【解析】山东省实验中学2015届高三第二次诊断性考试理科数学试题

合集下载

山东省实验中学2015届高三数学第二次诊断性考试试题 文(含解析)

山东省实验中学2015届高三数学第二次诊断性考试试题 文(含解析)

数学【试卷综析】本试卷是高三文科试卷,以基础知识和基本能力为载体,,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,试题重点考查:集合、不等式、向量、导数、简单的线性规划,数列、函数的性质及图象、三角函数的性质、等;考查学生解决实际问题的综合能力,是份较好的试卷【题文】一、选择题(本题包括10小题,每小题5分,共50分.每小题只有一个选项符合题意)【题文】1.设集合{}21212A x x B x x ⎧⎫=-<<=≤⎨⎬⎩⎭,,则A B ⋃=A.{}12x x -≤<B.112x x ⎧⎫-<≤⎨⎬⎩⎭ C.{}2x x <D.{}2x x 1≤<【知识点】集合及其运算A1【答案】A【解析】由题意得B={ x11x -≤≤}则A B ⋃={}12x x -≤<。

【思路点拨】先求出集合B ,再求并集。

【题文】2.已知34,cos tan 254παππαα⎛⎫⎛⎫∈=-- ⎪ ⎪⎝⎭⎝⎭,,则等于 A.7B.17C.17-D.7-【知识点】同角三角函数的基本关系式与诱导公式C2 【答案】B【解析】由4cos 5∂=-,3(,)2ππ∂∈,tan ∂=34,则tan()4π-∂=17【思路点拨】根据同角三角函数基本关系求出正切值,再求结果。

【题文】3.下列有关命题的叙述,①若p q ∨为真命题,则p q ∧为真命题; ②“5x >”是“2450x x -->”的充分不必要条件;③命题:p x R ∃∈,使得210x x +-<,则:p x R ⌝∀∈,使得210x x +-≥;④命题“若2320x x -+=,则12x x ==或”的逆否命题为“若12x x ≠≠或,则2320x x -+≠”。

其中错误的个数为A.1B.2C.3D.4【知识点】命题及其关系A2 【答案】B【解析】若p q 为真命题,则至少有有一个为真,所以不一定为真,所以①错误。

山东省实验中学2015级第二次模拟考试高三数学(理)试题(精编含解析)

山东省实验中学2015级第二次模拟考试高三数学(理)试题(精编含解析)

山东省实验中学2015级第二次模拟考试高三数学试题(理科)2018.6第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合,则下列结论中正确的是()A. B. C. D.【答案】C【解析】分析:由题意首先求得集合B,然后逐一考查所给选项是否正确即可.详解:求解二次不等式可得:,则.据此可知:,选项A错误;,选项B错误;且集合A是集合B的子集,选项C正确,选项D错误.本题选择C选项.2. 已知是实数,是纯虚数,则等于()A. B. C. D.【答案】D【解析】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由题意可知:,为纯虚数,则:,据此可知.本题选择D选项.点睛:本题主要考查复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力.3. 下列关于命题的说法正确的是()A. 命题“若,则”的否命题是“若,则”B. 命题“若,则互为相反数”的逆命题是真命题C. 命题“”的否定是“”D. 命题“若,则”的逆否命题是真命题【答案】B【解析】分析:由题意逐一分析所给的命题的真假即可.详解:逐一分析所给命题的真假:A. 命题“若,则”的否命题是“若,则”,题中说法错误;B. 命题“若,则互为相反数”是真命题,则其逆命题是真命题,题中说法正确;C. 命题“”的否定是“”,题中说法错误;D. 命题“若,则”是假命题,则其逆否命题是假命题,题中说法错误;本题选择B选项.点睛:本题主要考查四种命题的关系,命题真假的判断等知识,意在考查学生的转化能力和计算求解能力.4. 据统计,连续熬夜小时诱发心脏病的概率为,连续熬夜小时诱发心脏病的概率为 . 现有一人已连续熬夜小时未诱发心脏病,则他还能继续连续熬夜小时不诱发心脏病的概率为()A. B. C. D.【答案】A【解析】分析:首先设出题中的事件,然后由题意结合条件概率公式整理计算即可求得最终结果.详解:设事件A为48h发病,事件B为72h发病,由题意可知:,则,由条件概率公式可得:.本题选择A选项.点睛:本题主要考查条件概率公式及其应用等知识,意在考查学生的转化能力和计算求解能力.5. 已知平面向量,满足,则()A. B. C. D.【答案】B【解析】分析:由题意首先求得,然后求解向量的模即可.详解:由题意可得:,且:,即,,,由平面向量模的计算公式可得:.本题选择B选项.点睛:本题主要考查平面向量数量积的运算法则,平面向量模的求解等知识,意在考查学生的转化能力和计算求解能力.6. 某几何体的三视图如右图所示,则该几何体的体积为()A. B. C. D.【答案】C【解析】试题分析:由三视图可知,该几何体为如下图所示的多面体,它是由三棱柱截去三棱锥后所剩的几何体,所以其体积,故选D.考点:三视图.7. 下图的程序框图的算法思路源于我国古代数学名著《九章算术》中的“中国剩余定理”.已知正整数被除余,被除余,被除余,求的最小值.执行该程序框图,则输出的()A. B. C. D.【答案】C【解析】分析:根据正整数n被3除余2,被8除余5,被7除余4,求出n的最小值.详解:正整数n被3除余2,得n=3k+2,k∈N;被8除余5,得n=8l+5,l∈N;被7除余4,得n=7m+4,m∈N;求得n的最小值是53.故选:C点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8. 将的图像向左平移个单位,再向下平移个单位,得到函数的图像,则下列关于函数的说法错误的是()A.函数的最小正周期是B. 函数的一条对称轴是C. 函数的一个零点是D. 函数在区间上单调递减【答案】D【解析】分析:首先求得函数的解析式,然后考查函数的性质即可.详解:由题意可知:,图像向左平移个单位,再向下平移个单位的函数解析式为:.则函数的最小正周期为,A选项说法正确;当时,,函数的一条对称轴是,B选项说法正确;当时,,函数的一个零点是,C选项说法正确;若,则,函数在区间上不单调,D选项说法错误;本题选择D选项.点睛:本题主要考查辅助角公式的应用,三角函数的平移变换,三角函数的性质等知识,意在考查学生的转化能力和计算求解能力.9. 函数的图象可能是()A. B.C. D.【答案】A【解析】分析:由题意结合函数的性质排除错误的函数图象即可求得最终结果.详解:当时,,则选项BC错误;函数的解析式为:可由函数向右平移两个单位得到,而,据此可知是函数的极值点,则是函数的极值点,据此可排除D选项.本题选择A选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.10. 已知函数满足,且是偶函数,当时,,若在区间内,函数有 4 个零点,则实数的取值范围是()A. B. C. D.【答案】D【解析】分析:由题意确定函数的性质,然后将原问题转化为两个函数有4个交点的问题求解实数a的取值范围即可.详解:由题意可知函数是周期为的偶函数,结合当时,,绘制函数图象如图所示,函数有4个零点,则函数与函数的图象在区间内有4个交点,结合函数图象可得:当时:,求解对数不等式可得:,即实数的取值范围是.本题选择D选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.11. 已知双曲线的左右焦点分别为,为双曲线的离心率,是双曲线右支上的点,的内切圆的圆心为,过作直线的垂线,垂足为,则()A. B. C. D.【答案】A【解析】试题分析:根据题意,利用切线长定理,再利用双曲线的定义,把,转化为,从而求得点H的横坐标.再在三角形PCF2中,由题意得,它是一个等腰三角形,从而在三角形中,利用中位线定理得出OB,从而解决问题.解:由题意知:(-c,0)、(c,0),内切圆与x轴的切点是点A,作图∵,及圆的切线长定理知,,设内切圆的圆心横坐标为x,则|(x+c)-(x-c)|=2a,∴x=a,在三角形中,由题意得,它是一个等腰三角形,PC=PF2,∴在三角形中,有:OB==(-PC)=(-)=×2a=a.故选A.考点:双曲线的定义、切线长定理点评:本题考查双曲线的定义、切线长定理.解答的关键是充分利用三角形内心的性质.属于基础题。

山东省实验中学高三上学期第二次诊断考试数学(理)试题 Word版含解析

山东省实验中学高三上学期第二次诊断考试数学(理)试题 Word版含解析

山东省实验中学2015级高三第二次诊断性考试数学试题(理科)2017.11 说明:本试卷满分150分,分为第I卷(选择题)和第II卷(非选择题)两部分,第I卷为第1页至第3页,第II卷为第3页至第6页.试题答案请用2B铅笔或0.5mm签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.第I卷(共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知全集为R,集合A=,B=,则A B=( )A. B. C. D.【答案】C【解析】A=,B=,则A B=,故选C点晴:集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目2. 已知,命题“若则”的否命题是( )A. 若则B. 若则C. 若则D. 若则【答案】A【解析】试题分析:原命题为若则,那么否命题就是若则,所以否命题是若,则,故选A.考点:四种命题3. 已知函数,则的值为( )A. 4B.C. 3D.【答案】B【解析】由已知,故选B4. 空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的无量纲指数,空气质量按照AQI大小分为六级:0~50为优,51~100为良。

101~150为轻度污染,151~200为中度污染,201~250为重度污染,251~300为严重污染。

一环保人士记录去年某地某月10天的AQI的茎叶图。

利用该样本估计该地本月空气质量状况优良(AQI≤100)的天数( )(这个月按30计算)A. 15B. 18C. 20D. 24【答案】B【解析】从茎叶图中可以发现这样本中空气质量优的天数为2,空气质量良的天数为4,该样本中空气质量优良的频率为, 从而估计该月空气质量优良的天数为5. 曲线若和直线围成的图形面积为( )A. B. C. D.【答案】D【解析】试题分析:令,所以面积为.6. 已知函数,则是( )A. 奇函数,且在上单调递增B. 偶函数,且在上单调递增C. 奇函数,且在上单调递减D. 偶函数,且在上单调递减【答案】B【解析】,所以为偶函数,设,则在单调递增,在单调递增,所以在单调递增,故选B7. 函数的图像为( )A. B.C. D.【答案】D【解析】,所以为奇函数,又,所以D选项正确,故选D8. 奇函数定义域为R,当时,,且函数为偶函数,则的值为( )A. B. 2 C. D. 3【答案】A【解析】为R上的奇函数,为偶函数,;是周期为4的周期函数;;故选 A点睛:抽象函数的周期性:(1)若,则函数周期为T;(2)若,则函数周期为|a-b|(3)若,则函数的周期为2a;(4)若,则函数的周期为2a.9. 曲线上的点到直线的最短距离是( )A. B. C. D. 0【答案】C【解析】试题分析:直线的斜率为2。

山东省济南市2015届高三数学下学期第二次模拟试卷理(含解析)

山东省济南市2015届高三数学下学期第二次模拟试卷理(含解析)

