数学:1.4《直角三角形的射影定理》课件(新人教版A选修4-1)

合集下载

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)

即BC2=BD· AB.
返回
[研一题] [例1] 如图,在Rt△ABC中,∠ACB
=90°,CD是AB边上的高,已知BD=4, AB=29,试求BC,AC和CD的长度. 分析:本题考查射影定理与勾股定理的应用.解答 本题可由已知条件先求出AD,然后利用射影定理求BC,
AC和CD的长度.
返回
解:∵BD=4,AB=29, ∴AD=25 由射影定理得 CD2=AD· BD=25×4=100, ∴CD=10. BC2=BD· BA=4×29. ∴BC=2 29. AC2=AD· AB=25×29,∴AC=5 29.
返回
[悟一法] 运用射影定理时,要注意其成立的条件,要结合图 形去记忆定理,当所给条件中具备定理的条件时,可直
接运用定理,不具备时可通过作垂线使之满足定理的条
件,再运用定理.
返回
[通一类]
1.如图,在△ABC 中,∠ACB=90° ,CD 3 ⊥AB 于 D, DE⊥BC 于 E, AD= 10, 若 2 BE=2,求 BC 的长.
∴AD2+2· DB+DB2=AC2+BC2, AD·
即2AD· DB=AC2-AD2+BC2-DB2. 返回
∵AC2-AD2=CD2,BC2-DB2=CD2,
∴2AD· DB=2CD2,即CD2=AD· DB. 在Rt△ACD中,AC2=AD2+CD2=AD2+AD· DB =AD(AD+DB)=AD· AB, 即AC2=AD· AB. 在Rt△BCD中,BC2=CD2+BD2=AD· DB+BD2 =BD(AD+DB)=BD· AB,
例中项;两直角边分别是它们在斜边上射影 与 斜边 的比例 中项.
返回
[小问题·大思维] 1.线段的正射影还是线段吗?

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)
返回
[读教材·填要点]
1.射影的有关概念
(1)从一点向一直线所引垂线的垂足,叫做这个点在这 条直线上的 正射影 . (2)线段的两个端点在这条直线上的正射影间的线段, 叫做这条线段在直线上的 正射影 .
(3) 点和线段 的正射影简称为射影.
返回
2.射影定理 直角三角形斜边上的 两直角边在斜边上射影 的比
例中项;两直角边分别是它们在斜边上射影 与 斜边 的比例 中项.
返回
[小问题·大思维] 1.线段的正射影还是线段吗?
提示:不一定.当该线段所在的直线与已知直线垂直时,
线段的正射影为一个点. 2.如何用勾股定理证明射影定理? 提示:如图,在Rt△ABC中, ∵AB2=AC2+BC2, ∴(AD+DB)2=AC2+BC2,
∴AD2+2· DB+DB2=AC2+BC2, AD·
即2AD· DB=AC2-AD2+BC2-DB2. 返回
∵AC2-AD2=CD2,BC2-DB2=CD2,
∴2AD· DB=2CD2,即CD2=AD· DB. 在Rt△ACD中,AC2=AD2+CD2=AD2+AD· DB =AD(AD+DB)=AD· AB, 即AC2=AD· AB. 在Rt△BCD中,BC2=CD2+BD2=AD· DB+BD2 =BD(AD+DB)=BD· AB,
即BC2=BD· AB.
返回
[研一题] [例1] 如图,在Rt△ABC中,∠ACB
=90°,CD是AB边上的高,已知BD=4, AB=29,试求BC,AC和CD的长度. 分析:本题考查射影定理与勾股定理的应用.解答 本题可由已知条件先求出AD,然后利用射影定理求BC,
AC和CD的长度.
返回
解:∵BD=4,AB=29, ∴AD=25 由射影定理得 CD2=AD· BD=25×4=100, ∴CD=10. BC2=BD· BA=4×29. ∴BC=2 29. AC2=AD· AB=25×29,∴AC=5 29.

