2017年秋九年级数学上册24.4弧长和扇形面积第1课时弧长和扇形面积习题课件(新版)新人教版
24.4弧长及扇形面积(第1课时)课件
r
例1 如图,圆心角为60°的扇形的半径为10厘 米,求这个扇形的面积和周长.(π≈3.14) 解:因为n=60°,r=10厘米,所以扇形面积为
nr 2 60 3.14 10 2 S ≈52.33(平方厘米); 360 360
扇形的周长为
l nr 60 3.14 10 2r 20 180 180
90 图 23.3.2 360
图 23.3.2
45 360 n 360
图 23.3.2
n r 2 360
图 23.3.2
结论:
如果扇形面积为s,圆心角度数为n,圆半径 是r,那么扇形面积计算公式为
Q l n° r O
扇形面 积S
n 2 s r 360 nr r 1
180
lr 2 2
D
有水部分的面积 = S扇+ S△
A
E
B
0
0.24 0.09 3
C
4、如图所示,分别以n边形的顶点为圆心, 以单位1为半径画圆,则图中阴影部分的面积之 和为 个平方单位.
一、弧长的计算公式
n nr l 2r 360 180
二、扇形面积计算公式
n 1 2 s r 或s lr 360 2
n nr 50 l 2r = 3 cm 360 180
50 答:此圆弧的长度为 cm 3
例2制造弯形管道时,要先按中心线计算“展直长 度”,再下料,试计算图所示管道的展直长度 L(单 位:mm,精确到1mm)
解:由弧长公式,可得弧AB
180
的长
L 100 900 500 1570(mm)
3
2
3
cm
九年级数学上册(人教版)24.4弧长与扇形面积(第一课时)教学设计
"首先,我们来看弧长的计算公式。弧长等于圆周长的一部分,我们可以通过圆心角和半径来计算。其公式为:弧长= (圆心角/360) × 2πr。接下来,我们学习扇形面积的计算公式。扇形面积是圆面积的一部分,它等于圆心角所对的圆弧与半径所围成的图形。其公式为:扇形面积= (圆心角/360) × πr²。"
2.教师通过示例题,展示如何运用这些公式解决实际问题,让学生理解并掌握计算方法。
(三)学生小组讨论,500字
1.教师将学生分成小组,让学生合作讨论以下问题:
"如何计算一个圆的1/4弧长和扇形面积?如果圆的半径是10cm,圆心角是90度,你能计算出弧长和扇形面积吗?"
2.学生在小组内进行讨论,共同解决这些问题,教师巡回指导,解答学生的疑问。
3.梯度练习,巩固知识
设计不同难度的练习题,让学生独立完成,巩固所学知识。针对学生的错误,进行及时反馈和指导。
4.理论联系实际,学以致用
通过解决实际问题,让学生感受数学的实用性。例如,计算一段弯曲的道路的长度、计算扇形门的面积等。
5.总结反馈,拓展提高
在课堂结束时,让学生总结本节课所学内容,并进行自我评价。教师对学生的表现给予肯定和鼓励,同时对学生的不足之处进行指导。
(四)课堂练习,500字
1.教师设计不同难度的练习题,让学生独立完成,巩固所学知识。
"请同学们完成以下练习题:计算半径为5cm的圆的1/6弧长和扇形面积;计算圆心角为120度的扇形面积,半径为8cm。"
2.教师对学生的练习进行批改和反馈,针对错误进行讲解,确保学生掌握所学知识。
(五)总结归纳,500字
人教版九年级数学上册《弧长和扇形面积》学案及同步作业(含答案)
24.4弧长和扇形面积(第1课时)【学习目标】了解扇形的概念,理解 n?°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.【学习重点】n°的圆心角所对的弧长 L= n R,扇形面积S扇= n R2及其它们的应用.180360【学习过程】(教师寄语:勤动脑,多动手,体验收获!)自主探究(教师寄语:学会独立思考,自主学习是最重要的!)一、任务一:探究弧长公式1、圆的周长公式是什么?什么叫弧长?2、圆的周长可以看作 ______度的圆心角所对的弧.1°的圆心角所对的弧长是 _______; 2°的圆心角所对的弧长是 _______;4°的圆心角所对的弧长是 _______;n°的圆心角所对的弧长是 _______。
任务二:探究扇形面积公式3、圆的面积公式是什么?什么叫扇形?4、圆的面积可以看作度圆心角所对的扇形的面积;设圆的半径为R,1°的圆心角所对的扇形面积S 扇形 =_______; 2°的圆心角所对的扇形面积 S 扇形=_______; 5°的圆心角所对的扇形面积S 扇形=_______;n °的圆心角所对的扇形面积S 扇形 =_______。
5、比较扇形面积公式和弧长公式,如何用弧长表示扇形的面积?二、合作学习(教师寄语:学会与别人合作是一种能力!)例 1、(教材 121 页例 1)例 2:如图,已知扇形 AOB的半径为 10,∠ AOB=60°,求AB的长( ?结果精确到 0.1)和扇形 AOB的面积结果精确到 0.1)三、课时小结(教师寄语:及时总结能使人不断进步!)四、自我测评(教师寄语:细心思考,必定成功!)1、已知扇形的圆心角为120°,半径为6,则扇形的弧长是().A . 3B . 4C . 5D . 62、如图所示,把边长为 2 的正方形 ABCD的一边放在定直线L 上,按顺时针方向绕点 D 旋转到如图的位置,则点 B 运动到点 B′所经过的路线长度为()A.1B.C.2D.2B C(A')B'AlD C'A BCO(第 2 题图)(第 3 题图)(第 4 题图)(第 6 题图)3、如图所示, OA=30B,则AD的长是BC的长的 _____倍.4、如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中AOB 为120,OC 长为8cm, CA 长为12cm,则阴影部分的面积为。
