高考理科数学复习 专题09 三角函数(教师版)

合集下载

全国通用2020_2022三年高考数学真题分项汇编专题09三角函数(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编专题09三角函数(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编:09 三角函数1.【2022年全国甲卷】将函数f(x)=sin(ωx+π3)(ω>0)的图像向左平移π2个单位长度后得到曲线C,若C关于y轴对称,则ω的最小值是()A.16B.14C.13D.12【答案】C 【解析】【分析】先由平移求出曲线C的解析式,再结合对称性得ωπ2+π3=π2+kπ,k∈Z,即可求出ω的最小值.【详解】由题意知:曲线C为y=sin[ω(x+π2)+π3]=sin(ωx+ωπ2+π3),又C关于y轴对称,则ωπ2+π3=π2+kπ,k∈Z,解得ω=13+2k,k∈Z,又ω>0,故当k=0时,ω的最小值为13.故选:C.2.【2022年全国甲卷】设函数f(x)=sin(ωx+π3)在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是()A.[53,136)B.[53,196)C.(136,83]D.(136,196]【答案】C【解析】【分析】由x的取值范围得到ωx+π3的取值范围,再结合正弦函数的性质得到不等式组,解得即可.【详解】解:依题意可得ω>0,因为x∈(0,π),所以ωx+π3∈(π3,ωπ+π3),要使函数在区间(0,π)恰有三个极值点、两个零点,又y=sinx,x∈(π3,3π)的图象如下所示:则5π2<ωπ+π3≤3π,解得136<ω≤83,即ω∈(136,83].故选:C.3.【2022年全国乙卷】函数f(x)=cosx+(x+1)sinx+1在区间[0,2π]的最小值、最大值分别为()A.−π2,π2B.−3π2,π2C.−π2,π2+2D.−3π2,π2+2【答案】D【解析】【分析】利用导数求得f(x)的单调区间,从而判断出f(x)在区间[0,2π]上的最小值和最大值. 【详解】f′(x)=−sinx+sinx+(x+1)cosx=(x+1)cosx,所以f(x)在区间(0,π2)和(3π2,2π)上f′(x)>0,即f(x)单调递增;在区间(π2,3π2)上f′(x)<0,即f(x)单调递减,又f(0)=f(2π)=2,f(π2)=π2+2,f(3π2)=−(3π2+1)+1=−3π2,所以f(x)在区间[0,2π]上的最小值为−3π2,最大值为π2+2.故选:D4.【2022年新高考1卷】记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T.若2π3<T<π,且y=f(x)的图象关于点(3π2,2)中心对称,则f(π2)=()A.1 B.32C.52D.3【答案】A【解析】【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T 满足2π3<T <π,得2π3<2πω<π,解得2<ω<3,又因为函数图象关于点(3π2,2)对称,所以3π2ω+π4=kπ,k ∈Z ,且b =2, 所以ω=−16+23k,k ∈Z ,所以ω=52,f(x)=sin(52x +π4)+2, 所以f(π2)=sin(54π+π4)+2=1. 故选:A5.【2022年新高考2卷】若sin(α+β)+cos(α+β)=2√2cos (α+π4)sinβ,则( ) A .tan(α−β)=1 B .tan(α+β)=1 C .tan(α−β)=−1 D .tan(α+β)=−1【答案】C 【解析】 【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解. 【详解】由已知得:sin αcos β+cos αsin β+cos αcos β−sin αsin β=2(cos α−sin α)sin β, 即:sin αcos β−cos αsin β+cos αcos β+sin αsin β=0, 即:sin (α−β)+cos (α−β)=0, 所以tan (α−β)=−1, 故选:C6.【2021年甲卷文科】若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=( )A B C D 【答案】A 【解析】 【分析】由二倍角公式可得2sin 22sin cos tan 2cos 212sin αααααα==-,再结合已知可求得1sin 4α=,利用同角三角函数的基本关系即可求解. 【详解】 cos tan 22sin ααα=-2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===--, 0,2πα⎛⎫∈ ⎪⎝⎭,cos 0α∴≠,22sin 112sin 2sin ααα∴=--,解得1sin 4α=,cos α∴=sin tan cos ααα∴==. 故选:A. 【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sin α. 7.【2021年乙卷文科】函数()sin cos 33x xf x =+的最小正周期和最大值分别是() A .3π B .3π和2 C .6π D .6π和2【答案】C 【解析】 【分析】利用辅助角公式化简()fx ,结合三角函数周期性和值域求得函数的最小正周期和最大值. 【详解】由题,()sin cos 3s 33334x x x x f x x π=+=+⎛+⎫⎪⎝⎭,所以()f x 的最小正周期为2613T故选:C .8.【2021年乙卷文科】22π5πcos cos 1212-=( ) A.12 BCD 【答案】D 【解析】 【分析】由题意结合诱导公式可得22225cos cos cos sin 12121212ππππ-=-,再由二倍角公式即可得解. 【详解】 由题意,2222225coscos cos cos cos sin 1212122121212πππππππ⎛⎫-=--=- ⎪⎝⎭cos6π==故选:D.9.【2021年乙卷理科】把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =( ) A .7sin 212x π⎛⎫-⎪⎝⎭B .sin 212x π⎛⎫+ ⎪⎝⎭C .7sin 212x π⎛⎫- ⎪⎝⎭D .sin 212x π⎛⎫+ ⎪⎝⎭【答案】B 【解析】 【分析】解法一:从函数()y f x =的图象出发,按照已知的变换顺序,逐次变换,得到23y f x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦,即得2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再利用换元思想求得()y f x =的解析表达式;解法二:从函数sin 4y x π⎛⎫=- ⎪⎝⎭出发,逆向实施各步变换,利用平移伸缩变换法则得到()y f x =的解析表达式.【详解】解法一:函数()y f x =图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,得到(2)y f x =的图象,再把所得曲线向右平移3π个单位长度,应当得到23y f x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦的图象,根据已知得到了函数sin 4y x π⎛⎫=- ⎪⎝⎭的图象,所以2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令23t x π⎛⎫=- ⎪⎝⎭,则,234212t t x x πππ=+-=+,所以()sin 212t f t π⎛⎫=+ ⎪⎝⎭,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭;解法二:由已知的函数sin 4y x π⎛⎫=- ⎪⎝⎭逆向变换,第一步:向左平移3π个单位长度,得到sin sin 3412y x x πππ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到sin 212x y π⎛⎫=+ ⎪⎝⎭的图象,即为()y f x =的图象,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭.故选:B.10.【2021年新高考1卷】下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是( ) A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭【答案】A 【解析】 【分析】 解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈, 取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫- ⎪⎝⎭, 则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件; 取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭, 32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,CD 选项均不满足条件. 故选:A. 【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成()sin y A ωx φ=+形式,再求()sin y A ωx φ=+的单调区间,只需把x ωϕ+看作一个整体代入sin y x =的相应单调区间内即可,注意要先把ω化为正数.11.【2021年新高考1卷】若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+( )A .65-B .25-C .25D .65【答案】C 【解析】 【分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(221sin cos θθ=+),进行齐次化处理,化为正切的表达式,代入tan 2θ=-即可得到结果. 【详解】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++ ()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++. 故选:C . 【点睛】易错点睛:本题如果利用tan 2θ=-,求出sin ,cos θθ的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.12.【2021年新高考2卷】北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为( )A .26%B .34%C .42%D .50%【答案】C 【解析】 【分析】由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果. 【详解】由题意可得,S 占地球表面积的百分比约为:226400164003600002(1.cos )1cos 44242%22r r πααπ---+==≈=.13.【2020年新课标1卷理科】设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f(x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【答案】C 【解析】 【分析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即可得解. 【详解】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭ 又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω= 所以函数()f x 的最小正周期为224332T πππω=== 故选:C本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题. 14.【2020年新课标1卷理科】已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=( )A B .23C .13D 【答案】A 【解析】 【分析】用二倍角的余弦公式,将已知方程转化为关于cos α的一元二次方程,求解得出cos α,再用同角间的三角函数关系,即可得出结论. 【详解】3cos28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin απα∈∴==故选:A. 【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.15.【2020年新课标2卷理科】若α为第四象限角,则( ) A .cos2α>0 B .cos2α<0 C .sin2α>0 D .sin2α<0【答案】D 【解析】 【分析】由题意结合二倍角公式确定所给的选项是否正确即可. 【详解】方法一:由α为第四象限角,可得3222,2k k k Z ππαππ+<<+∈, 所以34244,k k k Z ππαππ+<<+∈此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin 20α< 故选:D.方法二:当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误; 当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误; 由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确; 故选:D. 【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.16.【2020年新课标3卷理科】已知2tan θ–tan(θ+π4)=7,则tan θ=( )A .–2B .–1C .1D .2【答案】D 【解析】 【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案. 【详解】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=. 故选:D. 【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.17.【2020年新课标3卷文科】已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭( )A .12 B C .23D 【答案】B 【解析】 【分析】将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值. 【详解】由题意可得:1sin sin 12θθθ+=,则:3sin 12θθ=1cos 2θθ+=从而有:sin coscos sin66ππθθ+=,即sin 63πθ⎛⎫+= ⎪⎝⎭故选:B. 【点睛】本题主要考查两角和与差的正余弦公式及其应用,属于中等题.18.【2020年新课标3卷文科】在△ABC 中,cos C =23,AC =4,BC =3,则tan B =( )A B .C .D .【答案】C 【解析】 【分析】先根据余弦定理求c ,再根据余弦定理求cos B ,最后根据同角三角函数关系求tan .B 【详解】设,,AB c BC a CA b ===22222cos 916234933c a b ab C c =+-=+-⨯⨯⨯=∴=2221cos sin tan 29a c b B B B ac +-==∴===故选:C 【点睛】本题考查余弦定理以及同角三角函数关系,考查基本分析求解能力,属基础题. 19.【2022年新高考2卷】已知函数f(x)=sin(2x +φ)(0<φ<π)的图像关于点(2π3,0)中心对称,则( ) A .f(x)在区间(0,5π12)单调递减B .f(x)在区间(−π12,11π12)有两个极值点C .直线x =7π6是曲线y =f(x)的对称轴D .直线y =√32−x 是曲线y =f(x)的切线【答案】AD 【解析】根据三角函数的性质逐个判断各选项,即可解出. 【详解】 由题意得:f (2π3)=sin (4π3+φ)=0,所以4π3+φ=k π,k ∈Z ,即φ=−4π3+k π,k ∈Z ,又0<φ<π,所以k =2时,φ=2π3,故f(x)=sin (2x +2π3).对A ,当x ∈(0,5π12)时,2x +2π3∈(2π3,3π2),由正弦函数y =sinu 图象知y =f(x)在(0,5π12)上是单调递减; 对B ,当x ∈(−π12,11π12)时,2x +2π3∈(π2,5π2),由正弦函数y =sinu 图象知y =f(x)只有1个极值点,由2x +2π3=3π2,解得x =5π12,即x =5π12为函数的唯一极值点;对C ,当x =7π6时,2x +2π3=3π,f(7π6)=0,直线x =7π6不是对称轴;对D ,由y ′=2cos (2x +2π3)=−1得:cos (2x +2π3)=−12,解得2x +2π3=2π3+2k π或2x +2π3=4π3+2k π,k ∈Z , 从而得:x =k π或x =π3+k π,k ∈Z ,所以函数y =f(x)在点(0,√32)处的切线斜率为k =y ′|x=0=2cos 2π3=−1, 切线方程为:y −√32=−(x −0)即y =√32−x .故选:AD .20.【2020年新高考1卷(山东卷)】下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A .πsin(3x +) B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x - 【答案】BC 【解析】首先利用周期确定ω的值,然后确定ϕ的值即可确定函数的解析式,最后利用诱导公式可得正确结果. 【详解】 由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A, 不妨令2ω=,当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z ,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭故选:BC. 【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法: (1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.21.【2022年全国乙卷】记函数f(x)=cos(ωx +φ)(ω>0,0<φ<π)的最小正周期为T ,若f(T)=√32,x =π9为f(x)的零点,则ω的最小值为____________.【答案】3 【解析】 【分析】首先表示出T ,根据f (T )=√32求出φ,再根据x =π9为函数的零点,即可求出ω的取值,从而得解; 【详解】解: 因为f (x )=cos (ωx +φ),(ω>0,0<φ<π) 所以最小正周期T =2πω,因为f (T )=cos (ω⋅2πω+φ)=cos(2π+φ)=cosφ=√32, 又0<φ<π,所以φ=π6,即f (x )=cos (ωx +π6),又x =π9为f (x )的零点,所以π9ω+π6=π2+k π,k ∈Z ,解得ω=3+9k,k ∈Z ,因为ω>0,所以当k =0时ωmin =3; 故答案为:322.【2021年甲卷文科】已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.【答案】【解析】 【分析】首先确定函数的解析式,然后求解2f π⎛⎫⎪⎝⎭的值即可.【详解】由题意可得:31332,,241234T T Tπππππω=-=∴===, 当1312x π=时,()131322,2126x k k k Z πωϕϕπϕππ+=⨯+=∴=-∈, 令1k =可得:6πϕ=-,据此有:()52cos 2,2cos 22cos 62266f x x f πππππ⎛⎫⎛⎫⎛⎫=-=⨯-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为:【点睛】已知f (x )=Acos (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法: (1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.23.【2021年甲卷理科】已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.【答案】2 【解析】 【分析】先根据图象求出函数()f x 的解析式,再求出7(),()43f f π4π-的值,然后求解三角不等式可得最小正整数或验证数值可得. 【详解】由图可知313341234T πππ=-=,即2T ππω==,所以2ω=; 由五点法可得232ππϕ⨯+=,即6πϕ=-;所以()2cos 26f x x π⎛⎫=- ⎪⎝⎭.因为7()2cos 143f π11π⎛⎫-=-= ⎪⎝⎭,()2cos 032f 4π5π⎛⎫== ⎪⎝⎭;所以由74(()())(()())043f x f f x f ππ--->可得()1f x >或()0f x <; 因为()12cos 22cos 1626f πππ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,所以,方法一:结合图形可知,最小正整数应该满足()0f x <,即cos 206x π⎛⎫-< ⎪⎝⎭,解得,36k x k k π5ππ+<<π+∈Z ,令0k =,可得536x <<ππ,可得x 的最小正整数为2.方法二:结合图形可知,最小正整数应该满足()0f x <,又(2)2cos 406f π⎛⎫=-< ⎪⎝⎭,符合题意,可得x 的最小正整数为2. 故答案为:2. 【点睛】关键点睛:根据图象求解函数的解析式是本题求解的关键,根据周期求解ω,根据特殊点求解ϕ.24.【2020年新课标2卷文科】若2sin 3x =-,则cos2x =__________.【答案】19【解析】 【分析】直接利用余弦的二倍角公式进行运算求解即可. 【详解】22281cos 212sin 12()1399x x =-=-⨯-=-=.故答案为:19.【点睛】本题考查了余弦的二倍角公式的应用,属于基础题.25.【2020年新高考1卷(山东卷)】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,//BH DG ,EF =12 cm ,DE=2 cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为________cm 2.【答案】542π+【解析】 【分析】利用3tan 5ODC ∠=求出圆弧AB 所在圆的半径,结合扇形的面积公式求出扇形AOB 的面积,求出直角OAH △的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得. 【详解】设==OB OA r ,由题意7AM AN ==,12EF =,所以5NF =,因为5AP =,所以45AGP ︒∠=, 因为//BH DG ,所以45AHO ︒∠=,因为AG 与圆弧AB 相切于A 点,所以OA AG ⊥, 即OAH △为等腰直角三角形;在直角OQD △中,5OQ =,7DQ =,因为3tan 5OQ ODC DQ ∠==,所以2125=,解得r =等腰直角OAH △的面积为1142S =⨯=;扇形AOB 的面积(2213324S ππ=⨯⨯=,所以阴影部分的面积为1215422S Sππ+-=+.故答案为:542π+.【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.。

