四边形、相似整理

合集下载

相似热门题型解题技巧整理(解析版)

相似热门题型解题技巧整理(解析版)

相似热门题型解题技巧整理类型1 证比例式或等积式的技巧方法指导:证比例式或等积式,若所遇问题中无平行线或相似三角形,则需构造平行线或相似三角形,得到成比例线段;若比例式或等积式中的线段分布在两个三角形或不在两个三角形中,可尝试证这两个三角形相似或先将它们转化到两个三角形中再证两三角形相似,若在两个明显不相似的三角形中,可运用中间比代换.题型1 构造平行线法1.如图,在△ABC 中,D 为A 中点,DF 交AC 于点E ,交BC 的延长线于点F ,求证:AE ·CF =BF ·EC .1.证明:如图,过点C 作CM ∥AB 交DF 于点M . ∵CM ∥AB ,∴△CMF ∽△BDF . ∴BF CF =BD CM. 又∵CM ∥AD ,∴△ADE ∽△CME .∴AE EC =ADCM .∵D 为AB 的中点,∴BD CM =AD CM .∴BF CF =AE EC,即AE ·CF =BF ·EC . 2.如图,已知△ABC 的边AB 上有一点D ,边BC 的延长线上有一点E ,且AD =CE ,DE 交AC 于点F ,试证明:AB ·DF =BC ·EF .2.证明:过点D 作DG ∥BC ,交AC 于点G , ∴△DGF ∽△ECF ,△ADG ∽△ABC . ∴EF DF =CE DG ,AB BC =AD DG. ∵AD =CE ,∴CE DG =AD DG .∴AB BC =EFDF,即AB ·DF =BC ·EF .点拨:过某一点作平行线,构造出“A ”型或“X ”型的基本图形,通过相似三角形转化线段的比,从而解决问题.题型2 三点找三角形相似法1.如图,在▱ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F .求证:DC AE =CFAD .1.证明:∵四边形ABCD 是平行四边形. ∴AE ∥DC ,∠A =∠C .∴∠CDF =∠E , ∴△DAE ∽△FCD ,∴DC AE =CFAD.2.如图,在△ABC 中,∠BAC =90°,M 为BC 的中点,DM ⊥BC 交CA 的延长线于D ,交AB 于E .求证:AM 2=MD ·ME .2.证明:∵DM ⊥BC ,∠BAC =90°, ∴∠B +∠BEM =90°,∠D +∠DEA =90°. ∵∠BEM =∠DEA ,∴∠B =∠D . 又∵M 为BC 的中点,∠BAC =90°,∴BM =AM . ∴∠B =∠BAM .∴∠BAM =∠D .又∵∠AME =∠DMA .∴△AME ∽△DMA . ∴AM MD =MEAM.∴AM 2=MD ·ME .题型3 构造相似三角形法1.如图,在等边三角形ABC 中,点P 是BC 边上任意一点,AP 的垂直平分线分别交AB ,AC 于点M ,N .求证:BP ·CP =BM ·CN .1.证明:如图,连接PM ,PN . ∵MN 是AP 的垂直平分线, ∴MA =MP ,NA =NP . ∴∠1=∠2,∠3=∠4. 又∵△ABC 是等边三角形, ∴∠B =∠C =∠1+∠3=60°. ∴∠2+∠4=60°. ∴∠5+∠6=120°. 又∵∠6+∠7=180°-∠C =120°. ∴∠5=∠7.∴△BPM ∽△CNP . ∴BP CN =BM CP,即BP ·CP =BM ·CN .题型4 等比过渡法1.如图,在△ABC 中,AB =AC ,DE ∥BC ,点F 在边AC 上,DF 与BE 相交于点G ,且∠EDF =∠ABE .求证:(1)△DEF ∽△BDE ; (2)DG ·DF =DB ·EF .1.证明:(1)∵AB =AC ,∴∠ABC =∠ACB .∵DE ∥BC ,∴∠ABC +∠BDE =180°,∠ACB +∠CED =180°,∴∠CED =∠BDE .又∵∠EDF =∠ABE ,∴△DEF ∽△BDE .(2)由△DEF ∽△BDE 得DE BD =EFDE,∴DE 2=DB ·EF .又由△DEF ∽△BDE ,得∠BED =∠DFE .∵∠GDE =∠EDF ,∴△GDE ∽△EDF .∴DG DE =DEDF,∴DE 2=DG ·DF ,∴DG ·DF =DB ·EF .2.如图,CE 是Rt △ABC 斜边上的高,在EC 的延长线上任取一点P ,连接AP ,作BG ⊥AP 于点G ,交CE 于点D .求证:CE 2=DE ·PE .2.证明:∵BG ⊥AP ,PE ⊥AB , ∴∠AEP =∠BED =∠AGB =90°. ∴∠P +∠PAB =90°,∠PAB +∠ABG =90°. ∴∠P =∠ABG .∴△AEP ∽△DEB . ∴AE DE =PEBE,即AE ·BE =PE ·DE . 又∵CE ⊥AB ,∴∠CEA =∠BEC =90°,∴∠CAB +∠ACE =90°. 又∵∠ACB =90°,∴∠CAB +∠CBE =90°. ∴∠ACE =∠CBE .∴△AEC ∽△CEB . ∴AE CE =CEBE,即CE 2=AE ·BE .∴CE 2=DE ·PE . 题型5 两次相似法1.如图,在Rt △ABC 中,AD 是斜边BC 上的高,∠ABC 的平分线BE 交AC 于E ,交AD 于F .求证:BF BE =ABBC .1.证明:易得∠BAC =∠BDF =90°. ∵BE 平分∠ABC ,∴∠ABE =∠DBF , ∴△BDF ∽△BAE ,得BD AB =BFBE.∵∠BAC =∠BDA =90°,∠ABC =∠DBA . ∴△ABC ∽△DBA ,得AB BC =BD AB ,∴BF BE =AB BC.2.如图,在▱ABCD 中,AM ⊥BC ,AN ⊥CD ,垂足分别为M ,N .求证:(1)△AMB ∽△AND ; (2)AM AB =MN AC .2.证明:(1)∵四边形ABCD 为平行四边形.∴∠B =∠D . ∵AM ⊥BC ,AN ⊥CD ,∴∠AMB =∠AND =90°, ∴△AMB ∽△AND .(2)由△AMB ∽△AND 得AM AN =ABAD ,∠BAM =∠DAN .又AD =BC ,∴AM AN =ABBC.∵AM ⊥BC ,AD ∥BC ,∴∠AMB =∠MAD =90°.∴∠B +∠BAM =∠MAN +∠NAD =90°, ∴∠B =∠MAN .∴△AMN ∽△BAC ,∴AM AB =MNAC. 题型6 等积代换法1.如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F .求证:AE AF =ACAB .1.证明:∵AD ⊥BC ,DE ⊥AB ,∴∠ADB =∠AED =90°. 又∵∠BAD =∠DAE ,∴△ADE ∽△ABD ,得AD 2=AE ·AB ,同理可得AD 2=AF ·AC ,∴AE ·AB =AF ·AC ,∴AE AF =AC AB.题型7 等线段代换法1.如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于点D ,点P 是AD 上一点,CF ∥AB ,延长BP 交AC 于点E ,交CF 于点F ,求证:BP 2=PE ·PF .1.证明:连接PC ,如图.∵AB =AC ,AD ⊥BC ,∴AD 垂直平分BC ,∠ABC =∠ACB ,∴BP =CP ,∴∠1=∠2,∴∠ABC -∠1=∠ACB -∠2,即∠3=∠4.∵CF ∥AB ,∴∠3=∠F ,∴∠4=∠F .又∵∠CPF =∠CPE ,∴△CPF ∽△EPC ,∴CP PE =PFCP ,即CP 2=PF ·PE .∵BP=CP ,∴BP 2=PE ·PF .2.已知:如图,AD 平分∠BAC ,AD 的垂直平分线EP 交BC 的延长线于点P .求证:PD 2=PB ·PC .2.证明:如图,连接PA ,则PA =PD ,∴∠PDA =∠PAD . ∴∠B +∠BAD =∠DAC +∠CAP .又∵AD 平分∠BAC ,∴∠BAD =∠DAC .∴∠B =∠CAP . 又∵∠APC =∠BPA ,∴△PAC ∽△PBA ,∴PA PB =PCPA ,即PA 2=PB ·PC ,∴PD 2=PB ·PC .类型2 巧用“基本图形”探索相似条件方法指导:几何图形大多数由基本图形复合而成,因此熟悉三角形相似的基本图形,有助于快速、准确地识别相似三角形,从而顺利找到解题思路和方法.相似三角形的四类结构图:1.平行线型.2.相交线型.3.母子型型.4.旋转型.1.如图,在△ABC 中,BE 平分∠ABC 交AC 于点E ,过点E 作ED ∥BC 交AB 于点D .(1)求证:AE ·BC =BD ·AC ;(2)如果S △ADE =3,S △BDE =2,DE =6,求BC 的长.1.(1)证明:∵ED ∥BC ,∴△ADE ∽△ABC .∴AE AC =DEBC .∵BE 平分∠ABC ,∴∠DBE =∠EBC . ∵ED ∥BC ,∴∠DEB =∠EBC . ∴∠DBE =∠DEB .∴DE =BD .∴AE AC =BD BC, 即AE ·BC =BD ·AC .(2)解:设h △ADE 表示△ADE 中DE 边上的高, h △BDE 表示△BDE 中DE 边上的高, h △ABC 表示△ABC 中BC 边上的高.∵S △ADE =3,S △BDE =2,∴S △ADE S △BDE =h △ADE h △BDE =32.∴h △ADE h △ABC =35.∵△ADE ∽△ABC ,∴DE BC =h △ADE h △ABC =35. ∵DE =6,∴BC =10.题型2 相交线型1.如图,点D ,E 分别为△ABC 的边AC ,AB 上的点,BD ,CE 交于点O ,且EO BO =DOCO ,试问△ADE 与△ABC 相似吗?请说明理由.2.解:相似.理由如下:因为EO BO =DO CO,∠BOE =∠COD ,∠DOE =∠COB ,所以△BOE ∽△COD ,△DOE ∽△COB .所以∠EBO =∠DCO ,∠DEO =∠CBO .因为∠ADE =∠DCO +∠DEO ,∠ABC =∠EBO +∠CBO .所以∠ADE =∠ABC .又因为∠A =∠A ,所以△ADE ∽△ABC .1.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F .求证:AB AC =DFAF .1.证明:∵∠BAC =90°,AD ⊥BC 于点D , ∴∠BAC =∠ADB =90°.又∵∠CBA =∠ABD (公共角),∴△ABC ∽△DBA .∴AB AC =DBDA ,∠BAD =∠C .∵AD ⊥BC 于点D ,E 为AC 的中点,∴DE =EC . ∴∠BDF =∠CDE =∠C .∴∠BDF =∠BAD . 又∵∠F =∠F , ∴△DBF ∽△ADF .∴DB AD =DF AF .∴AB AC =DF AF.点拨:当所证等积式或比例式运用“三点定型法”不能定型或能定型而不相似,条件又不具备成比例线段时,可考虑用中间比“搭桥”,称为“等比替换法”,有时还可用“等积替换法”,例如:如图,在△ABC 中,AD ⊥BC 于点D ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,求证:AE ·AB =AF ·AC .可由两组“射影图”得AE ·AB =AD 2,AF ·AC =AD 2,∴AE ·AB =AF ·AC .题型4 旋转型4.如图,已知∠DAB =∠EAC ,∠ADE =∠ABC . 求证:(1)△ADE ∽△ABC ; (2)AD AE =BD CE .4.证明:(1)∵∠DAB =∠EAC ,∴∠DAE =∠BAC . 又∵∠ADE =∠ABC ,∴△ADE ∽△ABC . (2)∵△ADE ∽△ABC ,∴AD AE =ABAC.∵∠DAB =∠EAC ,∴△ADB ∽△AEC .∴AD AE =BDCE.类型3 利用相似三角形巧证线段的数量和位置关系方法指导:判断两线段之间的数量和位置关系是几何中的基本题型之一.由角的关系推出“平行或垂直”是判断位置关系的常用方法,由相似三角形推出“相等”是判断数量关系的常用方法.题型1 证明两线段的数量关系 类型1:证明两线段的相等关系1.如图,已知在△ABC 中,DE ∥BC ,BE 与CD 交于点O ,直线AO 与BC 边交于点M ,与DE 交于点N .求证:BM =MC .1.证明:∵DE ∥BC .∴△NEO ∽△MBO .∴NE MB =ON OM. 同理可得DN MC =ON OM .∴DN MC =NE BM .∴DN NE =MCBM .∵DE ∥BC ,∴△ANE ∽△AMC .∴AN AM =NEMC .同理可得AN AM =DN BM ,∴DN BM =NE MC .∴DN NE =BMMC .∴MC BM =BM MC.∴MC 2=BM 2.∴BM =MC .2.如图,一直线和△ABC 的边AB ,AC 分别交于点D ,E ,和BC 的延长线交于点F ,且AE CE =BF CF .求证:AD =DB .2.证明:如图,过C 作CG ∥AB 交DF 于G 点. ∵CG ∥AB ,∴AD CG =AE CE ,BD CG =BFCF,∵AE CE =BF CF ,∴AD CG =BD CG, ∴AD =BD .类型2:证明两线段的倍分关系1.如图,在△ABC 中,BD ⊥AC 于点D ,CE ⊥AB 于点E ,∠A =60°,求证:DE =12BC .2.证明:∵BD ⊥AC ,CE ⊥AB ,∠A =60°,∠ABD =∠ACE =30°,∴AD AB =12,AEAC =12,∴AD AB =AE AC .又∠A =∠A ,∴△AD E ∽△ABC ,∴DE BC =AD AB =12,∴DE =12BC.4.如图,AM 为△ABC 的角平分线,D 为AB 的中点,CE ∥AB ,CE 交DM 的延长线于E .求证:AC =2CE .4.证明:如图,延长CE ,交AM 的延长线于F .∵AB ∥CF ,∴∠BAM =∠F ,△BDM ∽△CEM ,△BAM ∽△CFM ,∴BD CE =BM MC ,BA CF =BM MC ,∴BD CE =BA CF.又∵BA =2BD ,∴CF =2CE .又AM 平分∠BAC ,∴∠BAM =∠CAM ,∴∠CAM =∠F ,∴AC =CF ,∴AC =2CE .题型2 证明两线段的位置关系 类型1:证明两线段平行1.如图,已知点D 为等腰直角三角形ABC 的斜边AB 上一点,连接CD ,DE ⊥CD ,DE =CD ,连接CE ,AE .求证:AE ∥BC .1.证明:如图,过点C 作CO ⊥AB 于点O .∵DE =CD ,DE ⊥CD , ∴∠ECD =∠CED =45°.∵△ABC 是等腰直角三角形,∴∠CAB =∠B =45°.∴∠CAB =∠CED .又∵∠AOC =∠EDC =90°,∴△ACO ∽△ECD .∴AC CO =EC CD .又∵∠ACE +∠ECO =∠OCD +∠ECO =45°,∴∠ACE=∠OCD .∴△ACE ∽△OCD .∴∠CAE =∠COD =90°.又∵∠ACB =90°,∴∠CAE +∠ACB =180°.∴AE ∥BC .2.在△ABC 中,D ,E ,F 分别为BC ,AB ,AC 上的点,EF ∥BC ,DF ∥AB ,连接CE 和AD ,分别交DF ,EF 于点N ,M .(1)如图①,若E 为AB 的中点,图中与MN 平行的直线有哪几条?请证明你的结论;(2)如图②,若E 不为AB 的中点,写出与MN 平行的直线,并证明.2.解:(1)MN ∥AC ∥ED .证明如下:∵EF ∥BC ,∴△AEM ∽△ABD ,△AMF ∽△ADC ,∴EM BD =AM AD =MF DC .∵E 为AB 的中点,EF ∥BC ,∴F 为AC 的中点.又∵DF ∥AB ,∴D 为BC 的中点,∴EM =MF .∵F 为AC 的中点,FN ∥AE ,∴N 为EC 的中点,从而MN ∥AC .又∵D 为BC 的中点,E 为AB 的中点,∴ED ∥AC ,∴MN ∥AC ∥ED .(2)MN ∥AC .证明如下:∵EF ∥BC ,∴△AEM ∽△ABD ,△AMF ∽△ADC ,∴EM BD =AMAD =MF DC ,∴EM MF =BD DC .又∵DF ∥AB ,∴BD DC =EN NC ,∴EM MF =EN NC ,∴EM EF =EN EC.又∵∠MEN =∠FEC ,∴△MEN ∽△FEC .∴∠EMN =∠EFC .∴MN ∥AC .类型2:证明两线垂直1.如图,在△ABC 中,D 是AB 上一点,且AC 2=AB ·AD ,BC 2=BA ·BD ,求证:CD ⊥AB .1.证明:∵AC 2=AB ·AD ,∴AC AD =ABAC .又∵∠A =∠A ,∴△ACD ∽△ABC .∴∠ADC =∠ACB .又∵BC 2=BA ·BD ,∴BC BD =BABC .又∵∠B =∠B ,∴△BCD ∽△BAC .∴∠BDC =∠BCA . ∴∠ADC =∠BDC .∵∠BDC +∠ADC =180°,∴∠ADC =∠BDC =90°. ∴CD ⊥AB .2.如图,已知矩形ABCD ,AD =13AB ,点E ,F 把AB 三等分,DF 交AC 于点G ,求证:EG ⊥DF .2.证明:∵AD =13AB ,点E ,F 把AB 三等分,∴设AE =EF =FB =AD =k ,则AB =CD =3k .∵CD ∥AB ,∴∠DCG =∠FAG ,∠CDG =∠AFG . ∴△AFG ∽△CDG ,∴FG DG =AF CD =23.