2015年山东省济南市高考数学二模试卷(理科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合P={1,m},Q={1,3,5},则“m=5”是“p⊆Q”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.复数z=的虚部是()A. B.﹣ C. D.﹣3.某射击手射击一次命中的概率是0.7,连续两次均射中的概率是0.4,已知某次射中,则随后一次射中的概率是()A. B. C. D.4.如图所示,点P是函数y=2sin(ωx+φ)(x∈R,ω>0)的图象的最高点,M、N是图象与x轴的交点,若,则ω=()A. 8 B. C. D.5.已知f(x)是定义在R上的周期为2的奇函数,当x∈(0,1)时,f(x)=3x﹣1,则f ()=()A.+1 B.﹣+1 C.﹣1 D.﹣﹣16.阅读如图所示的程序框图,运行相应的程序,若输入x的值为﹣5,则输出y的值为()A. 0.5 B. 1 C. 2 D. 47.在不等式组确定的平面区域中,若z=x+2y的最大值为9,则a的值为() A. 0 B. 3 C. 6 D. 98.已知正实数m,n满足m+n=1,且使取得最小值.若曲线y=x a过点P(,),则a 的值为()A.﹣1 B. C. 2 D. 39.若双曲线=1(a>0,b>0)的左、右焦点分别为F1,F2,线段F1F2被抛物线y2=4bx 的焦点分成5:3两段,则此双曲线的离心率为()A. B. C. D.10.函数f(x)的定义域为D,对给定的正数k,若存在闭区间[a,b]⊆D,使得函数f(x)满足:①f(x)在[a,b]内是单调函数;②f(x)在[a,b]上的值域为[ka,kb],则称区间[a,b]为y=f(x)的k级“理想区间”.下列结论错误的是()A.函数f(x)=﹣x2(x∈R)存在1级“理想区间”B.函数f(x)=e x(x∈R)不存在2级“理想区间”C.函数f(x)=(x≥0)存在3级“理想区间”D.函数f(x)=loga(a x﹣)(a>0,a≠1)不存在4级“理想区间”二、填空题:本大题共5个小题,每小题5分,共25分.11.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是根据某地某日早7点至晚8点甲、乙两个监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是.12.二项式(x+)4的展开式中常数项为.13.已知圆C过点(﹣1,0),且圆心在x轴的负半轴上,直线l:y=x+1被该圆所截得的弦长为2,则圆C的标准方程为.14.已知正方形ABCD,M是DC的中点,由=m+n确定m,n的值,计算定积分sinxdx= .15.如图,三个半径都是5cm的小球放在一个半球面的碗中,三个小球的顶端恰好与碗的上沿处于同一水平面,则这个碗的半径R是cm.三、解答题:本大题共6小题,共75分.16.已知向量=(cos(2x﹣),cosx+sinx),=(1,cosx﹣sinx),函数f(x)=.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,已知f(A)=,a=2,B=,求△ABC的面积S.17.已知等差数列{a n}的前n项的和为S n,非常数等比数列{b n}的公比是q,且满足:a1=2,b1=1,S2=3b2,a2=b3.(Ⅰ)求a n与b n;(Ⅱ)设c n=2b n﹣λ•,若数列{c n}是递减数列,求实数λ的取值范围.18.在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠ABC=60°,AB=2CB=2.在梯形ACEF中,EF∥AC,且AC=2EF,EC⊥平面ABCD.(Ⅰ)求证:BC⊥AF;(Ⅱ)若二面角D﹣AF﹣C为45°,求CE的长.19.已知正三棱锥S﹣ABC的侧棱SA,SB,SC两两互相垂直,D,E,F分别是它们的中点,SA=SB=SC=2,现从A,B,C,D,E,F六个点中任取三个点,加上点S,把这四个点每两个点相连后得到一个“空间体”,记这个“空间体”的体积为X(若点S与所取三点在同一平面内,则规定X=0).(Ⅰ)求事件“X=0”的概率;(Ⅱ)求随机变量X的分布列及数学期望.20.已知椭圆=1(a>b>0)的离心率为e,半焦距为c,B(0,1)为其上顶点,且a2,c2,b2,依次成等差数列.(Ⅰ)求椭圆的标准方程和离心率e;(Ⅱ)P,Q为椭圆上的两个不同的动点,且.k BP•k BQ=e2(i)试证直线PQ过定点M,并求出M点坐标;(ii)△PBQ是否可以为直角三角形?若是,请求出直线PQ的斜率;否则请说明理由.21.已知函数f(x)=a x﹣2x(a>0,且a≠1).(Ⅰ)当a=2时,求曲线f(x)在点P(2,f(2))处的切线方程;(Ⅱ)若f(x)的值恒非负,试求a的取值范围;(Ⅲ)若函数f(x)存在极小值g(a),求g(a)的最大值.2015年山东省济南市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合P={1,m},Q={1,3,5},则“m=5”是“p⊆Q”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:直接利用充要条件判断即可.解答:解:集合P={1,m},Q={1,3,5},则“m=5”一定有“p⊆Q”,都是p⊆Q,可得m=3或5,所以后者推不出前者,所以集合P={1,m},Q={1,3,5},则“m=5”是“p⊆Q”的充分不必要条件.故选:A.点评:本题考查充要条件的判断与应用,集合的包含关系的应用,基本知识的考查.2.复数z=的虚部是()A. B.﹣ C. D.﹣考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的除法运算法则化简,然后求出复数的虚部.解答:解:复数z====﹣.复数的虚部是.故选:B.点评:本题考查复数的基本运算,复数的基本概念,考查计算能力.3.某射击手射击一次命中的概率是0.7,连续两次均射中的概率是0.4,已知某次射中,则随后一次射中的概率是()A. B. C. D.考点:相互独立事件的概率乘法公式.专题:计算题;概率与统计.分析:设“某次射中”为事件A,“随后一次的射中”为事件B,则P(AB)=0.4,P(A)=0.7,利用P(B|A)=可得结论.解答:解:设“某次射中”为事件A,“随后一次的射中”为事件B,则P(AB)=0.4,P(A)=0.7,所以P(B|A)==.故选:C.点评:本题考查条件概率,考查学生的计算能力,比较基础.4.如图所示,点P是函数y=2sin(ωx+φ)(x∈R,ω>0)的图象的最高点,M、N是图象与x轴的交点,若,则ω=()A. 8 B. C. D.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.分析:首先判定△MPN为等腰直角三角形,然后通过它的性质求出MN的长度,再求出周期T,进而求得ω.解答:解:因为=0,所以,则△MPN是等腰直角三角形,又点P到MN的距离为2,所以MN=2×2=4,则周期T=2×4=8,所以ω==.故选C.点评:本题主要考查正弦型函数的轴对称性及直角三角形的性质.5.已知f(x)是定义在R上的周期为2的奇函数,当x∈(0,1)时,f(x)=3x﹣1,则f ()=()A.+1 B.﹣+1 C.﹣1 D.﹣﹣1考点:函数奇偶性的性质.专题:函数的性质及应用.分析:利用函数的周期以及函数的奇偶性,通过函数的解析式求解即可.解答:解:f(x)是定义在R上的周期为2的奇函数,当x∈(0,1)时,f(x)=3x﹣1,则f()=f()=f(﹣)=﹣f()=﹣()=1.故选:B.点评:本题考查函数的周期性以及函数的奇偶性,函数值的求法,考查计算能力.6.阅读如图所示的程序框图,运行相应的程序,若输入x的值为﹣5,则输出y的值为()A. 0.5 B. 1 C. 2 D. 4考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的x的值,当x=2时不满足条件|x|>3,计算并输出y的值为4.解答:解:模拟执行程序框图,可得x=﹣5满足条件|x|>3,x=8,满足条件|x|>3,x=5,满足条件|x|>3,x=2,不满足条件|x|>3,y=4,输出y的值为4.故选:D.点评:本题主要考查了循环结构的程序框图,正确判断退出循环的条件是解题的关键,属于基础题.7.在不等式组确定的平面区域中,若z=x+2y的最大值为9,则a的值为() A. 0 B. 3 C. 6 D. 9考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用z的最大值是7,利用数形结合即可得到结论.解答:解:作出不等式组对应的平面区域如图;由z=x+2y得y=﹣,则截距最大,z也最大,∵z的最大值为9,∴阴影部分对应的图象在直线x+2y=9的下方,由图象可知当直线经过点B时,直线的截距最大.由,解得,即B(3,3)∵B也在直线y=a上,∴a=3,故选:B点评:本题主要考查线性规划的应用,利用数形结合确定z取得最大值对应的最优解是解决本题的关键.8.已知正实数m,n满足m+n=1,且使取得最小值.若曲线y=x a过点P(,),则a 的值为()A.﹣1 B. C. 2 D. 3考点:基本不等式.专题:不等式.分析:先根据基本不等式等号成立的条件求出m,n的值,得到点P的坐标,再代入到函数的解析式中,求得答案.解答:解:=(m+n)(+)=1+16++≥17+2=25,当且仅当n=4m,即m=,n=时取等号,∴点P(,),∴=,∴α=.故选:B点评:本题考查了基本不等式的应用以及函数的解析式,属于基础题.9.若双曲线=1(a>0,b>0)的左、右焦点分别为F1,F2,线段F1F2被抛物线y2=4bx 的焦点分成5:3两段,则此双曲线的离心率为()A. B. C. D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:依题意,抛物线y2=2bx 的焦点F(b,0),由( b+c):(c﹣b)=5:3可求得b,c 关系,结合双曲线的性质即可求得此双曲线的离心率.解答:解:∵抛物线y2=4bx的焦点F(b,0),线段F1F2被抛物线y2=4bx 的焦点分成5:3的两段,∴(b+c):(c﹣b)=5:3,∴c=4b,∴c2=a2+b2=a2+,∴.∴此双曲线的离心率e=.故选:A.点评:本题考查双曲线的简单性质与抛物线的简单性质,求得c=4b是关键,考查分析与运算能力,属于中档题.10.函数f(x)的定义域为D,对给定的正数k,若存在闭区间[a,b]⊆D,使得函数f(x)满足:①f(x)在[a,b]内是单调函数;② f(x)在[a,b]上的值域为[ka,kb],则称区间[a,b]为y=f(x)的k级“理想区间”.下列结论错误的是()A.函数f(x)=﹣x2(x∈R)存在1级“理想区间”B.函数f(x)=e x(x∈R)不存在2级“理想区间”C.函数f(x)=(x≥0)存在3级“理想区间”D.函数f(x)=loga(a x﹣)(a>0,a≠1)不存在4级“理想区间”考点:命题的真假判断与应用.专题:新定义.分析: A、B、C中,可以找出定义域中的“理想区间”,从而作出正确的选择.D中,假设存在“理想区间”[a,b],会得出错误的结论.解答:解:A中,当x≥0时,f(x)=x2在[0,2]上是单调增函数,且f(x)在[0,2]上的值域是[0,4],∴存在1级“理想区间”,原命题正确;B中,当x∈R时,f(x)=e x在[a,b]上是单调增函数,且f(x)在[a,b]上的值域是[e a,e b,],∴不存在2级“理想区间”,原命题正确;C中,因为f(x)==在(0,1)上为增函数.假设存在[a,b]⊂(0,1),使得f (x)∈[3a,3b]则有,所以命题正确;D中,若函数(a>0,a≠1).不妨设a>1,则函数在定义域内为单调增函数,若存在“4级理想区间”[m,n],则由,得即m,n是方程loga(a x﹣)=4x的两个根,即m,n是方程a4x﹣a x=0的两个根,由于该方程有两个不等的正根,故存在“4级理想区间”[m,n],∴D结论错误故选:D.点评:本题考查了新定义下的函数的性质与应用问题,解题时应理解新定义中的题意与要求,转化为解题的条件与结论,是易错题.二、填空题:本大题共5个小题,每小题5分,共25分.11.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是根据某地某日早7点至晚8点甲、乙两个监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是甲.考点:极差、方差与标准差.专题:概率与统计.分析:根据茎叶图中的数据分布,即可得到甲乙两地浓度的方差的大小关系解答:解:根据茎叶图中的数据可知,甲地的数据都集中在0.06和0.07之间,数据分别比较稳定,而乙地的数据分布比较分散,不如甲地数据集中,∴甲地的方差较小.故答案为:甲点评:本题考查茎叶图的识别和判断,根据茎叶图中数据分布情况,即可确定方差的大小,比较基础.12.二项式(x+)4的展开式中常数项为 4 .考点:二项式定理的应用.专题:二项式定理.分析:直接利用二项式定理展开式的通项公式,x的指数为0,求解即可.解答:解:二项式(x+)4的展开式的通项公式为:=,令12﹣4r=0可得r=3,二项式(x+)4的展开式中常数项为:.故答案为:4.点评:本题考查二项式定理的应用,特殊项的求法,考查计算能力.13.已知圆C过点(﹣1,0),且圆心在x轴的负半轴上,直线l:y=x+1被该圆所截得的弦长为2,则圆C的标准方程为(x+3)2+y2=4 .考点:圆的标准方程.专题:综合题;直线与圆.分析:根据题意设圆心C坐标为(x,0),根据圆C过(﹣1,0),利用两点间的距离公式表示出圆的半径,利用点到直线的距离公式表示出圆心到切线l的距离d,根据已知的弦长,利用垂径定理及勾股定理列出关于x的方程,求出方程的解得到圆心坐标及半径,写出圆C 的标准方程即可.解答:解:设圆心C(x,0),则圆的半径r=|BC|=|x+1|,∴圆心C到直线l的距离|CD|=,弦长|AB|=2,则r==|x+1|,整理得:x=2(不合题意,舍去)或x=﹣3,∴圆心C(﹣3,0),半径为2,则圆C方程为(x+3)2+y2=4.故答案为:(x+3)2+y2=4.点评:此题考查了直线与圆的位置关系,涉及的知识有:两点间的距离公式,垂径定理,勾股定理,点到直线的距离公式,以及圆的标准方程,熟练掌握公式及定理是解本题的关键.14.已知正方形ABCD,M是DC的中点,由=m+n确定m,n的值,计算定积分sinxdx= 1 .考点:定积分.专题:导数的概念及应用.分析:先根据向量的意义求出m,n的值,再根据定积分的计算法计算即可.解答:解:∵=+=+=+=﹣+=﹣+=m+n,∴m=﹣,n=1,∴sinxdx=sinxdx=﹣cosx|=1,故答案为:1.点评:本题考查了向量的几意义以及定积分的计算,属于基础题.15.如图,三个半径都是5cm的小球放在一个半球面的碗中,三个小球的顶端恰好与碗的上沿处于同一水平面,则这个碗的半径R是5cm.考点:球内接多面体.分析:根据三个小球和碗的相切关系,作出对应的正视图和俯视图,建立球心和半径之间的关系即可得到碗的半径.解答:解:解:分别作出空间几何体的正视图和俯视图如图:则俯视图中,球心O(也是圆心O)是三个小球与半圆面的三个切点的中心,∵小球的半径为5cm,∴三个球心之间的长度为10cm,即OA=××10=cm.,在正视图中,球心B,球心O(同时也是圆心O),和切点A构成直角三角形,则OA2+AB2=OB2,其中OB=R﹣5,AB=5,∴()2+52=(R﹣5)2即=(R﹣5)2∴R﹣5=,R=5+cm.故答案为:5.点评:本题主要考查了球的相切问题的计算,根据条件作出正视图和俯视图,确定球半径之间的关系是解决本题的关键,综合性较强,难度较大三、解答题:本大题共6小题,共75分.16.已知向量=(cos(2x﹣),cosx+sinx),=(1,cosx﹣sinx),函数f(x)=.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,已知f(A)=,a=2,B=,求△ABC的面积S.考点:正弦定理;平面向量数量积的运算;三角函数中的恒等变换应用.专题:三角函数的图像与性质.分析:(Ⅰ)由两向量的坐标,利用平面向量的数量积运算法则列出f(x)解析式,利用两角和与差的余弦函数公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,根据正弦函数的单调性即可确定出函数f(x)的单调递增区间;(Ⅱ)由第一问确定出的f(x)解析式,根据f(A)=确定出A的度数,再由a,sinB的值,利用正弦定理求出b的值,同时利用诱导公式及两角和与差的正弦函数公式求出sinC 的值,利用三角形面积公式即可求出S.解答:解:(Ⅰ)∵向量=(cos(2x﹣),cosx+sinx),=(1,cosx﹣sinx),∴函数f(x)=•=cos(2x﹣)+cos2x﹣sin2x=cos(2x﹣)+cos2x=cos2x+sin2x+cos2x=cos2x+sin2x=sin(2x+),令﹣+2kπ≤2x+≤+2kπ(k∈Z),得﹣+kπ≤x≤+kπ(k∈Z),则函数f(x)的单调递增区间为[﹣+kπ,+kπ](k∈Z);(Ⅱ)由f(A)=sin(2A+)=,得sin(2A+)=,∵A为△ABC的内角,由题意知0<A<,∴<2A+<,∴2A+=,解得:A=,又a=2,B=,∴由正弦定理=,得b==,∵A=,B=,∴sinC=sin[π﹣(A+B)]=sin(A+B)=snAcosB+cosAsinB=×+×=,则△ABC的面积S=absinC=×2××=.点评:此题考查了正弦定理,平面向量的数量积运算,正弦函数的单调性,以及三角形的面积公式,熟练掌握正弦定理是解本题的关键.17.已知等差数列{a n}的前n项的和为S n,非常数等比数列{b n}的公比是q,且满足:a1=2,b1=1,S2=3b2,a2=b3.(Ⅰ)求a n与b n;(Ⅱ)设c n=2b n﹣λ•,若数列{c n}是递减数列,求实数λ的取值范围.考点:等差数列与等比数列的综合;数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)设等差数列{a n}的公差为d,运用等差数列和等比数列的通项公式,计算即可得到;(Ⅱ)化简c n=2b n﹣λ•=2n﹣3nλ,由题意可得c n+1<c n对n∈N*恒成立,运用参数分离和数列的单调性,求得最大值,即可得到所求范围.解答:解:(Ⅰ)设等差数列{a n}的公差为d,则2+a2=3q,且a2=q2,即有q2﹣3q+2=0,解得q=2或1(舍去),即有a2=4,d=2,则a n=2n,b n=2n﹣1;(Ⅱ)c n=2b n﹣λ•=2n﹣3nλ,由题意可得c n+1<c n对n∈N*恒成立,即有2n+1﹣3n+1λ<2n﹣3nλ,即2λ3n>2n,即2λ>()n对n∈N*恒成立.由f(n)=()n为递减数列,即有f(n)的最大值为f(1)=,则有2λ>,解得.故实数λ的取值范围为(,+∞).点评:本题考查等差数列和等比数列的通项公式的运用,同时考查数列的单调性,注意转化为不等式的恒成立问题,考查运算能力,属于中档题.18.在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠ABC=60°,AB=2CB=2.在梯形ACEF中,EF∥AC,且AC=2EF,EC⊥平面ABCD.(Ⅰ)求证:BC⊥AF;(Ⅱ)若二面角D﹣AF﹣C为45°,求CE的长.考点:用空间向量求平面间的夹角;与二面角有关的立体几何综合题.专题:综合题;空间位置关系与距离;空间角.分析:(Ⅰ)证明BC⊥AC,BC⊥EC,AC∩EC=C,可得BC⊥平面ACEF,从而BC⊥AF;(Ⅱ)建立空间直角坐标系,求出平面DAF的法向量,平面AFC的法向量,根据二面角D﹣AF﹣C为45°,利用向量的夹角公式,即可求CE的长.解答:(Ⅰ)证明:在△ABC中,AC2=AB2+BC2﹣2AB•BCcos60°=3所以AB2=AC2+BC2,由勾股定理知∠ACB=90°所以BC⊥AC.…(2分)又因为EC⊥平面ABCD,BC⊂平面ABCD所以BC⊥EC.…(4分)又因为AC∩EC=C,所以BC⊥平面ACEF,又AF⊂平面ACEF所以BC⊥AF.…(6分)(Ⅱ)解:因为EC⊥平面ABCD,又由(Ⅰ)知BC⊥AC,以C为原点,建立如图所示的空间直角坐标系 C﹣xyz.设CE=h,则C(0,0,0),,,,所以,.…(8分)设平面DAF的法向量为=(x,y,z),则令.所以=(,﹣3,).…(9分)又平面AFC的法向量=(0,1,0)…(10分)所以cos45°==,解得.…(11分)所以CE的长为.…(12分)点评:本题考查线面垂直的判定与性质,考查面面角,考查向量知识的运用,正确求出平面的法向量是关键.19.已知正三棱锥S﹣ABC的侧棱SA,SB,SC两两互相垂直,D,E,F分别是它们的中点,SA=SB=SC=2,现从A,B,C,D,E,F六个点中任取三个点,加上点S,把这四个点每两个点相连后得到一个“空间体”,记这个“空间体”的体积为X(若点S与所取三点在同一平面内,则规定X=0).(Ⅰ)求事件“X=0”的概率;(Ⅱ)求随机变量X的分布列及数学期望.考点:离散型随机变量的期望与方差;排列、组合的实际应用.专题:概率与统计.分析:(Ⅰ)求出从A、B、C、D、E、F六个点中任取三个点的所有不同的取法,再求出其中所选取的3个点与点S在同一平面内的取法,然后利用古典概型概率计算公式求得所求事件“X=0”的概率;(Ⅱ)由题意可得X的所有可能取值为0,.然后利用古典概型概率计算公式分别求出概率,列出频率分布表,再由期望公式求期望.解答:解:(Ⅰ)从A、B、C、D、E、F六个点中任取三个点共有种不同的取法,其中所选取的3个点与点S在同一平面内的取法有不同取法,∴所求事件“X=0”的概率P(X=0)=;(Ⅱ)由题意可得X的所有可能取值为0,.由(Ⅰ)得:P(X=0)=,P(X=)=,P(X=)=,P(X=)=,P(X=)=.∴随机变量X的分布列为:X 0P∴E(x)=.点评:本小题主要考查概率、概率与统计等基础知识,考查推理论证能力、数据处理能力、运算求解能力及应用意识,属中档题.20.已知椭圆=1(a>b>0)的离心率为e,半焦距为c,B(0,1)为其上顶点,且a2,c2,b2,依次成等差数列.(Ⅰ)求椭圆的标准方程和离心率e;(Ⅱ)P,Q为椭圆上的两个不同的动点,且.k BP•k BQ=e2(i)试证直线PQ过定点M,并求出M点坐标;(ii)△PBQ是否可以为直角三角形?若是,请求出直线PQ的斜率;否则请说明理由.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)由题意,b=1,a2+b2=2c2,结合c2+b2=a2,可求椭圆的标准方程和离心率e;(Ⅱ)(i)设直线PQ的方程为x=my+n,代入椭圆方程,利用韦达定理,结合k BP•k BQ=e2,求出m,n的关系,即可得出直线PQ过定点M,并求出M点坐标;(ii)确定P或Q在以BM为直径的圆T,与椭圆方程联立,即可得出结论.解答:解:(Ⅰ)由题意,b=1,a2+b2=2c2,∵c2+b2=a2,∴a2=3,c2=2,∴,e==;(Ⅱ)(i)设直线PQ的方程为x=my+n,设P(x1,y1),Q(x2,y2),直线方程代入椭圆方程可得(3+m2)y2+2mny+n2﹣3=0,∴y1+y2=﹣,y1y2=,∴k BP•k BQ=•=e2=,整理可得n2﹣2mn﹣3m2=0∴n=﹣m或n=3m,∴直线PQ的方程为x=my﹣m=m(y﹣1)(舍去)或x=my+3m=m(y+3),∴直线PQ过定点(0,﹣3);(ii)由题意,∠PBQ≠90°,若∠BPM=90°或∠BQM=90°,则P或Q在以BM为直径的圆T 上,即在圆x2+(y+1)2=4上,与椭圆方程联立得y=0或1(舍去),∴P或Q只可以的椭圆的左右顶点,∴直线PQ的斜率为±.点评:本题考查椭圆的方程,考查直线与椭圆的位置关系,考查直线过定点,考查学生分析解决问题的能力,属于中档题.21.已知函数f(x)=a x﹣2x(a>0,且a≠1).(Ⅰ)当a=2时,求曲线f(x)在点P(2,f(2))处的切线方程;(Ⅱ)若f(x)的值恒非负,试求a的取值范围;(Ⅲ)若函数f(x)存在极小值g(a),求g(a)的最大值.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的极值.专题:分类讨论;导数的概念及应用;导数的综合应用.分析:(Ⅰ)求出当a=2时的f(x)解析式和导数,求得切线的斜率和切点,由点斜式方程即可得到切线方程;(Ⅱ)当x≤0时,由指数函数的值域和不等式的性质,f(x)的值恒非负;当x>0时,运用对数的运算性质和参数分离,令g(x)=,x>0,求得导数,判断单调性,求出最大值即可得到a的范围;(Ⅲ)讨论①0<a<1时,由单调性可得f(x)无极值;②a>1时,设f′(x)=0的根为t,通过单调性,求得极小值,令x=,则h(x)=x﹣xlnx,x>0,通过导数判断单调性,即可得到最大值.解答:解:(Ⅰ)当a=2时,f(x)=2x﹣2x,f′(x)=2x ln2﹣2,曲线f(x)在点P(2,f(2))处的切线斜率为k=f′(2)=4ln2﹣2,切点为(2,0),则有曲线f(x)在点P(2,f(2))处的切线方程为y﹣0=(4ln2﹣2)(x﹣2),即为y=(4ln2﹣2)x﹣8ln2+4;(Ⅱ)当x≤0时,a x>0,a x﹣2x≥0恒成立.x>0时,f(x)≥0即为a x≥2x,xlna≥ln(2x),即有lna≥,令g(x)=,x>0,g′(x)=,令g′(x)=0,则x=,当0<x<时,g′(x)>0,g(x)递增,x>时,g′(x)<0.g(x)递减.g(x)max=g()==,即lna,解得a≥,则a的取值范围是[,+∞);(Ⅲ)f′(x)=a x lna﹣2,①0<a<1时,a x>0,lna<0,f′(x)<0,f(x)在R上递减,f(x)无极值;②a>1时,设f′(x)=0的根为t,a t=,t=,f(x)在(﹣∞,t)递减,在(t,+∞)递增,f(x)的极小值为f(t)=a t﹣2t=2•,即g(a)=2•,则a>1,>0,令x=,则h(x)=x﹣xlnx,x>0,h′(x)=1﹣lnx﹣1=﹣lnx,h′(x)=0,解得x=1,h(x)在(0,1)递增,在(1,+∞)递减,即有h(x)的最大值为h(1)=1,即g(a)的最大值为1,此时a=e2.点评:本题考查导数的运用:求切线方程和单调区间、极值和最值,同时考查不等式恒成立问题转化为求函数的最值,注意运用参数分离和分类讨论的思想方法是解题的关键.。

山东省实验中学2015级高三第二次模拟考试__数学试题(文)及答案

山东省实验中学2015级高三第二次模拟考试__数学试题(文)及答案

山东省实验中学2015级高三第二次模拟考试数学试题(文)2015.6说明:试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。