三角函数(教师版)--2020-2023高考真题数学专题分类汇编

三角函数(教师版)--2020-2023高考真题数学专题分类汇编

专题五三角函数--2020-2023高考真题数学专题分类汇编真题卷题号考点考向2023新课标1卷8三角恒等变换给值求值15三角函数的性质及应用余弦型函数的零点问题2023新课标2卷7三角恒等变换给值求值16三角函数的图象与性质由部分图象求解析式、求函数值2022新高考1卷6三角函数的性质及应用求三角函数的解析式、求函数值2022新高考2卷6三角恒等变换三角求值9三角函数的图象与性质求三角函数的单调区间、对称轴、极值点、求切线方程2021新高考1卷4三角函数的性质及应用求三角函数的单调区间2021新高考2卷6三角恒等变换给值求值2020新高考1卷10三角函数的图象与性质由图象求三角函数的解析式15三角函数的应用三角函数解决实际问题2020新高考2卷11三角函数的图象与性质由图象求三角函数的解析式16三角函数的应用三角函数解决实际问题【2023年真题】1.(2023·新课标I卷第8题)已知1sin()3αβ-=,1cos sin6αβ=,则cos(22)αβ+=()A.79 B.19 C.19- D.79-【解析】本题考查两角和与差的正弦公式以及二倍角公式,属于中档题.利用两角和与差的正弦公式先求出sin cos αβ的值,从而可以得到sin()αβ+的值,再结合二倍角的余弦公式即可得出结果.解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,则1sin cos .2αβ=故112sin()sin cos cos sin .263αβαβαβ+=+=+=即2221cos(22)12sin ()12(.39αβαβ+=-+=-⨯=故选B.2.(2023·新课标II 卷第7题)已知α为锐角,15cos 4α+=,则sin 2α=()A.358- B.158-+ C.354- D.154-【答案】D 【解析】【分析】本题考查倍角公式,属于基础题.观察题干,发现未知角为已知角的一半,考虑倍角公式,即可得证.【解答】解:221511cos 36114sin ()sin 222816424ααα+----=====⇒=故选:.D 3.(2023·新课标I 卷第15题)已知函数()cos 1(0)f x x ωω=->在区间[0,2]π有且仅有3个零点,则ω的取值范围是__________.【答案】[2,3).【解析】【分析】本题考查了余弦型函数的零点问题,属中档题.解:令()cos 10f x x ω=-=,得cos 1x ω=,又[0,2]x π∈,则[0,2]x ωωπ∈,所以426πωππ<,得2 3.ω<故答案为:[2,3).4.(2023·新课标II 卷第16题)已知函数()sin()f x x ωϕ=+,如图,A ,B 是直线12y =与曲线()y f x =的两个交点,若||6AB π=,则()f π=.【答案】32-【解析】【分析】主要考查了函数sin()y A x ωϕ=+的性质与图象,诱导公式等,属于一般题.根据AB 的长度求出.ω函数图象过点2(,0)3π,求.ϕ诱导公式得到答案.【解答】解:设相邻的两个交点A ,B 的横坐标为1 t ,2 t ,则21 - 6t t π=又1sin()2x ωϕ+=,522,.0,66x k k k Z k ππωϕππ+=++∈=或当时16t πωϕ+=,256t πωϕ+=,212( - )3t t πω=,故 4.ω=函数图象过点2(,0)3π,8sin ()03πϕ+=,故8 ,.3k k Z πϕπ=-∈2k =时满足图片条件,故2.3πϕ=-23()sin(4.32f πππ=-=-【2022年真题】5.(2022·新高考I 卷第6题)记函数()sin()(0)4f x x b πωω=++>的最小正周期为.T 若23T ππ<<,且()y f x =的图像关于点3(,2)2π中心对称,则(2f π=()A.1 B.32C.52D.3【答案】A 【解析】【分析】本题主要考查三角函数的周期性和对称性,属于中档题.根据周期范围,确定ω范围,再根据对称中心确定21(34k ω=-,k Z ∈,二者结合可得结果.【解答】解:由题可知:22(,)3T πππω=∈,所以(2,3).ω∈又因为()y f x =的图像关于点3(,2)2π中心对称,所以2b =,且33()sin() 2.224f b πππω=⨯++=所以21(34k ω=-,k Z ∈,所以5.2ω=所以5()sin( 2.24f x x π=++所以() 1.2f π=6.(2022·新高考II 卷第6题)若sin()cos())sin 4παβαβαβ+++=+,则()A.tan()1αβ+=-B.tan()1αβ+=C.tan()1αβ-=-D.tan()1αβ-=【答案】C 【解析】【分析】本题考查三角恒等变换的应用法一:利用特殊值法,排除错误选项即可法二,利用三角恒等变换,求出正确选项【解答】解:解法一:设0β=则sin cos 0αα+=,取34απ=,排除B ,D 再取0α=则sin cos 2sin βββ+=,取4πβ=,排除;A 选.C解法二:由sin()cos())]44ππαβαβαβαβ+++=++=++)cos44ππαβαβ=+++,cos )sin 44ππαβαβ+=+故sin()cos cos()sin 044ππαβαβ+-+=,即sin()04παβ+-=,故22sin(sin()cos()0422παβαβαβ-+=-+-=,故sin()cos()αβαβ-=--,故tan() 1.αβ-=-7.(2022·新高考II 卷第9题)(多选)已知函数()sin(2)(0)f x x ϕϕπ=+<<的图象关于点2(,0)3π对称,则()A.()f x 在5(0,12π单调递减B.()f x 在11(,)1212ππ-有两个极值点C.直线76x π=是曲线()y f x =的一条对称轴D.直线2y x =-是曲线()y f x =的一条切线【答案】AD 【解析】【分析】本题考查三角函数的图象与性质,三角函数的单调性、三角函数的对称轴与对称中心,函数的极值,切线方程的求解,属于中档题.【解答】解:由题意得:24()sin()033f ππϕ=+=,所以43k πϕπ+=,即43k πϕπ=-+,k Z ∈,又0ϕπ<<,所以2k =时,23πϕ=,故2()sin(2).3f x x π=+选项5:(0,)12A x π∈时,2232(,)332x πππ+∈,由sin y u =图象知()f x 在5(0,)12π单调递减;选项11:(,1212B x ππ∈-时,252(,)322x πππ+∈,由sin y u =图象知()f x 在11(,1212ππ-有1个极值点;选项:C 由于,故直线76x π=不是()f x 的对称轴;选项:D 令,得21cos(2)32x π+=-,解得222233x k πππ+=+或242233x k πππ+=+,k Z ∈,从而得x k π=或3x k ππ=+,k Z ∈,令0k =,则是斜率为1-的直线与曲线的切点,从而切线方程为3(0)2y x -=--,即3.2y x =-【2021年真题】8.(2021·新高考I 卷第4题)下列区间中,函数()7sin ()6f x x π=-单调递增的区间是()A.0,2π⎛⎫ ⎪⎝⎭B.,2ππ⎛⎫⎪⎝⎭C.3,2ππ⎛⎫ ⎪⎝⎭D.3,22ππ⎛⎫⎪⎝⎭【答案】A 【解析】【分析】本题考查正弦型函数的单调递增区间,属于基础题.由正弦函数图象和性质可知,得()7sin ()6f x x π=-的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,分析选项可得答案.【解答】解:由22262k x k πππππ-+-+,得222,33k xk k Z ππππ-++∈,所以()7sin ()6f x x π=-的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,当0k =时,一个单调递增区间为2,33ππ⎡⎤-⎢⎥⎣⎦,可知20,,233πππ⎛⎫⎡⎤⊆- ⎪⎢⎥⎝⎭⎣⎦,故选:.A 9.(2021·新高考I 卷第6题)若tan 2θ=-,则sin (1sin 2)sin cos θθθθ+=+()A.65-B.25-C.25 D.65【答案】C 【解析】【分析】本题考查三角函数的化简求值,涉及同角三角函数的关系、二倍角公式,属于中档题.利用同角三角函数关系、二倍角公式将其化简为2sin sin cos θθθ+后,添加分母1,转化为齐次式,再分子分母同除2cos θ即可.【解答】解:原式22sin (sin cos 2sin cos )sin cos θθθθθθθ++=+22sin (sin cos )sin sin cos sin cos θθθθθθθθ+==++22222sin sin cos tan tan 422sin cos tan 1415θθθθθθθθ++-====+++,故选:.C 【2020年真题】10.(2020·新高考I 卷第10题、II 卷第11题)(多选)如图是函数()sin y x ωϕ=+的部分图象,则()sin x ωϕ+()A.sin ()3x π+ B.sin (2)3x π- C.cos (2)6x π+D.5cos (2)6x π-【答案】BC 【解析】【分析】本题考查正弦型函数的图象,考查逻辑推理能力,属于中档题.借助图象分别求出,ωϕ,结合诱导公式即可判断.【解答】解:由图象可知222()||36T ππππω==-=,故A 错误;解得2ω=±,点5(,1)12π-在函数图象上,当2ω=时,522,k Z 122k ππϕπ⨯+=-+∈,解得42,k Z 3k πϕπ=-+∈,故44sin 2sin 2sin 2333y x x x ππππ⎛⎫⎛⎫⎛⎫=-=-+-=-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,当2ω=-时,522,k Z 122k ππϕπ-⨯+=-+∈解得2,k Z 3k πϕπ=+∈,故函数解析式为sin 23y x π⎛⎫=-+⎪⎝⎭,又cos 2sin 2sin 26263x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选.BC11.(2020·新高考I 卷第15题、II 卷第16题))某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC的切点,四边形DEFG 为矩形,BC DG ⊥,垂足为C ,3tan 5ODC ∠=,//BH DG ,12EF cm =,2DE cm =,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为__________2.cm 【答案】542π+【解析】【分析】本题考查平面图形中的边角关系,扇形的面积公式,是困难题.设上面的大圆弧的半径为x ,连接OA ,过A 作AI BH ⊥交BH 于J ,交DG 于K ,交EF 于I ,过O 作OL DG ⊥于L ,由题中长度关系易得45AGD ︒∠=,可得AOH 为等腰直角三角形,即可得到OL 和DL 的长度,根据3tan 5ODC ∠=可得到22x =12AOH O S S S S =+- 阴影圆扇形求解即可.【解答】解:设上面的大圆弧的半径为x ,连接OA ,过A 作AI BH ⊥交BH 于J ,交DG 于K ,交EF 于I ,过O 作OL DG ⊥于L ,记扇形OAB 的面积为S 扇形,由题中的长度关系易知45AGD ︒∠=,所以45AHO ︒∠=,又90OAH ︒∠=,可得AOH 为等腰直角三角形,可得22OJ AJ x ==,252OL JK x ==-,72DL DK LK DK OJ x=-=-=-,3tan 5OL ODC DL ∠==,2532522x -=,解得x =,12AOH O S S S S =+- 阴影圆扇形222131154()24222cm πππ=⨯⨯+⨯-=+,故答案为54.2π+。