设FG =2m ,则DG =3m ,∴DF =FG +DG =2m +3m =5m . 在Rt △AFD 中,DF 2=AD 2+AF 2=5k 2,∴DF =5k . ∴5m =5k .∴m =55k .∴FG =255k . ∴AF FG =2k 255k =5,DF EF =5k k = 5.∴AF FG =DFEF. 又∠AFD =∠GFE ,∴△AFD ∽△GFE . ∴∠EGF =∠DAF =90°.∴EG ⊥DF .类型4 相似三角形与函数的综合应用方法指导:解涉及相似三角形与函数的综合题时,由于这类题的综合性强,是中考压轴题重点命题形式之一,因此解题时常结合方程思想、分类讨论思想进行解答.题型1 相似三角形与一次函数1.如图,在平面直角坐标系xOy 中,直线y =-x +3与x 轴交于点C ,与直线AD 交于点A ⎝ ⎛⎭⎪⎫43,53,点D 的坐标为(0,1).(1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当△BOD 与△BCE 相似时,求点E 的坐标.1.解:(1)设直线AD 的解析式为y =kx +b (k ≠0) 将D (0,1) A ⎝⎛⎭⎫43,53代入解析式得: ⎩⎪⎨⎪⎧b =153=43k +b 解得⎩⎪⎨⎪⎧b =1k =12∴直线AD 的解析式为y =12x +1.(2)直线AD 的解析式为y =12x +1.令y =0,得x =-2.得B (-2,0),即OB =2. 直线AC 为y =-x +3. 令y =0,得∴x =3. 得C (3,0),即BC =5 设E ⎝⎛⎭⎫x ,12x +1 ①当E 1C ⊥BC 时,如图,∠BOD =∠BCE 1=90°,∠DBO =∠E 1BC .∴△BOD ∽△BCE 1. 此时点C 和点E 1的横坐标相同. 将x =3代入y =12x +1,解得y =52.∴E 1⎝⎛⎭⎫3,52. ②当CE 2⊥AD 时,如图, ∠BOD =∠BE 2C =90°,∠DBO =∠CBE 2, ∴△BOD ∽△BE 2C .过点E 2作EF ⊥x 轴于点F ,则∠E 2FC =∠BFE 2=90°. 又∵∠E 2BF +∠BE 2F =90°, ∠CE 2F +∠BE 2F =90°.∴∠E 2BF =∠CE 2F .∴△E 2BF ∽△CE 2F ,则E 2F BF =CFE 2F .即E 2F 2=CF ·BF .⎝⎛⎭⎫12x +12=(3-x )(x +2)解得:x 1=2,x 2=-2(舍去)∴E 2(2,2) 当∠EBC =90°时,此情况不存在. 综上所述:E 1⎝⎛⎭⎫3,52或E 2(2,2).题型2 相似三角形与二次函数1.如图,直线y =-x +3交x 轴于点A ,交y 轴于点B ,抛物线y =ax 2+bx +c 经过A ,B ,C (1,0)三点.(1)求抛物线对应的函数解析式;(2)若点D 的坐标为(-1,0),在直线y =-x +3上有一点P ,使△ABO 与△ADP 相似,求出点P 的坐标.2.解:(1)由题意得A (3,0),B (0,3),∵抛物线经过A ,B ,C 三点,∴把A (3,0),B (0,3),C (1,0)三点的坐标分别代入y =ax 2+bx +c ,得方程组⎩⎪⎨⎪⎧9a +3b +c =0,c =3,a +b +c =0,解得⎩⎪⎨⎪⎧a =1,b =-4,c =3,∴抛物线对应的函数解析式为y =x 2-4x +3.(2)如图,由题意可得△ABO 为等腰直角三角形.若△ABO ∽△AP 1D ,则AO AD =OBDP 1,∴DP 1=AD =4,∴P 1(-1,4);若△ABO ∽△ADP 2,过点P 2作P 2M ⊥x 轴于M ,∵△ABO 为等腰直角三角形,∴△ADP 2是等腰直角三角形,由三线合一可得DM =AM =2=P 2M ,即点M 与点C 重合,∴P 2(1,2),∴点P 的坐标为(-1,4)或(1,2).2.如图,直线y =2x +2与x 轴交于点A ,与y 轴交于点B ,把△AOB 沿y 轴翻折,点A 落到点C ,过点B 的抛物线y =-x 2+bx +c 与直线BC 交于点D (3,-4).(1)求直线BD 和抛物线对应的函数解析式;(2)在第一象限内的抛物线上,是否存在一点M ,作MN 垂直于x 轴,垂足为点N ,使得以M ,O ,N 为顶点的三角形与△BOC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.2.解:(1)易得A (-1,0),B (0,2),C (1,0). 设直线BD 对应的函数解析式为y =kx +m .把B (0,2),C (1,0)的坐标分别代入y =kx +m ,得⎩⎪⎨⎪⎧m =2,k +m =0,解得⎩⎪⎨⎪⎧k =-2,m =2.∴直线BD 对应的函数解析式为y =-2x +2. ∵抛物线对应的函数解析式为y =-x 2+bx +c .∴把B (0,2),D (3,-4)的坐标分别代入y =-x 2+bx +c ,得⎩⎪⎨⎪⎧c =2,-9+3b +c =-4,解得⎩⎪⎨⎪⎧b =1,c =2. ∴抛物线对应的函数解析式为y =-x 2+x +2.(2)存在,①如图①,当△MON ∽△BCO 时,ON CO =MN BO ,即ON 1=MN 2,∴MN =2ON .设ON =a ,则M (a ,2a ),∴-a 2+a +2=2a ,解得a 1=-2(不合题意,舍去),a 2=1,∴M (1,2);②如图②,当△MON ∽△CBO 时,ON BO =MN CO ,即ON 2=MN 1,∴MN =12ON .设ON =n ,则M ⎝⎛⎭⎫n ,12n ,∴-n 2+n +2=n2,解得n 1=1-334(不合题意,舍去),n 2=1+334,∴M (1+334,1+338).∴存在这样的点M (1,2)或⎝ ⎛⎭⎪⎫1+334,1+338.题型3 相似三角形与反比例函数1.如图,矩形OABC 的顶点A ,C 分别在x 轴和y 轴上,点B 的坐标为(2,3),双曲线y =kx (x >0)经过BC 的中点D ,且与AB 交于点E ,连接DE .(1)求k 的值及点E 的坐标;(2)若点F 是OC 边上一点,且△FBC ∽△DEB ,求直线FB 对应的函数解析式.1.解:(1)在矩形OABC 中,∵点B 的坐标为(2,3),∴BC 边的中点D 的坐标为(1,3).∵双曲线y =k x 经过点D (1,3),∴3=k 1,∴k =3,∴y =3x .∵点E 在AB 上,∴点E 的横坐标为2.又∵双曲线y =3x 经过点E ,∴点E 的纵坐标为y =32,∴点E 的坐标为⎝⎛⎭⎫2,32. (2)易得BD =1,BE =32,CB =2.∵△FBC ∽△DEB ,∴BD CF =BE CB ,即1CF =322,∴CF =43,∴OF =53,即点F 的坐标为⎝⎛⎭⎫0,53.设直线FB 对应的函数解析式为y =k 1x +b ,而直线FB 经过B (2,3),F ⎝⎛⎭⎫0,53,∴k 1=23,b =53,∴直线FB 对应的函数解析式为y =23x +53.类型5 全章达标综合检测方法指导:本章主要内容为:平行线分线段成比例,相似三角形的判定及性质,位似图形及其画法等,涉及考点、考法较多,是中考的高频考点.其主要考点可概括为:3个概念、2个性质、1个判定、2个应用、1个作图、1个技巧.题型1 3个概念 概念1:成比例线段1.下列各组线段,是成比例线段的是( C ) A .3 cm ,6 cm ,7 cm ,9 cm B .2 cm ,5 cm ,0.6 dm ,8 cm C .3 cm ,9 cm ,1.8 dm ,6 cm D .1 cm ,2 cm ,3 cm ,4 cm2.有一块三角形的草地,它的一条边长为25 m ,在图纸上,这条边的长为5 cm ,其他两条边的长都为4 cm ,则其他两边的实际长度都是__20__m .概念2:相似多边形3.如图,已知∠1′=∠1,∠2′=∠2,∠3′=∠3,∠4′=∠4,∠D ′=∠D ,试判断四边形A ′B ′C ′D ′与四边形ABCD 是否相似,并说明理由.3.解:四边形ABCD 与四边形A ′B ′C ′D ′相似.由已知条件知,∠DAB =∠D ′A ′B ′,∠B =∠B ′,∠BCD =∠B ′C ′D ′,∠D =∠D ′,且AB A′B′=BC B′C′=CD C′D′=DA D′A′=56,所以四边形ABCD 与四边形A ′B ′C ′D ′相似.概念3:位似图形4.如图,在△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形,并把△ABC 的边放大到原来的2倍,记所得的像是△A ′B ′C .设点B 的对应点B ′的坐标是(a ,b ),求点B 的坐标.4.解:如图,过点B 作BM ⊥x 轴于点M ,过点B ′作B ′N ⊥x 轴于点N ,则△CBM ∽△CB ′N .所以MC NC =BM B ′N =BC B ′C .又由已知条件知NC =a +1,B ′N =-b ,BC B ′C =,所以MCa +1)=BM-b )=所以MC =12(a +1),BM =-b 2.所以MO =12(a +1)+1=a +32.所以点B 的坐标为⎝⎛⎭⎫-a +32,-b2.题型2 2个性质平行线分线段成比例的性质5.如图,在Rt △ABC 中,∠A =90°,AB =8,AC =6.若动点D 从点B 出发,沿线段BA 运动到点A 为止,运动速度为每秒2个单位长度.过点D 作DE ∥BC 交AC 于点E ,设动点D 运动的时间为x 秒,AE 的长为y .(1)求出y 关于x 的函数解析式,并写出自变量x 的取值范围; (2)当x 为何值时,△BDE 的面积有最大值,最大值为多少?5.解:(1)∵DE ∥BC ,∴AD AB =AE AC ,∴8-2x 8=y 6,∴y =-32x +6(0≤x ≤4).(2)∵S △BDE =12·2x ·y =12·2x ·⎝⎛⎭⎫6-32x =-32(x -2)2+6,∴当x =2时,S △BDE 有最大值,最大值为6.性质2:相似三角形的性质6.如图,已知D 是BC 边上的中点,且AD =AC ,DE ⊥BC ,DE 与BA 相交于点E ,EC 与AD 相交于点F .(1)求证:△ABC ∽△FCD ;(2)若S △FCD =5,BC =10,求DE 的长.6.(1)证明:如图,∵D 是BC 边上的中点,DE ⊥BC , ∴EB =EC ,∴∠B =∠1.又∵AD =AC ,∴∠ACD =∠2,∴△ABC ∽△FCD . (2)解:如图,过点A 作AM ⊥CB 于点M . ∵D 是BC 边上的中点,∴BC =2CD .由(1)知△ABC ∽△FCD ,∴S △ABC S △FCD =⎝ ⎛⎭⎪⎫BC CD 2=41.又∵S △FCD =5,∴S △ABC =20.∵S △ABC =12BC ·AM ,∴AM =2S △ABC BC =2×2010=4. ∵DE ⊥BC ,AM ⊥BC ,∴DE ∥AM ,∴△BDE ∽△BMA .∴DE AM =BDBM .由AD =AC ,AM ⊥BC ,知DM =12CD =14BC =52. ∴DE 4=55+52,∴DE =83. 点拨:从复杂的图形中分析线段的特点和联系,找到切入点是解较复杂问题的关键.题型3 1个判定——相似三角形的判定7.如图,△ACB 为等腰直角三角形,点D 为斜边AB 上一点,连接CD ,DE ⊥CD ,DE =CD ,连接AE ,过C 作CO ⊥AB 于O .求证:△ACE ∽△OCD.7.证明:∵△ACB 为等腰直角三角形,AB 为斜边, ∴∠CAB =45°.∵CO ⊥AB .∴∠AOC =90°.又∵DE ⊥CD ,DE =CD ,∴∠CED =45°,∠CDE =90°. ∴∠CAO =∠CED ,∠AOC =∠EDC .∴△ACO ∽△ECD .∴∠ACO =∠ECD ,AC CO =CECD .∴∠ACE =∠OCD .∴△ACE ∽△OCD .8.如图,在⊙O 的内接△ABC 中,∠ACB =90°,AC =2BC ,过点C 作AB 的垂线l 交⊙O 于另一点D ,垂足为点E .设P 是AC ︵上异于点A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G .(1)求证:△PAC ∽△PDF ;(2)若AB =5,AP ︵=BP ︵,求PD 的长.8.(1)证明:由四边形APCB 内接于圆O ,得∠FPC =∠B . 又∠B =∠ACE =90°-∠BCE ,∠ACE =∠APD ,所以∠APD =∠FPC ,所以∠APD +∠DPC =∠FPC +∠DPC , 即∠APC =∠FPD . 又∠PAC =∠PDC , 所以△PAC ∽△PDF .(2)解:由(1)知△PAC ∽△PDF ,所以∠PCA =∠PFD . 又∠PAC =∠CAF ,所以△PAC ∽△CAF ,所以△CAF ∽△PDF , 所以PD AC =DFAF,则PD ·AF =AC ·DF .由AB =5,AC =2BC ,∠ACB =90°,知BC =5,AC =2 5. 由OE ⊥CD ,∠ACB =90°知CB 2=BE ·AB ,CE =DE . 所以B E =CB 2AB =55=1.所以AE =4,CE =CB 2-BE 2=5-1=2, 所以DE =2.又AP ︵=BP ︵,∠AFD =∠PCA ,所以∠AFD =∠PCA =45°. 所以FE =AE =4,AF =42,所以PD =AC·DF AF =25×(4+2)42=3102.题型4 2个应用 应用1:测高的应用9.如图,在离某建筑物CE 4 m 处有一棵树AB ,在某时刻,1.2 m 的竹竿FG 垂直地面放置,影子GH 长为2 m ,此时树的影子有一部分落在地面上,还有一部分落在建筑物的墙上,墙上的影子CD 高为2 m ,那么这棵树的高度是多少?9.解:(方法一:作延长线)延长AD ,与地面交于点M ,如图①.由AM ∥FH 知∠AMB =∠FHG .又因为AB ⊥BG ,FG ⊥BG ,DC ⊥BG ,所以△ABM ∽△DCM ∽△FGH ,所以AB BM =CD CM =FG GH. 因为CD =2 m ,FG =1.2 m ,GH =2 m ,所以2CM =1.22,解得CM =103m . 因为BC =4 m ,所以BM =BC +CM =4+103=223(m ). 所以AB 223=1.22,解得AB =4.4 m . 故这棵树的高度是4.4 m .(方法二:作垂线)过点D 作DM ⊥AB 于点M ,如图②.所以AM DM =FG GH. 而DM =BC =4 m ,AM =AB -CD =AB -2(m ),FG =1.2 m ,GH =2 m ,所以AB -24=1.22,解得AB =4.4 m . 故这棵树的高度是4.4 m .应用2:测宽的应用10.如图,一条小河的两岸有一段是平行的,在河的一岸每隔6 m 有一棵树,在河的对岸每隔60 m 有一根电线杆,在有树的一岸离岸边30 m 处可看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有三棵树,求河的宽度.10.解:如图,过点A 作AF ⊥DE ,垂足为F ,并延长交BC 于点G .∵DE ∥BC ,∴△ADE ∽△ABC .∵AF ⊥DE ,DE ∥BC ,∴AG ⊥BC ,∴AF AG =DE BC ,∴30AG =2460. 解得AG =75,∴FG =AG -AF =75-30=45,即河的宽度为45 m .题型5 1个作图——作一个图形的位似图形11.如图,在方格纸中(每个小方格的边长都是1个单位长度)有一点O 和△ABC .请以点O 为位似中心,把△ABC 缩小为原来的一半(不改变方向),画出△ABC 的位似图形.(第11题) 11.思路导引:本题位似中心为O ,先连接CO ,因为要把原三角形缩小为原来的一半,可确定C ′O =12CO ,由其确定出C ′的位置,再根据同样的方法确定出另外两个点. 解:画出图形,如图中的△A ′B ′C ′即为所求作的图形.点拨:抓住位似图形的性质,根据位似中心与三角形对应点的关系及位似比的大小确定所画位似图形的对应点,再画出图形.题型6 1个技巧 ——证明四条线段成比例的技巧12.如图,已知△ABC ,∠BAC 的平分线与∠DAC 的平分线分别交BC 及BC 的延长线于点P ,Q .(1)求∠PAQ 的度数;(2)若点M 为PQ 的中点,求证:PM 2=CM ·BM .12.思路导引:(1)由角平分线的定义及∠BAD 为平角直接可得.(2)由于线段PM ,CM ,BM 在同一条直线上,所以必须把某条线段转化为另一相等的线段,构造相似三角形,因此可证PM =AM ,从而证明△ACM 与△ABM 相似即可.(1)解:∵AP 平分∠BAC ,∴∠PAC =12∠BAC . 又∵AQ 平分∠CAD ,∴∠CAQ =12∠CAD . ∴∠PAC +∠CAQ =12∠BAC +12∠CAD =12(∠BAC +∠CAD ). 又∵∠BAC +∠CAD =180°,∴∠PAC +∠CAQ =90°,即∠PAQ =90°.(2)证明:由(1)知∠PAQ =90°,又∵M 是线段PQ 的中点,∴PM =AM ,∴∠APM =∠PAM .∵∠APM =∠B +∠BAP ,∠PAM =∠CAM +∠PAC ,∠BAP =∠PAC ,∴∠B =∠CAM .又∵∠AMC =∠BMA ,∴△ACM ∽△BAM .∴CM AM =AM BM,∴AM 2=CM ·BM ,即PM 2=CM ·BM . 点拨:本题运用了转化思想,在证明等积式时,常把它转化成比例式,寻找相似三角形进行求解.。

