立体几何-高三二轮复习(2)

合集下载

2020版高考数学二轮复习第2部分专题4立体几何第2讲空间向量与立体几何教案理

2020版高考数学二轮复习第2部分专题4立体几何第2讲空间向量与立体几何教案理

第2讲 空间向量与立体几何[做小题——激活思维]1.在正方体A 1B 1C 1D 1­ABCD 中,AC 与B 1D 所成角的大小为( ) A.π6 B.π4 C.π3D.π2D [如图,连接BD ,易证AC ⊥平面BB 1D , ∴AC ⊥B 1D ,∴AC 与B 1D 所成角的大小为π2.] 2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45° B .135° C .45°或135°D .90°C [∵m =(0,1,0),n =(0,1,1), ∴|m |=1,|n |=2,m ·n =1,∴cos〈m ,n 〉=m ·n |m ||n |=12=22,设两平面所成的二面角为α,则 |cos α|=22,∴α=45°或135°,故选C.] 3.用a ,b ,c 表示空间中三条不同的直线,γ表示平面,给出下列命题: ①若a ⊥b ,b ⊥c ,则a ∥c ;②若a ∥b ,a ∥c ,则b ∥c ; ③若a ∥γ,b ∥γ,则a ∥b ;④若a ⊥γ,b ⊥γ,则a ∥b . 其中真命题的序号是( ) A .①② B .②③ C .①④D .②④D [对于①,正方体从同一顶点引出的三条直线a ,b ,c ,满足a ⊥b ,b ⊥c ,但是a ⊥c ,所以①错误;对于②,若a ∥b ,a ∥c ,则b ∥c ,满足平行线公理,所以②正确;对于③,平行于同一平面的两条直线的位置关系可能是平行、相交或者异面,所以③错误;对于④,由垂直于同一平面的两条直线平行,知④正确.故选D.]4.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为________.π6[设l 与α所成的角为θ,则 sin θ=|cos 〈m ,n 〉|=12,又θ∈⎣⎢⎡⎦⎥⎤0,π2,∴θ=π6.][扣要点——查缺补漏]1.证明线线平行和线线垂直的常用方法(1)证明线线平行:①利用平行公理;②利用平行四边形进行平行转换;③利用三角形的中位线定理;④利用线面平行、面面平行的性质定理进行平行转换.如T 3.(2)证明线线垂直:①利用等腰三角形底边上的中线即高线的性质;②勾股定理;③线面垂直的性质.2.证明线面平行和线面垂直的常用方法(1)证明线面平行:①利用线面平行的判定定理;②利用面面平行的性质定理. (2)证明线面垂直:①利用线面垂直的判定定理;②利用面面垂直的性质定理. 3.异面直线所成的角求法 (1)平移法:解三角形.(2)向量法:注意角的范围.如T 1. 4.二面角的求法cos θ=cos 〈m ,n 〉=m ·n|m ||n |,如T 2.5.线面角的求法sin θ=|cos 〈m ,n 〉|,如T 4.利用空间向量求空间角(5年15考)[高考解读] 主要考查通过建立空间直角坐标系,解决空间图形中的线线角、线面角和面面角的求解,考查学生的空间想象能力、运算能力、三种角的定义及求法等.(2018·全国卷Ⅱ)如图,在三棱锥P ­ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M ­PA ­C 为30°,求PC 与平面PAM 所成角的正弦值.切入点:(1)借助勾股定理,证明PO ⊥OB ;(2)建立空间直角坐标系,利用二面角M ­PA ­C 为30°求出点M 的坐标,进而求出PC 与平面PAM 所成角的正弦值.[解](1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形, 且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,知PO ⊥平面ABC . (2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系O ­xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).取平面PAC 的一个法向量OB →=(2,0,0).设M (a,2-a,0)(0≤a ≤2),则AM →=(a,4-a,0). 设平面PAM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0得⎩⎨⎧2y +23z =0,ax +-a y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=23a -2a -2+3a 2+a2.由已知可得|cos 〈OB →,n 〉|=32,所以23|a -4|2a -2+3a 2+a2=32, 解得a =-4(舍去),a =43,所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. [教师备选题]1.(2015·全国卷Ⅰ)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.[解](1)证明:如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC ,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt△EBG 中,可得BE =2,故DF =22. 在Rt△FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322. 从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,所以EG ⊥平面AFC . 因为EG平面AEC ,所以平面AEC ⊥平面AFC .(2)如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系G ­xyz .由(1)可得A (0,-3,0),E (1,0,2),F -1,0,22,C (0,3,0), 所以A E →=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈A E →,CF →〉=A E →·CF →|A E →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 2.(2019·全国卷Ⅰ)如图,直四棱柱ABCD ­A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A ­MA 1­N 的正弦值.[解](1)连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1DC ,可得B 1C A 1D ,故ME ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥D A.以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D ­xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).设m =(x ,y ,z )为平面A 1MA 的法向量,则 ⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0.所以⎩⎨⎧-x +3y -2z =0,-4z =0.可取m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的法向量,则 ⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0.所以⎩⎨⎧-3q =0,-p -2r =0.可取n =(2,0,-1).于是cos 〈m ,n 〉=m·n |m||n|=232×5=155,所以二面角A ­MA 1­N 的正弦值为105.1.利用向量法求线面角的两种方法(1)法一:分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)法二:通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.2.利用向量计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐(钝)二面角.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.提醒:判断二面角的平面角是锐角还是钝角,可结合图形进行.1.[一题多解](以圆柱为载体)如图,圆柱的轴截面ABCD 为正方形,E 为弧BC 的中点,则异面直线AE 与BC 所成角的余弦值为 ( )A.33 B.55 C.306D.66D [法一:(平移法)取BC 的中点H ,连接EH ,AH ,∠EHA =90°,设AB =2,则BH =HE =1,AH =5,所以AE =6,连接ED ,ED =6,因为BC ∥AD ,所以异面直线AE 与BC 所成角即为∠EAD ,在△EAD 中cos∠EAD =6+4-62×2×6=66,故选D.法二:(向量法)取圆柱底面的圆心O 为原点,建立空间直角坐标系O ­xyz ,设AB =2,则A (1,0,0),B (1,0,2),C (-1,0,2),E (0,1,2),∴A E →=(-1,1,2),BC →=(-2,0,0)∴cos〈A E →,BC →〉=26×2=66,故选D.] 2.(以棱柱为载体)在三棱柱ABC ­A1B 1C 1中, AB ⊥平面BCC 1B 1,∠BCC 1=π3, AB =BC =2, BB 1=4,点D 在棱CC 1上,且CD =λCC 1(0<λ≤1).建立如图所示的空间直角坐标系.(1)当λ=12时,求异面直线AB 1与A 1D 的夹角的余弦值;(2)若二面角A ­B 1D ­A 1的平面角为π3,求λ的值.[解](1)易知A ()0,0,2, B 1()0,4,0, A 1()0,4,2. 当λ=12时, 因为BC =CD =2, ∠BCC 1=π3,所以C ()3,-1,0,D ()3,1,0.所以AB 1→=()0,4,-2, A 1D →=()3,-3,-2. 所以cos 〈AB 1→,A 1D →〉=AB 1→·A 1D→||AB 1→||A 1D →=0×3+4×()-3+()-2×()-242+()-22·()32+()-32+()-22=-55. 故异面直线AB 1与A 1D 的夹角的余弦值为55. (2)由CD =λCC 1可知, D ()3,4λ-1,0, 所以DB 1→=()-3,5-4λ,0, 由(1)知, AB 1→=()0,4,-2.设平面AB 1D 的法向量为m =()x ,y ,z , 则⎩⎪⎨⎪⎧AB 1→·m =0,DB 1→·m =0,即⎩⎨⎧4y -2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =2,所以平面AB 1D 的一个法向量为m =⎝ ⎛⎭⎪⎫5-4λ3,1,2.设平面A 1B 1D 的法向量为n =()x ,y ,z , 则⎩⎪⎨⎪⎧B 1A 1→·n =0,DB 1→·n =0,即⎩⎨⎧2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =0,所以平面A 1B 1D 的一个法向量为n =⎝ ⎛⎭⎪⎫5-4λ3,1,0.因为二面角A ­B 1D ­A 1的平面角为π3,所以||cos 〈m ,n 〉=|m·n |||m ||n=⎪⎪⎪⎪⎪⎪5-4λ3×5-4λ3+1×1+2×0⎝ ⎛⎭⎪⎫5-4λ32+12+22·⎝ ⎛⎭⎪⎫5-4λ32+12=12, 即()5-4λ2=1,解得λ=32(舍)或λ=1,故λ的值为1.3.(以棱台为载体)如图,在三棱台DEF ­ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE ,∠BAC =45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.[解](1)证明:在三棱台DEF ­ABC 中, 由BC =2EF ,H 为BC 的中点, 可得BH ∥EF ,BH =EF ,所以四边形BHFE 为平行四边形, 可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点, 所以GH ∥AB .又GH ∩HF =H ,所以平面FGH ∥平面ABED . 因为BD平面ABED ,所以BD ∥平面FGH .(2)设AB =2,则CF =1.在三棱台DEF ­ABC 中,G 为AC 的中点,由DF =12AC =GC ,可得四边形DGCF 为平行四边形, 因此DG ∥FC . 又FC ⊥平面ABC , 所以DG ⊥平面ABC .连接GB ,在△ABC 中,由AB ⊥BC ,∠BAC =45°,G 是AC 的中点, 所以AB =BC ,GB ⊥GC , 因此GB ,GC ,GD 两两垂直.以G 为坐标原点,建立如图所示的空间直角坐标系G ­xyz .所以G (0,0,0),B (2,0,0),C (0,2,0),D (0,0,1).可得H ⎝⎛⎭⎪⎫22,22,0,F (0,2,1). 故GH →=⎝ ⎛⎭⎪⎫22,22,0,GF →=(0,2,1).设n =(x ,y ,z )是平面FGH 的法向量,则 由⎩⎪⎨⎪⎧n ·GH →=0,n ·GF →=0,可得⎩⎨⎧x +y =0,2y +z =0.可得平面FGH 的一个法向量n =(1,-1,2). 因为GB →是平面ACFD 的一个法向量,GB →=(2,0,0), 所以cos 〈GB →,n 〉=GB →·n |GB →|·|n |=222=12.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°. 4.(以五面体为载体)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D ­AF ­E 与二面角C ­BE ­F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E ­BC ­A 的余弦值.[解](1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,DF ∩EF =F , 所以AF ⊥平面EFDC .又AF 平面ABEF ,故平面ABEF ⊥平面EFDC .(2)过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF . 以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G ­xyz .由(1)知∠DEF 为二面角D ­AF ­E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知得,AB ∥EF ,所以AB ∥平面EFDC . 又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C ­BE ­F 的平面角,∠CEF =60°.从而可得C (-2,0,3).连接AC ,所以E C →=(1,0,3),E B →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量,则 ⎩⎪⎨⎪⎧n ·E C →=0,n ·E B →=0,即⎩⎨⎧x +3z =0,4y =0.所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4). 则cos 〈n ,m 〉=n ·m |n ||m |=-21919. 故二面角E ­BC ­A 的余弦值为-21919.利用空间向量解决折叠性问题(5年3考)[高考解读] 以平面图形的翻折为载体,考查空间想象能力,在线面位置关系的证明中考查逻辑推理能力,在空间角的求解中,考查转化化归及数学运算的核心素养.1.(2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 切入点:(1)对照折叠前后的线面关系给予证明; (2)建立空间直角坐标系通过向量法求解. [解](1)由已知可得,BF ⊥PF ,BF ⊥EF ,又PF 平面PEF ,EF平面PEF ,且PF ∩EF =F ,所以BF ⊥平面PEF .又BF平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD . 以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H ­xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,PF 2+PE 2=EF 2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,DP →=⎝ ⎛⎭⎪⎫1,32,32,HP →=⎝⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪HP →·DP →|HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34. [教师备选题](2016·全国卷Ⅱ)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B ­D ′A ­C 的正弦值. [解](1)证明:由已知得AC ⊥BD ,AD =CD .又由AE =CF 得A EAD =CFCD,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4.由EF ∥AC ,得OH DO =A E AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD . (2)如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H ­xyz ,则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的法向量,则 ⎩⎪⎨⎪⎧ m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧ 3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量,则 ⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m·n |m||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B ­D ′A ­C 的正弦值是29525.平面图形翻折问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变和不变,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(以梯形为载体)如图,等腰梯形ABCD 中,AB ∥CD ,AD =AB =BC =1,CD =2,E 为CD 中点,以AE 为折痕把△ADE 折起,使点D 到达点P 的位置(P 平面ABCE ).(1)证明:AE ⊥PB ;(2)若直线PB 与平面ABCE 所成的角为π4,求二面角A ­PE ­C 的余弦值.[解](1)证明:连接BD ,设AE 的中点为O , ∵AB ∥CE ,AB =CE =12CD ,∴四边形ABCE 为平行四边形,∴AE =BC =AD =DE , ∴△ADE ,△ABE 为等边三角形, ∴OD ⊥AE ,OB ⊥AE , 又OP ∩OB =O , ∴AE ⊥平面POB ,又PB 平面POB ,∴AE ⊥PB .(2)在平面POB 内作PQ ⊥平面ABCE ,垂足为Q ,则Q 在直线OB 上, ∴直线PB 与平面ABCE 夹角为∠PBO =π4,又OP =OB ,∴OP ⊥OB ,∴O 、Q 两点重合,即PO ⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系, 则P ⎝ ⎛⎭⎪⎫0,0,32,E ⎝ ⎛⎭⎪⎫12,0,0,C ⎝ ⎛⎭⎪⎫1,32,0,∴P E →=⎝ ⎛⎭⎪⎫12,0,-32,E C →=⎝ ⎛⎭⎪⎫12,32,0,设平面PCE 的一个法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·P E →=0,n 1·E C →=0,即⎩⎪⎨⎪⎧12x -32z =0,12x +32y =0,令x =3得n 1=(3,-1,1), 又OB ⊥平面PAE ,∴n 2=(0,1,0)为平面PAE 的一个法向量,设二面角A ­EP ­C 为α,则|cos α|=cos 〈n 1,n 2〉=|n 1·n 2||n 1||n 2|=15=55,易知二面角A ­EP ­C 为钝角,所以cos α=-55.立体几何的综合问题(5年3考)[高考解读] 将圆的几何性质、空间线面的位置关系、空间几何体的体积等知识融于一体,综合考查学生的逻辑推理能力.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ­ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 切入点:(1)借助圆的几何性质得出DM ⊥CM ,进而借助面面垂直的判定求解. (2)借助体积公式先探寻M 点的位置,建系借助坐标法求解. [解](1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD ︵上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D ­xyz . 当三棱锥M ­ABC 体积最大时,M 为CD ︵的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,则⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2).DA →是平面MCD 的法向量,因为cos 〈n ,DA →〉=n ·DA →|n ||DA →|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.存在性问题的求解策略(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“是否有解”“是否有规定范围内的解”等.(2)对于位置探究型问题,通常是借助向量,引入参数,综合条件和结论列方程,解出参数,从而确定位置.(3)在棱上是否存在一点时,要充分利用共线向量定理.(探索位置型)如图所示,四棱锥P ­ABCD 中,PA ⊥底面ABCD .四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,∠CDA =45°,且AB =AP .(1)若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;(2)在线段AD 上是否存在一点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理由. [解] (1)以A 为坐标原点,建立空间直角坐标系A ­xyz ,如图1所示.图1在平面ABCD 内,作CE ∥AB ,交AD 于点E ,则CE ⊥AD . 在Rt△CDE 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 设AB =AP =t (t >0),则B (t,0,0),P (0,0,t ). 由AB +AD =4得AD =4-t ,∴E (0,3-t,0),C (1,3-t,0),D (0,4-t,0), ∴CD →=(-1,1,0),PD →=(0,4-t ,-t ). 设平面PCD 的法向量为n =(x ,y ,z ),由n ⊥CD →,n ⊥PD →得⎩⎪⎨⎪⎧-x +y =0,-t y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ). cos 60°=|n ·PB →||n |·|PB →|,即|2t 2-4t |t 2+t 2+-t 2·2t 2=12, 解得t =45或t =4(舍去,因为AD =4-t >0),∴AB =45.(2)法一:(向量法)假设在线段AD 上存在一点G (如图2所示),使得点G 到点P ,B ,C ,D 的距离都相等.设G (0,m,0)(其中0≤m ≤4-t ),则GC →=(1,3-t -m,0),GD →=(0,4-t -m,0),GP →(0,-m ,t ).图2由|GC →|=|GD →|得12+(3-t -m )2=(4-t -m )2, 即t =3-m . ①由|GD →|=|GP →|,得(4-m -t )2=m 2+t 2. ② 由①,②消去t ,化简得m 2-3m +4=0. ③由于方程③没有实数根,所以在线段AD 上不存在点G 到点P ,B ,C ,D 的距离都相等. 法二:(几何法)假设在线段AD 上存在一点G ,使得点G 到点P ,B ,C ,D 的距离都相等.图3由GC =GD 得∠GCD =∠GDC =45°, ∴∠CGD =90°,即CG ⊥AD , ∴GD =CD ·cos 45°=1.设AB =λ,则AD =4-λ,AG =AD -GD =3-λ. 如图3所示,在Rt△ABG 中,GB =AB 2+AG 2=λ2+-λ2=2⎝⎛⎭⎪⎫λ-322+92>1, 这与GB =GD 矛盾.∴在线段AD 上不存在点G 到点P ,B ,C ,D 的距离都相等.。