专题09 函数的基本性质(单调性、奇偶性、对称性、周期性等)QG

专题09  函数的基本性质(单调性、奇偶性、对称性、周期性等)QG

专题09 函数的基本性质(单调性、奇偶性、对称性、周期性等)【重温课标】1.借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义.2.结合具体函数,了解奇偶性的概念和几何意义.3.结合三角函数,了解周期性的概念和几何意义.【解读考情】1.函数的单调性与最值在高考中常以选择、填空题形式出现,但近几年高考常以导数为工具,研究函数的单调性,因此本部分内容在高考中占有十分重要的地位.2.函数的奇偶性常与函数的单调性、对称性、最值等结合考查,综合考查知识的灵活应用能力,是高考考查的热点.3.函数的奇偶性,以选择、填空题居多,且是高考考查的热点.【知识点归纳】一、增函数、减函数一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则都有:(1) f (x )在区间D 上是增函数⇔ f (x 1)<f (x 2);(2) f (x )在区间D 上是减函数⇔ f (x 1)>f (x 2).【温馨提示】(1) 单调区间是定义域的子集,故求单调区间应树立“定义域优先”的原则.(2) 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.即使在两个区间上的单调性相同,也不能用并集表示.(3) 两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但f (x )·g (x ),g (x )f (x )等的单调性与其正负有关,切不可盲目类比. 二、单调性、单调区间的定义若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间.三、函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足:条件 (1) 对于任意x ∈I ,都有f (x )≤M ; (2) 存在x 0∈I ,使得f (x 0)=M(1) 对于任意x ∈I ,都有f (x )≥M ;(2) 存在x 0∈I ,使得 f (x 0)=M 结论 M 为最大值M 为最小值四、判断或证明函数单调性的方法(1) (图象法)根据图象判断:函数的单调性在几何上表现为在某区间上函数图象从左到右是一致上升还是一致下降,因此可以根据图象的特点来判断.如:根据右图,指出函数y =f (x )的单调增区间与减区间.从图上可以看出函数y =f (x )在区间(-∞,-5]和(12,+∞)内递增,在区间(-5,12]内递减. (2) (定义法)根据定义来判断或证明:这是最基本的方法,其步骤如下:第一步:取值,即设x 1,x 2是该区间内的任意两点,且x 1<x 2.第二步:变形,变形有两种途径.一般采用作差法,即f (x 1)-f (x 2),并通过因式分解、配方、有理化等方法向有利于判断差的符号的方向变形;如果是指数型一般采用作商比较法.第三步:定号,确定差f (x 1)-f (x 2)的符号,当符号不确定时,可以进行分区间讨论.如果是作商比较,则需比较变形结果与1的大小关系.第四步:判断,根据定义作出结论.(3) (导数法)用导函数方法去判断函数单调性.这种方法我们将在(高二)学习.(4) (结论法)判断函数单调性的常用结论① 在两个函数的公共定义域内,两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数;② 奇函数在对称的两个区间上有相同的单调性;偶函数在对称的两个区间上有相反的单调性;③ 互为反函数的两个函数有相同的单调性;④ 如果f (x )在区间D 上是增(减)函数,那么f (x )在D 的任一子区间上也是增(减)函数; ⑤ 如果y =f (u )和u =g (x )单调性相同,那么y =f [g (x )]是增函数;如果y =f (u )和u =g (x )单调性相反,那么y =f [g (x )]是减函数.简称为:同增异减.注:在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知的单调性,因此掌握并熟记一次函数、二次函数、幂函数、指数函数、对数函数的单调性,将大大简化我们的判断过程.五、函数单调性的应用单调性是函数的重要性质,它在研究函数时具有很重要的作用,具体体现在:(1) 利用单调性比较大小利用函数的增减性,可以把比较函数值的大小问题转化为自变量的大小比较问题. 如:已知函数y =0.8x 在R 上是减函数,因为-3.2<-0.2,则0.8-3.2>0.8-0.2.(2) 确定函数的值域或求函数的最值.如:函数f (x )在区间[a ,b ]上单调递增.则可以判定它的值域为[f (a ),f (b )],若在[a ,b ]上递减,则函数值域为[f (b ),f (a )]且当f (x )在[a ,b ]上递增时,f (a )与f (b )分别为[a ,b ]上的最小值与最大值,当f (x )在[a ,b ]上递减时,f (a )与f (b )分别为[a ,b ]上的最大值与最小值.函数最值存在的两条定论:(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时,最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.*常用结论:设任意x 1,x 2∈[a ,b ]且x 1<x 2,那么:(1)f (x 1)-f (x 2)x 1-x 2>0 ⇔ f (x 1)-f (x 2)(x 1-x 2)>0 ⇔ f (x )在[a ,b ]上是增函数; (2) f (x 1)-f (x 2)x 1-x 20 ⇔ f (x 1)-f (x 2)(x 1-x 2)<0 ⇔ f (x )在[a ,b ]上是减函数. 【例题示范】例1.(2017·全国Ⅱ卷)函数f (x )=ln(x 2-2x -8)的单调递增区间是( )A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞)【解析】由x 2-2x -8>0,得x >4或x <-2.设t =x 2-2x -8,则y =ln t 为增函数.要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8的单调递增区间.因为函数t =x 2-2x -8的单调递增区间为(4,+∞),所以函数f (x )的单调递增区间为(4,+∞).故选D .例2.(2020·海南卷)已知函数f (x )=log 2(x 2-4x -5)在(a ,+∞)单调递增,则a 的取值范围是( )A .(-∞,-1]B .(-∞,2]C .[2,+∞)D .[5,+∞)【解析】令t =x 2-4x -5,由t >0,得x <-1或x >5,又f (x )=log 2t 在定义域内单调递增,且t =x 2-4x -5在(5,+∞)也单调递增,由复合函数的性质得a ≥5,故选D .例3.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b>0成立. (1) 判断f (x )在[-1,1]上的单调性,并证明它;(2) 若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围.【解析】(1) 任取x 1,x 2∈[-1,1],且x 1<x 2,则-x 2∈[-1,1],因为f (x )为奇函数,所以f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1+(-x 2)·(x 1-x 2), 由已知得f (x 1)+f (-x 2)x 1+(-x 2)>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). 所以f (x )在[-1,1]上单调递增.(2) 因为f (1)=1,f (x )在[-1,1]上单调递增.所以在[-1,1]上,f (x )≤1.问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]成立.下面来求m 的取值范围.设g (a )=-2ma +m 2≥0.①若m =0,则g (a )=0≥0,自然对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为a 的一次函数,若g (a )≥0,对a ∈[-1,1]恒成立,必须g (-1)≥0,且g (1) ≥0,所以m ≤-2,或m ≥2.所以m 的取值范围是m =0或|m |≥2.【分段函数的单调性问题的解决策略】(1) 抓住对变量所在区间的讨论;(2) 保证各段上同增(减)时,要注意上、下段端点值间的大小关系;(3) 弄清最终结果取并集还是交集.例4.若f (x )=⎩⎪⎨⎪⎧a x (x >1)(4-a 2)x +2(x ≤1)是R 上的单调递增函数,则实数a 的取值范围为( )A .(1,+∞)B .[4,8)C .(4,8)D .(1,8)【解析】函数f (x )在(-∞,1]和(1,+∞)上都为增函数,且f (x )在(-∞,1]上的最高点不高于其在(1,+∞)上的最低点,即⎩⎪⎨⎪⎧a >14-a 2>0a ≥4-a 2+2,解得a ∈[4,8).选B .例5.已知函数f (x )=⎩⎪⎨⎪⎧ (a -2)x ,x ≥2,⎝⎛⎭⎫12x -1,x <2满足对任意的实数x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2)B .⎝⎛⎦⎤-∞,138C .(-∞,2]D .⎣⎡⎭⎫138,2 【解析】由题意可知,函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧ a -2<0,(a -2)×2≤⎝⎛⎭⎫122-1,由此解得a ≤138,即实数a 的取值范围是⎝⎛⎦⎤-∞,138.选B . 六、奇(偶)函数的定义及图象特征奇偶性定义 图象特点 偶函数 如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数关于y 轴对称 奇函数 如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数 关于原点对称【温馨提示】(1) 所给函数的定义域若不关于原点对称,则这个函数一定不具有奇偶性.函数的定义域关于原点对称是函数成为奇(偶)函数的必要条件.例如,y =x 2当定义域为区间(-∞,+∞)时是偶函数,但当定义域为区间[-1,2]时却不具有奇偶性.(2) f (0)=0是f (x )为奇函数的既不充分也不必要条件.例如,f (x )=1xf (0)无意义;又如f (x )=2x -1满足f (0)=0,但不是奇函数.但奇函数f (x )在x =0处有意义,必有f (0)=0.(3) 奇函数在关于原点对称的两个区间上有相同的单调性;偶函数在关于原点对称的两个区间上有相反的单调性.(4) 定义在关于原点对称区间上的任意一个函数,都可表示成“一个奇函数与一个偶函数的和(或差)”.例如:y =f (x )的定义域关于原点对称,则g (x )=()()2f x f x +-为偶函数,h (x )=()()2f x f x --为奇函数,且f (x )=g (x )+h (x ). (5) 复合函数的奇偶性特点是:“内偶则偶,内奇同外”.(6) 既奇又偶的函数有无穷多个(如f (x )=0,定义域是关于原点对称的任意一个数集).(7) 奇函数在定义域内满足()()f x f x =--,该式常用来求函数解析;偶函数在定义域内满足()()f x f x =-,该式也常用来求函数解析.【常用结论】①函数奇偶性满足下列性质:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.②奇函数与奇函数复合还是奇函数,奇函数与偶函数复合是偶函数,偶函数与偶函数复合还是偶函数.【温馨提示】(这点非常注重要)f (x )为偶函数,则f (-x )=f (x )=f (|x|),该式把偶函数的负变量转化为正变量研究.【例题示范】例.y =f (x )是定义在R 上的偶函数且在[0,+∞)上递增,不等式f (x x +1)<f (-12)的解集为________.【解析】因为y =f (x )是定义在R 上的偶函数且在[0,+∞)上递增,所以f (x x +1)<f (-12)等价为f (|x x +1|)<f (|-12|)=f (12),所以|x x +1|<12,即2|x |<|x +1|,平方得4x 2<x 2+2x +1,所以3x 2-2x -1<0,解得-13<x <1,即不等式的解集为(-13,1). 七、函数奇偶性的判断与证明(1) 根据图象的对称性判断:奇函数的图象关于原点成中心对称图形,偶函数图象关于y 轴成轴对称图形.反之,逆命题也都为真.(2) 根据定义判断或证明:其步骤为:第一步:考查定义域是否关于原点对称.若定义域不关于原点对称,则可断言函数y =f (x )不具有奇偶性,若定义域关于原点对称,则进行下面步骤.第二步:判断f (-x )=f (x )或f (-x )=-f (x )是否成立.既可采用定义直接推理,也可以利用转化的方法,先判断f (x )+f (-x )=0或f (x )-f (-x )=0,究竟采用何种途径要具体问题具体分析.第三步:作出结论.若f (-x )=f (x )则f (x )为偶函数,若f (-x )=-f (x )则为奇函数,若f (-x )=f (x )且f (-x )=-f (x ),则f (x )既是奇函数又是偶函数;若f (-x )≠f (x ),且f (-x )≠-f (x ),则f (x )为非奇非偶函数.(3) 根据规律判断(详见前面的常用结论):判断一个函数既不是奇函数也不是偶函数,取特殊值举反例即可!!..............................(4) 函数奇偶性的变形应用:对于高考中出现的要求证明函数奇偶性的试题,一般应该运用定义去证明,要注意灵活运用定义:当直接推证f (-x )=f (x ),或f (-x )=-f (x )遇到困难时,可以考虑证明等式f (-x )-f (x )=0,或f (-x )+f (x )=0恒成立,或者证明f (-x )f (x )=±1(f (x )≠0)恒成立,前一个技巧常用于含对数运算的函数,后一技巧常用于含指数运算的函数.【温馨提示】判断函数的奇偶性,首先看函数的定义域是否关于原点对称;在定义域关于原点对称的条件下,再化简解析式,根据f (-x )与f (x )的关系作出判断,对于分段函数,应分情况判断.【常见的奇偶函数】(1) 奇函数:()ny x n =为奇数, y kx =,k y x =,tan y x =,sin y x =,x x y a a -=-,11x x a y a -=+,11x x a y a +=-, x xx x a a y a a ---=+,x xx x a a y a a --+=-,log )a y mx =,log )a y x =,log x nx n a y +-=,log x n x n a y -+=.(2) 偶函数:()y a a =为常数,n y ax =(n 为偶数),||y k x =,cos y x =,+x x y a a -=,(||)y f x =;如果()y f x =为奇函数,那么()y f x =一定为偶函数.七、周期性与对称性1.周期函数:T 为函数f (x )的一个周期,则需满足的条件:(1) T ≠0;(2) f (x +T )=f (x )对定义域内的任意x 都成立.2.最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小的正数就叫做它的最小正周期.【温馨提示(1) 定义应对定义域中的每一个x 值来说,若个别的x 值满足f (x +T )=f (x )不能说T 是f (x )的周期.(2) 在等式f (x +T )=f (x )中,应强调加在自变量x 本身的常数才是周期,如f (x 2T )=f (x 2,T 不是周期,而应写成f (x 2+T )=f [12(x +2T )]=f (x 2),2T 才是f (x )的周期. (3) 若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.【必记结论】周期性常用的结论:对f (x )定义域内任一自变量的值x :(1) 设a 为非零常数,若对于f (x )定义域内的任意x ,恒有下列条件之一成立:则函数y=f (x )是周期函数,T =2|a |是它的一个周期.①f (x +a )=-f (x );②f (x +a )=1f (x );③f (x +a )=-1f (x );④f (x +a )=k f (x )(k ≠0); ⑤f (x +a )=f (x -a );⑥(x +a )=f (x )+1f (x )-1,⑦f (x +a )=1-f (x )1+f (x ). (2) 若f (x +a )=f (x +b )(a ≠b ),那么函数f (x )是周期函数,其中一个周期为T =|a -b |.(3) 若对于R 上的任意x 都有f (2a -x )=f (x ),且f (2b -x )=f (x )(其中a <b ),则y =f (x )是以2(b -a )为周期的周期函数;(4) f (x )的图象既关于直线x =a 对称(即函数f (x )满足f (2a -x )=f (x ))又关于直线x =b 对称(即函数f (x )满足f (2b -x )=f (x )),则函数f (x )的周期T =2|a -b |(a ≠b ).(规律:和定对称 ,差定周期)(5) 设a 为非零常数,若对于f (x )定义域内的任意x ,① f (x )为奇函数且其图象关于直线x =a 对称,则T =4|a |;② f (x )为奇函数且其图象对称中心为(a ,0),则T =2|a |;③ f (x )为偶函数且关于直线x =a 对称,则T =2|a |;④ f (x )为偶函数其图象对称中心为(a ,0)则T =4|a |.【识记规律】① 奇偶函数如果另外具有中心对称性或者轴对称性,则一定具有周期性,且周期是相邻对称中心之间距离的2倍,是相邻对称轴之间距离的2倍,是相邻对称轴与对称中心之间距离的4倍.② 如果一个函数图象既有中心对称性,又有轴对称性,则该函数一定具有周期性,且周期是相邻对称轴与对称中心之间距离的4倍.③ 如果一个函数图象有多个中心对称或对称轴,则一定具有周期性,且周期是相邻对称中心(对称轴)之间距离的2倍.轴对称性常用的结论(6) 若f (a -x )=f (b +x ),那么函数f (x )图象的对称轴为x =a+b 2; (7) y =f (x )符合f (2a -x )=f (x )等价于其图象的对称轴为x =a ,等价于f (a -x )=f (a +x );中心对称性常用的结论(8) 设a ,b ,c 为常数,若对于f (x )定义域内的任意x ,① 当f (a +x )+f (b -x )=2c ,则y =f (x )的图象的对称中心为(a+b 2,c ); ② 当f (2a -x )+f (x )=2c ,则y =f (x )的图象的对称中心为(a ,c ).其他结论若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称;若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b ,0)中心对称;若函数f (x )既是周期函数,则其导函数y =f ′(x )是周期函数;若函数f (x )是奇函数,则其导函数y =f ′(x )是偶函数;若函数f (x )是偶函数,则其导函数y =f ′(x )是奇函数;若函数g (x )是奇函数,f (x )=g (x )+k ,则f (a )+ f (-a )=2k ﹒【例题示范】例1.已知y =f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的解析式为________.【解析】设x <0,则-x >0,所以f (-x )=(-x )2-2(-x )=x 2+2x .又y =f (x )是定义在R 上的偶函数,所以f (-x )=f (x ),所以f (x )=x 2+2x (x <0).所以f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,x 2+2x ,x <0. 例2.已知定义在R 上的奇函数满足f (x )=x 2+2x (x ≥0),若f (3-a 2)>f (2a ),则实数a 的取值范围是_______.【解析】当x ≥0时,f (x )=x 2+2x =(x +1)2-1所以函数f (x )在[0,+∞)上为增函数.又函数f (x )是定义在R 上的奇函数,所以函数f (x )在R 上是增函数.由f (3-a 2)>f (2a )得3-a 2>2a .解得-3<a <1.例3.(2018·全国卷Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( )A .-50B .0C .2D .50【解析】因为f (x +2)=f [1+(1+x )]=f [1-(1+x )]=f (-x )=-f (x ),所以f (x +4)=-f (x +2)=f (x ),即f (x )是周期为4的周期函数.又f (x )为奇函数,且x ∈R ,所以f (0)=0,f (1)=2,f (2)=f (1+1)=f (0)=0,f (3)=f (1+2)=f (1-2)=f (-1)=-f (1)=-2,f (4)=f (0)=0,所以f (1)+f (2)+f (3)+f (4)=0,而50=4×12+2,所以f (1)+f (2)+f (3)+…+f (50)=f (1)+f (2)=2.例4.(多选)已知f (x )是定义域为R 的奇函数,且函数f (x +2)为偶函数,则下列结论正确的是( )A .函数y =f (x )的图象关于直线x =1对称B .f (4)=0C .f (x +8)=f (x )D .若f (-5)=-1,则f (2019)=-1【解析】根据题意,f (x )是定义域为R 的奇函数,则f (-x )=-f (x ),又由函数f (x +2)为偶函数,则函数f (x )的图象关于直线x =2对称,则有f (-x )=f (4+x ),则有f (x +4)=-f (x ),即f (x +8)=-f (x +4)=f (x ),则函数f (x )是周期为8的周期函数;据此分析选项:对于A ,函数f (x )的图象关于直线x =2对称,A 错误;对于B ,f (x )是定义域为R 的奇函数,则f (0)=0,又由函数f (x )的图象关于直线x =2对称则f (4)=0,B 正确;对于C ,函数f (x )是周期为8的周期函数,即f (x +8)=f (x ),C 正确;对于D ,若f (-5)=-1,则f (2019)=f (-5+2024)=f (-5)=-1,D 正确.故选BCD .例5.(多选)已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( )A .y =f (|x |)B .y =f (-x )C .y =xf (x )D .y =f (x )+x【解析】由奇函数的定义f (-x )=-f (x )验证,对于A ,f (|-x |)=f (|x |),为偶函数;对于B ,f [-(-x )]=f (x )=-f (-x ),为奇函数;对于C ,-xf (-x )=-x ·[-f (x )]=xf (x ),为偶函数;对于D ,f (-x )+(-x )=-[f (x )+x ],为奇函数.可知BD 正确,故选BD.例6.(2019·新课标Ⅱ卷)已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【解析】因为()f x 是奇函数,且当0x <时,()e ax f x -=-.又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 2e 8a --=-,两边取以e 为底的对数得ln 23ln 2a -=,所以3a -=,即 3a =-.。

专题09三角函数的概念、诱导公式与三角恒等变换(解析版)

专题09三角函数的概念、诱导公式与三角恒等变换(解析版)

专题09三角函数的概念、诱导公式与三角恒等变换(解析版)考查同角三角函数基本关系及三角恒等变换历来都是高考热点问题之一,题型一般为选择题或填空题,难度为基础题或中档题.易错点1:不能正确理解三角函数的定义当角的终边在一条直线上时,应注意到角的终边为两条射线,所以应分两种情况处理而错解中没有对两种情况进行讨论导致错误。

根据已知条件确定角的大小,没有通过确定角的三角函数值再求角的意识或确定角的三角函数名称不适当造成错解。

易错点2:单位圆中的三角函数线在解题中一方面学生易对此知识遗忘,应用意识不强,另—方面易将角的三角函数值所对应的三角函数线与线段的长度二者等同起来,产生概念性的球易错点3:不瞄常数T的代换1=sin2a+cos2 a=sec2a-tan2a=tancrcotcr=tan—=sin—=cos()这些统称42为1的代换。

易错点4:易遗忘关于sin。

和cos。

齐次式的处理方法弦切互化,异名化同名,异角化同角,降皋或升皋.在三角函数式的化简中“次降角升”和“次升角降"是基本的规律,根号中含有三角函数式时,一般需要升次.易错点5:不能准确运用诱导公式进行化简求值三角化简的通性通法…奇变偶不变,符号看象限(切化弦、降慕公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次):易错点6:没有挖掘题目中的确隐含条件,忽视对角的范围的限制而造成增解现象;易错点7:不重视弧度制下弧长公式和扇形面积公式的记忆(/=1q I r.5扇形=§/尸)。

题组一:三角函数的定义1.(2014新课标I)若tana>0,则()A.sin>0B.cosa>0C.siii2tZ>0D.cos2tz>0【解析】tana>()w匚第一象限或第三象限.此时sinaL cosa|“E.故sin la=2sin acosa>01选C.2.(2011新课标)已知角0的顶点与原点重合,始边与X轴的正半轴重合,终边在直线y=2a上,则cos2^=()4 A.—5B.——53C.-54D.-5【解析】由角。

高考二轮复习全国通用数学学案三角函数专题教师版全套(1)

高考二轮复习全国通用数学学案三角函数专题教师版全套(1)
⑶会从图象归纳对称轴和对称中心;
的对称轴是 ,对称中心是 ;
的对称轴是 ,对称中心是
的对称中心是
注意加了绝对值后的情况变化.
⑷写单调区间注意 .
(二)了解正弦、余弦、正切函数的图象的画法,会用“五点法”画正弦、余弦函数和函数 的简图,并能由图象写出解析式.
⑴“五点法”作图的列表方式;
⑵求解析式 时处相 的确定方法:代(最高、低)点法、公式 .
例2.已知向量
,且 ,
(1)求函数 的表达式;
(2)若 ,求 的最大值与最小值
解:(1) , , ,又 ,
所以 ,
所以 ,即 ;
(2)由(1)可得,令 导数 ,解得 ,列表如下:
t
-1
(-1,1)
1
(1,3)
导数
0

0
+
极大值
递减
极小值
递增
而 所以
说明:本题将三角函数与平面向量、导数等综合考察,体现了知识之间的融会贯通。
(三)正弦型函数 的图象变换方法如下:
先平移后伸缩
的图象
得 的图象
得 的图象
得 的图象
得 的图象.
先伸缩后平移
的图象
得 的图象
得 的图象
得 的图象 得 的图象.
【专题综合】
例1.已知 ,求(1) ;(2) 的值.
解:(1) ;
(2)
.
说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化
(3)若m>1,则f(1)>0.即0m+2>0.∴mR,∴m>1.
综上所述m> .即m的取值范围是( , +∞).

