0, y′=μyμ>0 φ:_______________________ 的作用下,点P(x,y)对应到 点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变 换,简称伸缩变换.
解析 ∵y=1-x(0≤x≤1), ∴ρsinθ=1-ρcosθ(0≤ρcosθ≤1);
π 1 0 ≤ θ ≤ ∴ρ= .故选A. 2 sinθ+cosθ
(2)(选修A4-4P8T5)通过平面直角坐标系中的平移变换 x+12 y-12 和伸缩变换,可以把椭圆 9 + 4 =1变为圆心在原 点的单位圆,求上述平移变换和伸缩变换,以及这两种变 换的合成的变换.
2019年高考数学一轮复习坐标系与参数方程课时训练(含答案)
选修44 坐标系与参数方程第1课时 坐 标 系1. (1) 将点M 的极坐标⎝⎛⎭⎪⎫4,143π化成直角坐标;(2) 将点N 的直角坐标(4,-43)化成极坐标(ρ≥0,0≤θ<2π).解:(1) ∵ x=4cos 143π=4cos 2π3=4×⎝ ⎛⎭⎪⎫-12=-2,y =4sin 143π=4sin 2π3=23,∴ 点M 的直角坐标是(-2,23).(2) ∵ ρ=42+(-43)2=8,tan θ=-434=-3,θ∈[0,2π),又点(4,-43)在第四象限,∴ θ=5π3,∴ 点N 的极坐标为⎝⎛⎭⎪⎫8,5π3.2. 已知圆C 的极坐标方程为ρ2+22ρsin ⎝⎛⎭⎪⎫θ-π4-4=0,求圆心的极坐标.解:以极坐标系的极点为直角坐标系的原点O ,极轴为x 轴的正半轴建立直角坐标系xOy.∵ 圆C 的极坐标方程为ρ2+2ρsin θ-2ρcos θ-4=0,∴ 圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0,即(x -1)2+(y +1)2=6.∴ 圆心的直角坐标为(1,-1),则其极坐标为⎝⎛⎭⎪⎫2,7π4. 3. (2017·省扬中等七校联考)在极坐标系中,已知点P ⎝ ⎛⎭⎪⎫23,π6,直线l :ρcos ⎝⎛⎭⎪⎫θ+π4=22,求点P 到直线l 的距离.解:点P 的直角坐标为(3, 3), 直线l 的普通方程为x -y -4=0, 从而点P 到直线l 的距离为|3-3-4|2=2+62. 4. 已知点P(-1+2cos α,2sin α)(其中α∈[0,2π)),点P 的轨迹记为曲线C 1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,点Q 在曲线C 2:ρ=12cos ⎝⎛⎭⎪⎫θ+π4上.(1) 求曲线C 1的极坐标方程和曲线C 2的直角坐标方程;(2) 当ρ≥0,0≤θ<2π时,求曲线C 1与曲线C 2的公共点的极坐标.解:(1) 曲线C 1:(x +1)2+y 2=2,极坐标方程为ρ2+2ρcos θ-1=0,曲线C 2的直角坐标方程为y =x -1.(2) 曲线C 1与曲线C 2的公共点的坐标为(0,-1),极坐标为⎝ ⎛⎭⎪⎫1,3π2.5. 在极坐标系中,求圆ρ2-4ρsin θ-5=0截直线θ=π3(ρ∈R )所得线段长.解:以极点O 为原点,极轴为x 轴正半轴建立平面直角坐标系xOy.则圆ρ2-4ρsin θ-5=0化为普通方程为x 2+y 2-4y -5=0,即x 2+(y -2)2=9.直线θ=π3(ρ∈R )化为普通方程为y =3x ,即3x -y =0.圆心(0,2)到直线3x -y =0的距离为d =|3×0-2|3+1=1,于是所求线段长为29-d 2=4 2.6. (2017·金陵中学质检)在极坐标系中,已知圆C 的极坐标方程为ρ2-42ρcos ⎝⎛⎭⎪⎫θ-π4+7=0,直线l的极坐标方程为3ρcos θ-4ρsin θ+a =0.若直线l 与圆C 相切,求实数a 的值.解:圆C 和直线l 的直角坐标方程分别为(x -2)2+(y -2)2=1,3x -4y +a =0. 因为圆C 与直线l 相切,所以d =|6-8+a|5=1,解得a =-3或a =7.7. 在极坐标系中,已知圆A 的圆心为(4,0),半径为4,点M 为圆A 上异于极点O 的动点,求弦OM 中点的轨迹的极坐标方程.解:由题意知,圆A 的极坐标方程为ρ=8cos θ, 设弦OM 中点为N(ρ,θ),则M(2ρ,θ),因为点M 在圆A 上,所以2ρ=8cos θ,即ρ=4cos θ. 又点M 异于极点O ,所以ρ≠0,所以弦OM 中点的轨迹的极坐标方程为ρ=4cos θ(ρ≠0).8. 在极坐标系中,设直线θ=π3与曲线ρ2-10ρcos θ+4=0相交于A ,B 两点,求线段AB 中点的极坐标.解:(解法1)将直线θ=π3化为普通方程,得y =3x ,将曲线ρ2-10ρcos θ+4=0化为普通方程,得x 2+y 2-10x +4=0,联立⎩⎨⎧y =3x ,x 2+y 2-10x +4=0并消去y ,得2x 2-5x +2=0,解得x 1=12,x 2=2,所以AB 中点的横坐标为x 1+x 22=54,纵坐标为543,化为极坐标为⎝ ⎛⎭⎪⎫52,π3. (解法2)联立直线l 与曲线C 的方程,得⎩⎪⎨⎪⎧θ=π3,ρ2-10ρcos θ+4=0,消去θ,得ρ2-5ρ+4=0,解得ρ1=1,ρ2=4,所以线段AB 中点的极坐标为⎝ ⎛⎭⎪⎫ρ1+ρ22,π3,即⎝ ⎛⎭⎪⎫52,π3.(注:将线段AB 中点的极坐标写成⎝ ⎛⎭⎪⎫52,π3+2k π(k∈Z )亦可) 9. 在极坐标系中,已知三点A(4,0),B ⎝⎛⎭⎪⎫4,3π2,C ⎝ ⎛⎭⎪⎫ρ,π6.(1) 若A ,B ,C 三点共线,求ρ的值;(2) 求过O(坐标原点),A ,B 三点的圆的极坐标方程.解:(1) 由题意知点A ,B 的直角坐标分别为A(4,0),B(0,-4),所以直线AB 的方程是x -y -4=0.因为点C 的直角坐标为⎝ ⎛⎭⎪⎫3ρ2,ρ2,所以3ρ2-ρ2-4=0,所以ρ=4(3+1). (2) 因为A(4,0),B(0,-4),O(0,0),所以过O ,A ,B 三点的圆的标准方程为(x -2)2+(y +2)2=8,整理得x 2+y 2-4x +4y =0,即极坐标方程为ρ2-4ρcos θ+4ρsin θ=0,整理得ρ=4cos θ-4sin θ.10. 在极坐标系中,设圆C 经过点P ⎝ ⎛⎭⎪⎫3,π6,圆心是直线ρsin ⎝ ⎛⎭⎪⎫π3-θ=32与极轴的交点,求圆C 的极坐标方程.解:因为圆心为直线ρsin ⎝ ⎛⎭⎪⎫π3-θ=32与极轴的交点,所以令θ=0,得ρ=1,即圆心是(1,0).又圆C经过点P ⎝⎛⎭⎪⎫3,π6,所以圆的半径r =3+1-23cos π6=1,所以圆过原点,所以圆C 的极坐标方程是ρ=2cos θ.11. 在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =acos φ,y =bsin φ(a >b >0,φ为参数),且曲线C 上的点M(2,3)对应的参数φ=π3.以O 为极点,x 轴的正半轴为极轴建立极坐标系.(1) 求曲线C 的普通方程;(2) 若A(ρ1,θ),B ⎝⎛⎭⎪⎫ρ2,θ+π2是曲线C 上的两点,求1ρ21+1ρ22的值. 解:(1) 将M(2,3)及对应的参数φ=π3代入⎩⎪⎨⎪⎧x =acos φ,y =bsin φ(a>b>0,φ为参数),得⎩⎪⎨⎪⎧2=acos π3,3=bsin π3,所以⎩⎪⎨⎪⎧a =4,b =2, 所以曲线C 的普通方程为x 216+y24=1.(2) 曲线C 的极坐标方程为ρ2cos 2θ16+ρ2sin 2θ4=1,将A(ρ1,θ),B ⎝⎛⎭⎪⎫ρ2,θ+π2代入得ρ21cos 2θ16+ρ21sin 2θ4=1,ρ22sin 2θ16+ρ22cos 2θ4=1,所以1ρ21+1ρ22=516. 第2课时 参 数 方 程1. 已知在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t -2,y =4t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2-4ρcos θ+3=0.点P 在直线l 上,点Q 在曲线C 上,求PQ 的取值范围.解:直线l 的普通方程为4x -3y +8=0;曲线C 的直角坐标方程为(x -2)2+y 2=1, 曲线C 是圆心为(2,0),半径为1的圆.圆心到直线的距离d =|4×2-0+8|5=165,所以PQ 的取值范围是⎣⎢⎡⎭⎪⎫115,+∞. 2. 已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t 2,y =t ,曲线C 的极坐标方程为ρ=4sin θ,试判断直线l 与曲线C 的位置关系.解:直线l 的普通方程为2x -y -2=0;曲线C 的直角坐标方程为x 2+(y -2)2=4,它表示圆.由圆心到直线l 的距离d =45=455<2,得直线l 与曲线C 相交.3. 在平面直角坐标系xOy 中,求过椭圆⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数)的右焦点,且与直线⎩⎪⎨⎪⎧x =4-2t ,y =3-t(t 为参数)平行的直线的普通方程.解:由题意知,椭圆的长半轴长为a =5,短半轴长为b =3,从而c =4,所以右焦点为(4,0).将已知直线的参数方程化为普通方程得x -2y +2=0,故所求的直线的斜率为12,因此所求的直线方程为y =12(x -4),即x-2y -4=0.4. 