人教版数学九年级上册24.4《弧长和扇形的面积》说课稿1
人教版数学九年级上册24.4《弧长和扇形的面积》说课稿1一. 教材分析人教版数学九年级上册第24.4节《弧长和扇形的面积》是本册教材中的重要内容,它是在学生已经掌握了圆的性质、圆的周长和面积的基础上进行授课的。
本节课主要介绍了弧长的计算方法和扇形的面积计算方法,旨在让学生理解和掌握弧长和扇形面积的计算公式,并能够运用这些知识解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于圆的性质、周长和面积的概念已经有了初步的了解。
但是,对于弧长和扇形面积的计算方法,他们可能还比较陌生。
因此,在教学过程中,我需要从学生的实际出发,循序渐进地引导他们理解和掌握这些概念和方法。
三. 说教学目标1.知识与技能目标:让学生理解和掌握弧长和扇形的面积的计算方法,能够运用这些方法解决实际问题。
2.过程与方法目标:通过观察、分析、归纳等方法,让学生自主探索弧长和扇形面积的计算方法,培养他们的观察能力和思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们的自主学习能力和团队合作精神。
四. 说教学重难点1.教学重点:弧长和扇形面积的计算方法。
2.教学难点:弧长和扇形面积计算公式的推导过程。
五. 说教学方法与手段在本节课的教学过程中,我将采用问题驱动法、案例教学法和小组合作法等教学方法,结合多媒体课件和黑板等教学手段,引导学生主动参与课堂,提高他们的学习兴趣和积极性。
六. 说教学过程1.导入新课:通过一个实际问题,引出弧长和扇形面积的概念,激发学生的学习兴趣。
2.自主探究:让学生通过观察、分析、归纳等方法,自主探索弧长和扇形面积的计算方法。
3.讲解与演示:讲解弧长和扇形面积的计算公式,并通过多媒体课件和黑板进行演示。
4.练习与巩固:让学生通过课堂练习和小组讨论,巩固所学知识。
5.拓展与应用:引导学生运用弧长和扇形面积的知识解决实际问题。
6.课堂小结:总结本节课的主要内容和知识点。
七. 说板书设计板书设计如下:1.弧长的计算方法–弧长 = 半径 × 弧度2.扇形面积的计算方法–扇形面积 = 1/2 × 弧长 × 半径八. 说教学评价教学评价将从学生的知识掌握、能力培养和情感态度三个方面进行。
人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)
人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)基础巩固1.⊙的内接多边形周长为3 ,⊙的外切多边形周长为3.4, 则下列各数中与此圆的周长最接近的是( )AB. D2.如图已知扇形的半径为6cm ,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )A .B .C .D .3.若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是A .40°B .80°C .120°D .150°4.艳军中学学术报告厅门的上沿是圆弧形,这条弧所在圆的半径为1.8 米,所对的圆心角为100°,则弧长是 米.(π≈3) 【参考答案】 1. C 2. D 3. C 4. 3O O 10AOB 120°24πcm 26πcm 29πcm 212πcm 120 BOA6cm能力提高 一、选择题1.如图,已知的半径,,则所对的弧的长为( ) A .B .C .D .2.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 ( )A .10cmB .30cmC .40cmD .300cm3.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( ) A .1.5B .2C .3D .64.有30%圆周的一个扇形彩纸片,该扇形的半径为40cm ,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为( ).A.9°B.18°C.63°D.72°5.已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图所示),则sin θ的值为( )A.B. C. D. O ⊙6OA =90AOB ∠=°AOB ∠AB 2π3π6π12π125135131013126.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径高则这个圆锥漏斗的侧面积是( ) A . B . C . D .二、填空题1.,圆心角等于450的扇形AOB 内部作一个正方形CDEF ,使点C 在OA上,点D .E 在OB 上,点F 在上,则阴影部分的面积为(结果保留) .2.如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为 (结果保留).3.将一块含30°角的三角尺绕较长直角边旋转一周得一圆锥,这个圆锥的高是3,则圆锥的侧面积是____.4.如图,三角板中,,,.三角板绕直角顶点逆时针旋转,当点的对应点落在边的起始位置上时即停止转动,则点转过的路径长为 .6cm OB =,8cm OC =.230cm 230cm π260cm π2120cm AB ππABC ︒=∠90ACB ︒=∠30B 6=BC C A 'A AB B 第2题图5.