高中 三角函数教学设计及习题及答案

高中 三角函数教学设计及习题及答案

第三章三角函数章节结构图三角函数是高中数学的一个重要知识板块,也是高考的热点和重点内容.在考察中,以容易题和中档题为主.在复习本部分内容时,应该充分利用数形结合的思想,把图象和性质有机结合.利用图象的直观性得出函数的性质,同时也要学会利用函数的性质来描绘函数的图象.而在三角变换中,角的变换,三角函数名称的改变,三角函数次数的变换,三角函数表达形式的变换,频繁出现.因此,在训练中,要清楚各种公式,以及它们之间的联系,注意总结规律,并在应用中注意分析比较,提高能力.3.1三角函数的概念(一)复习指导1.了解任意角的概念,了解弧度制概念,能进行弧度与角度的互化.2.理解任意角三角函数(正弦、余弦、正切)的定义,掌握任意角的三角函数在各个象限的符号.3.会应用三角函数线解决与三角函数有关的简单问题. (二)解题方法指导 例1.写出与-60°终边相同的角的集合S ,并把S 中满足-2π ≤α≤4π 的元素α写出来.例2.已知角α终边上有一点P (x ,1),且21cos =α,求sin α,tan α.例3.求函数21sin )(-=x x f 的定义域.例4.已知α∈(0,π ),比较2tan,2sinαα的大小.(三)体会与感受 1.重点知识_________________________________________________________________ _______________________________________________________________________________2.问题与困惑_______________________________________________________________ _______________________________________________________________________________3.经验问题梳理_____________________________________________________________ _______________________________________________________________________________3.2同角三角函数关系及诱导公式(一)复习指导1.理解同角三角函数的基本关系式:.tan cos sin ,1cos sin 22x xxx x ==+ 2.能利用单位圆中的三角函数线推导出αα±±π,2π的正弦、余弦、正切的诱导公式. 3.能综合运用诱导公式和同角关系式对代数式进行化简. (二)解题方法指导例1.已知tan x =2,求sin x ,cos x 的值. 例2.求)330cos()150sin()690tan()480sin()210cos()120tan(----的值.例3.若,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.例4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .(三)体会与感受1.重点知识________________________________________________________________ _______________________________________________________________________________2.问题与困惑______________________________________________________________ _______________________________________________________________________________3.经验问题梳理____________________________________________________________ _______________________________________________________________________________3.3三角函数的图象与性质(一)(一)复习指导1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在区间[0,2π ]的性质(如单调性、最大和最小值、图象与x 轴交点等)3.理解正切函数在区间)2π,2π(-的单调性.例1.用五点法画出函数)3sin(+=x y 草图,并求出函数的周期,单调区间,对称轴,对称中心.例2.求函数)6π2sin(2+=x y 在区间[0,2π ]上的值域.例3.求下列函数的值域.(1)y =sin 2x -cos x +2;(2)y =2sin x cos x -(sin x +cos x ).例4.求函数xxy cos 3sin 1--=的值域.(三)体会与感受 1.重点知识_________________________________________________________________ _______________________________________________________________________________2.问题与困惑_______________________________________________________________ _______________________________________________________________________________3.经验问题梳理_____________________________________________________________ _______________________________________________________________________________3.4三角函数的图象与性质(二)(一)复习指导1.了解函数y =A sin(ωx +φ)的物理意义;能画出y =A sin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响.2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.(二)解题方法指导例1.在同一个坐标系中,用五点法画出下列函数的草图.(1));3πsin(,sin +==x y x y (2)).3π2sin(,2sin +==x y x y例2.已知函数)6π2sin()(+=x x f ,该函数的图象可以由y =sin x 的图象经过怎样的平移和伸缩变换得到.例3.若函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.例4.已知函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期;(Ⅱ)若],2π,0[∈x 求f (x )的最大值、最小值.(三)体会与感受 1.重点知识_________________________________________________________________ _______________________________________________________________________________2.问题与困惑_______________________________________________________________ _______________________________________________________________________________3.经验问题梳理_____________________________________________________________ _______________________________________________________________________________3.5和、差、倍角的三角函数(一)(一)复习指导1.掌握两角差的余弦公式,能利用两角差的余弦公式导出两角差的正弦、正切公式. 2.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.3.能用上述公式解决一些化简和求值问题.(二)解题方法指导 例1.若5tan 1tan 1=+-x x,则)4πtan(+x 的值为 ( )(A)5(B)5-(C)55(D)55-例2.=-++)4π(sin 2)cos (sin 22x x x ____________. 例3.已知21)4πtan(=+x .求xx x 2cos 1cos 22sin 2+-的值.例4.已知f (cos x )=cos2x . (Ⅰ)求))16π(cos(f 的值;(Ⅱ)求f (sin x ).(三)体会与感受 1.重点知识_________________________________________________________________ _______________________________________________________________________________2.问题与困惑_______________________________________________________________ _______________________________________________________________________________3.经验问题梳理_____________________________________________________________ _______________________________________________________________________________3.6和、差、倍角的三角函数(二)(一)复习指导1.能利用三角函数公式对一些代数式进行化简和求值. 2.掌握A sin x +B cos x 型代数式变形方法. (二)解题方法指导 例1.已知)π,2π(,54cos ∈-=αα,则=-)4πcos(α( ). (A)102(B)102-(C)1027-(D)1027 例2.x x x x f cos sin 322cos )(-=的最小值为____. 例3.已知:53cos ,2π0=<<x x ,且π2π<<y ,且135)sin(=+y x ,求cos y 的值.例4.已知54)cos(,53sin ,π2π0-=+=<<<<⋅βααβα,求sin β.(三)体会与感受 1.重点知识_________________________________________________________________ _______________________________________________________________________________2.问题与困惑_______________________________________________________________ _______________________________________________________________________________3.经验问题梳理_____________________________________________________________ _______________________________________________________________________________3.7正弦定理和余弦定理(一)复习指导1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.(二)解题方法指导例1.在△ABC 中,a ∶b ∶c =3∶5∶7,则其最大角为____. 例2.在△ABC 中,有a cos A =b cos B ,判断△ABC 的形状.例3.在△ABC 中,∠A =60°,面积为310,周长为20,求三条边的长.例4.在一条河的对岸有两个目标物A ,B ,但不能到达.在岸边选取相距32里的C ,D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,且A ,B ,C ,D 在同一个平面内,求A ,B 之间的距离.(三)体会与感受 1.重点知识_________________________________________________________________ _______________________________________________________________________________2.问题与困惑_______________________________________________________________ _______________________________________________________________________________3.经验问题梳理_____________________________________________________________ _______________________________________________________________________________例题解析第三章三角函数3.1 三角函数的概念例1分析:先把角转化成弧度制,然后写出与其终边相同角的集合. 解:因为3π60o-=-,所以},,3ππ2|{Z ∈-==k k S αα S 中满足-2π≤α≤4π的元素有⋅-3π11,3π5,3π 例2分析:已知一个角的一个函数值,可以利用三角函数定义求其它三角函数值,也可以利用同角关系直接求得.解:因为P (x ,1)在角α的终边上,所以,,211cos ,422=+=+=x x x r α 解得,33±=x 又因为x >0,所以,33=x 所以.3tan ,23sin ==αα小结:知道一个角某个三角函数值,求其它的函数值,是三角函数求值问题中典型问题之一.例3解:因为021sin ≥-x ,所以,21sin ≥x当21sin =x 时,6ππ2+=k x 或,,6π5π2Z ∈+=k k x 利用三角形函数线得到, .],6π5π2,6ππ2[Z ∈++∈k k k x例4分析:比较不同三角函数值的大小,可以充分利用三角函数线. 解:因为α∈(0,π),所以)2π,0(2∈α,如图3-1-2,在单位圆中,作出2α的正弦线MP 和正切线AT ,因为S △OAP <S △OAT ,所以|,|||21||||21AT OA MP OA ⋅⋅<⋅⋅ 即|MP |<|AT |,所以⋅<2tan2sinαα小结:例3和例4都是三角形函数线的应用,其中例4还可以利用比较法来解决,实际上有)2π,0(∈x 时,sin x <x <tan x .3.2 同角三角函数关系及诱导公式例1分析:知道一个角某个三角函数值,求其它函数值,方程思想是通法. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x 小结:这道题和3.1.1中的例2属于同一类型问题.例2分析:这种代数式化简,一般要用到诱导公式和同角函数关系,要注意公式的正确使用,特别是函数名称和符号的变化方法.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o --+---++-=.3330cos )150sin (30tan )120sin )(30cos (60tan -=---=例3分析:这种代数式求值,可以利用方程组的思想,求出每个函数值,也可以利用sin x ±cos x 与sin x cos x 的关系,整体求值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得 ,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 小结:这两种方法中,第一种是通法,第二种利用了整体求值.例4分析:这种证明问题,可以从左边开始变形,向右边看齐,也可以反过来,还有的时候是两边同时变形.在变形的时候,要注意公式的正确使用,同时要时刻注意目标是什么.证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证.法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证.3.3三角函数的图象与性质(一)例1解:周期为T =2π,单调增区间为,),6ππ2,6π5π2(Z ∈+-k k k 单调减区间为,),6π7π2,6ππ2(Z ∈++k k k 对称轴为,,6ππZ ∈+=k k x对称中心为.),0,3ππ(Z ∈-k k小结:画图的时候,要注意五个点的选取. 例2分析:在求这样函数值域的时候,最好是把括号中与x 有关的代数式的取值范围求出来,然后利用三角函数图象求其值域.解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2].例3解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,则,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,则]2,2[-∈t 则,,12--=t t y利用二次函数的图象得到].21,45[+-∈y小结:利用三角函数关系把代数式转化成一个二次函数形式,利用图象,求其值域,要注意转化后自变量的取值范围.例4解:设A (3,1),P (cos x ,sin x ),把y 看成定点A 与动点P 所在直线的斜率, 因为动点P (cos x ,sin x )在单位圆上,所以只要求经过点A (3,1)与单位圆相切的两条直线的斜率,两条切线的斜率分别为0和,43 所以].43,0[∈y小结:这是数形结合解题的一个典型问题.3.4三角函数的图象与性质(二)例1解:(1)例2分析:这种问题的难点在于确定变换的先后顺序. 解:法一:将函数y =sin x 依次作如下变换: (1)把函数y =sin x 的图象向左平移6π个单位,得到函数)6πsin(+=x y 的图象; (2)把函数)6πsin(+=x y 图象上各点的横坐标缩小到原来的21,纵坐标保持不变,得到函数)6π2sin(+=x y 的图象.法二:将函数y =sin x 依次作如下变换:(1)把函数y =sin x 的图象上各点的横坐标缩小到原来的21,纵坐标保持不变,得到函数y =sin2x 的图象.(2)把函数y =sin2x 向左平移12π个单位,得到函数)12π(2sin +=x y ,即)6π2sin(+=x y 的图象.小结:在进行图象变换的时候,应注意平移变换和压缩变换的顺序,顺序不一样,则平移的单位不一样.如y =sin2x 的图象向左平移12π个单位,得到函数)12π(2sin +=x y ,即)6π2sin(+=x y 的图象.例3分析:这样的问题,首先要清楚几个参数A ,ω,φ对函数图象的影响,可以画出一个草图来分析问题.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ例4分析:这个函数的解析式比较复杂,我们先对其进行化简,这包括减少函数名称,降低次数,然后再求相应的问题.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x)4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)若]2π,0[∈x ,则]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2- 3.5 和、差、倍角的三角函数(一)例1解:5)4πtan(tan 4πtan 1tan 4πtantan 1tan 1=-=+-=+-x x xx x ,所以,51)4πtan(1)4πtan(=-=+x x 选C .小结:本题还可以tan x 把的值求出来,然后使用两角和的正切公式求值.例2解:)4π(sin 2)cos (sin 22x x x -++.22sin 12sin 1)4π(2cos 12sin 1=-++=--++=x x x x例3解:因为21tan 1tan 1)4πtan(=-+=+x x x ,所以,31tan -=x⋅-=-=-=+-341tan cos 2cos 2cos sin 22cos 1cos 22sin 222x xx x x x x x小结:在求值问题中,应该先对代数式进行化简,在化简的过程中分析如何利用条件推导出结果.例4解:(Ⅰ)因为,8πcos ))16π(cos(==f而422222124πcos18πcos 2+=+=+=且08πcos >,所以;228πcos +=(Ⅱ)因为.2cos )2πcos())2π(2cos())2π(cos()(sin x x x x f x f -=-=-=-=3.6 和、差、倍角的三角函数(二)例1解:因为)π,2π(,54cos ∈-=αα,所以,53sin =α又αααsin 4πsin cos 4πcos )4πcos(+=-,代入求得结果为,102-所以选B . 例2解:因为)26πsin(22sin 3cos cos sin 322cos )(x x x x x x x f -=-=-=,所以其最小值为-2.例3分析:在知值求值问题中,要注意角之间的关系.解:因为,53cos ,2π0=<<x x 则⋅=-=54cos 1sin 2x x 因为π2π,2π0<<<<y x ,所以,2π32π<+<y x 所以,1312)cos(-=+y x 所以cos y =cos[(x +y )-x ]=cos(x +y )cos x +sin(x +y )sin x651654135531312-=⨯+⨯-= 例4解:因为,π2π0<<<<βα 所以,2π32π<+<βα 又54)cos(-=+βα,所以53)sin(-=+βα,或,53)sin(=+βα若53)sin(-=+βα,则由53sin =α,得到β=π,矛盾,所以,53)sin(=+βα所以⋅=+-+=-+=2524sin )cos(cos )sin(])sin[(sin αβααβααβαβ 3.7正弦定理和余弦定理例1解:因为三条边中c 边最大,则角C 最大,根据余弦定理,21cos -=C ,所以⋅=3π2C例2解:由正弦定理,a =2R sin A ,b =2R sin B ,代入有2R sin A cos A =2R sin B cos B ,即sin2A =sin2B ,所以2A =2B 或2A =π-2B .即A =B 或2π=+B A ,所以△ABC 为等腰三角形或直角三角形.例3解:因为310sin 21==∆A bc S ABC ,所以bc =40,又a +b +c =20,a 2=b 2+c 2-2bc cos A ,解得三条边为5,7,8.例4分析:在很多实际测量问题中,都离不开解三角形,根据相关条件画一张比较清晰的直观图,可以帮我们找到解题的思路.要求AB ,可以把AB 放到一个三角形中,看看这个三角形中还有哪些条件,然后可以根据正余弦定理求值.解:中△ACD 中,∠ACD =120°,∠ADC =30°所以∠DAC =30°,所以|AC |=|CD |=23, 在△BCD 中,∠BCD =45°,∠CDB =75°,所以∠CBD =60°,由正弦定理,60sin ||75sin ||,oo CD BC =所以,2660sin 75sin ||||oo+==CD BC 在△ABC 中,∠BCA =75°,根据余弦定理,|AB |2=|AC |2+|BC |2-2|AC |·|BC |·cos75°,求得 |AB |2=20,⋅=52||AB。

高三数学二轮复习专题 三角函数(公开课)

高三数学二轮复习专题 三角函数(公开课)

高三数学二轮复习专题三角函数(公开课)高三数学二轮复习专题三角函数(公开课)一、基础知识回顾三角函数是高中数学中的重要内容之一。

在这个专题中,我们将回顾三角函数的基础知识,包括正弦函数、余弦函数、正切函数等的定义、性质以及相互之间的关系。

1. 三角函数的定义在直角三角形中,我们定义了三角函数的概念。

对于一个角A,定义了三个比值:正弦函数sinA=对边/斜边,余弦函数cosA=邻边/斜边,正切函数tanA=对边/邻边。

2. 三角函数的周期性我们知道,三角函数具有周期性。

例如,正弦函数和余弦函数的周期都是2π,而正切函数的周期是π。

这意味着在一个周期内,三角函数的值是重复的。

这种周期性使得三角函数在实际问题中具有广泛的应用。

3. 三角函数的性质三角函数有许多重要的性质。

例如,正弦函数和余弦函数是偶函数,即f(x)=f(-x);正切函数是奇函数,即f(x)=-f(-x)。

此外,三角函数还具有增减性和界值性质。

二、三角函数的图像与性质下面我们将进一步讨论三角函数的图像与性质。

通过对三角函数图像的分析,我们能够更好地理解三角函数的特点和性质。

1. 正弦函数的图像与性质正弦函数的图像是一条连续的波浪线,振动范围在[-1,1]之间。

正弦函数的图像关于y轴对称,且在0点处取得最小值。

我们可以通过调整系数来改变正弦函数的振幅和周期。

2. 余弦函数的图像与性质余弦函数的图像也是一条连续的波浪线,振动范围也在[-1,1]之间。

与正弦函数不同的是,余弦函数的图像关于x轴对称,且在0点处取得最大值。

同样地,我们可以通过系数调整来改变余弦函数的振幅和周期。

3. 正切函数的图像与性质正切函数的图像是一条连续的曲线,其值在整个实数轴上变化。

正切函数在某些点上没有定义,这些点是函数的奇点。

我们可以通过系数调整来改变正切函数的振幅和周期。

三、三角函数的应用三角函数在实际问题中有广泛的应用。

在这一部分,我们将介绍一些常见的三角函数应用,并通过例题来加深理解。

高考理科数学复习专题09三角函数(教师版)

高考理科数学复习专题09三角函数(教师版)

