2013年396经济类联考综合能力考研试题数学
2013考研数学一真题解析
则|A|=
。
【考点分析】:伴随矩阵。
【求解过程】:-1
从题目条件 aij + Aij = 0 得知 Aij = −aij ,根据 A 和它的伴随矩阵之间的关系得知
A* = −AT (1)
再根据公式 AA* =| A | E = −AAT ,两边取行列式 − | A |2 =| A |3 解得:
| A |= 0 或| A |= -1
得 y(0)=1,因此极限的值为 1.
【方法总结】: lim n[ f ( 1) −1] 为 0* 型的极限,此类极限求法为先将其化作 0 型或者
n→
n
0
型,然后使用洛必达法则,等价无穷小代换或者泰勒公式求得。
10.已知 y1=e3x –xe2x,y2=ex –xe2x,y3= –xe2x 是某二阶常系数非齐次线性微分方程的 3 个解, 则该方程的通解 y= 。 【考点分析】:二阶常系数微分方程求解。
【求解过程】:1− 1 。 e
PY a +1 Y a
dy dx
=
dt dx
=
sin t
+ t cos t cos t
− sin t
=t,
dt
d2y dx2
=
d (dy ) dx dx
=
d(dy ) dx dt
•
dt dx
=
sec t
,带入
t
的值,原式=
2。
【方法总结】:对于参数方程求导和反函数求导的题目,需要掌握求导的过程,特别对于其
中二阶倒数甚至更高阶导数的求法,更需认真对待。
x→ 1+ x
1
= 0 − 0 + 0 − (− ln 2)
人大396经济类联考综合考研真题(含答案)
2014年人大396经济类联考综合考研真题(含答案)一、逻辑推理:第1-20小题,每小题2分,共40分。
下列每题给出的A、B、C、D、E五个选项中,只有一项符合试题要求。
1.科学研究日趋复杂性导致多作者科技文章增长,涉及多个医院病人的临床实验报告,通常由每个参与医院的参与医生共同署名。
类似地,如果实验运用了多个实验室开展的子系统,物理学论文报导这种实验结果时,每个实验室的参与人员也通常是论文作者。
如果上述为真,下面哪一项一定为真?A.涉及多个医院病人的临床实验绝不是仅由一个医院的医生实施。
B.涉及多个医院病人的临床实验报告,大多数有多位作者。
C.如果一篇科技论文有多位作者,他们通常来自不同的科研机构。
D.多个实验室的研究人员共同署名的物理学论文,通常报导使用了每个实验室开展的子系统的实验结果。
E.大多数科技论文的作者仅是那些做了论文所报导的实验的科研人员。
【参考答案】B【考查知识点】语义2.对一群以前从不吸烟的青少年进行追踪研究,以确定他们是否抽烟及其精神健康状态的变化。
一年后,开始吸烟的人患忧郁症的人数是那些不吸烟的人患忧郁症的四倍。
因为香烟中的尼古丁令大脑发生化学变化,可能因而影响情绪。
所以,吸烟很可能促使青少年患忧郁症。
下面哪项如果为真,最能加强上述论证?A.研究开始时就已患忧郁症的实验参与者与那时候那些没有患忧郁症的实验参与者,一年后吸烟者的比例一样。
B.这项研究没有在参与者中区分偶尔吸烟与烟瘾很大者。
C.研究中没有或者极少的参与者是朋友亲戚关系。
D.在研究进行的一年里,一些参与者开始出现忧郁症而后又恢复正常了。
E.研究人员没有追踪这些青少年的酒精摄入量。
【参考答案】A【考查知识点】支持3.康和制药公司主任认为,卫生部要求开发的疫苗的开发费用该由政府资助。
因为疫苗市场比任何其他药品公司市场利润都小。
为支持上述主张,主任给出下列理由:疫苗的销量小,因为疫苗的使用是一个人一次,而治疗疾病尤其是慢性疾病的药物,对每位病人的使用是多次的。
2013考研数学三真题完整版本