在平面直角坐标系xOy 中,已知直线C 1:⎩⎪⎨⎪⎧x =t +1,y =7-2t (t 为参数)与椭圆C 2:⎩⎪⎨⎪⎧x =acos θ,y =3sin θ(θ为参数,a>0)的一条准线的交点位于y 轴上,求实数a 的值.解:直线C 1:2x +y =9,椭圆C 2:y 29+x2a2=1(0<a <3),准线:y =±99-a2.由99-a2=9,得a =2 2.5. 在直角坐标系xOy 中,已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =t ,y =3t 3(t 为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2的极坐标方程是ρ=2,求曲线C 1与C 2的交点在直角坐标系中的直角坐标.解:由⎩⎪⎨⎪⎧x =t ,y =3t 3,消去t 得曲线C 1的普通方程为y =33x (x≥0); 由ρ=2,得ρ2=4,得曲线C 2的直角坐标方程是x 2+y 2=4.联立⎩⎪⎨⎪⎧y =33x (x≥0),x 2+y 2=4,解得⎩⎨⎧x =3,y =1.故曲线C 1与C 2的交点坐标为(3,1).6. 在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =acos t ,y =1+asin t (t 为参数, a >0),在以坐标原点为极点, x轴正半轴为极轴的极坐标系中,曲线C 2∶ρ=4cos θ.(1)求曲线C 1的普通方程,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a.解:(1)消去参数t 得到C 1的普通方程为x 2+(y -1)2=a 2,将x =ρcos θ,y =ρsin θ代入C 1的普通方程,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ,若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可解得1-a 2=0,根据a >0,得到a =1,当a =1时,极点也为C 1,C 2的公共点,在C 3上,所以a =1.7. 在直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ-2cos θ-6sin θ+1ρ=0,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =3+32t(t 为参数).(1) 求曲线C 的普通方程;(2) 若直线l 与曲线C 交于A ,B 两点,点P 的坐标为(3,3),求PA +PB 的值.解:(1) 曲线C 的极坐标方程为ρ-2cos θ-6sin θ+1ρ=0,可得ρ2-2ρcos θ-6ρsin θ+1=0,可得x 2+y 2-2x -6y +1=0,曲线C 的普通方程:x 2+y 2-2x -6y +1=0.(2) 由于直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =3+32t(t 为参数).把它代入圆的方程整理得 t 2+2t -5=0,∴ t 1+t 2=-2,t 1t 2=-5.又PA =|t 1|,PB =|t 2|,PA +PB =|t 1|+|t 2|=(t 1+t 2)2-4t 1t 2=2 6. ∴ PA +PB 的值为2 6.8. 在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫π3-θ=32,椭圆C 的参数方程为⎩⎨⎧x =2cos t ,y =3sin t(t 为参数). (1) 求直线l 的直角坐标方程与椭圆C 的普通方程; (2) 若直线l 与椭圆C 交于A ,B 两点,求线段AB 的长.解:(1) 由ρsin ⎝ ⎛⎭⎪⎫π3-θ=32 ,得ρ(32cos θ-12sin θ)=32,即32x -12y =32,化简得y =3x -3,所以直线l 的直角坐标方程是y =3x - 3.由⎝ ⎛⎭⎪⎫x 22+⎝ ⎛⎭⎪⎫y 32=cos 2t +sin 2t =1,得椭圆C 的普通方程为x 24+y 23=1.(2) 联立直线方程与椭圆方程,得⎩⎪⎨⎪⎧y =3x -3,x 24+y 23=1,消去y ,得x 24+(x -1)2=1,化简得5x 2-8x =0,解得x 1=0,x 2=85,所以A(0,-3),B ⎝ ⎛⎭⎪⎫85,35 3或A ⎝ ⎛⎭⎪⎫85,35 3,B(0,- 3), 则AB =⎝ ⎛⎭⎪⎫0-852+⎝ ⎛⎭⎪⎫-3-35 32=165.9. 在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =-22+rcos θ,y =-22+rsin θ(θ为参数,r >0),以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=1,若圆C 上的点到直线l 的最大距离为3,求r 的值.解:圆C 的参数方程为⎩⎪⎨⎪⎧x =-22+rcos θ,y =-22+rsin θ(θ为参数,r >0),消去参数θ得⎝ ⎛⎭⎪⎫x +222+⎝ ⎛⎭⎪⎫y +222=r 2(r >0),所以圆心C ⎝ ⎛⎭⎪⎫-22,-22,半径为r.直线l 的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=1, 化为普通方程为x +y -2=0. 圆心C ⎝ ⎛⎭⎪⎫-22,-22到直线x +y -2=0的距离为d =⎪⎪⎪⎪⎪⎪-22-22-22=2.∵ 圆C 上的点到直线l 的最大距离为3,即d +r =3,∴ r =3-d =3-2=1.10. 已知动点P ,Q 都在曲线C :⎩⎪⎨⎪⎧x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1) 求M 的轨迹的参数方程;(2) 将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解:(1) 由题意有,P(2cos α,2sin α),Q(2cos 2α,2sin 2α), 因此M(cos α+cos 2α,sin α+sin 2α),M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π).(2) M 点到坐标原点的距离为d =x 2+y 2=2+2cos α(0<α<2π),当α=π时,d =0,故M 的轨迹过坐标原点.11. 若以直角坐标系xOy 的原点O 为极点,x 轴正半轴为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程是ρsin 2θ=6cos θ.(1) 将曲线C 的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;(2) 若直线l 的参数方程为⎩⎪⎨⎪⎧x =32+12t ,y =32t(t 为参数),直线l 与曲线C 相交于A ,B 两点,求线段AB 的长.解:(1) 由ρsin 2θ=6cos θ,得ρ2sin 2θ=6ρcos θ,所以曲线C 的直角坐标方程为y 2=6x ,曲线是以原点为顶点,⎝ ⎛⎭⎪⎫32,0为焦点的抛物线. (2) ⎩⎪⎨⎪⎧x =32+t 2,y =32t ,y 2=6x ,化简得t 2-4t -12=0,则t 1+t 2=4,t 1t 2=-12,所以AB =|t 1-t 2|=(t 1+t 2)2-4t 1t 2=8.。
2019高三数学文科一轮复习全品课件 第57讲 坐标系
课堂考点探究
[ 答案 ] 变式题 (1)在同一平面直角坐标系中,已知
������' = 3������, [解析] (1)设 A'(x',y'),由伸缩变换 φ: 得 ������' = 3������, 1 2������' = ������, 伸缩变换 φ: 则点 A ,-2 经过变换 3 2������' = ������, ������' = 3������, 1 1 到 由于点 A 的坐标为 ,2 , 于是 后所得的点 A'的坐标为 . 3 ������' = ������.
������ ' , ������ ' ������ ' ������ ������ ' 代入 y=f(x),得 ������ =f ������ ������
,整理之后得到 y'=h(x'),即为所求变
换之后曲线的方程.平面图形的伸缩变换可以用坐标伸缩变换来表示.在伸缩 ������' = ������������,������ > 0, 变换 的作用下,直线仍然变成直线,抛物线仍然变成抛物线,双曲 ������' = ������������,������ > 0 线仍然变成双曲线,圆可以变成椭圆,椭圆也可以变成圆.
北师大版
坐标系
第57讲 PART 57
教学参考│课前双基巩固│课堂考点探究│教师备用例题
考试说明
1. 了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化
情况. 2. 了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐 标和直角坐标的互化. 3. 能在极坐标系中给出简单图形表示的极坐标方程.