2.专题09三角函数【2021年高考全国I卷理数】函数sinxf(x)=一cosxx—在[,]的图像大致为xA.-ITC.门Tsin( x) ( x)【斛析】由 f ( x) 2cos( x) ( x)称,排除A.又fsin x x2cosx x- 1,f(力f(x),得f(x)是奇函数,其图象关于原点对立.........——2 0 ,排除B, C,应选D.1冗【名师点睛】此题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答此题时,A,再注意到选项的区别,利用特殊值得正确答案.【2021年高考全国I卷理数】关于函数f(x)先判断函数的奇偶性,得f(x)是奇函数,排除sin |x| |sin x|有下述四个结论:①f(x)是偶函数③f(x)在[,]有4个零点②f(x)在区间(一,)单调递增2④f(x)的最大值为2其中所有正确结论的编号是A.①②④B.②④C.①④D.①③冗当一x2/时,fx九时,fsin sin x sin2sinx,它在区间一22sinx ,它有两个零点:sin x f x , f x为偶函数,故①正确.单调递减,故②错误.0 ;当兀x 0时,f x sin x sinx当 x 2k ,2k k N 时,f x 2sin x ;当 x 2k , 2k 2 k N 时,f x sinx sinx 0,又f x 为偶函数,f x 的最大值为2,故④正确.综上所述,①④正确,应选 C. 【名师点睛】此题也可画出函数f x sin x sinx 的图象(如以下图),由图象可得①④正确.3.【2021年高考全国n 卷理数】以下函数中,以3为周期且在区间(7, 3)单调递增的是A . f(x)=|cos2x|B . f(x)=|sin2x| C. f(x)=cos|x| D . f(x)=sin|x|【答案】A【解析】作出由于 y sin |x|的图象如以下图1,知其不是周期函数,排除 D ;由于y cos|x| cosx,周期为2兀,排除C ; 作出ycos2x|图象如图2,由图象知,其周期为 -,在区间(一,一)单调递增,A 正确;24 2....一 一 一一一,一___ __________ 兀 •一、一作出y sin2x 的图象如图3,由图象知,其周期为 一,在区间(一,一)单调递减,排除 B,2 4 2应选A.2sin x ,它有一个零点:冗,故f x 在有3个零点:,故③错误.图3【名师点睛】此题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各 函数图象,即可作出选择.此题也可利用二级结论:①函数 y f (x)的周期是函数y f(x)周期 的一半;②y sin x 不是周期函数2222I2sin a cos a,又sin cos 1, 5sin a 1,sin a 一,又 sin 0, sin 5B.【名师点睛】此题是对三角函数中二倍角公式、同角三角函数根本关系式的考查,中等难度,判断 正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出 三角函数值的正负很关键,切记不能凭感觉.解答此题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案.5.【2021年高考全国 出卷理数】设函数f x =sin ( x —)( >0),f X 在0,2有且仅有5个零点,下述四个结论:①f x 在(0,2 )有且仅有3个极大值点 ②f x 在(0,2 )有且仅有2个极小值点4. 2021年高考全国n 卷理数】(0, —),2sin2 a=cos2 o+1,贝U sin OF2B.Q2sin2 a cos2 a 1,4sin c cos 2 2cos a.Q 瓜cos 0 0 , sin0,图2③f x在(0, —)单调递增10④的取值范围是[但,29) 5 10其中所有正确结论的编号是A.①④B.②③C.①②③D.①③④【解析】①假设f(x)在[0,2句上有5个零点,可画出大致图象,由图1可知,f(x)在(0,2时有且仅有3个极大值点.故①正确;②由图1、2可知,f (x)在(0,2时有且仅有2个或3个极小值点.故②错误;④当f x =sin ( x -)=0 时, x —=k Tt (kC Z)5 5,所以x由于f(x)在[0,2 句上有5个零点,所以当k=5时,* 2/当k=6时,12,解得—529w —,10故④正确.③函数f x =sin x 一)5 的增区间为:2k z 九10 130 2k7t取k=0,7,12 ,〜71当 一时,单调递增区间为 一冗x 一冗, 5 24 829 ....................... 7 3当 —时,单倜递增区间为 —x x —%,10 29 29一. 一 _.冗 ........... .. .综上可得,f X 在0,— 单调递增.故③正确.所以结论正确的有①③④.故此题正确答案为 D.【名师点睛】此题为三角函数与零点结合问题,难度大,可数形结合,分析得出答案,要求高,理 解深度高,考查数形结合思想.注意此题中极小值点个数是动态的, 易错,正确性考查需认真计算,易出错.6.【2021年高考天津卷理数】函数 f(x) Asin( x )(A 0,0,| | )是奇函数,将f X 的图象上所有点的横坐标伸长到原来的 2倍(纵坐标不变),所得图象对应的函数为C.x .假设g x 的最小正周期为2私且g"那么f,2【解析】••• f(x)为奇函数,,f (0) Asin 0, Z, k 0, 0;g(x)八. 1-I- 2冗Asin - x, T -- 2 区22,f(x)32sin2x, f (一)V 2.应选 C.8【名师点睛】此题主要考查函数的性质和函数的求值问题,解题关键是求出函数 g x ,再根据函数性质逐步得出A,,的值即可.17 .【2021年局考全国 出卷理数】假设sin -,那么cos27 - 98 - 9 819 7-9♦ ♦B D1 9 7【解析】cos2 1 2sin 2 1 2 (―)2 —3 9应选B.【名师点睛】此题主要考查三角函数的求值,考查考生的运算求解水平,考查的核心素养是数学运 算.8.【2021年高考全国卷II 理数】假设f x cosx sinx 在 a,a 是减函数,那么a 的最大值是 花A . 一43冗 C.—— 4【答案】A(2)周期T求对称轴.⑶由 2k 冗 2ku k Z花求增区间;由一 2k :t23冗—2ku k Z 求 2减区间 9.【2021年高考天津理数】将函数 y sin(2x一)的图象向右平移 一个单位长度,所得图象对应的函5 103 5 ............A,在区间[3—,5—]上单调递增4 4,一一 .3 一B .在区间[,]上单调递减4【解析】由于fcosxsinx A /2cos x —,4所以由0 2k/花2kXk Z)得一43冗——2kXk Z), 4因此 a,a兀 ................ TT 一,从而a 的取大值为一, 4应选A.【名师点睛】 解答此题时,先确定三角函数单调减区间, 再根据集合包含关系确定a 的最大值 .函数y Asin B(A 0,.)的性质:⑴ y max =A+B, y min AB .令k 1可得一个单调递增区间为令k 1可得一个单调递减区间为:应选A.【名师点睛】此题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学 生的转化水平和计算求解水平10.【2021年高考浙江卷】函数 y=2"sin2x 的图象可能是C.在区间[3 ......... ,3-]上单调递增D.在区间3 -[斗[万,2 ]上单调递减【解析】由函数图象平移变换的性质可知:sin 2x的图象向右平移二个单位长度之后10的解析式为y sin 2 x7t 10 7t5sin2x .那么函数的单调递增区间满足 2k%2x 2ku花,即 k :t — x4.......................... 冗函数的单调递减区间满足: 2 k 冗22x 3冗2k 冗—k Z , IP k u — x243冗 k k ——k4A . 【答案】DB.D.f x2忸sin2x 为奇函数,排除选项 A, B ;...兀. 一_ 一一 ... . . .由于x —,冗时,f x 0,所以排除选项C, 2应选D.............. ....................... ............ 冗 ................................ 【名师点睛】解答此题时,先研究函数的奇偶性,再研究函数在 一,冗上的符号,即可作出判断2有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置; (2)由函数的单调性,判断图象的变化趋势; (3)由函数的奇偶性,判断图象的对称性; (4)由函数的周期性,判断图象的循环往复.C1: y=cos x, C2: y=sin (2x+ 2^),那么下面结论正确的选项是3得到曲线C 2得到曲线C 2得到曲线C 2得到曲线C 2【解析】由于 C I ,C 2函数名不同,所以先将 C 2利用诱导公式转化成与 C I 相同的函数名,那么_ _ 2 7t _ 27t 冗 _ 冗 . .一 .................................. 1 C 2: y sin(2x ——)cos(2x —— 一)cos(2x —),那么由C 1上各点的横坐标缩短到原来的 一3 3 2 6 2,、、. _ . ....... .. 兀. .............. 4 倍变为y cos2x,再将曲线向左平移 一个单位长度得到c 2,应选D.12【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,【解析】令f x 2l x sin2x ,由于x R, f x2 x sin2 x2〞sin2 x11.【2021年高考全国 出理数】曲线 把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变, 再把得到的曲线向右平移 」个单位长度,6B. 把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变, 再把得到的曲线向左平移—个单位长度,12C. 把C 1上各点的横坐标缩短到原来的1 ............. ....... 一倍,纵坐标不变, 2再把得到的曲线向右平移 」个单位长度, 6 D .把C 1上各点的横坐标缩短到原来的1 ............. .......一倍,纵坐标不变, 2再把得到的曲线向左平移—个单位长度,12y Asin x 或 y Acos x b 的形式...,、一...、_ ____________________________ _ 冗(2)求f x Asin( x ) 0的对称轴,只需令 x ku - k Z,求x ;求f(x)的2对称中央的横坐标,只需令 xkXk Z)即可.5.一.一 —兀 兀 . ..需要重点记住sin cos( -),cos sin( -);另外,在进行图象变换时,提倡先平移后伸 2 2缩,而先伸缩后平移在测试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.12.【2021年高考全国出理数】设函数 f x cos(x1,那么以下结论错误的选项是A. f(x)的一个周期为 2几8B. y f(x)的图象关于直线x 8^对称 3C. f (x 花)的一个零点为x -6D. f(x)在(/)单调递减【答案】D____ _ _ _…… 2兀 _ _ 【解析】函数f (x)的最小正周期为T —— 2/,那么函数f(x)的周期为T 2k :tk Z ,取k 1,1可得函数f x 的一个周期为 2任,选项A 正确;一…,―......TT函数f (x)图象的对称轴为 x — k u k Z,即x 38关于直线x —对称,选项B 正确;3冗一 一 .一 ..一,ku — k Z ,取k 3,可得y=f(x)的图象 37tcos x37tcos x —,函数f(x)的零点满足x — ku k Z ,即332, 冗. _ 「I x k 冗—k Z,取 k 60,可得f (x-- -一TT ... .冗)的一个零点为x -,选项C 正确;6-,冗时,x -52,4』,函数f (x)在该区间内不单调,选项 D 错误.23 6 3应选D. 【名师点睛】1)求最小正周期时可先把所给三角函数式化为y Asin( x )或 y Acos( x)的形式,那么最小正周期为T奇偶性的判断关键是解析式是否为13.【2021年高考天津卷理数】设函数f(x) 2sin( x ) , x R ,其中0, | | •假设f (一)2,8【解析】由题意得11 8又T 2- 2 ,所以0 1,所以 2,2k 1—,3 12由 得 —,应选A. 12【名师点睛】关于 y Asin( x )的问题有以下两种题型: ①提供函数图象求解析式或参数的取值范围, 一般先根据图象的最高点或最低点确定A,再根据最小正周期求,最后利用最高点或最低点的坐标满足解析式,求出满足条件的的值;②题目用文字表达函数图象的特点,如对称轴方程、曲线经过的点的坐标、最值等,根据题意自己 画出大致图象,然后寻求待定的参变量,题型很活,一般是求 或 的值、函数最值、取值范围等.【2021年高考北京卷理数】函数 f (x) =sin 22x 的最小正周期是 . , 冗 【答案】- 2【解析】函数f x sin 22x 1 co s4x ,周期为-.2 2【名师点睛】此题主要考查二倍角的三角函数公式 ?三角函数的最小正周期公式,属于根底题 .将所 给的函数利用降哥公式进行恒等变形,然后求解其最小正周期即可f( .) 0,且f(x)的最小正周期大于 2 ,那么12B.12C.24D.2414.2k l 一12............ _,其中k 1,k 2 Z ,所以k215. 【2021年高考江苏卷】tan tan —4一,那么sin 2 一 的值是 ▲3 410tan 21类讨论和转化与化归思想解题.由题意首先求得tan 的值,然后利用两角和的正弦公式和二倍角公 式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可 16.【2021年高考全国I 理数】 函数f x 2sinx sin2x,那么f x 的最小值是21【斛析】f x 2cos x 2cos 2x 4cos x 2cos x 2 4 cosx 1 cosx 一 ,21 (1)所以当cosx -时函数单调递减,当 cosx 一时函数单调递增,从而得到函数的递减区间为 2 2 2k :t 55,2kTt - k Z ,函数的递增区间为 2ku -, 2k u - k Z , 33 33tantan tan 1 tan2 「 九 tan 1 tan 13'tan 一—41 tan2 ,或 tan1 .3【解析】由解得tan得 3tan 2 5tan 2 0,sin 2 sin 2花cos- 4 cos2 冗 sin 一4工~2~sin 2 cos2 2sin 2cos cos_■ 2sin2tan1 tan2 2 sin 2 cos当tan2时,上式=立 2 2 2 22 1 221W ;当tan1 ,,, 一时,上式= 32 [—〔3〕2〔J 〕213一10综上,sin、210【名师点睛】 此题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分_冗 _ . __ ... .x 2k u — ,k Z 时,函数f x 取得最小值,此时 sinx3【名师点睛】该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关 的函数的求导公式, 需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值_........................................ .... ................ 7t..7t ........................................... ..17.【2021年高考北京卷理数】设函数 f (x) =cos( x -)(0),假设f(x)f(-)对任意白^实数x 都成64立,那么3的最小值为【名师点睛】此题主要考查三角函数的图象和性质,考查考生的逻辑推理水平以及运算求解水平, 考查的核心素养是逻辑推理、数学运算查的核心素养是数学运算所以当 所以f x .2min二垓",故答案是空3sin2 x 2由于f对任意白^实数x 都成立,所以f -取最大值,4所以-42ku6由于0,所以当 0时,..... ............. 2 w 取取小值为一318.【2021年高考全国出理数】函数cos兀的零点个数为Q0 x花3x619 7t由题可知3x解得xx4」,或7J ,故有3个零点.【名师点睛】 此题主要考查三角函数的图象与性质, 考查数形结合思想和考生的运算求解水平,考19.【2021年高考江苏卷】 函数y sin 2x一〕的图象关于直线x —对称, 23值是减区间.【解析】化简三角函数的解析式:【名师点睛】此题经三角函数式的化简将三角函数的问题转化为二次函数的问题,二次函数、二次 方程与二次不等式统称 三个二次〞,它们常结合在一起,有关二次函数的问题,数形结合,密切联 系图象是探求解题思路的有效方法 .一般从:①开口方向;②对称轴位置;③判别式;④端点函数值 符号四个方面分析.21.【2021年高考北京卷理数】在平面直角坐标系xOy 中,角〞与角3均以Ox 为始边,它们的终边关1于y 轴对称.右sin-,贝U cos( ) =.【解析】由题意可得 sin kXk Z),由于花所以20,【名师点睛】 由对称轴得kXk Z),再根据限制范围求结果.函数y Asin(A>0,3>0)的性质:(1) ymaxAB, y min(2)最小正周期 ⑶由 x-ku k Z~. 一冗 ~2k u k Z 求增区间;由一2k/2 3冗—2k 冗 k 220.【2021年高考全国n 理数】函数x sin 2 x \ 3 cosx3 4(x花0,一2)的最大值是 f x 1 cos 2 x \ 3 cosx cos 2 x _ 3 cosxcosx由自变量的范围:0 -可得: ’2cosx 0,1 ,当cosx 立时, 2函数f x 取得最大值1.1,cos 2是数学运算.23.【2021年高考江苏卷】假设tan(」) 4【考点】两角和的正切公式【名师点睛】三角函数求值的三种类型(2)给值求值:关键是找出式与待求式之间的联系及函数的差异.一般有如下两种思路: ①适当变换式,进而求得待求式的值;②变换待求式,便于将式的值代入,从而到达解题的目的. (3)给值求角:实质是转化为“给值求值〞,先求角的某一函数值, 再求角的范围,进而确定角.24.【2021年高考浙江卷】设函数 f(x) sinx,x R .【解析】 由于和 关于y 轴对称,所sinsincoscos2.2 3(或 cos cos2J ) 3 所以coscos cos sin sin2. 2c • 2/cossin2sin 1【名师点睛】此题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:假设 边关于y 轴对称,那么冗2ku,k Z ,假设 与 的终边关于x 轴对称,那么2kRk Z ,假设 与 的终边关于原点对称,那么22.【2021年高考全国n 理数】 sin a cos 3 1, cos a sin 3 0 ,那么sin( a3)【解析】由于sin cos 1, cos sin0, 所以sincos1,所以sin因止匕sin1sin cos cos sin 一22cos. 2sin【名师点睛】 此题主要考查三角恒等变换,考查考生分析问题、解决问题的水平, 4考查的核心 【解析】tan tan[( 4)-]tan( ) tan — 4 41 tan( ) tan —4 41 16_ 1」 6(1)给角求值:关键是正确选用公式, 以便把非特殊角的三角函数转化为特殊角的三角函数.(1) [0,2工函数f (x )是偶函数,求 的值;;(2) [1即 sinxcos cosxsin sinxcos cosxsin ,故 2sinxcos 0 , 所以cos 0 . 又 [0, 2冗),1 3cos 2x 『2 3【名师点睛】此题主要考查三角函数及其恒等变换等根底知识,同时考查运算求解水平25.【2021年高考浙江卷】函数f (x) sin 2 x cos 2 x 2V3sin xcosx(x f(—)的值.3f(x)的最小正周期及单调递增区间.单调递增区间是[—k ,2 6 3(2)求函数y[f(x万『[f(x产值域・【解析】(1)由于 f(x sin(x )是偶函数,所以,对任意实数x 都有sin(x ) sin( x ),(1)由.2sin 一3.32 , cos —2.3 2 1 2“于(万)(2)得f (23 )2.(2)由 cos2x.2sin x 与 sin 2x2sin xcosx 得 f (x)cos2x、、3sin2x]•因此,或上7tx127t4sin 27tx 一12sin 2 xcos 2xcos 2x&os2x 2久in2x2因此,函数的值域是[1,3 .3 y ,1 一 ]•(1)求 (2)求2sin(2 x -). 6所以 ^3cosx 3sin x .于是tan x又x 0,冗即x 0时,f x 取到最大值3;5工时,f x 取到最小值 266所以f(x)的最小正周期是 .由正弦函数的性质得 一 2k2-2斛得一k x — k , k63所以,f(x)的单调递增区间是32x -——2k ,k Z , 6 2Z ,[-k ,— k ], k Z . 6 3【名师点睛】此题主要考查了三角函数的化简,以及函数y Asin x的性质,是高考中的常考知识点,属于根底题,强调根底的重要性;三角函数解做题中,涉及到周期,单调性,单调区间 以及最值等考点时,都属于考查三角函数的性质,首先应把它化为三角函数的根本形式即y Asin x ,然后利用三角函数 y Asin u 的性质求解.26.【2021年高考江苏卷】向量a (cosx, sin x),b (3,扃x [0,4(1)假设 a// b,求x 的值; (2)记f(x) a b ,求f (x)的最大值和最小值以及对应的一 5冗 _(1) x ——;(2) x 0 时, 6x 取到最大值3;5冗x ——时,f x 取到最小值 2 J3 . 6(1)由于 a (cosx,sin x),(3, V 3) , all b,假设 cosx 0, 那么 sin x 0 ,与 sin 2 xcos 2 x 1 矛盾,故 cosx0.(2) f (x)a b (cos x,sin x) (3,、3) 3cos x \ 3 sin x「 兀2,3cos(x -).6由于x0,所以 冗 冗7冗x -[-,-],6 6 6从而cos(x27.【2021年高考浙江卷】角 a 的顶点与原点 O 重合,始边与x 轴的非负半轴重合,它的终边过点45)(1)求sin ( a+兀)的值;5 〜(2)右角3满足sin ( a+优=一,求cos 3的值.134【答案】(1) — ; (2) COS5【解析】(1)由角 的终边过点 所以sin( 访 sin【名师点睛】此题主要考查三角函数的定义、诱导公式、两角差的余弦公式,考查考生分析问题、 解决问题的水平,运算求解水平,考查的数学核心素养是数学运算求解三角函数的求值问题时,需综合应用三角函数的定义、诱导公式及三角恒等变换 (1)首先利用三角函数的定义求得 sin ,然后利用诱导公式,计算 sin (妙兀)的值;结合同角三角函数的根本关系,计算 cos( )的值,要注意该值的,利用两角差的余弦公式,通过分类讨论,求得 cosB 的值(1)求cos2的值;(2)求tan( )的值.【答案】(1)—;(2)-.25 11【解析】(1)由于tan 4 , tan §n 一3cos4— cos 356T 16 瓦或cos —3 4『P( -, 一Win5 5(2)由角 由 sin( 由 ( 34的终边过点P( 一,一)得cos 5 5 、5 3 , 、 12)而得.问)行) 得 cos cos( )cossin()sin ,所以cos史或cos6516 65(2)根据sin (廿3)的值, 正负,然后根据 28.【2021年高考江苏卷】为锐角,tan4一,cos( 3所以sin 由于sin 22cos因此tan(因此,tan( ) tan[2 (tan 2 tan( )2"1 tan 2 tan( )11由于tan4-, 八一,所以tan 2 3 2 tan 1 tan 2 24一,7【名师点睛】本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求 解水平.三角函数求值的三种类型:(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出式与待求式之间的联系及函数的差异. 般有如下两种思路:①适当变换式,进而求得待求式的值;②变换待求式,便于将式的值代入,从而到达解题的目的.(3)给值求角:实质是转化为 给值求值〞,先求角的某一函数值, 再求角的范围,进而确定角. _ .............. .... ... 冗29.【2021年局考山东卷理数】设函数 f(x) sin( x —) sin( x 6」),其中0 2 3. 花 f(-) 0. 6 (1)求 (2)将函数y f (x)的图象上各点的横坐标伸长为原来的 2倍 (纵坐标不变),再将得到的图象 向左平移」个单位,得到函数y g(x)的图象,求g(x)在[-,3」]上的最小值 44 4 3 【答案】(1) 2 ; (2)最小值为 一. 2_ __ 冗冗【斛析】(1)由于 f (x) sin( x —) sin( x —), 62一, o 9 所以cos——,因此,cos2 2cos 2 17 25(2)由于,为锐角,所以(0, ).又由于cos(所以sin(...1 cos 2(2、5 ----- , 5所以f(x) .3 1——sin x cos x cos x 2 23;「 3 ———sin x —cos x2 23(』sin x -cos x)2 2、.3sin( x -). 3,-.一. Tt由题设知f (-) 0,6- Tt Tt . 一所以」」ku, k Z.6 3故6k 2 , k Z ,又0 3 ,所以2.(2)由(1)得f (x) >/3sin 2x —3所以g (x) . 3 sin x ——4 3 ?3 sin x —12所以x122 3, 3〜…,.,、 3所以当x 一一,即x 一时,g(x)取得最小值一.12 3 4 2【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答此题时,关键在于能利用三角公式化简函数、进一步讨论函数的性质,此题易错点在于一是图象的变换与解析式的对应,二是无视设定角的范围.难度不大,能较好地考查考生的根本运算求解水平及复杂式子的变形水平(1) 2; (2) f(x)的最小正周期是。