高二数学之数学人教A版选修4-1课件:1.4 直角三角形的射影定理

高二数学之数学人教A版选修4-1课件:1.4 直角三角形的射影定理
由此可见,利用射影定理可以证明勾股定理.过去我们是用面积 割补的方法证明勾股定理的,现在我们又用射影定理证明了勾股定 理,而且这种方法简洁明快,比用面积割补的方法要方便得多.
MM Z ZZ Z Z D D S 目目目标标标导导导航航航
知识知梳知识理识梳梳理理重难聚焦重重难难聚聚焦焦典例透析 典典例例随透透堂析析演练
【做一做2-1】 如图,在Rt△ABC中,AC⊥CB,CD⊥AB于点D,且 CD=4,则AD·DB等于( )
A.16 B.4 C.2 D.不确定
解析:∵AC⊥CB,CD⊥AB, ∴AD·DB=CD . ◆ 全2书优质试题随意编辑 ◆ 课堂教学流程完美展示 又∵CD=4,∴AD·DB=42=16.
答案:A
UUUBBBIAIIAAOOODDDAAAOOOHHHAAANNNGGG HISHIHSHIHSISUHHLI ISSHHUULILIHONGNAN HJHVOOJINNAGOGNNAANN JJIVAVJNJIIAALOIOTOUXI IIAANNLULIIITTOAONUUGXXIYI ANLIA
图形 语言
作用 确定成比例的线段
12
MM Z ZZ Z Z D D S 目目目标标标导导导航航航
知识知梳知识理识梳梳理理重难聚焦重重难难聚聚焦焦典例透析 典典例例随透透堂析析演练
UUUBBBIAIIAAOOODDDAAAOOOHHHAAANNNGGG HISHIHSHIHSISUHHLI ISSHHUULILIHONGNAN HJHVOOJINNAGOGNNAANN JJIVAVJNJIIAALOIOTOUXI IIAANNLULIIITTOAONUUGXXIYI ANLIA
������������ ������������

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)

返回
[悟一法] 将原图分成两部分来看,分别在两个三角形中运用 射影定理,实现了沟通两个比例式的目的,在求解此类
问题时,一定要注意对图形进行剖析.
返回
[通一类] 2.如图,AD、BE是△ABC的高,DF ⊥AB于F,交BE于G,FD的延长线 交AC的延长线于H, 求证:DF2=FG· FH.
返回
证明:∵BE⊥AC,
例中项;两直角边分别是它们在斜边上射影 与 斜边 的比例 中项.
返回
[小问题·大思维] 1.线段的正射影还是线段吗?
提示:不一定.当该线段所在的直线与已知直线垂直时,
线段的正射影为一个点. 2.如何用勾股定理证明射影定理? 提示:如图,在Rt△ABC中, ∵AB2=AC2+BC2, ∴(AD+DB)2=AC2+BC2,
∴AD2+2· DB+DB2=AC2+BC2, AD·
即2AD· DB=AC2-AD2+BC2-DB2. 返回
∵AC2-AD2=CD2,BC2-DB2=CD2,
∴2AD· DB=2CD2,即CD2=AD· DB. 在Rt△ACD中,AC2=AD2+CD2=AD2+AD· DB =AD(AD+DB)=AD· AB, 即AC2=AD· AB. 在Rt△BCD中,BC2=CD2+BD2=AD· DB+BD2 =BD(AD+DB)=BD· AB,
返回
[读教材·填要点]
1.射影的有关概念
(1)从一点向一直线所引垂线的垂足,叫做这个点在这 条直线上的 正射影 . (2)线段的两个端点在这条直线上的正射影间的线段, 叫做这条线段在直线上的 正射影 .
(3) 点和线段 的正射影简称为射影.
返回
2.射影定理 直角三角形斜边上的 两直角边在斜边上射影 的比

高中数学 1.4直角三角形的射影定理 新人教A版选修4-1

高中数学 1.4直角三角形的射影定理 新人教A版选修4-1

再将线段进行代换,就可以实现等积式的证明.
证明:∵在 Rt△ABC 中,∠ACB=90°,CD⊥AB,
∴CD2=AD·BD,∴CD4=AD2·BD2.
栏 目
又∵在 Rt△ADC 中,DE⊥AC,在 Rt△BDC 中,DF⊥BC,
链 接
∴AD2=AE·AC,BD2=BF·BC.∴CD4=AE·BF·AC·BC.
链 接
影定理可知,AD2=BD·CD,
∴62=8×CD,∴CD=.
点评:充分利用线段间的长度关系,得出AD⊥BC, 从而推出∠BAC=90°,于是为使用射影定理创造 了条件.
ppt课件
►变式训练
1.在一直角三角形中,斜边上的高为6 cm,且把 斜 ___边__分__成_.3∶2两段,则斜边上中线的52 6长cm是
2.如图,在△ABC中,D、F分别在AC、BC上,
栏 目
且AB⊥AC,AF⊥BC,BD=DC=FC=1,求AC.


