(整理)开关电源拓扑结构详解

合集下载

开关电源拓扑结构详解

开关电源拓扑结构详解

开关电源拓扑结构详解主回路——开关电源中,功率电流流经的通路。

主回路一般包含了开关电源中的开入端和负载端。

开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。

开关电源主回路可以分为隔离式与非隔离式两大类型。

1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。

1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。

开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。

串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。

例如buck 拓扑型开关电源就是属于串联式的开关电源。

上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。

其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。

在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。

开关电源11种拓扑结构介绍

开关电源11种拓扑结构介绍

开关电源11种拓扑结构介绍1、基本的脉冲宽度调制波形这些拓扑结构都与开关式电路有关。

基本的脉冲宽度调制波形定义如下:2、Buck降压■把输入降至一个较低的电压。

■可能是最简单的电路。

■电感/电容滤波器滤平开关后的方波。

■输出总是小于或等于输入。

■输入电流不连续 (斩波)。

■输出电流平滑。

3、Boost升压■把输入升至一个较高的电压。

■与降压一样,但重新安排了电感、开关和二极管。

■输出总是比大于或等于输入(忽略二极管的正向压降)。

■输入电流平滑。

■输出电流不连续 (斩波)。

4、Buck-Boost降压-升压■电感、开关和二极管的另一种安排方法。

■结合了降压和升压电路的缺点。

■输入电流不连续 (斩波)。

■输出电流也不连续 (斩波)。

■输出总是与输入反向 (注意电容的极性),但是幅度可以小于或大于输入。

■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。

5、Flyback反激■如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。

■输出可以为正或为负,由线圈和二极管的极性决定。

■输出电压可以大于或小于输入电压,由变压器的匝数比决定。

■这是隔离拓扑结构中最简单的■增加次级绕组和电路可以得到多个输出。

6、Forward正激■降压电路的变压器耦合形式。

■不连续的输入电流,平滑的输出电流。

■因为采用变压器,输出可以大于或小于输入,可以是任何极性。

■增加次级绕组和电路可以获得多个输出。

■在每个开关周期中必须对变压器磁芯去磁。

常用的做法是增加一个与初级绕组匝数相同的绕组。

■在开关接通阶段存储在初级电感中的能量,在开关断开阶段通过另外的绕组和二极管释放。

7、Two-Transistor Forward双晶体管正激■两个开关同时工作。

■开关断开时,存储在变压器中的能量使初级的极性反向,使二极管导通。

■主要优点:■每个开关上的电压永远不会超过输入电压。

■无需对绕组磁道复位。

8、Push-Pull推挽■开关(FET)的驱动不同相,进行脉冲宽度调制(PWM)以调节输出电压。

开关电源的基本拓扑结构

开关电源的基本拓扑结构
感谢您的观看
总结词
半桥型拓扑结构通过两个开关管和电容器的组合,实现输出电压的调节。
详细描述
在半桥型拓扑结构中,两个开关管交替导通和关断,通过调节占空比来调节输出电压。 这种拓扑结构适用于需要较高电压、大电流输出的应用场景,如逆变器和电机驱动等。
全桥型(Full-Bridge)
总结词
全桥型拓扑结构通过四个开关管的组合 ,实现输出电压的调节。
降压-升压型开关电源工作原理
总结词
根据输入电压和输出电压的大小关系,自动切换降压 或升压模式。
详细描述
在降压-升压型开关电源中,根据输入电压和输出电压 的大小关系,自动切换降压或升压模式。当输入电压 高于输出电压时,自动进入降压模式;当输入电压低 于输出电压时,自动进入升压模式。
反相开关型开关电源工作原理
VS
详细描述
在全桥型拓扑结构中,四个开关管两两交 替导通和关断,通过调节占空比来调节输 出电压。这种拓扑结构适用于需要极高电 压、大电流输出的应用场景,如高压直流 输电等。
03 开关电源的工作原理
降压型开关电源工作原理
总结词
通过控制开关管开通和关断的时间,调节输 出电压的大小。
详细描述
在降压型开关电源中,输入电压首先经过开 关管,通过控制开关管的开通和关断时间来 调节输出电压的大小。当开关管开通时,输 入电压加在负载上,当开关管关断时,输入 电压与负载断开,输出电压因此得到调节。
升压型开关电源工作原理
要点一
总结词
通过控制开关管开通和关断的时间,实现输出电压高于输 入电压的功能。
要点二
详细描述
在升压型开关电源中,当开关管开通时,输入电压同时加 在负载和储能元件上,当开关管关断时,储能元件释放能 量,使输出电压高于输入电压。通过控制开关管的开通和 关断时间,实现输出电压的调节。