试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。

考试时间120分钟。

第Ⅰ卷 (共50分)1.复数z 满足i z i +=-7)21(,则复数=z (A)i 31+(B)i 31-(C) i +3(D) i -32.已知全集U R =,集合{}{}()3021,log 0,x U A x B x x A C B =<<=>⋂=则 (A){}1x x >(B){}0x x >(C){}01x x << (D){}0x x <3.命题“存在R x ∈,使a ax x 42-+≤0为假命题”是命题“016≤≤-a ”的(A)充要条件 (B)必要不充分条件 (C)充分不必要条件(D)既不充分也不必要条件4.若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为 ( )(A) 22(2)(2)3x y -+±= (B) 22(2)(3x y -+±=(C)22(2)(2)4x y -+±= (D) 22(2)(4x y -+±= 5.在△ABC 中,角C B A ,,的对边分别为,,a b c ,若22241c b a +=,则cBa cos 的值为 (A)41 (B) 45 (C) 85 (D)836.已知βα,是两个不同的平面,n m ,是两条不同的直线,给出下列命题: ①若βαβα⊥⊂⊥,则m m ,; ②若βαββαα//,////,,则,n m n m ⊂⊂;③如果ααα与是异面直线,那么、n n m n m ,,⊄⊂相交; ④若.////,//,βαβαβαn n n n m n m 且,则,且⊄⊄=⋂ 其中正确的命题是 ( ) (A)①② (B)②③ (C)③④ (D)①④7.函数f (x )=(x 2-2x )e x 的图像大致是(A) (B) (C) (D)8.已知数列错误!未找到引用源。

山东省实验中学2015届高三上学期第二次诊断性考试数学(理)试题

山东省实验中学2015届高三上学期第二次诊断性考试数学(理)试题

说明:试题分为第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷为第1页至第2页,第II 卷为第3页至第4页。

试题答案请用2B 铅笔或0. 5mm 签字笔填涂到答题卡规定位置上,书写在试题的答案无效。

考试时间120分钟.第I 卷(共50分)一、选择题(本题包括10小题,每小题5分,共50分.每小题只有一个选项......符合题意) 1. 集合{}{}2,1,0,1xA y R yB =∈==-,则下列结论正确的是( )A.{}0,1A B ⋂=B.{}0,A B ⋃=+∞C.()(),0R C A B ⋃=-∞D.(){}1,0R C A B ⋂=-【答案】D考点:1.集合的表示.2.集合的运算.2. “22ab>”是“ln ln a b >”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】B考点:1.函数的性质.2.充要条件.3. 已知()10,sin cos 2απαα∈+=,且,则cos 2α的值为( )A.±C.D.34-考点:1.三角函数的恒等变换.2.角度的区间的确定.4. 已知函数()f x 的定义域为()()32,11a a f x -++,且为偶函数,则实数a 的值可以是( ) A.23B.2C.4D.6【答案】B考点:1.函数的奇偶性.2.复合函数的性质.5. 设函数()sin cos2f x x x =图象的一条对称轴方程是( ) A. 4x π=-B.0x =C.4x π=D. 2x π=【答案】D 【解析】试题分析:由题意可知函数()sin cos2f x x x =,所以()0,()0,(0)0,()1442f f f f πππ-====-.又因为函数为奇函数,所以0x =不是对称轴,由此对称轴所对的函数值为函数的最大值或最小值,因此对称轴仅能是2x π=.故选D.考点:1.三角函数的性质.2.排除法的思想.6. 若方程24x x m +=有实数根,则所有实数根的和可能是( )A.246---、、B. 456---、、C. 345---、、D. 468---、、考点:1.函数的图象.2.函数与方程的关系.7. 要得到一个奇函数,只需将函数()sin 2f x x x =的图象( ) A.向左平移6π个单位 B.向右平移6π个单位 C.向右平移4π个单位 D.向左平移3π个单位 【答案】A考点:1.三角函数的角的和差的变换.2.三角函数的左右移动.8. 定义在R 上的偶函数满足()()3311,0222f x f x f f ⎛⎫⎛⎫+=--==-⎪ ⎪⎝⎭⎝⎭且,则()()()()1232014f f f f +++⋅⋅⋅+的值为( ) A.2B.1C.0D.2-【答案】B 【解析】试题分析:由函数为偶函数,所以()()f x f x -=.又33()()22f x f x +=-.所以函数关于32x =对称.即()(3)f x f x =-.所以()(3)f x f x -=-即()(3)f x f x =+.所以函数的周期为3.所以(1)(2)1f f -==.(0)(3)2f f ==-.又(1)(1)1f f -==.所以()()()()1232014f f f f +++⋅⋅⋅+=671((1)(2)(3))(1)(1)1f f f f f ⨯+++==.故选B.考点:1.函数的奇偶性.2.函数的周期性.3.递推的思想.9. 在ABC ∆中,若()()()sin 12cos sin A B B C A C -=+++∆,则ABC 的形状一定是( ) A.等边三角形B.不含60o的等腰三角形 C.钝角三角形D.直角三角形【答案】D考点:1.三角形的内角和.2.三角恒等变换.10. 函数()f x =①()f x 的图象是中心对称图形: ②()f x 的图象是轴对称图形;③函数()f x 的值域为)+∞; ④方程()()1f f x =.上述关于函数()f x 的描述正确的是( ) A.①③ B.③④C.②③D.②④【答案】C考点:1.函数的性质.2.两点间的距离公式的转化.3.函数的最值.第II 卷(非选择题 共100分)二、填空题:本大题共5个小题,每小题5分,共25分.将答案填在题中横线上. 11. 定积分()12xx e dx +⎰____________.【答案】e考点:定积分的运算.12. 如果()2tan sin 5sin cos f x x x x =-⋅,那么()2f =_________. 【答案】65-考点:1.三角函数的性质.2.函数的表示.13. 函数()2sin cos f x x x x x =++,则不等式()()ln 1f x f <的解集为___________.【答案】1(,)e e - 【解析】试题分析:由()()ln 1f x f <可知0x >.因为'()sin cos sin 2(cos 2)0f x x x x x x x x =+-+=+>.所以函数()f x 在0x >上单调递增,且为偶函数.由()()ln 1f x f <可得11ln 1,x e x e --<<∴<<.故填1(,)e e -. 考点:1.函数的单调性.2.函数的奇偶性.14. 已知ABC ∆的一个内角为120o,并且三边长构成公差为4的等差数列,则ABC ∆的面积为____________.【答案】【解析】考点:1.解三角形的知识.2.数列的知识.15. 设函数()ln f x x =,有以下4个命题: ①对任意的()()()1212120,22f x f x x x x x f ++⎛⎫∈+∞≤⎪⎝⎭、,有; ②对任意的()()()121221211,x x x x f x f x x x ∈+∞<-<-、,且,有; ③对任意的()()()12121221,x x e x x x f x x f x ∈+∞<<、,且,有; ④对任意的120x x <<,总有()012,x x x ∈,使得()()()12012f x f x f x x x -≤-.其中正确的是______________________(填写序号). 【答案】②③考点:1.函数的性质.2.函数的导数.三、解答题:本大题共6小题,共75分.16. (本小题满分12分)已知函数())22sin cos cos sin 2f x x x x x =+-.(I )求6f π⎛⎫⎪⎝⎭及()f x 的单调递增区间;(II )求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦的最值.【答案】(I )()62f π=;5[,],1212k k k Z ππππ-++∈;(II )min max 1(),()12f x f x =-=.考点:1.三角函数的性质.2.三角函数的恒等变换.3.三角函数的最值.17. (本小题满分12分)设命题p :函数()31f x x ax =--在区间[]1,1-上单调递减;命题q :函数()2ln 1y x ax =++的值域是R.如果命题p q 或为真命题,p q 且为假命题,求a 的取值范围.【答案】(,2][2,3)-∞-考点:1.命题间的关系.2.函数的导数.3.函数的最值.4.对数函数的性质.18. (本小题满分12分)在ABC ∆中,内角A ,B ,C 对边的边长分别是,,a b c ,已知23c C π==,.(I )若ABC ∆,a b ; (II )若()sin sin 2sin2C B A A +-=,求,a b .【答案】(I )2,2a b ==;(II )33a b ==考点:1.解三角形知识.2.三角恒等变换.3.余弦定理.19. (本小题满分12分)已知数列{}n a 满足,()*143n n a a n n N ++=-∈.(I )若数列{}n a 是等差数列,求1a 的值; (II )当12a =时,求数列{}n a 的前n 项和n S ;【答案】(I )112a =-;(II )22235,2232n n n n S n n n ⎧-+⎪⎪=⎨-⎪⎪⎩为奇数,为偶数考点:1.数列的性质.2.数列的递推思想.3.数列的求和公式.20. (本小题满分13分)已知函数()432f x ax bx cx dx e =++++的图像关于y 轴对称,其图像过点()0,1A -,且在x =18.(I )求()f x 的解析式;(II )对任意的x R ∈,不等式()20f x tx t --≤恒成立,求t 的取值范围.【答案】(I )42()231f x x x =+-;(II )[7)-+∞再求函数的最值.即可得结论. 试题解析:所以t 的取值范围为[7)-+∞考点:1.函数的导数.2.函数的最值.3.分离变量的思想.21. (本小题满分14分)已知函数()()3221103f x x x ax =+++-在,上有两个极值点12x x ,且12x x <.(I )求实数a 的取值范围;(II )证明:()21112f x >. 【答案】(I )102a <<;(II )参考解析考点:1.函数的导数.2.函数的最值.3.消元化简的思想.。

度山东省实验中学高三第二次诊断性考试(理)

度山东省实验中学高三第二次诊断性考试(理)

2007-2008学年度山东省实验中学高三第二次诊断性考试数学试题(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。

考试时间120分钟。

2.考生一律不准使用计算器。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合P={1,2,3,4,5},集合}52|{≤≤∈=x R x Q ,那么下列结论正确的是( )A .P Q P =B .Q Q P ⊇C .P Q P ⊆D .Q Q P = 2.“p 或q”为真命题,“p 且q 为真命题”的( )A .充分不必要条件B .必要非充分条件C .充要条件D .即不充分也不必要条件 3.下列不等式中解集为实数集R 的是( )A .012>+-x x B .02>xC .xx 111<- D .0442>++x x4.已知两点M (-2,0),N (2,0),点P 满足0=⋅PN PM ,则点P 的轨迹方程为( )A .11622=+y x B .422=+y xC .822=-x yD .822=+y x5.设,1,0=+>>b a a b 且则此四个数b b a ab ,,2,2122+中最大的是 ( )A .bB .22b a +C .2abD .216.已知圆中一段弧长正好等于该圆的外切正三角形的边长,则这段弧所对圆心角的度数为( )A .32B .33C .3D .23 7.设函数)(x f 是定义在R 上的奇函数,若134)2(,0)2(+-=>-a a f f ,则a 的取值范围是( )A .43<a B .43<a 且1≠a C .43>a 且1-<a D .-1<43<a 8.若函数)(x f 是定义在(0,+∞)上的增函数,且对一切x>0,y>0满足)()()(y f x f xy f +=,则不等式)4(2)()6(f x f x f <++的解集为( )A .(-8,2)B .(2,+∞)C .(0,2)D .(0,+∞)9.已知三个互不相等的实数a 、b 、c 成等差数列,那么关于x 的方程022=++c bx ax ( ) A .一定有两个不相等的实数根 B .一定有两个相等的实数根C .一定没有实数根D .一定有实数根10.已知函数)(x f 的导数a x x f a x x a x f =-+='在若)(),)(1()(处取到极大值,则a 的取值范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(0,+∞)11.设O 是△ABC 内部一点,且AOC AOB OB OC OA ∆∆-=+与则,2的面积之比为( )A .2B .21 C .1 D .52 12.已知等差数列}{n a 的前n 项和为A n ,等差数列}{n b 的前n 项和为B n ,且*)(5393N n n n B A n n ∈++=,则使nn b a 为整数的所有n 的值的个数为 ( )A .1B .2C .3D .4第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分。

【山东省实验中学二模 打靶题】山东省实验中学2015届高三最后第二次模拟考试(6月)理科数学 扫描版含答案

【山东省实验中学二模 打靶题】山东省实验中学2015届高三最后第二次模拟考试(6月)理科数学 扫描版含答案

山东省实验中学2015届高三第二次模拟考试(6月)【山东省实验中学二模最后押题理科数学】山东省实验中学2015届高三第二次模拟考试(6月)山东省实验中学二模 最后押题(理科数学)一、选择: DDBDC AABCA 二、填空 11. 15;12. 20;13. -1;14. 8:27;15. 3 三、 解答题16解:(Ⅰ)由题意知:243ππω=,解得:32ω=, ……………………2分 CB C B B A A cos cos 2sin sin sin sin tan --+==∴ A C A B A A C A B sin cos -sin cos -sin 2cos sin cos sin =+∴A A C A C AB A B sin 2sin cos cos sin sin cos cos sin =+++∴A C AB A sin 2)(sin )(sin =+++∴……………………………………4分a cb A B C 2sin 2sin sin =+⇒∴=+∴…………………………………………………6分 (Ⅱ)因为2bc a b c +==,,所以a b c ==,所以ABC △为等边三角形 …………8分213sin 24OACB OAB ABC S S S OA OB AB θ∆∆=+=⋅+ ……………9分 435cos 3-sin +=θθ532sin (-)34πθ=+, ……………………10分 (0)θπ∈,,2--333πππθ∴∈(,), 当且仅当-32ππθ=,即56πθ=时取最大值,OACB S 的最大值为5324+………………12分 17.解:(Ⅰ)证:由已知DF ∥AB 且∠DAB 为直角,故ABFD 是矩形,从而AB ⊥BF . ……(1分)又P A ⊥底面ABCD , ∴平面P AD ⊥平面ABCD , ……(2分)∵AB ⊥AD ,故AB ⊥平面P AD ,∴AB ⊥PD , ……(3分)在ΔPCD 内,E 、F 分别是PC 、CD 的中点,EF //PD ,……(4分)∴ AB ⊥EF . ……(5分)由此得⊥AB 平面BEF .……(6分)(Ⅱ)以A 为原点,以AB ,AD ,AP 为x 轴,y 轴,z 轴正向建立空间直角坐标系, 则)21,0(),0,2,1(h BE BD =-=……(8分) 设平面CDB 的法向量为)1,0,0(1=n ,平面EDB 的法向量为),,(2z y x n =,zyxF E P D CB A 则 ⎪⎩⎪⎨⎧=⋅=⋅0022BE n BD n ⎪⎩⎪⎨⎧=+=+-0202hz y y x 可取⎪⎭⎫ ⎝⎛-=h n 2,1,22 ……(10分) 设二面角E -BD -C 的大小为θ,则|||||||,cos |cos 212121n n n n n n ⋅⋅=><=θ=224522<+h h , 化简得542>h ,所以552>h …(12分) 18解:(I )设“取出的3个球编号都不相同”为事件A ,则“取出的3个球中恰有两个球编号相同”为事件A ,则31)(391714==C C C A P 所以32)(1)(=-=A P A P ………………(4分)(II ) X 的取值为2,3,4,5211)2(3912222212=+==C C C C C X P ,214)3(3914222412=+==C C C C C X P 73)3(3916222612=+==C C C C C X P ,31)5(3928===C C X P…………………(8分) 所以X 的分布列为: X 23 4 5 P 211 214 73 31 的数学期望218531573421432112=⨯+⨯+⨯+⨯=EX ………..12分 19解:(Ⅰ)由n S a n n +=+1,得 )1(1-+=-n S a n n )2(≥n ,两式相减得1111+=+-=--+n n n n n a S S a a ,所以121+=+n n a a ---------------------------------2分所以)1(211+=++n n a a )2(≥n -------------------------------------3分 又,32=a 所以n n n a a 2)1(2122=+=+-,从而12-=n n a )2(≥n ----------------5分而21=a ,不符合上式,所以⎩⎨⎧≥-==2,121,2n n a n n -------------------------------------6分因为}{n b 为等差数列,且前三项的和93=T ,所以32=b ,--------7分可设d b d b +=-=3,331,由于7,3,2321===a a a ,于是d b a b a d b a -=+=+-=+10,6,5332211,因为332211,,b a b a b a +++成等比数列,所以36)10)(5(=+-d d ,2=d 或7-=d (舍)所以12)1(21)1(1-=-+=-+=n n d n b b n -----------------------------------9分 (Ⅱ)因为⎪⎭⎫ ⎝⎛--=-=--<-=k k k k k k b k 11141)22(211)12(1)12(11222 所以,当2≥n 时22222221)12(13111111-++=+++n b b b n⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+<n n 1113121211411 ⎥⎦⎤⎢⎣⎡-+=n 1141145411=+< ------- ----------------------------------------------------12分20.解(1)22222c a b a =∴= (1分) 又22b b =,得1b =22221:1,:12x C y x C y ∴=-+= (3分) (2)设直线1122:,(,),(,)AB y kx A x y B x y =则22101y kx x kx y x =⎧⇒--=⎨=-⎩ (4分) 211221212(,1)(,1)(1)()1MA MB x y x y k x x k x x ⋅=+⋅+=++++=0M A M B ∴⊥ (6分)(3)设直线1212:1;:1,1MA y k x MB y k x k k =-=-=-1121122110,(,1)111x k y k x x A k k y y k y x ==-⎧⎧=⎧⎪∴-⎨⎨⎨=-=-=-⎪⎩⎩⎩解得或,同理可得222(,1)B k k - 2211212111122S MA MB k k k k ==++ (8分) 1212111222221112141120421,(,)11212211212k x y k x k x k k D x y k k k y y k ⎧==-⎧⎪+=⎧-⎪⎪∴⎨⎨⎨=-++-+=⎩⎪⎪=⎩⎪+⎩解得或同理可得2222222421(,)1212k k E k k -++1222212221216111122(12)(12)k k S MD ME k k k k ∴==++++ (11分)2122211212152()(12)(12)9161616k S k k k S λ++++===≥ 所以λ的最小值为169 ,此时k =1或-1. (13分)21解:(Ⅰ))(x f 其定义域为),0(+∞. ……………1分当0=a 时,x x x f 1ln )(+= ,22111)(x x x x x f -=-='.令0)(='x f ,解得1=x ,当10<<x 时,0)(<'x f ;当1>x 时,0)(>'x f .所以)(x f 的单调递减区间是)1,0(,单调递增区间是),1(+∞;所以1=x 时, )(x f 有极小值为1)1(=f ,无极大值 ……………3分(Ⅱ) 222211(1)1(1)(1)()(0)a ax a x ax x f x a x x x x x ----+-'=--==> ………4分令0)(='x f ,得1=x 或a x 1-=当01<<-a 时,a 11-<,令0)(<'x f ,得10<<x 或a x 1->,令0)(>'x f ,得a x 11-<<;当1-=a 时,0)1()(22≤--='x x x f .当1-<a 时,110<-<a ,令0)(<'x f ,得a x 10-<<或1>x ,令0)(>'x f ,得11<<-x a ;综上所述:当01<<-a 时,)(x f 的单调递减区间是)1,0(,),1(+∞-a ,单调递增区间是)1,1(a -;当1-=a 时,)(x f 的单调递减区间是),0(+∞;当1-<a 时,)(x f 的单调递减区间是)1,0(a-,),1(+∞,单调递增区间是)1,1(a - (10)分(Ⅲ)0≥a 时)0()1)(1()(2>-+='x xx ax x f )0(0)(>='∴x x f 仅有1解,方程0)(=x f 至多有两个不同的解.(注:也可用01)1()(min >+==a f x f 说明.)由(Ⅱ)知01-<<a 时,极小值01)1(>+=a f , 方程0)(=x f 至多在区间),1(+∞-a 上有1个解.-1a =时)(x f 单调, 方程0)(=x f 至多有1个解.;1-<a 时, 01)1()1(<+=<-a f a f ,方程0)(=x f 仅在区间)1,0(a -内有1个解; 故方程0)(=x f 的根的个数不能达到3. …………………14分。

