中山大学2018年《603数学三(单考)》考研专业课真题试卷

合集下载

18年考研数学三真题

18年考研数学三真题

18年考研数学三真题18年考研数学三真题是考研数学备考的重要参考资料之一。

通过解析这些真题,考生可以更好地了解考试的难度和考点,有针对性地进行复习和训练。

本文将对18年考研数学三真题进行分析和解析,帮助考生更好地备考。

首先,我们来看一道典型的选择题。

18年考研数学三真题中的一道选择题是关于极限的。

该题给出了一个数列的递推公式,要求求出该数列的极限值。

这道题考察了考生对极限的理解和运用能力。

解答这道题的关键在于找到数列的通项公式,然后求出其极限。

考生需要运用数列的性质和极限的定义,进行推导和计算,最终得出答案。

通过解析这道题,考生可以加深对极限的理解,并且掌握运用极限的方法和技巧。

接下来,我们来看一道典型的填空题。

18年考研数学三真题中的一道填空题是关于微分方程的。

该题给出了一个微分方程和一个初始条件,要求求解出该微分方程的特解。

这道题考察了考生对微分方程的理解和解题能力。

解答这道题的关键在于将微分方程进行变换和化简,然后利用初始条件求解出常数。

考生需要熟练掌握微分方程的基本概念和解法,运用微积分的知识进行推导和计算,最终得出特解。

通过解析这道题,考生可以加深对微分方程的理解,并且掌握解决微分方程问题的方法和技巧。

最后,我们来看一道典型的计算题。

18年考研数学三真题中的一道计算题是关于概率统计的。

该题给出了一个随机变量的概率分布和一个事件的概率,要求求出该事件的期望值。

这道题考察了考生对概率统计的理解和计算能力。

解答这道题的关键在于计算随机变量的期望值,需要利用概率分布和事件的定义进行计算。

考生需要熟练掌握概率统计的基本概念和计算方法,运用数学统计的知识进行推导和计算,最终得出期望值。

通过解析这道题,考生可以加深对概率统计的理解,并且掌握计算概率统计问题的方法和技巧。

综上所述,18年考研数学三真题是考生备考的重要参考资料。

通过解析这些真题,考生可以更好地了解考试的难度和考点,有针对性地进行复习和训练。

2018考研数学三试题及答案解析

2018考研数学三试题及答案解析

2018年全国硕士研究生入学统一考试数学(三)试题及答案解析一、选择题:1 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的.(1)下列函数中,在0x =处不可导的是()(A)()sin f x x x =(B)()sin f x x =(C)()cos f x x =(D)()f x =【答案】(D)【解析】根据导数的定义:(A)sin limlim0,x x x x x x →→== 可导;(B)0,x x →→==可导;(C)1cos 12limlim0,x x xx x→→--==可导;(D)000122limlim,x x x xx x→→→-==极限不存在,故选D。

(2)()[]()10,10,f x f x dx =⎰设函数在上二阶可导,且则()(A)1()0,()02f x f '<<当时(B)1()0,()02f x f ''<<当时(C)1()0,()02f x f '><当时(D)1()0,(02f x f ''><当时【答案】(D )【解析】2111()11()()()()(,2222!22f f x f f x x x ξξ'''=+-+-介于,之间,故1111220000120111()11()10=()()(()((2222!222!2()11()0()0,()0..2!22f f f x dx f f x dx x dx f x dxf f x x dx f D ξξξ'''''=+-+-=+-''''>⇒-><⎰⎰⎰⎰⎰由于所以,应选(3)设()(2222222211,,1,1x x xM dx N dx K dx x e ππππππ---++===++⎰⎰⎰则()(A)M N K >>(B)M K N >>(C)K M N >>(D)K N M>>【答案】(C)【解析】22222222222(1)122=(1).111x x x x M dx dx dx x x x πππππππ---+++==+=+++⎰⎰⎰22222111(0)11xxxxx e x N dx dx Mee πππππ--+++<≠⇒<⇒=<=<⎰⎰2222=11K dx dx M πππππ-->==⎰⎰(,K M N >>故应选C 。

2018年考研数学三试题与答案解析(完整版)

2018年考研数学三试题与答案解析(完整版)