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留).6.矩形ABCD的边AB =8,AD =6,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类似开始的位置时(如图所示),则顶点A 所经过的路线长是_________.7.已知在△ABC 中,AB=6,AC=8,∠A=90°,把Rt△ABC 绕直线AC 旋转一周得到一个圆锥,其表面积为,把Rt△ABC 绕直线AB 旋转一周得到另一个圆锥,其表面积为,则:等于_________ 三、解答题1.如图,有一个圆O 和两个正六边形,.的6个顶点都在圆周上,的6条边都和圆O 相切(我们称,分别为圆O 的内接正六边形和外切正六边形).(1)设,的边长分别为,,圆O 的半径为,求及的值; (2)求正六边形,的面积比的值.π1111A B C D 1S 2S 1S 2S 1T 2T 1T 2T 1T 2T 1T 2T a b r a r :b r :1T 2T 21:S SB 'A CAB 第4题2.如图,圆心角都是90º的扇形OAB 与扇形OCD 叠放在一起,连结AC ,BD .(1)求证:AC=BD ; (2)若图中阴影部分的面积是,OA=2cm ,求OC 的长.3.如图,已知菱形的边长为,两点在扇形的上,求的长度及扇形的面积.2 43cm ABCD 1.5cm B C ,AEF ABCBCD AEF【参考答案】 选择题 1. B 2. A3. C4. B5. A6. C 填空题 1.2. 3. 18π 4. 5. 6. 7. 2∶3 解答题1.解:(1)连接圆心O 和T 的6个顶点可得6个全等的正三角形 .所以r∶a=1∶1;连接圆心O 和T 相邻的两个顶点,得以圆O 半径为高的正三角形, 所以r∶b=∶2;(2) T ∶T 的连长比是∶2,所以S ∶S = . 2. (1)证明:2385-π∏83π22ππ24123123124:3):(2=b a(2)根据题意得:;∴ 解得:OC =1cm .3. 解:四边形是菱形且边长为1.5,.又两点在扇形的上,,是等边三角形..的长(cm )BDAC BOD AOC DO CO BO AB BOD AOC AODBOD AOD AOC COD AOB =⇒∆≅∆⇒⎪⎭⎪⎬⎫==∠=∠⇒∠+∠=∠+∠⇒∠∠ 900==360)(9036090360902222OC OA OC OA S -=-=πππ阴影360)2(904322OC -=ππABCD 1.5AB BC ∴==B C 、AEF 1.5AB BC AC ∴===ABC ∴△60BAC ∴∠=°21805.160ππ=∙=ππ835.122121=∙∙==lR S ABC 扇形)(2cm。
24.4 弧长和扇形面积(共2课时)
24.4 弧长和扇形面积(共2课时)第一课时: 弧长和扇形面积教学内容1.n °的圆心角所对的弧长L=180n Rπ 2.扇形的概念;3.圆心角为n °的扇形面积是S 扇形=2360n R π;4.应用以上内容解决一些具体题目. 教学目标了解扇形的概念,理解n•°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长L=2180n R π和扇形面积S 扇=2360n R π的计算公式,并应用这些公式解决一些题目.重点:n °的圆心角所对的弧长L=180n R π,扇形面积S 扇=2360n R π及其它们的应用.难点:两个公式的应用.关键:由圆的周长和面积迁移到弧长和扇形面积公式的过程. 教学过程一、复习引入老师口问,学生口答 1.圆的周长公式是什么? 2.圆的面积公式是什么? 3.什么叫弧长?(1)圆的周长C=2πR (2)圆的面积S 图=πR 2(3)弧长就是圆的一部分. 课件)请同学们独立完成下题:设圆的半径为R ,则: 1.圆的周长可以看作______度的圆心角所对的弧. 2.1°的圆心角所对的弧长是_______. 3.2°的圆心角所对的弧长是_______. 4.4°的圆心角所对的弧长是_______. ……5.n °的圆心角所对的弧长是_______.我们可得到:n °的圆心角所对的弧长为180Rn l π=例1、已知圆弧的半径为50厘米,圆心角为60°,求此圆弧的长度。
说明:没有特别要求,结果保留π。
例2、课本111页例题 课堂练习1、制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即 AB 的长(结果精确到0.1mm )(幻灯片7).c分析:要求 AB 的弧长,圆心角知,半径知,只要代入弧长公式即可. 解:R=40mm ,n=110∴ AB 的长=180n R π=11040180π⨯≈76.8(mm ) 因此,管道的展直长度约为76.8mm .扇形的定义:由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形。
九年级上数学《24.4.1 弧长和扇形面积》课件
在田径二百米比赛中,每位运动员 的起跑位置相同吗?
不同
制造弯形管道时,怎样才能精确用料?
700mm
● A
B ● 700mm
● C
R=900m 100 m ° O
j
● D
教学目标
【知识与能力】
• 会计算弧长及扇形的面积. • 会计算圆锥的侧面积和全面积,并能用这些 知识解决相关问题. • 知道圆锥的侧面积和扇形面积之间的关系.
例题
某传送带的一个转动轮的半径为10cm。 (1)转动轮转一周,传送带上的物品A被传送 多少厘米? (2)转动轮转1°,传送带上的物品A被传送 多少厘米? (3)转动轮转n°,传送带上的物品A被传送 多少厘米?