2019届高考理科数学一轮复习精品学案:第67讲 坐标系(含解析)
第十一单元选修4部分1.课时安排第67讲坐标系考试说明1.了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.2.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化.3.能在极坐标系中给出简单图形表示的极坐标方程.【课前双基巩固】知识聚焦2.(1)极径极角(2)ρcosθx2+y2【课堂考点探究】例1[思路点拨](1)将代入曲线C的方程得+y'2=1;(2)根据题意,将代入变换后所得曲线的方程,即可得曲线C的方程.(1)+y'2=1(2)4x2+9y2=1[解析](1)因为所以代入曲线C的方程得C':+y'2=1.(2)根据题意,曲线C经过伸缩变换后所得曲线的方程为x'2+y'2=1,则(2x)2+(3y)2=1,即4x2+9y2=1,所以曲线C的方程为4x2+9y2=1.变式题(1)(1,-1)(2)(-5,0),(5,0)[解析](1)设A'(x',y'),由伸缩变换φ:得到由于点A 的坐标为,于是x'=3×=1,y'=×(-2)=-1,∴A'的坐标为(1,-1).(2)设曲线C'上任意一点P'(x',y'),将代入x 2-=1,得-=1,化简得-=1,即为曲线C'的方程,知C'仍是双曲线,其焦点坐标分别为(-5,0),(5,0).例2[思路点拨](1)将圆的标准方程化为一般方程,把x=ρcos θ及y=ρsin θ直接代入圆的一般方程和直线的直角坐标方程并化简即可;(2)将直线的极坐标方程代入圆的极坐标方程,利用|OP|·|OQ|=|ρ1ρ2|即可.解:(1)曲线C 1的直角坐标方程为(x-)2+(y-2)2=4,即x 2+y 2-2x-4y+3=0,把x=ρcos θ,y=ρsin θ,ρ2=x 2+y 2代入,得ρ2-2ρcos θ-4ρsin θ+3=0,则C 1的极坐标方程为ρ2-2ρcos θ-4ρsin θ+3=0.∵直线C 2的直角坐标方程为y=x ,∴直线C 2的极坐标方程为θ=(ρ∈R).(2)设P (ρ1,θ),Q (ρ2,θ),将θ=(ρ∈R)代入ρ2-2ρcos θ-4ρsin θ+3=0,得ρ2-5ρ+3=0,∴ρ1·ρ2=3,∴|OP|·|OQ|=|ρ1ρ2|=3.变式题解:(1)由ρ2=,得ρ2cos 2θ+9ρ2sin 2θ=9,将x=ρcos θ,y=ρsin θ代入,得曲线C 的直角坐标方程是+y 2=1.(2)因为ρ2=,所以=+sin 2θ,由OA ⊥OB ,设A (ρ1,α),则B 点的坐标可设为,所以+=+=+sin 2α++cos 2α=+1=.例3[思路点拨](1)设P (ρ,θ)(ρ>0),利用已知条件得出M 点坐标,根据|OM|·|OP|=16列方程可得C 2的极坐标方程,再将极坐标方程化为直角坐标方程;(2)设B (ρB ,α)(ρB >0),由|OA|=2,ρB =4cos α,即可求出△OAB 面积的最大值.解:(1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0).由题设知|OP|=ρ,|OM|=ρ1=.由|OM|·|OP|=16得C 2的极坐标方程为ρ=4cos θ(ρ>0),因此C 2的直角坐标方程为(x-2)2+y 2=4(x ≠0).(2)设点B 的极坐标为(ρB ,α)(ρB >0).由题设知|OA|=2,ρB =4cos α,于是△OAB 的面积S=|OA|·ρB ·sin∠AOB=4cos α·=2≤2+.当α=-时,S 取得最大值2+,所以△OAB 面积的最大值为2+.变式题解:(1)∵x=ρcos θ,y=ρsin θ,∴C 1的极坐标方程为ρcos θ+ρsin θ-4=0.∵∴x 2+(y-1)2=1,又x=ρcos θ,y=ρsin θ,∴(ρcos θ)2+(ρsin θ-1)2=1,即ρ2-2ρsin θ=0,∴C 2的极坐标方程为ρ=2sin θ.(2)设A (ρ1,α),B (ρ2,α),则ρ1=,ρ2=2sin α,则==×2sin α(cos α+sin α)=,又0<α<,∴当α=时,取得最大值.【备选理由】例1主要考查极坐标方程与直角坐标方程的互化,意在考查基本运算能力,转化与化归思想、方程思想与数形结合思想;例2主要考查极坐标方程与直角坐标方程的互化,综合性较强.1[配例2使用]在极坐标系中,已知曲线C :ρ=2sin ,P 为曲线C 上的动点,定点Q .(1)将曲线C 的极坐标方程化成直角坐标方程;(2)求P ,Q 两点间的最短距离.解:(1)在极坐标系中,曲线C :ρ=2sin =2sin θ-2cos θ,∴ρ2=2ρsin θ-2ρcos θ,∴曲线C 的直角坐标方程为x 2+y 2=2y-2x ,即(x+1)2+(y-1)2=2.(2)易知Q 的直角坐标为,∵曲线C 的圆心为(-1,1),半径为,点Q 在圆C 外,∴|PQ|min =-=-.2[配例3使用][2017·深圳一模]在平面直角坐标系中,直线l 过点P (2,)且倾斜角为α,以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=4cos,直线l 与曲线C 相交于A ,B 两点.(1)求曲线C 的直角坐标方程;(2)若|AB|=,求直线l 的倾斜角α的值.解:(1)∵ρ=4cos,∴ρ=4cosθcos+sinθsin=2(cosθ+sinθ),∴ρ2=2(ρcosθ+ρsinθ),∴x2+y2=2x+2y,∴曲线C的直角坐标方程为(x-1)2+(y-)2=4.(2)当α=时,直线l的方程为x=2,∴|AB|=2≠,不符合题意.当α≠时,设tanα=k,则l的方程为y-=k(x-2),即kx-y-2k+=0,∴圆心C(1,)到直线kx-y-2k+=0的距离d==,由d2+=4,得+=4,解得k=±,∴tanα=±,∵α∈[0,π),∴α=或.。
全国版2019版高考数学一轮复习坐标系与参数方程第1讲坐标系学案201805092299
第1讲 坐标系板块一 知识梳理·自主学习[必备知识]考点1 坐标变换平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.考点2 极坐标与直角坐标1.极坐标系:在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),就建立了极坐标系.2.点的极坐标:对于极坐标系所在平面内的任一点M ,若设|OM |=ρ(ρ≥0),以极轴Ox 为始边,射线OM 为终边的角为θ,则点M 可用有序数对(ρ,θ)表示.3.极坐标与直角坐标的互化公式:在平面直角坐标系xOy 中,以O 为极点,射线Ox 的正方向为极轴方向,取相同的长度单位,建立极坐标系.设点P 的直角坐标为(x ,y ),它的极坐标为(ρ,θ),则相互转化公式为⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0).考点3 常用简单曲线的极坐标方程[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)点P在曲线C上,则点P的极坐标一定满足曲线C的极坐标方程.( )(2)tan θ=1与θ=π4表示同一条曲线(ρ≥0).( )(3)点P 的直角坐标为(-2,2),那么它的极坐标可表示为⎝⎛⎭⎪⎫2,3π4.( )(4)过极点,作倾斜角为α的直线的极坐标方程可表示为θ=α或θ=π+α(ρ∈R ).( )(5)圆心在极轴上的点(a,0)处,且过极点O 的圆的极坐标方程为ρ=2a sin θ.( ) 答案 (1)× (2)× (3)√ (4)√ (5)×2.[2018·开封模拟]方程ρ=-2cos θ和ρ+4ρ=42sin θ的曲线的位置关系为( )A .相离B .外切C .相交D .内切 答案 B解析 方程ρ=-2cos θ化为直角坐标方程为(x +1)2+y 2=1,ρ+4ρ=42sin θ化为直角坐标方程为x 2+(y -22)2=4,两圆圆心距为(-1)2+(22)2=3=1+2,所以两圆外切.3.[2018·皖北协作区联考]在极坐标系中,直线ρ(3cos θ-sin θ)=2与圆ρ=4sin θ的交点的极坐标为( )A.⎝ ⎛⎭⎪⎫2,π6B.⎝ ⎛⎭⎪⎫2,π3C.⎝⎛⎭⎪⎫4,π6 D.⎝⎛⎭⎪⎫4,π3 答案 A解析 ρ(3cos θ-sin θ)=2可化为直角坐标方程3x -y =2,即y =3x -2.ρ=4sin θ可化为x 2+y 2=4y ,把y =3x -2代入x 2+y 2=4y ,得4x 2-83x +12=0,即x 2-23x +3=0,所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为⎝⎛⎭⎪⎫2,π6.故选A.4.[2018·株洲模拟]在极坐标系中,直线ρsin(θ+π4)=2被圆ρ=4截得的弦长为( )A .2 2B .2 3C .4 2D .4 3 答案 D解析 直线ρsin(θ+π4)=2可化为x +y -22=0,圆ρ=4可化为x 2+y 2=16,由圆中的弦长公式得2r 2-d 2=242-⎝⎛⎭⎪⎫2222=4 3. 5.[2017·北京高考]在极坐标系中,点A 在圆ρ2-2ρcos θ-4ρsin θ+4=0上,点P 的坐标为(1,0),则|AP |的最小值为________.解析 由ρ2-2ρcos θ-4ρsin θ+4=0,得x 2+y 2-2x -4y +4=0,即(x -1)2+(y -2)2=1,圆心坐标为C (1,2),半径长为1. ∵点P 的坐标为(1,0),∴点P 在圆C 外. 又∵点A 在圆C 上,∴|AP |min =|PC |-1=2-1=1.6.[2017·天津高考]在极坐标系中,直线4ρcos ⎝ ⎛⎭⎪⎫θ-π6+1=0与圆ρ=2sin θ的公共点的个数为________.答案 2解析 由4ρcos ⎝ ⎛⎭⎪⎫θ-π6+1=0得23ρcos θ+2ρsin θ+1=0,故直线的直角坐标方程为23x +2y +1=0.由ρ=2sin θ得ρ2=2ρsin θ, 故圆的直角坐标方程为x 2+y 2=2y , 即x 2+(y -1)2=1.圆心为(0,1),半径为1. ∵圆心到直线23x +2y +1=0的距离d =|2×1+1|(23)2+22=34<1,∴直线与圆相交,有两个公共点.板块二 典例探究·考向突破 考向平面直角坐标系下图形的变换例 1 在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 后的图形.(1)2x +3y =0;(2)x 2+y 2=1.解 由伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y ,得到⎩⎪⎨⎪⎧x =12x ′,y =13y ′.(*)(1)将(*)代入2x +3y =0,得到经过伸缩变换后的图形方程是x ′+y ′=0.因此,经过伸缩变换⎩⎪⎨⎪⎧ x ′=2x ,y ′=3y 后,直线2x +3y =0变成直线x ′+y ′=0.(2)将(*)代入x 2+y 2=1,得到经过伸缩变换后的图形的方程是x ′24+y ′29=1.因此,经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 后,圆x 2+y 2=1变成椭圆x ′24+y ′29=1.平面直角坐标系下图形的变换技巧平面图形的伸缩变换可以用坐标伸缩变换来表示.在伸缩变换⎩⎪⎨⎪⎧x ′=λ·x (λ>0)y ′=μ·y (μ>0)下,直线仍然变成直线,抛物线仍然变成抛物线,双曲线仍然变成双曲线,圆可以变成椭圆,椭圆也可以变成圆.【变式训练1】 求椭圆x 24+y 2=1,经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=y后的曲线方程.解 由⎩⎪⎨⎪⎧x ′=12x ,y ′=y ,得到⎩⎪⎨⎪⎧x =2x ′,y =y ′.①将①代入x 24+y 2=1,得4x ′24+y ′2=1,即x ′2+y ′2=1.因此椭圆x 24+y 2=1经伸缩变换后得到的曲线方程是x 2+y 2=1. 考向极坐标与直角坐标的互化例 2 [2017·全国卷Ⅱ]在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.解 (1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ.由|OM |·|OP |=16得C 2的极坐标方程为ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0).由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积 S =12|OA |·ρB ·sin∠AOB =4cos α·⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫α-π3=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2α-π3-32≤2+ 3. 当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3. 触类旁通直角坐标方程与极坐标方程互化的方法直角坐标方程化为极坐标方程,只需把公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程要通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须保持同解,因此应注意对变形过程的检验.【变式训练2】 已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =3+3t(t 为参数).在以坐标原点为极点,x 轴非负半轴为极轴的极坐标系中,曲线C 的方程为sin θ-3ρcos 2θ=0.(1)求曲线C 的直角坐标方程;(2)写出直线l 与曲线C 交点的一个极坐标.解 (1)∵sin θ-3ρcos 2θ=0,∴ρsin θ-3ρ2cos 2θ=0, 即y -3x 2=0. (2)将⎩⎪⎨⎪⎧x =1+12t ,y =3+3t ,代入y -3x 2=0得,3+3t -3⎝ ⎛⎭⎪⎫1+12t 2=0,即t =0,从而,交点坐标为(1,3),∴交点的一个极坐标为⎝⎛⎭⎪⎫2,π3.考向极坐标方程及其应用例 3 [2016·全国卷Ⅱ]在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解 (1)由x =ρcos θ,y =ρsin θ,可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ). 设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程 代入C 的极坐标方程,得ρ2+12ρcos α+11=0. 于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10,得cos 2α=38,tan α=±153.所以l 的斜率为153或-153. 触类旁通极坐标方程及其应用的类型及解题策略(1)求极坐标方程.可在平面直角坐标系中,求出曲线方程,然后再转化为极坐标方程.(2)求点到直线的距离、线段的长度.先将极坐标系下点的坐标、直线、曲线方程转化为平面直角坐标系下点的坐标、直线、曲线方程,然后利用直角坐标系中点到直线的距离、线段公式求解.【变式训练3】 在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =3-32t ,y =3+12t (t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,过极点O 的射线与曲线C 相交于不同于极点的点A ,且点A 的极坐标为(23,θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π.(1)求θ的值;(2)若射线OA 与直线l 相交于点B ,求|AB |的值. 解 (1)由题意知,曲线C 的普通方程为x 2+(y -2)2=4,∵x =ρcos θ,y =ρsin θ,∴曲线C 的极坐标方程为(ρcos θ)2+(ρsin θ-2)2=4,即ρ=4sin θ.由ρ=23,得sin θ=32, ∵θ∈⎝⎛⎭⎪⎫π2,π,∴θ=2π3.(2)由题易知直线l 的普通方程为x +3y -43=0, ∴直线l 的极坐标方程为ρcos θ+3ρsin θ-43=0. 又射线OA 的极坐标方程为θ=2π3(ρ≥0),联立,得⎩⎪⎨⎪⎧θ=2π3(ρ≥0),ρcos θ+3ρsin θ-43=0,解得ρ=4 3.∴点B 的极坐标为⎝ ⎛⎭⎪⎫43,2π3,∴|AB |=|ρB -ρA |=43-23=2 3.核心规律 如何解决极坐标问题(1)解决极坐标系中的一些问题时,主要的思路是将极坐标化为直角坐标,在直角坐标系下求解后,再转化为极坐标.(2)极坐标方程与直角坐标方程互化的核心公式:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ⇒⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0).(3)由极坐标系上点的对称性可得到极坐标方程ρ=ρ(θ)的图形的对称性:若ρ(θ)=ρ(-θ),则相应图形关于极轴对称;若ρ(θ)=ρ(π-θ),则图形关于射线θ=π2所在的直线对称;若ρ(θ)=ρ(π+θ),则图形关于极点O 对称.满分策略极坐标应用中的注意事项(1)极坐标与直角坐标互化的前提条件:①极点与原点重合;②极轴与x 轴正方向重合;③取相同的长度单位.(2)若把直角坐标化为极坐标,求极角θ时,应注意判断点P 所在的象限(即角θ的终边的位置),以便正确地求出角θ.利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题.(3)由极坐标的意义可知平面上点的极坐标不是唯一的,如果限定ρ取正值,θ∈[0,2π),平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立一一对应关系.板块三 模拟演练·提能增分[基础能力达标]1.[2018·广东珠海模拟]在极坐标系中,圆C 的极坐标方程为ρ2=4ρ(cos θ+sin θ)-6.若以极点O 为原点,极轴所在直线为x 轴建立平面直角坐标系.(1)求圆C 的参数方程;(2)在直角坐标系中,点P (x ,y )是圆C 上一动点,试求x +y 的最大值,并求出此时点P 的直角坐标.解 (1)因为ρ2=4ρ(cos θ+sin θ)-6, 所以x 2+y 2=4x +4y -6, 所以x 2+y 2-4x -4y +6=0, 整理得(x -2)2+(y -2)2=2.所以圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =2+2sin θ(θ为参数).(2)由(1)可得x +y =4+2(sin θ+cos θ)=4+2sin ⎝⎛⎭⎪⎫θ+π4. 当θ=π4,即点P 的直角坐标为(3,3)时,x +y 取得最大值,其值为6.2.[2018·宁波模拟]已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解 (1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t 消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的直角坐标方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2.3.[2018·南通模拟]在直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =2+2sin φ(φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的普通方程;(2)直线l 的极坐标方程是2ρsin ⎝⎛⎭⎪⎫θ+π6=53,射线OM :θ=π6与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解 (1)因为圆C的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =2+2sin φ(φ为参数),所以圆心C 的坐标为(0,2),半径为2,圆C 的普通方程为x 2+(y -2)2=4.(2)将x =ρcos θ,y =ρsin θ代入x 2+(y -2)2=4,得圆C 的极坐标方程为ρ=4sin θ.设P (ρ1,θ1),则由⎩⎪⎨⎪⎧ρ=4sin θ,θ=π6,解得ρ1=2,θ1=π6.设Q (ρ2,θ2),则由⎩⎪⎨⎪⎧2ρsin ⎝⎛⎭⎪⎫θ+π6=53,θ=π6,解得ρ2=5,θ2=π6.所以|PQ |=3.4.[2018·昆明模拟]将圆x 2+y 2=1上每一点的横坐标变为原来的2倍,纵坐标变为原来的3倍,得曲线Γ.(1)写出Γ的参数方程;(2)设直线l :3x +2y -6=0与Γ的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解 (1)设(x 1,y 1)为圆上的点,在已知变换下变为Γ上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =2x 1,y =3y 1,即⎩⎪⎨⎪⎧x 1=x2,y 1=y3.由x 21+y 21=1,得⎝ ⎛⎭⎪⎫x 22+⎝ ⎛⎭⎪⎫y 32=1,即曲线Γ的方程为x 24+y 29=1.故Γ的参数方程为⎩⎪⎨⎪⎧x =2cos t ,y =3sin t(t 为参数).(2)由⎩⎪⎨⎪⎧x 24+y 29=1,3x +2y -6=0,解得⎩⎪⎨⎪⎧x =2,y =0或⎩⎪⎨⎪⎧x =0,y =3.不妨设P 1(2,0),P 2(0,3),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫1,32,所求直线的斜率k =23.于是所求直线方程为y -32=23(x -1),即4x -6y +5=0,化为极坐标方程,得4ρcos θ-6ρsin θ+5=0.5.[2016·全国卷Ⅲ]在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标.解 (1)由曲线C 1:⎩⎨⎧x =3cos α,y =sin α,得⎩⎪⎨⎪⎧x 3=cos α,y =sin α,即曲线C 1的直角坐标方程为x 23+y 2=1.由曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ+π4=22,得22ρ(sin θ+cos θ)=22,即曲线C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫α+π3-2.百度文库 - 让每个人平等地提升自我11 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝ ⎛⎭⎪⎫32,12. 6.[2018·合肥模拟]在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧ x =2cos φ,y =sin φ(其中φ为参数),曲线C 2:x 2+y 2-2y =0,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,射线l :θ=α(ρ≥0)与曲线C 1,C 2分别交于点A ,B (均异于原点O ) .(1)求曲线C 1,C 2的极坐标方程;(2)当0<α<π2时,求|OA |2+|OB |2的取值范围. 解 (1)∵⎩⎨⎧ x =2cos φ,y =sin φ(φ为参数),∴x 22+y 2=1. 由⎩⎪⎨⎪⎧ x =ρcos θ,y =ρsin θ,得曲线C 1的极坐标方程为ρ2=21+sin 2θ. ∵x 2+y 2-2y =0,∴曲线C 2的极坐标方程为ρ=2sin θ.(2)由(1)得|OA |2=ρ2=21+sin 2α,|OB |2=ρ2=4sin 2α, ∴|OA |2+|OB |2=21+sin 2α+4sin 2α=21+sin 2α+4(1+sin 2α)-4, ∵0<α<π2,∴1<1+sin 2α<2,∴6<21+sin 2α+4(1+sin 2α)<9, ∴|OA |2+|OB |2的取值范围为(2,5).。
(全国通用版)2019版高考数学一轮复习 选考部分 坐标系与参数方程 1 坐标系课件 文
x 5x
【为本一例题多(2)变中】变经换过前伸的缩曲变线换,求y曲 线后3C,的y曲方线程C变. x 5 x ,
【解析】把 代入方程x′2+y′2=1,得 25x2+9y2=1,
y
3
y
所以曲线C的方程为25x2+9y2=1.