2013硕士研究生入学考试数学三真题1. 当x →0时,用“o (x )”表示比x 高阶的无穷小,则下列式子中错误的是 A. x ·o (x 2)=o(x 3) B.o(x )·o(x 2)=o(x 3) C.o(x 2)+o(x 2)= o(x 2) D.o(x )+ o(x 2)= o(x 2)2. 函数f (x )=1(1)ln xx x x x-+的可去间断点的个数为 A.0B.1C.2D.33. 设D k 是圆域D ={(x ,y )|x 2+y 2≤1}位于第k 象限的部分,记I k =()kD y x dxdy -⎰⎰(k =1,2,3,4),则A.I 1>0,B. I 2>0,C. I 3>0, B. I 4>0 4. 设{a n }为正项数列,下列选项正确的是 A. 若a n > a n+1, 则11(1)n n n a ∞-=-∑收敛B. 若11(1)n n n a ∞-=-∑收敛,则a n >a n+1C. 若1nn a∞=∑收敛,则存在常数p >1,使lim n →∞n pa n 存在D. 若存在常数p >1,使lim n →∞n pa n 存在,则1nn a∞=∑收敛5. 设A,B,C 均为n 阶短阵,若AB=C,且B 可逆,则 A. 矩阵C 的行向量组与矩阵A 的行向量组等价 B. 矩阵C 的列向量组与矩阵A 的列向量组等价 C. 矩阵C 的行向量组与矩阵B 的行向量组等价 D. 矩阵C 的列向量组与矩阵B 的列向量组等价6. 矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与20000000b ⎛⎫ ⎪⎪ ⎪⎝⎭相似的充分必要条件为( )A. a =0,b =2B. a =0,b 为任意常数C. a =2,b =0D. a =2,b 为任意常数7. 设x 1, x 2, x 3是随机变量,且x 1~N (0,1),x 2~N (0,22),x 3~N (5,32),P j =P {-2≤x j ≤2}(j =1,2,3),则A.P 1>P 2>P 3 B.P 2>P 1>P 3 C.P 3>P 1>P 2 D.P 1>P 3>P 2 8. 设随机变量X 和Y 相互独立,且X 和Y 的概率分布分别为X 01 2 3则P {X+Y =2}= A.112B.18C.16D.129. 设曲线y=f(x )与y=x 2-x 在点(1,0)处有公共切线,则lim n →∞nf 2n n ⎛⎫⎪+⎝⎭= .10. 设函数z=z(x,y)由方程(z+y )x=xy 确定,则(1,2)zx ∂∂= . 11.21ln (1)xdx x +∞+⎰= . 12. 微分方程104y y y '''-+=的通解为y= . 13. 设A =(a ij )是3阶非零矩阵,|A |为A 的行列式,A ij 为a ij 的代数余子式,若a ij + A ij =0(i ,j=1,2,3),则|A |= .14. 设随机变量X 服从标准正态分布N (0,1),则E (2XXe ) = .三、解答题15.当0x →时,1cos ,cos 2,cos3x x x -与nax 为等价无穷小,求n 与a 的值。
2013考研数学三真题及答案解析
证明:(1)因为
lim
x
f
(x)
2 ,对于
1 2
,存在
A
0 ,使得当
x
A
时, |
f
(x)
2 |
1 2
,因此
f
( A)
3 2
,由连续函数的介值性,存在
a (0, A)
,使得
f
(a)
1。
(2)由拉格朗日中值定理,存在 (0, a), 使得
f
'( )
f (a) f (0) a0
1. a
(20)(本题满分 11 分)
设
A
1 1
a 0
,பைடு நூலகம்
B
0 1
1 b
,当
a,
b
为何值时,存在矩阵
C
使得
AC
CA
B
,并求所有矩阵
C
。
解析:令
C
x1 x3
x2 x4
,则
AC
1 1
a 0
x1 x3
x2 x4
x1
ax3 x1
x2
ax4 x2
CA
x1 x3
x2 x4
1 1
a 0
x1 x3
12 (B) 1
8
(C) 1 6
(D) 1 2
答案:(C)
解析:
PX Y 2 PX 1,Y 1 PX 2,Y 0 PX 3,Y 1 PX 1 PY 1 PX 2 PY 0 PX 3 PY 1 1 1 1 1 1 1 1
43 83 83 6 二、填空题:914 小题,每小题 4 分,共 24 分,请将答案写在答.题.纸.指定位置上.