完整版)高三三角函数专题复习(题型全面)

完整版)高三三角函数专题复习(题型全面)

完整版)高三三角函数专题复习(题型全面)三角函数考点1:三角函数的概念三角函数是以角度或弧度为自变量的函数,包括正弦函数、余弦函数、正切函数等。

考点2:三角恒等变换三角恒等变换包括两角和、差公式、倍角半角公式、诱导公式、同角的三角函数关系式等。

考点3:正弦函数、余弦函数、正切函数的图像和性质正弦函数、余弦函数、正切函数的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质都需要掌握。

考点4:函数y=Asin(x)(A,)的图像与性质函数y=Asin(x)(A,)的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质也需要掌握。

此外,该函数的图像还可以通过一定的变换得到。

一、三角函数求值问题1.三角函数的概念例1.若角的终边经过点P(4a,3a)(a0),则sin=-3/5.2.公式法例2.设(0,π/2),若sin=1/2,则2cos()=√3.练1.已知角的终边上一点的坐标为(sinθ。

cosθ)(θ∈(π/2,π)),则sin=-cosθ。

3.化简求值例3.已知为第二象限角,且sin=15/17,求sin(+π/4)的值。

练:1.已知sin=1/5,则sin4-cos4的值为-24/25.2.已知tan(θ+)=1/2,求tanθ和sin2θ-cosθ.sinθ+2cos2θ的值。

4.配凑求值例4.已知,∈(π/3,π/2),且sin(+)=-√3/2,sin(-)=1/2,求cos(+)的值。

练:1.设α∈(π/12,π/3),β∈(0,π/6),且sin(α+β)=-√3/2,sin(β-α)=-1/2,则cos(α+β)=1/2.1.已知三角函数的值,求其他三角函数的值已知 $sin\alpha = \frac{4}{5}$,$cos\beta = \frac{3}{5}$,$cos(\alpha - \beta) = \frac{1}{2}$,$sin(\beta + \theta) =\frac{3}{5}$,求 $sin(\alpha + \beta)$ 和 $tan(\alpha - 2\beta)$。

高考数学真题09 三角函数的图象与性质问题(教师版)

高考数学真题09 三角函数的图象与性质问题(教师版)
B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线C2
C.把C1上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线C2
D.把C1上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线C2
8.答案1解析依题意,f(x)=sin2x+ cosx- =-cos2x+ cosx+ =- 2+1,因为x
∈ ,所以cosx∈[0,1],因此当cosx= 时,f(x)max=1.
9.(2013·全国Ⅰ)设当x=θ时,函数f(x)=sinx-2cosx取得最大值,则cosθ=________.
9.答案- 解析f(x)=sinx-2cosx= = sin (x-φ),其中sinφ= ,
则 <ωπ+ ≤3π,解得 <ω≤ ,即ω∈( , ].故选C.
【知识总结】
1.三种三角函数的图象和性质
正弦函数y=sinx
余弦函数y=cosx
正切函数y=tanx
图象
定义域
R
R
{x|x≠ +kπ,k∈Z}
值域
[-1,1] (有界性)
[-1,1] (有界性)
R
零点
{x|x=kπ,k∈Z}
{x|x= +kπ,k∈Z}
专题09三角函数的图象与性质问题
【高考真题】
1.(2022·北京)已知函数f(x)=cos2x-sin2x,则()
A.f(x)在(- ,- )上单调递减B.f(x)在(- , )上单调递增
C.f(x)在(0, )上单调递减D.f(x)在( , )上单调递增
1.答案C解析因为f(x)=cos2x-sin2x=cos2x.对于A选项,当- <x<- 时,-π<2x<- ,则

高中数学三角函数专题复习(内附类型题以及历年高考真题-含答案免费)[1]

高中数学三角函数专题复习(内附类型题以及历年高考真题-含答案免费)[1]

三角函数知识点与常见习题类型解法1. 任意角的三角函数:(1) 弧长公式:R a l = R 为圆弧的半径,a 为圆心角弧度数,l 为弧长。

(2) 扇形的面积公式:lR S 21=R 为圆弧的半径,l 为弧长。

(3) 同角三角函数关系式:①倒数关系: 1cot tan =a a ②商数关系:a a a cos sin tan =, aaa sin cos cot = ③平方关系:1cos sin 22=+a a(4)2.两角和与差的三角函数: (1)两角和与差公式:βββαsin sin cos cos )cos(a a =± βββsin cos cos sin )sin(a a a ±=±βββtan tan 1tan tan )(tan a a a a ±=± 注:公式的逆用或者变形......... (2)二倍角公式:a a a cos sin 22sin = 1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a aaaa 2tan 1tan 22tan -=从二倍角的余弦公式里面可得出降幂公式:22cos 1cos 2a a += , 22cos 1sin 2aa -=(3)半角公式(可由降幂公式推导出):2cos 12sinaa -±=,2cos 12cos a a +±= ,aa a a a a a sin cos 1cos 1sin cos 1cos 12tan -=+=+-±= 3.4.函数)sin(ϕω+=x A y 的图像与性质:(本节知识考察一般能化成形如)sin(ϕω+=x A y 图像及性质) (1) 函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y 的周期都是ωπ2=T(2) 函数)tan(ϕω+=x A y 和)cot(ϕω+=x A y 的周期都是ωπ=T (3) 五点法作)sin(ϕω+=x A y 的简图,设ϕω+=x t ,取0、2π、π、23π、π2来求相应x 的值以及对应的y 值再描点作图。

高三 三角函数 教师版

高三 三角函数 教师版

个性化教学辅导导学案教学课题 三角函数图像与性质课时计划 第()次课授课教师 学科 数学 授课日期和时段 上课学生年级上课形式一对一阶段 基础()提高(√)强化(√)教学目标 1.2. 重点、难点重点: 难点:1.(2015课标Ⅰ,8,5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( )A.(k π-41,k π+43),k ∈ZB.(2k π-41,2k π+43),k ∈Z C.(k-41,k+43),k ∈ZD.(2k -41,2k+43),k ∈Z [答案] .D[解析] 由题图可知=-=1,所以T=2,ω=π, 又由题图知 f=0,即+φ=+2kπ,k ∈Z,得φ=+2kπ,k ∈Z,此时f(x)=cos=cos ,k ∈Z,由2kπ<πx+<2kπ+π,k ∈Z,得2k-<x<2k+,k ∈Z,所以f(x)的单调递减区间为,k ∈Z,故选D.2. (2014课标Ⅰ,7,5分)在函数①y=cos|2x|,②y=|cos x|,③y=cos (2x+6π),④y=tan (2x-4π)中,最小正周期为π的所有函数为( )A.①②③B.①③④C.②④D.①③ [答案] A[解析] ①y=cos|2x|=cos 2x,最小正周期为π;②由图象知y=|cos x|的最小正周期为π;③y=cos 的最小正周期T==π;④y=tan 的最小正周期T=.3. (2014课标Ⅰ,2,5分)若tan α>0,则( )A.sin α>0B.cos α>0C.sin 2α>0D.cos 2α>0 [答案] C[解析] 由tan α>0得α是第一、三象限角,若α是第三象限角,则A,B 错;由sin 2α=2sin αcos α知sin 2α>0,C 正确;α取时,cos 2α=2cos 2α-1=2×-1=-<0,D 错.故选C.4. (2010新课标全国, 6, 5分)如图, 质点P 在半径为2的圆周上逆时针运动, 其初始位置为P 0(, -), 角速度为1, 那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )[答案] C[解析] 当P 在初始位置时, t=0, d=, 故排除A, D;当P 开始逆时针方向运动, d 减小, 故选C.5. (2011课标, 7, 5分)已知角θ的顶点与原点重合, 始边与x 轴的正半轴重合, 终边在直线y=2x 上, 则cos 2θ=( ) A. 54-B. 53-C. 53D. 54[答案] B[解析] 由题意知tan θ=2, cos 2θ=cos 2θ-sin 2θ====-, 故选B.6. (2011全国, 7, 5分)设函数f(x)=cos ωx(ω>0), 将y=f(x)的图象向右平移3π个单位长度后, 所得的图象与原图象重合, 则ω的最小值等于( ) A.31B. 3C. 6D. 9 [答案] C[解析] 将f(x)向右平移个单位长度得g(x)=f=cos=cos, 则-ω=2kπ,∴ω=-6k, 又ω>0, ∴k<0, 当k=-1时, ω有最小值6, 故选C. 7. (2011课标, 11, 5分)设函数f(x)=sin (2x+4π)+cos (2x+4π), 则( ) A. y=f(x)在(0,2π)单调递增, 其图象关于直线x=4π对称 B. y=f(x)在(0,π)单调递增, 其图象关于直线x=π对称C. y=f(x)在(0,2π)单调递减, 其图象关于直线x=4π对称 D. y=f(x)在(0,2π)单调递减, 其图象关于直线x=2π对称 [答案] D [解析] f(x)=sin+cos =·sin =cos 2x, 其图象如下. 故选D.8.(2012大纲全国, 4, 5分) 已知α为第二象限角, sin α=53, 则sin 2α=( ) A. 2524-B. 2512-C. 2512 D. 2524 [答案] A[解析] 由题意可知cos α=-, 则sin 2α=2sin αcos α=2××=2524-, 故选A. 9.(2012课标全国, 9, 5分) 已知ω>0, 0<φ<π, 直线x=4π和x=4π5是函数f(x) =sin(ωx+φ) 图象的两条相邻的对称轴, 则φ=( ) A.4π B. 3π C. 2π D. 4π3 [答案] A [解析]=2, 得ω=1, ∴f(x) =sin(x+φ) , 则4π+φ=kπ+(k ∈Z) , φ=kπ+4π, 又0<φ<π, ∴φ=4π, 故选A. 10.(2012大纲全国, 3, 5分) 若函数f(x) =sin3x ϕ+(φ∈[0, 2π]) 是偶函数, 则φ=( ) A.2π B. 3π2 C. 2π3 D. 3π5 [答案] C[解析] 由已知f(x) =sin是偶函数, 可得=kπ+, 即φ=3kπ+2π3(k ∈Z) . 又φ∈[0, 2π], 所以φ=π3, 故选C.11.(2012大纲全国, 10, 5分) 已知F 1、F 2为双曲线C: x 2-y 2=2的左、右焦点, 点P 在C 上, |PF 1|=2|PF 2|, 则cos ∠F 1PF 2=( ) A.41 B.53 C. 43 D. 54[答案] C [解析] ∵a=b=, ∴c=2. 由得|PF 1|=4, |PF 2|=2,由余弦定理得cos ∠F 1PF 2==. 故选C.12.(2013课标Ⅱ,6,5分). 已知sin 2α=32, 则cos 2)4π(+α=( )A.61 B. 31 C.21 D. 32[答案] A [解析] cos 2===61. 选A. 13.(2013课标Ⅱ,4,5分). △ABC 的内角A, B, C 的对边分别为a, b, c, 已知b=2, B=6π, C=4π, 则△ABC 的面积为( ) A. 23+2 B. 3+1 C. 23-2 D. 3-1[答案] B [解析] 由正弦定理=及已知条件得c=2.又sin A=sin(B+C) =×+×=. 从而S △ABC =bcsin A=×2×2×=+1. 故选B.14.(2013课标Ⅰ, 10,5分). 已知锐角△ABC 的内角A, B, C 的对边分别为a, b, c, 23cos 2A+cos 2A=0, a=7, c=6, 则b=( )A. 10B. 9C. 8D. 5 [答案] D[解析] 由23cos 2A+cos 2A=0得25cos 2A=1,因为A 为锐角, 所以cos A=. 又由a 2=b 2+c 2-2bccos A 得49=b 2+36-b, 整理得5b 2-12b-65=0, 解得b=-(舍) 或b=5, 故选D.15. (2014课标Ⅱ,14,5分)函数f(x)=sin(x+φ)-2sin φcos x 的最大值为________. [答案] 1[解析] f(x)=sin(x+φ)-2sin φcos x=sin xcosφ+cosxsin φ-2sin φcos x=sin xcos φ-cos xsin φ=sin(x -φ)≤1, 所以f(x)max =1.16. (2014课标Ⅰ,16,5分)如图,为测量山高MN,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN=60°,C 点的仰角∠CAB=45°以及∠MAC=75°;从C 点测得∠MCA=60°.已知山高BC=100 m,则山高MN=________m.[答案] 150[解析] 在Rt △ABC 中,∠CAB=45°,BC=100 m,所以AC=100 m.在△AMC 中,∠MAC=75°,∠MCA=60°,从而∠AMC=45°,由正弦定理得,=,因此AM=100 m.在Rt △MNA 中,AM=100m,∠MAN=60°,由=sin 60°得MN=100×=150 m,故填150.17. (2011全国, 14, 5分)已知α∈(π,2π3), tan α=2, 则cos α= . [答案]55[解析] 由α∈及tan α=2得sin α=2cos α<0, 又sin 2α+cos 2α=1, ∴cos α=-.18. (2011课标, 15, 5分)△ABC 中, B=120°, AC=7, AB=5, 则△ABC 的面积为 . [答案][解析]由余弦定理得b 2=a 2+c 2-2accos B, 即49=a 2+25-2×5×acos 120°. 整理得a 2+5a-24=0, 解得a=3或a=-8(舍). ∴S △ABC =acsin B=×3×5sin 120°=.19. (2011全国, 15, 5分)已知正方体ABCD-A 1B 1C 1D 1中, E 为C 1D 1的中点, 则异面直线AE 与BC 所成角的余弦值为 . [答案]32 [解析] 如图, 取A 1B 1的中点F, 连结EF 、AF, 可得EF ∥BC, 则∠AEF 为异面直线AE 与BC 所成的角, 设正方体的棱长为2, 则在Rt △AFE 中, EF=2, AF=, AE=3, 所以cos ∠AEF==.[答案]6π5 [解析] 20.由已知条件可得y=2sin, 又由0≤x<2π得-≤x -<, 当x-=时y 最大, 此时x=.21.(2013课标Ⅱ,16,5分) 函数y=cos(2x+φ) (-π≤φ< π) 的图象向右平移个单位后, 与函数y=sin(2x+3π)的图象重合, 则φ= . [答案]3ππ [解析] 令y=f(x) =cos(2x+φ). 将其向右平移个单位后得f =cos =cos(2x+φ-π) =sin=sin , 因为要与y=sin 的图象重合, 所以φ-=+2kπ(k ∈Z). φ=2kπ+π(k ∈Z), 又-π≤φ< π, 所以φ=π.22.(2013课标Ⅰ, 16,5分). 设当x=θ时, 函数f(x) =sin x-2cos x 取得最大值, 则cos θ= . [答案] 552-[解析] f(x) =sin x-2cos x=5sin(x-φ), 其中cos φ=55, sin φ=552 ,当x-φ=2kπ+时, f(x) 取得最大值, 此时x=2kπ++φ, 即θ=2kπ++φ, cos θ=cos=-sin φ=552-. 23.(2015课标Ⅱ,17,12分)△ABC 中,D 是BC 上的点,AD 平分∠BAC,BD=2DC. (1)求Csin Bsin ∠∠;(2)若∠BAC=60°,求∠B. [答案] (1)由正弦定理得=,=. 因为AD 平分∠BAC,BD=2DC, 所以==.(2)因为∠C=180°-(∠BAC+∠B),∠BAC=60°, 所以sin ∠C=sin(∠BAC+∠B)=cos ∠B+sin ∠B.由(1)知2sin ∠B=sin ∠C, 所以tan ∠B=,即∠B=30°.24.(2015课标Ⅰ,17,12分)已知a,b,c 分别为△ABC 内角A,B,C 的对边,sin 2B=2sin Asin C. (1)若a=b,求cos B;(2)设B=90°,且a=,求△ABC 的面积. [答案] (1)由题设及正弦定理可得b 2=2ac. 又a=b,可得b=2c,a=2c.由余弦定理可得cos B==.(6分)(2)由(1)知b 2=2ac. 因为B=90°,由勾股定理得a 2+c 2=b 2. 故a 2+c 2=2ac,得c=a=.所以△ABC 的面积为1.(12分)25. (2014课标Ⅱ,17,12分)四边形ABCD 的内角A 与C 互补,AB=1,BC=3,CD=DA=2. (Ⅰ)求C 和BD;(Ⅱ)求四边形ABCD 的面积. [答案] (Ⅰ)由题设及余弦定理得 BD 2=BC 2+CD 2-2BC·CDcos C =13-12cos C,①BD 2=AB 2+DA 2-2AB·DAcos A =5+4cos C.②由①,②得cos C=,故C=60°,BD=.(Ⅱ)四边形ABCD 的面积S=AB·DAsin A+BC·CDsin C=sin 60°=2.26. (2014课标Ⅰ,23,10分)选修4—4:坐标系与参数方程已知曲线C:42x +92y =1,直线l:(t 为参数).(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A,求|PA|的最大值与最小值.[答案] (Ⅰ)曲线C 的参数方程为(θ为参数).直线l 的普通方程为2x+y-6=0.(Ⅱ)曲线C 上任意一点P(2cos θ,3sin θ)到l 的距离为d=|4cos θ+3sin θ-6|,则|PA|==|5sin(θ+α)-6|,其中α为锐角,且tan α=.当sin(θ+α)=-1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.27.(2011全国, 18, 12分)△ABC的内角A、B、C的对边分别为a、b、c, asinA+csin C-2asin C=bsin B. (Ⅰ)求B;(Ⅱ)若A=75°, b=2, 求a, c.[答案] (Ⅰ)由正弦定理得a2+c2-2ac=b2. (3分)由余弦定理得b2=a2+c2-2accos B.故cos B=, 因此B=45°. (6分)(Ⅱ)sin A=sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=. (8分)故a=b×==1+,c=b×=2×=. (12分)28.(2012大纲全国, 17, 10分) △ABC中, 内角A、B、C成等差数列, 其对边a、b、c满足2b2=3ac, 求A. [答案] 由A、B、C成等差数列及A+B+C=180°得B=60°, A+C=120°.由2b2=3ac及正弦定理得2sin2B=3sin Asin C,故sin Asin C=. (4分)cos(A+C) =cos Acos C-sin Asin C=cos Acos C-,即cos Acos C-=-,cos Acos C=0, (7分)cos A=0或cos C=0,所以A=90°, 或A=30°. (10分)29.(2012课标全国, 17, 12分) 已知a, b, c分别为△ABC三个内角A, B, C的对边, c=asin C-ccos A.(1) 求A;(2) 若a=2, △ABC的面积为, 求b, c.[答案] 29.(1) 由c=asinC-c·cos A及正弦定理得·sin A·sin C-cos A·sin C-sin C=0.又0<A<π, 故A=.(2) △ABC的面积S=bcsin A=, 故bc=4. 而a2=b2+c2-2bccos A, 故b2+c2=8.解得b=c=2.。