高三文科数学第二轮复习总结资料(立体几何)

高三文科数学第二轮复习总结资料(立体几何)

高三文科数学第二轮复习资料——《立体几何》专题一、空间基本元素:直线与平面之间位置关系的小结.如下图:二、练习题:1. 1∥ 2,a ,b 与 1, 2都垂直,则a ,b 的关系是A .平行B .相交C .异面D .平行、相交、异面都有可能2.三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别为AA 1、CC 1上的点,且满足AP=C 1Q ,则四棱锥B —APQC 的体积是 A .V 21 B .V 31 C .V 41 D .V 323.设α、β、γ为平面, m 、n 、l 为直线,则m β⊥的一个充分条件是A .,,l m l αβαβ⊥=⊥ B .,,m αγαγβγ=⊥⊥C .,,m αγβγα⊥⊥⊥D .,,n n m αβα⊥⊥⊥ 4.如图1,在棱长为a 的正方体ABCD A B C D -1111中, P 、Q 是对角 线A C 1上的点,若aPQ =2,则三棱锥P BDQ -的体积为A3 B3 C3D .不确定5.圆台的轴截面面积是Q ,母线与下底面成60°角,则圆台的内切球的表面积是 A 12Q B 23Q C 2πQ D 23πQ6.在正方体ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别为棱BC 、CC 1、C 1D 1、AA 1的中点,O 为AC 与BD 的交点(如图),求证: (1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H ; (3)A 1O ⊥平面BDF ; (4)平面BDF ⊥平面AA 1C .7.如图,斜三棱柱ABC —A ’B ’C ’中,底面是边长为a 的正三角形, 侧棱长为 b ,侧棱AA ’与底面相邻两边AB 、AC 都成450角,求 此三棱柱的侧面积和体积.DD 1B 110. 如图10,在正四棱柱ABCD-A 1B 1C 1D 1中,AB=a , AA 1=2a ,M 、N 分别是BB 1、DD 1的中点. (1)求证:平面A 1MC 1⊥平面B 1NC 1;(2)若在正四棱柱ABCD-A 1B 1C 1D 1的体积为V , 三棱锥M-A 1B 1C 1的体积为V 1,求V 1:V 的值.11.直三棱柱ABC-A 1B 1C 1中,BC AB ⊥,E 是A 1C 的中点,ED A C ⊥1且交AC 于D ,A A AB BC 122==(如图11) . (I )证明:B C 11//平面A BC 1; (II )证明:A C 1⊥平面EDB .图11DE A 1C BAC 1B 1 A NBCD A 1 B 1C 1D 1图 10M参考答案1.D 2.B 3.D 4.A 5.D6.解析:(1)欲证EG ∥平面BB 1D 1D ,须在平面BB 1D 1D 内找一条与EG 平行的直线,构造辅助平面BEGO ’及辅助直线BO ’,显然BO ’即是. (2)按线线平行⇒线面平行⇒面面平行的思路, 在平面B 1D 1H 内寻找B 1D 1和O ’H 两条关键的相交直线, 转化为证明:B 1D 1∥平面BDF ,O ’H ∥平面BDF .(3)为证A 1O ⊥平面BDF ,由三垂线定理,易得BD ⊥A 1O , 再寻A 1O 垂直于平面BDF 内的另一条直线.猜想A 1O ⊥OF .借助于正方体棱长及有关线段的关系计算得:A 1O 2+OF 2=A 1F 2⇒A 1O ⊥OF .(4)∵ CC 1⊥平面AC ,∴ CC 1⊥BD又BD ⊥AC ,∴ BD ⊥平面AA 1C又BD ⊂平面BDF ,∴ 平面BDF ⊥平面AA 1C7.解析:在侧面AB ’内作BD ⊥AA ’于D ,连结CD .∵ AC=AB ,AD=AD ,∠DAB=∠DAC=450∴ △DAB ≌△DAC∴ ∠CDA=∠BDA=900,BD=CD ∴ BD ⊥AA ’,CD ⊥AA ’∴ △DBC 是斜三棱柱的直截面 在Rt △ADB 中,BD=AB ·sin450=a 22 ∴ △DBC 的周长=BD+CD+BC=(2+1)a ,△DBC 的面积=4a 2∴ S 侧=b(BD+DC+BC)=(2+1)ab ∴ V=DBC S ∆·AA ’=4ba 210.解:(1)取CC 1的中点P ,联结MP 、NP 、D 1P(图18), 则A 1MPD 1为平行四边形 ∴ D 1P ∥A 1M ,∵A 1B 1C 1D 1是边长 为a 的正方形,又C 1P=a ,∴C 1PND 1也是正方形,∴C 1N ⊥D 1P .∴C 1N ⊥A 1M . 又 C 1B 1⊥A 1M ,∴ A 1M ⊥平面B 1NC 1,又A 1M ⊂平面A 1MC 1,AND A 1 B 1C 1D 1M∴平面A 1MC 1⊥平面B 1NC 1; (2)V=32a ,V M-A 1B 1C 1=V C-MA 1B 1=23111326a a a ⋅=,∴ V 1:V =11211.证明:(I )证: 三棱柱ABC A B C -111中B C BC 11//,又BC ⊂平面A BC 1,且B C 11⊂/平面A BC 1,∴B C 11//平面A BC 1(II )证: 三棱柱ABC A B C -111中A A AB 1⊥,∴Rt A AB ∆1中,AB A B =221,∴=∴BC A B A BC 11,∆是等腰三角形. E 是等腰∆A BC 1底边A C 1的中点,∴⊥A C BE1①又依条件知 A C ED1⊥② 且ED BE E=③由①,②,③得A C 1⊥平面EDB .图11DE A 1C BAC 1 B 1。

2022年高考数学二轮复习第二篇考点突破专题三 空间几何体、表面积与体积

2022年高考数学二轮复习第二篇考点突破专题三  空间几何体、表面积与体积

【解析】将等腰四面体补成长方体,设等腰四面体的对棱棱长分别为 a,b,c,与之对应的长方体
x2+y2=a2 的长宽高分别为 x,y,z 则 y2+z2=b2 ,
x2+z2=c2
a2+c2-b2
a2+b2-c2
b2+c2-a2
故 x2= 2
,y2= 2
,z2= 2
,结合图象易得①②正确;
三组对棱长度分别为 a=5,b=6,c=7,则 x= 19 ,y= 6 ,z= 30 ,
【解析】选 B.因为文物底部是直径为 0.9 米的圆形,文物底部与玻璃罩底边至少间隔 0.3 米,所以由正方形与圆的位置关系可知,底面正方形的边长为 0.9+2×0.3=1.5(米). 又文物高 1.8 米,文物顶部与玻璃罩上底面至少间隔 0.2 米, 所以正四棱柱的高为 1.8+0.2=2(米), 则正四棱柱的体积 V=1.52×2=4.5(立方米). 因为文物的体积为 0.5 立方米,所以罩内空气的体积为 4.5-0.5=4(立方米). 因为气体每立方米 1 000 元,所以气体的费用最少为 4×1 000=4 000(元).
等腰直角三角形,则侧棱 PA=sin
PO ∠PAO
=sin
2 45°
=2,且
AO=PO=
2 ,则底面
正方形 ABCD 的对角线 AC=2AO=2 2 = 2 AB,得正方形的边长 AB=2,从而知
正四棱锥的 4 个侧面均是边长为 2 的正三角形;所以底面积为|AB|2=4 ;侧面积为
4S△PAB=4×12 ×2×2×sin 60°=4 3 ,
几何体的表面积、体积 1.一个圆锥的轴截面是边长为 4 的等边三角形,在该圆锥中有一个内接圆柱(下底面 在圆锥底面上,上底面的圆周在圆锥侧面上),则当该圆柱侧面积取最大值时,该圆 柱的高为( ) A.1 B.2 C.3 D. 3