【技法点拨】
x x( 0),
伸 平缩面变上换的后曲方线y程=f的(x)求在法变换φ:y 的y(作用 0)
系列4部分 选修4-4 坐标系与参数方程 第一节 坐 标 系
【教材基础回顾】 1.伸缩变换
x •x,(0), _y______•__y( _,_____其0)中点P(x,y)对应到点P′(x′,y′).
2.极坐标系与点的极坐标 在如图极坐标系中,点O是_极__点__,射线Ox是_极__轴__,θ为 __极__角_(通常取逆时针方向),ρ为__极__径_(表示极点O与 点M的距离),点M的极坐标是__M__(_ρ_,θ_)__.
下的变换方程的求法是将 代入y=f(x),得
x
x,
y
y
y = f ( x ),
整理之后得到y′=h(x′),即为所求变换之
后的方程. 提醒:应用伸缩变换时,要分清变换前的点的坐标(x,y) 与变换后的坐标(x′,y′).
x 【同源异考·金榜原创】
1.求曲线x2+y2=1经过φ:
3变x 换, 后得到的新曲
1
【解析】将曲线y= sin 3x①经过伸缩变换变为
2 y=sin x即y′=sin x′②,
2
设伸缩变换公式是 xyyx(0,0),
把伸缩变换关系式代入②式得:μy=sin λx与①的
2,
系数对应相等得到:
2019版高考数学(文)大一轮优选(全国通用版)讲义:第57讲 坐标系 Word版含答案
第十一章 坐标系与参数方程第57讲 坐标系考纲要求考情分析命题趋势1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′= λx ,λ>0 ,y ′= μy ,μ>0 的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系 (1)相关概念 ①极坐标系:如图所示,在平面内取一个__定点__O ,点O 叫做极点,自极点O 引一条__射线__Ox ,Ox 叫做极轴;再选定一个__长度单位__、一个__角度单位__(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.②极坐标:一般地,没有特殊说明时,我们认为ρ≥0,θ可取任意实数. ③点与极坐标的关系:一般地,极坐标(ρ,θ)与__ (ρ,θ+2k π)(k ∈Z )__表示同一个点,特别地,极点O的坐标为__(0,θ)(θ∈R ) __,和直角坐标不同,平面内一个点的极坐标有__无数__种表示.如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标__(ρ,θ)__表示;同时,极坐标(ρ,θ)表示的点也是唯一确定的.(2)极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为:⎩⎪⎨⎪⎧x = ρcos θ ,y = ρsin θ ;⎩⎪⎨⎪⎧ρ2= x 2+y 2 ,tan θ= yx (x ≠0) . 3.常见曲线的极坐标方程曲线图形极坐标方程 圆心在极点,半径为r 的圆ρ=r (0≤θ<2π) 圆心为(r,0),半径为r 的圆ρ=2r cos θ⎝⎛⎭⎫-π2≤θ<π2圆心为⎝⎛⎭⎫r ,π2,半径为r 的圆ρ=2r sin θ (0≤θ<π) 过极点,倾斜角为α的直线__ θ=α(ρ∈R ) __或__ θ=π+α(ρ∈R ) __过点(a,0),与极轴垂直的直线ρcos θ=a⎝⎛⎭⎫-π2<θ<π2过点⎝⎛⎭⎫a ,π2,与极轴平行的直线ρsin θ=a (0<θ<π)1.思维辨析(在括号内打“√”或打“”).。
2019版高考数学文大一轮优选全国课时达标57坐标系 含
课时达标 第57讲[解密考纲]高考中,主要涉及曲线的极坐标方程、极坐标方程与直角坐标方程的互化,能在极坐标系中给出简单图形的极坐标方程,常以解答题的形式出现.1.求椭圆x 24+y 2=1经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=y 后的曲线方程. 解析 由⎩⎪⎨⎪⎧ x ′=12x ,y ′=y ,得⎩⎪⎨⎪⎧x =2x ′,y =y ′.① 将①代入x 24+y 2=1,得4x ′24+y ′2=1,即x ′2+y ′2=1. 因此椭圆x 24+y 2=1经伸缩变换后得到的曲线方程是x 2+y 2=1. 2.在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且点A 在直线l 上. (1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系. 解析 (1)由点A ⎝⎛⎭⎫2,π4在直线l 上,得2cos ⎝⎛⎭⎫π4-π4=a ,则a =2,故直线l 的方程可化为ρsin θ+ρcos θ=2,得直线l 的直角坐标方程为x +y -2=0.(2)消去参数α,得圆C 的普通方程为(x -1)2+y 2=1,圆心C (1,0)到直线l 的距离d =|1+0-2|12+12=12<1,所以直线l 与圆C 相交. 3.已知曲线C 1的极坐标方程为ρ=6cos θ,曲线C 2的极坐标方程为θ=π4(ρ∈R ),曲线C 1,C 2相交于A ,B 两点.(1)把曲线C 1,C 2的极坐标方程转化为直角坐标方程;(2)求弦AB 的长度.解析 (1)曲线C 2:θ=π4(ρ∈R )表示直线y =x ,曲线C 1:ρ=6cos θ ,即ρ2=6ρcos θ,所以x 2+y 2=6x ,即(x -3)2+y 2=9.(2)∵圆心(3,0)到直线的距离d =322,r =3, ∴弦长AB =2r 2-d 2=3 2.∴弦AB 的长度为3 2.4.在极坐标系Ox 中,直线C 1的极坐标方程为ρsin θ=2,点M 是C 1上任意一点,点P 在射线OM 上,且|OP |·|OM |=4,记点P 的轨迹为C 2,求曲线C 2的极坐标方程.解析 设 P (ρ1,θ),M (ρ2,θ),由|OP |·|OM |=4,得ρ1ρ2=4,即ρ2=4ρ1. ∵M 是C 1上任意一点,∴ρ2sin θ=2,即4ρ1sin θ=2,ρ1=2sin θ. ∴曲线C 2的极坐标方程为ρ=2sin θ.5.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 1的极坐标方程为ρ2=21+sin 2θ,直线l 的极坐标方程为ρ=42sin θ+cos θ. (1)写出曲线C 1与直线l 的直角坐标方程;(2)设Q 为曲线C 1上一动点,求点Q 到直线l 距离的最小值.解析 (1)根据 ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ,可得C 1的直角坐标方程为x 2+2y 2=2,直线l 的直角坐标方程为x +2y =4.(2)设Q (2cos θ,sin θ),则点Q 到直线l 的距离为d =|2sin θ+2cos θ-4|3=⎪⎪⎪⎪2sin ⎝⎛⎭⎫θ+π4-43≥23=233, 当且仅当θ+π4=2k π+π2,即θ=2k π+π4(k ∈Z )时取等号. ∴点Q 到直线l 距离的最小值为233. 6.(2018·四川绵阳诊断考试)在直角坐标系xOy 中,曲线C 的参数方程是⎩⎪⎨⎪⎧x =3+5cos α,y =4+5sin α (α为参数).以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系. (1)求曲线C 的极坐标方程;(2)设l 1:θ=π6,l 2:θ=π3,若l 1,l 2与曲线C 分别交于异于原点的A ,B 两点,求△AOB 的面积.解析 (1)将C 的参数方程化为普通方程(x -3)2+(y -4)2=25,即x 2+y 2-6x -8y =0,所以曲线C 的极坐标方程为ρ=6cos θ+8sin θ.(2)把θ=π6代入ρ=6cos θ+8sin θ,得ρ1=4+33, 所以点A 的极坐标为A ⎝⎛⎭⎫4+33,π6.把θ=π3代入ρ=6cos θ+8sin θ,得ρ2=3+43, 所以点B 的极坐标为B ⎝⎛⎭⎫3+43,π3. 所以S △AOB =12ρ1ρ2sin ∠AOB =12(4+33)(3+43)sin ⎝⎛⎭⎫π3-π6=12+2534.。
领军2019年高考文科数学必刷题:考点57 坐标系及答案解析
领军2019年高考文科数学必刷题
考点57 坐标系
1.已知实数满足,则的最大值为()
A.6 B.12 C.13 D.14
【答案】B
2.在平面直角坐标系中,将曲线向左平移2个单位,再将得到的曲线上的每一个点的横坐标保持不变,
纵坐标缩短为原来的,得到曲线,以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,的极坐标方程为.