ppt课件
解析:在△ABC 中,设 AC 为 x,
∵AB⊥AC,AF⊥BC,又 FC=1,根据射影定理,得 AC2=FC·BC,
即 BC=x2.再由射影定理,得 AF2=BF·FC=(BC-FC)·FC,
1.4 直角三角形的射影定理
ppt课件
栏 目 链 接
ppt课件
理解射影定理,能应用射影定理解决简单几何问 题.
ppt课件
栏 目 链 接
ppt课件
题型一 线段长度的计算 例1 如图,D为△ABC中BC边上的一点,∠CAD= ∠B,若AD=6,AB=10,BD=8,求CD的长.
栏 目 链 接
ppt课件
分析:由勾股定理知∠ADB=90°,即AD⊥BC, 进一步可得∠BAC=90°,由射影定理求CD.

1.4-直角三角形的射影定理-教学课件(人教A版选修4-1)

1.4-直角三角形的射影定理-教学课件(人教A版选修4-1)

课前探究学习
课堂讲练互动
解 在△ABC 中,设 AC 为 x, ∵AB⊥AC,AF⊥BC,又 FC=1, 根据射影定理,得 AC2=FC·BC,即 BC=x2. 再由射影定理,得 AF2=BF·FC=(BC-FC)·FC, 即 AF2=x2-1.∴AF= x2-1. 在△BDC 中,过 D 作 DE⊥BC 于 E, ∵BD=DC=1,∴BE=EC, 又∵AF⊥BC,∴DE∥AF,∴DAFE=DACC.
课前探究学习
课堂讲练互动
题型一 射影的概念 【例1】 如图所示,AD⊥BC,FE⊥BC.求点A、B、C、D、E、F、
G和线段AB、AC、AF、FG 在直线BC上的射影.
[思维启迪] 要求已知点和线段在直线BC上的射影,需过这些 点或线段的端点,作BC边的垂线.
课前探究学习
课堂讲练互动
解 由AD⊥BC,FE⊥BC知:AD在BC上的射影是D;B在BC上 的射影是B;C在BC上的射影是C,E、F、G在BC上的射影都是E; AB在BC上的射影是DB;AC在BC上的射影是DC;AF在BC上的射 影是DE,FG在BC上的射影是点E. 反思感悟 求点和线段在直线上的射影 (1)点在直线上的射影就是由点向直线引垂线,垂足即为射影; (2)线段在直线上的射影就是由线段的两端点向直线引垂线,两垂 足间的线段就是所求射影.
课前探究学习
课堂讲练互动
名师点睛 1.应用射影定理有两个条件:一是直角三角形;二是斜边上的
高.应用射影定理可求直角三角形的边长、面积等有关量, 还可研究相似问题、比例式等问题.
课前探究学习
课堂讲练互动
2.直角三角形射影定理的逆定理 如果一个三角形一边上的高是另两 边在这条边上的射影的比例中项, 那么这个三角形是直角三角形. 符 号 表 示 : 如 图 , 在 △ ABC 中 , CD⊥AB 于 D , 若 CD2 = AD·BD,则△ABC为直角三角形. 证明 ∵CD⊥AB,∴∠CDA=∠BDC=90°.又∵CD2= AD·BD,即AD∶CD=CD∶BD∴△ACD∽△CBD.∴∠CAD =∠BCD.又∵∠ACD+∠CAD=90°,∴∠ACB=∠ACD+ ∠BCD=∠ACD+∠CAD=90°,即△ABC为直角三角形.