高考数学二轮复习 第二部分专项二 专题四 1 第1讲 空间几何体的三视图、表面积与体积

高考数学二轮复习 第二部分专项二 专题四 1 第1讲 空间几何体的三视图、表面积与体积

专题四立体几何与空间向量第1讲空间几何体的三视图、表面积与体积年份卷别考查内容及考题位置命题分析2018卷Ⅰ空间几何体的三视图及侧面展开问题·T71.“立体几何”在高考中一般会以“两小一大”或“一小一大”的命题形式出现,这“两小”或“一小”主要考查三视图,几何体的表面积与体积,空间点、线、面的位置关系(特别是平行与垂直).2.考查一个小题时,此小题一般会出现在第4~8题的位置上,难度一般;考查两个小题时,其中一个小题难度一般,另一个小题难度稍高,一般会出现在第10~16题的位置上,此小题虽然难度稍高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.空间几何体的截面问题·T12卷Ⅱ圆锥的侧面积·T16卷Ⅲ三视图的识别·T3三棱锥的体积及外接球问题·T102017卷Ⅰ空间几何体的三视图与直观图、面积的计算·T7卷Ⅱ空间几何体的三视图及组合体体积的计算·T4卷Ⅲ球的内接圆柱、圆柱的体积的计算·T82016卷Ⅰ有关球的三视图及表面积的计算·T6卷Ⅱ空间几何体的三视图及组合体表面积的计算·T6卷Ⅲ空间几何体的三视图及组合体表面积的计算·T9直三棱柱的体积最值问题·T10空间几何体的三视图(基础型) 一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.由三视图还原到直观图的三个步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.[注意]在读图或者画空间几何体的三视图时,应注意三视图中的实线和虚线.[考法全练]1.(2018·高考全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()解析:选A.由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.2.(2018·高考全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217 B.2 5C.3 D.2解析:选B.由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4,则从M到N 的路径中,最短路径的长度为MS2+SN2=22+42=2 5.故选B.3.把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成的三棱锥C-ABD的正视图与俯视图如图所示,则侧视图的面积为()A.12B.22C.24D.14解析:选D.由三棱锥C -ABD 的正视图、俯视图得三棱锥C -ABD 的侧视图为直角边长是22的等腰直角三角形,如图所示,所以三棱锥C -ABD 的侧视图的面积为14,故选D.4.(2018·长春质量监测(二))如图,网格纸上小正方形的边长为1,粗线条画出的是一个三棱锥的三视图,则该三棱锥中最长棱的长度为( )A .2 B. 5 C .2 2D .3解析:选D.如图,三棱锥A -BCD 即为所求几何体,根据题设条件,知辅助的正方体棱长为2,CD =1,BD =22,BC =5,AC =2,AB =3,AD =5,则最长棱为AB ,长度为3.5.(2018·石家庄质量检测(一))如图,网格纸上的小正方形的边长为1,粗线表示的是某三棱锥的三视图,则该三棱锥的四个面中,最小面的面积是( )A .2 3B .2 2C .2D. 3解析:选C.在正方体中还原该几何体,如图中三棱锥D -ABC 所示,其中正方体的棱长为2,则S △ABC =2,S △DBC =22,S △ADB =22,S △ADC =23,故该三棱锥的四个面中,最小面的面积是2,选C.空间几何体的表面积和体积(综合型)柱体、锥体、台体的侧面积公式 (1)S 柱侧=ch (c 为底面周长,h 为高). (2)S 锥侧=12ch ′(c 为底面周长,h ′为斜高).(3)S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高).柱体、锥体、台体的体积公式 (1)V 柱体=Sh (S 为底面面积,h 为高). (2)V 锥体=13Sh (S 为底面面积,h 为高).(3)V 台=13(S +SS ′+S ′)h (S ,S ′分别为上下底面面积,h 为高)(不要求记忆).[典型例题]命题角度一 空间几何体的表面积(1)(2018·潍坊模拟)某几何体的三视图如图所示,则该几何体的表面积为( )A .4+23B .4+4 2C .6+2 3D .6+4 2(2)(2018·合肥第一次质量检测)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .5π+18B .6π+18C .8π+6D .10π+6【解析】 (1)由三视图还原几何体的直观图如图所示,易知BC ⊥平面P AC ,又PC ⊂平面P AC ,所以BC ⊥PC ,又AP =AC =BC =2,所以PC =22+22=22,又AB =22,所以S △PBC =S △P AB =12×2×22=22,S △ABC =S △P AC =12×2×2=2,所以该几何体的表面积为4+4 2.(2)由三视图可知该几何体是由一个半圆柱和两个半球构成的,故该几何体的表面积为2×12×4π×12+2×12×π×12+2×3+12×2π×1×3=8π+6. 【答案】 (1)B (2)C求几何体的表面积的方法(1)求表面积问题的基本思路是将立体几何问题转化为平面几何问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差得几何体的表面积.命题角度二 空间几何体的体积(1)(2018·武汉调研)某几何体的三视图如图所示,则该几何体的体积为( )A.12B.22C.33D.23(2)(2018·高考全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为________.【解析】 (1)由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA 1D 1­BB 1C 1和一个三棱锥C -BC 1D 后剩下的几何体,即如图所示的四棱锥D -ABC 1D 1,四棱锥D -ABC 1D 1的底面积为S 四边形ABC 1D 1=2×2=22,高h =22,其体积V =13S 四边形ABC 1D 1h =13×22×22=23.故选D.(2)由题意画出图形,如图,设AC 是底面圆O 的直径,连接SO ,则SO 是圆锥的高.设圆锥的母线长为l ,则由SA ⊥SB ,△SAB 的面积为8,得12l 2=8,得l =4.在Rt △ASO 中,由题意知∠SAO =30°,所以SO =12l =2,AO =32l =2 3.故该圆锥的体积V =13π×AO 2×SO =13π×(23)2×2=8π.【答案】 (1)D (2)8π求空间几何体体积的常用方法(1)公式法:直接根据相关的体积公式计算.(2)等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积比等.(3)割补法:把不能直接计算体积的空间几何体进行适当分割或补形,转化为易计算体积的几何体.[对点训练]1.(2018·洛阳第一次统考)一个几何体的三视图如图所示,图中的三个正方形的边长均为2,则该几何体的体积为( )A .8-2π3B .4-π3C .8-π3D .4-2π3解析:选A.由三视图可得该几何体的直观图如图所示,该几何体是一个棱长为2的正方体上、下各挖去一个底面半径为1,高为1的圆锥后剩余的部分,其体积为23-2×13×π×12×1=8-2π3.故选A.2.(2018·唐山模拟)如图,网格纸上小正方形的边长为1,粗线画的是一个几何体的三视图,则该几何体的体积为( )A .3 B.113 C .7D.233解析:选B.由题中的三视图可得,该几何体是由一个长方体切去一个三棱锥所得的几何体,长方体的长,宽,高分别为2,1,2,体积为4,切去的三棱锥的体积为13,故该几何体的体积V =4-13=113.故选B.多面体与球(综合型)[典型例题]命题角度一 外接球(2018·南宁模拟)三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,P A⊥PB ,三棱锥P -ABC 的外接球的体积为( )A.272π B.2732πC .273πD .27π【解析】 因为三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,所以△P AB ≌△PBC ≌△P AC .因为P A ⊥PB ,所以P A ⊥PC ,PC ⊥PB .以P A ,PB ,PC 为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥P -ABC 的外接球.因为正方体的体对角线长为32+32+32=33,所以其外接球半径R =332.因此三棱锥P -ABC 的外接球的体积V =4π3×⎝⎛⎭⎫3323=2732π,故选B.【答案】 B解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接圆的圆心,再过圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点确定球心的准确位置.对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置.命题角度二 内切球已知一个平放的各棱长为4的三棱锥内有一个小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,当注入的水的体积是该三棱锥体积的78时,小球与该三棱锥各侧面均相切(与水面也相切),则小球的表面积等于( )A.7π6B.4π3C.2π3D.π2【解析】 当注入水的体积是该三棱锥体积的78时,设水面上方的小三棱锥的棱长为x (各棱长都相等),依题意,⎝⎛⎭⎫x 43=18,得x =2.易得小三棱锥的高为263,设小球半径为r ,则13S 底面·263=4·13·S 底面·r ,得r =66,故小球的表面积S =4πr 2=2π3.故选C.【答案】 C求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求内切球的半径.命题角度三 与球有关的最值问题(2018·高考全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 3【解析】 如图,E 是AC 中点,M 是△ABC 的重心,O 为球心,连接BE ,OM ,OD ,BO .因为S △ABC =34AB 2=93,所以AB =6,BM =23BE =23AB 2-AE 2=2 3.易知OM ⊥平面ABC ,所以在Rt △OBM 中,OM =OB 2-BM 2=2,所以当D ,O ,M 三点共线且DM =OD +OM 时,三棱锥D -ABC 的体积取得最大值,且最大值V max =13S △ABC ×(4+OM )=13×93×6=18 3.故选B.【答案】 B多面体与球有关的最值问题,主要有三种:一是多面体确定的情况下球的最值问题,二是球的半径确定的情况下与多面体有关的最值问题;三是多面体与球均确定的情况下,截面的最值问题.[对点训练]1.(2018·福州模拟)已知圆锥的高为3,底面半径为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于( )A.83π B.323π C .16πD .32π解析:选B.设该圆锥的外接球的半径为R ,依题意得,R 2=(3-R )2+(3)2,解得R =2,所以所求球的体积V =43πR 3=43π×23=323π,故选B.2.(2018·洛阳第一次联考)已知球O 与棱长为4的正四面体的各棱均相切,则球O 的体积为( )A.823πB.833πC.863π D.1623π解析:选A.将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径为正方体的棱长22,则球O 的体积V =43πR 3=823π,故选A.3.已知四棱锥S -ABCD 的所有顶点在同一球面上,底面ABCD 是正方形且球心O 在此平面内,当四棱锥的体积取得最大值时,其表面积等于16+163,则球O 的体积等于( )A.42π3B.162π3C.322π3D.642π3解析:选D.由题意得,当四棱锥的体积取得最大值时,该四棱锥为正四棱锥.因为该四棱锥的表面积等于16+163,设球O 的半径为R ,则AC =2R ,SO =R ,如图,所以该四棱锥的底面边长AB =2R ,则有(2R )2+4×12×2R × (2R )2-⎝⎛⎭⎫22R 2=16+163,解得R =22,所以球O 的体积是43πR 3=6423π.故选D.一、选择题1.(2018·长沙模拟)如图是一个正方体,A ,B ,C 为三个顶点,D 是棱的中点,则三棱锥A -BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)( )解析:选A.正视图和俯视图中棱AD 和BD 均看不见,故为虚线,易知选A.2.(2018·高考北京卷)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C .3D .4解析:选C.将三视图还原为直观图,几何体是底面为直角梯形,且一条侧棱和底面垂直的四棱锥,如图所示.易知,BC ∥AD ,BC =1,AD =AB =P A =2,AB ⊥AD ,P A ⊥平面ABCD ,故△P AD ,△P AB 为直角三角形, 因为P A ⊥平面ABCD ,BC ⊂平面ABCD , 所以P A ⊥BC ,又BC ⊥AB ,且P A ∩AB =A ,所以BC ⊥平面P AB ,又PB ⊂平面P AB ,所以BC ⊥PB ,所以△PBC 为直角三角形,容易求得PC =3,CD =5,PD =22, 故△PCD 不是直角三角形,故选C.3.(2018·沈阳教学质量监测(一))如图,网格纸上小正方形的边长为1,粗实线画出的是某简单几何体的三视图,则该几何体的体积为( )A.4π3B.8π3C.16π3D.32π3解析:选A.由三视图可得该几何体为半圆锥,底面半圆的半径为2,高为2,则其体积V =12×13×π×22×2=4π3,故选A.4.(2018·西安八校联考)某几何体的三视图如图所示,则该几何体的体积是( )A.4π3B.5π3 C .2+2π3D .4+2π3解析:选B.由三视图可知,该几何体为一个半径为1的半球与一个底面半径为1,高为2的半圆柱组合而成的组合体,故其体积V =23π×13+12π×12×2=5π3,故选B.5.(2018·长春质量检测(一))已知矩形ABCD 的顶点都在球心为O ,半径为R 的球面上,AB =6,BC =23,且四棱锥O -ABCD 的体积为83,则R 等于( )A .4B .2 3 C.479D.13解析:选A.如图,设矩形ABCD 的中心为E ,连接OE ,EC ,由球的性质可得OE ⊥平面ABCD ,所以V O ­ABCD =13·OE ·S 矩形ABCD =13×OE×6×23=83,所以OE =2,在矩形ABCD 中可得EC =23,则R =OE 2+EC 2=4+12=4,故选A.6.(2018·南昌调研)如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A.23 B.43 C .2D.83解析:选A.由三视图可知,该几何体为三棱锥,将其放在棱长为2的正方体中,如图中三棱锥A -BCD 所示,故该几何体的体积V =13×12×1×2×2=23.7.(2018·辽宁五校协作体联考)如图所示,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是三棱锥的三视图,则此三棱锥的体积是( )A .8B .16C .24D .48解析:选A.由三视图还原三棱锥的直观图,如图中三棱锥P ­ABC 所示,且长方体的长、宽、高分别为6,2,4,△ABC 是直角三角形,AB ⊥BC ,AB =2,BC =6,三棱锥P -ABC 的高为4,故其体积为13×12×6×2×4=8,故选A.8.将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为( )A.π27B.8π27C.π3D.2π9解析:选B.如图所示,设圆柱的半径为r ,高为x ,体积为V ,由题意可得r 1=2-x2,所以x =2-2r ,所以圆柱的体积V =πr 2(2-2r )=2π(r 2-r 3)(0<r <1),设V (r )=2π(r 2-r 3)(0<r <1),则V ′(r )=2π(2r -3r 2),由2π(2r -3r 2)=0得r =23,所以圆柱的最大体积V max =2π⎣⎡⎦⎤⎝⎛⎭⎫232-⎝⎛⎭⎫233=8π27. 9.(2018·福州模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为 ( )A .14B .10+4 2 C.212+4 2 D.21+32+4 2解析:选D.由三视图可知,该几何体为一个直三棱柱切去一个小三棱锥后剩余的几何体,如图所示.所以该多面体的表面积S =2×⎝⎛⎭⎫22-12×1×1+12×(22-12)+12×22+2×22+12×32×(2)2=21+32+42,故选D. 10.(2018·太原模拟)某几何体的三视图如图所示,则该几何体中最长的棱长为( )A .3 3B .2 6 C.21D .2 5解析:选B.由三视图得,该几何体是四棱锥P -ABCD ,如图所示,ABCD 为矩形,AB =2,BC =3,平面P AD ⊥平面ABCD ,过点P 作PE ⊥AD ,则PE =4,DE =2,所以CE =22,所以最长的棱PC =PE 2+CE 2=26,故选B.11.(2018·南昌调研)已知三棱锥P -ABC 的所有顶点都在球O 的球面上,△ABC 满足AB =22,∠ACB =90°,P A 为球O 的直径且P A =4,则点P 到底面ABC 的距离为( )A. 2 B .2 2 C. 3D .2 3解析:选B.取AB 的中点O 1,连接OO 1,如图,在△ABC 中,AB =22,∠ACB =90°,所以△ABC 所在小圆O 1是以AB 为直径的圆,所以O 1A =2,且OO 1⊥AO 1,又球O 的直径P A =4,所以OA =2,所以OO 1=OA 2-O 1A 2=2,且OO 1⊥底面ABC ,所以点P 到平面ABC 的距离为2OO 1=2 2.12.(2018·高考全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A.334B.233C.324D.32解析:选A.记该正方体为ABCD -A ′B ′C ′D ′,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱A ′A ,A ′B ′,A ′D ′与平面α所成的角都相等.如图,连接AB ′,AD ′,B ′D ′,因为三棱锥A ′­AB ′D ′是正三棱锥,所以A ′A ,A ′B ′,A ′D ′与平面AB ′D ′所成的角都相等.分别取C ′D ′,B ′C ′,BB ′,AB ,AD ,DD ′的中点E ,F ,G ,H ,I ,J ,连接EF ,FG ,GH ,IH ,IJ ,JE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面AB ′D ′平行,且截正方体所得截面的面积最大.又EF =FG =GH =IH =IJ =JE =22,所以该正六边形的面积为6×34×⎝⎛⎭⎫222=334,所以α截此正方体所得截面面积的最大值为334,故选A. 二、填空题13.(2018·洛阳第一次联考)一个几何体的三视图如图所示,则该几何体的体积为________.解析:由题图可知该几何体是一个四棱锥,如图所示,其中PD ⊥平面ABCD ,底面ABCD 是一个对角线长为2的正方形,底面积S =12×2×2=2,高h =1,则该几何体的体积V =13Sh =23.答案:2314.(2018·福州四校联考)已知某几何体的三视图如图所示,则该几何体的表面积为________.解析:在长、宽、高分别为3,33,33的长方体中,由几何体的三视图得几何体为如图所示的三棱锥C -BAP ,其中底面BAP 是∠BAP =90°的直角三角形,AB =3,AP =33,所以BP =6,又棱CB ⊥平面BAP 且CB =33,所以AC =6,所以该几何体的表面积是12×3×33+12×3×33+12×6×33+12×6×33=27 3. 答案:27 315.(2018·高考全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.解析:如图所示,设S 在底面的射影为S ′,连接AS ′,SS ′.△SAB 的面积为12·SA ·SB ·sin∠ASB =12·SA 2·1-cos 2∠ASB =1516·SA 2=515,所以SA 2=80,SA =4 5.因为SA 与底面所成的角为45°,所以∠SAS ′=45°,AS ′=SA ·cos 45°=45×22=210.所以底面周长l =2π·AS ′=410π,所以圆锥的侧面积为12×45×410π=402π.答案:402π16.(2018·潍坊模拟)已知正四棱柱的顶点在同一个球面上,且球的表面积为12π,当正四棱柱的体积最大时,正四棱柱的高为________.解析:设正四棱柱的底面边长为a ,高为h ,球的半径为r ,由题意知4πr 2=12π,所以r 2=3,又2a 2+h 2=(2r )2=12,所以a 2=6-h 22,所以正四棱柱的体积V =a 2h =⎝⎛⎭⎫6-h 22h ,则V ′=6-32h 2,由V ′>0,得0<h <2,由V ′<0,得h >2,所以当h =2时,正四棱柱的体积最大,V max =8.答案:2。