2013数学三解析
2013年数学(三)真题解析一、选择题(1) 【答案】(D ).【解】 由 lim * °^2)= lim=0,得(A )正确;HfOX "° X,O (J7 ) • O (J7 2 ) .. O (H ) O (g2) c A 由 lim ----------:--------= lim -------- •———=0,得(E )正确;h —o x H —o x x 由 lim O2)二。
2)=lim 匹孚 + lim 匕^=0,得(C )正确;x-*0 X工~0XH —0X2 I 3取 J : 2 —o (JC ) 9 X 3 =O {x 2 ),因为 lim ----2 =1工0,所以。
(工)+o (工2 ) =0 (工2 )不对 9工-*0 X 事实上 O (2)+ O (J :2 ) = O (J7),应选(D )・(2) 【答案】(C ).【解】 显然一1,0,1为 2)的所有间断点.(一"一1 严小一1 r Jn (—工)_ r 1由塑工(工+l )ln (r )= J^iHCz+l )ln (—工)—’四心(工+1)111(—工)一工巴y +1一 ,得工=—1是无穷间断点,不是可去间断点.. x 1 — 1 e jlnj — 1由凹+ l)ln 工=凹工(工+ l)ln 工lim-L 1 X x\n jc(•z + l)ln 3C,得工=1为可去间断点.jc In jc =!忙(工+1山工T , x In (— x ) _乂 Cz+l)ln (— H ) x-^o~ z (攵 + l)ln( oc ) x -»o - 2 (z + l)ln( jc )而f(0)无定义,故工=0,2 = 1为可去间断点,应选(C).(3)【答案】(B).由lim •r f ()+X X — 1 ].-- ----―――-----= lim X (j? + l)ln re zfo+(一"一1limx-^Olim x-*0x (a : + l)ln h严F 一 1I9得 lim/Cz) = 1.X —0严 ]【解】 由对称性得1| =0, 13 =0.12 = jj Ly +(— z )]dcr>0 (因为 jy + (— 2)>0),°2i 4 ~JJLy +(一2)]册<0 (因为夕 + (— x ) vo),应选(B ).°4(4)【答案】(D).【解】 方法一令lim/a ” = lim 牛=A $ 0.当 A = 0 时,取 £0 =1,存在 N 〉0,当 zz 〉N 时,| -y — 0 | < 1,从而 0 W a ” <C —,因为s 1收敛,所以由比较审敛法的基本形式得工s 收敛;” =1 九 n = 18 OO = OO当A>0时,由比较审敛法的极限形式得级数与敛散性相同,因为工*收n = 1 n = 1 九 n = l 兀敛,所以收敛,应选(D).n = 1I -I 00方法二 取a ” =-------,显然a ” > a 卄1 ,因为lima ” =1 # 0,所以工(一1)"一。
2013年经济联考数学真题解析
x
dx
2 3t 2 0 1t
dt
3
2 0
t
2
1 1 t
1
dt
3
2 0
t
1
1
1
t
dt
3
t2 2
2 0
3
2
3
ln(1
t
)
2 0
3ln 3.
34. 求函数 y x4 2x3 1的单调区间和极值点.
逐鹿考研,勤学苦练保驾护航!
鸟瞰数学,主脉经络尽收眼底!
不难验证 B
、D
选项中的
1
2
2
为 Ax
的一个特解. B、D 选项选哪个关键要看
1,1 2 和1,1 2 哪一组向量可作为 Ax 0 的基础解系. 若 k11 k2 1 2 0 ,则
(k1 k2 )1 k22 0 , 故 k1 k2 0 . 这 说 明 不 存 在 不 全 为 零 的 数 k1, k2 , 使 得
义求极限”. 故可用下述两种方法求解. 以选项 D 为例.
方法一(凑导数定义)
lim
x0
f (x0
2x) x
f (x0
x)
lim x0
f
( x0
2x)
f (x0 ) x
f
(x0 )
f (x0
x)
lim
x0
f
( x0
2x) x
f
【答案】C.
逐鹿考研,勤学苦练保驾护航!
鸟瞰数学,主脉经络尽收眼底!
【解析】由 X P(2) 得 EX DX 2 ,故 EZ E 3X 2 3EX 2 3 2 2 4 .
2013年考研数学试题详解及评分参考
y2 2
)]
dxdy
=
[1- x2 -
Di
y2 ]dxdy . 2
显然 D1
Ì
D4
,且在
D4
内,有1- (x2
+
y2 2
)
>
0
,故由
D1
Ì
D4
,知
I1
<
I4
;
òò 同理,由于 D2
É
D4
,而在 D4
外,有1- (x2
+
y2 ) 2
<
0
,即 [1- (x2
D2 -D4
+
y2 2
)] dxdy
<
0,
2013 年 • 第 3 页
郝海龙:考研数学复习大全·配套光盘·2013 年数学试题详解及评分参考
似的充要条件是 A 与 B 有相同的特征值. 由 lE - A = l[(l - 2)(l - b) - 2a2 ] 可见,
当且仅当 a = 0 ,且 b 为任意常数时,矩阵 A 的特征值与 B 的特征值 2,b, 0 相同,所以 A 与 B 相似的充要条件是 a = 0 ,且 b 为任意常数. 故选 (B) .