开关电源各种拓扑结构集锦详解 后附笔记

开关电源各种拓扑结构集锦详解 后附笔记

《精通开关电源设计》笔记三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dtdILV ==T I L ∆∆,推出ΔI =V ×ΔT/L2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间t OFF3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。

那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD→t OFF =(1-D )/f电流纹波率r P51 52r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面:A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。

常用的开关电源拓扑结构-基础电子

常用的开关电源拓扑结构-基础电子

常用的开关电源拓扑结构-基础电子下面简单介绍一下常用的开关电源拓扑结构。

Buck电路首先我们要讲的就是Buck电路。

Buck电路也成为降压(step-down)变换器。

它的电路图是下面这样的:晶体管,二极管,电感,电容和负载构成了主回路,下方的控制回路一般采用PWM(脉冲宽度调制)芯片控制占空比决定晶体管的通断。

Buck电路的功能是把直流电压Ui转换成直流电压Uo,实现降压目的。

反激变换器反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源,与之对应的有正激式开关电源。

反激(FLY BACK),具体是指当开关管接通时,输出变压器充当电感,电能转化为磁能,此时输出回路无电流;相反,当开关管关断时,输出变压器释放能量,磁能转化为电能,输出回来中有电流。

反激式开关电源中,输出变压器同时充当储能电感,整个电源体积小、结构简单,所以得到广泛应用。

应用多的是单端反激式开关电源。

优点:元器件少、电路简单、成本低、体积小,可同时输出多路互相隔离的电压;缺点:开关管承受电压高,输出变压器利用率低,不适合做大功率电源。

Boost电路Boost(升压)电路是基本的反激变换器。

Boost变换器又称为升压变换器、并联开关电路、三端开关型升压稳压器。

上面的图就是Boost电路图。

Boost电路是一个升压电路,它的输出电压高于输入电压。

Buck/Boost变换器Buck/Boost变换器:也叫做升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但它的输出电压的极性与输入电压相反。

Buck/Boost变换器可以看做是Buck变换器和Boost变换器串联而成,合并了开关管。

它的电路图如下:上面提到的Buck和Boost电路,都是输出与输入共地,在电路上没有隔离。

采用变压器后,输出与输入电气隔离,可以多路输出。

而反激变换器是隔离变换器中简单的一种。

它分为两种工作模式,断续模式反激变换器和连续模式反激变换器。

开关电源拓扑结构概述共6页

开关电源拓扑结构概述共6页

主回路——开关电源中,功率电流流经的通路。

主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。

开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。

开关电源主回路可以分为隔离史与非隔离式两大类型。

一、非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。

1、串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。

开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。

串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。

2、并联式结构并联——在主回路中,相对于输入端而言,开关器件(下图中所示的开关三极管T)与输出端负载成并联连接的关系。

开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载R靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,输入端电源电压与电感器L中的自感电动势正向叠加后,通过续流二极管D对负载R 供电,并同时对电容器C充电。

由此可见,并联式结构中,可以获得高于输入电压的输出电压,因此为升压式变换。

并且为了获得连续的负载电流,并联结构比串联结果对输出滤波电容C的容量有更高的要求。

3、极性反转型变换器结构极性反转——输出电压与输入电压的极性相反。

电路的基本结构特征是:在主回路中,相对于输入端而言,电感器L与负载成并联。

开关管T交替工作于通/断两种状态,工作过程与并联式结构相似,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载RL 靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,电感器L中的自感电动势通过续流二极管D对负载RL 供电,并同时对电容器C充电;由于续流二极管D的反向极性,使输出端获得相反极性的电压输出。