高三二轮复习立体几何

高三二轮复习立体几何

高三二轮复习教学案——立体几何(1)班级 学号 姓名一、考试内容及要求:二、典型题型1.已知直线a ,b 都在平面M 外,a ,b 在平面M 内的射影分别是直线a 1,b 1,给出下列四个命题: ①b a b a ⊥⇒⊥11②11b a b a ⊥⇒⊥③a 1与b 1相交⇒a ,b 相交④a 1与b 1平行⇒a ,b 平行其中不正确的命题有________个2.在正四面体P —ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点.给出下面三个结论: ①BC ∥平面PDF ; ②DF ⊥平面PAE ; ③平面PAE ⊥平面ABC . 其中正确的结论是________.3.已知正方体ABCD —A 1B 1C 1D 1中,点M ,N 分别是AB 1,BC 1的中点.那么①AA 1⊥MN ; ②A 1C 1∥MN ; ③MN ∥平面A 1B 1C 1D 1; ④MN 与A 1C 1异面. 以上4个结论中,不正确的结论个数有________个·4.将边长为2正方形ABCD 沿对角线BD 折成直二面角,则折后A 、B 、C 、D 四点所在的球的体积为___________.5.已知直线a ,b ,平面α,β,γ,则下列条件中能推出α∥β的是___________. ①a ∥α,b ∥β,a ∥b ②a ⊥γ,b ⊥γ,α⊂a ,b ⊂β③a ⊥α,b ⊥β,a ∥b ④a ⊂α,b ⊂β,a ∥α,b ∥β6.设四棱锥P —ABCD 的底面是边长为2的正方形,△PAB 为正三角形,且与底面垂直,E 是PD 的中点,面BCE 与PA 交于F(如图)· (1)求证:EF ∥AD ;(2)设M ,N 分别为AB ,BC 的中点,求证:面PMD ⊥面PAN .7.如图.在直三棱柱ABC—A1B1C1中.E、F分别是A1B、A1C的中点,点D在B1C1上,A1D⊥B1C求证:(1)EF∥平面ABC(2)平面A1FD⊥平面BB1C1C8.如图,已知在三棱柱ABC—A1B1C1中,AA1⊥面ABC,AC=BC,M,N,P,Q分别是AA1,BB1,AB,B1C1的中点.(1)求证:面PCC1⊥面MNQ;(2)求证:PC1∥面MNQ.9.在四面体ABCD中,CB=CD,A D⊥BD,点E,F分别是AB,BD的中点,求证:(1)直线EF∥平面ACD;(2)平面EFC⊥平面BCD高三二轮复习教学案——立体几何(2)班级学号姓名1.给出下面四个命题:①如果两个平面有三个不共线的公共点,那么这两个平面重合;②如果两条直线都与第三条直线平行,那么这两条直线平行;③如果两条直线都与第三条直线垂直,那么这两条直线垂直;④如果两个平行平面同时与第三个平面相交,那么它们的交线平行.其中正确命题的序号是_____________.2.给出下列命题:①若平面α内的直线l垂直于平面β内的任意直线,则α⊥β;②若平面α内的任一直线都平行于平面β,则α∥β;③若平面α垂直于平面β,直线l在平面α内,则l⊥β;④若平面α平行于平面β,直线l在平面α内,则l∥β.其中正确命题的个数是________________.3.已知直线m,n和平面α,β满足:α∥β,m⊥α,m⊥n,则n与β之间的位置关系是__________________。

高考数学二轮复习知识点立体几何

高考数学二轮复习知识点立体几何

高考数学二轮复习知识点立体几何立体几何是 3 维欧氏空间的几何的传统名称。

下边是高考数学二轮复习知识点:立体几何,希望对考生复习有帮助。

(1)棱柱:定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各极点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特点:两底面是对应边平行的全等多边形 ;侧面、对角面都是平行四边形 ;侧棱平行且相等 ;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共极点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各极点字母,如五棱锥几何特点:侧面、对角面都是三角形;平行于底面的截面与底面相像,其相像比等于极点到截面距离与高的比的平方。

第1页/共5页(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各极点字母,如五棱台几何特点:①上下底面是相像的平行多边形②侧面是梯形③侧棱交于原棱锥的极点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特点:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直 ;④侧面睁开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特点:①底面是一个圆;②母线交于圆锥的极点;③侧面睁开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特点:①上下底面是两个圆;②侧面母线交于原圆锥的顶第2页/共5页点;③侧面睁开图是一个弓形。

(7)球体:语文课本中的文章都是优选的比较优异的文章,还有许多名家名篇。

2022年高考数学二轮复习第二篇考点突破专题三 第2课时 立体几何中的向量方法

2022年高考数学二轮复习第二篇考点突破专题三  第2课时  立体几何中的向量方法

所以 sin θ=|cos 〈n,C→D 〉|=|nn|··C|→C→DD| =
8 15
=2
30 15

所以直线
CD
与平面
PBD
所成角的正弦值为2
30 15
.
利用向量法求线面角的方法 (1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的 夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的角(夹角为 钝角时取其补角),取其余角就是斜线和平面所成的角.
【思维点拨】
(1)
证明 OA⊥平面 BCD
第一步建系,写出各点坐标;
第二步求平面 EBC 的法向量与平面 BCD 的法向量;
(2) 第三步结合二面角大小求出 OA 的长及△ABD 的面积;
第四步利用体积公式求解体积.
【规范解答】 (1)因为 AB=AD,O 为 BD 中点,所以 AO⊥BD,.……2 分 因为 AO⊂平面 ABD, 平面 ABD⊥平面 BCD 且平面 ABD∩平面 BCD=BD, 所以 AO⊥平面 BCD, 又 CD⊂平面 BCD,所以 AO⊥CD. .……4 分
<m,n>=
1 3
=32
.二面角 B-QD-A
1×2
的平面角为锐角,故其余弦值为32 .
〉=m·
-2 4+m42

2 2

解得 m=1,.……9 分
所以 OA=1,
所以 S△ABD=12 ×BD×OA=12 ×2×1=1,
VA-BCD=13
·S△ABD·|xc|=
3 6
.……12 分
易错点 障碍点 学科素养
评分 细则
漏掉条件 因为平面 ABD∩平面 BCD=BD,平面 ABD ⊥平面 BCD,AO⊂平面 ABD

高考数学二轮复习第2部分专题篇素养提升文理专题3立体几何文科第1讲空间几何体三视图表面积与体积文理

高考数学二轮复习第2部分专题篇素养提升文理专题3立体几何文科第1讲空间几何体三视图表面积与体积文理

表面两两垂直的平面共有
(C )
A.3对
B.4对
C.5对
D.6对
23
【解析】 根据几何体的三视图转换为直观图为:该几何体为四 棱锥体.如图所示:平面与平面的位置关系:平面ABCD⊥平面PBC、 平面ABCD⊥平面PCD、平面PBC⊥平面PCD、平面PAB⊥平面PBC、 平面PAD⊥平面PCD.故选C.
Ⅲ卷
题号 3、12 11、 20(2)
9
考查角度
分值
与棱锥有关的计算;求球的表面积 10
在求点到面的距离时涉及球的表面积;
求四棱锥的体积
11
由三视图求几何体的表面积
5
9
年份 2019
2018
卷别 Ⅰ卷 Ⅱ卷 Ⅲ卷 Ⅰ卷 Ⅱ卷
Ⅲ卷
题号 16 16 16 9 16
3、12
考查角度 点到平面的距离 多面体的棱长与面的个数
21
(3)已知图形中平行于x轴的线段,在直观图中长度保持不变,平 行于y轴的线段,长度变为原来的一半.
(4)在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的 z′轴也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直 观图中仍平行于z′轴且长度不变.
22
1.(2020·浙江模拟)一个几何体的三视图如图所示,则该几何体
38
考向2 空间几何体的体积
典例3 (1)(2020·葫芦岛模拟)正方体ABCD-A1B1C1D1的棱
长为2,在A,B,C,D,C1,D1这六个顶点中,选择两个点与A1,B1构
成正三棱锥P,在剩下的四个顶点中选择两个点与A1,B1构成正三棱锥
Q,M表示P与Q的公共部分,则M的体积为
( A)
A.13

高考数学立体几何知识点第二轮复习

高考数学立体几何知识点第二轮复习

高考数学立体几何知识点第二轮复习第二轮数学高考复习立体几何知识点。

(1)棱镜:定义:有两个相互平行的面,其他面为四边形,每相邻两个四边形的公共边相互平行,是由这些面围成的几何体。

分类:分为三棱柱、四棱柱、五棱柱等。

基于底部多边形的边数。

表示法:使用每个顶点字母,如五角棱镜,或使用对角端字母,如五角棱镜。

几何:两个底面是全等多边形,对应边平行;侧面和对角面是平行四边形;侧边平行且相等;平行于底面的截面是与底面一致的多边形。

(2)金字塔定义:一个面是多边形,其他面是有公共顶点的三角形,是由这些面包围的几何体。

分类:分为三棱锥、四棱锥、五角锥等。

基于底部多边形的边数。

表示法:使用每个顶点字母,如五个金字塔。

几何:侧面和对角面是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面的距离与高度之比的平方。

(3)棱镜:定义:用平行于金字塔底面的平面切割金字塔、截面和底面之间的部分。

分类:以底多边形的边数为分类标准,可分为三角形、四棱柱、五棱柱等。

表示法:使用每个顶点字母,如五边形金字塔。

几何形状:上下底面为相似的平行多边形侧面为梯形侧边与原金字塔的顶点相交。

(4)气缸:定义:由一个矩形的一边和其他三个边的直线旋转的曲面包围的几何体。

几何特征:底面为全等圆;母线与轴线平行;轴线垂直于底圆半径;侧视图为矩形。

(5)锥体:定义:被周所成曲面包围的几何体,以直角三角形的直角边为旋转轴。

几何特征:底面为圆形;母线穿过圆锥体的顶点;放大侧视图为扇形。

(6)截头体:定义:使用平行于圆锥体底面的平面来切割圆锥体和底面之间的部分。

几何特征:上下底面为两个圆;侧母线穿过原锥体的顶点;侧视图为拱形。

(7)球体:定义:以半圆直径所在的直线为旋转轴,半圆面旋转一次形成的几何图形。

几何:球的横截面为圆形;球体上任意一点到球体中心的距离等于半径。

高三数学二轮复习教学案——立体几何(2)

高三数学二轮复习教学案——立体几何(2)

高三数学二轮复习教学案——立体几何(2)班级__________姓名_____________学号_________【基础训练】1. 如图,正方体ABCD ­A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.2.三棱锥P -ABC 中,三条侧棱两两垂直,且长度都为1,点E 为BC 上一点,则截面PAE 面积的最小值为_____________.3、已知a 、b 、c 是三条不重合直线,α、β、γ是三个不重合的平面,下列命题:⑴a ∥c ,b ∥c ⇒a ∥b ;⑵a ∥γ,b ∥γ⇒a ∥b ;⑶c ∥α,c ∥β⇒α∥β;⑷γ∥α,β∥α⇒γ∥β;⑸a ∥c ,α∥c ⇒a ∥α;⑹a ∥γ,α∥γ⇒a ∥α。

其中正确的命题是 。

4、已知正方体ABCD -A'B'C'D',则该正方体的体积、四棱锥C'-ABCD 的体积以及该正方体的外接球的体积之比为 _________________.5.. 如图,四棱锥P -ABCD 的底面是边长为3的正方形,侧棱PA ⊥平面ABCD ,点E 在侧棱PC 上,且BE ⊥PC ,若6=BE ,则四棱锥P -ABCD 的体积为 _________ .6. 由曲线22x y =,2||=x 围成的图形绕y 轴旋转一周所得的旋转体的体积为1V ;满足422≤+y x ,1)1(22≥-+y x ,1)1(22≥++y x 的点组成的图形绕y 轴旋转一周所得的旋转体的体积为2V ,则1V :2V = .【典型例题】7. 已知三棱锥P —ABC 中,PC ⊥底面ABC ,AB=BC ,D 、F 分别为AC 、PC 的中点,DE ⊥AP 于E .(1)求证:AP ⊥平面BDE ;(2)求证:平面BDE ⊥平面BDF ;(3)若AE ∶EP=1∶2,求截面BEF 分三棱锥P —ABC 所成两部分的体积比.8. 如图,四棱锥P -ABCD 中,底面ABCD 是一个边长为2的正方形,PA⊥平面ABCD ,且24=PC .M 是PC 的中点,在DM 上有点G ,过G 和AP作平面交平面BDM 于GH .(1)求四棱锥P -ABCD 的体积;(2)求证:AP ∥GH .9. 如图,在棱长均为4的三棱柱111ABC A B C -中,D 、1D分别是BC 和11B C 的中点. (1)求证:11A D ∥平面1AB D ;(2)若平面ABC ⊥平面11BCC B ,160B BC ∠= ,求三棱锥1B ABC -的体积.10. 如图一简单几何体的一个面ABC 内接于圆O ,G ,H 分别是AE ,BC 的中点,AB 是圆O 的直径,四边形DCBE 为平行四边形,且DC ⊥平面ABC .(1)求证:GH //平面ACD ;(2)证明:平面ACD ⊥平面ADE ;(3)若AB =2,BC =1,23tan =∠EAB ,试求该几何体的体积V .。

高三文科立体几何二轮复习

高三文科立体几何二轮复习

1D 高三文科 立体几何二轮复习线面,面面位置关系的判定与性质是高考考察的重点,由于各种位置关系可以相互转化,因而在客观题中常常综合线面,面面各中位置关系考察学生的思维论证技能和空间想象能力,在解答题中,线面,面面垂直与平行是考查的热点。

X 例剖析例1:如图,已知E 、F 分别是正方体1111ABCD A B C D -的棱1AA 和棱1CC 的中点. 〔Ⅰ〕试判断四边形1EBFD 的形状; 〔Ⅱ〕求证:平面1EBFD ⊥平面11BB D .例2.(折叠问题)已知直角梯形ABCD 中,//AB CD ,,1,2,1AB BC AB BC CD ⊥===过A 作AE CD ⊥,垂足为E ,G 、F 分别为AD 、CE 的中点,现将ADE ∆沿AE 折叠,使得DE EC ⊥.(Ⅰ) 求证:BC CDE ⊥面(Ⅱ) 求证://FG BCD 面;〔Ⅲ〕在线段AE 上找一点R ,使得面BDR ⊥面DCB ,并说明理由.ABCDEGF·· ABCDE GF图3-2A1A BCD1B 1C FE变式:如图,在=2,2ABC B AB BC P AB π∆∠==中,,为边上一动点,PD//BC 交AC 于 点D,现将'',PDA .PDA PD PDA PBCD ∆∆⊥沿翻折至使平面平面〔1〕当棱锥'A PBCD -的体积最大时,求PA 的长;〔2〕若点P 为AB 的中点,E 为''.AC B DE ⊥的中点,求证:A例3(以三视图为背景问题)下面的一组图形为某一四棱锥S —ABCD 的侧面与底面。