人教版四年级数学上册课件第5单元《平行四边形和梯形》知识梳理 整理与复习课件

人教版四年级数学上册课件第5单元《平行四边形和梯形》知识梳理 整理与复习课件

园的上底长6米,下底长14米,两腰各长7米,但李大
伯只用了20米长的篱笆,你知道李大伯是怎么围的吗

下底靠墙,14米不需篱笆,总
共只需6+7×2=20(米)。
过关检测
1.填空题。 (1)过直线外一点,可以画( 一 )条已知直线的平行线,
可以画( 一 )条已知直线的垂线。 (2)从直线外一点到这条直线的所有线段中,( 垂直线段 )
图①a与b互相平行,记作a∥b,读作a平行于b。
要点牢记
(二)
深化知识
1.平行与垂直
a

两条直线相交成直角,就说这两条直线互相垂直,
其中一条直线叫做另一条直线的垂线,这两条直线的交 点叫做垂足。 图 ② 中a与b互相垂直,记作a⊥b,读作a垂直于b。
深化知识
【对应训练】
下面各组直线中,哪组互相平行?哪组互相垂直?
间画一条垂线段,这条垂线段的长是( 6 )厘米。
人教版四年级上册数学:平行四边形 和梯形 整理和复习
过关检测
2.判断题。
(1)不相交的两条直线叫做平行线。
( ×)
(2)一条直线,可以画出无数条它的平行线。 ( √ )
(3)垂直于同一条直线的两条直线互相平行。 ( √ )
(4)两条直线相交,只要有一个角是直角,其他的
伸缩门 伸缩门里有平行四边形,利用它容易变形的 特征伸缩的。
知识梳理 核心要点
平行与垂直的概念
同一平面内不相交的两条直线叫做平 行线
a b
直线a是直线b的平等线,直线a与直 线b互相平行
知识梳理 核心要点
平行与垂直的概念
两条直线相交成直角,就说这两条
a
直线互相垂直
b
直线a叫做直线b的垂线,交点叫做

2024-2025学年北师版初中数学九年级上册教案第四章图形的相似与整理4.3相似多边形

2024-2025学年北师版初中数学九年级上册教案第四章图形的相似与整理4.3相似多边形

第四章图形的相似3 相似多边形教学目标教学反思1.了解相似多边形的定义,掌握相似多边形的性质.2.在探索相似多边形的性质时掌握类比的方法.3.体会相似多边形与相似三角形的区别与联系.教学重难点重点:相似多边形的判定.难点:两个多边形相似性质的简单应用.教学过程导入新课教师用多媒体出示几个图形,让学生找出形状相同的图形,并连线.然后教师提出问题形状相同的两个图形有什么样的关系?由这一问题来引入本节课要研究的课题.探究新知一、预习新知下图中的两个多边形分别是幻灯片上的多边形ABCDEF和银幕上的多边形A1B1C1D1E1F1.它们的形状相同吗?教学反思师:它们的形状相同吗?生:六边形ABCDEF和六边形A1B1C1D1E1F1形状相同.师:在上面的两个多边形中,是否有相等的内角?设法验证你的猜测.生:∠A与∠A1,∠B与∠B1,∠C与∠C1,∠D与∠D1,∠E与∠E1,∠F与∠F1分别对应相等.师:这样的角我们称为对应角,在上面的两个多边形中,夹相等内角的两边是否成比例?生:通过测量AB与A1B1,BC与B1C1,CD与C1D1,DE与D1E1,EF与E1F1,F A与F1A1的比相等.师:这样的边我们称为对应边.师:从上面的讨论结果来看,大家能否猜到相似多边形的定义呢?生:可以,各角分别相等、各边成比例的两个多边形叫做相似多边形.师:相似怎样表示呢?请同学们认真看书.生:六边形ABCDEF和六边形A1B1C1D1E1F1相似,记作六边形ABCDEF∽六边形A1B1C1D1E1F1.师:相似多边形对应边的比叫做相似比,一般用字母k表示,“∽”读作“相似于”.在记两个多边形相似时,需要注意什么?生:要把表示对应顶点的字母写在对应的位置上.二、合作探究观察下面两组图形.(1)(2)师:(1)中的两个图形相似吗?生:(1)中的两个图形不相似.师:为什么?教学反思生:虽然这两个图形的对应边成比例,但是对应角不相等,所以这两个图形不相似.师:(2)中的两个图形相似吗?生:也不相似.师:这又是为什么呢?生:虽然这两个图形的对应角相等,但是对应边不成比例,所以这两个图形不相似.教师补充:两个多边形不相似,它们的对应角可能相等,如上面的(2);两个多边形不相似,它们的对应边可能成比例,如上面的(1).师:任意两个等边三角形相似吗?生:相似,因为它们的对应角都为60°,对应边成比例.师:任意两个正方形呢?生:也是相似的师:那任意两个正n边形呢?生:两个正n边形的对应角相等,对应边成比例,所以它们都是相似的.师:任意两个菱形相似吗?生:不一定相似师:为什么?生:虽然对应边成比例,但是菱形对应角不一定相等,所以不一定相似.巩固练习在矩形ABCD中,AB=4,BC=3,下列四个矩形中与矩形ABCD相似的是()答案:A典型例题【例1】如图,四边形ABCD与四边形A′B′C′D′相似,求∠A的度数与x 的值.【问题探索】此题考查相似多边形的性质,如何用相似多边形的性质求∠A 的度数与x 的值?【解】由相似图形的性质,知∠A =∠A ′=107°,4x =52,x =85.【总结】相似多边形的对应边成比例,对应角相等. 【例2】在宽为20 m ,长为30 m 的矩形花坛四周修筑小路.(1)如果四周的小路的宽均相等,都是x ,如图1,那么小路四周所围成的矩形A ′B ′C ′D ′和矩形ABCD 相似吗?请说明理由;(2)如果相对着的两条小路的宽均相等,宽度分别为x ,y ,如图2,试问小路的宽x 与y 的比值为多少时,能使得小路四周所围成的矩形A′B ′C ′D ′和矩形ABCD 相似?请说明理由.图1 图2【问题探索】判断两个矩形是否相似要从边出发,求小路的宽x 与y的比值,要运用相似图形的性质.【解】(1)如果四周的小路的宽均相等,那么小路四周所围成的矩形A ′B ′C ′D ′和矩形ABCD 不相似.理由:设四周的小路的宽为x m.30230x +=1515x +,20220x +=1010x+. ∵ 30230x +20220x+≠, ∴ 小路四周所围成的矩形A ′B ′C ′D ′和矩形ABCD 不相似. (2)∵ 当20220y +=30230x+时,小路四周所围成的矩形A ′B ′C ′D ′和矩形ABCD 相似,解得xy=32, 教学反思∴路的宽x与y的比值为3∶2时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.【总结】相似多边形的对应边成比例,对应角相等,两个边数相同的多边形,如果各边对应边成比例,各角对应相等,那么它们就相似.课堂练习1.放大镜中的多边形与原多边形的关系是()A.形状不同,大小不同B.形状相同,大小相同C.形状相同,大小不同D.形状不同,大小相同2.给出下列命题:①所有的正方形都相似;①所有的矩形都相似;①所有的三角形都相似;①所有的等腰直角三角形都相似;①所有的正五边形都相似.其中,正确命题为()A.①①①B.①①①C.①①①D.①①①3.若△ABC①△A′B′C′,且AB︰A′B′=1∶2,则△ABC与△A′B′C′相似比是,△A′B′C′与△ABC的相似比是.4.如图,ABCD∽AEFB,且AB=3 cm,BC=6 cm.求AE的长.参考答案1.C2.C3.1224.解:∵ABCD∽AEFB,∴ABAE =BCEF.又∵AB=3 cm,BC=6 cm,EF=AB=3 cm,∴AE=3×36=32.课堂小结(学生总结,老师点评)1.相似多边形的定义2.相似多边形的性质3.相似比的定义布置作业习题4.4第1题、第2题板书设计第四章图形的相似3 相似多边形1.相似多边形:各角分别相等、各边成比例的两个多边形叫做相似多边形.2.相似比:相似多边形对应边的比叫做相似比.。