解:(1)转动轮转一周,传送带上的物品A 被传送 2 10 20cm ;
20 被传送 cm ; 360 18
(2)转动轮转1°,传送带上的物品A
20 n 被传送 n cm 。 360 18
(3)转动轮转n°,传送带上的物品A
举一反三
(1)弧长公式涉及三个量, 弧长、圆心 角的度数、 弧所在的半径,知道其中两个量, 就可以求第三个量。 (2)当问题涉及多个未知量时,可考虑 用列方程组来求解
扇形 由组成圆心角的两条半径和圆心角所 对的弧所围成的图形叫扇形.
(1)如图(1),这只狗的最大活动区域 是圆的面积,即9π; (2)如图(2),狗的活动区域是扇形, 扇形是圆的一部分,360°的圆心角对应的圆 1 面积,1°的圆心角对应圆面积的 ,即
1 n 9 ,n°的圆心角对应的圆面积 n 360 40 40 40
360
课堂小结
知识要点
R 扇形面积公式 . n°
在半径为 R 的圆中,n°的圆心角所 对的扇形面积的计算公式为:
(含答案)九年级数学人教版上册课时练第24章《24.4 弧长和扇形面积》
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第24章圆24.4弧长和扇形面积一、选择题1.如图,在Rt ABC 中,90ACB Ð=°,AB =2BC =,以点A 为圆心,AC 的长为半径画弧,交AB 于点D ,交AC 于点C ,以点B 为圆心,AC 的长为半径画弧,交AB 于点E ,交BC 于点F ,则图中阴影部分的面积为()A .8p -B .4p -C .24p-D .14p-2.如图,AB 是O 的直径,4,AB C =为半圆AB 的中点,P 为弧AC 上一动点,连接PC 并延长,作BQ PC ^于点Q ,若点P 从点A 运动到点C ,则点Q 运动的路径长为()A .2B .p C D .43.如图,ABC 是等腰直角三角形,90ACB Ð=°,2AC BC ==,把ABC 绕点A 按顺时针方向旋转45°后得到AB C ¢¢△,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是()A .13p B .12πC .p D .2p4.如图,O 内切于边长为2的正方形ABCD ,则图中阴影部分的面积是()A .12π4-B .1π4C .4π-D .11π4-5.如图,正方形ABCD 的边长为8,以点A 为圆心,AD 为半径,画圆弧DE 得到扇形DAE (阴影部分,点E 在对角线AC 上).若扇形DAE 正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A .B .2CD .16.如图,把直径为60cm 的圆形车轮(O )在水平地面上沿直线l 无滑动地滚动一周,设初始位置的最低点为P ,则下列说法错误的是()A .当点P 离地面最高时,圆心O 运动的路径的长为30cmp B .当点P 再次回到最低点时,圆心O 运动的路径的长为60cmp C .当点P 第一次到达距离地面15cm 的高度时,圆心O 运动的路径的长为7.5cmp D .当点P 第二次到达距离地面30cm 的高度时,圆心O 运动的路径的长为45cmp 7.如图是一圆锥的左视图,根据图中所示数据,可得圆锥侧面展开图的圆心角的度数为()A .60°B .90°C .120°D .135°8.如图所示,矩形纸片ABCD 中,6cm AD =,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则圆锥的表面积为()A .24πcmB .25πcmC .26πcmD .28πcm 9.如图,圆锥侧面展开得到扇形,此扇形半径6CA =,圆心角120ACB Ð=°,则此圆锥高OC 的长度是()A .2B .C .D .10.如图,一张扇形纸片OAB ,∠AOB =120°,OA =6,将这张扇形纸片折叠,使点A 与点O 重合,折痕为CD ,则图中未重叠部分(即阴影部分)的面积为()A .B .12p -C .D .6p -二、填空题11.已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m ,半圆的直径为6m ,则圆心O 所经过的路线长是____________m .(结果用π表示)12.如图,AC 的半圆O 的一条弦,将弧AC 沿弦AC 为折线折叠后过圆心O ,,则⊙O 的半径为___.13.如图,从一块半径是1m的圆形铁皮上剪出一个圆心角为90°的扇形围成一个圆锥,则这个圆锥的底面半径是______m.14.在如图所示的网格中,每个小正方形的边长均为1,每个小正方形的顶点叫、、都是格点,若图中扇形AOB是一个圆锥的侧面展开图,则该做格点,点O A B圆锥底面圆的半径为_______.15.如图,在菱形ABCD中,∠D=60°,AB=2,以B为圆心、BC长为半径画AC,点P为菱形内一点,连接P A,PB,PC.当BPC为等腰直角三角形时,图中阴影部分的面积为________.