M 2 (1
2

2x ) dx 22 1dx 1 x2
x - , 时, 1 cos x 1, 所以K M 2 2 令f ( x) 1 x e x , f (0) 0, f ( x) 1 e x 当x 0, 时,f ( x ) 0; 当x , 0 时,f ( x ) 0 2 2 1 x 所以x - , 时,有f ( x ) 0,从可有 x 1,由比较定理得N<M, 故选C e 2 2
B. f ( x ) x sin( D. f ( x ) cos(
x) x)
f - 0 lim
x 0
x sin x x x sin x x
lim
x 0
x sin x x sin x x sin x 0 lim 0, f lim 0 x 0 x 0 x x x x sin x x sin x x sin x 0 lim 0, f lim 0 x 0 x 0 x x x
0 2
B. r ( A BA) r ( A). D. r ( A B ) r ( A B ).
T T
【解析】特殊值法:由已知可将 f ( x ) 看成随机变量 X N 1, 布的对称性, P X 0 0.2

2
的概率密度,根据正态分
1 n Xi , n i 1
Born to win
2018 年考研数学三试题与答案解析(完整版)
——跨考教育数学教研室
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项 符合题目要求的,请将所选项前的字母填在答题纸 指定位置上. ... 1. 下列函数中,在 x 0 处不可导的是( A. f ( x ) x sin( x ) C. f x cos( x ) 【答案】D 【解析】 A 可导: ) 。

2018年全国硕士研究生入学统一考试数学(三)真题及解析

2018年全国硕士研究生入学统一考试数学(三)真题及解析

2018年全国硕士研究生入学统一考试数学(三)真题及解析(江南博哥)1[单选题]下列函数中,在x=0处不可导的是( ).A.f(x)=|x|sin |x|B.f(x)=|x|sinC.f(x)=cos|x|D.f(x)=cos正确答案:D参考解析:2[单选题]设函数f(x)在[0,1]上二阶可导,且,则( ).A.当f’(x)<0时,f()<0B.当f’’(x)<0时,f()<0C.当f'(x)>0时,f()<0D.当f”(x)>0时,f()<0正确答案:D参考解析:3[单选题]( ).A.M>N>KB.M>K>NC.K>M>ND.K>N>M正确答案:C参考解析:4[单选题]设某产品的成本函数C(Q)可导,其中Q为产量,若产量为Q0时平均成本最小,则( ).A.C '(Q0)=0B.C’(Q0)=C(Q0)C.C’(Q0)=Q0c(Q0)D.Q0C'(Q0)=C(Q0)正确答案:D参考解析:5[单选题]( ).A.B.C.D.正确答案:A参考解析:本题考查矩阵相似的定义及相似矩阵的性质(相似矩阵的秩相等).若存在可逆矩阵P,使得P-1AP=B,则A~B.从而可知E—A~E-B,且r(E—A)=r(E—B).设题中所给矩阵为A,各项中的矩阵分别为B1,B2,B3,B4.经验证知r(E—B1)=2,r(E-B2)=r(E—B3)=r(E-B4)=1.因此A~B1,即A相似于A项下的矩阵.6[单选题]设A,B为n阶矩阵,记r(X)为矩阵X的秩,(X,Y)表示分块矩阵,则( ).A.r(A,AB)=r(A)B.r(A,BA)=r(A)C.r(A,B)=max{r(A),r(B)}D.r(A,B)=r(A T,B T)正确答案:A参考解析:解这道题的关键,要熟悉以下两个不等关系:①r(AB)≤min{r(A),r(B)};②r(A,B)≥max{r(A),r(B)}.由r(E,B)=n,可知r(A,AB)=r(A(E,B))≤min{r(A),r(E,B)}=r(A).又r(A,AB)≥max{r(A),r(AB)},r(AB)≤r(A),可知r(A,AB)≥r(A).从而可得r(A,AB)=r(A).7[单选题]设f(x)为某随机变量X的概率密度函数,f(1+x)=f(1-x),,则P{X<0}=( ).A.0.2B.0.3C.0.4D.0.6正确答案:A参考解析:由于f(1+x)=f(1-x),可知f(x)图形关于x=1对称.8[单选题]A.B.C.D.正确答案:B参考解析:解这道题,首先知道t—分布的定义.9[填空题]曲线y=x2+2 lnx在其拐点处的切线方程是______.参考解析:y=4x-3首先求得函数f(x)=x2+2lnx的定义域为(0,+∞).10[填空题]______.参考解析:11[填空题]差分方程△2y x-y x=5的解为______.参考解析:yx=C·2x-512[填空题]设函数f(x)满足f(x+△x)-f(x)=2xf(x)△x+o(△x)(△x→0),f(0)=2,则f(1)=______.参考解析:2e由题意知f’(x)=2xf(x),解该一阶齐次线性微分方程可得f(x)=Ce x2.又f(0)=2,得C=2.因此f(x)=2e x2,从而f(1)=2e.13[填空题]设A为三阶矩阵,α1,α2,α3为线性无关的向量组,若Aα1=α1+α2,Aα2=α2+α3,Aα3=α1+α3,则|A|=______.参考解析:2由于α1,α2,α3线性无关,则P=(α1,α2,α3)为可逆矩阵.因此14[填空题]随机事件A,B,C相互独立,且P(A)=P(B)=P(C)=,则P(AC|A∪B)=______.参考解析:15[简答题]参考解析:解:16[简答题]参考解析:17[简答题]将长为2 m的铁丝分成三段,依次围成圆、正方形与正三角形.三个图形的面积之和是否存在最小值?若存在,求出最小值.参考解析:18[简答题]参考解析:19[简答题]参考解析:20[简答题](本题满分ll分)设实二次型f(x1,x2,x3)=(x1-x2+x3)2+(x2+x3)2+(x1+ax3)2,其中a是参数.(I)求f(x1,x2,x3)=0的解;(II)求f(x1,x2,x3)的规范形.参考解析:解:(I)由f(x1,x2,x3)=0,得21[简答题](本题满分ll分)(I)求a;(Ⅱ)求满足AP=B的可逆矩阵P.参考解析:22[简答题]设随机变量X与Y相互独立,X的概率分布为P(X=1)=P(X=-1)=,Y服从参数为A的泊松分布,令Z=XY.(I)求Coy(X,Z);(Ⅱ)求Z的概率分布.参考解析:23[简答题]设总体X的概率密度为其中σ∈(0,+∞)为未知参数,X1,X2,…,x n为来自总体X的简单随机样本,σ的最大似然估计量为.(I)求;(Ⅱ)求E(),D().参考解析:。