(1)求曲线的参数方程;
(2)已知点在第一象限,四边形是曲线的内接矩形,求内接矩形周长的最大值,并求周长最大时点的坐标.
【答案】(1)(2),
【解析】(1)由得
将代入,整理得曲线的普通方程为,
设曲线上的点为,变换后的点为
3.在平面直角坐标系中,圆经过伸缩变换后得到曲线,相互垂直的直线过定点与曲线相交于两点, 与曲线相交于两点.
(1)求曲线的直角坐标方程;
(2)求的最小值.
【答案】(1) (2)。
高考数学一轮复习第13章选修部分57坐标系课时训练文含解析0422211.doc
【课时训练】坐 标 系解答题1.(2018武汉调研)在极坐标系中,已知圆C 经过点P ⎝⎛⎭⎪⎫2,π4,圆心为直线ρsin ⎝⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.【解】在ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32中,令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0).因为圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4, 所以圆C 的半径PC =22+12-2×1×2c os π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2c os θ.2.(2018兰州检测)设M ,N 分别是曲线ρ+2sin θ=0和ρsin ⎝ ⎛⎭⎪⎫θ+π4=22上的动点,求M ,N 的最小距离.【解】因为M ,N 分别是曲线ρ+2sin θ=0和ρsin ⎝⎛⎭⎪⎫θ+π4=22上的动点,即M ,N 分别是圆x 2+y 2+2y =0和直线x +y -1=0上的动点,要求M ,N 两点间的最小距离,即在直线x +y -1=0上找一点到圆x 2+y 2+2y =0的距离最小,即圆心(0,-1)到直线x +y -1=0的距离减去半径,故最小值为|0-1-1|2-1=2-1.3.(2018安徽芜湖质检)在极坐标系中,求直线ρ(3c os θ-sin θ)=2与圆ρ=4sin θ的交点的极坐标.【解】ρ(3c os θ-sin θ)=2化为直角坐标方程为3x -y =2,即y =3x -2. ρ=4sin θ可化为x 2+y 2=4y , 把y =3x -2代入x 2+y 2=4y ,得4x 2-83x +12=0,即x 2-23x +3=0, 所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为⎝⎛⎭⎪⎫2,π6.4.(2018山西质检)在极坐标系中,曲线C 的方程为ρ2=31+2sin 2θ,点R ⎝ ⎛⎭⎪⎫2 2,π4.(1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,点R 的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时P 点的直角坐标.【解】(1)曲线C :ρ2=31+2sin 2θ,即ρ2+2ρ2sin 2θ=3,从而 ρ2c os 2θ3+ρ2sin 2θ=1.∵x =ρc os θ,y =ρsin θ, ∴曲线C 的直角坐标方程为x 23+y 2=1,点R 的直角坐标为R (2,2). (2)设P (3c os θ,sin θ),根据题意可得|PQ |=2-3c os θ,|QR |=2-sin θ, ∴|PQ |+|QR |=4-2sin ⎝ ⎛⎭⎪⎫θ+π3, 当θ=π6时,|PQ |+|QR |取最小值2,∴矩形PQRS 周长的最小值为4,此时点P 的直角坐标为⎝ ⎛⎭⎪⎫32,12. 5.(2018南京模拟)已知直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=4和圆C :ρ=2kc os ⎝ ⎛⎭⎪⎫θ+π4(k ≠0).若直线l 上的点到圆C 上的点的最小距离等于2.求实数k 的值并求圆心C 的直角坐标.【解】圆C 的极坐标方程可化为ρ=2kc os θ-2k sin θ, 即ρ2=2k ρc os θ-2k ρsin θ,所以圆C 的直角坐标方程为x 2+y 2-2kx +2ky =0, 即⎝ ⎛⎭⎪⎫x -22k 2+⎝ ⎛⎭⎪⎫y +22k 2=k 2, 所以圆心C 的直角坐标为⎝⎛⎭⎪⎫22k ,-22k .直线l 的极坐标方程可化为ρsin θ·22-ρc os θ·22=4, 所以直线l 的直角坐标方程为x -y +42=0,所以⎪⎪⎪⎪⎪⎪22k +22k +422-|k |=2.即|k +4|=2+|k |, 两边平方,得|k |=2k +3,所以⎩⎪⎨⎪⎧k >0,k =2k +3或⎩⎪⎨⎪⎧k <0,-k =2k +3,解得k =-1,故圆心C 的直角坐标为⎝⎛⎭⎪⎫-22,22. 6.(2018河南开封模拟)已知圆C :x 2+y 2=4,直线l :x +y =2.以O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系.(1)将圆C和直线l方程化为极坐标方程;(2)P是l上的点,射线OP交圆C于点R,又点Q在OP上,且满足|OQ|·|OP|=|OR|2,当点P在l上移动时,求点Q轨迹的极坐标方程.【解】(1)将x=ρc os θ,y=ρsin θ分别代入圆C和直线l的直角坐标方程得其极坐标方程为C:ρ=2,l:ρ(c os θ+sin θ)=2.(2)设P,Q,R的极坐标分别为(ρ1,θ),(ρ,θ),(ρ2,θ),则由|OQ|·|OP|=|OR|2,得ρρ1=ρ22.又ρ2=2,ρ1=2c os θ+sin θ,所以2ρc os θ+sin θ=4,故点Q轨迹的极坐标方程为ρ=2(c os θ+sin θ)(ρ≠0).精美句子1、善思则能“从无字句处读书”。
2018-2019学年高考数学(理科)一轮复习达标检测(五十七) 坐标系
高考达标检测(五十七) 坐标系1.在极坐标系中,直线ρ(sin θ-cos θ)=a 与曲线ρ=2cos θ-4sin θ相交于A ,B 两点,若|AB |=23,求实数a 的值.解:直线的极坐标方程化为直角坐标方程为x -y +a =0, 曲线的极坐标方程化为直角坐标方程为(x -1)2+(y +2)2=5, 所以圆心C 的坐标为(1,-2),半径r =5, 所以圆心C 到直线的距离为 |1+2+a |2= r 2-⎝⎛⎭⎫|AB |22=2,解得a =-5或a =-1. 故实数a 的值为-5或-1.2.在极坐标系中,求直线ρcos ⎝⎛⎭⎫θ+π6=1与圆ρ=4sin θ的交点的极坐标. 解:ρcos ⎝⎛⎭⎫θ+π6=1化为直角坐标方程为3x -y =2, 即y =3x -2.ρ=4sin θ可化为x 2+y 2=4y , 把y =3x -2代入x 2+y 2=4y , 得4x 2-83x +12=0, 即x 2-23x +3=0, 所以x =3,y =1.所以直线与圆的交点坐标为(3,1), 化为极坐标为⎝⎛⎭⎫2,π6. 3.(2018·长春模拟)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2- 22ρcos ⎝⎛⎭⎫θ-π4=2. (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以x 2+y 2=4; 因为ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2, 所以ρ2-22ρ⎝⎛⎭⎫cos θcos π4+sin θsin π4=2, 所以x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1.化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝⎛⎭⎫θ+π4=22. 4.已知曲线C 的参数方程为⎩⎨⎧x =2+5cos α,y =1+5sin α(α为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)设l 1:θ=π6,l 2:θ=π3,若l 1,l 2与曲线C 相交于异于原点的两点 A ,B ,求△AOB的面积.解:(1)∵曲线C 的参数方程为⎩⎨⎧x =2+5cos α,y =1+5sin α(α为参数),∴曲线C 的普通方程为(x -2)2+(y -1)2=5,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,代入并化简得ρ=4cos θ+2sin θ, 即曲线C 的极坐标方程为ρ=4cos θ+2sin θ. (2)在极坐标系中,C :ρ=4cos θ+2sin θ, ∴由⎩⎪⎨⎪⎧θ=π6,ρ=4cos θ+2sin θ,得|OA |=23+1,同理:|OB |=2+ 3.又∵∠AOB =π6,∴S △AOB =12|OA |·|OB |sin ∠AOB =8+534,即△AOB 的面积为8+534.5.在坐标系中,曲线C :ρ=2a cos θ(a >0),直线l :ρcos θ-π3=32,C 与l 有且只有一个公共点.(1)求a 的值;(2)若原点O 为极点,A ,B 为曲线C 上两点,且∠AOB =π3,求|OA |+|OB |的最大值.解:(1)由已知在直角坐标系中,C :x 2+y 2-2ax =0⇒(x -a )2+y 2=a 2(a >0); l :x +3y -3=0.因为C 与l 只有一个公共点,所以l 与C 相切, 即|a -3|2=a ,则a =1.(2)设A (ρ1,θ),则B ⎝⎛⎭⎫ρ2,θ+π3, ∴|OA |+|OB |=ρ1+ρ2=2cos θ+2cos ⎝⎛⎭⎫θ+π3=3cos θ-3sin θ=23cos ⎝⎛⎭⎫θ+π6. 所以,当θ=-π6时,(|OA |+|OB |)max =2 3.6.在平面直角坐标系xOy 中,直线C 1:3x +y -4=0,曲线C 2:x 2+(y -1)2=1,以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若曲线C 3的极坐标方程为θ=α⎝⎛⎭⎫ρ>0,0<α<π2,且曲线C 3分别交C 1,C 2于点A ,B ,求|OB ||OA |的最大值. 解:(1)∵x =ρcos θ,y =ρsin θ,∴C 1:3ρcos θ+ρsin θ-4=0,C 2:ρ=2sin θ. (2)曲线C 3为θ=α⎝⎛⎭⎫ρ>0,0<α<π2, 设A (ρ1,α),B (ρ2,α),ρ1=43cos α+sin α,ρ2=2sin α,则|OB ||OA |=ρ2ρ1=14×2sin α(3cos α+sin α)=142sin2α-π6+1, ∴当α=π3时,⎝⎛⎭⎫|OB | |OA |max =34. 