〔1〕请画出四棱锥S —ABCD 的示意图,是否存在一条侧棱SA 垂直于底面ABCD ?如果存在,请证明; 〔2〕若SA⊥面ABCD ,点E 为AB 的中点,点G 为SC 的中点,求证EG ∥面SAD.〔3〕在〔2〕的条件下,求证:平面SEC⊥平面SCD ;变式:已知正三棱锥V-ABC 的正视图、俯视图如图所示,其中VA=4,AC=23 (1) 画出该正三棱锥的侧视图,并求出该侧视图的面积;(2) 在正三棱锥V-ABC 中,D 是BC 的中点,求证:平面V AD ⊥平面VBC ; (3) 求正三棱锥V-ABC 的体积。

高三第二轮专题复习资料:立体几何题型与方法(文科)

高三第二轮专题复习资料:立体几何题型与方法(文科)

专题二:立体几何题型与方法(文科)一、 考点回顾1.平面(1)平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

(2)证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样,可根据公理2证明这些点都在这两个平面的公共直线上。

(3)证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。

(4)证共面问题一般用落入法或重合法。

(5)经过不在同一条直线上的三点确定一个面. 2. 空间直线.(1)空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内。

(2)异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)(3)平行公理:平行于同一条直线的两条直线互相平行.(4)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(5)两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (l 1或l 2在这个做出的平面内不能叫l 1与l 2平行的平面) 3. 直线与平面平行、直线与平面垂直.(1)空间直线与平面位置分三种:相交、平行、在平面内.(2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA . ● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.(5)a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)] b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上。

高三数学二轮复习 2-10立体几何

高三数学二轮复习  2-10立体几何

第22页
赢在微点 无微不至
考前顶层设计·数学文·二轮教案
2.(2017·山东高考)由一个长方体和两个14圆柱体构成的几何体的三视 图如图,则该几何体的体积为________。
答案 2+2π 解析 由组合体及三视图中的数据可知,圆柱体的底面半径为 1,高为 1, 长方体的长、宽、高分别为 2,1,1,所以组合体的体积为 V=2×1×1+2×41 ×π×12×1=2+2π。
第7页
赢在微点 无微不至
考前顶层设计·数学文·二轮教案
空间几何体的三视图 (1)熟记三视图的观察方向和长、宽、高的关系:长对正、高平齐、宽 相等。 (2)熟悉各种基本几何体的三视图,同时要注意画三视图时,能看到的 轮廓线画成实线,看不到的轮廓线画成虚线。
第8页
赢在微点 无微不至
考前顶层设计·数学文·二轮教案
A.5 000 立方尺 B.5 500 立方尺 C.6 000 立方尺 D.6 500 立方尺
第17页
赢在微点 无微不至
考前顶层设计·数学文·二轮教案
(2)(2017·大连模拟)已知正方体 ABCD-A1B1C1D1 的棱长为 1,过正方 体 ABCD-A1B1C1D1 的对角线 BD1 的截面面积为 S,则 S 的取值范围是 ________。
面,则该四面体侧视图面积为( )
1 A.2
B.1
C.2
D.4
第13页
赢在微点 无微不至
考前顶层设计·数学文·二轮教案
答案 B 解析 若正视图以 yOz 平面为投影面,则该四面体侧视图为三角形,底和 高分别为 1,2,S 侧视图=12×A′D×A′B=12×1×2=1,故选 B。
第14页
赢在微点 无微不至
第20页

高考数学二轮复习指导系列之二(立体几何)

高考数学二轮复习指导系列之二(立体几何)

图4图3图2634364663图1A高考数学二轮复习指导系列二立体几何空间立体几何在高考考查中一般占22分,其题型与题量一般是1个解答题,1 ~ 2 个选择或填空题.立体几何高考的选择或填空题有三个常考热点:一是空间几何体的三视图;二是空间几何体的表面积、体积;三是空间中点、直线、平面之间的位置关系的判定.立体几何高考的解答题常以棱柱或棱锥为载体,解答题一般采用分步设问的方式,常见的两个考查热点:一是定性分析,二是定量分析. 其中定性分析,不论文科还是理科主要是以平行、垂直的证明为主;而定量分析,文科试题主要考查表面积、体积的计算;理科试题主要考查线面角、二面角的计算.下面对学生存在的主要问题进行剖析,并提出相应的教学对策.一、存在的问题及原因分析:问题一:识图、作图、用图能力弱.作图、识图、用图能力是考生学好立体几何乃至解析几何所应具备的重要能力之一,何况全国卷的试题一般不提供图形!本专题中,识图、作图、用图能力弱主要集中在“三视图的识别、还原”,“球问题的直观呈现和转化”“作图问题”“展折问题的图形分析”等.例题1:(2009宁夏海南理11)一个棱锥的三视图如图(1),则该棱锥的全面积(单位:c 2m )为()(A )(B )(C )(D )解析:由三视图可知这是一个高为4的三棱锥,且其底面是一个等腰直角三角形, 如图(2):6AB BC ==,P 在底面的射影为AC 中点D ,则=4PD , 则16152PAB PCB S S ∆∆==⨯=,142PAC S ∆=⨯= 166182CAB S ∆=⨯⨯=,故全面积为2151848⨯++=+A .评析:本题往往会因为对俯视图认识不足(直角三角形的实中线),而画错顶点P 在底面的射影(比如认为P 在底面的射影恰为顶点B ),只有正确理解才能把三视图还原成如图2的几何体.可见,把三视图还原成几何体时首先要从总体入手判断几何体的形状(即要有较强的模型意识,能总图5A图6B 111体构造!),比如本题由于三个视图都是三角形,故可判断为该几何体为三棱锥;其次注意细节,尤其关注顶点在底面上的射影,如本题的俯视图意味着顶点P 在底面的射影为AC 中点D (一般地,三棱锥中顶点在底面的射影若不在边上,如若在顶点,则俯视图如图(3),如若在三角形内,则俯视图如图(4)).例题2:(2012年课标全国卷理11)已知三棱锥-S ABC 的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且=2SC ,则此棱锥的体积为( )解析:由球的定义可知,球心O 为SC 的中点.如图5,设ABC ∆的中心为M ,则有OM ⊥平面ABC ,且OM ==,所以三棱锥的高2h OM ==,所以此棱锥的体积为11132⋅⋅=.评析:本题往往会因为对直径认识不足(球心O 为SC 的中点),纠结如何做图(球内接三棱锥-S ABC ),而不懂对问题进行转化(--2S ABC O ABC V V =),只有正确理解才能把问题转化为三棱锥-OABC (如图5),再结合球的定义,即可解决.例题3:(2016全国Ⅰ卷理11)平面α过正方体1111-ABCD A B C D 的顶点A ,//α平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则m n ,所成角的正弦值为( )(B 13解析:因为//α平面11CB D ,且平面α过顶点A ,故问题相当于把平面11CB D “外移”.如图6,在正方体1111-ABCD A B C D 的左侧补上一个全等的正方体,则平面11CB D “外移”到平面22AB D (即平面α),则α平面2ABCD AD =,α平面112ABB A AB =,又22AB D ∆为等边三角形,则m n,所成角为60,其正弦值为2. 评析:本题往往会因作图不过关而对过顶点A 作平面α束手无策,只有正确理解才能通过“补上一个全等的正方体”快速实现把平面11CB D “外移” (此时22121121//,//,//D B CB AD D B AB CD ).可见,观察和做出平行线是本题作图的关键.当然,如何作平行线,这是作图的基本功,教师要讲明原理(常利用图8图7A'CABDDBC图9CA (A')BD中位线或平行四边形的性质作平行线),同时,要引导学生观察几何体(尤其是长方体中的一些常见的平行关系(如本题22121121//,//,//D B CB AD D B AB CD )的和垂直关系),这样,学生的作图就会更有方向感!例题4:如图7,四边形ABCD 中,1AB AD CD ===,2BD =BD CD ⊥.将四边形ABCD沿对角线BD 折成四面体A BCD ',使平面A BD BCD '⊥平面,则下列结论正确的是( ). (A) A C BD '⊥ (B) 90BA C '∠=(C) CA '与平面A BD '所成的角为30 (D) 四面体A BCD '的体积为13解析:∵1A B A D ''== ,2BD =BA DA ''⊥ .又∵面A BD '⊥ 面BCD ,且CD BD ⊥ ,面A BD '⋂ 面BCD BD =∴CD ⊥面A BD '. ∴CD BA '⊥,∵DA CD D '⋂=∴BA '⊥面A CD ',∴BA A C ''⊥ ,即90BA C '∠= .评析:本题往往会因对折叠问题前后的“变量与不变量”分析不够,而忽视重要的垂直关系“BA DA ''⊥,CD BD ⊥”, 只有正确理解才能顺利由平面A BD BCD '⊥平面得出CD ⊥面A BD ',再结合CD A B '⊥,得到BA '⊥面A CD ',从而解决问题.无论是图形的翻折或是展开,都是平面图形与空间图形的相互转化,从抽象到直观,直观到抽象的过程,其中翻折 ——— 平面图形立体化,展开 ——— 立体图形平面化.解决这类问题关键在于要分清展折前后的“变量与不变量”,建议在展折前的图形中进行标注重要的点(尤其前后坐标的不同),或是重要的量(如垂直关系,如图9),这样比较不会遗忘或忽略.问题二: 推理的逻辑欠清晰.以全国卷理科卷为例,其解答题一般稳定居于前三的位置,常设置两问,一问主要涉及定性证明(如垂直关系、平行关系),二问立足定量求解(如三种角度的度量).在定性分析时由于定理条件不清楚,推理的逻辑欠清晰,常造成“会而不全”,导致失分.例题5: 在如图1所示的多面体ABCDEF 中,四边形ABCD 是正方形,ED ⊥平面ABCD ,//ED FC ,FC ED 21=,M 是AF 的中点. (Ⅰ)求证://EM 平面ABCD ; (Ⅱ)求证:平面AEF ⊥平面FAC . 解析:(Ⅰ)如图11,连接,AC BD ,ACBD O =,则O 为BD 的中点,连接DECOM .则1//,2MO FC MO FC =且,又//ED FC ,且FC ED 21=,所以//,MO ED MO ED =且, 所以EDOM 是平行四边形,所以//,EM DO又⊄EM 平面ABCD ,⊂DO 平面ABCD ,所以//EM 平面ABCD . (Ⅱ)因为//ED FC ,ED ⊥底面ABCD ,所以CF ⊥底面ABCD ,⊂DO 平面ABCD ,所以CF DO ⊥, 由(Ⅰ)知//,EM DO 所以CF EM ⊥, 因为AC DO ⊥,且//,EM DO 所以AC EM ⊥, 又C FC AC = ,所以EM ⊥平面FAC . 又EM ⊂平面AEF ,所以平面AEF ⊥平面FAC .评析:(Ⅰ)要证线面平行,一般可考虑线线平行或面面平行,本题可优先考虑线线平行.本题虽思路较为直接,但常常会“想当然”,如易借助几何直观可知//,EM DO 忽视“EDOM 是平行四边形”的证明过程;此外更常忽略条件“⊄EM 平面ABCD ,⊂DO 平面ABCD ”的完整表达而造成不必要的失分!(Ⅱ)要证面面垂直,关键在于找出一组“线面垂直”,如图11,能较为直观看到“EM ⊥平面FAC ”就是目标.证明过程中常因几何直观强,忽视平行关系与垂直关系之间的转化,直接“想当然”“易得CF EM ⊥,AC EM ⊥”造成失分,同时条件“EM ⊂平面AEF ”也是学生证明面面垂直最容易失分的地方.问题三:概念意识不强.考生由于概念意识不强,易把“异面直线所成的角”与“向量的夹角”混淆,易把“线面所成的角”等同“直线与平面法向量的夹角”,易分辨不清“二面角的平面角”与“两个法向量的夹角”之间差异,同时对“线面所成的角”或“二面角的平面角”易忽视其定义的本质(即“找、证、算”),而陷入盲目的计算,使得问题复杂化.例题6:如图12,在以,,,,,A B C D E F 为顶点的五面体中,面ABEF 为正方形,2AF FD =,90AFD ∠=,且二面角--D AF E 与二面角--C BE F 都是60.(I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角--E BC A 的余弦值.解析:(I )由已知可得AF FD ⊥,AF FE ⊥,FD FE F ⋂=所以AF ⊥平面EFDC ,又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC . (II )过D 作DG EF ⊥,垂足为G ,由(I )知DG ⊥平面ABEF .以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图13所示的空间直角坐标系Gxyz -.由(I )知DFE ∠为二面角--D AF E 的平面角,故=60DFE ∠,则2,DF DG=,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D .由已知,//F AB E ,所以//AB 平面FDC E . 又平面CDAB 平面FDC DC E =,故//CD AB ,CD//F E .由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F-BE-的平面角,C F 60∠E =.从而可得(C -.所以(C E =,()0,4,0EB =,(C 3,A =--,()4,0,0AB =-.设(,,)x y z =n 是平面C B E 的法向量,则0,0EC EB ⎧⋅=⎪⎨⋅=⎪⎩nn ,即040x y ⎧+=⎪⎨=⎪⎩,所以可取(3,0,=n .设(,,)x y z=m 是平面CD AB 的法向量,则0,AC AB ⎧⋅=⎪⎨⋅=⎪⎩m m ,同理可取4)=m .则cos ,||||19⋅<>==-n m n m n m ,故二面角C E-B -A 的余弦值为19-. 评析:本题(II )的解决关键在于理清二面角--D AF E 与二面角--C BE F 的平面角(此时只有理清哪个角是平面角,才能寻求坐标之间的关系),考生往往会会“想当然”“直观”认为DFE ∠为二面角--D AF E 的平面角,C F ∠E 为二面角C F -BE-的平面角,而忽视对平面角定义的阐述!事实上,在平面角的定义中,必需紧扣“相交棱”“两垂直于棱的相交直线”,这往往需要“找、证”“ 相交棱垂直平面”。