最新(精典整理)--平行四边形、矩形、菱形、正方形知识点总结

最新(精典整理)--平行四边形、矩形、菱形、正方形知识点总结

平行四边形、矩形、菱形、正方形知识方法总结一. 平行四边形、矩形、菱形、正方形的性质:二. 判断(识别)方法小结:(1) 识别平行四边形的方法:(从边、角、对角线3方面)①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形; ④两组对角分别相等的四边形是平行四边形; ⑤对角线互相平分的四边形是平行四边形。

(2) 识别矩形的方法:(从定义、特殊元素(角、对角线)3方面) ①有一个角是直角的平行四边形是矩形;( t R ⊕∠一个 ) ②对角线相等的平行四边形是矩形; ( ⊕对角线 =) ③有三个角是直角的四边形是矩形; (3t R ∠个 )④对角线相等且互相平分的四边形是矩形。

( ⊕对角线互相平分对角线 =)(3) 识别菱形的方法:(从定义、特殊元素(边、对角线)3方面) ①有一组邻边相等的平行四边形是菱形; ( =⊕ 一组邻边 ) ②对角线互相垂直的平行四边形是菱形; ( ⊕⊥对角线 ) ③四边都相等的四边形是菱形; (4= 边)④对角线互相垂直平分的四边形是菱形。

( ⊕⊥对角线互相平分对角线 ) (4) 识别正方形的方法:(从边、角、对角线3方面) 抓本质:矩形+菱形 ①有一组邻边相等且有一个角是直角的平行四边形是正方形;( = Rt ∠⊕⊕ 一组邻边一个 )②对角线互相垂直且相等的平行四边形是正方形; (⊕⊕⊥=对角线 对角线)③有一组邻边相等的矩形是正方形; ( =⊕ 矩形一组邻边 )④对角线互相垂直的矩形是正方形; ( ⊕⊥矩形对角线 ) ⑤有一个角是直角的菱形是正方形; ( Rt ∠⊕菱形一个 ) ⑥对角线相等的菱形是正方形; (⊕=菱形 对角线)⑦对角线互相垂直平分且相等的四边形是正方形。

( ⊕⊕⊥=对角线互相平分对角线 对角线) 小结:把以上识别方法的编号分别填入下图中的每一条带方向的线上:(如平行四边形的第一种识别方法的编号为 (1) ①,其他方法类似)三、其他性质:1、平行四边形、矩形、菱形、正方形(平行四边形系列图形):都具有的(1)与面积有关的:任意一条对角线分得的两部分面积___________;两条对角线分得的四部分面积________。

认识三角形和四边形 整理与复习(教案)2023-2024学年数学四年级下册

认识三角形和四边形 整理与复习(教案)2023-2024学年数学四年级下册

教案标题:认识三角形和四边形整理与复习教案概述:本教案旨在帮助四年级学生巩固对三角形和四边形的认识,通过复习和整理,使学生能够熟练掌握三角形和四边形的基本性质,提高学生的数学思维能力。

教学目标:1. 让学生熟练掌握三角形和四边形的定义和基本性质。

2. 培养学生的观察、分类和推理能力。

3. 提高学生对几何图形的认识和空间想象力。

教学重点:1. 三角形和四边形的定义和基本性质。

2. 观察和分类几何图形。

教学难点:1. 理解三角形和四边形的稳定性和不规则性。

2. 运用推理和分类能力解决几何问题。

教学准备:1. 教学课件或黑板、粉笔。

2. 学生准备笔记本、铅笔。

教学过程:一、导入(5分钟)1. 引导学生回顾三角形的定义和基本性质,如三角形的内角和、等边三角形、等腰三角形等。

2. 引导学生回顾四边形的定义和基本性质,如四边形的内角和、正方形、长方形、平行四边形等。

二、复习三角形(15分钟)1. 让学生列举三角形的种类,如等边三角形、等腰三角形、直角三角形等。

2. 引导学生观察三角形的稳定性和不规则性,如三角形的内角和为180度,等边三角形的三条边相等等。

3. 通过练习题,让学生运用三角形的性质解决实际问题。

三、复习四边形(15分钟)1. 让学生列举四边形的种类,如正方形、长方形、平行四边形等。

2. 引导学生观察四边形的稳定性和不规则性,如四边形的内角和为360度,正方形的四条边相等且四个角都是直角等。

3. 通过练习题,让学生运用四边形的性质解决实际问题。

四、综合练习(15分钟)1. 给学生发放综合练习题,包括三角形和四边形的性质的应用。

2. 引导学生认真审题,运用所学的知识解决问题。

3. 对学生的答案进行讲解和点评,纠正错误,巩固知识。

五、总结与拓展(10分钟)1. 让学生总结本节课的学习内容,回顾三角形和四边形的定义和基本性质。

2. 引导学生思考三角形和四边形在实际生活中的应用,如建筑、艺术等。

3. 提供一些拓展性的问题,让学生自主探究和思考。

人教版初中数学图形的性质四边形知识点总结全面整理

人教版初中数学图形的性质四边形知识点总结全面整理

(每日一练)人教版初中数学图形的性质四边形知识点总结全面整理单选题1、如图,Rt △ABC 中,∠C =90° ,点D 在AC 上,∠DBC =∠A .若AC =4,cosA =45,则BD 的长度为()A .94B .125C .154D .4答案:C解析:先根据AC =4,cosA =45,求出AB=5,再根据勾股定理求出BC=3,然后根据∠DBC =∠A ,即可得cos ∠DBC=cosA=45,即可求出BD .∵∠C=90°,∴cosA =AC AB ,∵AC =4,cosA =45,∴AB=5,根据勾股定理可得BC=√AB 2−AC 2=3,∵∠DBC =∠A ,∴cos∠DBC=cosA=45,∴cos∠DBC=BCBD =45,即3BD=45∴BD=154,故选:C.小提示:本题考查了解直角三角形和勾股定理,求出BC的长是解题关键.2、如图,正方形ABCD的边长为4,点E是边BC上一点,且BE=3,以点A为圆心,3为半径的圆分别交AB、AD于点F、G,DF与AE交于点H.并与⊙A交于点K,连结HG、CH.给出下列五个结论中正确的选()(1)H是FK的中点(2)△HGD≌△HEC(3)S△AHG:S△DHC=9:16(4)DK=75(5)HG⊥HCA.2个B.3个C.4个D.5个答案:B解析:(1)先证明△ABE≌△DAF,得∠AFD+∠BAE=∠AEB+∠BAE=90°,AH⊥FK,由垂径定理,得:FH=HK,即H是FK的中点;(2)只要证明题干任意一组对应边不相等即可;(3)由余弦三角函数和勾股定理算出HM,HT,再算面积,即得S△AHG:S△DHC=9:16;(4)由余弦三角函数和勾股定理算出FK,即可得DK.(5)由(2)可得出∠DHC+∠EHC=90°,因为△HGD和△HEC不全等,进而可以得出∠DHC+∠GHD≠90°,则∠GHC≠90°,即HG⊥HC是错误的.解:(1)在△ABE与△DAF中,{AD=AB∠DAF=∠ABEAF=BE,∴△ABE≌△DAF(SAS),∴∠AFD=∠AEB,∴∠AFD+∠BAE=∠AEB+∠BAE=90°,∴AH⊥FK,由垂径定理,得:FH=HK,即H是FK的中点,故(1)正确;(2)如图,过H作HM⊥AD于M,交BC于N,∵AB=4,BE=3,∴AE=√AB2+BE2=5,∵∠BAE =∠HAF =∠AHM ,∴cos ∠BAE =cos ∠HAF =cos ∠AHM ,∴HM AH =AH AF =AB AE =45 ,∴AH =125,HM =4825 ,∴HN =4−4825=5225,即HM ≠HN ,∵MN //CD ,∴MD =CN ,∵HD =√HM 2+MD 2 ,HC =√HN 2+CN 2 ,∴HC ≠HD ,∴△HGD ≌△HEC 是错误的,故(2)不正确;(3)过H 作HT ⊥CD 于T ,由(2)知,AM =√AH 2−HM 2=3625,∴DM =4−3625=6425,∵MN //CD ,∴MD =HT =6425,∴S △AHG S △HCD =12AG·HM 12CD·HT =916,故(3)正确;(4)由(2)知,HF =√AF 2−AH 2=95 ,∴FK =2HF =185 ,∴DK=DF−FK=7,故(4)正确.5(5)由(1)可知,∠DHE=90°,∴∠DHC+∠EHC=90°,由(2)知△HGD和△HEC不全等,∴∠GHD≠∠EHC,∴∠DHC+∠GHD≠90°,∴∠GHC≠90°即HG⊥HC是错误的,故(5)不正确.故选:B.小提示:本题是圆的综合题,考查了全等的性质和垂径定理,勾股定理和三角函数解直角三角形,熟练应用三角函数快速计算是本题关键.3、如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为()A.8B.11C.16D.17答案:B解析:根据垂直平分线的性质得到AE=BE,故可得到△ACE的周长=AC+BC,故可求解.∵DE垂直平分AB,∴AE =BE ,∴△ACE 的周长=AC +CE +AE =AC +CE +BE =AC +BC =5+6=11.故选B .小提示:此题主要考查垂直平分线的性质,解题的关键是熟知垂直平分线上的店到线段两端距离相等.4、如图,点A ,B 的坐标分别为A(2,0),B(0,2),点C 为坐标平面内一点,BC =1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A .√2+1B .√2+12C .2√2+1D .2√2−12答案:B解析:如图所示,取AB 的中点N ,连接ON ,MN ,根据三角形的三边关系可知OM <ON+MN ,则当ON 与MN 共线时,OM= ON+MN 最大,再根据等腰直角三角形的性质以及三角形的中位线即可解答.解:如图所示,取AB 的中点N ,连接ON ,MN ,三角形的三边关系可知OM <ON+MN ,则当ON 与MN 共线时,OM= ON+MN 最大,∵A(2,0),B(0,2),则△ABO 为等腰直角三角形,∴AB=√OA 2+OB 2=2√2,N 为AB 的中点,∴ON=12AB =√2,又∵M为AC的中点,∴MN为△ABC的中位线,BC=1,则MN=12BC=12,∴OM=ON+MN=√2+12,∴OM的最大值为√2+12故答案选:B.小提示:本题考查了等腰直角三角形的性质以及三角形中位线的性质,解题的关键是确定当ON与MN共线时,OM= ON+MN最大.5、如图,在ΔABC中,若点D使得BD=DC,则AD是ΔABC的()A.高B.中线C.角平分线D.中垂线答案:B解析:根据三角形的中线定义即可作答.解:∵BD =DC ,∴AD 是△ABC 的中线,故选:B .小提示:本题考查了三角形的中线概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.6、如图,在Rt △ABC 中,∠C =90°,AC =BC =2;若将△ABC 绕点B 逆时针旋转60°到△A′BC′的位置,连接C′A ,则C′A 的长为( )A .√6−√22B .√6−√2C .2−√22D .2﹣√2答案:B解析:连接AA′,延长AC′交BA′于点M ,证明△AA′M 为直角三角形,在Rt △AA′M 根据勾股定理可求得AM ,在等腰直角三角形A′BC′中根据斜边的中线等于斜边的一半求得MC′,于是AC′可求.解:如图,连接AA ′,延长AC′交BA′于点M ,由题意得:∠ABA′=60°,BA=B′A,∴△BAA′为等边三角形,∴∠BAA′=60°,AB=A′A;在△BAC′与△A′AC′中,{AB=' BC′=''AC′=AC′,∴△BAC′≌△A′AC′(SSS),∴∠MAA′=∠MAB=30°,∴AM⊥BA′,且BM=A′M;由题意得:AB2=22+22=8,∴AA′=A′B=AB=2√2,A′M=√2,∴C′M=12A′B=√2;由勾股定理可求:AM=√6,∴C′A=√6﹣√2,故选:B.小提示:该题考查了旋转变换的性质,等腰直角三角形的性质,等边三角形的性质和判定,全等三角形的性质和判定,直角三角形斜边上的中线等于斜边的一半.解题的关键是作辅助线,灵活运用旋转变换的性质等几何知识点来分析、判断、推理或解答.。