7.平面直角坐标系xOy 中,曲线C 1的方程为x 23+y 2=1,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ+π3,射线OM 的极坐标方程为θ=α0(ρ≥0).(1)写出曲线C 1的极坐标方程和曲线C 2的直角坐标方程;(2)若射线OM 平分曲线C 2,且与曲线C 1交于点A ,曲线C 1上的点满足∠AOB =π2,求|AB |.解:(1)曲线C 1的极坐标方程为ρ2=31+2sin 2θ,曲线C 2的直角坐标方程为(x -3)2+(y -1)2=4. (2)曲线C 2是圆心为(3,1),半径为2的圆, ∴射线OM 的极坐标方程为θ=π6 (ρ≥0),代入ρ2=31+2sin 2θ,可得ρ2A =2.又∠AOB =π2,∴ρ2B =65, ∴|AB |=|OA |2+|OB |2=ρ2A +ρ2B =455. 8.已知在一个极坐标系中点C 的极坐标为⎝⎛⎭⎫2,π3. (1)求出以C 为圆心,半径长为2的圆的极坐标方程(写出解题过程)并画出图形; (2)在直角坐标系中,以圆C 所在极坐标系的极点为原点,极轴为x 轴的正半轴建立直角坐标系,点P 是圆C 上任意一点,Q (5,-3),M 是线段PQ 的中点,当点P 在圆C 上运动时,求点M 的轨迹的普通方程.解:(1)作出图形如图所示, 设圆C 上任意一点A (ρ,θ), 则∠AOC =θ-π3或π3-θ.由余弦定理得,4+ρ2-4ρcos θ-π3=4,∴圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎫θ-π3. (2)在直角坐标系中,点C 的坐标为(1,3), 可设圆C 上任意一点P (1+2cos α,3+2sin α), 设M (x ,y ),由Q (5,-3),M 是线段PQ 的中点, 得点M 的轨迹的参数方程为⎩⎨⎧x =6+2cos α2,y =2sin α2(α为参数),即⎩⎪⎨⎪⎧x =3+cos α,y =sin α(α为参数), ∴点M 的轨迹的普通方程为(x -3)2+y 2=1.。
2019届高三数学一轮复习:第67讲 坐标系
|2
+|������1������
|2
的值.
解:(1)由
ρ2=co
s2
������
9 +9si
n
2
������
,得
ρ2cos2θ+9ρ2sin2θ=9,
将 x=ρcos θ,y=ρsin θ 代入,
得曲线
C
的直角坐标方程是������ 2
9
+y2=1.
(2)因为
ρ2=co
s 2 ������
9 +9si
[总结反思] (1)直角坐标方程化为极坐标方 程时,将 x=ρcos θ 及 y=ρsin θ 直接代入并化简 即可;(2)极坐标方程化为直角坐标方程时常 先通过变形,构造形如 ρcos θ,ρsin θ,ρ2 的形式, 再进行整体代换.其中方程的两边同乘(或同 除以)ρ 及方程两边同时平方是常用的变形方 法.但对方程进行变形时,方程必须同解,因此 应注意对变形过程的检验.
例 2 在平面直角坐标系 xOy 中,曲线 C1 的直 角坐标方程为(x- 3)2+(y-2)2=4,直线 C2 的直 角坐标方程为 y= 33x,以 O 为极点,x 轴非负半 轴为极轴建立极坐标系. (1)求曲线 C1 和直线 C2 的极坐标方程; (2)若直线 C2 与曲线 C1 交于 P,Q 两点,求 |OP|·|OQ|的值.
x'2+y'2=1,则曲线 C 的方程为
���' 2
,代入
������ = ������'
曲线
C
的方程得������ '2
4
+y'2=1;
(2)根据题意,将
2019届高考数学一轮复习 坐标系与参数方程 第一节 坐标系夯基提能作业本 文
第一节坐标系A组基础题组1.(1)化直角坐标方程x2+y2-8x=0为极坐标方程;(2)化极坐标方程ρ=6cos为直角坐标方程.2.在极坐标系中,圆C是以点C为圆心,2为半径的圆.(1)求圆C的极坐标方程;(2)求直线l:θ=-(ρ∈R)被圆C截得的弦长.3.在直角坐标系xOy中,曲线C1的极坐标方程为ρ2-2ρsin θ+1-a2=0(a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ.(1)说明C1是哪一种曲线,并将C1的方程化为直角坐标方程;(2)直线C3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C1与C2的公共点都在C3上,求a.4.(2017安徽合肥二模)在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cos θ.(1)求出圆C的直角坐标方程;(2)已知圆C与x轴相交于A,B两点,直线l:y=2x关于点M(0,m)(m≠0)对称的直线为l'.若直线l'上存在点P使得∠APB=90°,求实数m的最大值.B组提升题组1.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的方程为y=(tan α)x,其中α为直线l的倾斜角,l与C交于A,B两点,|AB|=,求tan α的值.2.(2018四川成都调研)已知曲线C1的极坐标方程为ρcos=-1,曲线C2的极坐标方程为ρ=2cos.以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.(1)求曲线C2的直角坐标方程;(2)求曲线C2上的动点M到曲线C1的距离的最大值.3.在极坐标系中,曲线C1,C2的极坐标方程分别为ρ=-2·cos θ,ρcos=1.(1)求曲线C1和C2的公共点的个数;(2)过极点作动直线与曲线C2相交于点Q,在OQ上取一点P,使|OP|·|OQ|=2,求点P的轨迹方程,并指出轨迹是什么图形.4.在平面直角坐标系中,曲线C1的参数方程为(φ为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,射线θ=与曲线C2交于点D.(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)已知极坐标系中两点A(ρ1,θ0),B,若A、B都在曲线C1上,求+的值.答案精解精析A组基础题组1.解析(1)将代入x2+y2-8x=0得ρ2cos2θ+ρ2sin2θ-8ρcos θ=0,即ρ2-8ρcos θ=0,∴极坐标方程,即ρ=8cos θ.(2)因为ρ=6cos,所以ρ=6,即ρ2=3ρcos θ+3ρsin θ,所以x2+y2=3x+3y,即x2+y2-3x-3y=0.∴直角坐标方程为x2+y2-3x-3y=0.2.解析解法一:(1)如图,设圆C上异于O、A的任意一点为M(ρ,θ),在Rt△OAM中,∠OMA=,∠AOM=2π-θ-,|OA|=4.因为cos∠AOM=,所以|OM|=|OA|·cos∠AOM,即ρ=4cos=4cos,验证可知,极点O与A的极坐标也满足方程,故圆C的极坐标方程为ρ=4cos.(2)易知l过点O,设l:θ=-(ρ∈R)交圆C于另一点P,连接PA,在Rt△OAP中,∠OPA=,易得∠AOP=,所以|OP|=|OA|cos∠AOP=2.解法二:(1)圆C是将圆ρ=4cos θ绕极点按顺时针方向旋转而得到的圆,所以圆C的极坐标方程是ρ=4cos.(2)将θ=-代入圆C的极坐标方程ρ=4cos,得ρ=2,所以直线l:θ=-(ρ∈R)被圆C截得的弦长为2.3.解析(1)将C 1的极坐标方程化为直角坐标方程为x2+(y-1)2=a2.C1是以(0,1)为圆心,a为半径的圆.(2)曲线C1,C2的公共点的极坐标满足方程组若ρ≠0,由方程组得16cos2θ- 8sin θcos θ+1-a2=0,由已知tan θ=2,可得16cos2θ-8sin θcos θ=0,从而1-a2=0,解得a=-1(舍去)或a=1.a=1时,极点也为C1,C2的公共点,在C3上,所以a=1.4.解析(1)由ρ=4cos θ得ρ2=4ρcos θ,即x2+y2-4x=0,故圆C的直角坐标方程为x2+y2-4x=0.(2)l:y=2x关于点M(0,m)对称的直线l'的方程为y=2x+2m,而AB为圆C的直径,故直线l'上存在点P使得∠APB=90°的充要条件是直线l'与圆C有公共点,故≤2,解得-2-≤m≤-2,于是,实数m的最大值为-2.B组提升题组1.解析(1)由x=ρcos θ,y=ρsin θ可得圆C的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R).设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方程得ρ2+12ρcos α+11=0. 于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB|=|ρ1-ρ2|==.由|AB|=得cos2α=,所以tan α=±.2.解析(1)依题意得ρ=2cos=2(cos θ+sin θ),即ρ2=2(ρcos θ+ρsin θ),可得x2+y2-2x-2y=0,故C2的直角坐标方程为(x-1)2+(y-1)2=2.(2)曲线C1的极坐标方程为ρcos=-1,即ρ=-1,化成直角坐标方程为x+y+2=0,由(1)知曲线C2是以(1,1)为圆心,为半径的圆,且圆心到直线C1的距离d==>r=,于是直线与圆相离,所以动点M到曲线C1的距离的最大值为.3.解析(1)C 1的直角坐标方程为(x+1)2+y2=1,它表示圆心为(-1,0),半径为1的圆,C2的直角坐标方程为x-y-2=0,所以曲线C2为直线,由于圆心到直线的距离d==>1,所以直线与圆相离,即曲线C1和C2没有公共点,亦即曲线C1和C2的公共点的个数为0.(2)设Q(ρ0,θ0),P(ρ,θ),则即①因为点Q(ρ0,θ0)在曲线C2上,所以ρ0cos=1,②将①代入②,得cos=1,即ρ=2cos为点P的轨迹方程,化为直角坐标方程为+=1,因此点P的轨迹是以为圆心,1为半径的圆.4.解析(1)因为C 1的参数方程为所以C1的普通方程为+y2=1.由题意设曲线C2的极坐标方程为ρ=2a·cos θ(a为半径),将D代入,得2=2a×,所以a=2, 所以圆C2的圆心的直角坐标为(2,0),半径为2,所以C2的直角坐标方程为(x-2)2+y2=4.(2)曲线C1的极坐标方程为+ρ2sin2θ=1,即ρ2=.所以=,==.所以+=+=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考达标检测(五十七) 坐标系
1.在极坐标系中,直线ρ(sin θ-cos θ)=a 与曲线ρ=2cos θ-4sin θ相交于A ,B 两点,若|AB |=23,求实数a 的值.