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)

∴∠ABE+∠BAE=90°.
同理,∠H+∠HAF=90° ∴∠ABE=∠H.又∠BFG=∠HFA, ∴△BFG∽△HFA. ∴BF∶HF=FG∶AF. ∴BF· AF=FG· FH. Rt△ADB中,DF2=BF· AF,
∴DF2=FG· FH.
返回
射影定理常与勾股定理及三角形相似等问题结合考 查.2012年中山模拟将射影定理与勾股定理相结合,考查
例中项;两直角边分别是它们在斜边上射影 与 斜边 的比例 中项.
返回
[小问题·大思维] 1.线段的正射影还是线段吗?
提示:不一定.当该线段所在的直线与已知直线垂直时,
线段的正射影为一个点. 2.如何用勾股定理证明射影定理? 提示:如图,在Rt△ABC中, ∵AB2=AC2+BC2, ∴(AD+DB)2=AC2+BC2,
返回
[悟一法] 运用射影定理时,要注意其成立的条件,要结合图 形去记忆定理,当所给条件中具备定理的条件时,可直
接运用定理,不具备时可通过作垂线使之满足定理的条
件,再运用定理.
返回
[通一类]
1.如图,在△ABC 中,∠ACB=90° ,CD 3 ⊥AB 于 D, DE⊥BC 于 E, AD= 10, 若 2 BE=2,求 BC 的长.
返回
[读教材·填要点]
1.射影的有关概念
(1)从一点向一直线所引垂线的垂足,叫做这个点在这 条直线上的 正射影 . (2)线段的两个端点在这条直线上的正射影间的线段, 叫做这条线段在直线上的 正射影 .
(3) 点和线段 的正射影简称为射影.
返回
2.射影定理 直角三角形斜边上的 两直角边在斜边上射影 的比
返回
[悟一法] 将原图分成两部分来看,分别在两个三角形中运用 射影定理,实现了沟通两个比例式的目的,在求解此类

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)
3 3
整理得 x6=4.∴x= 2.∴AC= 2.
返回
点击下图进入“创新演练”
返回
解:∵∠ACB=90° ,CD⊥AB, ∴BC2=BD· AB=BD· (BD+AD). 3 3 2 2 ∵AD= 10,∴BC =BD + 10BD① 2 2 ∵CD⊥AB,DE⊥BC,∴BD2=BE· BC.
返回
∵BE=2,∴BD2=2BC,∴BD= 2BC② 将②代入①得:BC2=2BC+3 5BC, ∴BC2-2BC=3 5BC,∴(BC2-2BC)2=45BC, ∴BC4-4BC3+4BC2=45BC. ∵BC>0,∴BC3-4BC2+4BC-45=0, ∴(BC-5)(BC2+BC+9)=0. ∵BC2+BC+9≠0,∴BC-5=0,∴BC=5.
返回
[研一题] [例2] 如图所示,CD垂直平分AB,
点E在CD上,DF⊥AC,DG⊥BE,F、
G分别为垂足. 求证:AF· AC=BG· BE. 分析:本题考查射影定理的应用,以及利用分割法 分析解决问题的能力,解答本题需要将原图形分割成两 个直角三角形,然后分别利用射影定理求证. 返回
证明:因为 CD 垂直平分 AB, 所以△ACD 和△BDE 均为直角三 角形,并且 AD=BD. 又因为 DF⊥AC,DG⊥BE, 所以 AF· AC=AD2, BG· BE=DB2. 因为 AD2=DB2, 所以 AF· AC=BG· BE.
返回
[悟一法] 将原图分成两部分来看,分别在两个三角形中运用 射影定理,实现了沟通两个比例式的目的,在求解此类
问题时,一定要注意对图形进行剖析.
返回
[通一类] 2.如图,AD、BE是△ABC的高,DF ⊥AB于F,交BE于G,FD的延长线 交AC的延长线于H, 求证:DF2=FG· FH.