初二数学知识点归纳初二数学笔记整理大全

初二数学知识点归纳初二数学笔记整理大全

初二数学知识点归纳初二数学笔记整理大全初中数学是我们学习数学的一个重要阶段。

在初二阶段,我们需要掌握更加深入的数学知识,为进一步的学习打下坚实的基础。

在本文中,我们将对初二数学知识点归纳,帮助大家更好地理解数学知识,提高数学成绩。

第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2、分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3、整数指数幂的加减乘除法4、分式方程及其解法第二章反比例函数1、反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/某(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形第四章四边形1、平行四边形性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

八年级数学上册第四章知识点整理北师大版

八年级数学上册第四章知识点整理北师大版

北师大版八上数学第四章知识点整理 一、平行四边形(一)定义和性质:1、定义:两组对边分别平行的四边形叫做平行四边形。

2、性质:平行四边形两对边平行平行四边形对边相等平行四边形的对角相等平行四边形是中心对称图形平行四边形对角线相互平分(二)判定:两组对角线互相平分的四边形是平行四边形一组对边平行且相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形两组对边分别平行的四边形是平行四边形两组对角分别相等的四边形是平行四边形二、菱形(一)定义和性质: 1、定义:一组邻边相等的平行四边形叫做菱形 2、性质:菱形的四条边都相等,两条对角线相互垂直平分,每一条对角线平分一组对角,面积等于对角线乘积的一半(二)判定:一组邻边相等的平行四边形是菱形对角线互相垂直的平行四边形是菱形四条边都相等的四边形是菱形三、矩形:(一)定义和性质: 1、定义:有一个内角是直角的平行四边形叫做矩形 2、性质:矩形的对角线相等,四个角都是直角(二)判定:对角线相等的平行四边形是矩形一个角是直角的平行四边形是矩形四、正方形:(一)定义和性质: 1、定义:一组邻边相等的矩形叫做正方形 2、性质:正方形具有平行四边形、菱形、矩形的一切性质边:四条边都相等且对边平行角:四个角都是直角对角线:对角线互相平分且垂直、相等(二)判定:一组邻边相等的矩形是正方形对角线互相垂直的矩形是正方形有一个角是90度的菱形是正方形对角线相等的菱形是正方形五、梯形和等腰梯形 (一)定义和性质:一组对边平行而另一组对边不平行的四边形叫做梯形,两条腰相等的梯形叫做等腰梯形。

等腰梯形同一底上的两个内角相等,对第 四 章 四 边 形 性 质 探角线相等。

(第四章 相似图形(课本)§1 线段的比(1)如果把大树和小颖的高分别看成如图4 -1所示的两条虚线段AB ,CD ,那么这两条线段的长度比是多少?(2)已知小颖的身高是1.6m ,大树的实际高度是多少?两条线段长度的比与所采用的长度单有没有关系?通过思考、交流,引导学得出:线段的长度比与所采用的长度单位无关如果选用一个长度单位量得两条线段AB ,CD 的长度分别是m 、n ,那么就说这两条线段的比AB :CD=m :n ,或写成CD AB =nm .其中,线段AB :CD 分别叫做这个线段比的前项和后项.如果把n m 表示成比值k ,那么CD AB =k ,或AB=k ·CD 此处对线段比的前项、后项概念作进一步解析。

七年级数学知识点整理大全

七年级数学知识点整理大全

七年级数学知识点整理⼤全 ⼤家都知道,初中数学学习是对学⽣逻辑计算能⼒的培养,想要学好初中数学,就要多总结所学知识,多掌握解题思路,通过习题的练习对数学学习产⽣兴趣。

最终实现初中数学的融会贯通,学好这门课程。

接下来是⼩编为⼤家整理的七年级数学知识点整理⼤全,希望⼤家喜欢! 七年级数学知识点整理⼤全⼀ 第五章相交线与平⾏线 1、两条直线相交所成的四个⾓中,相邻的两个⾓叫做邻补⾓,特点是两个⾓共⽤⼀条边,另⼀条边互为反向延长线,性质是邻补⾓互补;相对的两个⾓叫做对顶⾓,特点是它们的两条边互为反向延长线。

性质是对顶⾓相等。

2、三线⼋⾓:对顶⾓(相等),邻补⾓(互补),同位⾓,内错⾓,同旁内⾓。

3、两条直线被第三条直线所截: 同位⾓F(在两条直线的同⼀旁,第三条直线的同⼀侧) 内错⾓Z(在两条直线内部,位于第三条直线两侧) 同旁内⾓U(在两条直线内部,位于第三条直线同侧) 4、两条直线相交所成的四个⾓中,如果有⼀个⾓为90度,则称这两条直线互相垂直。

其中⼀条直线叫做另外⼀条直线的垂线,他们的交点称为垂⾜。

5、垂直三要素:垂直关系,垂直记号,垂⾜ 6、垂直公理:过⼀点有且只有⼀条直线与已知直线垂直。

7、垂线段最短。

8、点到直线的距离:直线外⼀点到这条直线的垂线段的长度。

9、平⾏公理:经过直线外⼀点,有且只有⼀条直线与这条直线平⾏。

推论:如果两条直线都与第三条直线平⾏,那么这两条直线也互相平⾏。

如果b//a,c//a,那么b//c 10、平⾏线的判定: ①同位⾓相等,两直线平⾏。

②内错⾓相等,两直线平⾏。

③同旁内⾓互补,两直线平⾏。

11、推论:在同⼀平⾯内,如果两条直线都垂直于同⼀条直线,那么这两条直线平⾏。

12、平⾏线的性质: ①两直线平⾏,同位⾓相等;②两直线平⾏,内错⾓相等;③两直线平⾏,同旁内⾓互补。

13、平⾯上不相重合的两条直线之间的位置关系为_______或________ 14、平移:①平移前后的两个图形形状⼤⼩不变,位置改变。

(精典整理)--平行四边形、矩形、菱形、正方形知识点总结

(精典整理)--平行四边形、矩形、菱形、正方形知识点总结

OAB C D平行四边形、矩形、菱形、正方形知识方法总结一. 平行四边形、矩形、菱形、正方形的性质:平行四边形矩形菱形正方形图形一般 性质1.边:且 ; 2.角: ;; 3.对角线 ;1.边:且 ; 2.角: ;; 3.对角线 ;1.边:且 ; 2.角: ; ; 3.对角线 ;1.边:且 ; 2.角: ;; 3.对角线 ;面积二. 判断(识别)方法小结:(1) 识别平行四边形的方法:(从边、角、对角线3方面)①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形; ④两组对角分别相等的四边形是平行四边形; ⑤对角线互相平分的四边形是平行四边形。

(2) 识别矩形的方法:(从定义、特殊元素(角、对角线)3方面) ①有一个角是直角的平行四边形是矩形;( t R ⊕∠一个 ) ②对角线相等的平行四边形是矩形; ( ⊕对角线 =) ③有三个角是直角的四边形是矩形; (3t R ∠个 )④对角线相等且互相平分的四边形是矩形。

( ⊕对角线互相平分对角线 =) (3) 识别菱形的方法:(从定义、特殊元素(边、对角线)3方面) ①有一组邻边相等的平行四边形是菱形; ( =⊕ 一组邻边 )②对角线互相垂直的平行四边形是菱形; ( ⊕⊥对角线 ) ③四边都相等的四边形是菱形; (4= 边)④对角线互相垂直平分的四边形是菱形。

( ⊕⊥对角线互相平分对角线 ) (4) 识别正方形的方法:(从边、角、对角线3方面) 抓本质:矩形+菱形 ①有一组邻边相等且有一个角是直角的平行四边形是正方形;( = Rt ∠⊕⊕ 一组邻边一个 )②对角线互相垂直且相等的平行四边形是正方形; (⊕⊕⊥=对角线 对角线)③有一组邻边相等的矩形是正方形; ( =⊕ 矩形一组邻边 ) ④对角线互相垂直的矩形是正方形; ( ⊕⊥矩形对角线 ) ⑤有一个角是直角的菱形是正方形; ( Rt ∠⊕菱形一个 ) ⑥对角线相等的菱形是正方形; (⊕=菱形 对角线)⑦对角线互相垂直平分且相等的四边形是正方形。

四边形知识点整理

四边形知识点整理

四边形知识点整理一、四边形的定义和分类1. 四边形的定义:四边形是由四条线段组成的闭合图形。

2. 四边形的分类:(1)矩形:四个角都是直角的四边形。

(2)正方形:四条边相等且四个角都是直角的矩形。

(3)平行四边形:有两组对边平行的四边形。

(4)梯形:有两条平行边的四边形。

(5)菱形:四个边都相等的梯形。

(6)不规则四边形:所有边和角都不相等的四边形。

二、四边形的性质1. 内角和定理:一个四边形的内角和等于360度。

2. 对角定理:一个四边形的对角相等。

3. 同位角定理:同位角相等。

4. 对边角定理:对边角和共为180度。

5. 垂直对边角定理:若一个四边形的对角线互相垂直,则这个四边形是矩形。

6. 判断四边形类型的方法:通过各边长度和各角大小的关系可判断四边形的类型。

三、四边形的重要性质1. 矩形的性质:(1)四个角都是直角;(2)对角相等;(3)对边相等;(4)对角线相等。

2. 正方形的性质:(1)四个边相等;(2)四个角都是直角;(3)对边平行;(4)对角线相等;(5)对角线互相垂直。

3. 平行四边形的性质:(1)对边平行;(2)对角相等;(3)对边相等;(4)对角线互相等长。

4. 梯形的性质:(1)有两边平行;(2)含角和等于180度;(3)对角线互相等长。

5. 菱形的性质:(1)四个边相等;(2)对边平行;(3)对角相等;(4)对角线互相垂直。

四、四边形的相关定理1. 勾股定理:直角三角形的斜边上的正方形面积等于两直角边上的两个矩形面积之和。

2. 夹角相等定理:平行四边形中,同位角相等,内角和等于180度。

3. 等腰梯形的性质:等腰梯形的对角相等。

4. 平行四边形的周长定理:平行四边形的周长等于两对边之和的两倍。

五、四边形的应用1. 在建筑学中,四边形是建筑物的基本形状之一,如矩形的房间和楼层平面图。

2. 在地理学中,四边形可以用来描述地理形状,如国家和州的边界。

3. 在工程学中,四边形有助于设计和建造物体,如桥梁和道路。

初中数学中常见的四边形和三角形知识点整理

初中数学中常见的四边形和三角形知识点整理

初中数学中常见的四边形和三角形知识点整理初中数学中常见的四边形和三角形知识点整理平行四边形是我们初中数学学习过的四边形的一种,也是最基础的四边形。

平行四边形定义两组对边分别平行的四边形叫做平行四边形(parallelogram)。

性质(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。

(简述为“平行四边形的两组对边分别相等”)(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。

(简述为“平行四边形的两组对角分别相等”)(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补(简述为“平行四边形的邻角互补”)(4)夹在两条平行线间的平行线段相等。

(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。

(简述为“平行四边形的对角线互相平分”)判定(1)如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形。

(简述为“两组对边分别相等的四边形是平行四边形”)(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。

(简述为“一组对边平行且相等的四边形是平行四边形”)(3)如果一个四边形的两条对角线互相平分,那么这个四边形是平行四边形。

(简述为“对角线互相平分的四边形是平行四边形”)(4)如果一个四边形的两组对角分别相等,那么这个四边形是平行四边形。

(简述为“两组对角分别相等的四边形是平行四边形”(5)如果一个四边形的两组对边分别平行,那么这个四边形是平行四边形。

(简述为“两组对边分别平行的四边形是平行四边形”)不论是平行四边形的性质还是判定定理,都是需要我们同学认真记忆的知识。

关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。

正方形定理公式正方形的特征:①正方形的四边相等;②正方形的四个角都是直角;③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;正方形的判定:①有一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形。

四边形知识点整理

四边形知识点整理

四边形知识点整理Quadrilaterals are an important topic in geometry that involves studying the properties and characteristics of four-sided figures. These shapes play a significant role in mathematics and can be found in various real-life situations, making them a crucial concept to understand. 四边形是几何学中一个重要的主题,涉及研究四边形图形的属性和特征。

这些形状在数学中起着重要作用,并可以在各种现实生活情况中找到,使其成为一种重要概念。

There are several types of quadrilaterals, each with its own unique properties and characteristics. Some common types include squares, rectangles, parallelograms, rhombuses, and trapezoids. Understanding the differences between these shapes is essential in solving geometry problems and working with geometric figures. 有几种类型的四边形,每种都有其独特的属性和特征。