2018年考研数学三真题

2018年考研数学三真题

2018年全国硕士研究生入学统一考试数学三试题1.下列函数中,在0x =处不可导的是()。

A.()sin()f x x x =B.()f x x =C.()cos()f x x =D.()f x =2.已知函数()f x 在[]0,1上二阶可导,且()10,=⎰f x dx 则A.当()0'<f x 时,102⎛⎫<⎪⎝⎭f B.当()0''<f x 时,102⎛⎫<⎪⎝⎭f C.当()0'>f x 时,102⎛⎫<⎪⎝⎭f D.当()0''>f x 时,102⎛⎫<⎪⎝⎭f 3.设()(2222222211,,1,1ππππππ---++===++⎰⎰⎰x x xM dx N dx K dx x e 则A.>>M N KB.>>M K NC.>>K M ND.>>K N M4.设某产品的成本函数()C Q 可导,其中Q 为产量,若产量为0Q 时平均成本最小,则()A.()00C Q '= B.()()00C Q C Q '= C.()()000C Q Q C Q '= D.()()000Q C Q C Q '=5.下列矩阵中,与矩阵110011001⎛⎫ ⎪⎪ ⎪⎝⎭相似的为A.111011001-⎛⎫⎪ ⎪ ⎪⎝⎭ B.101011001-⎛⎫⎪ ⎪ ⎪⎝⎭C.111010001-⎛⎫ ⎪ ⎪ ⎪⎝⎭D.101010001-⎛⎫ ⎪ ⎪ ⎪⎝⎭6.设,A B 为n 阶矩阵,记()r X 为矩阵X 的秩,(,)X Y 表示分块矩阵,则——印校园考研一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答.题.纸.指定位置上.A.()().r A AB r A = B.()().r A BA r A =C.()max{()()}.r A B r A r B =, D.()().TTr A B r A B =7.设()f x 为某分布的概率密度函数,(1)(1)f x f x +=-,()200.6f x dx =⎰,则{0}P X <=A.0.2B.0.3C.0.4D.0.68.已知12,,,n X X X 为来自总体2~(,)X N μσ的简单随即样本,11ni i X X n ==∑,*S S ==A.)~()X t n S μ-B.)~(1)X t n S μ--C.*)~()X t n S μ-D.*)~(1)X t n S μ--二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.9.曲线2()2ln f x x x =+在其拐点处的切线方程是__________________.10.arcsin x e =⎰____________.11.差分方程25x x y y ∆-=的解为__________________.12.设函数()f x 满足()()2()()f x x f x xf x x o x +∆-=∆+∆,且(0)2f =,则(1)f =____.13.设A 为3阶矩阵,123,,ααα为线性无关的向量组.若11232A αααα=++,2232A ααα=+,323A ααα=-+,则A 的实特征值为_______________.14.已知事件,,A B C 相互独立,且1()()()2p A p B p C ===,则(|)p AC A B ⋃=________.三、解答题:15—23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.15.1lim ()2x x ax b e x →+∞⎡⎤+-=⎢⎥⎣⎦,求,a b16.求2,Dx dxdy D ⎰⎰由y =与y =y 轴围成17.一根绳长2m,截成三段,分别拆成圆、正三角形、正方形,这三段分别为多长时所得的面积总和最小,并求该最小值。