山东省实验中学高三数学第二次诊断性考试试题 理(含解析)

山东省实验中学高三数学第二次诊断性考试试题 理(含解析)

数学【试卷综析】本试卷是高三理科试卷,考查学生解决实际问题的综合能力,是份较好的试卷. 以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:集合、不等式、导数函数的应用、三角函数的性质、三角恒等变换与解三角形、数列等;【题文】一、选择题(本题包括10小题,每小题5分,共50分.每小题只有一个选项符合题意)【题文】1.集合{}{}2,1,0,1x A y R y B =∈==-,则下列结论正确的是A.{}0,1A B ⋂=B.{}0,A B ⋃=+∞C.()(),0R C A B ⋃=-∞ D.(){}1,0R C A B ⋂=-【知识点】集合及其运算A1 【答案】D【解析】∵A={y ∈R|y=2x}={y ∈R|y >0},∴CRA={y ∈R|y ≤0}, 又B={-1,0,1},∴(CRA )∩B={-1,0}.【思路点拨】本题利用直接法,先利用指数函数的值域性质化简集合A ,再求CRA ,最后求出A 、B 的交、并及补集等即可.【题文】2.“22ab>”是“ln ln a b >”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 【知识点】充分条件、必要条件A2 【答案】B【解析】2a >2b ⇒a >b ,当a <0或b <0时,不能得到Ina >Inb ,反之由Ina >Inb 即:a >b >0可得2a >2b 成立,所以2a >2b”是“Ina>Inb”的必要不充分条件【思路点拨】分别解出2a >2b ,Ina >Inb 中a ,b 的关系,然后根据a ,b 的范围,确定充分条件,还是必要条件.【题文】3.已知()10,sin cos 2απαα∈+=,且,则cos 2α的值为A.B.C.D.34-【知识点】二倍角公式G6 【答案】B【解析】把sina+cosa=12,两边平方得:1+2sin αcos α=14,即1+sin2α= 14,解得sin2α=-34,又(α+ 4π)=12,解得:sin (α+4π)=4<12, 得到:0<α+4π<6π(舍去)或56π<α+4π<π,解得712π<α<34π,所以2α∈(76π,32π),则cos2α=-. 【思路点拨】把已知的等式两边平方,利用二倍角的正弦函数公式即可求出sin2α的值,然利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,根据正弦的值,判断得到α的范围,进而得到2α的范围,利用同角三角函数间的基本关系由sin2α的值和2α的范围即可求出cos2a 的值. 【题文】4.已知函数()f x 的定义域为()()32,11a a f x -++,且为偶函数,则实数a 的值可以是A. 23B.2C.4D.6【知识点】函数的奇偶性B4 【答案】B【解析】因为函数f (x+1)为偶函数,则其图象关于y 轴对称,而函数f (x )的图象是把函数f (x+1)的图象向右平移1个单位得到的,所以函数f (x )的图象关于直线x=1对称.又函数f (x )的定义域为(3-2a ,a+1),所以(3-2a )+(a+1)=2,解得:a=2.【思路点拨】函数f (x+1)为偶函数,说明其定义域关于“0”对称,函数f (x )的图象是把函数f (x+1)的图象向右平移1个单位得到的,说明f (x )的定义域(3-2a ,a+1)关于“1”对称,由中点坐标公式列式可求a 的值. 【题文】5.设函数()sin cos2f x x x=图象的一条对称轴方程是A.4x π=-B.0x =C.4x π=D.2x π=【知识点】三角函数的图象与性质C3 【答案】D【解析】∵f (x )=sinxcos2x ,∴f (-2π)=sin (-2π)cos2×(-2π)=1≠f(0)=0,∴函数f (x )=sinxcos2x 图象不关于x=-4π对称,排除A ;∵f (-x )=sin (-x )cos2(-x )=-sinxcos2x=-f (x ),∴f (x )=sinxcos2x 为奇函数,不是偶函数,故不关于直线x=0对称,排除B ;又f (2π)=sin 2πcos (2×2π)=-1≠f(0)=0,故函数f (x )=sinxcos2x 图象不关于x=4π对称,排除C ;又f (π-x )=sin (π-x )cos2(π-x )=sinxcos2x=f (x )∴f (x )关于直线x=2π对称,故D 正确.【思路点拨】利用函数的对称性对A 、B 、C 、D 四个选项逐一判断即可. 【题文】6.若方程24x x m+=有实数根,则所有实数根的和可能是A.246---、、B. 456---、、C. 345---、、D. 468---、、 【知识点】函数与方程B9 【答案】D【解析】函数y=|x2+4x|由函数y=x2+4x 的图象纵向对折变换所得: 如下图所示:由图可得:函数y=|x2+4x|的图象关于直线x=-2对称,则方程|x2+4x|=m 的实根也关于直线x=-2对称,当m <0时,方程|x2+4x|=m 无实根,当m=0或m >4时,方程|x2+4x|=m 有两个实根,它们的和为-4, 当0<m <4时,方程|x2+4x|=m 有四个实根,它们的和为-8, 当m=4时,方程|x2+4x|=m 有三个实根,它们的和为-6,【思路点拨】函数y=|x2+4x|由函数y=x2+4x 的图象纵向对折变换所得,画出函数图象可得函数y=|x2+4x|的图象关于直线x=-2对称,则方程|x2+4x|=m 的实根也关于直线x=-2对称,对m 的取值分类讨论,最后综合讨论结果,可得答案.【题文】7.要得到一个奇函数,只需将函数()sin 2f x x x=的图象A.向左平移6π个单位B.向右平移6π个单位 C.向右平移4π个单位D.向左平移3π个单位【知识点】三角函数的图象与性质C3 【答案】A【解析】f (x )(2x-3π).根据左加右减的原则,只要将f (x )的图象向左平移6π个单位即可得到函数y=2sin2x 的图象,显然函数y=2sin2x 为奇函数,故要得到一个奇函数,只需将函数f (x )的图象向左平移6π个单位.【思路点拨】先根据两角和与差的公式将f (x )化简,再根据左加右减的原则进行平移从而可得到答案.【题文】8.定义在R 上的偶函数满足()()3311,0222f x f x f f ⎛⎫⎛⎫+=--==- ⎪ ⎪⎝⎭⎝⎭且,则()()()()1232014f f f f +++⋅⋅⋅+的值为A.2B.1C.0D.2-【知识点】函数的周期性B4【答案】B【解析】由f (x )满足33()()22f x f x +=-),即有f (x+3)=f (-x ),由f (x )是定义在R 上的偶函数,则f (-x )=f (x ),即有f (x+3)=f (x ),则f (x )是以3为周期的函数,由f (-1)=1,f (0)=-2,即f (2)=1,f (3)=-2, 由f (4)=f (-1)=1,即有f (1)=1.则f (1)+f (2)+f (3)+…+f(2014)=(1+1-2)+…+f (1)=0×671+1=1.【思路点拨】由f (x )满足33()()22f x f x +=-,即有f (x+3)=f (-x ),由f (x )是定义在R 上的偶函数,则f (-x )=f (x ),即有f (x+3)=f (x ),则f (x )是以3为周期的函数,求出一个周期内的和,即可得到所求的值. 【题文】9.在ABC ∆中,若()()()sin 12cos sin A B B C A C -=+++∆,则ABC的形状一定是A.等边三角形B.不含60o的等腰三角形 C.钝角三角形D.直角三角形【知识点】解三角形C8 【答案】D【解析】∵sin (A-B )=1+2cos (B+C )sin (A+C ),∴sin (A-B )=1-2cosAsinB , ∴sinAcosB-cosAsinB=1-2cosAsinB ,∴sinAcosB+cosAsinB=1, ∴sin (A+B )=1,∴A+B=90°,∴△ABC 是直角三角形.【思路点拨】利用三角形的内角和,结合差角的余弦公式,和角的正弦公式,即可得出结论. 【题文】10.函数()f x =的性质:①()f x 的图象是中心对称图形: ②()f x 的图象是轴对称图形;③函数()f x的值域为)+∞; ④方程()()1f f x =.上述关于函数()f x 的描述正确的是A.①③B.③④C.②③D.②④【知识点】单元综合B14 【答案】C【解析】∵函数f (x )的最小值为=显然③正确;由函数的值域知,函数图象不可能为中心对称图形,故①错误;又∵直线AB 与x 轴交点的横坐标为32,显然有f(32-x)=f(32+x),∴函数的图象关于直线x=32对称,故②正确;;令t=f (x ),由t=0或t=3,由函数的值域可知不成立,∴方程无解,故④错误,【思路点拨】由函数的几何意义可得函数的值域及单调性,结合函数的值域和单调性逐个选项验证即可作出判断.第II 卷(非选择题 共100分)【题文】二、填空题:本大题共5个小题,每小题5分,共25分.将答案填在题中横线上.【题文】11.定积分()12xx e dx +⎰____________.【知识点】定积分与微积分基本定理B13 【答案】e 【解析】10⎰(2x+ex)dx=(x2+ex )10=(12+e1)-(02+e0)=e【思路点拨】根据积分计算公式,求出被积函数2x+ex 的原函数,再根据微积分基本定理加以计算,即可得到本题答案. 【题文】12.如果()2tan sin 5sin cos f x x x x=-⋅,那么()2f =_________.【知识点】同角三角函数的基本关系式与诱导公式C2【答案】-65【解析】∵f (tanx )=sin2x-5sinx•cosx= 222sin 5sin cos sin cos x x x x x -+= 22tan 5tan tan 1x xx -+, ∴f (x )= 2251x xx -+,则f (2)=-65.【思路点拨】把已知函数解析式的分母1化为sin2x+cos2x ,然后分子分母同时除以cos2x ,利用同角三角函数间的基本关系弦化切后,可确定出f (x )的解析式,把x=2代入即可求出f (2)的值. 【题文】13.函数()2s i n c o s f x x x x x=++,则不等式()()ln 1f x f <的解集为___________.【知识点】函数的单调性与最值B3【答案】(1e ,e)【解析】∵函数f (x )=xsinx+cosx+x2,满足f (-x )=-xsin (-x )+cos (-x )+(-x )2=xsinx+cosx+x2=f (x ), 故函数f (x )为偶函数.由于f ′(x )=sinx+xcosx-sinx+2x=x (2+cosx ),当x >0时,f ′(x )>0,故函数在(0,+∞)上是增函数, 当x <0时,f ′(x )<0,故函数在(-∞,0)上是减函数.不等式f (lnx )<f (1)等价于-1<lnx <1,∴1e <x <e ,【思路点拨】首先判断函数为偶函数,利用导数求得函数在(0,+∞)上是增函数,在(-∞,0)上是减函数,所给的不等式等价于-1<lnx <1,解对数不等式求得x 的范围,即为所求. 【题文】14.已知ABC ∆的一个内角为120o,并且三边长构成公差为4的等差数列,则ABC ∆的面积为____________. 【知识点】解三角形C8 【答案】【解析】设三角形的三边分别为x-4,x ,x+4,则cos120°=222(4)(4)12(4)2x x x x x +--+=-, 化简得:x-16=4-x ,解得x=10,所以三角形的三边分别为:6,10,14则△ABC 的面积S=12【思路点拨】因为三角形三边构成公差为4的等差数列,设中间的一条边为x ,则最大的边为x+4,最小的边为x-4,根据余弦定理表示出cos120°的式子,将各自设出的值代入即可得到关于x 的方程,求出方程的解即可得到三角形的边长,然后利用三角形的面积公式即可求出三角形ABC 的面积. 【题文】15.设函数()ln f x x=,有以下4个命题:①对任意的()()()1212120,22f x f x x x x x f ++⎛⎫∈+∞≤⎪⎝⎭、,有;②对任意的()()()121221211,x x x x f x f x x x ∈+∞<-<-、,且,有;③对任意的()()()12121221,x x e x x x f x x f x ∈+∞<<、,且,有;④对任意的120x x <<,总有()012,x x x ∈,使得()()()12012f x f x f x x x -≤-.其中正确的是______________________(填写序号). 【知识点】函数的单调性与最值B3 【答案】② 【解析】:∵f (x )=lnx 是(0,+∞)上的增函数,∴对于①由f(122x x +)=ln 122x x +,12()()2f x f x +,∵122x x +故f(122x x +)>12()()2f x f x + 故①错误.对于②③,不妨设x1<x2则有f (x1)<f (x2),故由增函数的定义得f (x1)-f (x2)<x2-x1 故②正确,由不等式的性质得x1f (x1)<x2f(x2),故③错误;对于④令e=x1<x2=e2,得1212()()f x f x x x --=21e e -<1,∵x0∈(x1,x2),∴f (x0)>f (x1)=1,不满足f(x0)≤1212()()f x f x x x --.故④错误.【思路点拨】利用对数函数的单调性性质求解即可. 【题文】三、解答题:本大题共6小题,共75分.【题文】16.(本小题满分12分)已知函数()()22sin cos cos sin 2f x x x x x =+-.(I )求6f π⎛⎫⎪⎝⎭及()f x 的单调递增区间;(II )求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦的最值.【知识点】三角函数的图象与性质C3【答案】(I) ,[-512π+k π,12π+ k π],k Z ∈(II )最大值为1,最小值为-12 【解析】(I )f(x)= 12sin2x+cos2x=sin(2x+3π),则f(6π)=, 22k ππ-+≤2x+3π22k ππ≤+,k Z ∈单调递增区间[-512π+k π,12π+ k π],k Z ∈.(II )由x ∈,44ππ⎡⎤-⎢⎥⎣⎦则2x+3π∈5[,]66ππ-,sin(2x+3π)∈[-12,1],所以最大值为1,最小值为-12。

山东省实验中学2015届高考数学三模试卷(理科)

山东省实验中学2015届高考数学三模试卷(理科)