一些常见的类型包括正方形、长方形、平行四边形、菱形和梯形。

理解这些形状之间的区别对于解决几何问题和处理几何图形至关重要。

One of the key properties of quadrilaterals is that the sum of the interior angles is always 360 degrees. This property is known as theangle sum property of quadrilaterals and is essential in determining the angles of a four-sided figure. Understanding this property can help in solving geometry problems involving angles within a quadrilateral. 四边形的一个关键特性是内角和总是为360度。

(名师整理)最新中考数学专题复习《四边形及相似形》精品教案

(名师整理)最新中考数学专题复习《四边形及相似形》精品教案

中考数学人教版专题复习:四边形及相似形一、教学内容四边形及相似形二、重点、难点(一)四边形1.多边形在平面内,由不在同一条直线上的一些线段首尾顺次相接组成的图形叫做多边形.多边形的性质:(1)n边形的内角和等于;(2)任意多边形的外角和等于360°;※(3)n边形的对角线的条数等于.2.四边形的分类3.平行四边形两组对边分别平行的四边形叫做平行四边形.平行四边形的性质:1(1)两组对边分别平行且相等;(2)两组对角分别相等;(3)两条对角线互相平分;(4)平行四边形是中心对称图形,两条对角线的交点是它的对称中心.平行四边形的判定:(1)根据平行四边形的定义判定;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)两条对角线互相平分的四边形是平行四边形.4.矩形有一个角是直角的平行四边形叫做矩形.矩形的性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)两条对角线相等;(4)矩形既是中心对称图形又是轴对称图形,它有两条对称轴,即过每组对边中点的直线.矩形的判定:(1)根据矩形的定义判定;(2)有三个角是直角的四边形是矩形;(3)两条对角线相等的平行四边形是矩形.5.菱形有一组邻边相等的平行四边形叫做菱形.2菱形的性质:(1)具有平行四边形的所有性质;(2)四条边都相等;(3)两条对角线互相垂直,且每一条对角线平分一组对角;(4)菱形既是中心对称图形又是轴对称图形,它的两条对称轴是两条对角线所在的直线.菱形的判定:(1)根据菱形的定义判定;(2)四条边都相等的四边形是菱形;(3)两条对角线互相垂直的平行四边形是菱形.6.正方形有一个角是直角,并且有一组邻边相等的平行四边形叫做正方形.正方形的性质:具有平行四边形、矩形、菱形的所有性质.既是中心对称图形,又是轴对称图形,它有四条对称轴.正方形的判定:(1)有一组邻边相等的矩形是正方形;(2)有一个角是直角的菱形是正方形.7.梯形及等腰梯形一组对边平行而另一组对边不平行的四边形叫做梯形.平行的两边叫做梯形的底(通常把较短的底叫做上底、较长的底叫做下底),不平行的两边叫做梯形的腰,两底的距离叫做梯形的高.连结梯形两腰中点的线段叫做梯形的中位线.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.等腰梯形:两腰相等的梯形叫做等腰梯形.等腰梯形的性质:3(1)同一底上的两角相等;(2)两条对角线相等.等腰梯形的判定:(1)依据等腰梯形的定义判定;(2)同一底上两角相等的梯形是等腰梯形.※(3)对角线相等的梯形是等腰梯形.8.中心对称与中心对称图形把一个图形绕着一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称.这个点叫做对称中心.两个图形关于点对称也称中心对称.这两个图形中的对应点叫做关于中心的对称点.把一个图形绕它的某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.中心对称的性质:(1)关于中心对称的两个图形是全等形;(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;由中心对称的性质可以认识中心对称图形的性质.9.平行线等分线段定理及其推论.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等.推论1:经过梯形一腰的中点与底平行的直线必平分另一腰.推论2:经过三角形一边中点与另一边平行的直线必平分第三边.10.简单平面图形的面积(1)三角形的面积公式三角形的面积等于它的底与高的积的一半.等底等高的两个三角形等积;等高的两个三角形的面积比等于相应底边的比;等底的两4个三角形的面积比等于相应高的比.(2)平行四边形的面积等于一边与这边上的高的积.(3)矩形的面积等于两条邻边的乘积.(4)菱形的面积等于一边与这边上的高的积,也等于两条对角线乘积的一半.(5)正方形的面积等于边长的平方,也等于对角线平方的一半.(6)梯形的面积等于两底之和与高的乘积的一半;或等于梯形中位线与高的积.(7)多边形的面积等于它被分割的若干个三角形面积的和.11.几何作图(1)作一图形关于某一点的对称图形;(2)任意等分已知线段;(3)依据已知条件,求作平行四边形、矩形、菱形、正方形及梯形.(二)相似形比例线段:1.成比例线段用同一长度单位度量两条线段所得量数的比叫做这两条线段的比.如果线段a和b的比等于线段c和d的比,那么线段a、b、c、d叫做成比例线段,记作,其中叫做比的前项,b、d叫做比的后项,b、c叫做比例内项,a、d叫做比例外项,d叫做a、b、c的第四比例项.若,则称b是a、c的比例中项.2.比例的性质成比例的数具有下面的性质:5(1)基本性质:;(2)反比性质:;(3)更比性质:;(4)合比性质:;(5)等比性质:,k为正整数,且,.3.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.4.平行线分线段成比例定理推论的逆定理:如果一条直线截三角线两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角线的第三边.5.平行于三角形的一边,并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.相似三角形:1.相似三角形对应角相等、对应边成比例的三角形,叫做相似三角形,相似三角形对应边的比叫做相似比.2.三角形相似的判定(除相似三角形的定义外)(1)平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.(2)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,即“两角对应相等,两三角形相似”.6(3)判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.即“两边对应成比例且夹角相等,两三角形相似”.(4)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.即“三边对应成比例,两三角形相似”.对于直角三角形相似,还有如下判定定理:(5)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(6)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.3.相似三角形的性质(1)相似三角形的对应角相等;(2)相似三角形的对应边成比例;(3)相似三角形的对应高的比、对应中线的比与对应角平分线的比都等于相似比;(4)相似三角形的周长比等于相似比;※(5)相似三角形的面积的比等于相似比的平方.(注:新教材删去)4.直角三角形中的成比例线段在则(1);(2);(注:用时要证明.)(3);(注:用时要证明.)(4)※5.相似多边形(注:“人教社”新教材删去.)如果两个边数相同的多边形的对应角相等、对应边成比例,这两个多边形叫做相似多边形.相似多边形的对应边的比叫做相似比.相似多边形的性质:7(1)相似多边形的对应角相等;(2)相似多边形的对应边成比例;(3)相似多边形的对应对角线的比等于相似比;(4)相似多边形周长的比等于相似比;(5)相似多边形面积的比等于相似比的平方(6)相似多边形中的对应三角形相似,相似比等于相似多边形的相似比.【典型例题】例1.如图所示,平行四边形ABCD中,E、F分别是BC、AD边上的点,且BE=DF,EF 交AC于点O.求证:AC、EF互相平分于O点.分析:若连结AE、CF,只要证四边形AECF是平行四边形即证:.而它可由推出.例2.如图所示,在△ABC中,,D、E分别是AC、AB的中点,点F在BC 的延长线上,.(1)求证:四边形DECF是平行四边形;8(2)若,四边形EBFD的周长为22,求DE的长.分析:(1)由已知,不难得出,因此,关键是证,只要证出ED垂直平分AC于D,便可推出,从而有.就可根据平行四边形的定义证四边形ECFD是平行四边形.(2)可推出四边形EBFD为等腰梯形.因为所以可设可推出有解得:例3.如图所示,矩形ABCD中,,P是AD上的动点,,,试问的值是否为定值?如果是,请求出此定值;如果不是,请说明理由.解:的值为定值9例4.如图所示,在等边△ABC中,D、F分别为CB、BA上的点,且CD=BF,以AD为边作等边三角形ADE.求证:(1);(2)四边形CDEF为平行四边形.证明:(1)∵△ABC为等边三角形(2)∵△AED为等边三角形10∴四边形CDEF为平行四边形.例5.如图所示,已知菱形ABCD中,对角线,边长,BC边上的高,菱形面积=S,若,求a,h及.略解:在Rt△AOB中,AO=5,BO=12由勾股定理可得:AB=13,即a=13说明:此例强调了菱形的两个面积公式的互相转化,强调了菱形中的线段与角之间的内在11联系.例6.如图所示,在矩形纸片ABCD的AB边上取一点E,使BE:EA=5:3,,把△BCE沿折痕EC向上翻折,若点B恰好落在AD上,设这个点为F,求AB、BC的长.解:由已知,,可得设在例7.如图所示,在梯形ABCD中,AB//CD,中位线EF=7cm,对角线,,求梯形的面积.12分析:欲求此梯形的面积,只要求它的高.作交CD延长线于K.由已知可得,则,而说明:在解决有关梯形的问题时,要注意常用辅助线的作法.已知梯形对角线垂直时,常过梯形一顶点平移一条对角线.例8.如图1所示,已知正方形ABCD的对角线AC、BD相交于点O图113(1)在AC上取一点E,作于G,交BD于F,求证:;(2)若在AC的延长线上取一点E,作直线BE于G,交DB延长线于F(如图2所示),这时结论“OE=OF”还成立吗?如果成立,请作图并给出证明,如果不成立,请说明理由.图2分析:(1)欲证OE=OF,只要证.因为四边形ABCD为正方形所以∠=∠==∠=-∠=∠9090°,,°AOB BOE AO BO AFO FAO BEO由此可证出可得.(2)若E点在AC的延长线上,这个结论仍能成立.也可由证出.例9.已知:,求.解:由已知再由等比性质得即例10.已知:的值.14解:设,则解得:例11.如图所示,BD、CE是△ABC的中线,G、H分别是BE、CD的中点,BC=8,求GH的长.解:∵BD、CE分别是△ABC的中线,G、H分别是BE、CD的中点想一想:如图所示,若连结ED,如何求GH?15例12.如图所示,△ABC中,AD是角平分线,求证:.分析:为了构造平行于三角形一边的直线截其它两边或两边的延长线,可视C点为△ABD 的BD边延长线上一点.作CE//AB,交AD延长线于E,则,.又,得,推出.说明:此题介绍了三角形内角平分线的一个性质,即“三角形的内角平分线分对边所得的两条线段与这个角的两边对应成比例.例13.如图所示,△ABC中,BD是角平分线,DE//AB,AB=5,BE=3,求BC的值.解:16例14.如图所示,在△ABC中,,E为AC边中点,ED、AB 的延长线交于点F.求证:(1)AB:AC=BD:AD;(2);(3).分析:(1)由(2)因是△FAD和△FDB的公共角,欲证,只要证.这可由中,、E是AC的中点推出,即(3)由(2)中的,得17由(1)中的,可推出.说明:对于待证的四条成比例线段,首先要看它们所在的两个三角形能否相似,如果不能相似,需通过“中间比”进行等量代换.利用两组角对应相等,是证明两个三角形相似首选的基本方法.例15.如图所示,已知中,AB=AC,AD是BC边上的中线,,BF交AD 于P,交AC于E点求证:.分析:为了把共线的三条线段BP、PE、PF转化为不共线的,可利用等腰三角形是轴对称图形这一性质.连结PC,因为AD是等腰△ABC底边上的中线,所以它也垂直平分BC,可推出PC=PB、.由CF//BA,又可得到所以,而立即推出从而,即18例16.如图所示,△ABC中,,求证:.分析:欲证,只要证.而是这两个三角形的公共角,只需证.在中,则.同理可证:可得即,从而问题解决.例17.如图所示,在正方形ABCD中,P是CD上一动点(与C、D不重合),使三角尺的直角顶点与点P重合,并且一条直角边始终经过点B,另一直角边与正方形的某一边所在19直线交于点E.探究:①观察操作结果,哪一个三角形与△BPC相似?并证明你的结论;②当点P位于CD的中点时,你找到的三角形与△BPC的周长比是多少?解:可分成三种情形分别作答:(1)如图1所示,若另一条直角边与AD交于点E,则.图1证明:当点P位于CD的中点时,如图2所示,则.图220又∴△PDE与△BCP的周长比是1:2.(2)如图3所示,若另一条直角边与BC的延长线交于点E,同理可证或.图3当点P位于CD的中点时,如图4所示,△PCE与△BCP的周长比是1:2;图4由于,因此△BPE与△BCP的周长比是.(3)如图5所示,若另一条直角边与BA的延长线交于E点,同理可证:.图521当点P位于CD的中点时,如图6所示,由于,因此△EPB与△BCP的周长比为.图6说明:根据需要对研究对象进行分类,然后对划分的每一类分别求解,综合后即得问题的答案.在复习中要充分重视“分类讨论”这一数学思想方法的运用.解答问题时,要考虑到可能出现的各种情况.为此,请想一想下面这个问题应怎么解?已知:矩形ABCD中,M是BC的三等分点,若,求D点到AM 的距离.【模拟试题】(答题时间:80分钟)【自我检测1】一、填空题1.两条对角线互相平分的四边形是____________________;2.两条对角线_________________的四边形是菱形;3.两条对角线_________________的四边形是矩形;4.两条对角线_________________的四边形是正方形;5.顺次连结四边形各边的中点,所得的四边形是_________________;6.顺次连结对角线互相垂直的四边形各边中点,所得的四边形是_____________;227.顺次连结对角线相等的四边形各边中点,所得的四边形是_________________;8.四边形四个内角的比是1:2:3:4,那么这四个角的度数分别是___________;9.一个多边形的每一个内角都等于144°,那么这个多边形是______________;10.平行四边形两邻边长分别为6cm和8cm,夹角为60°,它的面积为_________;11.一个平行四边形被分成面积为的四个小平行四边形(如图所示),当CD沿AB自左向右在平行四边形内平行滑动时,与的大小关系为_____;12.如图所示,△ABC中有菱形AMPN,如果,则____________.13.矩形的一条对角线与一边的夹角是40°,则两条对角线所交锐角的度数为_________;【自我检测2】一、判断题(1)有一个锐角相等的两个Rt△相似.()(2)有一个角相等的两个等腰三角形相似.()(3)顺次连结三角形各边中点所得的三角形与原三角形相似.()(4)一个等腰三角形的两边和另一个等腰三角形的两边成比例,则这两个三角形相似.()23(5)两边长分别是3、4的Rt△ABC与两边长分别是6、8的Rt△DEF相似.()(6)斜边和一条直角边分别是2和的与斜边和一条直角边长分别是和的相似.()二、填空题(1)如图所示,已知,若再增加一个条件就能使结论“AB·DE=AD·BC”成立,则这个条件可以是_____________________.※(2)在方格纸中,每个小方格的顶点称为格点.以格点为顶点的三角形叫做格点三角形,在如图所示的5×5的方格纸中,作以A、B、C为顶点的格点三角形和△OAB相似(相似比不能为1),则C点的坐标是________________.※(3)如图所示,由边长为1的25个小正方形组成的正方形网格上有一个△ABC,若在此网格内画出一个与△ABC相似且面积最大的三角形,则的面积是___________.24(4)如图所示,△ABC中,若AB=AC,BD平分,则AD=______=_______,__________,___________.当AC=10时,BC=__________.(5)如图所示,△ABC中,则∽_______∽______,AD:_______=________:BC,_________,AD·DC=________,____________,AC·BD=___________.若AD=5,BC=6,则CD=_______.(6)已知:如图所示,△ABC中,点D在AB边上,点E在AC边上,且∠1=∠2=∠3,则图中有_________对相似三角形.三、解答题1.如图所示,平行四边形ABCD中,E是AB延长线上一点,DE交BC于F.求证:BC·CD=CF·AE.252.如图所示,Rt△ABC中,∠C=90°,DEFG是△ABC的内接正方形.求证:EF2=AE·FB.3.如图所示,△ABC中,D是BC中点,E是AD上一点,CE的延长线交AB于F.求证:AE:ED=2AF:FB.4.如图所示,△ABC中,∠ACB=90°,D是AB中点,过D作AB的垂线交CB于E,交AC的延长线于F.求证:CD2=DE·DF.5.如图所示,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连结AE.F为AE 上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长;26(3)在(1)、(2)的条件下,若AD=3,求BF的长.(计算结果可含根号)6.如图所示,延长正方形ABCD的AB边至E,连结EC、DE,DE交BC于F,FM//BE交EC于M,求证:FB=FM.7.正方形ABCD中,边长AB=2,E是BC的中点,DF⊥AE,F是垂足.(1)求证:△ABE∽△DFA;(2)求△DFA的面积S1和四边形CDFE的面积S2.8.如图所示,菱形ABCD中,E、M分别是AB、CD边的中点,F是BC上一点,且BF:FC=1:3.(1)求EF:AM;(2)若菱形ABCD的面积为S,求△EBF的面积.27【试题答案】【自我检测1】一、填空题1.平行四边形2.互相垂直平分3.互相平分且相等4.互相垂直平分且相等5.平行四边形6.矩形7.菱形8. 36°、72°、108°、144°9.十10.11.12.13. 80°【自我检测2】一、判断题(1)√(2)× (3)√(4)× (5)× (6)√二、填空题(1)或或;28(2)(4,4)或(5,2)(3)的面积是5(平方单位);(4)BD、BC,△BCD,DC·AC,;(5)△BDC、△ABC,AB、DB,AD·AC,BD2,BC2,AB·BC,4;(6)4对.三、解答题1.提示:由得,而可推出2.提示:由得,即而,可得.3.提示:过D点作DK//BA,交EC于K4.提示:证5.(1)略;(2);(3)6.提示:由已知可得,推出7.(1)略;(2)(平方单位),(平方单位)298.提示:(1)先证得;(2).30。