三、解答题16.已知,如图,在△ABC中,AB=AC,以腰AB为直径作半圆O,分别交BC,AC于点D、E.(1)求证:BD=DC;(2)若∠BAC=40°,AB=AC=8,求弧求的长.17.如图,点C ,D 是半圆O 上的三等分点,直径8AB =,连接AD ,AC ,作DE AB ^,垂足为E ,DE 交AC 于点F .(1)求证:AF DF =.(2)求阴影部分的面积(结果保留p 和根号)18.如图,直线AB 经过⊙O 上的点C ,直线BO 与⊙O 交于点F 和点D ,OA 与⊙O 交于点E ,与DC 交于点G ,OA =OB ,CA =CB .(1)求证:AB 是⊙O 的切线;(2)若FC ∥OA ,CD =6,求图中阴影部分面积.19.如图,在正方形网格中,ABC 的4个顶点都在格点上,点A 、B 、C 的坐标分别为()2,4-、()2,0-、()4,1-,将ABC 绕着点A 逆时针旋转90°得到11ABC △.(1)画出11AB C △;(2)求点C 走过的路线长.20.如图,在直角坐标系中,点A ,B ,C 的坐标分别为(3,3),(4,0),(0,2),将ABC 绕着点C 顺时针旋转90°得11A B C ,其中点A 的对应点为点1A .(1)请画出旋转后的11A B C ,并写出1A 的坐标;(2)求出在旋转过程中点A 所走过的路径长.(结果保留p )21.如图,在△ABC 中,AB =AC .以BC 为直径画圆O 分别交AB ,AC 于点D ,E .(1)求证:BD =CE ;(2)当△ABC 中,∠B =70°且BC =12时,求DE 的长.22.如图,AB 为⊙O 的直径,且AB =4,点C 是弧AB 上的一动点(不与A ,B 重合),过点B 作⊙O 的切线交AC 的延长线于点D ,点E 是BD 的中点,连接EC .(1)求证:EC 是⊙O 的切线;(2)当∠D =30°时,求图中阴影部分面积.23.如图1所示,在ABC 中,12AB AC ==,120CAB Ð=°,P 是BC 边上一点(不与B 、C 点重合),将线段AP 绕点A 逆时针旋转120°得到扇形P AQ .@(1)求证:APB AQC(2)当BC与扇形P AQ相切时,求BQ的长;∥,求阴影部分的图形的周长.(结果不求近似值)(3)如图2,若AP CQ参考答案1.D 2.A 3.B 4.D 5.D 6.C 7.C 8.B 9.C 10.A11.(3π+50)50+3π)12.213.414.5415.23p 16.(1)连接BE ,AD ,∵AB 为直径,∴90ADB Ð=°,∴AD BC ^,又∵AB =AC ,∴AD 是BC 边上的中线,∴BD =DC ;(2)连接OE ,∵∠BAC =40°,OA OE =,∴40OEA Ð=°,∴80BOE Ð=°,又∵AB =AC =8,∴4OB =,∴804161801809n r BC p p p ´´===.17.(1)证明:连接OD ,OC ,∵C 、D 是半圆O 上的三等分点,∴AD CD BC ==,度数都是60°,∴∠AOD =∠DOC =∠COB =60°,∴∠DAC =30°,∠CAB =30°,∵DE ⊥AB ,∴∠AEF =90°,∴∠ADE =180°-90°-30°-30°=30°,∴∠DAC =∠ADE =30°,∴AF =DF ;(2)解:由(1)知,∠AOD =60°,∵OA =OD ,AB =8,∴△AOD 是等边三角形,OA =4,∵DE ⊥AO ,OA =4,∠ADE =30°,∴AE =2,=∴S 阴影=S 扇形AOD -S △AOD =260418436023p p ×´-´´=-.18.(1)证明:连接OC ,∵OA =OB ,CA =CB ,∴OC ⊥AB ,∵OC 是⊙O 的半径,∴AB 是⊙O 的切线;(2)解:∵DF 是圆O 的直径,∴∠DCF =90°,∵FC ∥OA ,∴∠DGO =∠DCF =90°,∴DC ⊥OE ,∴DG =12CD =12×6=3,∵OD =OC ,∴∠DOG =∠COG ,∵OA =OB ,AC =CB ,∴∠AOC =∠BOC ,∴∠DOE =∠AOC =∠BOC =13×180°=60°,∠ODG =30°,∴OD=2OG ,在Rt △ODG 中,DG =,OG ,OD =,∴S 阴影=S 扇形ODE ﹣S △DOG =260360p ×﹣12×3=2π.19.解:(1)如图所示,11AB C △即为所求;(2)由题意得:190CAC Ð= ,AC ,∴1CC 的长A-;20.解:(1)如图,△A1B1C为所作,1(1,1)(2)CA=所以在旋转过程中点A.21.解:(1)证明:如图1,连接CD和BE,∵BC是⊙O的直径,∴∠BDC=∠CEB=90°,∵AB=AC,∴∠ABC=∠ACB,∴∠BCD=∠CBE,∴BD CE=,∴BD=CE.(2)解:如图2,连接OD、OE,∵AB=AC,∠B=70°,∴∠ABC=∠ACB=70°,∴∠DOC=140°,∵OE=OC,∴∠OEC=∠OCE=70°,∴∠COE=40°,∴∠DOE=100°,∵BC=12,∴⊙O的半径为6,∴DE的长=1006180p´=103π.22.