2018年数学三考研真题及解析

2018年数学三考研真题及解析

2018年全国硕士研究生入学统一考试数学三试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1. 下列函数中,在0x =错误!未找到引用源。

处不可导的是( )。

A. ()sin()f x x x =B. ()f x x =C. ()cos()f x x =D. ()f x =【答案】D 【解析】 A 可导:()()()()-0000sin sin sin sin 0lim lim 0,0lim lim 0x x x x x x x x x x x xf f x x x x--+++→→→→⋅⋅''====== B 可导:()()-0000sin 0lim lim 0,0lim lim 0x x x x x x f f x x--+++→→→→-⋅⋅''======C 可导:()()22-000011cos -1cos -1220lim lim 0,0lim lim 0x x x x x x x x f f x x x x--+++→→→→--''====== D 不可导:()()()()()-000-11-11220lim lim ,0lim lim -2200x x x x x x f f x x f f --+++→→→→+--''======''≠2 .已知函数()f x 在[]0,1上二阶可导,且()10,=⎰f x dx 则A.当()0'<f x 时,102⎛⎫<⎪⎝⎭f B. 当()0''<f x 时,102⎛⎫< ⎪⎝⎭f C. 当()0'>f x 时,102⎛⎫< ⎪⎝⎭f D. 当()0''>f x 时,102⎛⎫< ⎪⎝⎭f 【答案】D 【解析】A 错误:()()()11000,10111,2,022f x f x dx dx f x x f x ⎛⎫'===-< ⎪⎛⎫=-+-+= ⎝⎝⎭⎪⎭⎰⎰B 错误:()()()100212111111,033243120,20,f x dx dx f x x f f x x ⎛⎫''==⎛⎫=-+-+=-+=-< ⎪⎝⎭=> ⎪⎝⎭⎰⎰C 错误:()()()1100111,0220,10,2f x d f x x x f x dx f x ⎛⎫=-⎛⎫'-===> ⎪⎝⎭= ⎪⎝⎭⎰⎰D 正确:方法1:由()0f x ''>可知函数是凸函数,故由凸函数图像性质即可得出102f ⎛⎫< ⎪⎝⎭方法2:21112200011111()()()()()(),22222111111()()()()()()()()()02222221()0,()0.2f x f f x f x x f x dx f f x f x dx f f x dx f x f ξξξξ'''=+-+-'''''=+-+-=+-=''><⎰⎰⎰介于和之间,又故 3.设()(2222222211,,1,1ππππππ---++===++⎰⎰⎰x x xM dx N dx K dx x e 则 A.>>M N K B.>>M K NC.>>K M ND.>>K N M 【答案】C 【解析】222222(1)11-,11,22()1,(0)0,()10,()0;,0()0221-,()01N<M,C22x xx xM dx dx x x K Mf x x e f f x e x f x x f x x x f x e ππππππππππ--=+=+⎡⎤∈≥>⎢⎥⎣⎦'=+-==-⎡⎤⎡⎤''∈<∈->⎢⎥⎢⎥⎣⎦⎣⎦+⎡⎤∈≤≤⎢⎥⎣⎦⎰⎰时,所以令当时,当时,所以时,有,从可有,由比较定理得故选4. 设某产品的成本函数()C Q 可导,其中Q 为产量,若产量为0Q 时平均成本最小,则( ) A. ()00C Q '= B.()()00C Q C Q '= C.()()000C Q Q C Q '= D. ()()000Q C Q C Q '= 【答案】D【解析】根据平均成本()C Q C Q=,根据若产量为0Q 时平均成本最小,则有 ()()()()()()()0000000220Q Q Q QC Q Q C Q C Q Q C Q C C Q Q C Q Q Q ==''--''===⇒=5.下列矩阵中,与矩阵110011001⎛⎫ ⎪ ⎪ ⎪⎝⎭相似的为 A. 111011001-⎛⎫⎪⎪ ⎪⎝⎭ B.101011001-⎛⎫ ⎪ ⎪ ⎪⎝⎭ C. 111010001-⎛⎫ ⎪⎪ ⎪⎝⎭D.101010001-⎛⎫ ⎪ ⎪ ⎪⎝⎭【答案】A【解析】方法一:排除法令110011001Q ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,特征值为1,1,1,()2r E Q -= 选项A :令111011001A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,A 的特征值为1,1,1,()0110012000r E A r -⎡⎤⎢⎥-=-=⎢⎥⎢⎥⎣⎦ 选项B :令101011001B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,B 的特征值为1,1,1,()0010011000r E B r ⎡⎤⎢⎥-=-=⎢⎥⎢⎥⎣⎦ 选项C :令111010001C -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,C 的特征值为1,1,1,()0110001000r E C r -⎡⎤⎢⎥-==⎢⎥⎢⎥⎣⎦选项B :令101010001D -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,D 的特征值为1,1,1,()0010001000r E D r ⎡⎤⎢⎥-==⎢⎥⎢⎥⎣⎦若矩阵Q 与J 相似,则矩阵E Q -与E J -相似,从而()()r E Q r E J -=-,故选(A )方法二:构造法(利用初等矩阵的性质)令110010001P ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,1110010001P --⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦1110111011011001001P P --⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ ,所以110111011011001001-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦与相似故选(A )6.设,A B 为n 阶矩阵,记()r X 为矩阵X 的秩,(,)X Y 表示分块矩阵,则 A.()().r A AB r A = B.()().r A BA r A = C.()max{()()}.r A B r A r B =, D.()().T T r A B r A B = 【答案】(A )【解析】(,)(,)[(,)]()r E B n r A AB r A E B r A =⇒== 故选(A )7.设()f x 为某分布的概率密度函数,(1)(1)f x f x +=-,()200.6f x dx =⎰,则{0}P X <=A.0.2 B.0.3 C.0.4 D.0.6 【答案】A【解析】特殊值法:由已知可将()f x 看成随机变量()21,X N σ的概率密度,根据正态分布的对称性,()00.2P X <= 8.已知12,,,n X X X 为来自总体2~(,)X N μσ的简单随即样本,11ni i X X n ==∑,*S S ==A.()~()X t n S μ- B.()~(1)X t n S μ--C.*)~()X t n Sμ-D. *)~(1)X t n Sμ-- 【答案】B 【解析】2,XN n σμ⎛⎫⎪⎝⎭()()()22211,0,1n SX N n χσ--, 又2X S 与相互独立,所以)()1X t n Sμ--,故选项B 正确,而A 错.()()()*22210,1,n S X Nn μχσσ--,2X S *与相互独立 ()n X t n μ-,故选项C ,D 错。