四边形知识点总结(已整理)

四边形知识点总结(已整理)

四边形知识点总结第一部分、特殊四边形的性质与判定126•等腰梯形的性质:(1)两底平行,两腰相等; 因为ABCD 是等腰梯形(2)同一底上的底角相等 ; (3)对角线相等.等腰梯形的判定: ⑴梯形两腰相等 (2) 梯形底角相等 ABCD 是等腰梯形(3) 梯形对角线相等7 •三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半 注:被中位线分成的三角形的周长是原三角形的1/2 被中位线分成的三角形的面积是原三角形的1/4&梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半 注:梯形的面积等于中位线乘高 •第二部分、常用的辅助线技巧1. 平行四边形与特殊的平行四边形常见的辅助线:① •平行四边形:(1 )连对角线或平移对角线(2)过顶点作对边的垂线构造直角三角形② .菱形:(1)作菱形的高;(2)连结菱形的对角线.注意:当菱形有一个内角为 60°或有一条高垂直平分底边时连接对角线即可得到等边三角形。

③ •矩形:计算题型(翻折问题),一般通过作辅助线(垂线等)构造直角三角形借助勾股定理解题证明题型(探究问题),一般连接对角线借助对角线相等来解决问题注意:当矩形的对角线与一边(或另一条对角线)的夹角为60。

时,其对角线与边长围成的三角形是等边三角形。

④ •正方形:连接对角线2. 梯形中常见的辅助线:①•延长两腰交于一点(使梯形问题转化为三角形问题。

若是等腰梯形则得到等腰三角形。

)④•平移一条对角线(得到平行四边形 ACED ,使CE=AD , BE 等于上、下底的和,S 梯形ABCD =S DBE )⑤•当有一腰中点时,连结一个顶点与一腰中点并延长交一个底的延长线。

S 梯形 ABCD =S ^ABF .)(可得△ ADE FCE ,所以使F②•平移一腰(使梯形问题转化为平行四边形及三角形问题。

)3。

北师大版数学[中考总复习:四边形综合复习--知识点整理及重点题型梳理](基础)

北师大版数学[中考总复习:四边形综合复习--知识点整理及重点题型梳理](基础)

北师大版数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:四边形综合复习—知识讲解(基础)【考纲要求】1.探索并了解多边形的内角和与外角和公式,了解正多边形的概念.2.掌握平行四边形、矩形、菱形、正方形、梯形、直角梯形、等腰梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性.3.探索并掌握平行四边形的有关性质和四边形是平行四边形的条件.4.探索并掌握矩形、菱形、正方形的有关性质和四边形是矩形、菱形、正方形的条件.5.探索并了解等腰梯形的有关性质和四边形是等腰梯形的条件.6.通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计.【知识网络】【考点梳理】考点一、四边形的相关概念1.多边形的定义:在平面内,由不在同一直线上的一些线段首尾顺次相接组成的封闭图形叫做多边形.2.多边形的性质:(1)多边形的内角和定理:n边形的内角和等于(n-2)·180°;(2)推论:多边形的外角和是360°;(3)对角线条数公式:n边形的对角线有条;(4)正多边形定义:各边相等,各角也相等的多边形是正多边形.3.四边形的定义:同一平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形叫做四边形.4.四边形的性质:(1)定理:四边形的内角和是360°; (2)推论:四边形的外角和是360°.考点二、特殊的四边形1.平行四边形及特殊的平行四边形的性质2. 平行四边形及特殊的平行四边形的判定【要点诠释】面积公式:S 菱形 =21ab=ch (a 、b 为菱形的对角线,c 为菱形的边长,h 为c 边上的高). S 平行四边形 =ah(a 为平行四边形的边,h 为a 上的高).考点三、梯形1.梯形的定义:一组对边平行而另一组对边不平行的四边形叫做梯形.(1)互相平行的两边叫做梯形的底;较短的底叫做上底,较长的底叫做下底.(2)不平行的两边叫做梯形的腰.(3)梯形的四个角都叫做底角.2.直角梯形:一腰垂直于底的梯形叫做直角梯形.3.等腰梯形:两腰相等的梯形叫做等腰梯形.4.等腰梯形的性质:(1)等腰梯形的两腰相等; (2)等腰梯形同一底上的两个底角相等. (3)等腰梯形的对角线相等.5.等腰梯形的判定方法:(1)两腰相等的梯形是等腰梯形(定义);(2)同一底上的两个角相等的梯形是等腰梯形;(3)对角线相等的梯形是等腰梯形.6.梯形中位线:连接梯形两腰中点的线段叫梯形的中位线.7.面积公式: S=(a+b)h(a、b是梯形的上、下底,h是梯形的高).考点四、平面图形1.平面图形的镶嵌的定义:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌,又称做平面图形的密铺.2.平面图形镶嵌的条件:(1)同种正多边形镶嵌成一个平面的条件:周角是否是这种正多边形的一个内角的整倍数.在正多边形里只有正三角形、正四边形、正六边形可以镶嵌.(2)n种正多边形组合起来镶嵌成一个平面的条件:①n个正多边形中的一个内角的和的倍数是360°;②n个正多边形的边长相等,或其中一个或n个正多边形的边长是另一个或n个正多边形的边长的整数倍.【典型例题】类型一、多边形及其镶嵌1. 一个同学在进行多边形内角和计算时,求得的内角和为1125°,当发现错了之后,重新检查,发现少了一个内角.少了的这个内角是_________度,他求的是_________边形的内角和.【思路点拨】一个多边形的内角和能被180°整除,本题内角和1125°除以180°后有余数,则少的内角应和这个余数互补.【答案】135;九.【解析】设这个多边形边数为n,少算的内角度数为x,由题意得:(n-2)·180°=1125°+ x°,∴n=,∵n为整数,0°<x<180°,∴符合条件的x只有135°,解得n=9.【总结升华】多边形根据内角或外角求边数,或是根据边数求内角或对角线条数等题是重点,只需要记住各公式或之间的联系,并准确计算.举一反三:【变式】(2015•眉山)一个多边形的外角和是内角和的,这个多边形的边数为()A.5 B.6 C.7 D.8【答案】C.【解析】∵一个多边形的外角和是内角和的,且外角和为360°,∴这个多边形的内角和为900°,即(n﹣2)•180°=900°,解得:n=7,则这个多边形的边数是7,故选C.2.(2015•蓬溪县校级模拟)下列每组多边形均有若干块中,其中不能铺满地面(镶嵌)的一组是()A.正三角形和正方形 B.正方形和正六边形C.正三角形和正六边形D.正五边形和正十边形【思路点拨】正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.【答案】B.【解析】A、正三角形的每个内角是60°,正方形的每个内角是90°,3×60°+2×90°=360°,故能铺满,不合题意;B、正方形和正六边形内角分别为90°、120°,显然不能构成360°的周角,故不能铺满,符合题意;C、正三角形和正六边形内角分别为60°、120°,2×60°+2×120°=360°,故能铺满,不合题意;D、正五边形和正十边形内角分别为108°、144°,2×108°+1×144°=360°,故能铺满,不合题意.故选:B.【总结升华】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.类型二、特殊的四边形3.如图,在平行四边形ABCD中,E,F分别是AB,CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)判断四边形EHFG的形状;(2)在什么情况下,四边形EHFG为菱形?【思路点拨】(1)通过证明两组对边分别平行,可得四边形EHFG是平行四边形;(2)当平行四边形ABCD是矩形时,通过证明有一组邻边相等,可得平行四边形EHFG是菱形;【答案与解析】(1)∵四边形ABCD是平行四边形,∴AE∥CF,AB=CD,∵E是AB中点,F是CD中点,∴AE=CF,∴四边形AECF是平行四边形,∴AF∥CE.同理可得DE∥BF,∴四边形FGEH是平行四边形;(2)当平行四边形ABCD是矩形时,平行四边形EHFG是菱形.∵四边形ABCD是矩形∴∠ABC=∠DCB=90°,∵E是AB中点,F是CD中点,∴BE=CF,在△EBC与△FCB中,∵BE CFABC DCB BC BC=⎧⎪∠=∠⎨⎪=⎩,∴△EBC≌△FCB,∴CE=BF,∠ECB=∠FBC,BH=CH,EH=FH,平行四边形EHFG是菱形.【总结升华】本题属于综合题,考查了平行四边形的判定与性质,菱形的判定和正方形的判定,注意找准条件,有一定的难度.举一反三:【变式】已知:如图所示,四边形ABCD中,∠C=90°,∠ABD=∠CBD,AB=CB,P是BD上一点,PE ⊥BC,PF⊥CD,垂足分别为E、F,求证:PA=EF.【答案】连结PC.因为PE⊥BC,PF⊥DC,AB CDEFP所以∠PEC=∠PFC=∠ECF=90°,所以四边形PECF是矩形,所以PC=EF.在△ABP和△CBP中,AB=CB,∠ABP=∠CBP,BP=BP,所以△ABP≌△CBP,所以AP=CP.所以AP=EF.4.(2012•威海)(1)如图①,▱ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC 于点E,F.求证:AE=CF.(2)如图②,将▱ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.【思路点拨】(1)由四边形ABCD是平行四边形,可得AD∥BC,OA=OC,又由平行线的性质,可得∠1=∠2,继而利用ASA,即可证得△AOE≌△COF,则可证得AE=CF.(2)根据平行四边形的性质与折叠性质,易得A 1E=CF ,∠A 1=∠A=∠C ,∠B 1=∠B=∠D ,继而可证得△A 1IE ≌△CGF ,即可证得EI=FG .【答案与解析】(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,OA=OC ,∴∠1=∠2,在△AOE 和△COF 中,1234OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△COF (ASA ),∴AE=CF ;(2)∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D ,由(1)得AE=CF ,由折叠的性质可得:AE=A 1E ,∠A 1=∠A ,∠B 1=∠B ,∴A 1E=CF ,∠A 1=∠A=∠C ,∠B 1=∠B=∠D ,又∵∠1=∠2,∴∠3=∠4,∵∠5=∠3,∠4=∠6,∴∠5=∠6,在△A 1IE 与△CGF 中,1156A C A E CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△A 1IE ≌△CGF (AAS ),∴EI=FG .【总结升华】考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.5.如图,在△AOB 中,OA=OB=8,∠AOB=90︒,矩形CDEF 的顶点C 、D 、F 分别在边AO 、OB 、AB 上.(1)若C 、D 恰好是边AO ,OB 的中点,求矩形CDEF 的面积;(2)若tan ∠CDO=34,求矩形CDEF 面积的最大值.BOC【思路点拨】(1)因为当C、D是边AO,OB的中点时,点E、F都在边AB上,且CF⊥AB,所以可求出CD的值,进而求出CF的值,矩形CDEF的面积可求出;(2)设CD=x,CF=y.过F作FH⊥AO于H.在 Rt△COD中,用含x和y的代数式分别表示出CO、AH的长,进而表示出矩形CDEF的面积,再配方可求出面积的最大值.【答案与解析】(1)如图,当C、D是边AO,OB的中点时,点E、F都在边AB上,且CF⊥AB.∵OA=OB=8,∴OC=AC=OD=4.在 Rt△ACF中,(2)设CD=x,CF=y.过F作FH⊥AO于H.在 Rt△COD中,6 .ABC △是等边三角形,点D 是射线BC 上的一个动点(点D 不与点B C 、重合),ADE △ 是以AD 为边的等边三角形,过点E 作BC 的平行线,分别交射线AB AC 、于点F G 、,连接BE .(1)如图(a )所示,当点D 在线段BC 上时.①求证:AEB ADC △≌△;②探究四边形BCGE 是怎样特殊的四边形?并说明理由;(2)如图(b )所示,当点D 在BC 的延长线上时,直接写出(1)中的两个结论是否成立?(3)在(2)的情况下,当点D 运动到什么位置时,四边形BCGE 是菱形?并说明理由.【思路点拨】此题要熟练多方面的知识,特别是全等三角形和平行四边形和菱形的判定.【答案与解析】(1)①∵△ABC 和△ADE 都是等边三角形,∴AE=AD ,AB=AC ,∠EAD=∠BAC=60°.又∵∠EAB=∠EAD-∠BAD ,∠DAC=∠BAC-∠BAD ,∴∠EAB=∠DAC ,∴△AEB ≌△ADC .②方法一:由①得△AEB ≌△ADC ,∴∠ABE=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABE=∠BAC ,∴EB ∥GC .又∵EG ∥BC ,∴四边形BCGE 是平行四边形.方法二:证出△AEG ≌△ADB ,得EG=AB=BC .∵EG ∥BC ,∴四边形BCGE 是平行四边形.(2)①②都成立.(3)当CD=CB (∠CAD=30°或∠BAD=90°或∠ADC=30°)时,四边形BCGE 是菱形.理由:方法一:由①得△AEB ≌△ADC ,∴BE=CD又∵CD=CB ,∴BE=CB .由②得四边形BCGE 是平行四边形,∴四边形BCGE 是菱形.方法二:由①得△AEB ≌△ADC ,∴BE=CD .又∵四边形BCGE 是菱形,∴BE=CB (11分)∴CD=CB .方法三:∵四边形BCGE 是平行四边形,∴BE ∥CG ,EG ∥BC ,∴∠FBE=∠BAC=60°,∠F=∠ABC=60°∴∠F=∠FBE=60°,∴△BEF 是等边三角形.又∵AB=BC ,四边形BCGE 是菱形,∴AB=BE=BF ,∴AE ⊥FG ∴∠EAG=30°,∵∠EAD=60°,∴∠CAD=30度.【总结升华】本题考查三角形的全等以及菱形的判定.举一反三:【变式】如图,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =.(1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点,试判断AE EP 与的大小关系,并说明理由;(3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.【答案】(1)如图1∵AE ⊥EF ,∴∠2+∠3=90°,∵四边形ABCD 为正方形,∴∠B=∠C=90°,∵∠1+∠3=90°,∴∠1=∠2,∴△ABE ∽△ECF ,∴AB :CE=BE :CF ,∴EC :CF=AB :BE=5:2(2)如图(二),在AB 上取BM=BE ,连接EM ,∵ABCD 为正方形,∴AB=BC ,∵BE=BM ,∴AM=EC ,∵∠1=∠2,∠AME=∠ECP=135°,A DCB E BC ED A F PF∴△AME ≌△ECP ,∴AE=EP ;(3)存在.顺次连接DMEP .如图2 在AB 取点M ,使AM=BE , ∵AE ⊥EF ,∴∠2+∠3=90°,∵四边形ABCD 为正方形, ∴∠B=∠BCD=90°, ∴∠1+∠3=90°,∴∠1=∠2,∵∠DAM=∠ABE=90°,DA=AB , AD ABDAM ABE AM BE=⎧⎪∠=∠⎨⎪=⎩∴△DAM ≌△ABE (SAS ), ∴DM=AE ,∵AE=EP ,∴DM=PE ,∵∠1=∠5,∠1+∠4=90°, ∴∠4+∠5=90°,∴DM ⊥AE ,∴DM ∥PE∴四边形DMEP 是平行四边形.。