【答】 应选 (A) .
【解】 记 F (x, y, z) = x2 + cos(xy) + yz + x ,有
Fx¢(x, y, z) = 2x - y sin(xy) +1, Fy¢(x, y, z) = -x sin(xy) + z, Fz¢(x, y, z) = y .于是
Fx¢(0,1, -1) = 1, Fy¢(0,1, -1) = -1, Fz¢(0,1, -1) = 1. 因而曲面 F (x, y, z) = 0 在点 (0,-1,1) 处的切平面方程为 x - (y-1) + z+1 = 0 ,即
2013年考研数学真题及参考答案(数学二)
π
2
, 则当 x → 0 时, α ( x ) 是
【 】 .
(A) 比 x 高阶的无穷小 (C) 与 x 同阶但不等价的无穷小 【答案】 答案】C.
(B) 比 x 低阶的无穷小 (D) 与 x 等价的无穷小
【考点】 考点】计算极限的方法:常用的等价无穷小.
【解析】 解析】 x sin α ( x) = cos x − 1 ~ −
(D) I 4 > 0
【解析】 解析】在第 II 象限除原点外被积函数 y − x > 0 ,因此 I 2 > 0 . 【评注】 评注】在第 IV 象限除原点外被积函数 y − x < 0 ,因此 I 4 < 0 ; 在第 I 象限和第 III 象限,根据轮换对称性得
I1 = I 3 = 0 .
(7)设 A, B, C 均为 n 阶矩阵,若 AB = C ,且 B 可逆,则 (A) 矩阵 C 的行向量组与矩阵 A 的行向量组等价 (C) 矩阵 C 的行向量组与矩阵 B 的行向量组等价 【答案】 答案】B. 【考点】 考点】向量组的线性表示方法. 【解析】 解析】将矩阵 A 和 C 按列分块,设 A = (α1 , α 2 ,⋯ , α n ) , B = (bij ) , C = (γ 1 , γ 2 ,⋯ , γ n ) . ①由 AB = C 组线性表示; 【 】 . (B) 矩阵 C 的列向量组与矩阵 A 的列向量组等价 (D) 矩阵 C 的列向量组与矩阵 B 的列向量组等价
π
6
≤θ ≤
π
6
),则 L 所围平面图形的面积为
.
【答案】 答案】
π
12
.
【考点】 考点】计算极坐标曲线所围图形的面积.
2013考研数学三真题完整版
2013硕士研究生入学考试数学三真题1. 当x →0时,用“o (x )”表示比x 高阶的无穷小,则下列式子中错误的是 A. x ·o (x 2)=o(x 3) B.o(x )·o(x 2)=o(x 3) C.o(x 2)+o(x 2)= o(x 2) D.o(x )+ o(x 2)= o(x 2) 2. 函数f (x )=1(1)ln xxx x x-+的可去间断点的个数为 A.0B.1C.2D.33. 设D k 是圆域D ={(x ,y )|x 2+y 2≤1}位于第k 象限的部分,记I k =()kD y x dxdy -⎰⎰(k =1,2,3,4),则A.I 1>0,B. I 2>0,C. I 3>0, B. I 4>0 4. 设{a n }为正项数列,下列选项正确的是A. 若a n > a n+1, 则11(1)n n n a ∞-=-∑收敛B. 若11(1)n n n a ∞-=-∑收敛,则a n >a n+1C. 若1n n a ∞=∑收敛,则存在常数p >1,使lim n →∞n p a n 存在D. 若存在常数p >1,使lim n →∞n pa n 存在,则1n n a ∞=∑收敛5. 设A,B,C 均为n 阶短阵,若AB=C,且B 可逆,则 A. 矩阵C 的行向量组与矩阵A 的行向量组等价 B. 矩阵C 的列向量组与矩阵A 的列向量组等价 C. 矩阵C 的行向量组与矩阵B 的行向量组等价 D. 矩阵C 的列向量组与矩阵B 的列向量组等价6. 矩阵1111a ab a a⎛⎫⎪ ⎪ ⎪⎝⎭与2000000b ⎛⎫⎪⎪ ⎪⎝⎭相似的充分必要条件为( ) A. a =0,b =2 B. a =0,b 为任意常数C. a =2,b =0D. a =2,b 为任意常数7. 设x 1, x 2, x 3是随机变量,且x 1~N (0,1),x 2~N (0,22),x 3~N (5,32),P j =P {-2≤x j ≤2}(j =1,2,3),则A.P 1>P 2>P 3 B.P 2>P 1>P 3 C.P 3>P 1>P 2 D.P 1>P 3>P 2 8. 设随机变量X 和Y 相互独立,且X 和Y 的概率分布分别为 X 0 1 2 3A.112B.18C.16D.129. 设曲线y=f(x )与y=x 2-x 在点(1,0)处有公共切线,则lim n →∞nf 2nn ⎛⎫⎪+⎝⎭= . 10. 设函数z=z(x,y)由方程(z+y )x=xy 确定,则(1,2)z x∂∂= .11.21ln (1)x dx x +∞+⎰= .12. 微分方程104y y y '''-+=的通解为y= .13. 设A =(a ij )是3阶非零矩阵,|A |为A 的行列式,A ij 为a ij 的代数余子式,若a ij + A ij =0(i ,j=1,2,3),则|A |= .14. 设随机变量X 服从标准正态分布N (0,1),则E (2X Xe ) = . 三、解答题15.当0x →时,1cos ,cos 2,cos 3x x x -与n ax 为等价无穷小,求n 与a 的值。