18年数三真题答案解析

18年数三真题答案解析

18年数三真题答案解析2018年数学三真题答案解析2018年数学三真题共25小题,分为四部分:选择题、填空题、计算题和解答题。

下面我们就来分析详细的答案解析。

一、选择题第一、二题属于数列和函数的知识,第三、四题考查几何知识,第五、六题考查导数的知识,第七、八题考查微积分,第九、十题考查不等式,第十一—十三题考查代数,第十四-十六题考查统计,第十七—二十题考查三角函数,第二十一-二十五题考查空间几何。

答案:1、B2、A3、C4、A5、C6、A7、D8、B9、B 10、A 11、C 12、C 13、A 14、B 15、A 16、D 17、C 18、B 19、B 20、C 21、A 22、B 23、D 24、A 25、B二、填空题第一题考查数列的求和公式,通过求和公式可以得到答案是1.12。

第二题考查函数与曲线,给出的坐标(1,2)可以求出f(2)的值,即为1。

第三、第四题考查几何,利用求解直角三角形面积的公式可得出答案,分别是2.5和1.75。

第五题与第六题考查导数中的导数定义和不定积分,第五题的答案为-1/2,第六题的答案为1。

答案:1、1.12 2、1 3、2.5 4、1.75 5、-1/2 6、1三、计算题第一、二题考查高等数学的积分,第一题的答案为0.15,第二题的答案为0.75。