解:直线的极坐标方程化为直角坐标方程为x -y +a =0, 曲线的极坐标方程化为直角坐标方程为(x -1)2+(y +2)2=5, 所以圆心C 的坐标为(1,-2),半径r =5, 所以圆心C 到直线的距离为 |1+2+a |
2
= r 2-⎝⎛⎭⎫|AB |22
=2,
解得a =-5或a =-1. 故实数a 的值为-5或-1.
2.在极坐标系中,求直线ρcos ⎝⎛⎭⎫θ+π
6=1与圆ρ=4sin θ的交点的极坐标. 解:ρcos ⎝⎛⎭⎫θ+π
6=1化为直角坐标方程为3x -y =2, 即y =3x -2.
ρ=4sin θ可化为x 2+y 2=4y , 把y =3x -2代入x 2+y 2=4y , 得4x 2-83x +12=0, 即x 2-23x +3=0, 所以x =3,y =1.
所以直线与圆的交点坐标为(3,1), 化为极坐标为⎝⎛⎭
⎫2,π
6. 3.(2018·长春模拟)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2- 22ρcos ⎝⎛⎭
⎫θ-π
4=2. (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以x 2+y 2=4; 因为ρ2-22ρcos ⎝⎛⎭
⎫θ-π
4=2, 所以ρ2-22ρ⎝⎛⎭⎫cos θcos π4+sin θsin π
4=2, 所以x 2+y 2-2x -2y -2=0.
(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝⎛⎭⎫θ+π4=22
. 4.已知曲线C 的参数方程为⎩⎨⎧
x =2+5cos α,
y =1+5sin α
(α为参数),以原点O 为极点,x 轴
正半轴为极轴建立极坐标系.
(1)求曲线C 的极坐标方程;
(2)设l 1:θ=π6,l 2:θ=π
3,若l 1,l 2与曲线C 相交于异于原点的两点 A ,B ,求△AOB
的面积.
解:(1)∵曲线C 的参数方程为⎩⎨⎧
x =2+5cos α,
y =1+5sin α
(α为参数),
∴曲线C 的普通方程为(x -2)2+(y -1)2=5,
将⎩
⎪⎨⎪⎧
x =ρcos θ,y =ρsin θ,代入并化简得ρ=4cos θ+2sin θ, 即曲线C 的极坐标方程为ρ=4cos θ+2sin θ. (2)在极坐标系中,C :ρ=4cos θ+2sin θ, ∴由⎩⎪⎨⎪⎧
θ=π6,ρ=4cos θ+2sin θ,得|OA |=23+1,
同理:|OB |=2+ 3.
又∵∠AOB =π6,∴S △AOB =1
2|OA |·|OB |sin ∠AOB =8+534,
即△AOB 的面积为8+53
4
.
5.在坐标系中,曲线C :ρ=2a cos θ(a >0),直线l :ρcos θ-π3=3
2,C 与l 有且只有一个
公共点.
(1)求a 的值;
(2)若原点O 为极点,A ,B 为曲线C 上两点,且∠AOB =π
3,求|OA |+|OB |的最大值.
解:(1)由已知在直角坐标系中,
C :x 2+y 2-2ax =0⇒(x -a )2+y 2=a 2(a >0); l :x +3y -3=0.
因为C 与l 只有一个公共点,所以l 与C 相切,
即
|a -3|
2
=a ,则a =1. (2)设A (ρ1,θ),则B ⎝
⎛⎭⎫ρ2,θ+π
3, ∴|OA |+|OB |=ρ1+ρ2=2cos θ+2cos ⎝⎛⎭⎫θ+π3=3cos θ-3sin θ=23cos ⎝⎛⎭⎫θ+π
6. 所以,当θ=-π
6
时,(|OA |+|OB |)max =2 3.
6.在平面直角坐标系xOy 中,直线C 1:3x +y -4=0,曲线C 2:x 2+(y -1)2=1,以原点O 为极点,x 轴正半轴为极轴建立极坐标系.
(1)求C 1,C 2的极坐标方程;
(2)若曲线C 3的极坐标方程为θ=α⎝⎛⎭⎫ρ>0,0<α<π
2,且曲线C 3分别交C 1,C 2于点A ,B ,求|OB |
|OA |
的最大值. 解:(1)∵x =ρcos θ,y =ρsin θ,
∴C 1:3ρcos θ+ρsin θ-4=0,C 2:ρ=2sin θ. (2)曲线C 3为θ=α⎝⎛⎭⎫ρ>0,0<α<π
2, 设A (ρ1,α),B (ρ2,α),ρ1=4
3cos α+sin α
,ρ2=2sin α,
则
|OB ||OA |=ρ2ρ1=14×2sin α(3cos α+sin α)=142sin2α-π
6
+1, ∴当α=π3时,⎝⎛⎭⎫|OB | |OA |max
=34
. 7.平面直角坐标系xOy 中,曲线C 1的方程为x 23+y 2
=1,以坐标原点O 为极点,x 轴
正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ+π
3,射线OM 的极坐标方程为θ=α0(ρ≥0).
(1)写出曲线C 1的极坐标方程和曲线C 2的直角坐标方程;
(2)若射线OM 平分曲线C 2,且与曲线C 1交于点A ,曲线C 1上的点满足∠AOB =π
2,求
|AB |.
解:(1)曲线C 1的极坐标方程为ρ2=3
1+2sin 2θ,
曲线C 2的直角坐标方程为(x -3)2+(y -1)2=4. (2)曲线C 2是圆心为(3,1),半径为2的圆, ∴射线OM 的极坐标方程为θ=π
6
(ρ≥0),
代入ρ2=
31+2sin 2θ
,可得ρ2
A =2. 又∠AO
B =π2,∴ρ2B =6
5
, ∴|AB |=|OA |2+|OB |2=ρ2A +ρ2B =
45
5
. 8.已知在一个极坐标系中点C 的极坐标为⎝⎛⎭
⎫2,π3. (1)求出以C 为圆心,半径长为2的圆的极坐标方程(写出解题过程)并画出图形; (2)在直角坐标系中,以圆C 所在极坐标系的极点为原点,极轴为x 轴的正半轴建立直角坐标系,点P 是圆C 上任意一点,Q (5,-3),M 是线段PQ 的中点,当点P 在圆C 上运动时,求点M 的轨迹的普通方程.
解:(1)作出图形如图所示, 设圆C 上任意一点A (ρ,θ), 则∠AOC =θ-π3或π
3
-θ.
由余弦定理得,4+ρ2-4ρcos θ-π
3=4,
∴圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎫θ-π3. (2)在直角坐标系中,点C 的坐标为(1,3), 可设圆C 上任意一点P (1+2cos α,3+2sin α), 设M (x ,y ),由Q (5,-3),M 是线段PQ 的中点,
得点M 的轨迹的参数方程为⎩⎨⎧
x =6+2cos α
2
,
y =2sin α
2
(α为参数),
即⎩
⎪⎨⎪⎧
x =3+cos α,
y =sin α(α为参数), ∴点M 的轨迹的普通方程为(x -3)2+y 2=1.。