5种经典开关电源拓扑结构

5种经典开关电源拓扑结构

工作过程分析
工作过程:1、当K导通时 1、当K →IL线性增加,D1截止→ IL线性增加,D1截止→ 此时IL和 此时IL和C向负载供电 当IL> Io时,IL向 IL> Io时,IL向 C充电也向负载供电 2、当K关断时→L通 、当K关断时→ 过D1形成续流回路, D1形成续流回路, IL向C充电也向负 IL向 载供电→ 载供电→当 IL﹤Io时,L IL﹤Io时,L 和C同时向负载供电。 IL减小到 减小到0 若IL减小到0,则D 关断,只有C 关断,只有C向负载供电
CCM模式下的供能
在CCM模式下,情况则比 较复杂,若Io小于IL的最小 值,则K断开之后,L始终 是向C和R同时供电,即处 于CISM状态下 若Io大于IL的最小值,即与 IL有交点,则当IL下降到Io 以下,C开始放电,L和C 同时向R供能。 核心在于IL和Io大小关系
BUCK-BOOST拓扑
CCM模式下的电压增益
τ>0.5D1(1-D1)(1-D1)时,IL连续,IL的上升部分为 ∆IL1=ViD1Ts/L,IL的下降部分为∆IL2=-(Vo-Vi) D2Ts/L, D1是K闭合,D导通的时间Ton占总周期Ts的比例, D2是K关断,D截止的时间Toff占总周期Ts的比例 由以上两式相等可以得到电压增益M=Vo/Vi=1/(1D1),此时D1+D2=1 由此处可知BOOST电路是一种升压电路,输入小于 输出
在K关断期间,IL线性下降,若周期结束即K导通瞬间IL不等 于0,则IL呈现左侧图(c)中的波形,电流连续。若K导通之前 IL就已经降为0,IL就会呈现断流的情形,为右侧图(c)的 波形。
临界情况下的电路各点波形
从电路结构可以看出IL的平均值就是输出电流Io, ∆IL为IL在本周期内的最大 变化值。 观察上图的波形可以发现,当电流刚好处在临界状态时,0.5 ∆IL=Io,分析 化简之后可以等效为τ=(1-D1)/2, τ=L/RTs 0.5∆IL<Io时,即τ>(1-D1)/2 ,Io处在连续的状态。 0.5∆IL>Io时,即τ<(1-D1)/2 , Io则会出现断流的情况。

02、开关电源基本拓扑结构

02、开关电源基本拓扑结构
吸收电路
开关电源基本拓扑
9
上海地铁一号线车辆辅助电路系统
(90年代初德国制造、当时世界先进水平) 800A/4500 V GTO斩波器将直流1500 V进行斩波降压至直流 775V,经800A/2500V GTO逆变器逆变为三相对称的50 Hz交流电。 变压器起着隔离与降压作用,向辅助用电设备提供380V/220 V三相 四线交流电源。
开关电源基本拓扑
29
哈尔滨工业大学研制成功一款超级电容电动车,一次只需充电15分 钟便能连续行驶25公里,最高时速可达52公里,2006年7月鉴定。超级 电容器由哈尔滨市人和集团巨容新能源有限公司生产。该车无噪音、零 排放、对环境无污染。
开关电源基本拓扑
30
新型大容量储能元件一超级电容在变频器中应用
Dy Vo From (3.2 ) & (3.4) V = 1 − D in y
(3.5) (3.6)
I Lf = I in + I 0 = =
Dy 1 − Dy
I0 + I0
(3.7)
Io I = in 1 − Dy Dy
Vin V = o 1 − Dy Dy
VQ = VD = Vin + Vo =
Vo = Dy Vin
(1.6)
I0 =
I Lf min + I Lf max 2
(1.7)
1 ∆iLf Ts ∆Q = 2 2 2
∆Vo = ∆Q (1 − D y )Vo = Cf 8 L f C f f s2
(1.8)
(1.9)
开关电源基本拓扑
8
湘潭电机股份有限公司工矿IGBT直流斩波车 直流斩波车 湘潭电机股份有限公司工矿 电压等级1500V,主要由IGBT功率组件、微机控制 单元构成。IGBT功率组件采用3300V/800A IGBT模块作 为主功率元件,主元件散热器采用风冷热管散热器,一 个IGBT功率组件单独驱动一台牵引电机。 微机控制盒的核心,配备为16位单片机80C196KC。