第三、四题考查代数中的矩阵,第三题的答案为1,第四题的答案为2。

第五题考查近似计算,答案为0.390。

答案:1、0.15 2、0.75 3、1 4、2 5、0.390四、解答题第一题考查数列的知识,将数列分成形如2n+1、2n-1的两部分,分别求和,最后加上最后一项之后得出答案985。

第二题考查微积分中的椭圆曲线,首先求出a与b,以及f(x)在[0,π/2]上最大值cn,根据给定条件可得出答案为6个π/3。

第三题考查空间几何,要求求出空间两个线段之间的距离公式,最后可得出答案3·π√3/90。

答案:1、985 2、6π/3 3、3π√3/90。

中山大学考研考研数学三真题

中山大学考研考研数学三真题

中山大学考研考研数学三真题导言:中山大学是一所位于广州的国家“双一流”重点大学,拥有丰富的学术资源和优秀的师资队伍。

考研成为了许多学子的选择,其中数学科目是众多考生关注的焦点。

本文将为大家介绍中山大学考研数学三真题,帮助广大考生更好地备考和应对考试。

第一部分:概述中山大学考研数学三是指数学科目中的第三大题目,难度适中,是考生对数学知识和解题能力的全面考察。

该题目主要考察考生的代数和数学分析能力,并要求考生能够结合实际问题进行推导和解答。

因此,考生在备考时应注重对代数和数学分析基础知识的理解和掌握。

第二部分:真题回顾以下是中山大学考研数学三的一道真题回顾,帮助考生更好地了解题目难度和解题思路。

真题:设A是一个n阶矩阵,x是一个列向量,A的特征向量,证明x在矩阵A的特征值为0的特征子空间中。

解析:首先,特征向量的定义是指在某个线性变换下,仅改变其伸缩比例的向量。

而特征值为0的特征子空间指的是特征值为0所对应的特征向量的集合。

设λ=0是矩阵A的特征值,x是对应于特征值λ=0的特征向量。

则有Ax=0。

对于任意的x0∈R^n,都有A(Ax0)=A0=0,即A(Ax0)也是特征值为0的特征向量。

假设y=Ax0,其中x0不等于0,则y满足Ay=Ax0=0,即y也是特征值为0的特征向量。

综上所述,x所在的特征值为0的特征子空间中的任意向量y都满足Ay=0,即x在矩阵A的特征值为0的特征子空间中。

第三部分:解题思路根据上述真题解析,我们可以总结出中山大学考研数学三的解题思路如下:1. 首先,对于给定的矩阵A和特征向量x,需要根据定义和性质进行合理的推理和假设。

2. 其次,根据已知条件和定理,运用代数和数学分析的方法进行推导和证明。

3. 最后,总结结果,清晰地表达解题思路和结论。

考生在备考和应对中山大学考研数学三时,需注重以下方面的知识和技巧:- 掌握矩阵的基本运算和性质,理解特征向量和特征值的定义和意义。

- 熟悉代数和数学分析的基本定理和运算方法。

2018年考研数学三试题及答案解析

2018年考研数学三试题及答案解析

【解析】
2
2 2 2!
2
2
0= 1 f (x)dx f (1) 1 f (1)(x 1)dx 1 f ( )(x 1)2 dx f (1) 1 f ( )(x 1)2 dx
0
202 2
0 2!
2
2 0 2!
2
由于f (x) 0 1 f ( )(x 1)2 dx 0,所以,f (1) 0.应选D.
代入还原得原积分=ex arccos ex 1 e 2x C.
(11)差分方程 2 yx yx 5的通解是 ________ .
【答案】
yx

C1
C2
1x

5 2
x
【解析】(1)对应的齐次方程为: 2 yx yx 0,
于是 2 1=0,故1=1,2 = 1,
【答案】(A)
设C AB,则可知C的列向量可以由A的列向量线性表示,则r (A ,C ) r (A ,AB ) r (A ).
【解析】
(7)设随机变量
X
的概率密度
f
x满足f
1 x
f
1

x

,
2

0
f
x dx
0.6, 则P
X
0


(A) 0.2
(B) 0.3
1 x

t,则 lim x
(ax
1
b)e x

x


lim
t 0
(a

bt) et t
1

2.
由 lim t 0知,lim(a bt)et 1 a 1 0, 则a =1;代入得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档