山东省实验中学2015届高考数学三模试卷(理科)一、选择题(本题包括10小题,每小题5分,共50分.每小题只有一个选项符合题意)1.(5分)已知M={x||x﹣3|<4},N={x|<0,x∈Z},则M∩N=()A.ϕB.{0} C.{2} D.{x|2≤x≤7}2.(5分)幂函数f(x)=k•xα的图象过点,则k+α=()A.B.1C.D.23.(5分)已知向量,若垂直,则m的值为()A.1B.﹣1 C.﹣D.4.(5分)圆(x﹣1)2+y2=1被直线x﹣y=0分成两段圆弧,则较短弧长与较长弧长之比为()A.1:2 B.1:3 C.1:4 D.1:55.(5分)等比数列{a n}中,a3=6,前三项和S3=4xdx,则公比q的值为()A.1B.﹣C.1或﹣D.﹣1或﹣6.(5分)复数z=(m∈R,i为虚数单位)在复平面上对应的点不可能位于()A.第一象限B.第二象限C.第三象限D.第四象限7.(5分)直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞)C.(1,+∞)D.(1,)∪(,+∞)8.(5分)若函数f(x)=(k﹣1)a x﹣a﹣x(a>0,a≠1)在R上既是奇函数,又是减函数,则g(x)=log a(x+k)的图象是()A.B.C.D.9.(5分)设偶函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,△KLM为等腰直角三角形,∠KML=90°,|KL|=1,则f()的值为()A.﹣B.C.D.10.(5分)已知函数f(x)=,把函数g(x)=f(x)﹣x的偶数零点按从小到大的顺序排列成一个数列,该数列的前n项的和S n,则S10=()A.45 B.55 C.90 D.110二、填空题:(本大题共5个小题,每小题5分,共25分.请将答案填在答题卡指定横线上.)11.(5分)由y=,x=1,x=2,y=1所围成的封闭图形的面积为.12.(5分)已知不等式组表示的平面区域的面积为9,点P(x,y)在所给平面区域内,则z=3x+y的最大值为.13.(5分)已知离心率为的双曲线C:﹣=1(a>0)的右焦点与抛物线y2=4mx 的焦点重合,则实数m=.14.(5分)公差为d,各项均为正整数的等差数列中,若a1=1,a n=25,则n+d的最小值等于.15.(5分)定义函数d(x)=,f(x)=1gx,那么下列命题中正确的序号是.(把所有可能的图的序号都填上).①函数d(x)为偶函数;②函数d(x)为周期函数,且任何非零实数均为其周期;③方程d(x)=f(x)有两个不同的根.三、解答题:本大题共6小题,共75分.16.(12分)已知向量=(sin,cos),=(cos,cos),函数f(x)=•,(1)求函数f(x)的单调递增区间;(2)如果△ABC的三边a、b、c,满足b2=ac,且边b所对的角为x,试求x的范围及此时函数f(x)的值域.17.(12分)如图所示,四边形OABP是平行四边形,过点P的直线与射线OA、OB分别相交于点M、N,若=x,=y(1)利用∥,把y用x表示出来(即求y=f(x)的解析式);(2)设数列{a n}的首项a1=1,前n项和S n满足:S n=f(S n﹣1)(n≥2),求数列{a n}通项公式.18.(12分)已知直线l:y=x+m,m∈R.(1)若以点M(2,﹣1)为圆心的圆与直线l相切与点P,且点P在x轴上,求该圆的方程;(2)若直线l关于x轴对称的直线l′与抛物线相切,求直线l的方程和抛物线C 的方程.19.(12分)已知等差数列{a n}的公差d≠0,它的前n项和为S n,若S5=70,且a2,a7,a22成等比数列.(1)求数列{a n}的通项公式;(2)设数列{}的前n项和为T n,求证:≤T n<.20.(13分)已知函数f(x)=.(I)求函数f(x)的单调区间;(II)若函数f(x)在区间(t,t+)(t>0)上不是单调函数,求实数t的取值范围;(III)如果当x≥1时,不等式f(x)≥恒成立,求实数a的取值范围.21.(14分)定义:若两个椭圆的离心率相等,则称两个椭圆是“相似”的.如图,椭圆C1与椭圆C2是相似的两个椭圆,并且相交于上下两个顶点.椭圆C1:的长轴长是4,椭圆C2:短轴长是1,点F1,F2分别是椭圆C1的左焦点与右焦点,(Ⅰ)求椭圆C1,C2的方程;(Ⅱ)过F1的直线交椭圆C2于点M,N,求△F2MN面积的最大值.山东省实验中学2015届高考数学三模试卷(理科)参考答案与试题解析一、选择题(本题包括10小题,每小题5分,共50分.每小题只有一个选项符合题意)1.(5分)已知M={x||x﹣3|<4},N={x|<0,x∈Z},则M∩N=()A.ϕB.{0} C.{2} D.{x|2≤x≤7}考点:交集及其运算.专题:计算题.分析:利用绝对值不等式及分式不等式的解法,我们易求出集合M,N,再根据集合交集运算法则,即可求出答案.解答:解:∵M={x||x﹣3|<4}=(﹣1,7),N={x|<0,x∈Z}={x|﹣2<x<1,x∈Z}={﹣1,0},∴M∩N={0}故选B点评:本题考查的知识点是交集及其运算,其中根据绝对值不等式及分式不等式的解法,求出集合M,N,是解答本题的关键.2.(5分)幂函数f(x)=k•xα的图象过点,则k+α=()A.B.1C.D.2考点:幂函数的概念、解析式、定义域、值域.专题:函数的性质及应用.分析:由函数f(x)=k•xα是幂函数,根据幂函数的定义可知,其系数k=1,再将点的坐标代入可得α值,从而得到幂函数的解析式.解答:解:∵函数f(x)=k•xα是幂函数,∴k=1,∵幂函数f(x)=xα的图象过点,∴()α=,得α=,则k+α=1+=.故选C.点评:本题考查幂函数的性质及其应用,解题时要认真审题,注意熟练掌握基本概念.3.(5分)已知向量,若垂直,则m的值为()A.1B.﹣1 C.﹣D.考点:数量积判断两个平面向量的垂直关系.专题:计算题.分析:根据向量坐标运算的公式,求出向量的坐标.再利用向量与互相垂直,得到它们的数量积等于0,利用两个向量数量积的坐标表达式列方程,可求解m的值.解答:解∵∴向量=(1﹣4,3+2m)=(﹣3,3+2m)又∵向量与互相垂直,∴•()=1×(﹣3)+3(3+2m)=0∴﹣3+9+6m=0⇒m=﹣1故选B.点评:本题根据两个向量垂直,求参数m的值,考查了向量坐标的线性运算、向量数量积的坐标公式和两个向量垂直的充要条件等知识点,属于基础题.4.(5分)圆(x﹣1)2+y2=1被直线x﹣y=0分成两段圆弧,则较短弧长与较长弧长之比为()A.1:2 B.1:3 C.1:4 D.1:5考点:直线与圆相交的性质.专题:计算题.分析:根据圆的方程求得圆心坐标和半径,进而根据点到直线的距离求得圆心到直线的距离,利用勾股定理求得直线被圆截的弦长,进而可利用勾股定理推断出弦所对的角为直角,进而分别求得较短的弧长和较长的弧长,答案可得.解答:解:圆的圆心为(1,0)到直线x﹣y=0的距离为=∴弦长为2×=根据勾股定理可知弦与两半径构成的三角形为直角三角形,较短弧长为×2π×1=,较长的弧长为2π﹣=∴较短弧长与较长弧长之比为1:3故选B点评:本题主要考查了直线与圆相交的性质.一般采用数形结合的方法,在弦与半径构成的三角形中,通过解三角形求得问题的答案.5.(5分)等比数列{a n}中,a3=6,前三项和S3=4xdx,则公比q的值为()A.1B.﹣C.1或﹣D.﹣1或﹣考点:定积分;等比数列的前n项和.专题:计算题.分析:根据题意,直接找出被积函数4x的原函数,直接计算在区间上的定积分即可得S3,再结合等比数列的性质求得公比q的值即可.解答:解:∵S3=∫034xdx=18,∴⇒2q2﹣q﹣1=0⇒q=1或,故选C.点评:本题考查等比数列的前n项和、定积分的基本运算,求定积分关键是找出被积函数的原函数,本题属于基础题.6.(5分)复数z=(m∈R,i为虚数单位)在复平面上对应的点不可能位于()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数代数形式的乘除运算;复数的基本概念.专题:计算题.分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z;令复数的实部、虚部大于0,得到不等式无解,即对应的点不在第一象限.解答:解:由已知z==在复平面对应点如果在第一象限,则而此不等式组无解.即在复平面上对应的点不可能位于第一象限.故选A点评:本题考查复数的除法运算法则:分子、分母同乘以分母的共轭复数;考查复数的几何意义:复数与复平面内的以实部为横坐标,虚部为纵坐标的点一一对应.7.(5分)直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞)C.(1,+∞)D.(1,)∪(,+∞)考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,可得1>b>0或b>1.利用e==即可得出.解答:解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.点评:本题考查了双曲线与直线相交问题、离心率计算公式,考查了数形结合的思想方法,属于基础题.8.(5分)若函数f(x)=(k﹣1)a x﹣a﹣x(a>0,a≠1)在R上既是奇函数,又是减函数,则g(x)=log a(x+k)的图象是()A.B.C.D.考点:奇偶性与单调性的综合;对数函数的图像与性质.专题:数形结合.分析:根据函数是一个奇函数,函数在原点出有定义,得到函数的图象一定过原点,求出k的值,根据函数是一个减函数,看出底数的范围,得到结果.解答:解:∵函数f(x)=(k﹣1)a x﹣a﹣x(a>0,a≠1)在R上是奇函数,∴f(0)=0∴k=2,又∵f(x)=a x﹣a﹣x为减函数,所以1>a>0,所以g(x)=log a(x+2)定义域为x>﹣2,且递减,故选:A点评:本题考查函数奇偶性和单调性,即对数函数的性质,本题解题的关键是看出题目中所出现的两个函数性质的应用.9.(5分)设偶函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,△KLM为等腰直角三角形,∠KML=90°,|KL|=1,则f()的值为()A.﹣B.C.D.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.专题:三角函数的图像与性质.分析:通过函数的图象,利用KL以及∠KML=90°求出求出A,然后函数的周期,确定ω,利用函数是偶函数求出φ,即可求解.解答:解:因为f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,△KLM为等腰直角三角形,∠KML=90°,KL=1,所以A=,T=2,因为T=,所以ω=π,函数是偶函数,0<φ<π,所以φ=,∴函数的解析式为:f(x)=sin(πx+),所以.故选:C.点评:本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的图象和性质,属于基础题.10.(5分)已知函数f(x)=,把函数g(x)=f(x)﹣x的偶数零点按从小到大的顺序排列成一个数列,该数列的前n项的和S n,则S10=()A.45 B.55 C.90 D.110考点:数列的求和;分段函数的应用.专题:函数的性质及应用;等差数列与等比数列.分析:由分段函数解析式得到函数f(x)在x>0时的分段解析式,首先求得函数g(x)=f(x)﹣x在(﹣2,0]上的零点,然后根据函数的图象平移得到函数g(x)=f(x)﹣x在(0,2],(2,4],(4,6],…,(2n,2n+2]上的零点,得到偶数零点按从小到大的顺序排列的数列,利用等差数列的前n项和得答案.解答:解:当0<x≤2时,有﹣2<x﹣2≤0,则f(x)=f(x﹣2)+1=2x﹣2,当2<x≤4时,有0<x﹣2≤2,则f(x)=f(x﹣2)+1=2x﹣4+1,当4<x≤6时,有2<x﹣2≤4,则f(x)=f(x﹣2)+1=2x﹣6+2,当6<x≤8时,有4<x﹣1≤6,则f(x)=f(x﹣2)+1=2x﹣8+3,以此类推,当2n<x≤2n+2(其中n∈N)时,则f(x)=f(x﹣2)+1=2x﹣2n﹣2+n,∴函数f(x)=2x的图象与直线y=x+1的交点为:(0,1)和(﹣1,),由于指数函数f(x)=2x为增函数且图象下凸,故它们只有这两个交点.将函数f(x)=2x和y=x+1的图象同时向下平移一个单位,即得到函数f(x)=2x﹣1和y=x的图象,取x≤0的部分,可见它们有两个交点(0,0),(﹣1,).即当x≤0时,方程f(x)﹣x=0有两个根x=﹣1,x=0;当0<x≤2时,由函数图象平移可得g(x)=f(x)﹣x的零点为1,2;以此类推,函数y=f(x)与y=x在(2,4],(4,6],…,(2n,2n+2]上的零点分别为:3,4;5,6;…;2n+1,2n+2;综上所述函数g(x)=f(x)﹣x的偶数零点按从小到大的顺序排列所得数列为:0,2,4,…,其通项公式为:a n=2(n﹣1),前10项的和为S10=.故选:C.点评:本题考查了分段函数的应用,考查了函数零点的判断方法,考查了等差数列的和的求法,是中档题.二、填空题:(本大题共5个小题,每小题5分,共25分.请将答案填在答题卡指定横线上.)11.(5分)由y=,x=1,x=2,y=1所围成的封闭图形的面积为1﹣ln2.考点:定积分在求面积中的应用.专题:导数的概念及应用.分析:根据定积分与图形的关系可分割求出面积.解答:解:因为函数在上的积分为,所以围成的封闭图形的面积等于四边形的面积减去曲线与x轴围成的面积1﹣ln2.故答案为:1﹣ln2点评:本题主要考查定积分的应用,在利用定积分求面积时必须要求被积函数f(x)≥0,要求熟练掌握常见函数的积分公式.12.(5分)已知不等式组表示的平面区域的面积为9,点P(x,y)在所给平面区域内,则z=3x+y的最大值为12.考点:简单线性规划.专题:计算题;作图题;不等式的解法及应用.分析:由题意作出其平面区域,先求出a,再将z=3x+y化为y=﹣3x+z,z相当于直线y=﹣3x+z的纵截距,由几何意义可得.解答:解:由题意作出其平面区域,故由题意知,×a×2a=9;故a=3;则z=3x+y化为y=﹣3x+z,z相当于直线y=﹣3x+z的纵截距,由图可得,当过点(3,3)时有最大值,即z=3×3+3=12.故答案为:12.点评:本题考查了简单线性规划,作图要细致认真,属于中档题.13.(5分)已知离心率为的双曲线C:﹣=1(a>0)的右焦点与抛物线y2=4mx 的焦点重合,则实数m=3.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先由双曲线的离心率求出a2的值,由此得到双曲线的右焦点,再求出抛物线y2=4mx 的焦点坐标,从而求出实数m.解答:解:∵双曲线C:﹣=1的离心率为∵,e=,b2=4∴a2=5,∴=3,∴双曲线C:﹣=1(a>0)的右焦点(3,0),∵抛物线y2=4mx的焦点(m,0),又双曲线C:﹣=1(a>0)的右焦点与抛物线y2=4mx的焦点重合,∴m=3故答案为:3点评:本题考查抛物线的简单性质、双曲线的性质和应用,考查了学生对基础知识的综合把握能力,属于基础题.14.(5分)公差为d,各项均为正整数的等差数列中,若a1=1,a n=25,则n+d的最小值等于11.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:由等差数列的首项和公差d,写出等差数列的通项公式,得到n与d的关系式,解出d,根据等差数列的各项均为正整数,得到d也为正整数,即为24的约数,进而得到相应的n的值,得到n与d的六对值,即可得到n+d的最小值.解答:解:由a1=1,得到a n=a1+(n﹣1)d=1+(n﹣1)d=25,即(n﹣1)d=24,解得:d=,因为等差数列的各项均为正整数,所以公差d也为正整数,因此d只能是1,2,3,4,6,8,12,24,此时n相应取25,13,9,7,5,4,3,2则n+d的最小值等于11.故答案为11点评:此题考查学生掌握等差数列的性质,灵活运用等差数列的通项公式化简求值,是一道基础题.本题的突破点是得到公差d只能取24的约数.15.(5分)定义函数d(x)=,f(x)=1gx,那么下列命题中正确的序号是①.(把所有可能的图的序号都填上).①函数d(x)为偶函数;②函数d(x)为周期函数,且任何非零实数均为其周期;③方程d(x)=f(x)有两个不同的根.考点:命题的真假判断与应用.专题:函数的性质及应用.分析:由已知中函数d(x)=,f(x)=1gx,分析d(x)的奇偶性与周期性,可判断①②;分析方程d(x)=f(x)根的个数,可判断③.解答:解:∵函数d(x)=,f(x)=1gx,对于①,当x∈Q时,d(﹣x)=d(x)=1,当x∉Q时,d(﹣x)=d(x)=0,即d(﹣x)=d(x)恒成立,函数d(x)为偶函数,故正确;对于②,函数d(x)为周期函数,且任何非零有理数均为其周期,故错误;对于③,当且仅当x=10时,d(x)=f(x),故方程d(x)=f(x)仅有一个根,故错误.故答案为:①点评:本题以命题的真假判断为载体考查了函数的奇偶性,周期性,函数零点与方程根的关系,难度不大,属于基础题.三、解答题:本大题共6小题,共75分.16.(12分)已知向量=(sin,cos),=(cos,cos),函数f(x)=•,(1)求函数f(x)的单调递增区间;(2)如果△ABC的三边a、b、c,满足b2=ac,且边b所对的角为x,试求x的范围及此时函数f(x)的值域.考点:平面向量数量积的运算;三角函数中的恒等变换应用;正弦函数的单调性.专题:综合题.分析:(1)利用向量的数量积公式及辅助角公式,化简函数,即可求得函数f(x)的单调递增区间;(2)通过b2=ac,利用余弦定理求出cosx的范围,然后求出x的范围,进而可求三角函数的值域.解答:解:(1)∵向量=(sin,cos)=(cos,cos),∴函数f(x)=•=sin()+,令2kπ﹣≤≤2kπ+,解得.故函数f(x)的单调递增区间为.(2)由已知b2=ac,cosx==≥=,∴≤cosx<1,∴0<x≤∴∴<sin()≤1,∴<sin()+≤1+∴f(x)的值域为(,1+]点评:本题是中档题,考查三角函数的化简求值,余弦定理的应用,正弦函数的值域的求法,考查计算能力.17.(12分)如图所示,四边形OABP是平行四边形,过点P的直线与射线OA、OB分别相交于点M、N,若=x,=y(1)利用∥,把y用x表示出来(即求y=f(x)的解析式);(2)设数列{a n}的首项a1=1,前n项和S n满足:S n=f(S n﹣1)(n≥2),求数列{a n}通项公式.考点:数列递推式;平面向量共线(平行)的坐标表示.专题:综合题.分析:(1)用分别表示,,再利用向量共线的条件,即可得到结论;(2)当n≥2时,由S n=f(S n﹣1)=,则,可得数列{}是首项和公差都为1的等差数列,由此即可求得数列的通项.解答:解:(1)∵,∴∵,∥,∴x﹣y(1+x)=0,∴即函数的解析式为:f(x)=(0<x<1);(2)当n≥2时,由S n=f(S n﹣1)=,则又S1=a1=1,那么数列{}是首项和公差都为1的等差数列,则,即S n=n≥2时,a n=S n﹣S n﹣1=;n=1时,a1=1故a n=.点评:本题考查向量知识的运用,考查向量共线的条件,考查等差数列的证明,考查求数列的通项,属于中档题.18.(12分)已知直线l:y=x+m,m∈R.(1)若以点M(2,﹣1)为圆心的圆与直线l相切与点P,且点P在x轴上,求该圆的方程;(2)若直线l关于x轴对称的直线l′与抛物线相切,求直线l的方程和抛物线C 的方程.考点:直线与圆锥曲线的综合问题;直线与圆的位置关系.专题:综合题.分析:(1)解法1:确定点P的坐标,进而可求圆的半径,从而可求圆的方程;解法2:利用待定系数法求本题中圆的方程是解决本题的关键,利用直线与圆相切的数学关系列出关于圆的半径的方程,通过求解方程确定出所求圆的半径,进而写出所求圆的方程;(2)解法1:设出直线为l'的方程利用直线与抛物线的位置关系解决该题,将几何问题转化为代数方程组问题,注意体现方程有几个解的思想;解法2:利用导数求切线,从而可直线l的方程和抛物线C的方程.解答:解:(1)解法1:依题意得点P的坐标为(﹣m,0).﹣﹣﹣﹣﹣﹣﹣(1分)∵以点M(2,﹣1)为圆心的圆与直线l相切与点P,∴MP⊥l.,解得m=﹣1.﹣﹣﹣﹣(3分)∴点P的坐标为(1,0).设所求圆的半径r,则r2=|PM|2=1+1=2,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)∴所求圆的方程为(x﹣2)2+(y+1)2=2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)解法2:设所求圆的方程为(x﹣2)2+(y+1)2=r2,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)依题意知点P的坐标为(﹣m,0).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)∵以点M(2,﹣1)为圆心的圆与直线l相切于点P(﹣m,0),∴解得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)∴所求的圆的方程为(x﹣2)2+(y+1)2=2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)】(2)解法1:将直线方程y=x+m中的y换成﹣y,可得直线l'的方程为y=﹣x﹣m.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)由得mx2+x+m=0,(m≠0)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)△=1﹣4m2,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)∵直线l'与抛物线相切∴△=0,解得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)当时,直线l的方程为,抛物线C的方程为x2=2y,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)当时,直线l的方程为,抛物线C的方程为x2=﹣2y.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)解法2:将直线方程y=x+m中的y换成﹣y,可得直线l'的方程为y=﹣x﹣m.﹣﹣﹣﹣﹣(7分)设直线l'与抛物线相切的切点为(x0,y0),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)由y=mx2得y'=2mx,则2mx0=﹣1﹣﹣﹣①﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)y0=﹣x0﹣m﹣﹣﹣﹣﹣﹣②.﹣﹣﹣﹣﹣﹣﹣﹣﹣③①②③联立得,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)当时,直线l的方程为,抛物线C的方程为x2=2y,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)当时,直线l的方程为,抛物线C的方程为x2=﹣2y.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)】点评:本题考查直线与圆的位置关系,直线与抛物线的位置关系,考查学生对直线与圆相切,直线与抛物线相切的问题的转化方法,考查学生的方程思想和运算化简能力,属于中档题.19.(12分)已知等差数列{a n}的公差d≠0,它的前n项和为S n,若S5=70,且a2,a7,a22成等比数列.(1)求数列{a n}的通项公式;(2)设数列{}的前n项和为T n,求证:≤T n<.考点:数列的求和;等比数列的性质.专题:等差数列与等比数列.分析:(1)由题意得,由此能求出a n=4n+2.(2)由a1=6,d=4,得S n=2n2+4n,==,从而T n==﹣<,由此能证明≤T n<.解答:解:(1)由题意得,解得a1=6,d=4,∴a n=6+(n﹣1)×4=4n+2.(2)∵a1=6,d=4,∴S n=6n+=2n2+4n,==,∴T n===﹣<,(T n)min=T1=﹣=.故≤T n<.点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.20.(13分)已知函数f(x)=.(I)求函数f(x)的单调区间;(II)若函数f(x)在区间(t,t+)(t>0)上不是单调函数,求实数t的取值范围;(III)如果当x≥1时,不等式f(x)≥恒成立,求实数a的取值范围.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:计算题;函数的性质及应用;导数的综合应用.分析:(I)求导f′(x)=﹣,从而由导数的正负确定函数的单调区间;(II)由f(x)的单调增区间为(0,1),单调减区间为(1,+∞)得t<1<t+,从而解得;(III)不等式f(x)≥可化为a≤,令g(x)=,从而化恒成立为a≤g min(x),(x≥1);从而转化为函数的最值问题.解答:解:(I)∵f(x)=,x>0,故f′(x)=﹣,则当x∈(0,1)时,f′(x)>0,当x∈(1,+∞)时,f′(x)<0;故f(x)的单调增区间为(0,1),单调减区间为(1,+∞);(II)∵f(x)的单调增区间为(0,1),单调减区间为(1,+∞);∴t<1<t+,故<t<1;故实数t的取值范围为(,1);(III)不等式f(x)≥可化为a≤,令g(x)=,则当x≥1时,不等式f(x)≥恒成立可化为a≤g min(x),(x≥1);而g′(x)=;令h(x)=x﹣lnx;则h′(x)=1﹣≥0;故h(x)在.点评:本题了函数的综合应用及导数的综合应用,同时考查了恒成立问题,属于中档题.21.(14分)定义:若两个椭圆的离心率相等,则称两个椭圆是“相似”的.如图,椭圆C1与椭圆C2是相似的两个椭圆,并且相交于上下两个顶点.椭圆C1:的长轴长是4,椭圆C2:短轴长是1,点F1,F2分别是椭圆C1的左焦点与右焦点,(Ⅰ)求椭圆C1,C2的方程;(Ⅱ)过F1的直线交椭圆C2于点M,N,求△F2MN面积的最大值.考点:直线与圆锥曲线的关系;椭圆的标准方程;椭圆的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设椭圆C1的半焦距为c,椭圆C2的半焦距为c',易知a=2,b=m,n=,根据椭圆C1与椭圆C2的离心率相等,可得关于a,b,m,n的方程,解出即可;(Ⅱ)由题意可设直线的方程为:.与椭圆C2的方程联立消掉x得y的二次方程,则△>0,由弦长公式可表示出|MN|,由点到直线的距离公式可表示出△F2MN的高h,则△F2MN的面积S=,变形后运用基本不等式即可求得S的最大值;解答:解:(Ⅰ)设椭圆C1的半焦距为c,椭圆C2的半焦距为c'.由已知a=2,b=m,.∵椭圆C1与椭圆C2的离心率相等,即,∴,即∴,即bm=b2=an=1,∴b=m=1,∴椭圆C1的方程是,椭圆C2的方程是;(Ⅱ)显然直线的斜率不为0,故可设直线的方程为:.联立:,得,即,∴△=192m2﹣44(1+4m2)=16m2﹣44>0,设M(x1,y1),N(x2,y2),则,,∴,△F2MN的高即为点F2到直线的距离.∴△F2MN的面积,∵,等号成立当且仅当,即时,∴,即△F2MN 的面积的最大值为.点评:本题考查椭圆方程及其性质、直线方程、直线与椭圆的位置关系,考查基本不等式求函数的最值,考查学生的运算能力、分析解决问题的能力.。