开关电源拓扑结构全解

开关电源拓扑结构全解

低压MOS的应用
c.Half –bridge
半桥应用中,一般MOS的选用30-50V,电流根据功率大小最大不会超 过10A.它用到最多的是N+P沟道的SO-8,也有用单独的N,P沟道的管子 作桥壁。
低压MOS的应用
d.full-bridge
全桥应用与半桥差不多,一般MOS的选用30-50V,电流根据功率大小 最大不会超过10A.它用到最多的是N+P沟道的SO-8,也有用单独的N,P 沟道的管子作桥壁。
低压MOS的应用
• 在电动车控制器和电机控制的应用
Hale Waihona Puke • 在电动车控制器里面,实际就是马达调速电路。由六个MOS组成的桥 式电路。通过控制直流输入电压幅值,来控制电机输入方波幅值调整 转速。一般有无刷和有刷两种电机,但不影响MOS的选用。现在用到 的MOS的规格有两种60V/60A,75V/75A(aos-AOT428),根据最大输入 电压36V,48V考虑使用这两个MOS.
低压MOS的应用
• 在AC-DC拓补中应用 a.Flyback
反激电路在150W以下的AC-DC的电源中应用最广,在电脑 等产品中都会用到。他主要用的是600-800V的高压MOS,但也在一些 效率要求高的产品中需要用同步整流,在输出电压小于24V次级采用 100V的MOS整流输出Rds要小,电流要大于10倍输出电流。在大屏 的LCD-TV,大功率100W以上的adaptor就会使用。
Power IC
• AOZ1014
• AOZ1014内置集成了MOS,外加续流管。基本的BUCK应用,它的输 入4.5V-16V,输出电压可调,最低可调到0.8V输出,电流达到5A.可以用 在大屏LCD-TV,portable-TV等。

开关电源的拓扑结构

开关电源的拓扑结构

开关电源的拓扑结构开关电源的拓扑结构是指功率变换电路的结构,也就是DC/DC变换器的结构。

拓扑结构不同,与之配套的PWM控制器类型和输出整流/滤波电路也有差异。

拓扑结构也基本决定了开关电源的工作原理及输出特性。

本章将对开关电源常用的拓扑结构及工作原理进行详细介绍,以便读者在设计、制作开关电源时选用。

第一节降压式变换器降压式变换器亦称Buck变换器,是最常用的DC/DC变换器之一。

降压式DC/DC变换器能将一种直流电压变换成更低的直流电压。

例如它可将+24V电源变换成+15V、+12V或+5V 电源,并且在变换过程中的电源损耗很小,在分布式电源系统中经常会用到。

1、降压式DC/DC变换器的拓扑结构降压式DC/DC变换器的拓扑结构如图2-1-1所示。

图中的开关S用来等效功率开关管,U1为直流输入电压,U o为直流输出电压,VD为续流二极管,L为输出滤波电感(也称储电感),C为输出滤波电容。

当S闭合时除向负载供电之外,还有一部分电能储存于电感L和电容C 中,L上的电压为U L,其极性是左端为正、右端为负,此时续流二极管VD截止。

当S断开时,L上产生极性为左端负、右端正的反向电动势,使得VD导通,L中的电能继续传送给负载和电容C。

降压式DC/DC变换器在功率开关管导通时向负载传输能量,属于正激式DC/DC 变换器。

图2-1-1 降压式DC/DC变换器的拓扑结构2、降压式DC/DC变换器的工作原理降压式DC/DC变换器可用一只NPN型功率开关管VT(或N沟道功率场效应管MOSFET)作为开关器件S,在脉宽调制(PWM)信号的控制下,使输入电压交替地接通、断开储能电感L。