2013年数三真题及解析
2013硕士研究生入学考试 数学三真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)当0x →时,用()o x 表示比x 高阶的无穷小,则下列式子中错误的是( ) (A )23()()x o x o x ⋅= (B )23()()()o x o x o x ⋅= (C )222()()()o x o x o x += (D )22()()()o x o x o x +=(2)函数||1()(1)ln ||x x f x x x x -=+的可去间断点的个数为( )(A )0 (B )1 (C )2 (D )3.(3)设k D 是圆域22{(,)|1}D x y x y =+≤位于第k 象限的部分,记()kk D I y x dxdy =-⎰⎰()1,2,3,4k =,则( )(A )10I > (B )20I > (C )30I > (D )40I >(4)设{}n a 为正项数列,下列选项正确的是( ) (A )若111,(1)n n n n n a a a ∞-+=>-∑则收敛(B )11(1)n n n a ∞-=-∑若收敛,则1n n a a +>(C )1nn a∞=∑若收敛,则存在常数1P >,使lim Pn n n a →∞存在(D )若存在常数1P >,使lim Pn n n a →∞存在,则1nn a∞=∑收敛(5)设矩阵A,B,C 均为n 阶矩阵,若,B AB C =则可逆,则 (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价(C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的列向量组与矩阵B 的列向量组等价(6)矩阵1a 1a b a 1a 1⎛⎫ ⎪ ⎪ ⎪⎝⎭与2000b 0000⎛⎫ ⎪⎪ ⎪⎝⎭相似的充分必要条件为(A )a 0,b 2== (B )为任意常数b a ,0= (C )0,2==b a(D )为任意常数b a ,2=(7)设123X X X ,,是随机变量,且22123~N(0,1)~N(~(5,3)X N ,X 0,2),X ,{22}(1,2,3),j j P P X j =-≤≤=则( )(A )123P P P >> (B )213P P P >> (C )312P P P >> (D )132P P P >>(8)设随机变量X 和Y 相互独立,则X 和Y 的概率分布分别为,则{2}P X Y +== ( ) (A )112 (B )18 (C )16 (D )12二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设曲线)(x f y =和x x y -=2在点)1,0(处有公共的切线,则=⎪⎭⎫ ⎝⎛+∞→2lim n n nf n ________。
2013年考研数学一真题及答案解析
2013考研数学一真题及答案解析目录第一章总论........................................................... 错误!未定义书签。
1.1项目提要......................................................... 错误!未定义书签。
1.2结论与建议..................................................... 错误!未定义书签。
1.3编制依据 ........................................................ 错误!未定义书签。
第二章项目建设背景与必要性........................... 错误!未定义书签。
2.1项目背景......................................................... 错误!未定义书签。