高考理科数学一轮复习课件三角函数的图象与性质

高考理科数学一轮复习课件三角函数的图象与性质

要点三
反思
在解答三角函数问题时,我需要注意 哪些问题?如何更好地运用三角函数 的性质进行求解?在解题过程中,我 是否充分利用了题目中的条件?如何 提高自己的解题速度和准确性?
THANKS
感谢观看
02
(2020全国卷II)已知函数$f(x) = sin(omega x + varphi)(omega > 0,|varphi| < frac{pi}{2})$的最小正周 期为$pi$,且$f(frac{pi}{6}) = frac{1}{2}$,求$f(x)$的解 析式及单调递增区间。 Nhomakorabea03
(2021全国卷III)已知函数$f(x) = 2sin(omega x + varphi) - 1(omega > 0,|varphi| < frac{pi}{2})$的图象过 点$(frac{pi}{12},1)$,且相邻两条对称轴之间的距离为 $frac{pi}{2}$,求$f(x)$的单调递增区间和对称中心。
02
三角函数图像绘制方法
单位圆法绘制正弦、余弦函数图像
单位圆与正弦、余弦函数 的关系
单位圆上的点坐标与正弦、余弦函数值对应 。
绘制步骤
建立平面直角坐标系,以原点为圆心画一个单位圆 ,标记特殊角的正弦、余弦值对应的点,用平滑曲 线连接各点。
图像特点
正弦函数图像为波浪形,余弦函数图像为余 弦波形,两者相位相差90度。
地理测量
三角函数可以应用于地理测量中,如测量地球表面的距离、高度和角度等参数,以及绘 制地图和进行导航等。
潮汐现象
三角函数可以描述月球和太阳对地球引力作用产生的潮汐现象,以及潮汐的高度和时间 等参数。
06

2021高考数学考前微专题09三角函数的性质(教师版)

2021高考数学考前微专题09三角函数的性质(教师版)

1 借助三角函数图像研究三角函数的性质 三角函数的图像可以直观地反映三角函数的性质,详见下表.
函数
图像
定义域 值域 周期性 奇偶性
R
最小正周期为 奇函数 增区间:
R
最小正周期为 偶函数 增区间:
单调性
减区间:
减区间:
R 最小正周期为
奇函数
增区间:
没有减区间
1
对称轴:
对称性
对称中心:
对称轴: 对称中心:
例 2 已知向量
.
(I)若 a∥b,求 x 的值;
(Ⅱ)记
,求 f(x)的最大值和最小值以及对应的 x 的值.
思路探求:本题以平面向量的坐标运算为载体,考查三角函数的最值问题,设问朴实,注重基础,利用三角函数线可
以快速求解.
(I)由 a∥b,可得
,从而 tanx= .又
,故
.
(Ⅱ)
因为
,所以
.
如图所示,
解法 2:结合“五点法”,由图知
,解得
,即
.

,解得
, 又 f(x) 的 最 小 正 周 期 为
, 结 合 已 知 图 像 可 得 f(x) 的 单 调 递 减 区 间 为
. 此外,既然三角函数是一类特殊的函数,那么,求解一般函数的单调区间的求导法也适合本题,得到解法 3
解法 3:结合“五点法”,由图知
因为 f(x)的最小正周期为π,所以
,解得
.又当
时,f(x)取得最小值,故
,得
,可取 .
于是
,作图知,f(2)<f(0)<f(-2),选 D
方法点睛本题还可以通过周期性与对称性,将自变量转移到一个单调区间内进行比较.另外,三角函数作图有两种常 用的方法:描点法(五点法)和变换法.使用“五点法”时,要注意区分是正弦型函数还是余弦型函数;使用变换法时,要 特别注意是先平移还是先伸缩,以免出错. 5 有关三角函数性质的综合性问题 三角函数是整个函数理论中的一个组成部分,它不仅具备一般函数所具有的概念性强、内容丰富、联系广泛等特点, 而且具备三角函数本身所具有的变化规律多样、变换形式复杂等特点.因此,三角函数的性质是近几年高考数学交汇 命题的热点之一.

新教材适用高考数学二轮总复习三角函数的图象与性质核心考点2三角函数的图象与解析式教师用书(含答案)

新教材适用高考数学二轮总复习三角函数的图象与性质核心考点2三角函数的图象与解析式教师用书(含答案)