山东省实验中学高三第二次诊断性测试

山东省实验中学高三第二次诊断性测试

山东省实验中学高三第二次诊断性测试standalone; self-contained; independent; self-governed;autocephalous; indie; absolute; unattached; substantive山东省实验中学高三第二次诊断性测试化学试题注意事项:1.本试卷分为第Ⅰ卷和第Ⅱ卷两部分。

第Ⅰ卷1~4页为选择题,第Ⅱ卷5~8页为非选择题。

考试时间90分钟,满分100分。

2.请将第Ⅰ卷选择题所选答案的标号(A、B、C、D)填涂在答题卡上可能用到的原子量: H 1 C 12 N 14 O 16 Na 23 P 31 Cu 64第Ⅰ卷(选择题共40分)一、选择题(本题包括17小题,每小题只有一个选项符合题意。

1-11题每小题2分,12-17题每小题3分,共40分。

)1.下列物质及用途正确的是A.碳酸钡、钡餐(X光透视)B. 苯甲酸钠、食品防腐剂C.甲醛、食品漂白 D. 苏丹红、食品色素2. 久置空气中会发生颜色变化,但颜色变化不是由于跟氧气反应引起的物质是A.过氧化钠固体B. 亚硫酸钠固体 C 硫酸亚铁晶体 D 苯酚晶体3.短周期元素A、B、C原子序数依次递增,它们原子的最外层电子数之和为10。

A与C在周期表中同主族,B原子最外层电子数等于A原子次外层电子数,下列叙述正确的是A. 原子半径A>B>CB. A的氢化物的稳定性大于C的氢化物C. A的氧化物的熔点比C的氧化物高D. A与C可形成离子化合物4. 同温同压下,等体积的两容器内分别充满由14N、13C、18O三种原子构成的一氧化氮和一氧化碳,下列说法正确的是A.所含分子数和质量均不相同 B.含有相同的分子数和电子数C.含有相同的质子数和中子数 D.含有相同数目的中子、原子和分子5. 用NA表示阿伏加德罗常数,下列说法中正确的是A.1L1mol/L的醋酸溶液中离子总数为2NA4中含有阳离子的数量为 NA晶体中含有右图所示的结构单元的数量为D. 标准状况下,22.4L CH3Cl和CHCl3的混合物所含有分子数目为NA6.将60℃的硫酸铜饱和溶液100克,冷却到20℃,下列说法正确的是A.溶液质量不变B.溶剂质量发生变化C.溶液为饱和溶液,浓度不变D.有晶体析出,溶剂质量不变7. 下列药品:① 氯水;② 氢氧化钠溶液;③ 银氨溶液;④ 氨水;⑤ 氢硫酸;⑥ 与乙醛发生反应的氢氧化铜;⑦ 由工业酒精制取无水酒精时所用的生石灰。

山东省实验中学高三数学第二次诊断性考试试题理

山东省实验中学高三数学第二次诊断性考试试题理

山东省实验中学2013级第二次诊断性考试 数学试题(理科) 2015.11说明:试题分为第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷为第1页至第2页,第II 卷为第3页至第4页,试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。

考试时间120分钟。

第I 卷(共50分)一、选择题(本题包括10小题,每小题5分,共50分,每小题只有一个选项......符合题意) 1. A.RB.()()∞+-∞-,,02 C.()()∞+-∞-,,21D.○2.A.)0,21(-B.),21(+∞-C.),0()0,21(+∞- D.)2,21(-3.下列函数中,既是偶函数,又在区间(0,3)内是增函数的是A.x x y -+=22B.x y cos =C.x y 5.0log =D.1-+=x x y4. A.32 B.32-C.31D.31-5.已知命题p :在△ABC 中,“C>B ”是“sinC>sinB ”的充分不必要条件;命题q :“a>b ”是“ac 2>bc 2”的充分不必要条件,则下列选项中正确的是A.p 真q 假B.p 假q 真C.“p ∨q ”为假D.“p ∧q ”为真6.将函数x x y 2cos 32sin +=的图象沿x 轴向左平移ϕ个单位后,得到一个偶函数的图象,则ϕ的最小值为A.12πB.6πC.4πD.125π7.则命题已知,0)(),2,0(:,sin 3)(<∈∀-=x f x p x x x f ππ的定义域为则若)(,)12(log 1)(21x f x x f +={}{}()等于则设集合B A C x x y y B R x x x A R ,21,|,,22≤≤--==∈≤=的值为则已知θθπθθθcos sin ),40(34cos sin -<<=+A.0)(),2,0(:≥∈∀⌝x f x p ;p π是假命题 B.0)(),2,0(:00≥∈∃⌝x f x p ;p π是假命题 C.0)(),2,0(:>∈∀⌝x f x p ;p π是真命题 D.0)(),2,0(:00≥∈∃⌝x f x p ;p π是真命题8.已知f(x)是定义在R 上的奇函数,当0≥x 时,x x x f 2)(2+=,若)()2(2a f a f >-,则实数a 的取值范围是A.),2()1,(+∞--∞B.(-2,1)C.(-1,2)D.),1()2,(+∞--∞9.△ABC 中,3,3==BC A π,则△ABC 的周长为A.33sin 34+⎪⎭⎫ ⎝⎛+πBB.36sin 34+⎪⎭⎫ ⎝⎛+πB C.33sin 6+⎪⎭⎫ ⎝⎛+πBD.36sin 6+⎪⎭⎫ ⎝⎛+πB 10.已知y=f(x)是奇函数,且满足f(x+2)+3f(-x)=0,当x ∈[0,2]时,f(x)=x 2-2x,则当x ∈[-4,-2]时,f(x)的最小值为A.-1B.31-C.91-D.91第II 卷(非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分)11.在△ABC 中,角A ,B ,C 所对的边长分别为a , b , c ,且a=15,b=10,A=60°,则cosB= 。

2015山东省实验中学高三二诊数学(理)试题word版含答案

2015山东省实验中学高三二诊数学(理)试题word版含答案

山东省实验中学2015届高三第二次诊断性考试数学 试 题一、选择题(本题包括10小题,每小题5分,共50分.每小题只有一个选项......符合题意) 1.集合{}{}2,1,0,1xA y R yB =∈==-,则下列结论正确的是A.{}0,1A B ⋂=B.{}0,A B ⋃=+∞C.()(),0R C A B ⋃=-∞D.(){}1,0R C A B ⋂=-2.“22ab>”是“ln ln a b >”的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知()10,sin cos 2απαα∈+=,且,则cos 2α的值为A. C.D.34-4.已知函数()f x 的定义域为()()32,11a a f x -++,且为偶函数,则实数a 的值可以是 A.23B.2C.4D.65.设函数()sin cos 2f x x x =图象的一条对称轴方程是 A. 4x π=-B.0x =C.4x π=D. 2x π=6.若方程24x x m +=有实数根,则所有实数根的和可能是A.246---、、B. 456---、、C. 345---、、D. 468---、、7.要得到一个奇函数,只需将函数()sin 22f x x x =-的图象 A.向左平移6π个单位 B.向右平移6π个单位 C.向右平移4π个单位D.向左平移3π个单位8.定义在R 上的偶函数满足()()3311,0222f x f x f f ⎛⎫⎛⎫+=--==-⎪ ⎪⎝⎭⎝⎭且,则()()()()1232014f f f f +++⋅⋅⋅+的值为A.2B.1C.0D.2-9.在ABC ∆中,若()()()sin 12cos sin A B B C A C -=+++∆,则ABC 的形状一定是A.等边三角形B.不含60o 的等腰三角形C.钝角三角形D.直角三角形10.函数()f x =的性质:①()f x 的图象是中心对称图形: ②()f x 的图象是轴对称图形; ③函数()f x的值域为)+∞; ④方程()()1ff x =+有两个解.上述关于函数()f x 的描述正确的是A.①③B.③④C.②③D.②④第II 卷(非选择题 共100分)二、填空题:本大题共5个小题,每小题5分,共25分.将答案填在题中横线上. 11.定积分()12xx e dx +⎰____________.12.如果()2tan sin 5sin cos f x x x x =-⋅,那么()2f =_________.13.函数()2sin cos f x x x x x =++,则不等式()()ln 1f x f <的解集为___________.14.已知ABC ∆的一个内角为120o ,并且三边长构成公差为4的等差数列,则ABC ∆的面积为____________.15.设函数()ln f x x =,有以下4个命题: ①对任意的()()()1212120,22f x f x x x x x f ++⎛⎫∈+∞≤⎪⎝⎭、,有; ②对任意的()()()121221211,x x x x f x f x x x ∈+∞<-<-、,且,有; ③对任意的()()()12121221,x x e x x x f x x f x ∈+∞<<、,且,有;④对任意的120x x <<,总有()012,x x x ∈,使得()()()12012f x f x f x x x -≤-.其中正确的是______________________(填写序号). 三、解答题:本大题共6小题,共75分.16.(本小题满分12分)已知函数())22sin cos cos sin f x x x x x =-. (I )求6f π⎛⎫ ⎪⎝⎭及()f x 的单调递增区间;(II )求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦的最值.17.(本小题满分12分)设命题p :函数()31f x x ax =--在区间[]1,1-上单调递减;命题q :函数()2ln 1y x ax =++的值域是R.如果命题p q 或为真命题,p q 且为假命题,求a 的取值范围.18.(本小题满分12分)在ABC ∆中,内角A ,B ,C 对边的边长分别是,,a b c ,已知23c C π==,.(I )若ABC ∆,求,a b ; (II )若()sin sin 2sin 2C B A A +-=,求,a b .19.(本小题满分12分)已知数列{}n a 满足,()*143n n a a n n N ++=-∈. (I )若数列{}n a 是等差数列,求1a 的值; (II )当12a =时,求数列{}n a 的前n 项和n S ;20.(本小题满分13分)已知函数()432f x ax bx cx dx e =++++的图像关于y 轴对称,其图像过点()0,1A -,且在x =18. (I )求()f x 的解析式;(II )对任意的x R ∈,不等式()20f x tx t --≤恒成立,求t 的取值范围.21.(本小题满分14分)已知函数()()3221103f x x x ax =+++-在,上有两个极值点12x x ,且12x x <.(I )求实数a 的取值范围;(II )证明:()21112f x >.。