(1)证明:连接OC,OE,∵AB为⊙O的直径,∴∠ACB=90°,∵BE=ED,∴DE=EC=BE,∵OC=OB,OE=OE,∴△OCE≌△OBE(SSS),∴∠OCE=∠OBE,∵BD是⊙O的切线,∴∠ABD=90°,∴∠OCE=∠ABD=90°,∴OC ⊥CE ,∴EC 是⊙O 的切线;(2)∵OA =OB ,BE =DE ,∴AD ∥OE ,∴∠D =∠OEB ,∵∠D =30°,∴∠OEB =30°,∠EOB =60°,∴∠BOC =120°,∵AB =4,∴OB =2,∴BE.∴四边形OBEC 的面积为2S △OBE =2×12=,∴阴影部分面积为S 四边形OBEC ﹣S 扇形BOC =﹣21202360p ×´=﹣43p.23.解:(1)∵120CAB Ð=°,120PAQ Ð=°,∴CAB PAQ Ð=Ð,∵PAB CAB CAP Ð=Ð-Ð,CAQ PAQ CAP Ð=Ð-Ð,∴PAB CAQ Ð=Ð,在APB D 和AQC D 中,AB AC PAB QACAP AQ =ìïÐ=Ðíï=î∴APB AQC ≌ΔΔ(SAS );(2)如图所示,当BC 与扇形P AQ 相切时,P 为切点,则^AP BC 于P 点,∵120CAB Ð=°,AB AC =,∴30B ACB Ð=Ð=°,∵12AB =,∴6AP =,∵APB AQC ≌,∴60PAB CAQ Ð=Ð=°,AP AQ =,∴180QAB CAB CAQ Ð=Ð+Ð=°,∴12618BQ AB AQ =+=+=;(3)∵APB AQC ≌,∴30B ACQ Ð=Ð=°,CQ BP =,∵AP CQ ∥,∴60APB QCB ACQ ACB Ð=Ð=Ð+Ð=°,∴90PAB Ð=°,∴2BP AP =,∵12AB =,∴222AP AB BP +=,∴AP =,BP =,∴120ππ1803PQ =´=,∵30ACB PAC Ð=Ð=°,∴PC AP ==,∴阴部部分图形的周长为π3CQ PC PQ ++=+.。
24.4弧长和扇形面积(第1课时)-教学设计
交 BA 延长线于 E, 求扇形 BCE 被矩形 所截剩余部分的面积。
运用所学公式迅速、 正确解题, 培养学生 良好的学习习惯, 训 练学生的解题速度 和综合运用知识解 题的能力。
四、小结归纳 1.弧长公式 2.扇形面积公式
l nR 180
公式的关系
四、板书设计
课题 弧长公式 应用 扇形面积公式关系定理应用 归纳 弧长公式与扇形面积公式的关系 教 学 反 思
学生初步应用弧长公式进行 计算,结合图形分析思考,了 解公式的不同使用方法。从而 发展学生的解决实际问题的 能力和应用意识,并让学生逐 渐的学会总结,教师检查知识 的落实性,以便发现问题和及 时解决问题。
学生类比推导扇形 面积公积公式。
教师引导学生类比弧长公式 的推导方法尝试探究扇形面 积公式。
(3) 圆心角为 n°的扇形的面积是圆心角为 1°的扇形的面积 n 倍; (4)圆心角为 n°的扇形的面积 = 归纳:若设⊙O 半径为 R,圆心角为 n°的扇形的面积 S 扇形, 则 nR 2 扇形面积公式 S扇形 360 2.应用: ⑴扇形的半径为 24,面积为 240 ,则这个 O 扇形的圆心角为 ; D A B ⑵ 如图,水平放置的圆柱形排水管道的截面 C 半径是 0.6m,其中水面高 0.3m,求截面上有 水部分的面积(精确到 0.01m) (三)弧长公式与扇形面积公式的关系 问题:扇形的面积公式与弧长公式有联系吗?得到
l
0 0
教师提出问题,学生通过复习 圆周长公式,以及圆心角和其 所对弧的关系自主探究弧长 公式,经历猜想、计算、推理、 感性、理性,加深对弧长公式 的理解,小组之间进行交流, 汇总,师生总结。
让学生初步应用弧 长公式, 通过运用掌 握公式的运用技巧, 培养学生计算能力 及分析解决实际问 题的能力。
【课件】24.4弧长和扇形面积
∴AF= AB2+BF2= 22+12= 5.由平行四边形的性质,△FEC≌
△CGF,∴S△FEC=S△CGF,∴S 阴影=S 扇形 BAC+S△ABF+S△FGC-S 扇形 FAG
=90×3π60×22+12×2×1+12×(1+2)×1-90×π
×( 360
5)2=52-π4
16.(2014·昆明)如图,在△ABC 中,∠ABC=90°,D 是边 AC 上的一点,连接 BD,使∠A=2∠1,E 是 BC 上的一点,以 BE 为直径的⊙O 经过点 D.
(1)求证:AC 是⊙O 的切线; (2)若∠A=60°,⊙O 的半径为 2,求阴影部分的面积.(结果
保留根号和π)
解:(1)连接 OD,∵OB=OD,∴∠1=∠BDO,∴∠DOC=2 ∠1=∠A.在 Rt△ABC 中,∠A+∠C=90°,即∠DOC+∠C=90 °,∴∠ODC=90°,即 OD⊥DC,∴AC 为圆 O 的切线
3.已知扇形的圆心角为 45°,弧长等于π2 ,则该扇形的半径是 ___2__.