降压式变换器的简化电路如图2-1-2(a)所示,脉宽调制信号控制功率开关管VT的导通与截止。

图2-1-2(b)、(c)显示出了开关闭合、断开时的电流路径。

图2-1-2 降压式DC/DC变换器的工作原理简化电路;(b)开关闭合时的电流路径;(c)开关断开时的电流路径当开关闭合时续流二极管VD截止,由于输入电压U1与储能电感L接通,因此输入---输出压差(U1---U o)就加在电感L上,使通过L的电流I L线性地增加。

开关电源典型拓扑

开关电源典型拓扑

开关电源典型拓扑
开关电源是一种常见的电源系统,其中典型的拓扑结构包括:1. 单端升压式(Boost)开关电源:该电路通过一个开关管切换电源电压,产生高于输入电压的输出电压。

一般将此电路用于需要减小内阻、提升整机效率的场合。

2. 单端降压式(Buck)开关电源:该电路同样通过一个开关管切换电源电压,但产生低于输入电压的输出电压。

此电路用于减小电压而提升电流,适用于很多操作。

3. 变换式(Flyback)开关电源:该电路通过开关闭合来储存能量,随后把储存的能量传送到输出绕组,通过电感、变压器实现电能转换的拓扑系统,一般适用于中等功率的场合。

4. 直流-直流(DC-DC)转换器:该电路通过开关闭合快速切换电源电压,将高电压转换为低电压,从而实现不同电压级别的环路控制的拓扑。

常见于移动设备、工业控制以及电子电源等领域。

开关电源的拓扑

开关电源的拓扑

开关电源的拓扑
开关电源的拓扑主要有以下几种:
1. 单端正激式(Buck)拓扑:投入电压大于输出电压时,将电源输入关断,输出电容释放能量给负载;
2. 升压式(Boost)拓扑:投入电压小于输出电压时,通过开关周期性充放电操作,将输出电压升高;
3. 反激式(Flyback)拓扑:通过磁共振,利用辅助绕组将输入电能转移到输出端,适用于输出电压变化较大的场景;
4. 无互感式(Push-Pull)拓扑:利用两个互补的开关管周期性地切换,通过变压器将输入电能传递到负载端;
5. 电桥式(Full-Bridge)拓扑:利用四个开关管,通过变压器传递电能,具有较高的输出功率能力。

不同的拓扑结构适用于不同的应用场景,可以根据需要选择最合适的拓扑。

开关电源拓扑结构

开关电源拓扑结构

开关电源拓扑结构回顾Lloyd H·Dixon Jr摘要本文回顾了在开关电源中常用的三种电路结构即降压变换电路、升压变换电路和逆向变换电路的特性,这三种电路均可以在断续的感应电流或者连续的感应电流模式下使用。

运行方式的选择对整体电路特性有很大的影响。

所使用的控制方式也能有助于将与任何拓扑结构和运行方式相联系的问题减到最少。

三种以固定频率运行的控制方法包括:直接占空比控制、电压前馈、和电流模式(两个环路)控制。

本文还论述了三个基本电路的一些扩展,利用每个拓扑电路的相对优点—运行方式—控制方法组合。

一、三种基本拓扑结构:三种基本的拓扑结构如图1所示:降压式,升压式,反激式。

串联式变换器(CUK)是反激式拓扑的逆变,不作论述。

这三种不同的开关电路使用了三种相同的元件:电感,三极管,和二极管,但是使用了不同的安放方式,(输出电容是滤波元件,不是开关电路的一部分)。

理论上,还有另外三种由这三种元件组成的T型结构的电路,但这三种是前面三种电路的简单镜像和在相反方向的耦合能量。

有一条在任何运行模式和控制方式下都适用于上述三种电路拓扑的原则:在稳态运行下,在每个开关周期内,电感两端的平均电压必须为零,否则平均感应电流将会改变,违反稳态前提。