【山东省实验中学二模 理科数学压轴题】山东省实验中学2015届高三最后第二次模拟考试(6月)Word版含答案

【山东省实验中学二模 理科数学压轴题】山东省实验中学2015届高三最后第二次模拟考试(6月)Word版含答案

【打靶题】山东省实验中学2015届高三最后第二次模拟考试(6月)山东省实验中学二模 数学试题(理)2015.6说明:试题分为第I 卷(选择题)和第I 卷(非选择题)两部分.试题答案请用2B 铅笔或0,5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效,考试时间120分钟.一、选择题(本题包括10小题,每小题5分,共50分,每小题只有一个选项符合题意)l-已知全集U=R ,集合 {}{}3|021,|log 0xA xB x x =<<=>,则A. {}|1x x > B . {}|0x x > C. {}|01x x << D. {}|0x x < 2.若 ,R αβ∈, 则90αβ+=是sin sin 1αβ+> 的A .充分而不必要条件 B.必要而不充分条件C .充耍条件D .既不充分也不必要条件 3.复数z 满足 (12)7i z i -=+,则复数 z ==( )A. 13i +B.13i -C.3i +D. 3i -4.执行下图所示的程序框图,若要使输入的x 值与输出的y 值相等,则这样的x 值的个数是A. 1B. 2C. 3D.4 5.下列四个命题:①样本方差反映的是所有样本数据与样本平均值的偏离程度; ②某只股票经历了l0个跌停(每次跌停,即下跌l0%)后需再经 过如个涨停(每次涨停,印上涨10%)就酉以回到原来的净值; ③某校高三一级部和二级部的人数分别是m 、n ,本次期末考试 两级部;学平均分分别是a 、b ,则这两个级部的数学平均分为na mb m n+ ④某中学采伯系统抽样方法,从该校高一年级全体800名学生中 抽50名学生做牙齿健康检查,现将800名学生从001到800进行编号,已知从497--512这16个数中取得的学生编号是503,则初始在第1小组00l ~016中随机抽到的学生编号是007. 其中真命题的个数是A.0个B.1个C.2个D.3个6.已知函数 ()sin()f x A x ωϕ=+ (其中A>0, 2πϕ<)的部分图象 如图所示,为了得到g(x)=sin 2x 的图象,则只需将f (x)的图象A.向右平移6π个长度单位 B.向右平移 12π个长度单位C .向左平移 6π个长度单位 D .向左平移 12π个长度单位7.已知数列 {}{}n n a b 满足 1111,2,n n a b a a n N *+==-==∈,则数列 {}n a b 的前10项和为 A.()101413- B. ()104413- C. ()91413- D. ()94413- 8.函数 2()(2)x f x x x e =-的图像大致是9.已知A 、B 是圆 22:1O x y +=上的两个点,P 是AB 线段上的动点,当∆AOB 的面积最大时,则 2AO AP AP ⋅-的最大值是 A. -1 B.0 C.18 D. 1210.已知a>0,b>0,c>0,且 2221,4ab a b c =++=,则ab+bc+ac 的最大值为 A. 122+ B.3 C. 3 D. 4第Ⅱ卷(非选择题,共100分)二.填空题(本题包括5小题,每小题5分,共25分)11.已知 ()24f x x x =++-的最小值是n ,则二颈式 1()nx x-展开式中2x 项的系数为__________.12.若双曲线 22:2(0)C x y m m -=>与抛物线 216y x =的准线交于A ,B 两点,且43AB =则m 的值是__________.13.若实数x,y 满足条件 20,0,3,x y x y x +-≥⎧⎪-≤⎨⎪≤⎩, 则z=3x-4y 的最大值是__________.14.一个球的内接圆锥的最大体积与这个球的体积之比为__________.15.用[x]表示不大于实数x 的最大整数, 方程 []2lg lg 20x x --=的实根个数是__________.三.解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤). 16.(本小题满分12分)已知函数 ()sin (0)f x x ωω=->在区间 0,3π⎡⎤⎢⎥⎣⎦上单调递减,在区间 2,33ππ⎡⎤⎢⎥⎣⎦上单调递增;如图,四边形OACB 中,a ,b ,c 为△ABC 的内角以B, C 的对边,且 满足 sin sin tan 4cos cos 3B c A BC ω+=-- .(I)证明:b+c =2a :(Ⅱ)若b=c ,设 AOB θ∠=.(0),22OB OB θπ<<==,求四边形OACB 面积的最大值.17. (本小题满分12分)如图, 在四棱锥P –ABCD 中,PA ⊥平面ABCD , ∠DAB 为直角, AB//CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点. ( I)证明:AB ⊥平面BEF :(Ⅱ)设PA =h ,若二面角E-BD-C 大于45 ,求h 的取值范围.18.(本小题满分12分)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为l ,2,3,4,5:4个白球编号分别为1,2,3,4,从袋中任意取出3个球. (I)求取出的3个球编号都不相同的概率;(II)记X 为取出的3个球中编号的最大值,求X 的分布列与数学期望, 19. (本小题满分12分)数列{}n a 的前n 项和记为 11,2,n n n S a a S n +==+,等差数列 {}n b 的各项为正,其前n 项和为 n T ,且 39T =,又 112233,,a b a b a b +++成等比数列. (I)求 {}n a ,{}n b 的通项公式} ( II)求证:当n ≥2时, 2221211145nb b b ++⋅⋅⋅+< 20. (本小题满分13分)如图,椭圆 22122:1(0)x y C a b a b +=>>的离心率为 22,x轴被曲线 22:C y x b =-截得的线段长等于1C 的短轴长, 2C 与y 轴的交点为M ,过坐标原点O 的直线 l 与2C 相交于点A 、B ,直线MA,MB 分别与 1C 相交于点D 、E.(I)求1C 、 2C 的方程; (Ⅱ)求证:MA ⊥MB :(Ⅲ)记∆MAB , ∆MDE 的面积分别为 12,S S ,若 12S S λ=,求 λ的最小值. 21.(本小题满分l4分)已知函数 1()(1)ln ,()f x ax a x a R x=+-+∈. (I)当a=0时,求 ()f x 的极值; (Ⅱ)当a<0时,求 ()f x 的单调区间;(Ⅲ)方程 ()0f x =的根的个数能否达到3,若能请求出此时a 的范围,若不能,请说明理由,【打靶题】山东省实验中学2015届高三最后第二次模拟考试(6月) 理科数学答案一、 选择: DDBDC AABCA二、 填空 11. 15;12. 20;13. -1;14. 8:27;15. 3 三、解答题16解:(Ⅰ)由题意知:243ππω=,解得:32ω=, ……………………2分CB CB B A A cos cos 2sin sin sin sin tan --+==∴ A C A B A A C A B sin cos -sin cos -sin 2cos sin cos sin =+∴ A A C A C A B A B sin 2sin cos cos sin sin cos cos sin =+++∴ A C A B A sin 2)(sin )(sin =+++∴……………………………………4分a cb A B C 2sin 2sin sin =+⇒∴=+∴…………………………………………………6分(Ⅱ)因为2b c a b c +==,,所以a b c ==,所以ABC △为等边三角形 …………8分z yxFEPDCBA213sin 24OACB OAB ABC S S S OA OB AB θ∆∆=+=⋅+ ……………9分435cos 3-sin +=θθ532sin (-)34πθ=+, ……………………10分 (0)θπ∈,,2--333πππθ∴∈(,),当且仅当-32ππθ=,即56πθ=时取最大值,OACB S 的最大值为5324+………………12分 17.解:(Ⅰ)证:由已知DF ∥AB 且∠DAB 为直角,故ABFD 是矩形,从而AB ⊥BF . ……(1分)又P A ⊥底面ABCD , ∴平面P AD ⊥平面ABCD , ……(2分) ∵AB ⊥AD ,故AB ⊥平面P AD ,∴AB ⊥PD , ……(3分) 在ΔPCD 内,E 、F 分别是PC 、CD 的中点,EF //PD ,……(4分) ∴ AB ⊥EF . ……(5分)由此得⊥AB 平面BEF .……(6分) (Ⅱ)以A 为原点,以AB ,AD ,AP 为x 轴,y 轴,z 轴正向建立空间直角坐标系,则)21,0(),0,2,1(hBE BD =-=……(8分)设平面CDB 的法向量为)1,0,0(1=n ,平面EDB 的法向量为),,(2z y x n =,则 ⎪⎩⎪⎨⎧=⋅=⋅0022BE n BD n⎪⎩⎪⎨⎧=+=+-0202hz y y x 可取⎪⎭⎫ ⎝⎛-=h n 2,1,22……(10分) 设二面角E -BD -C 的大小为θ,则|||||||,cos |cos 212121n n n n n n ⋅⋅=><=θ=224522<+hh, 化简得542>h ,所以552>h …(12分)18解:(I )设“取出的3个球编号都不相同”为事件A ,则“取出的3个球中恰有两个球编号相同”为事件A ,则31)(391714==C C C A P 所以32)(1)(=-=A P A P ………………(4分)(II ) X 的取值为2,3,4,5211)2(3912222212=+==C C C C C X P ,214)3(3914222412=+==C C C C C X P73)3(3916222612=+==C C C C C X P ,31)5(3928===C C X P…………………(8分) 所以X 的分布列为:X 23 4 5P211214 73 31的数学期望218531573421432112=⨯+⨯+⨯+⨯=EX ………..12分 19解:(Ⅰ)由n S a n n +=+1,得)1(1-+=-n S a n n )2(≥n ,两式相减得1111+=+-=--+n n n n n a S S a a ,所以121+=+n n a a ---------------------------------2分所以)1(211+=++n n a a )2(≥n -------------------------------------3分 又,32=a 所以n n n a a 2)1(2122=+=+-,从而12-=n n a )2(≥n ----------------5分 而21=a ,不符合上式,所以⎩⎨⎧≥-==2,121,2n n a nn -------------------------------------6分因为}{n b 为等差数列,且前三项的和93=T ,所以32=b ,--------7分可设db d b +=-=3,331,由于7,3,2321===a a a ,于是d b a b a d b a -=+=+-=+10,6,5332211,因为332211,,b a b a b a +++成等比数列, 所以36)10)(5(=+-d d ,2=d 或7-=d (舍)所以12)1(21)1(1-=-+=-+=n n d n b b n -----------------------------------9分 (Ⅱ)因为⎪⎭⎫⎝⎛--=-=--<-=k k k k k k b k11141)22(211)12(1)12(11222 所以,当2≥n 时22222221)12(13111111-++=+++n b b b n⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+<n n 1113121211411 ⎥⎦⎤⎢⎣⎡-+=n 1141145411=+< -----------------------------------------------------------12分20.解(1)22222c a b a =∴= (1分) 又22b b =,得1b =22221:1,:12x C y x C y ∴=-+= (3分)(2)设直线1122:,(,),(,)AB y kx A x y B x y =则22101y kxx kx y x =⎧⇒--=⎨=-⎩ (4分) 211221212(,1)(,1)(1)()1MA MB x y x y k x x k x x ⋅=+⋅+=++++=0M A M B ∴⊥ (6分) (3)设直线1212:1;:1,1MA y k x MB y k x k k =-=-=-1121122110,(,1)111x k y k x x A k k y y k y x ==-⎧⎧=⎧⎪∴-⎨⎨⎨=-=-=-⎪⎩⎩⎩解得或,同理可得222(,1)B k k - 2211212111122S MA MB k k k k ==++ (8分) 1212111222221112141120421,(,)11212211212k x y k x k x k k D x y k k k y y k ⎧==-⎧⎪+=⎧-⎪⎪∴⎨⎨⎨=-++-+=⎩⎪⎪=⎩⎪+⎩解得或 同理可得2222222421(,)1212k k E k k -++1222212221216111122(12)(12)k k S MD ME k k k k ∴==++++ (11分)2122211212152()(12)(12)9161616k S k k k S λ++++===≥所以λ的最小值为169,此时k =1或-1. (13分)21解:(Ⅰ))(x f 其定义域为),0(+∞. ……………1分当0=a 时,x x x f 1ln )(+= ,22111)(xx x x x f -=-='. 令0)(='x f ,解得1=x ,当10<<x 时,0)(<'x f ;当1>x 时,0)(>'x f .所以)(x f 的单调递减区间是)1,0(,单调递增区间是),1(+∞;所以1=x 时, )(x f 有极小值为1)1(=f ,无极大值 ……………3分(Ⅱ) 222211(1)1(1)(1)()(0)a ax a x ax x f x a x x x x x ----+-'=--==> ………4分令0)(='x f ,得1=x 或ax 1-= 当01<<-a 时,a11-<,令0)(<'x f ,得10<<x 或a x 1->,令0)(>'x f ,得ax 11-<<;当1-=a 时,0)1()(22≤--='xx x f . 当1-<a 时,110<-<a ,令0)(<'x f ,得ax 10-<<或1>x , 令0)(>'x f ,得11<<-x a;综上所述:当01<<-a 时,)(x f 的单调递减区间是)1,0(,),1(+∞-a, 单调递增区间是)1,1(a-;当1-=a 时,)(x f 的单调递减区间是),0(+∞;当1-<a 时,)(x f 的单调递减区间是)1,0(a-,),1(+∞,单调递增区间是)1,1(a - (10)分(Ⅲ)0≥a 时)0()1)(1()(2>-+='x x x ax x f)0(0)(>='∴x x f 仅有1解,方程0)(=x f 至多有两个不同的解.(注:也可用01)1()(min >+==a f x f 说明.)由(Ⅱ)知01-<<a 时,极小值 01)1(>+=a f , 方程0)(=x f 至多在区间),1(+∞-a 上有1个解.-1a =时)(x f 单调, 方程0)(=x f 至多有1个解.;1-<a 时, 01)1()1(<+=<-a f a f ,方程0)(=x f 仅在区间)1,0(a -内有1个解;故方程0)(=x f 的根的个数不能达到3. …………………14分。

山东省实验中学高三第二次诊断性测试 理科数学试题.pdf

山东省实验中学高三第二次诊断性测试 理科数学试题.pdf

【教学目标】 知识目标:读准字音,明确字义:愠、罔、殆、谓、哉、焉“仁”,反对残暴统治,同情人民疾苦。

他创办私学,开私人讲学之先河, 讲学之风主张“有教无类”“因材施教”,相传有弟子三千,贤弟子七十二人,是我国历史上致力于教育的第一人。

他的思想和学说,为中国文化乃至世界文明作出了不朽的贡献,联合国教科文组织把他列为世界十大名人之一。

《论(lún)语》属语录体散文,是孔子弟子及其再传弟子关于孔子及其弟子言行的记录,共20篇 。

内容有孔子谈话,答弟子问及弟子间的相互讨论。

它是研究孔子思想的主要依据。

南宋时,朱熹把它列为“四书” (《论语》《孟子》《大学》《中庸》)之一,成为儒家的重要经典。

由若干篇章组成,前后两章之间不一定有什么关联。

各章的体式也不尽相同,归纳起来,有以下几种: 一种是语录体,(也可称格言体)仅指的是孔子的话。

一种是对话体,记录孔子对弟子的问题所作的回答。

一种是叙事体,其中多少有一点情节,但也往往是以记录孔子的话为主。

第一则 子曰:“学而时习之,不亦说(yuè)乎?有朋自远方来,不亦乐乎?人不知而不愠,不亦君子乎(《学而》)学:孔子在这里所讲的“学”,主要是指学习西周的礼、乐、诗、书等传统文化典籍。