新教材适用高考数学二轮总复习教师用书:核心考点2 三角函数的图象与解析式核心知识·精归纳 三角函数图象的变换多维题组·明技法角度1:三角函数图象变换1. (2023·新城区校级模拟)将f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象向左平移π3个单位长度后与函数g (x )=cos ωx 图象重合,则ω的最小值为( C )A .14 B .12 C .34D .32【解析】 将f (x )的图象向左平移π3个单位长度后可得,f ⎝⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫ωx +π3ω+π4,∵g (x )=cos ωx =sin ⎝ ⎛⎭⎪⎫ωx +π2,∴π3ω+π4=π2+2k π,k ∈Z ,解得ω=34+6k ,当k =0时,ω取得最小值34.故选C .2. (2023·九江模拟)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2图象上相邻两条对称轴之间的距离为π2,将函数y =f (x )的图象向左平移π3个单位后,得到的图象关于y 轴对称,则函数f (x )的一个对称中心是( C )A .⎝ ⎛⎭⎪⎫π6,0B .⎝ ⎛⎭⎪⎫π3,0 C .⎝ ⎛⎭⎪⎫π12,0 D .⎝⎛⎭⎪⎫5π12,0【解析】 ∵函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2图象上相邻两条对称轴之间的距离为12×2πω=π2,∴ω=2.将函数y =f (x )的图象向左平移π3个单位后,得到y =sin ⎝ ⎛⎭⎪⎫2x +2π3+φ图象,再根据所得图象关于y 轴对称,∴2π3+φ=π2,∴φ=-π6,f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6.令2x -π6=k π,k ∈Z ,求得x =k π2+π12,k ∈Z ,可得函数f (x )的对称中心为⎝⎛⎭⎪⎫k π2+π12,0,k ∈Z .故选C .角度2:三角函数的图象及其应用3. (2023·山东模拟)函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的图象如图,则下列有关f (x )性质的描述正确的是( C )A .φ=2π3B .x =2π3+k π,k ∈Z 为函数f (x )的对称轴C .f (x )向左移π12后的函数为偶函数D .函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π2,7π12+k π2,k ∈Z【解析】 由图象可得:函数最小值为-1,所以A =1,又因为T =4⎝⎛⎭⎪⎫7π12-π3=π,即2πω=π,所以ω=2,又因为f ⎝ ⎛⎭⎪⎫π3=sin ⎝ ⎛⎭⎪⎫2π3+φ=0,所以2π3+φ=2k π+π,k ∈Z ,所以φ=2k π+π3,k ∈Z ,又因为0<φ<π,所以k =0,φ=π3,故A 错误;所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3,令2x +π3=k π+π2,k ∈Z ,可得x =k π2+π12,k ∈Z ,即f (x )的对称轴为x=k π2+π12,k ∈Z ,故B 错误;设g (x )为函数f (x )向左移π12后的函数,则有g (x )=f ⎝ ⎛⎭⎪⎫x +π12=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π3=sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x ,为偶函数,故C 正确;由2k π+π2≤2x +π3≤2k π+3π2,k ∈Z ,可得k π+π12≤x ≤k π+7π12,k ∈Z ,所以函数f (x )的单调递减区间为:⎣⎢⎡⎦⎥⎤k π+π12,k π+7π12,k ∈Z ,故D 错误.故选C .4. (2023·昆明一模)已知f (x )=2sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,A ⎝ ⎛⎭⎪⎫π2,1,B ⎝ ⎛⎭⎪⎫11π8,2为y =f (x )的图象上两点,则f (2π)=_-1__.【解析】 因为A ⎝ ⎛⎭⎪⎫π2,1,B ⎝ ⎛⎭⎪⎫11π8,2为y =f (x )的图象上两点,所以11π8-π2T=34π-π62π,解得T =3π=2πω,即ω=23.所以f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ.又因为f ⎝ ⎛⎭⎪⎫π2=2sin ⎝ ⎛⎭⎪⎫π3+φ=1,sin ⎝ ⎛⎭⎪⎫π3+φ=12,所以π3+φ=π6+2k π,k ∈Z 或π3+φ=5π6+2k π,k ∈Z ,即φ=-π6+2k π,k ∈Z 或φ=π2+2k π,k ∈Z ,因为|φ|<π2,所以φ=-π6,即f (x )=2sin ⎝ ⎛⎭⎪⎫23x -π6.f (2π)=2sin ⎝ ⎛⎭⎪⎫43π-π6=2sin 7π6=-2sin π6=-1.故答案为-1.方法技巧·精提炼 解三角函数图象题的方法y =A sin(ωx +φ)+B (A >0,ω>0):(1)最值定A ,B :根据给定的函数图象确定最值,设最大值为M ,最小值为m ,则M =A +B ,m =-A +B ,解得B =M +m2,A =M -m2.(2)T 定ω:由周期的求解公式T =2πω,可得ω=2πT.(3)点坐标定φ:一般运用代入法求解φ值,注意在确定φ的值的时候,往往以寻找“五点法”中的某一个点为突破口,即“峰点”“谷点”与“三个中心点”.加固训练·促提高1. (2023·定西模拟)将函数f (x )=sin x cos x +3cos 2x 的图象向右平移φ个单位长度,可得函数y =cos ⎝⎛⎭⎪⎫2x +π6+32的图象,则φ的最小正值为( A ) A .5π6B .2π3C .π6D .π3【解析】 f (x )=sin x cos x +3cos 2x =12sin 2x +32(1+cos 2x )=sin ⎝ ⎛⎭⎪⎫2x +π3+32,故图象向右平移φ个单位长度得到f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3-2φ+32,又y =cos ⎝ ⎛⎭⎪⎫2x +π6+32=sin ⎝ ⎛⎭⎪⎫2x +2π3+32,令π3-2φ=2π3+2k π,k ∈Z ,解得φ=-π6-k π,k ∈Z ,当k =-1时,φ取得最小正值,最小正值为φ=5π6.故选A .2. (2023·海淀区校级三模)已知函数f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,0<φ<π2的部分图象如图,f (x 1)=f (x 2)=-32,则x 1+x 2=_-4__,cos ⎣⎢⎡⎦⎥⎤π6x 1-x 2= 34.【解析】 结合题意可知,f (0)=2sin φ=1,sin φ=12,∵0<φ<π2,φ=π6,又由图象可知,12T >52,即T =2πω>5,解得0<ω<2π5,又由f ⎝ ⎛⎭⎪⎫52=2sin ⎝ ⎛⎭⎪⎫52ω+π6=0,即52ω+π6=π+2k π,k ∈Z ,即ω=π3+45k π,k ∈Z ,从而ω=π3,故f (x )=2sin ⎝ ⎛⎭⎪⎫π3x +π6,令π3x +π6=π2+k π,k ∈Z ,则x =1+3k ,从而f (x )的对称轴为x =1+3k ,k ∈Z ,由图象可知,x =x 1与x =x 2关于x =-2对称,即x 1+x 2=-4,x 2=-4-x 1,因为f (x 1)=2sin ⎝ ⎛⎭⎪⎫π3x 1+π6=-32,即sin ⎝ ⎛⎭⎪⎫π3x 1+π6=-34,所以cos ⎣⎢⎡⎦⎥⎤π6x 1-x 2=cos ⎣⎢⎡⎦⎥⎤π64+2x 1=cos ⎝ ⎛⎭⎪⎫π3x 1+π6+π2=-sin ⎝ ⎛⎭⎪⎫π3x 1+π6=34.故答案为-4;34.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题09 三角函数1.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案.2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③【答案】C【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin cos ++x xx x2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .【名师点睛】本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |【答案】A【解析】作出因为sin ||y x =的图象如下图1,知其不是周期函数,排除D ; 因为cos cos y x x ==,周期为2π,排除C ;作出cos2y x =图象如图2,由图象知,其周期为π2,在区间(4π,2π)单调递增,A 正确; 作出sin 2y x =的图象如图3,由图象知,其周期为π2,在区间(4π,2π)单调递减,排除B ,故选A .图1图2图3【名师点睛】本题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各函数图象,即可作出选择.本题也可利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数. 4.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B .55C .33D .255【答案】B【解析】2sin 2cos21αα=+Q ,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭Q ,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,5sin α∴=,故选B .【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案. 5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④【答案】D【解析】①若()f x 在[0,2π]上有5个零点,可画出大致图象, 由图1可知,()f x 在(0,2π)有且仅有3个极大值点.故①正确;②由图1、2可知,()f x 在(0,2π)有且仅有2个或3个极小值点.故②错误;④当()f x =sin (5x ωπ+)=0时,5x ωπ+=k π(k ∈Z ),所以ππ5k x ω-=, 因为()f x 在[0,2π]上有5个零点, 所以当k =5时,π5π52πx ω-=≤,当k =6时,π6π52πx ω-=>,解得1229510ω≤<, 故④正确.③函数()f x =sin (5x ωπ+)的增区间为:πππ2π2π252k x k ω-+<+<+,732π2π1010k k x ωω⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭<<.取k =0,当125ω=时,单调递增区间为71ππ248x -<<, 当2910ω=时,单调递增区间为73ππ2929x -<<, 综上可得,()f x 在π0,10⎛⎫⎪⎝⎭单调递增.故③正确. 所以结论正确的有①③④.故本题正确答案为D.【名师点睛】本题为三角函数与零点结合问题,难度大,可数形结合,分析得出答案,要求高,理解深度高,考查数形结合思想.注意本题中极小值点个数是动态的,易错,正确性考查需认真计算,易出错.6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且24g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B .2-C .2D .2【答案】C【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=; 又12π()sin,2π,122g x A x T ωω=∴==∴2ω=,又π()24g =2A =,∴()2sin 2f x x =,3π() 2.8f =故选C. 【名师点睛】本题主要考查函数的性质和函数的求值问题,解题关键是求出函数()g x ,再根据函数性质逐步得出,,A ωϕ的值即可.7.【2018年高考全国Ⅲ卷理数】若1sin 3α=,则cos2α=A .89B .79 C .79-D .89-【答案】B【解析】2217cos 212sin 12()39αα=-=-⨯=. 故选B.【名师点睛】本题主要考查三角函数的求值,考查考生的运算求解能力,考查的核心素养是数学运算.8.【2018年高考全国卷II 理数】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是A .π4 B .π2C .3π4D .π【答案】A【解析】因为()πcos sin 2cos 4f x x x x ⎛⎫=-=+ ⎪⎝⎭,所以由π02ππ2π()4k x k k +≤+≤+∈Z 得π3π2π2π()44k x k k -+≤≤+∈Z , 因此[]π3ππ3ππ,,,,,,044444a a a a a a a ⎡⎤-⊂-∴-<-≥-≤∴<≤⎢⎥⎣⎦,从而a 的最大值为π4,故选A.【名师点睛】解答本题时,先确定三角函数单调减区间,再根据集合包含关系确定a 的最大值.函数()sin (0,0)y A x B A =++>>ωϕω的性质: (1)max min =+y A B y A B =-,. (2)周期2.T =πω(3)由 ()ππ2x k k +=+∈Z ωϕ求对称轴. (4)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间.9.【2018年高考天津理数】将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数A .在区间35[,]44ππ上单调递增 B .在区间3[,]4ππ上单调递减C .在区间53[,]42ππ上单调递增 D .在区间3[,2]2ππ上单调递减 【答案】A【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为ππsin 2sin2105y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦. 则函数的单调递增区间满足()ππ2π22π22k x k k -≤≤+∈Z ,即()ππππ44k x k k -≤≤+∈Z , 令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦. 函数的单调递减区间满足:()π3π2π22π22k x k k +≤≤+∈Z ,即()π3πππ44k x k k +≤≤+∈Z ,令1k =可得一个单调递减区间为:5π7π,44⎡⎤⎢⎥⎣⎦. 故选A.【名师点睛】本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.10.【2018年高考浙江卷】函数y =2xsin2x 的图象可能是A .B .C .D .【答案】D【解析】令()2sin2xf x x =,因为()()(),2sin22sin2xxx f x x x f x -∈-=-=-=-R ,所以()2sin2xf x x =为奇函数,排除选项A ,B ;因为π,π2x ⎛⎫∈ ⎪⎝⎭时,()0f x <,所以排除选项C , 故选D.【名师点睛】解答本题时,先研究函数的奇偶性,再研究函数在π,π2⎛⎫⎪⎝⎭上的符号,即可作出判断.有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置; (2)由函数的单调性,判断图象的变化趋势; (3)由函数的奇偶性,判断图象的对称性; (4)由函数的周期性,判断图象的循环往复.11.【2017年高考全国Ⅲ理数】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D. 【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言. 12.【2017年高考全国Ⅲ理数】设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图象关于直线8π3x =对称 C .(π)f x +的一个零点为π6x = D .()f x 在(π2,π)单调递减【答案】D【解析】函数()f x 的最小正周期为2π2π1T ==,则函数()f x 的周期为()2πT k k =∈Z ,取1k =-,可得函数()f x 的一个周期为2π-,选项A 正确;函数()f x 图象的对称轴为()ππ3x k k +=∈Z ,即()ππ3x k k =-∈Z ,取3k =,可得y =f (x )的图象关于直线8π3x =对称,选项B 正确; ()πππcos πcos 33f x x x ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()f x 的零点满足()πππ32x k k +=+∈Z ,即()ππ6x k k =+∈Z ,取0k =,可得(π)f x +的一个零点为π6x =,选项C 正确; 当π,π2x ⎛⎫∈⎪⎝⎭时,π5π4π,363x ⎛⎫+∈ ⎪⎝⎭,函数()f x 在该区间内不单调,选项D 错误.故选D.【名师点睛】(1)求最小正周期时可先把所给三角函数式化为(n )si y A x ωϕ=+或(s )co y A x ωϕ=+的形式,则最小正周期为2πT ω=;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x b ω=+的形式.(2)求()()sin 0()f x A x ωϕω+≠=的对称轴,只需令()ππ2x k k ωϕ+=+∈Z ,求x ;求f (x )的对称中心的横坐标,只需令π()x k k ωϕ+=∈Z 即可.13.【2017年高考天津卷理数】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 A .23ω=,12ϕπ= B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π, 由ϕ<π得12ϕπ=,故选A . 【名师点睛】关于sin()y A x ωϕ=+的问题有以下两种题型:①提供函数图象求解析式或参数的取值范围,一般先根据图象的最高点或最低点确定A ,再根据最小正周期求ω,最后利用最高点或最低点的坐标满足解析式,求出满足条件的ϕ的值; ②题目用文字叙述函数图象的特点,如对称轴方程、曲线经过的点的坐标、最值等,根据题意自己画出大致图象,然后寻求待定的参变量,题型很活,一般是求ω或ϕ的值、函数最值、取值范围等.14.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________.【答案】π2【解析】函数()2sin 2f x x ==1cos 42x -,周期为π2. 【名师点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题.将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可. 15.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ . 【答案】210【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=,解得tan 2α=,或1tan 3α=-. πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()2222222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎫+-=+⎪+⎝⎭ 2222tan 1tan =2tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式22222122==22110⎛⎫⨯+- ⎪+⎝⎭ 当1tan 3α=-时,上式22112()1()2233[]=1()13⨯-+---+ 综上,π2sin 2410α⎛⎫+= ⎪⎝⎭ 【名师点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.由题意首先求得tan α的值,然后利用两角和的正弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.16.【2018年高考全国Ⅰ理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【答案】33【解析】()()212cos 2cos 24cos 2cos 24cos 1cos 2f x x x x x x x ⎛⎫'=+=+-=+-⎪⎝⎭, 所以当1cos 2x <时函数单调递减,当1cos 2x >时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z ,函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z , 所以当π2π,3x k k =-∈Z 时,函数()f x 取得最小值,此时33sin 22x x =-=-, 所以()min 33332f x ⎛=⨯= ⎝⎭,故答案是332-.【名师点睛】该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值. 17.【2018年高考北京卷理数】设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________. 【答案】23【解析】因为()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值, 所以()()ππ22π 8463k k k k -=∈∴=+∈Z Z ,ωω, 因为0>ω,所以当0k =时,ω取最小值为23.【名师点睛】本题主要考查三角函数的图象和性质,考查考生的逻辑推理能力以及运算求解能力,考查的核心素养是逻辑推理、数学运算.18.【2018年高考全国Ⅲ理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3【解析】0πx ≤≤Q ,ππ19π3666x ∴≤+≤,由题可知πππ3π336262x x +=+=,,或π5π362x +=,解得π4π,99x =,或7π9,故有3个零点.【名师点睛】本题主要考查三角函数的图象与性质,考查数形结合思想和考生的运算求解能力,考查的核心素养是数学运算.19.【2018年高考江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________. 【答案】π6-【解析】由题意可得2sin π13⎛⎫+=± ⎪⎝⎭ϕ,所以2πππππ()326k k k +=+=-+∈Z ,ϕϕ,因为ππ22-<<ϕ,所以π0,.6k ==-ϕ 【名师点睛】由对称轴得2πππππ()326k k k +=+=-+∈Z ,ϕϕ,再根据限制范围求结果.函数()sin y A x B =++ωϕ(A >0,ω>0)的性质:(1)max min ,y A B y A B =+=-+; (2)最小正周期2πT =ω;(3)由()ππ2x k k +=+∈Z ωϕ求对称轴; (4)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间.20.【2017年高考全国Ⅱ理数】函数()23sin 34f x x x =+-(π0,2x ⎡⎤∈⎢⎥⎣⎦)的最大值是 . 【答案】1【解析】化简三角函数的解析式:()2223131cos 3cos 3cos 1442f x x x x x x ⎛⎫=--=-+=--+ ⎪ ⎪⎝⎭, 由自变量的范围:π0,2x ⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈, 当3cos 2x =时,函数()f x 取得最大值1. 【名师点睛】本题经三角函数式的化简将三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.21.【2017年高考北京卷理数】在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 【答案】79-【解析】因为α和β关于y 轴对称,所以π2π,k k αβ+=+∈Z ,那么1sin sin 3βα==,22cos cos 3αβ=-=(或22cos cos 3βα=-=), 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-.【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则π2π,k k αβ+=+∈Z ,若α与β的终边关于x 轴对称,则2π,k k αβ+=∈Z ,若α与β的终边关于原点对称,则π2π,k k αβ-=+∈Z .22.【2018年高考全国Ⅱ理数】已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 【答案】12-【解析】因为sin cos 1+=αβ,cos sin 0+=αβ,所以()()221sin cos 1,-+-=αα 所以11sin ,cos 22==αβ, 因此()22111111sin sin cos cos sin cos 1sin 1.224442+=+=⨯-=-+=-+=-αβαβαβαα【名师点睛】本题主要考查三角恒等变换,考查考生分析问题、解决问题的能力,考查的核心素养是数学运算.23.【2017年高考江苏卷】若π1tan(),46α-=则tan α= ▲ .【答案】75【解析】11tan()tan7644tan tan[()]14451tan()tan 1446ααααππ+-+ππ=-+===ππ---.故答案为75. 【考点】两角和的正切公式【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般有如下两种思路: ①适当变换已知式,进而求得待求式的值;②变换待求式,便于将已知式的值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,进而确定角.24.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域. 【答案】(1)π2θ=或3π2;(2)33[1+.【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+,即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+, 故2sin cos 0x θ=, 所以cos 0θ=. 又[0,2π)θ∈, 因此π2θ=或3π2. (2)2222ππππsin sin 124124y fx f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 21336212sin 22222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎫⎝⎭⎝⎭=+=--⎪⎪⎝⎭3π1223x ⎛⎫=-+ ⎪⎝⎭. 因此,函数的值域是33[1,1]22-+. 【名师点睛】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力.25.【2017年高考浙江卷】已知函数22sin cos 23cos ()()x x x f x x x =--∈R .(1)求2()3f π的值. (2)求()f x 的最小正周期及单调递增区间.【答案】(1)2;(2)()f x 的最小正周期是π;单调递增区间是2[,],63k k k ππ+π+π∈Z . 【解析】(1)由23sin 32π=,21cos 32π=-,2223131()(()23()32222f π=---⨯-. 得2()23f π=. (2)由22cos 2cos sin x x x =-与sin 22sin cos x x x =得()cos 232f x x x=-2sin(2)6x π=-+.所以()f x 的最小正周期是π. 由正弦函数的性质得3222,262k x k k πππ+π≤+≤+π∈Z ,解得2,63k x k k ππ+π≤≤+π∈Z , 所以,()f x 的单调递增区间是2[,],63k k k ππ+π+π∈Z .【名师点睛】本题主要考查了三角函数的化简,以及函数的性质,是高考中的常考知识点,属于基础题,强调基础的重要性;三角函数解答题中,涉及到周期,单调性,单调区间以及最值等考点时,都属于考查三角函数的性质,首先应把它化为三角函数的基本形式即,然后利用三角函数的性质求解.26.【2017年高考江苏卷】已知向量(cos ,sin ),(3,3),[0,π].x x x ==-∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值. 【答案】(1)5π6x =;(2)0x =时,()f x 取到最大值3;5π6x =时,()f x 取到最小值3- 【解析】(1)因为co ()s ,sin x x =a ,(3,3)=b ,a ∥b , 所以33sin x x =.若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠. 于是3tan x = 又[]0πx ∈,,所以5π6x =. (2)π(cos ,sin )(3,3)3cos 323())6f x x x x x x =⋅=⋅-==+a b . 因为[]0πx ∈,,所以ππ7π[,]666x +∈, 从而π31cos()6x -≤+≤. 于是,当ππ66x +=,即0x =时,()f x 取到最大值3; 当π6x +=π,即5π6x =时,()f x 取到最小值3-27.【2018年高考浙江卷】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (3455-,-).(1)求sin (α+π)的值;()ϕω+=x A y sin ()ϕω+=x A y sin u A y sin =(2)若角β满足sin (α+β)=513,求cos β的值. 【答案】(1)45;(2)56cos 65β=-或16cos 65β=-. 【解析】(1)由角α的终边过点34(,)55P --得4sin 5α=-,所以4sin(π)sin 5αα+=-=.(2)由角α的终边过点34(,)55P --得3cos 5α=-,由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++,所以56cos 65β=-或16cos 65β=-. 【名师点睛】本题主要考查三角函数的定义、诱导公式、两角差的余弦公式,考查考生分析问题、解决问题的能力,运算求解能力,考查的数学核心素养是数学运算.求解三角函数的求值问题时,需综合应用三角函数的定义、诱导公式及三角恒等变换. (1)首先利用三角函数的定义求得sin α,然后利用诱导公式,计算sin (α+π)的值;(2)根据sin (α+β)的值,结合同角三角函数的基本关系,计算cos()+αβ的值,要注意该值的正负,然后根据()βαβα=+-,利用两角差的余弦公式,通过分类讨论,求得cos β的值. 28.【2018年高考江苏卷】已知,αβ为锐角,4tan 3=α,5cos()+=αβ.(1)求cos2α的值; (2)求tan()-αβ的值.【答案】(1)725-;(2)211-. 【解析】(1)因为4tan 3=α,sin tan cos =ααα,所以4sin cos 3=αα.因为22sin cos 1+=αα, 所以29cos 25=α, 因此,27cos 22cos 125=-=-αα. (2)因为,αβ为锐角,所以(0,)+∈παβ.又因为5cos()5+=-αβ, 所以225sin()1cos ()5+=-+=αβαβ, 因此tan()2+=-αβ. 因为4tan 3=α,所以22tan 24tan 21tan 7==--ααα, 因此,tan 2tan()2tan()tan[2()]1tan 2tan()11-+-=-+==-++ααβαβααβααβ.【名师点睛】本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.三角函数求值的三种类型:(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般有如下两种思路: ①适当变换已知式,进而求得待求式的值;②变换待求式,便于将已知式的值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,进而确定角. 29.【2017年高考山东卷理数】设函数ππ()sin()sin()62f x x x ωω=-+-,其中.已知π()06f =. (1)求;(2)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数的图象,求在π3π[,]44-上的最小值. 【答案】(1);(2)最小值为. 【解析】(1)因为ππ()sin()sin()62f x x x ωω=-+-,所以 03ω<<ω()y f x =()y g x =()g x 2ω=32-31()cos cos 2f x x x x ωωω=--33sin cos 22x x ωω=-π3)3x ω=-.由题设知π()06f =,所以πππ63k -=ω,k ∈Z . 故,k ∈Z , 又, 所以.(2)由(1)得()323f x x π⎛⎫=- ⎪⎝⎭.所以()334312g x x x πππ⎛⎫⎛⎫=+-=- ⎪ ⎪⎝⎭⎝⎭. 因为π3π[,]44x ∈-, 所以2,1233x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以当123x ππ-=-,即4x π=-时,取得最小值.【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题时,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽视设定角的范围.难度不大,能较好地考查考生的基本运算求解能力及复杂式子的变形能力等.133(sin )2x x ωω=-62k ω=+03ω<<2ω=()g x 32-。

相关文档
最新文档