三种基本电路系列的每一个在输入和输出电压、电流、占空比之间都有一个独特的关系。

例如:降压调整器的功能是使输出电压V0小于输入电压V in,并和它V in有相同的极性。

升压电路的作用是使V0大于V in,并且有相同的极性。

反激拓扑电路的作用是使V0既不大于也不小于V in,但是两者极性必须相反。

二、断续操作方式:在断续的感应电流方式下,或者说“断续方式”下,降压、升压和反激电路的动作方式是相似的,感应电流在每个开关周期的最后部分期间为零(因此不连续)。

在每个周期的开始部分,感应电流从零增加,从输入端得到储存能量。

在周期的第二部分,所有储存的能量通过负载泄放,从输入端汲取能量到输出端。

开关电源常用拓扑

开关电源常用拓扑

开关电源常用拓扑开关电源(Switching Power Supply)是一种将电能通过开关元件进行频繁开关的方式进行变换,而产生所需输出电压、电流和功率的电源。

开关电源具有高效、轻便、可靠等优点,广泛应用于电子系统中的各种设备和产品之中。

在实际应用中,开关电源可采用多种不同的拓扑结构,下面我们来介绍几种常用的拓扑结构及其特点。

1.降压型开关电源(Buck Converter)降压型开关电源是常见的一种拓扑结构,其基本原理是通过控制开关管的开关时间和开关频率,将高电压稳定地降低为低电压输出。

相比其他拓扑结构,降压型开关电源具有简单、可靠、成本低等优点,适用于电流小于输出电压的应用场合。

2.提升型开关电源(Boost Converter)提升型开关电源适用于输出电压高于输入电压的场合,其基本原理是通过控制开关管的开关时间和开关频率,将低电压升高至稳定的高电压输出。

相比降压型开关电源,提升型开关电源具有输出电压高、输出能力强等优点,但其效率相对较低。

3.反激型开关电源(Flyback Converter)反激型开关电源采用变压器隔离,其基本原理是通过控制开关管的开关时间和开关频率,将输入电压转换为直流输出,适用于输入、输出电压变化幅度较大、输出电流较小的应用场合。

相比其他拓扑结构,反激型开关电源具有简单、成本低等优点。

4.正激型开关电源(Forward Converter)正激型开关电源也采用变压器隔离,其基本原理是通过控制开关管的开关时间和开关频率,将输入电压转换为直流输出,适用于输入输出电压差不大,输出功率大、质量要求高的应用场合。