4.(2014·兰州)如图,在△ABC 中,∠ACB=90°,∠ABC=30
°,AB=2.将△ABC 绕直角顶点 C 逆时针旋转 60°得△A′B′C,则点
B 转过的路径长为(B )
π A. 3
3π B. 3
2π C. 3
∠FAB=90°.∵线段 AF 绕点 F 顺时针旋转 90°得线段 FG,∴∠
AFB+∠CFG=∠AFG=90°,∴∠CFG=∠FAB=∠ECB,∴EC
∥FG.∵AF=EC,AF=FG,∴EC=FG,∴四边形 EFGC 是平行四
边形,∴EF∥CG
(2)∵AB=2,E 是 AB 的中点,∴FB=BE=12AB=12×2=1,
人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时教学设计
人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时教学设计一. 教材分析人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》是学生在学习了角的度量、圆的性质、圆的周长等知识的基础上,进一步探究圆的弧长和扇形面积的计算。
这一节内容不仅是前面学习内容的延续,也为后面学习圆锥、圆柱等几何体提供了基础。
教材通过生活中的实例,引导学生探究弧长和扇形面积的计算公式,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。
二. 学情分析九年级的学生已经具备了一定的几何知识,对圆的基本概念和性质有一定的了解。
但是,对于弧长和扇形面积的计算,学生可能还比较陌生。
因此,在教学过程中,需要引导学生通过实际操作、探究活动等,理解和掌握弧长和扇形面积的计算方法。
三. 教学目标1.理解弧长和扇形面积的概念。
2.掌握弧长和扇形面积的计算公式。
3.能够运用弧长和扇形面积的知识解决实际问题。
四. 教学重难点1.重点:弧长和扇形面积的计算公式。
2.难点:弧长和扇形面积公式的推导过程。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际问题,探究弧长和扇形面积的计算方法。
2.利用几何画板等软件,直观展示弧长和扇形的计算过程,帮助学生理解。
3.采用小组合作学习的方式,让学生在合作中交流、讨论,提高学生的合作能力。
六. 教学准备1.准备相关的教学课件、几何画板软件。
2.准备一些实际的例子,用于引导学生探究。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如自行车轮子的周长,引出弧长的概念。
提问:如何计算这个弧长?引导学生思考,为下面的学习做好铺垫。
2.呈现(10分钟)利用几何画板软件,展示一个圆的扇形,让学生直观地感受弧长和扇形面积的计算过程。
通过软件的动态演示,引导学生探究弧长和扇形面积的计算公式。
3.操练(10分钟)让学生分组合作,利用准备好的实际例子,计算弧长和扇形面积。
人教版九年级数学上册《弧长和扇形面积》圆PPT课件(第1课时)
创设情境
探究新知
应用新知
巩固新知
做一做
弧长公式
:
l=
π
180
1.在半径为24 cm的圆中,30°的圆心角所对的弧长为 4π cm,
60°的圆心角所对的弧长为 8π cm,120°的圆心角所对的弧
长为
16π cm.
2.半径为6 cm的圆中,75°的圆心角所对的弧长是 2.5π cm;
D.80°
,扇形OAB的面积为15π,则
(
巩固新知
π,半径是6,那么此扇形的
AB 所对的圆心角是( B )
课堂小结
布置作业
A.120°
B.72°
C.36°
D.60°
创设情境
随堂练习
3.如图,水平放置的圆柱形排水管道的截面半径是0.6 m,其中水
探究新知
面高0.9 m,求截面上有水部分的面积(结果保留小数点后两位).
线,垂足为D,交
于点C,连接
O●
巩固新知
课堂小结
布置作业
AC.
∵OC=0.6 m,DC=0.3 m,
∴OD=OC-DC=0.3(m).
∴OD=DC.
又AD⊥DC,
∴AD是线段OC的垂直平分线.
∴AC=AO=OC.
A
D
C
B
创设情境
典型例题
【例2】如图,水平放置的圆柱形排水管道的截面半径是0.6m,
探究新知
圆心角
有关,
创设情境
典型例题
【例1】制造弯形管道时,要先按中心线计算“展直长度”,
探究新知
再下料,试计算图所示管道的展直长度L (结果取整数) .
A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
nπ R 积是S扇形=________. 360
长,R为半径.