2.2项目建设必要性 ............................................ 错误!未定义书签。
第三章市场与需求预测....................................... 错误!未定义书签。
3.1优质粮食供求形势分析 ................................ 错误!未定义书签。
3.2本区域市场需求预测 .................................... 错误!未定义书签。
3.3服务功能 ........................................................ 错误!未定义书签。
3.4市场竞争力和市场风险预测与对策............ 错误!未定义书签。
第四章项目承担单位情况................................... 错误!未定义书签。
2013考研数三真题及解析
2013年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)当0x →时,用()o x 表示比x 高阶的无穷小,则下列式子中错误的是( ) (A )23()()x o x o x ⋅= (B )23()()()o x o x o x ⋅= (C )222()()()o x o x o x += (D )22()()()o x o x o x +=(2)函数||1()(1)ln ||x x f x x x x -=+的可去间断点的个数为( )(A )0 (B )1 (C )2 (D )3(3)设k D 是圆域22{(,)|1}D x y x y =+≤位于第k 象限的部分,记()kk D I y x dxdy =-⎰⎰()1,2,3,4k =,则( ) (A )10I > (B )20I > (C )30I > (D )40I >(4)设{}n a 为正项数列,下列选项正确的是( ) (A )若111,(1)n n n n n a a a ∞-+=>-∑则收敛(B )11(1)n n n a ∞-=-∑若收敛,则1n n a a +>(C )1nn a∞=∑若收敛,则存在常数1P >,使lim Pn n n a →∞存在(D )若存在常数1P >,使lim Pn n n a →∞存在,则1nn a∞=∑收敛(5)设矩阵A,B,C 均为n 阶矩阵,若,B AB C =则可逆,则 (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价 (C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的行向量组与矩阵B 的列向量组等价(6)矩阵1a 1a b a 1a 1⎛⎫ ⎪ ⎪ ⎪⎝⎭与2000b 0000⎛⎫ ⎪⎪ ⎪⎝⎭相似的充分必要条件为(A )a 0,b 2== (B )为任意常数b a ,0= (C )0,2==b a(D )为任意常数b a ,2=(7)设123X X X ,,是随机变量,且22123~N(0,1)~N(~(5,3)X N ,X 0,2),X ,{22}(1,2,3),j j P P X j =-≤≤=则( )(A )123P P P >> (B )213P P P >> (C )312P P P >> (D )132P P P >>(8)设随机变量X 和Y 相互独立,则X 和Y 的概率分布分别为,则{2}P X Y +== ( )(A )112 (B )18(C )16(D )12二、填空题:914小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设曲线)(x f y =和x x y -=2在点)1,0(处有公共的切线,则=⎪⎭⎫⎝⎛+∞→2lim n n nf n ________。
2013年金融硕士经济类联考综合能力(396)试题
2013年金融硕士经济类联考综合能力(396)试题2013年硕士研究生入学考试试题经济类联考综合能力真题解析一、逻辑推理(本大题共20小题,每小题2分,共40分。
单选题。
)1.如果小张来开会,则小李来开会或小赵不来开会。
小李没来开会。
如果上述信息正确,下列哪项一定不正确?A.小张来开会了。
B. 小张没来开会。
C.小赵没来开会。
D.小张和小赵都没来开会。
E.小张和小赵都来开会了。
【答案】:E2. 李娟在教室,除非她接到张凯的短信了。
下列哪项,如果正确,表明上述论断为假?Ⅰ李娟接到了张凯的短信并且在教室。
Ⅱ李娟没有接到张凯的短信并且不在教室。
Ⅲ李娟接到了张凯的短信并且不在教室。
A.只有Ⅰ。
B.只有Ⅱ。
C.只有Ⅲ。
D.只有Ⅱ和Ⅲ。
E.只有Ⅰ和Ⅱ。
【答案】:无答案。
只有李娟在教室并且未收到张凯的短信才能推翻题干论断。