两个四边形相似条件

两个四边形相似条件

两个四边形相似条件
在几何学中,相似的概念是非常重要的。

两个四边形如果相似,意味着它们的对应角相等,对应边成比例。

这个性质在很多数学问
题中都有着重要的应用。

接下来我们将探讨两个四边形相似的条件。

首先,两个四边形相似的条件之一是它们的对应角相等。

这意
味着如果两个四边形的对应角相等,那么它们有可能是相似的。


个条件是判断两个四边形是否相似的重要依据之一。

其次,两个四边形相似的条件还包括它们的对应边成比例。


意味着如果两个四边形的对应边成比例,那么它们有可能是相似的。

这个条件也是判断两个四边形是否相似的重要依据之一。

在实际问题中,我们可以利用这些条件来解决各种几何问题。

例如,在计算图形的面积或者寻找相似图形的对应边长时,这些条
件可以帮助我们简化问题,找到解决方案。

总之,两个四边形相似的条件包括对应角相等和对应边成比例。

这些条件在解决几何问题中起着重要的作用,帮助我们理解图形之
间的关系,并且在数学中有着广泛的应用。

通过深入理解这些条件,我们可以更好地解决各种数学问题,提高数学水平。

(2021年整理)小学的奥数-几何五大模型(相似模型)

(2021年整理)小学的奥数-几何五大模型(相似模型)

(完整)小学的奥数-几何五大模型(相似模型)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)小学的奥数-几何五大模型(相似模型))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)小学的奥数-几何五大模型(相似模型)的全部内容。

模型四 相似三角形模型(一)金字塔模型 (二) 沙漏模型GF E ABCDAB CDEF G①AD AE DE AF AB AC BC AG===; ②22:ADE ABC S S AF AG =△△:。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线。

三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具。

在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.【例 1】 如图,已知在平行四边形ABCD 中,16AB =,10AD =,4BE =,那么FC 的长度是多少?FEDCBA【解析】 图中有一个沙漏,也有金字塔,但我们用沙漏就能解决问题,因为AB 平行于CD ,所以::4:161:4BF FC BE CD ===,所以410814FC =⨯=+.【例 2】 如图,测量小玻璃管口径的量具ABC ,AB 的长为15厘米,AC 被分为60等份。

如果小玻任意四边形、梯形与相似模型璃管口DE 正好对着量具上20等份处(DE 平行AB ),那么小玻璃管口径DE 是多大?605040302010EAD C B【解析】 有一个金字塔模型,所以::DE AB DC AC =,:1540:60DE =,所以10DE =厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B11.(4分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC 于点N,且MN平分∠AMC,若AN=1,则BC的长为()15.(4分)在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于.10、如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①CEBD=;②∠ABD+∠ECB=45°;③BD⊥CE;④2222)(2CDABADBE-+=.其中正确的是()A. ①②③④ B. ②④ C. ①②③ D. ①③④12.(3分)如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE=90°,连接AF、CF,CF与AB交于G.有以下结论:①AE=BC ②AF=CF ③BF2=FG•FC④EG•AE=BG•AB其中正确的个数是()A.1 B.2 C.3 D.411、(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=33,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB= °,AB= .(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=33,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.23.(9分)(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小题图1) (第(第明发现了:线段GM与GN的数量关系是;位置关系是.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.20.(8.00分)如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P 是MN上一点,求△PDC周长的最小值.20.如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE.(1)求证:AE=BF;(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.如图1,在菱形ABCD中,AC=2,BD=2,AC,BD相交于点O.(1)求边AB的长;(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A 左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.①判断△AEF是哪一种特殊三角形,并说明理由;②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长.20.(9分)在小水池旁有一盏路灯,已知支架AB的长是0.8m,A端到地面的距离AC是4m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C、E、D在同一直线上),求小水池的宽DE.(结果精确到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)21.(9)已知△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC的中点,将△ADE绕点A按顺时针方向旋转一个角度α(0°<α<90°)得到△AD'E′,连接BD′、CE′,如图1.(1)求证:BD′=CE';(2)如图2,当α=60°时,设AB 与D′E′交于点F ,求的值.12.(3分)(2018•青岛)如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为 .17.如图,若△ABC 内一点P 满足∠PAC=∠PCB=∠PBA ,则称点P 为△ABC 的布罗卡尔点,三角形的布罗卡尔点是法国数学家和数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知△ABC 中,CA=CB , ∠ACB=120°,P 为△ABC 的布罗卡尔点,若PA=,则PB+PC= .15.(3分)(2018•泰安)如图,在矩形ABCD 中,AB=6,BC=10,将矩形ABCD 沿BE 折叠,点A 落在A'处,若EA'的延长线恰好过点C ,则sin ∠ABE 的值为 .16.17.(3分)(2018•泰安)如图,在△ABC 中,AC=6,BC=10,tanC=3/4,点D 是AC 边上的动点(不与点C 重合),过D 作DE ⊥BC ,垂足为E ,点F 是BD 的中点,连接EF ,设CD=x ,△DEF 的面积为S ,则S 与x 之间的函数关系式为 .21.(8分)(2018•青岛)已知:如图,平行四边形ABCD ,对角线AC 与BD 相交于点E ,点G 为AD 的中点,连接CG ,CG 的延长线交BA 的延长线于点F ,连接FD .(1)求证:AB=AF ;(2)若AG=AB ,∠BCD=120°,判断四边形ACDF 的形状,并证明你的结论.23.(11分)(2018•泰安)如图,△ABC 中,D 是AB 上一点,DE ⊥AC 于点E ,F 是AD 的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,CD.(1)求证:△ECG≌△GHD;(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.25.(12分)(2018•泰安)如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF ∥AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与△AGB相似的三角形,并证明;(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF•MH.21.(8分)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PC⊥l,垂足为点C.测得PC=30米,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)22.(8分)随着我市农产品整体品牌形象“聊•胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2米,墙面与保温板所成的角∠BAC=150°,在点D处测得A点、C点的仰角分别为9°,15.6°,如图2.求保温板AC的长是多少米?(精确到0.1米)(参考数据:≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28)23.(10分)问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量得AB=2cm,AC=4cm.操作发现:(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图2所示的△AC′D,过点C作AC′的平行线,与DC'的延长线交于点E,则四边形ACEC′的形状是.(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B、A、D三点在同一条直线上,得到如图3所示的△AC′D,连接CC',取CC′的中点F,连接AF并延长至点G,使FG=AF,连接CG、C′G,得到四边形ACGC′,发现它是正方形,请你证明这个结论.实践探究:(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A'点,A'C与BC′相交于点H,如图4所示,连接CC′,试求tan∠C′CH的值.18.(3分)(2018•潍坊)如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A 处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达.(结果保留根号)11.(2018年山东省威海市)矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.11.(3分)如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.B.C.6 D.319.(5分)如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为.24.(2018年山东省威海市)如图①,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.(1)如图②,当BC=4,DE=5,tan∠FMN=1时,求的值;(2)若tan∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出25.(13分)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.24.再读教材:约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们MN=)用宽为2的矩形纸片折叠黄金矩形.(提示;2第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线AB,并把AB折到图③中所示的AD处,⊥,则图④中就会出现黄金矩形,第四步,展平纸片,按照所得的点D折出DE,使DE ND问题解决: (1)图③中AB=__________(保留根号);(2)如图③,判断四边形BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.实际操作:(4)结合图④.请在矩形BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.12.如图,等边三角形ABC 的边长为4,点O 是△ABC 的中心,120FOG ∠=.绕点o 旋转FOG ∠,分别交线段AB BC 、于D E 、两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S ∆∆=;③四边形ODBE ④△BDE 周长的最小值为6,上述结论中正确的个数是( )A .1 B .2 C. 3 D .410.(3分)如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A'处,折痕为DE .如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是( )A .γ=2α+βB .γ=α+2βC .γ=α+βD .γ=180°﹣α﹣β11.(3分)如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A . B . C . D .16.(4分)如图,在正方形ABCD 中,AD=2,把边BC 绕点B 逆时针旋转30°得到线段BP ,连接AP 并延长交CD 于点E ,连接PC ,则三角形PCE 的面积为 .20.(8分)如图,正方形ABCD 中,E 是BC 上的一点,连接AE ,过B 点作BH ⊥AE ,垂足为点H ,延长BH 交CD 于点F ,连接AF .(1)求证:AE=BF . (2)若正方形边长是5,BE=2,求AF 的长.24.(11分)【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数.24.(10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.。

相关文档
最新文档