正激型开关电源的复杂度相对较高,但其效率高、稳定性好。

以上几种开关电源拓扑结构都有各自的特点和优劣,应根据具体的应用场合选择合适的方案。

为了确保开关电源的稳定性和安全性,还需充分考虑元器件的质量、功率、温度、使用寿命等方面。

尽管如此,开关电源的使用范围和影响力在电子行业中逐渐扩大,为现代电子技术发展提供了强有力的支持。

5种经典开关电源拓扑结构件

5种经典开关电源拓扑结构件
16
BOOST拓扑
稳定电压输出的形成:
当K接通时,Ui开始对L充电,流过L的电流iL开始增加,同时电流 在L中也要产生反电动势eL,C向R放电,形成稳定电压Uo
当K由接通转为关断的时候,为了保持励磁不变,L也会产生反电 动势eL。eL反电动势的方向与开关K关断前的方向相反,但与电 流的方向相同,在控制开关K两端的输出电压uo等于输入电压Ui与 反电动势eL之和。
在K关断期间,IL线性下降,若周期结束即K导通瞬间IL不等
于0,则IL呈现左侧图(c)中的波形,电流连续。若K导通之前
IL就已经降为0,IL就会呈现断流的情形,为右侧图(c)的
波形。
11
临界情况下的电路各点波形
从电路结构可以看出IL的平均值就是输出电流Io, ΔIL为IL在本周期内的最大
变化值。
隔离室电路主要分为正激式和反激式两种
正激式:就是只有在开关管导通的时候,能量才通过变压 器或电感向负载释放,当开关关闭的时候,就停止向负载 释放能量。目前属于这种模式的开关电源有:串联式开关 电源,buck拓扑结构开关电源,激式变压器开关电源、推 免式、半桥式、全桥式都属于正激式模式。
反激式:就是在开关管导通的时候存储能量,只有在开关
此时D1+D2<1,又有IL在Ts内的平均值是 Is,Is=Vs(D1+D2)D1Ts/2L=MIo.
从以上两式可以得到
M 1 1 2D12 / 0.5 D1
2
2
τ =L/RTs
22
电压增益比M分析
电路的工作模式是由 τ=L/RTs同D1代数关系式 0.5D1(1-D1)(1-D1)相对大
工作过程分析
工作过程:1、当K导通时 →IL线性增加,D1截止→ 此时IL和C向负载供电
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源拓扑结构详解
主回路——开关电源中,功率电流流经的通路。

主回路一般包含了开关电源中的开
入端和负载端。

开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。

开关电源主回路可以分为隔离式与非隔离式两大类型。

1. 非隔离式电路的类型:
非隔离——输入端与输出端电气相通,没有隔离。

1.1. 串联式结构
串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。

开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。

串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。

例如buck 拓扑型开关电源就是属于串联式的开关电源。

上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。

其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL 转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton
把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff 把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。

在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL 由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。

对于图1-2,如果不看控制开关T和输入电压Ui,它是一个典型的反г 型滤波电路,它的作用是把脉动直流电压通过平滑滤波输出其平均值。

串联式开关电源输出电压uo的平均值Ua为:
1.2. 并联式结构
并联——在主回路中,相对于输入端而言,开关器件(下图中所示的开关三极管T)与输出端负载成并联连接的关系。

开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载R靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,输入端电源电压与电感器L中的自感电动势正向叠加后,通过续流二极管D对负载R供电,并同时对电容器C充电。

由此可见,并联式结构中,可以获得高于输入电压的输出电压,因此为升压式变换。

并且为了获得连续的负载电流,并联结构比串联结果对输出滤波电容C的容量有更高的要求。

例如boots拓扑型的开关电源就是属于并联型式的开关电源。

并联开关电源输出电压Uo为:
boots拓扑输出电压Uo:Uo=Ui(1+D/1-D)=Ui(1/1-D)(D 为占空比)
1.3.极性反转型变换器结构(inverting)
极性反转——输出电压与输入电压的极性相反。

电路的基本结构特征是:在主回路中,相对于输入端而言,电感器L与负载成并联。

(也是串联式开关电源的一种,一般又称为反转式串联开关电源)
开关管T交替工作于通/断两种状态,工作过程与并联式结构相似,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载RL 靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,电感器L中的自
感电动势通过续流二极管D对负载RL供电,并同时对电容器C充电;由于续流二极管D的反向极性,使输出端获得相反极性的电压输出。

反转式串联开关电源输出电压Uo为:
由(1-27)式可以看出,反转式串联开关电源输出电压与输入电压与开关接通的时间成正比,与开关关断的时间成反比。

2. 隔离式电路的类型:
隔离——输入端与输出端电气不相通,通过脉冲变压器的磁偶合方式传递能量,输入输出完全电气隔离。

2.1. 单端正激式single Forward Converte r(又叫单端正激式变压器开关电源)
单端——通过一只开关器件单向驱动脉冲变压器;
正激式:就是只有在开关管导通的时候,能量才通过变压器或电感向负载释放,当开关关闭的时候,就停止向负载释放能量。