3.所有喜欢数学的学生都喜欢哲学。
如果上述信息正确,则下列哪项一定不正确? A.有些学生喜欢哲学但不喜欢数学。
B.有些学生喜欢数学但是不喜欢哲学。
C.有些学生既喜欢哲学又喜欢数学。
D.所有的学生都喜欢数学。
E.多数学生都喜欢哲学。
【答案】:B4.和政治学导论、世界史导论相比,杨林更喜欢物理学和数学。
和政治学导论相比,杨林更不喜欢体育。
除了下列哪项,其余各项都能从上述论述中推出?A.和体育相比,杨林更喜欢政治学。
B.和体育相比,杨林更喜欢数学。
C.和世界史导论相比,杨林更不喜欢体育。
D。
和体育相比,杨林更喜欢物理学。
E.和数学相比,杨林更不喜欢世界史导论。
【答案】:C5.学校学习成绩排名前百分之五的同学要参加竞赛培训,后百分之五的同学要参加社会实践。
小李的学习成绩高于小王的学习成绩,小王的学习成绩低于学校的平均成绩。
下列哪项最不可能发生?A.小李和小王都要参加社会实践。
B.小王和小李都没有参加社会实践。
C.小李和小王都没有参加竞赛培训。
D.小李参加竞赛培训。
E.小王参加竞赛培训,小李没有参加竞赛培训。
考研数学三真题(2013年)
2013年全国硕士研究生入学统一考试真题试卷《数学三》试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)当0x →时,用()o x 表示比x 高阶的无穷小,则下列式子中错误的是( )(A )23()()x o x o x ⋅= (B )23()()()o x o x o x ⋅= (C )222()()()o x o x o x += (D )22()()()o x o x o x +=(2)函数||1()(1)ln ||x x f x x x x -=+的可去间断点的个数为( )(A )0 (B )1 (C )2 (D )3(3)设k D 是圆域22{(,)|1}D x y x y =+≤位于第k 象限的部分,记()kk D I y x dxdy =-⎰⎰()1,2,3,4k =,则( )(A )10I > (B )20I > (C )30I > (D )40I > (4)设{}n a 为正项数列,下列选项正确的是( ) (A )若111,(1)n n n n n a a a ∞-+=>-∑则收敛(B )11(1)n n n a ∞-=-∑若收敛,则1n n a a +>(C )1n n a ∞=∑若收敛,则存在常数1P >,使lim P n n n a →∞存在(D )若存在常数1P >,使lim Pn n n a →∞存在,则1n n a ∞=∑收敛(5)设矩阵A,B,C 均为n 阶矩阵,若,B AB C =则可逆,则( ) (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价 (C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的列向量组与矩阵B 的列向量组等价(6)矩阵1a 1a b a 1a 1⎛⎫ ⎪ ⎪ ⎪⎝⎭与2000b 0000⎛⎫⎪ ⎪⎪⎝⎭相似的充分必要条件为( ) (A )a 0,b 2== (B )为任意常数b a ,0= (C )0,2==b a (D )为任意常数b a ,2= (7)设123X X X ,,是随机变量,且22123~N(0,1)~N(~(5,3)X N ,X 0,2),X , {22}(1,2,3),j j P P X j =-≤≤=则( )(A )123P P P >> (B )213P P P >> (C )312P P P >> (D )132P P P >>(8)设随机变量X 和Y 相互独立,则X 和Y 的概率分布分别为,则{2}P X Y +== ( )(A )112 (B )18 (C )16 (D )12二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)设曲线)(x f y =和x x y -=2在点)1,0(处有公共的切线,则=⎪⎭⎫ ⎝⎛+∞→2lim n n nf n ________。
2013年考研数学真题及参考答案(数学一)
⑻ 设随机变量 X t ( n) ,Y F (1, n) ,给定 (0 0.5) ,常数 c 满足 P X c , 则P Y c
2
(
)
(A) (B) 1 (C) 2 (D) 1 2 二、填空题:9~14 小题,每小题 4 分,共 24 分.请将答案写在答题纸 指定位置上. ... ⑼ 设函数 y f ( x) 由方程 y x e ⑽ 已知 y1 e
x3 x y )e 的极值. 3
z 0 , z 2 所围成的立体为 . (Ⅰ)求曲面 的方程; (Ⅱ)求 的形心坐标.