在周秦时代,“时”字用作副词,意为“在一定的时候”或者“在适当的时候”。

但朱熹在《》一书中把“时”解释为“时常”。

“习”,指演习礼、乐;复习诗、书。

也含有温习、实习、练习的意思。

名词,朋友。

这里指志同道合的人知,是了解的意思。

人不知,是说别人不了解自己。

而是连词,表顺接亦(yì):同样、也是。

乎:语气助词,表疑问语气,可译“吗”。

人不知而不愠而表转折,相当于可是、但是。

这一则语录中学而时习之讲的是学习方法;有朋自远方来 讲的是学习乐趣志同道合的人来访可以人不知而不愠讲的是个人修养的问题。

曾子曰:“吾日三省(xǐng)吾身:为人谋而不忠乎?与朋友交而不信乎?传不习乎?”(《学而》)古代在有动作性的动词前加上数字,表示动作频率多,不必认定为三次。

2015年山东省实验中学高考一模数学试卷(理科)【解析版】

2015年山东省实验中学高考一模数学试卷(理科)【解析版】

2015年山东省实验中学高考数学一模试卷(理科)一、选择题《本题包括10小题,每小题5分,共50分.每小题只有一个选项符合题意)1.(5分)i为虚数单位,若,则|z|=()A.1B.C.D.22.(5分)f(x)=则f[f()]=()A.﹣2B.﹣3C.9D.3.(5分)已知条件p:|x+1|>2,条件q:5x﹣6>x2,则¬p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)某程序框图如图所示,现输入如下四个函数,则可以输出的函数是()A.f(x)=x2B.f(x)=C.f(x)=e x D.f(x)=sin x 5.(5分)由函数f(x)=e x﹣e的图象,直线x=2及x轴所围成的图象面积等于()A.e2﹣2e﹣1B.e2﹣2e C.D.e2﹣2e+1 6.(5分)函数(1<x<4)的图象如图所示,A为图象与x轴的交点,过点A的直线l与函数的图象交于B,C两点,则(+)•=()A.﹣8B.﹣4C.4D.87.(5分)已知x,y满足条件,则z=的最小值()A.﹣B.C.D.48.(5分)一个几何体的三视图如图所示,则该几何体的表面积和体积分别是()A.24+和40B.24+和72C.64+和40D.50+和72 9.(5分)抛物线y2=2px(p>0)的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足∠AFB=.设线段AB的中点M在l上的投影为N,则的最大值是()A.B.C.D.10.(5分)定义在(0,)上的函数f(x),f′(x)是它的导函数,且恒有f (x)<f′(x)tan x成立,则()A.f()>f()B.f(1)<2f()sin1C.f()>f()D.f()<f()二、填空题(本题包括5小题,每小题5分,共25分)11.(5分)已知等差数列{a n}中,a5=1,a3=a2+2,则S11=.12.(5分)一只昆虫在边长分别为5,12,13的三角形区域内随机爬行,则其到三角形顶点的距离小于2的地方的概率为.13.(5分)双曲线=1(m>0)的一条渐近线方程为y=2x,则m=.14.(5分)若多项式x2+x10=a0+a1(x+1)+…+a9(x+1)9+a10(x+1)10,则a9=.15.(5分)已知函数f(x)是定义在足上的奇函数,它的图象关于直线x=l对称,且f(x)=x(0<x≤1).若函数y=f(x)﹣﹣a以在区间[﹣10,10]上有10个零点(互不相同),则实数口的取值范围是.三、解答题(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤).16.(12分)设△ABC的内角A,B,C所对的边分别为a,b,c且a cos C﹣c =b.(I)求角A的大小;(Ⅱ)若a=3,求△ABC的周长l的取值范围.17.(12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球,现从中同时取出3个球.(Ⅰ)求恰有两个黑球的概率;(Ⅱ)记取出红球的个数为随机变量X,求X的分布列和数学期望E(X).18.(12分)如图,在四棱锥P﹣ABCD.中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点.(Ⅰ)求证;平面EAC⊥平面PBC;(Ⅱ)若二面角P﹣AC﹣E的余弦值为,求直线P A与平面EAC所成角的正弦值.19.(12分)已知S n为数列{a n}的前n项和,且S n=2a n+n2﹣3n﹣1,n=l,2,3…(1)求证:数列{a n﹣2n}为等比数列:(2)设b n=a n•cos nπ,求数列{b n}的前n项和T n.20.(13分)已知椭圆C:+=1(a>b>0)的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为1.(Ⅰ)求椭圆C的标准方程;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有=+成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.21.(14分)已知函数f(x)=e x﹣mx k(m,k∈R)定义域为(0,+∞)(Ⅰ)若k=1时,f(x)在(1,+∞)上有最小值,求m的取值范围;(Ⅱ)若k=2时,f(x)的值域为[0,+∞),试求m的值;(Ⅲ)试证:对任意实数m,k,总存在x0,使得当x∈(x0,+∞)时,恒有f(x)>0.2015年山东省实验中学高考数学一模试卷(理科)参考答案与试题解析一、选择题《本题包括10小题,每小题5分,共50分.每小题只有一个选项符合题意)1.(5分)i为虚数单位,若,则|z|=()A.1B.C.D.2【解答】解:∵,∴|||z|=||,即2|z|=2,∴|z|=1,故选:A.2.(5分)f(x)=则f[f()]=()A.﹣2B.﹣3C.9D.【解答】解:∵f(x)=,∴==﹣2.∴f[f()]=f(﹣2)==9.故选:C.3.(5分)已知条件p:|x+1|>2,条件q:5x﹣6>x2,则¬p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵p:|x+1|>2,∴x>1或x<﹣3∵q:5x﹣6>x2,∴2<x<3,∴q⇒p,∴﹣p⇒﹣q∴﹣p是﹣q的充分不必要条件,故选:A.4.(5分)某程序框图如图所示,现输入如下四个函数,则可以输出的函数是()A.f(x)=x2B.f(x)=C.f(x)=e x D.f(x)=sin x 【解答】解:∵A:f(x)=x2、C:f(x)=e x,不是奇函数,故不满足条件①又∵B:f(x)=的函数图象与x轴没有交点,故不满足条件②而D:f(x)=sin x既是奇函数,而且函数图象与x也有交点,故D:f(x)=sin x符合输出的条件故选:D.5.(5分)由函数f(x)=e x﹣e的图象,直线x=2及x轴所围成的图象面积等于()A.e2﹣2e﹣1B.e2﹣2e C.D.e2﹣2e+1【解答】解:由题意,令f(x)=0,可得x=1∴函数f(x)=e x﹣e的图象,直线x=2及x轴所围成的图象面积等于=(e x﹣ex)=e2﹣2e故选:B.6.(5分)函数(1<x<4)的图象如图所示,A为图象与x轴的交点,过点A的直线l与函数的图象交于B,C两点,则(+)•=()A.﹣8B.﹣4C.4D.8【解答】解:由题意可知B、C两点的中点为点A(2,0),设B(x1,y1),C (x2,y2),则x1+x2=4,y1+y2=0∴(+)•=((x1,y1)+(x2,y2))•(2,0)=(x1+x2,y1+y2)•(2,0)=(4,0)•(2,0)=8故选:D.7.(5分)已知x,y满足条件,则z=的最小值()A.﹣B.C.D.4【解答】解:因为z===1+,即为求的最大值问题,等价于求可行域中的点与定点B(﹣3,1)的斜率的最小值根据可行域可知,点C与点(﹣3,1)的斜率最小,由,解得,即C(3,﹣3),此时k==﹣,则z的最小值为1﹣=,故选:B.8.(5分)一个几何体的三视图如图所示,则该几何体的表面积和体积分别是()A.24+和40B.24+和72C.64+和40D.50+和72【解答】解:根据三视图判断:几何体下部分为长方体,上部分为四棱锥.几何体如下;∴体积:3×4×2+=24+16=40,该几何体的表面积:3×4+2(3+4)×2+4×4=64,故选:C.9.(5分)抛物线y2=2px(p>0)的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足∠AFB=.设线段AB的中点M在l上的投影为N,则的最大值是()A.B.C.D.【解答】解:设|AF|=a,|BF|=b,A、B在准线上的射影点分别为Q、P,连接AQ、BQ由抛物线定义,得|AF|=|AQ|且|BF|=|BP|,在梯形ABPQ中根据中位线定理,得2|MN|=|AQ|+|BP|=a+b.由余弦定理得|AB|2=a2+b2﹣2ab cos=a2+b2+ab,配方得|AB|2=(a+b)2﹣ab,又∵ab≤()2,∴(a+b)2﹣ab≥(a+b)2﹣()2=(a+b)2得到|AB|≥(a+b).所以≤=,即的最大值为.故选:C.10.(5分)定义在(0,)上的函数f(x),f′(x)是它的导函数,且恒有f (x)<f′(x)tan x成立,则()A.f()>f()B.f(1)<2f()sin1C.f()>f()D.f()<f()【解答】解:因为x∈(0,),所以sin x>0,cos x>0.由f(x)<f′(x)tan x,得f(x)cos x<f′(x)sin x.即f′(x)sin x﹣f(x)cos x>0.令g(x)=x∈(0,),则.所以函数g(x)=在x∈(0,)上为增函数,则,即,所以,即.故选:D.二、填空题(本题包括5小题,每小题5分,共25分)11.(5分)已知等差数列{a n}中,a5=1,a3=a2+2,则S11=33.【解答】解:等差数列{a n}中,∵a5=1,a3=a2+2,∴,∴a1=﹣7,d=2,∴=11×(﹣7)+=33.故答案为:33.12.(5分)一只昆虫在边长分别为5,12,13的三角形区域内随机爬行,则其到三角形顶点的距离小于2的地方的概率为.【解答】解:昆虫活动的范围是在三角形的内部,三角形的边长为5,12,13,是直角三角形,∴面积为30,而“恰在离三个顶点距离都小于2”正好是一个半径为2的半圆,面积为π×22=4π×,∴根据几何概型的概率公式可知其到三角形顶点的距离小于2的地方的概率为=.故答案为:;13.(5分)双曲线=1(m>0)的一条渐近线方程为y=2x,则m=.【解答】解:由双曲线=1(m>0)可得渐近线方程为y=±x,∵双曲线=1(m>0)的一条渐近线方程为y=2x,∴,∴m=.故答案为:;14.(5分)若多项式x2+x10=a0+a1(x+1)+…+a9(x+1)9+a10(x+1)10,则a9=﹣10.【解答】解:x10的系数为a10,∴a10=1,x9的系数为a9+C109•a10,∴a9+10=0,∴a9=﹣10,故答案为:﹣10.15.(5分)已知函数f(x)是定义在足上的奇函数,它的图象关于直线x=l对称,且f(x)=x(0<x≤1).若函数y=f(x)﹣﹣a以在区间[﹣10,10]上有10个零点(互不相同),则实数口的取值范围是.【解答】因为f(x)是R上的奇函数,所以f(x+1)=﹣f(x﹣1).所以f(x+2)=﹣f(x),f(x+4)=﹣f(x+2)=f(x).则f(x)是周期为4的函数,由f(x)=x(0<x≤1)画出f(x)和y=的图象(第一象限部分):.因为函数y=f(x)﹣﹣a在区间[﹣10,10]上有10个零点,所以y=f(x)与y=+a在区间[﹣10,10]上有10个不同的交点,因为y=f(x)与y=是奇函数,所研究第一象限的部分交点问题即可,而y=+a的图象是由y=的图象上下平移得到,由图得,向上平移时保证图象第三象限的部分在x轴的下方,则第一象限的部分有4个交点,第三象限的部分有6个交点,同理向下平移时保证图象第一象限的部分在x轴的上方,则第一象限的部分有6个交点,第三象限的部分有4个交点,即,解得a∈.故答案为:.三、解答题(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤).16.(12分)设△ABC的内角A,B,C所对的边分别为a,b,c且a cos C﹣c =b.(I)求角A的大小;(Ⅱ)若a=3,求△ABC的周长l的取值范围.【解答】解:(I)由a cos C﹣c=b得:sin A cos C﹣sin C=sin B,又sin B=sin(A+C)=sin A cos C+cos A sin C,∴sin C=﹣cos A sin C,∵sin C≠0,∴cos A=﹣,又0<A<π,∴A=;(II)由正弦定理得:b==2sin B,c=2sin C,a+b+c=3+2(sin B+sin C)=3+2[sin B+sin(A+B)]=3+2(sin B+cos B)=3+2sin(B+),∵A=,∴B∈(0,),∴B+∈(,),∴sin(B+)∈(,1],则△ABC的周长l的取值范围为(6,3+2].17.(12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球,现从中同时取出3个球.(Ⅰ)求恰有两个黑球的概率;(Ⅱ)记取出红球的个数为随机变量X,求X的分布列和数学期望E(X).【解答】解:(I)记“恰有两个黑球”为事件A,则由已知得P(A)==.…(4分)(II)由已知得随机变量X的可能取值为0,1,2,,(2分),(2分)(2分)∴随机变量X的分布列为:∴X的数学期望E(X)==1.(2分)18.(12分)如图,在四棱锥P﹣ABCD.中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点.(Ⅰ)求证;平面EAC⊥平面PBC;(Ⅱ)若二面角P﹣AC﹣E的余弦值为,求直线P A与平面EAC所成角的正弦值.【解答】解:(I)证明:∵PC⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PC,∵AB=2,AD=CD=2,∴AC=BC=,∴AC2+BC2=AB2,∴AC⊥BC,又BC∩PC=C,∴AC⊥平面PBC,∵AC⊂平面EAC,∴平面EAC⊥平面PBC.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(II)解:如图,以C为原点,、、分别为x轴、y轴、z轴正向,建立空间直角坐标系,则C(0,0,0),A(1,1,0),B(1,﹣1,0).设P(0,0,a)(a>0),则E(,﹣,),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)=(1,1,0),=(0,0,a),=(,﹣,),取=(1,﹣1,0),则•=•=0,为面P AC的法向量.设=(x,y,z)为面EAC的法向量,则•=•=0,即取x=a,y=﹣a,z=﹣2,则=(a,﹣a,﹣2),依题意,|cos<,>|===,则a=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)于是=(1,﹣1,﹣2),=(1,1,﹣1).设直线P A与平面EAC所成角为θ,则sinθ=|cos<,>|===,即直线P A与平面EAC所成角的正弦值为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)19.(12分)已知S n为数列{a n}的前n项和,且S n=2a n+n2﹣3n﹣1,n=l,2,3…(1)求证:数列{a n﹣2n}为等比数列:(2)设b n=a n•cos nπ,求数列{b n}的前n项和T n.=2a n+n2﹣3n﹣1﹣【解答】(I)证明:当n≥2时,a n=S n﹣S n﹣1,﹣2n+4,整理得a n=2a n﹣1﹣2(n﹣1)],∴a n﹣2n=2[a n﹣1∴,∵S1=2a1+1﹣3×1﹣1,∴a1=3,∴{a n﹣2n}是以1为首项,以2为公比的等比数列.(II)解:由(I)得,∴.当n为偶数时,T n=b1+b2+b3+…+b n=(b1+b3+…+b n﹣1)+(b2+b4+…+b n)=;当n为奇数时,可得.综上,T n=,(n为奇数),(n为偶数).20.(13分)已知椭圆C:+=1(a>b>0)的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为1.(Ⅰ)求椭圆C的标准方程;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有=+成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.【解答】解:(I)离心率为,即有e==,F(c,0),直线l:y=x﹣c,由坐标原点到l的距离为1,则,解得.所以,则椭圆C的标准方程为;(II)椭圆C的方程为x2+2y2=4,设A(x1,y1),B(x2,y2),由题意知l的斜率为一定不为0,故不妨设,代入椭圆的方程中整理得,显然△>0.由韦达定理有:,….①假设存在点P,使=+成立,则点P的坐标为(x1+x2,y1+y2),因为点P在椭圆上,即.整理得.又A,B在椭圆上,即.故x1x2+2y1y2+2=0…②,将及①代入②解得m2=2,所以y1+y2=±1,x1+x2==,即P(,±1).则当时,;当时,.21.(14分)已知函数f(x)=e x﹣mx k(m,k∈R)定义域为(0,+∞)(Ⅰ)若k=1时,f(x)在(1,+∞)上有最小值,求m的取值范围;(Ⅱ)若k=2时,f(x)的值域为[0,+∞),试求m的值;(Ⅲ)试证:对任意实数m,k,总存在x0,使得当x∈(x0,+∞)时,恒有f(x)>0.【解答】解:(I)k=1时,令f′(x)=e x﹣m=0,得x=lnm.m≤e时,不符合题意,舍去.∴m>e.当1<x<lnm时,f′(x)<0;当x>lnm时,f′(x)>0.∴x=lnm是f(x)的极小值点.又f(x)在(1,+∞)上有最小值,∴ln m>1,即m>e.(II)解法1:k=2时,f(x)=e x﹣mx2(x>0),(i)m≤0时,f(x)=e x﹣mx2>e x>1,与题意矛盾,故m>0;又f′(x)=e x﹣2mx(x>0),令g(x)=e x﹣2mx(x>0),则g′(x)=e x﹣2m(x>0),(ii)时,g′(x)≥0(x>0),∴g(x)>g(0)>1>0,即有f′(x)>0(x>0),此时f(x)>e x>1,与题意矛盾,故;(iii)令g′(x)=0,得x0=ln(2m)>0,∴x∈(0,x0)时,g′(x)<0,x∈(x0,+∞)时,g′(x)>0,故g(x)在区间(0,x0)上单调递减,在区间(x0,+∞)上单调递增,∴g(x)min=g(x0)=2m(1﹣ln(2m)),1<2m≤e时,g(x)min≥0,同(ii),此时f′(x)>0(x>0),f(x)>e x >1,与题意矛盾,故;(iv)时,g(x)min=g(x0)=2m(1﹣ln(2m))<0,且g(0)=1>0,又记t(x)=e x﹣ex(x>0),则t'(x)=e x﹣e,则x∈(0,1)时,t'(x)<0,x∈(1,+∞)时t'(x)>0,易知t(x)min=t(1)=0,故e x≥ex(x>0),∴,若存在x1使g(x1)>0,则需,x1显然存在,如可取x1=2ln(2m)+1;故存在x2∈(0,x0),x3∈(x0,x1)使f'(x)=g(x)=0,且x∈(0,x2)时,f'(x)>0,x∈(x2,x3)时,f'(x)<0;x∈(x3,+∞)时,f'(x)>0;∴f(x3)=f(x)min=0,∴.得x3=2,故.解法2:由f(x)=e x﹣mx2≥0(x>0)得且等号成立.令,则m<g(x)(x>0),∵;∴x∈(0,2)时g'(x)<0,x∈(2,+∞)时g'(x)>0,故g(x)在区间(0,2)上单调递减,在区间(2,+∞)上单调递增,∴,即有,m只可取.又时,,以下做法同方法1(iv)注:方法1中(i)可不出现,有(ii)即可.(III)f(x)=e x﹣mx k>0⇔e x>mx k(x>0).(i)m≤0时由e x>1>mx k(x>0)知命题成立;(ii)m>0时,若k≤0,则x>1时e x>mx k⇔e x>m,命题成立;(iii)m>0且k>0时,由(II)的证明知e x≥ex(x>0)所以只需,取,则x∈(x0,+∞)时,恒有f(x)>0.综上,命题成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【解析】山东省实验中学2015届高三第二次诊断性考试理科数学试题【试卷综析】本试卷是高三理科试卷,考查学生解决实际问题的综合能力,是份较好的试卷.以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:集合、不等式、导数函数的应用、三角函数的性质、三角恒等变换与解三角形、数列等; 【题文】一、选择题(本题包括10小题,每小题5分,共50分.每小题只有一个选项......符合题意) 【题文】1.集合{}{}2,1,0,1xA y R yB =∈==-,则下列结论正确的是A.{}0,1A B ⋂=B.{}0,A B ⋃=+∞C.()(),0R C A B ⋃=-∞D.(){}1,0R C A B ⋂=-【知识点】集合及其运算A1 【答案】D【解析】∵A={y ∈R|y=2x }={y ∈R|y >0},∴C R A={y ∈R|y ≤0}, 又B={-1,0,1},∴(C R A )∩B={-1,0}.【思路点拨】本题利用直接法,先利用指数函数的值域性质化简集合A ,再求C R A ,最后求出A 、B 的交、并及补集等即可.【题文】2.“22ab>”是“ln ln a b >”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 【知识点】充分条件、必要条件A2 【答案】B【解析】2a >2b ⇒a >b ,当a <0或b <0时,不能得到Ina >Inb ,反之由Ina >Inb 即:a >b >0可得2a >2b 成立,所以2a >2b ”是“Ina >Inb”的必要不充分条件【思路点拨】分别解出2a >2b ,Ina >Inb 中a ,b 的关系,然后根据a ,b 的范围,确定充分条件,还是必要条件.【题文】3.已知()10,sin cos 2απαα∈+=,且,则cos 2α的值为A.±C.D.34-【知识点】二倍角公式G6【思路点拨】把已知的等式两边平方,利用二倍角的正弦函数公式即可求出sin2α的值,然后在把已知的的值,判断得到α的范围,进而得到2α的范围,利用同角三角函数间的基本关系由sin2α的值和2α的范围即可求出cos2a 的值.【题文】4.已知函数()f x 的定义域为()()32,11a a f x -++,且为偶函数,则实数a 的值可以是 A.23B.2C.4D.6【知识点】函数的奇偶性B4 【答案】B【解析】因为函数f (x+1)为偶函数,则其图象关于y 轴对称,而函数f (x )的图象是把函数f (x+1)的图象向右平移1个单位得到的,所以函数f (x )的图象关于直线x=1对称.又函数f (x )的定义域为(3-2a ,a+1),所以(3-2a )+(a+1)=2,解得:a=2.【思路点拨】函数f (x+1)为偶函数,说明其定义域关于“0”对称,函数f (x )的图象是把函数f (x+1)的图象向右平移1个单位得到的,说明f (x )的定义域(3-2a ,a+1)关于“1”对称,由中点坐标公式列式可求a 的值.【题文】5.设函数()sin cos2f x x x =图象的一条对称轴方程是 A. 4x π=-B.0x =C.4x π=D. 2x π=【知识点】三角函数的图象与性质C3 【答案】D【题文】6.若方程24x x m +=有实数根,则所有实数根的和可能是A.246---、、B. 456---、、C. 345---、、D. 468---、、 【知识点】函数与方程B9 【答案】D【解析】函数y=|x 2+4x|由函数y=x 2+4x 的图象纵向对折变换所得: 如下图所示:由图可得:函数y=|x 2+4x|的图象关于直线x=-2对称,则方程|x 2+4x|=m 的实根也关于直线x=-2对称, 当m <0时,方程|x 2+4x|=m 无实根,当m=0或m >4时,方程|x 2+4x|=m 有两个实根,它们的和为-4, 当0<m <4时,方程|x 2+4x|=m 有四个实根,它们的和为-8, 当m=4时,方程|x 2+4x|=m 有三个实根,它们的和为-6,【思路点拨】函数y=|x 2+4x|由函数y=x 2+4x 的图象纵向对折变换所得,画出函数图象可得函数y=|x 2+4x|的图象关于直线x=-2对称,则方程|x 2+4x|=m 的实根也关于直线x=-2对称,对m 的取值分类讨论,最后综合讨论结果,可得答案.【题文】7.要得到一个奇函数,只需将函数()sin 2f x x x =的图象A.向左平移6π个单位 B.向右平移6π个单位 C.向右平移4π个单位D.向左平移3π个单位【知识点】三角函数的图象与性质C3 【答案】A【题文】8.定义在R 上的偶函数满足()()3311,0222f x f x f f ⎛⎫⎛⎫+=--==-⎪ ⎪⎝⎭⎝⎭且,则()()()()1232014f f f f +++⋅⋅⋅+的值为A.2B.1C.0D.2-【知识点】函数的周期性B4 【答案】B【解析】由f (x )满足33()()22f x f x +=-),即有f (x+3)=f (-x ), 由f (x )是定义在R 上的偶函数,则f (-x )=f (x ),即有f (x+3)=f (x ), 则f (x )是以3为周期的函数,由f (-1)=1,f (0)=-2,即f (2)=1,f (3)=-2, 由f (4)=f (-1)=1,即有f (1)=1.则f (1)+f (2)+f (3)+…+f (2014)=(1+1-2)+…+f (1)=0×671+1=1.【题文】9.在ABC ∆中,若()()()sin 12cos sin A B B C A C -=+++∆,则ABC 的形状一定是 A.等边三角形B.不含60o的等腰三角形C.钝角三角形D.直角三角形【知识点】解三角形C8 【答案】D【解析】∵sin (A-B )=1+2cos (B+C )sin (A+C ),∴sin (A-B )=1-2cosAsinB , ∴sinAcosB-cosAsinB=1-2cosAsinB ,∴sinAcosB+cosAsinB=1, ∴sin (A+B )=1,∴A+B=90°,∴△ABC 是直角三角形.【思路点拨】利用三角形的内角和,结合差角的余弦公式,和角的正弦公式,即可得出结论.【题文】10.函数()f x =①()f x 的图象是中心对称图形: ②()f x 的图象是轴对称图形;③函数()f x 的值域为)+∞; ④方程()()1ff x =.上述关于函数()f x 的描述正确的是 A.①③ B.③④ C.②③ D.②④【知识点】单元综合B14 【答案】C【思路点拨】由函数的几何意义可得函数的值域及单调性,结合函数的值域和单调性逐个选项验证即可作出判断.第II 卷(非选择题 共100分)【题文】二、填空题:本大题共5个小题,每小题5分,共25分.将答案填在题中横线上. 【题文】11.定积分()12xx e dx +⎰____________.【知识点】定积分与微积分基本定理B13 【答案】e【解析】10⎰(2x+e x =(12+e 1)-(02+e 0)=e【思路点拨】根据积分计算公式,求出被积函数2x+e x 的原函数,再根据微积分基本定理加以计算,即可得到本题答案.【题文】12.如果()2tan sin 5sin cos f x x x x =-⋅,那么()2f =_________. 【知识点】同角三角函数的基本关系式与诱导公式C2 【答案】-6【思路点拨】把已知函数解析式的分母1化为sin x+cos x ,然后分子分母同时除以cos x ,利用同角三角函数间的基本关系弦化切后,可确定出f (x )的解析式,把x=2代入即可求出f (2)的值. 【题文】13.函数()2sin cos f x x x x x =++,则不等式()()ln 1f x f <的解集为___________.【知识点】函数的单调性与最值B3【题文】14.已知ABC ∆的一个内角为120o,并且三边长构成公差为4的等差数列,则ABC ∆的面积为____________.【知识点】解三角形C8【答案】【思路点拨】因为三角形三边构成公差为4的等差数列,设中间的一条边为x ,则最大的边为x+4,最小的边为x-4,根据余弦定理表示出cos120°的式子,将各自设出的值代入即可得到关于x 的方程,求出方程的解即可得到三角形的边长,然后利用三角形的面积公式即可求出三角形ABC 的面积. 【题文】15.设函数()ln f x x =,有以下4个命题: ①对任意的()()()1212120,22f x f x x x x x f ++⎛⎫∈+∞≤⎪⎝⎭、,有; ②对任意的()()()121221211,x x x x f x f x x x ∈+∞<-<-、,且,有; ③对任意的()()()12121221,x x e x x x f x x f x ∈+∞<<、,且,有; ④对任意的120x x <<,总有()012,x x x ∈,使得()()()12012f x f x f x x x -≤-.其中正确的是______________________(填写序号).【知识点】函数的单调性与最值B3 【答案】②【题文】三、解答题:本大题共6小题,共75分.【题文】16.(本小题满分12分)已知函数())22sin cos cos sin f x x x x x =+-. (I )求6f π⎛⎫⎪⎝⎭及()f x 的单调递增区间;(II )求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦的最值. 【知识点】三角函数的图象与性质C3【答案】(I ,[-512π+k π,12π+ k π],k Z ∈(II )最大值为1,最小值为-12 【解析】(I )f(x)=12cos2x=sin(2x+3π),则f(6π,22k ππ-+≤2x+3π22k ππ≤+,k Z ∈单调递增区间[-512π+k π,12π+ k π],k Z ∈. (II )由x ∈,44ππ⎡⎤-⎢⎥⎣⎦则2x+3π∈5[,]66ππ-,sin(2x+3π)∈[-12,1],所以最大值为1,最小值为-12。

【思路点拨】先化简再求单调区间,求出最值。

【题文】17.(本小题满分12分)设命题p :函数()31f x x ax =--在区间[]1,1-上单调递减;命题q :函数()2ln 1y x ax =++的值域是R.如果命题p q 或为真命题,p q 且为假命题,求a 的取值范围.【知识点】命题及其关系A2 【答案】【解析】p 为真命题在上恒成立,在上恒成立q 为真命题恒成立由题意p 和q 有且只有一个是真命题P 真q 假 p 假q 真综上所述:.【思路点拨】由函数在区间[-1,1]上单调递减转化为其导函数在[-1,1]上恒成立,分离变量可求解;由函数的值域是R 转化为对任意的实数有意义,因此其判别式.再结合两命题的真假分类讨论求解的取值范围.【题文】18.(本小题满分12分)在ABC ∆中,内角A ,B ,C 对边的边长分别是,,a b c ,已知23c C π==,.(I )若ABC ∆,a b ;(II )若()sin sin 2sin2C B A A +-=,求三角形的面积. 【知识点】解三角形C8【答案】(I 【解析】(Isin 30b ︒==S=1/2absinC=2√3/3当sinA=sinB 时A=B 或A=π-B(舍去)则A=B=60° △ABC 是等边三角形 a=b=c=2,S=22⨯=√3 【思路点拨】根据余弦定理求出边,根据正弦定理求出面积。

相关文档
最新文档