目前属于这种模式的开关电源有:串联式开关电源,buck拓扑结构开关电源,激式变压器开关电源、推免式、半桥式、全桥式都属于正激式模式。

反激式:就是在开关管导通的时候存储能量,只有在开关管关断的时候释放才向负载释放能量。

属于这种模式的开关电源有:并联式开关电源、boots、极性反转型变换器、反激式变压器开关电源。

正激变压器——脉冲变压器的原/付边相位关系,确保在开关管导通,驱动脉冲变压器原边时,变压器付边同时对负载供电。

所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。

(正激式变压器开关电源是推免式变压器开关电源衍生过来的,推免式有两个控制开关,正激式改成一个开关控制。


U1是开关电源的输入电压,N是开关变压器,T是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,RL是负载电阻。

在上图中,需要特别注意的是开关变压器初、次级线圈的同名端。

如果把开关变压器初线圈或次级线圈的同名端弄反,上图就不再是正激式变压器开关电源了该电路的最大问题是:开关管T交替工作于通/断两种状态,当开关管关断时,脉冲变压器处于“空载”状态,其中储存的磁能将被积累到下一个周期,直至电感器饱和,使开关器件烧毁。

图中的D3与N3构成的磁通复位电路,提供了泄放多余磁能的渠道。

2.2. 单端反激式Single F1yback Converter(单端反激式变压器开关电源)
所谓反激式变压器开关电源,是指当变压器的初级线圈正好被直流电压激励时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式开关电源。

反激式电路与正激式电路相反,脉冲变压器的原/付边相位关系,确保当开关管导通,驱动脉冲变压器原边时,变压器付边不对负载供电,即原/付边交错通断。

脉冲变压器磁能被积累的问题容易解决,但是,由于变压器存在漏感,将在原边形成电压尖峰,可能击穿开关器件,需要设置电压钳位电路予以保护D3、N3构成的回路。

从电路原理图上看,反激式与正激式很相象,表面上只是变压器同名端的区别,但电路的工作方式不同,D3、N3的作用也不同。

反激式变压器开关电源的输出电压为:
(1-110)式中,Uo为反激式变压器开关电源的输出电压,Ui变压器初级线圈输入电压,D为控制开关的占空比,n为变压器次级线圈与初级线圈的匝数比。

2.3. 推挽Push pull (变压器中心抽头)式
这种电路结构的特点是:对称性结构,脉冲变压器原边是两个对称线圈,两只开关管接成对称关系,轮流通断,工作过程类似于线性放大电路中的乙类推挽功率放大器。

主要优点:高频变压器磁芯利用率高(与单端电路相比)、电源电压利用率高(与后面要叙述的半桥电路相比)、输出功率大、两管基极均为低电平,驱动电路简单。

主要缺点:变压器绕组利用率低、对开关管的耐压要求比较高(至少是电源电压的两倍)。

2.4. 全桥式Full Bridge Converter
这种电路结构的特点是:由四只相同的开关管接成电桥结构驱动脉冲变压器原边。

图中T1、T4为一对,由同一组信号驱动,同时导通/关端;T2、T3为另一对,由另一组信号驱动,同时导通/关端。

两对开关管轮流通/断,在变压器原边线圈中形成正/负交变的脉冲电流。

主要优点:与推挽结构相比,原边绕组减少了一半,开关管耐压降低一半。

主要缺点:使用的开关管数量多,且要求参数一致性好,驱动电路复杂,实现同步比较困难。

这种电路结构通常使用在1KW以上超大功率开关电源电路中。

2.5. 半桥式Half Bridge Converter
电路的结构类似于全桥式,只是把其中的两只开关管(T3、T4)换成了两只等值大电容C1、C2。

主要优点:具有一定的抗不平衡能力,对电路对称性要求不很严格;适应的功率范围较大,从几十瓦到千瓦都可以;开关管耐压要求较低;电路成本比全桥电路低等。

这种电路常常被用于各种非稳压输出的DC变换器,如电子荧光灯驱动电路中。

相关文档
最新文档