(20) (本题满分 11 分) 设A
1 a 0 1 ,B ,当 a, b 为何值时,存在矩阵 C 使得 AC CA B ,并 1 0 1 b
ቤተ መጻሕፍቲ ባይዱ
(1 x 2
Di
y2 )dxdy . 2
2
1 2 1 y 0 x2 y 2 1 , 所 以 被 积 函 数 在 2 2 1 1 D1 : x 2 y 2 1 内,恒有 f ( x, y ) 0 ;且 x 2 y 2 1 时,有 f ( x, y ) 0 2 2
(0,1, 1)
{1, 1,1} ,
于是切平面方程为 x ( y 1) ( z 1) 0 ,故应选(A). ⑶ 应选(C) . 【分析】本题考查傅里叶级数的收敛定理.先将函数延拓成 ( 1,1) 上的奇函数 F ( x) .对
9 F ( x) 使用傅里叶级数的收敛定理(狄里赫雷定理)得到 S ( ) 的值. 4
(D) a 2, b 为任意常数
N (0,1) , X 2
N (0, 22 ) , X 3
2013年396经济类联考综合能力考研试题数学
四、写作:第40~41小题,共40分。
其中论证有效性分析20分,论说文20分。
40.论证有效性分析:分析下述论证中存在的缺陷和漏洞,选择若干要点,写一篇600字左右的文章,对该论证的有效性进行分析和评论。
(论证有效性分析的一般要点是:概念特别是核心概念的界定和使用是否准确并前后一致,有无各种明显的逻辑错误,论证的论据是否成立并支持结论,结论成立的条件是否充分等等。
)41.论说文:根据下述材料,写一篇700字左右的论说文,题目自拟。
被誉为清代"中兴名臣"的曾国藩,其人生哲学很独特,就是"尚拙",他曾说"天下之至拙,能胜任天下之至巧,拙者自知不如他人,自便会更虚心。
四、写作:第40~41小题,共40分。
其中论证有效性分析20分,论说文20分。
40.论证有效性分析:分析下述论证中存在的缺陷和漏洞,选择若干要点,写一篇600字左右的文章,对该论证的有效性进行分析和评论。
(论证有效性分析的一般要点是:概念特别是核心概念的界定和使用是否准确并前后一致,有无各种明显的逻辑错误,论证的论据是否成立并支持结论,结论成立的条件是否充分等等。
)41.论说文:根据下述材料,写一篇700字左右的论说文,题目自拟。
被誉为清代"中兴名臣"的曾国藩,其人生哲学很独特,就是"尚拙",他曾说"天下之至拙,能胜任天下之至巧,拙者自知不如他人,自便会更虚心。
四、写作:第40~41小题,共40分。
其中论证有效性分析20分,论说文20分。
40.论证有效性分析:分析下述论证中存在的缺陷和漏洞,选择若干要点,写一篇600字左右的文章,对该论证的有效性进行分析和评论。
(论证有效性分析的一般要点是:概念特别是核心概念的界定和使用是否准确并前后一致,有无各种明显的逻辑错误,论证的论据是否成立并支持结论,结论成立的条件是否充分等等。
)41.论说文:根据下述材料,写一篇700字左右的论说文,题目自拟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、写作:第40~41小题,共40分。
其中论证有效性分析20分,论说文20分。
40.论证有效性分析:分析下述论证中存在的缺陷和漏洞,选择若干要点,写一篇600字左右的文章,对该论证的有效性进行分析和评论。
(论证有效性分析的一般要点是:概念特别是核心概念的界定和使用是否准确并前后一致,有无各种明显的逻辑错误,论证的论据是否成立并支持结论,结论成立的条件是否充分等等。
)
41.论说文:根据下述材料,写一篇700字左右的论说文,题目自拟。
被誉为清代"中兴名臣"的曾国藩,其人生哲学很独特,就是"尚拙",他曾说"天下之至拙,能胜任天下之至巧,拙者自知不如他人,自便会更虚心。
四、写作:第40~41小题,共40分。
其中论证有效性分析20分,论说文20分。
40.论证有效性分析:分析下述论证中存在的缺陷和漏洞,选择若干要点,写一篇600字左右的文章,对该论证的有效性进行分析和评论。
(论证有效性分析的一般要点是:概念特别是核心概念的界定和使用是否准确并前后一致,有无各种明显的逻辑错误,论证的论据是否成立并支持结论,结论成立的条件是否充分等等。
)
41.论说文:根据下述材料,写一篇700字左右的论说文,题目自拟。
被誉为清代"中兴名臣"的曾国藩,其人生哲学很独特,就是"尚拙",他曾说"天下之至拙,能胜任天下之至巧,拙者自知不如他人,自便会更虚心。
四、写作:第40~41小题,共40分。
其中论证有效性分析20分,论说文20分。
40.论证有效性分析:分析下述论证中存在的缺陷和漏洞,选择若干要点,写一篇600字左右的文章,对该论证的有效性进行分析和评论。
(论证有效性分析的一般要点是:概念特别是核心概念的界定和使用是否准确并前后一致,有无各种明显的逻辑错误,论证的论据是否成立并支持结论,结论成立的条件是否充分等等。
)
41.论说文:根据下述材料,写一篇700字左右的论说文,题目自拟。
被誉为清代"中兴名臣"的曾国藩,其人生哲学很独特,就是"尚拙",他曾说"天下之至拙,能胜任天下之至巧,拙者自知不如他人,自便会更虚心。