1 lR ,其中l为扇形的弧 3.用弧长表示扇形面积为________ 2
弧长公式以及应用 1.(3 分)若扇形的半径为 6,圆心角为 120°,则此扇形的弧长 是( B ) A.3π B.4π C.5π D.6π 4 2.(3 分)如果一个扇形的弧长是3π ,半径是 6,那么此扇形的圆 心角为( A ) A.40° B.45° C.60° D.80°
3.(4 分)一个扇形的圆心角为 60°,它所对的弧长为 2π cm,则这 个扇形的半径为( A ) A.6 cm B.12 cm C.2 3 cm D. 6 cm 4. (6 分)如图, AB 切⊙O 于点 B, OA=2, ∠OAB=30°, 弦 BC∥AO, ︵ 的长. 求劣弧BC
4.解:连接 OB,OC,∵AB 为⊙O 的切线,∴∠OBA=90°,又 1 ∵∠OAB = 30 °,∴ OB = 2 OA = 1. 又∵BC∥AO ,∴∠ CBO = ︵ 的长为 ∠BOA=60°又∵OB=OC,∴∠BOC=60°,∴劣弧BC 60π ×1 π 180 = 3
11.如图,将含 60°角的直角三角板 ABC 绕顶点 A 顺时针旋转 45°后得到△AB′C′,点 B 经过的路径为弧 BB′,若∠BAC=60°, AC=1,则图中阴影部分的面积是( A ) π π π A. B. C. D.π 2 3 4
12.(2016· 枣庄)如图,AB 是⊙O 的直径,弦 CD⊥AB,∠CDB =30°,CD=2 3,则阴影部分的面积为( D ) A.2π B.π π 2 C. D. π 3 3
【综合运用】 17.(12 分)(2016· 新疆)如图,在⊙O 中,半径 OA⊥OB,过点 OA 的中点 C 作 FD∥OB 交⊙O 于 D,F 两点,且 CD= 3,以 O 为 ︵ ,交 OB 于 E 点. 圆心,OC 为半径作CE (1)求⊙O 的半径 OA 的长; (2)计算阴影部分的面积.
三、解答题(共 30 分) 15.(8 分)如图所示,一根绳子与半径为 30 cm 的滑轮的接触部分是 ︵ , ︵ CMD 绳子 AC 段和 BD 段所在直线成 30°的角, 求接触部分CMD 的长.(精确到 0.1 cm)
150π ×30 ︵ 15.解: ∵∠P=30°, ∴∠COD=150°, ∴CMD的长为 180 =25π ≈78.5选择题(每小题 6 分,共 18 分) 10.如图,一条公路的转弯处是一段圆弧(即图中弧 CD,点 O 是 弧 CD 的圆心), 其中 CD=600 米, E 为弧 CD 上一点, 且 OE⊥CD, 垂足为点 F,OF=300 3 米,则这段弯路的长度为( A ) A.200π 米 B.100π 米 C.400π 米 D.300π 米
5π 点,则扇形OAB的面积大小是________.(结果保留π) 4
8.(4分)如图,小正方形构成的网格中,半径为1的⊙O 在格点上,则图中阴影部分两个小扇形的面积之和为
π ________.(结果保留π) 4
9.(8分)如图,在⊙O中,直径AB=2,CA切⊙O于点 A,BC交⊙O于点D,若∠C=45°,求: (1)BD的长; (2)阴影部分的面积.
扇形的面积公式以及应用 5.(4 分)已知一个扇形的半径为 3,弧长为 3,则这个扇形的面积 为( D ) 9 A.9 B.9π C.2π 9 D.2
6.(4分)(2016·新疆)一个扇形的圆心角是120°,面积 为3π cm2,那么这个扇形的半径是(B ) A.1 cm B.3 cm C.6 cm D.9 cm 7.(4分)(2016·邵阳)如图,在3×3的方格中(共有9个小 格),每个小方格都是边长为1的正方形,O,A,B是格
17.解:(1)连接 OD,∵OA⊥OB,∴∠AOB=90°,∵CD∥OB, ∴∠OCD=90°,在 Rt△OCD 中,∵C 是 AO 中点,CD= 3,∴ OD=2CO,设 OC=x,∴x2+( 3)2=(2x)2,∴x=1,∴OD=2, CO 1 ∴⊙O 的半径为 2 (2)∵OD=2,∴∠CDO=30°,∵FD∥OB, 1 ∴∠DOB=∠ODC=30°, ∴S 阴影=S△CDO+S 扇形 OBD-S 扇形 OCE= × 2 30π ×22 90π ×12 3 π 1× 3+ 360 - 360 = 2 +12
二、填空题(每小题6分,共12分) 13.如图,半圆的直径AB=10,P为AB上一点,点C, D为半圆上的三等分点,则图中阴影部分的面积等于 25 ________.
6
π
14.如图,在▱ABCD中,AD=2,AB=4,∠A= 30°,以点A为圆心,AD的长为半径画弧交AB于点E,
1 连接CE,则阴影部分的面积是________ 3- π .(结果保留π) 3
16.(10 分)如图,已知菱形 ABCD 的边长为 1.5 cm,B,C 两点在扇 ︵ 上,求BC ︵ 的长度及扇形 ABC 的面积. 形 AEF 的EF
16.解:易证 AB=BC=AC=1.5,∴△ABC 是等边三角形,∴∠ 60π ×1.5 π 1 3 ︵ BAC=60°,BC的长= 180 = 2 (cm),S 扇形=2lR=8π (cm2)
第二十四章 圆 24.4 弧长和扇形面积
第1课时 弧长和扇形面积
1.在半径为R的圆中,因为360°的圆心角所对的弧长是圆
n πR ________. 180
周长C=________ 2πR ,所以n°的圆心角所对的弧长为l= 2.在半径为R的圆中,因为360°的圆心角所对的扇形的面 πR2 积就是圆的面积S 2 =________,所以圆心角为n°的扇形面