2023年高考数学二轮复习第二篇经典专题突破专题三立体几何第1讲空间几何体

2023年高考数学二轮复习第二篇经典专题突破专题三立体几何第1讲空间几何体

第二篇 专题三 第1讲一、选择题1.如图,△A ′B ′C ′是水平放置的△ABC 的斜二测直观图,其中O ′C ′=O ′A ′=2O ′B ′,则以下说法正确的是( C )A .△ABC 是钝角三角形B .△ABC 是等腰三角形,但不是直角三角形 C .△ABC 是等腰直角三角形D .△ABC 是等边三角形【解析】根据题意,将△A ′B ′C ′还原成原图,如图,原图中,则有OC =OA =OB , 则△ABC 是等腰直角三角形; 故选C.2.如图,半径为R 的球的两个内接圆锥有公共的底面.若两个圆锥的体积之和为球的体积的38,则这两个圆锥的高之差的绝对值为( D )A .R2B .2R3C .4R3D .R【解析】设球的球心为O ,半径为R ,体积为V ,上面圆锥的高为h (h <R ),体积为V 1,下面圆锥的高为H (H >R ),体积为V 2,两个圆锥共用的底面的圆心为O 1,半径为r .由球和圆锥的对称性可知h +H =2R ,|OO 1|=H -R .∵V 1+V 2=38V ,∴13πr 2h +13πr 2H =38×43πR 3, ∴r 2(h +H )=32R 3.∵h +H =2R ,∴r =32R .∵OO 1垂直于圆锥的底面,∴OO 1垂直于底面的半径,由勾股定理可知R 2=r 2+|OO 1|2, ∴R 2=r 2+(H -R )2,∴H =32R ,∴h =12R ,则这两个圆锥的高之差的绝对值为R ,故选D.3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( C )A .12B .13C .14D .18【解析】如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r ,l 为底面圆周长,R 为母线长,则12lR =2πr 2, 即12·2π·r ·R =2πr 2, 解得R =2r ,故∠ADC =30°,则△DEF 为等边三角形, 设B 为△DEF 的重心,过B 作BC ⊥DF ,则DB 为圆锥的外接球半径,BC 为圆锥的内切球半径, 则BC BD =12,∴r 内r 外=12,故S 1S 2=14. 4.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( B )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关【解析】由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h (h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1, 所以点E 到平面AOF 的距离为定值. 又AO ∥A 1C 1,OA 为定值, 点F 到直线AO 的距离也为定值, 所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.5.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( C )A .2π3B .4π3C .5π3D .2π【解析】如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径, 线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥, 该几何体的体积为V =V 圆柱-V圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3.6.如图,在三棱锥V -ABC 中,∠AVB =∠BVC =∠CVA =60°,VA =VB =VC ,若三棱锥V -ABC 的内切球O 的表面积为6π,则此三棱锥的体积为( D )A .63B .183C .62D .182【解析】连接VO ,并延长交底面ABC 于点E ,连接AE ,并延长交BC 于D ,∵在三棱锥V -ABC 中,∠AVB =∠BVC =∠CVA =60°,VA =VB =VC , ∴三棱锥V -ABC 是正四面体,∴E 是△ABC 的重心,∴VE ⊥平面ABC , ∵三棱锥V -ABC 的内切球O 的表面积为6π, ∴4πr 2=6π,解得球O 的半径r =OE =62, 设AB =a ,则AE =23AD =23a 2-⎝⎛⎭⎫a 22=3a 3,VE =a 2-⎝⎛⎭⎫3a 32=63a , ∴AO =VO =63a -62, ∵OE ⊥AE ,∴AE 2+OE 2=AO 2,∴⎝⎛⎭⎫3a 32+⎝⎛⎭⎫622=⎝⎛⎭⎫63a -622, 解得a =6,∴VE =63×6=26, ∴此三棱锥的体积为V =13S △ABC ·VE =13×12×6×6×sin 60×26=18 2.故选D.7.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( B )A .2 000π9B .4 000π27C .81πD .128π【解析】小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h (0<h <5),底面半径为r (0<r <5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52, 所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5). 当0<h <53时,V ′>0,V 单调递增;当53<h <5时,V ′<0,V 单调递减. 所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎫25-259×⎝⎛⎭⎫53+5=4 000π27,故选B. 二、填空题8.如图,在正三棱柱ABC -A 1B 1C 1中,AB =4,AA 1=6.若E ,F 分别是棱BB 1,CC 1上的点,则三棱锥A -A 1EF 的体积是.【解析】因为在正三棱柱ABC -A 1B 1C 1中, AA 1∥BB 1,AA 1⊂平面AA 1C 1C ,BB 1⊄平面AA 1C 1C , 所以BB 1∥平面AA 1C 1C ,从而点E 到平面AA 1C 1C 的距离就是点B 到平面AA 1C 1C 的距离, 作BH ⊥AC ,垂足为点H ,由于△ABC 是正三角形且边长为4,所以BH =23,从而三棱锥A -A 1EF 的体积VA -A 1EF =VE -A 1AF =13S △A 1AF ·BH =13×12×6×4×23=8 3.9.已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为2. 【解析】如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q , 连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球 -D 1E 2=5-3= 2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21 =1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ ︵的长为π2×2=2π2,即交线长为2π2.10.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是__1__.【解析】如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, 即r ·l =2.由于侧面展开图为半圆, 可知12πl 2=2π,可得l =2,因此r =1.11.在如图所示的斜截圆柱中,已知圆柱的底面直径为40 cm ,母线长最短50 cm ,最长80 cm ,则斜截圆柱的侧面面积S =__2 600π__cm 2.【解析】将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =12×(π×40)×(50+80)=2 600π(cm 2).12.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为BC 的中点,过点A ,P ,C 1的平面截正方体所得的截面为M ,则截面M 的面积为2.【解析】如图,取A 1D 1,AD 的中点分别为F ,G . 连接AF ,AP ,PC 1,C 1F ,PG ,D 1G ,AC 1,PF . ∵F 为A 1D 1的中点,P 为BC 的中点,G 为AD 的中点,∴AF =FC 1=AP =PC 1=52,PG CD ,AF D 1G . 由题意可知CD C 1D 1,∴PG C 1D 1, ∴四边形C 1D 1GP 为平行四边形, ∴PC 1D 1G ,∴PC 1AF , ∴A ,P ,C 1,F 四点共面, ∴四边形APC 1F 为菱形. ∵AC 1=3,PF =2,过点A ,P ,C 1的平面截正方体所得的截面M 为菱形APC 1F ,∴截面M 的面积S =12AC 1·PF =12×3×2=62.三、解答题13.(2021·浙江高三期末)如图是一个以A 1B 1C 1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=2,∠A 1B 1C 1=90°,AA 1=5,BB 1=4,CC 1=3,求:(1)该几何体的体积; (2)该几何体的表面积.【解析】 (1)把几何体ABC -A 1B 1C 1补成直棱柱A 1B 1C 1-ADE , 如图,作C 作与底面平行的截面CMN ,则截得两个直棱柱,则AM =2,BN =BD =1,CE =2, S △A 1B 1C 1=12×2×2=2,V ADE -MNC =2×2=4,VMNC -A 1B 1C 1=2×3=6,所以VABC -A 1B 1C 1=6+4×12=8;(也可求出四棱锥C -ABNM 的体积为2)(2)A 1C 1=22,因此SABB 1A 1=12×(5+4)×2=9,SBB 1C 1C =12×(4+3)×2=7,SCC 1A 1A =12×(3+5)×22=82,又AC =22+(22)2=23, BC =22+12=5=AB ,等腰三角形ABC 的底边AC 上的高为h =(5)2-(3)2=2,S△ABC=12×23×2=6,所以所求表面积为S=2+6+9+7+82=18+82+ 6.。

高三第二轮复习立体几何客观题组专题训练2

高三第二轮复习立体几何客观题组专题训练2

高三第二轮复习立体几何客观题组专题训练2一.选择题1.三条平行线所确定的平面的个数是A .三个B .两个C .一个D .一个或三个 2.空间交于一点的四条直线最多能够确定的平面的个数是 A .4 B .5 C .6 D .73.四条线段顺次首尾相接,它们所在的直线最多能够确定的平面的条数是 A .4 B .3 C .2 D .14.直线l 1∥l 2,l 1上取3点,l 2上取2点,由这五个点能确定的平面的个数是 A .1 B .3 C .6 D .95.空间三个平面两两相交,则它的交线的条数是 A .1 B .2 C .3 D .1或36.分别和两条异面直线平行的两条直线的位置关系是A .一定平行B .一定相交C .一定异面D .相交或异面7.正方体ABCD -A 1B 1C 1D 1中,异面直线CD 1和BC 1所成角的大小是 A .45° B .60° C .90° D .120°8.直线l 1∥l 2,a,b 与直线l 1和l 2都垂直,则a,b 的关系是A .平行B .相交C .异面D .平行,相交,异面都有可能 9.直线m,n 与异面直线a,b 相交于不同的四点,则m,n 的位置关系是 A .平行 B .相交 C .垂直 D .无公共点10.空间四边形ABCD 中,AC ⊥BD ,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,则四边形EFGH 是A .菱形B .矩形C .梯形D .正方形11.a,b 是异面直线,a ⊂平面α,b ⊂平面β,α∩β=c,则直线c A .同时与a,b 相交 B .至少和a,b 中的一条相交C .至多和a,b 中的一条相交D .与a,b 中的一条相交,一条平行12.正方体ABCD -A 1B 1C 1D 1中,表面的对角线与AD 1成60°的直线的条数有 A .4 B .6 C .8 D .1013.a,b 是异面直线,a ⊥b ,c 与a 成30°角,则c 与b 所成角的范畴是 A .[60°,90°] B .[30°,90°] C .[60°,120°] D .[30°,120°]14.空间四边形ABCD 的各边与两条对角线的长差不多上1,点P 在边AB 上移动,点Q 在CD 上移动,则点P 和Q 的最短距离是23432221. . . .D C B A 15.正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AB ,BB 1的中点,则A 1E 与C 1F 所成角的余弦值是521522221D C B A . . . 16.直线a 是平面α的斜线,b ⊂α,当a 与b 成60°的角,且b 与a 在α内的射影成45°时a 与α所成的角为A .60°B .45°C .90°D .135° 17.a,b 是两条异面直线,下列结论正确的是A .过不在a,b 上的任一点,可作一个平面与a,b 都平行B .过不在a,b 上的任一点,可作一条直线与a,b 都相交C .过不在a,b 上的任一点,可作一条直线与a,b 都平行D .过a 能够同时只能够作一个平面与b 平行18.直角三角形ABC 的斜边BC 在平面α内,顶点A 在平面α外,则ΔABC 的两条直角边在平面α内的射影与斜边所组成的图形只能是 A .一条线段 B .一个锐角三角形C .一个钝角三角形D .一条线段或一个钝角三角形 19.与空间四边形ABCD 四个顶点距离相等的平面的个数有 A .1 B .5 C .6 D .720.两条异面直线在同一平面内的射影是 A .两条相交直线 B .两条平行直线C .一条直线及直线外一点D .以上三种情形都有可能21.在矩形ABCD 中,AB =3,BC =4,PA ⊥平面ABCD 且PA =1,则P 到对角线DB 的距离是129515175132921. . . .D C B A 22.已知直线a ∥平面α,a 与平面α相距4,平面α内直线b 与c 相距6,且a ∥b,同时相距5,则a 与c 相距565975975 或. . 或. .D C B A23.平面α的斜线与α所成的角是30°,则它和α内所有只是斜足的直线所成的角中,最大的角是 A .30° B .90° C .150° D .180°24.P 点在ΔABC 所在的平面外,O 点是P 点在平面ABC 内的射影,PA ,PB ,PC ,两两相互垂直,则O 是ΔABC 的A .重心B .内心C .垂心D .外心25.四面体ABCD 中,AB =AC =AD ,则A 在平面BCD 上的射影是ΔBCD 的 A .重心 B .内心 C .垂心 D .外心26.在ΔABC 中,AB =AC =5,BC =6,PA ⊥平面ABC ,PA =8,则P 到BC 的距离是5453525. . . .D C B A27.P 点在ΔABC 所在的平面外,O 点是P 点在平面ABC 内的射影,P 到ΔABC 三边的距离相等,且O 在ΔABC 内,则O 是ΔABC 的A .重心B .内心C .垂心D .外心28.P 为平行四边形ABCD 所在平面外的一点,且P 到四边形ABCD 的四条边的距离相等,则四边形ABCD 是A .正方形B .菱形C .矩形D .一样的平行四边形 29.与两相交平面的交线平行的直线和这两个平面的位置关系是 A .都平行 B .都相交C .在两个平面内D .至少和其中一个平行 30.在直角坐标系中,设A (3,2)B (-2,-3),沿y 轴把直角坐标系平面折成120°的二面角后,AB 的长度是11232246. . . .D C B A31.一个山坡面与水平面成60°的二面角,坡脚的水平线为AB ,甲沿山坡自P 朝垂直于AB 的方向走30米,同时乙沿水平面自Q 朝垂直于AB 的方向走30米,P ,Q 差不多上AB 上的点,若PQ =10米,则这时两人之间的距离是米.米 .米 . 米 .19103301010720D C B A32.二面角α—a —β的平面角为120°,在面α内,AB ⊥a 于B ,AB=2,在β内CD ⊥a 于D ,CD =3,BD =1,M 是棱a 上的一个动点,则AM +CM 的最小值是62262252. . . .D C B A33.ABCD 是正方形,以BD 为棱把它折成直二面角A -BD -C ,E 是CD 的中点,则∠AED 的大小为A .45°B .30°C .60°D .90°34.P 是ΔABC 外的一点,PA ,PB ,PC 两两相互垂直,PA =1,PB =2,PC =3,则ΔABC 的面积为4496112729. . . .D C B A 35.在ΔABC 中,AB =9,AC =15,∠BAC =120°,P 是ΔABC 所在平面外的一点,P 到三点间的距离差不多上14,则P 到ΔABC 所在平面的距离是 A .7 B .9 C .11 D1336.过正方形ABCD 的顶点A 作PA ⊥平面ABCD ,若PA=AB ,则平面APB 与平面CDP 所成二面角的度数是A .90°B 。

高考数学二轮复习立体几何多选题知识点总结含答案

高考数学二轮复习立体几何多选题知识点总结含答案

高考数学二轮复习立体几何多选题知识点总结含答案一、立体几何多选题1.已知正方体1111 ABCD A B C D -的棱长为2,M 为1DD 的中点,N 为正方形ABCD 所在平面内一动点,则下列命题正确的有( )A .若2MN =,则MN 的中点的轨迹所围成图形的面积为πB .若N 到直线1BB 与直线DC 的距离相等,则N 的轨迹为抛物线C .若1D N 与AB 所成的角为3π,则N 的轨迹为双曲线 D .若MN 与平面ABCD 所成的角为3π,则N 的轨迹为椭圆【答案】BC 【分析】对于A ,连接MN ,ND ,DP ,得到直角MDN △,且P 为斜边MN 的中点,所以1PD =,进而得到P 点的轨迹为球面的一部分,即可判断选项A 错误;对于B ,可知1NB BB ⊥,即NB 是点N 到直线1BB 的距离,在平面ABCD 中,点N 到定点B 的距离与到定直线DC 的距离相等,利用抛物线定义知B 正确;对于C ,建立空间直角坐标系,设(,,0)N x y ,利用空间向量求夹角知122121cos3224D N AB y x y D N ABπ⋅===⨯++⋅,化简可知N 的轨迹为双曲线;对于D ,MN 与平面ABCD 所成的角为3MND π∠=,3ND =,可知N 的轨迹是以D 为圆心,33为半径的圆周; 【详解】对于A ,如图所示,设P 为MN 的中点,连接MN ,ND ,DP ,由正方体性质知MDN △为直角三角形,且P 为MN 的中点,2MN =,根据直角三角形斜边上的中线为斜边的一半,知MDN △不管怎么变化,始终有1PD =,即P 点的轨迹与正方体的面围城的几何体是一个以D 为球心,1为半径的球的18,其面积214182S ππ=⨯⨯=,故A 错误;对于B ,由正方体性质知,1BB ⊥平面ABCD 由线面垂直的性质定理知1NB BB ⊥,即NB 是点N 到直线1BB 的距离,在平面ABCD 中,点N 到定点B 的距离与到定直线DC 的距离相等,所以点N 的轨迹是以点B 为焦点,直线DC 为准线的抛物线,故B 正确; 对于C ,如图以D 为直角坐标系原点,建立空间直角坐标系,(,,0)N x y ,1(0,0,2)D ,(0,2,0)A ,(2,2,0)B ,则1(,,2)D N x y =-,(0,2,0)AB =,利用空间向量求夹角知122121cos3224D N AB y x y D N ABπ⋅===⨯++⋅,化简整理得:2234y x -=,即221443y x -=,所以N 的轨迹为双曲线,故C 正确;对于D ,由正方体性质知,MN 与平面ABCD 所成的角为MND ∠,即3MND π∠=,在直角MDN △中,3ND =,即N 的轨迹是以D 3D 错误; 故选:BC 【点睛】关键点睛:本题考查立体几何与解析几何的综合,解题的关键是抓住解析几何几种特殊曲线的定义,考查学生的逻辑推理能力,转化与划归能力与运算求解能力,属于难题.2.如图,正方体1111ABCD A B C D -中的正四面体11A BDC -的棱长为2,则下列说法正确的是( )A .异面直线1AB 与1AD 所成的角是3πB .1BD ⊥平面11AC DC .平面1ACB 截正四面体11A BDC -所得截面面积为3D .正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23【答案】ABD 【分析】选项A ,利用正方体的结构特征找到异面直线所成的角;选项B ,根据正方体和正四面体的结构特征以及线面垂直的判定定理容易得证;选项C ,由图得平面1ACB 截正四面体11A BDC -所得截面面积为1ACB 面积的四分之一;选项D ,分别求出正方体的体对角线长和正四面体11A BDC -的高,然后判断数量关系即可得解. 【详解】A :正方体1111ABCD ABCD -中,易知11//AD BC ,异面直线1A B 与1AD 所成的角即直线1A B 与1BC 所成的角,即11A BC ∠,11A BC 为等边三角形,113A BC π∠=,正确;B :连接11B D ,1B B ⊥平面1111DC B A ,11A C ⊂平面1111D C B A ,即111AC B B ⊥,又1111AC B D ⊥,1111B B B D B ⋂=,有11A C ⊥平面11BDD B ,1BD ⊂平面11BDD B ,所以111BD AC ⊥,同理可证:11BD A D ⊥,1111AC A D A ⋂=,所以1BD ⊥平面11AC D ,正确;C :易知平面1ACB 截正四面体11A BDC -所得截面面积为134ACB S=,错误;D :易得正方体1111ABCD A B C D -()()()2222226++=2的正四面体11A BDC -22222262213⎛⎫--⨯ ⎪⎝⎭,故正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23,正确. 故选:ABD. 【点睛】关键点点睛:利用正方体的性质,找异面直线所成角的平面角求其大小,根据线面垂直的判定证明1BD ⊥平面11AC D ,由正四面体的性质,结合几何图形确定截面的面积,并求高,即可判断C 、D 的正误.3.如图所示,正三角形ABC 中,D ,E 分别为边AB ,AC 的中点,其中AB =8,把△ADE 沿着DE 翻折至A 'DE 位置,使得二面角A '-DE -B 为60°,则下列选项中正确的是( )A .点A '到平面BCED 的距离为3B .直线A 'D 与直线CE 所成的角的余弦值为58C .A 'D ⊥BDD .四棱锥A '-BCED 237【答案】ABD 【分析】作AM ⊥DE ,交DE 于M ,延长AM 交BC 于N ,连接A'M ,A'N .利用线面垂直的判定定理判定CD ⊥平面A'MN ,利用面面垂直的判定定理与性质定理得到'A 到平面面BCED 的高A'H ,并根据二面角的平面角,在直角三角形中计算求得A'H 的值,从而判定A;根据异面直线所成角的定义找到∠A'DN 就是直线A'D 与CE 所成的角,利用余弦定理计算即可判定B;利用勾股定理检验可以否定C;先证明底面的外接圆的圆心为N ,在利用外接球的球心的性质进行得到四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC ,经过计算求解可得半径从而判定D. 【详解】如图所示,作AM ⊥DE ,交DE 于M ,延长AM 交BC 于N ,连接A'M ,A'N . 则A'M ⊥DE ,MN ⊥DE , ,∵'A M ∩MN =M ,∴CD ⊥平面A'MN , 又∵CD ⊂平面ABDC ,∴平面A'MN ⊥平面ABDC , 在平面A'MN 中作A'H ⊥MN ,则A'H ⊥平面BCED , ∵二面角A'-DE -B 为60°,∴∠A'EF =60°,∵正三角形ABC 中,AB =8,∴AN =43∴A'M 3,∴A'H =A'M sin60°=3,故A 正确;连接DN ,易得DN ‖EC ,DN =EC =4, ∠A'DN 就是直线A'D 与CE 所成的角, DN =DA'=4,A'N =A'M =23,cos ∠A'DN =22441252448+-=⨯⨯,故B 正确;A'D =DB =4,A'B=22121627A N BN +=+=',∴222A D DB A B '≠'+,∴A'D 与BD 不垂直,故C 错误’ 易得NB =NC =ND =NG =4,∴N 为底面梯形BCED 的外接圆的圆心, 设四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC , 若O 在平面BCED 上方,入图①所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P ,则HP =x ,易得()()22222433x x R +=-+=,解得23x =-,舍去;故O 在平面BCED 下方,如图②所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P , 则HP =x ,易得()()22222433x x R +=++=, 解得23x =, ∴244371699R ⨯=+=,237R ∴=,故D 正确. 故选:ABD .【点睛】本题考查立体几何中的折叠问题,涉及二面角问题,异面直线所成的角,用到线面、面面垂直的判定与性质及外接球的球心的性质和有关计算,余弦定理等,属综合性较强的题目,关键是利用线面垂直,面面垂直的判定和性质进行空间关系和结构的判定,注意球心在四棱锥的底面上方和下方的讨论与验证.4.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,090B F ∠=∠=,060,45,A D BC DE ∠=∠==,现将两块三角形板拼接在一起,得三棱锥F CAB -,取BC 中点O 与AC 中点M ,则下列判断中正确的是( )A .BC FM ⊥B .AC 与平面MOF 3C .平面MOF 与平面AFB 所成的二面角的平面角为45°D .设平面ABF 平面MOF l =,则有//l AB【答案】AD 【分析】证明BC ⊥面FOM 可判断A ;根据AC 与平面MOF 所成的角为060CMO ∠=判断B ;利用特殊位置判断C ;先证明//AB 面MOF ,由线面平行的性质定理可判断D ;由三角形中位线定理以及等腰三角形的性质可得,,BC OF BC OM OM OF O ⊥⊥=,所以BC ⊥面FOM BC FM ⇒⊥,故A 正确;因为BC ⊥面FOM ,所以AC 与平面MOF 所成的角为060CMO ∠=,所以余弦值为12,故B 错误; 对于C 选项可以考虑特殊位置法,由BC ⊥面FOM 得面ABC ⊥面FOM ,所以点F 在平面ABC 内的射影在直线OM 上,不妨设点F 平面ABC 内的射影为M ,过点M 作//BC MN ,连结NF .易证AB ⊥面MNF ,则l ⊥面MNF ,所以MFN ∠为平面MOF与平面AFB 所成的二面角的平面角,不妨设2AB =,因为060A,所以23BC =,则13,12OF BC OM ===,显然MFN ∠不等于45°,故C 错误. 设面MOF 与平面ABF 的交线为l ,又因为//,AB OM AB ⊄面MOF ,OM ⊂面MOF ,所以//AB 面MOF ,由线面平行的性质定理可得://l AB ,故D 正确; 故选:AD.【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.5.如图,正方体1111ABCD A B C D -的棱长为3,线段11B D 上有两个动点,E F ,且1EF =,以下结论正确的有( )A .AC BE ⊥B .异面直线,AE BF 所成的角为定值C .点A 到平面BEF 的距离为定值D .三棱锥A BEF -的体积是定值 【答案】ACD由AC BD ⊥,1AC DD ⊥可证AC ⊥平面11D DBB ,从而AC BE ⊥,故A 正确; 取特例,当E 与1D 重合时,F 是F ',AE 即1AD ,1AD 平行1BC ,异面直线,AE BF '所成的角是1C BF '∠,当F 与1B 重合时,E 是E ',BF 即1BB ,异面直线,AE BF '所成的角是1A AE '∠,可知1C BF '∠与1A AE '∠不相等,故异面直线,AE BF 所成的角不是定值,故B 错误;连结BD 交AC 于O ,又AC ⊥平面11D DBB ,点A 到平面11BDD B 的距离是2=2AO ,也即点A 到平面BEF 的距离是22,故C 正确; 2=2AO 为三棱锥A BEF -的高,又1111224BEF S =⨯⨯=△,故三棱锥A BEF -的体积为112234⨯=D 正确. 故选:ACD 【点睛】求空间中点到平面的距离常见方法为: (1)定义法:直接作平面的垂线,求垂线;(2)等体积法:不作垂线,通过等体积法间接求点到面的距离; (3)向量法:计算斜线在平面的法向量上的投影即可.6.在长方体1111ABCD A B C D -中,23AB =12AD AA ==,P 、Q 、R 分别是AB 、1BB 、1A C 上的动点,下列结论正确的是( )A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥C .当1AR A C ⊥时,1ARD R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABCD 【分析】本题先建立空间直角坐标系,再运用空间向量在立体几何中的应用逐一判断即可. 【详解】如图所示,建立空间直角坐标系,设(2,,0)P a ,023a ⎡⎤∈⎣⎦,,(2,23,)Q b ,[]0,2b∈,设11A R AC λ=,得到(22,23,22)R λλλ--,[]0,1λ∈. 1(2,,2)D P a =-,(2,0,)CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;1(22,23,2)D R λλλ=--,12(22)2D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确;1AR A C ⊥,则1(2,23,22)(2,23,2)412440AR AC λλλλλλ⋅=--⋅--=+-+=,解得:15λ=,此时122328232(,,)(,,)0555555AR D R ---⋅=⋅=,1AR D R ⊥,C 正确;113AC A R =,则4234(,,)333R ,14232(,,)333D R =-,设平面1BDC 的法向量为(,,)n x y z =,则100n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得(3,1,3)n =-,故10n D R ⋅=,故1//D R 平面1BDC ,D 正确.故选:ABCD.【点睛】本题考查了空间向量在立体几何中的应用,是偏难题.7.如图,已知矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1A C 的中点,则ADE ∆在翻折过程中,下列说法正确的是( )A .线段BM 的长是定值B .存在某个位置,使1DE AC ⊥ C .点M 的运动轨迹是一个圆D .存在某个位置,使MB ⊥平面1A DE 【答案】AC 【分析】取CD 中点F ,连接BF ,MF ,根据面面平行的判定定理可得平面//BMF 平面1A DE ,由面面平行的性质定理可知//BM 平面1A DE ,可判断D ;在BFM ∆中,利用余弦定理可求得BM a =为定值,可判断A 和C ;假设1DE A C ⊥,由线面垂直的判定定理可得DE ⊥平面1A CE ,由线面垂直的性质定理可知1DE A E ⊥,与11DA A E ⊥矛盾,可判断B . 【详解】解:取CD 的中点F ,连接BF ,MF ,∵M ,F 分别为1A C 、CD 中点, ∴1MF A D ∥,∵1A D ⊂平面1A DE ,MF ⊄平面1A DE , ∴MF 平面1A DE , ∵DF BE ∥且DF BE =, ∴四边形BEDF 为平行四边形, ∴BFDE ,∵DE ⊂平面1A DE ,BF ⊄平面1A DE , ∴BF ∥平面1A DE , 又BFMF F =,BF 、MF ⊂平面BMF ,∴平面//BMF 平面1A DE , ∵BM ⊂平面BMF , ∴BM ∥平面1A DE ,即D 错误,设22AB AD a ==, 则112MF A D a ==,2BF DE a ==,145A DE MFB ︒∠=∠=, ∴222cos45BM MF BF MF BF a ︒=+-⋅⋅=,即BM 为定值,所以A 正确,∴点M 的轨迹是以B 为圆心,a 为半径的圆,即C 正确, ∵2DE CE a ==,2CD AB a ==,∴222DE CE CD +=,∴DE CE ⊥, 设1DE A C ⊥,∵1A C 、CE ⊂平面1A CE ,1AC CE C =,∴DE ⊥平面1A CE , ∵1A E ⊂平面1A CE ,∴1DE A E ⊥,与11DA A E ⊥矛盾, 所以假设不成立,即B 错误. 故选:AC . 【点睛】本题考查立体几何中的翻折问题,涉及到线段长度的求解、直线与平面位置关系的判定、点的轨迹的求解、反证法的应用等知识点,考查学生的空间立体感和推理论证能力.8.如图,正三棱柱11ABC A B C -中,11BC AB ⊥、点D 为AC 中点,点E 为四边形11BCC B 内(包含边界)的动点则以下结论正确的是( )A .()1112DA A A B A BC =-+ B .若//DE 平面11ABB A ,则动点E 的轨迹的长度等于22AC C .异面直线AD 与1BC 6D .若点E 到平面11ACC A 3EB ,则动点E 的轨迹为抛物线的一部分【答案】BCD 【分析】根据空间向量的加减法运算以及通过建立空间直角坐标系求解,逐项判断,进而可得到本题答案. 【详解】解析:对于选项A ,()1112AD A A B A BC =-+,选项A 错误; 对于选项B ,过点D 作1AA 的平行线交11A C 于点1D .以D 为坐标原点,1DA DB DD ,,分别为,,x y z 轴的正方向建立空间直角坐标系Oxyz .设棱柱底面边长为a ,侧棱长为b ,则002a A ⎛⎫⎪⎝⎭,,,00B ⎛⎫ ⎪ ⎪⎝⎭,,10B b ⎛⎫ ⎪ ⎪⎝⎭,,102a C b ⎛⎫- ⎪⎝⎭,,,所以122a BC a b ⎛⎫=-- ⎪ ⎪⎝⎭,,,122a AB a b ⎛⎫=- ⎪ ⎪⎝⎭,,. ∵11BC AB ⊥,∴110BC AB ⋅=,即222022a a b ⎛⎫⎛⎫--+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得2b a =. 因为//DE 平面11ABB A ,则动点E的轨迹的长度等于1BB =.选项B 正确. 对于选项C ,在选项A 的基础上,002a A ⎛⎫⎪⎝⎭,,,00B ⎛⎫ ⎪ ⎪⎝⎭,,()0,0,0D ,1022a C a ⎛⎫- ⎪ ⎪⎝⎭,,,所以002a DA ⎛⎫= ⎪⎝⎭,,,1222a BC a ⎛⎫=- ⎪ ⎪⎝⎭,-,,因为2111cos ,||||aBC DA BC DA BC DA a ⎛⎫- ⎪⋅<>===1,BC DA 所成角C 正确. 对于选项D,设点E 在底面ABC 的射影为1E ,作1E F 垂直于AC ,垂足为F ,若点E 到平面11ACC A 的距离等于2EB ,即有12E F EB =,又因为在1CE F ∆中,11E F C =,得1EB E C =,其中1E C 等于点E 到直线1CC 的距离,故点E 满足抛物线的定义,另外点E 为四边形11BCC B 内(包含边界)的动点,所以动点E 的轨迹为抛物线的一部分,故D正确.故选:BCD【点睛】本题主要考查立体几何与空间向量的综合应用问题,其中涉及到抛物线定义的应用.9.半正多面体(semiregularsolid)亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为2,则()A.BF⊥平面EABB.该二十四等边体的体积为20 3C.该二十四等边体外接球的表面积为8πD.PN与平面EBFN所成角的正弦值为2 2【答案】BCD【分析】A用反证法判断;B先补齐八个角成正方体,再计算体积判断;C先找到球心与半径,再计算表面积判断;D先找到直线与平面所成角,再求正弦值判断.【详解】解:对于A ,假设A 对,即BF ⊥平面EAB ,于是BF AB ⊥,90ABF ∠=︒,但六边形ABFPQH 为正六边形,120ABF ∠=︒,矛盾, 所以A 错;对于B ,补齐八个角构成棱长为2的正方体,则该二十四等边体的体积为3112028111323-⋅⋅⋅⋅⋅=,所以B 对;对于C ,取正方形ACPM 对角线交点O , 即为该二十四等边体外接球的球心, 其半径为2R =,其表面积为248R ππ=,所以C 对;对于D ,因为PN 在平面EBFN 内射影为NS , 所以PN 与平面EBFN 所成角即为PNS ∠, 其正弦值为22PS PN ==,所以D 对. 故选:BCD .【点睛】本题考查了正方体的性质,考查了直线与平面所成角问题,考查了球的体积与表面积计算问题.10.如图,正四棱锥S -BCDE 底面边长与侧棱长均为a ,正三棱锥A -SBE 底面边长与侧棱长均为a ,则下列说法正确的是( )A .AS ⊥CDB .正四棱锥S -BCDE 的外接球半径为2a C .正四棱锥S -BCDE 的内切球半径为212a ⎛⎫- ⎪ ⎪⎝⎭ D .由正四棱锥S -BCDE 与正三棱锥A -SBE 拼成的多面体是一个三棱柱 【答案】ABD 【分析】取BE 中点H ,证明BE ⊥平面SAH 即可证AS CD ⊥;设底面中心为1O ,有1122O B O S a ==,可求得球半径为22a ;用等体积法求内切球半径即可判断;由////SA DE BC 且==SA DE BC 可知多面体是一个三棱柱.【详解】 如图所示:A 选项:取BE 中点H 连接,AH SH ,正三棱锥A SBE -中,,AH BE SH BE ⊥⊥ 又AHSH H =,所以BE ⊥平面SAH ,则BE AS ⊥,又//BE CD 所以AS CD ⊥ ,故A 正确;B 选项:设底面中心为1O ,球心为O 半径为R ,因为正四棱锥S -BCDE 外接球球心在1O S 上,所以OS OB R ==,因为,正四棱锥S -BCDE 底面边长与侧棱长均为a所以112O B O S ==,由()22211OB O B O S OS =+-得22222R a R ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭解得2R =,故B 正确; C 选项:设内切球半径为r,易求得侧面面积为221sin 23S a π=⋅=,由等体积法得222111432334a a a r a r ⋅=⋅+⋅⋅⋅解得4a r = ,故C 错;D 选项:取SE 中点F ,连结AF ,DF ,BF ,则BFD ∠和BFA ∠分别是D SE B --和A SE B --的二面角的平面角,由)22222221cos 2322BF DF BD BFD BF DF a ⎫⎫+-⎪⎪+-⎝⎭⎝⎭∠===-⋅⎛⎫⎪⎝⎭22222221cos 232a AF BF BA AFD AF BF ⎫⎫+-⎪⎪+-⎝⎭⎝⎭∠===⋅⎫⎪⎝⎭,故BFD ∠与BFA ∠互补,所以ASDE 共面,又因为AS AE ED SD ===,则ASDE 为平行四边形,故////AS ED BC 故正四棱锥S -BCDE 与正三棱锥A -SBE 拼成的多面体是一个三棱柱,所以D 正确 故选:ABD 【点睛】求外接球半径的常用方法:(1)补形法:侧面为直角三角形或正四面体或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;(2)利用球的性质:几何体在不同面均对直角的棱必然是球的直径;(3)定义法:到各个顶点距离均相等的点为球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三二轮复习-立体几何
题型一三视图与直观图
考查形式:选填题
【例1】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )
A . 20 n B. 24 n C. 28 n D. 32 n
例2】将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )
【过关练习】
1. 一个几何体的三视图如图所示,则该几何体的直观图可以是( )
2. 一几何体的直观图如图,下列给出的四个俯视图中正确的是( )
题型二几何体的表面积与体积
考查形式:选填题
空间几何体的表面积和体积计算是高考中常见的一个考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧,把一个空间几何体纳入一个更大的几何体中的补形技巧.
【例1】(1)三棱锥的三视图如图所示,则该三棱锥的体积为()
1 1 1
A.6
B.3
C.2 D - 1
【例2】如图,在棱长为6的正方体ABCD —A1B1C1D1中,点E, F分别在C1D1与C1B1上,且GE= 4, C1F =3,连接EF , FB , DE , BD,则几何体EFC1 —DBC的体积为()
【过关练习】
1. _____________________________________________________ 某几何体的三视图如图所示,则这个几何体的体积为_________________________________________________________
题型三多面体与球
考查形式:选填题
与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,
确定有关元素间的数量关系,并作出合适的截面图.如球内切于正方体,切点为正方体各个面的中心,正
方体的棱长等于球的直径•球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直
径.球与旋转体的组合,通常作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心
(或
“切点”“接点”)作出截面图.
【例1】已知三棱锥S—ABC的所有顶点都在球0的球面上,SA丄平面ABC, SA= 2.3, AB = 1, AC= 2, / BAC
= 60°则球O的表面积为()A. 4 n B. 12 n
C. 16 n
D. 64 n
【例2】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为 6 cm,如果不计容器的厚度,则球的体积为()
500 n 3
A.-3 cm
1 37
2 n 3
C. 3 cm3
3_ 2 048 n 3 D. 3 cm3
【例3】在三棱锥A—BCD中,侧棱AB, AC, AD两两垂直,△ ABC ,△ ACD , △ ABD的面积分别为庁,
B.警cm3
爭,当,则三棱锥A- BCD的外接球体积为 _____________
课后练习
1. 在正三棱锥S- ABC中,点M是SC的中点,且AM丄SB,底面边长AB= 2 . 2,则正三棱锥S— ABC的
外接球的表面积为()
A. 6 n
B. 12 n
C. 32 n
D. 36 n
2. 如图所示,平面四边形ABCD中,AB = AD = CD = 1, BD = 2, BD丄CD,将其沿对角线BD折成四面体A' BCD,使平面A' BD丄平面BCD,若四面体A BCD的顶点在同一个球面上,则该球的体积为()
3. 已知半径为1的球O 中内接一个圆柱,当圆柱的侧面积最大时,球的体积与圆柱的体积的比值为 ______________
4. 一块石材表示的几何体的三视图如图所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径
等于 _____________ .
5. _____________________________已知在三棱锥 P —ABC 中,PA 丄平面 ABC , AB = AC = PA = 2,且在△ ABC 中,/ BAC = 120 °则三棱锥 P —ABC 的外接球的体积为 .
第2讲空间中的平行与垂直
题型一、定理应用类(纯证明)
1如图,几何体 E-ABCD 是四棱锥,△ ABD 为正三角形,CB=CD, EC 丄BD.
(1) 求证:BE=DE;
(2) 若/ BCD=120 , M 为线段 AE 的中点,求证:DM //平面 BEC.
A.
7t 7t
B . 3 n D . 2n
2、如图,在四棱台ABCD-A1B1C1D仲,D1D丄平面ABCD,底面ABCD是平行四边形,AB=2AD, AD=A1B1, / BAD=60 .
(1) 证明:AA1 丄BD;
(2) 证明:CC1 //平面A1BD.
3、如图,在四棱锥P-ABCD中,AB II CD, AB丄AD, CD=2AB,平面PAD丄底面ABCD, PA丄AD. E和F分别是CD 和PC的中点.求证:
⑴PA丄底面ABCD;
(2) BE I 平面PAD;
(3) 平面BEF丄平面PCD.
4、如图,四棱锥P-ABCD中, AB 丄AC, AB丄PA, AB II CD, AB=2CD, E, F, G, M, N 分别为PB, AB, BC, PD, PC 的中点.
⑴求证:CE I平面PAD; (2) 求证:平面EFG丄平面EMN.
“ C
题型二、体积、距离求解类
1 如图,三棱柱ABC-AB i CI 中,CA=CB, AB=AA 1, / BAA1=60°
(1)证明:AB 丄A1C;
2、如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,/ BAD=60 .已知PB=PD=2, PA=^.
(1) 证明:PC丄BD;
⑵若E为PA的中点,求三棱锥P-BCE的体积.
3、如图,点C是以AB为直径的圆上一点,直角梯形BCDE所在平面与圆0所在平面垂直,且DE// BC, DC! BC, DE=
(1) 证明:E0 //平面ACD;
(2) 证明:平面ACDL平面BCDE;
⑶求三棱锥E-ABD的体积.
6、如图,直四棱柱ABCD-ABC i D i 中,AB // CD, AD 丄AB, AB=2, AD= - , AA 1=3, E 为CD上一点,DE=1, EC=3.
(1) 证明:BE丄平面BB i C i C; 求点B i到平面EAC i的距离
「BC=2, AC=CD=3.
7、如图,直角梯形 ACDE 与等腰直角厶 ABC 所在平面互相垂直,F 为BC 的中点,/ BACK ACD=90 , AE II CD, DC=AC=2AE=2.
(1) 求证:平面BCDL 平面 ABC; (2) 求证:AF I 平面 BDE; (3)
题型三、折叠探索类
1、如图1,在Rt △ ABC 中,/ C=90° , D, E 分别为 AC, AB 的中点,
点F 为线段 CD 上的一点 起到△ ADE 的位置,使AF 丄CD,如图2.
(1) 求证:DE I 平面 A i CB;
(2) 求证:A ’F 丄 BE;
⑶ 线段A 1B 上是否存在点 Q,使AQ 丄平面DEQ?说明理由
求四面体B-CDE 的体积
将厶ADE 沿 DE 折
2、如图,在平行四边形ABCD中,AB=2BC=4, / ABC=120 , E、M分别为AB DE的中点,将厶ADE沿直线DE翻
折成△ A' DE,连结A' C, A' B, F 为A' C 的中点,A' C=4.
(1) 求证:平面A' DE丄平面BCD;
⑵求证:FB //平面A' DE.
..■V
3•如图,在Rt△ ABC中, AB= BC= 4,点E在线段AB上•过点E作EF/ BC交AC于点卩,将厶AEF沿EF折起到△ PEF的位置(点A与点P重合),使得/ PEB= 30° .
(1)求证:EF丄PB;
⑵试问:当点E在何处时,四棱锥P-EFCB的侧面PEB的面积最大?并求此时四棱锥P-EFCB的体积.
4. 如图1,在Rt△ ABC中,/ ABC = 60°/BAC = 90° AD是BC上的高,沿AD将厶ABC折成60°的二面角B—AD —C, 如图2.
(1)证明:平面ABD丄平面BCD ;
⑵设点E为BC的中点,BD = 2,求异面直线AE和BD所成的角的大小.
5. 如图,在边长为4的菱形ABCD中,/ DAB = 60。

,点E,F分别是边CD,CB的中点,AC n EF = O,沿EF将
△ CEF翻折到△ PEF,连接FA,PB,PD,得到如图的五棱锥P —ABFED,且PB= .10.
(1) 求证:BD丄PA;
i5 / i5
(2) 求四棱锥P—BFED 的体积.
6•如图1,在正△ ABC中,E, F分别是AB , AC边上的点,且BE= AF = 2CF.点P为边BC上的点,将△ AEF沿EF折起到△ A i EF的位置,使平面A i EF丄平面BEFC,连接A i B,A i P,EP,如图2所示.
(1)求证:A i E丄FP ;
⑵若BP= BE,点K为棱A i F的中点,则在平面A i FP上是否存在过点K的直线与平面A i BE平行,若存在,请
给予证明;若不存在,请说明理由.。

相关文档
最新文档