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)

返回
[研一题] [例2] 如图所示,CD垂直平分AB,
点E在CD上,DF⊥AC,DG⊥BE,F、
G分别为垂足. 求证:AF· AC=BG· BE. 分析:本题考查射影定理的应用,以及利用分割法 分析解决问题的能力,解答本题需要将原图形分割成两 个直角三角形,然后分别利用射影定理求证. 返回
证明:因为 CD 垂直平分 AB, 所以△ACD 和△BDE 均为直角三 角形,并且 AD=BD. 又因为 DF⊥AC,DG⊥BE, 所以 AF· AC=AD2, BG· BE=DB2. 因为 AD2=DB2, 所以 AF· AC=BG· BE.
返1)从一点向一直线所引垂线的垂足,叫做这个点在这 条直线上的 正射影 . (2)线段的两个端点在这条直线上的正射影间的线段, 叫做这条线段在直线上的 正射影 .
(3) 点和线段 的正射影简称为射影.
返回
2.射影定理 直角三角形斜边上的 两直角边在斜边上射影 的比
返回
[悟一法] 将原图分成两部分来看,分别在两个三角形中运用 射影定理,实现了沟通两个比例式的目的,在求解此类
问题时,一定要注意对图形进行剖析.
返回
[通一类] 2.如图,AD、BE是△ABC的高,DF ⊥AB于F,交BE于G,FD的延长线 交AC的延长线于H, 求证:DF2=FG· FH.
返回
证明:∵BE⊥AC,
∴∠ABE+∠BAE=90°.
同理,∠H+∠HAF=90° ∴∠ABE=∠H.又∠BFG=∠HFA, ∴△BFG∽△HFA. ∴BF∶HF=FG∶AF. ∴BF· AF=FG· FH. Rt△ADB中,DF2=BF· AF,
∴DF2=FG· FH.
返回
射影定理常与勾股定理及三角形相似等问题结合考 查.2012年中山模拟将射影定理与勾股定理相结合,考查

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)

∴AD2+2· DB+DB2=AC2+BC2, AD·
即2AD· DB=AC2-AD2+BC2-DB2. 返回
∵AC2-AD2=CD2,BC2-DB2=CD2,
∴2AD· DB=2CD2,即CD2=AD· DB. 在Rt△ACD中,AC2=AD2+CD2=AD2+AD· DB =AD(AD+DB)=AD· AB, 即AC2=AD· AB. 在Rt△BCD中,BC2=CD2+BD2=AD· DB+BD2 =BD(AD+DB)=BD· AB,
返回
[研一题] [例2] 如图所示,CD垂直平分AB,
点E在CD上,DF⊥AC,DG⊥BE,F、
G分别为垂足. 求证:AF· AC=BG· BE. 分析:本题考查射影定理的应用,以及利用分割法 分析解决问题的能力,解答本题需要将原图形分割成两 个直角三角形,然后分别利用射影定理求证. 返回
证明:因为 CD 垂直平分 AB, 所以△ACD 和△BDE 均为直角三 角形,并且 AD=BD. 又因为 DF⊥AC,DG⊥BE, 所以 AF· AC=AD2, BG· BE=DB2. 因为 AD2=DB2, 所以 AF· AC=BG· BE.
返回
[读教材·填要点]
1.射影的有关概念
(1)从一点向一直线所引垂线的垂足,叫做这个点在这 条直线上的 正射影 . (2)线段的两个端点在这条直线上的正射影间的线段, 叫做这条线段在直线上的 正射影 .
(3) 点和线段 的正射影简称为射影.
返回
2.射影定理 直角三角形斜边上的 两直角边在斜边上射影 的比
解:∵∠ACB=90° ,CD⊥AB, ∴BC2=BD· AB=BD· (BD+AD). 3 3 2 2 ∵AD= 10,∴BC =BD + 10BD① 2 2 ∵CD⊥AB,DE⊥BC,∴BD2=BE· BC.

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)

解:∵∠ACB=90° ,CD⊥AB, ∴BC2=BD· AB=BD· (BD+AD). 3 3 2 2 ∵AD= 10,∴BC =BD + 10BD① 2 2 ∵CD⊥AB,DE⊥BC,∴BD2=BE· BC.
返回
∵BE=2,∴BD2=2BC,∴BD= 2BC② 将②代入①得:BC2=2BC+3 5BC, ∴BC2-2BC=3 5BC,∴(BC2-2BC)2=45BC, ∴BC4-4BC3+4BC2=45BC. ∵BC>0,∴BC3-4BC2+4BC-45=0, ∴(BC-5)(BC2+BC+9)=0. ∵BC2+BC+9≠0,∴BC-5=0,∴BC=5.
∴AD2+2· DB+DB2=AC2+BC2, AD·
即2AD·DB=AC2-AD2+BC2-DB2. 返回
∵AC2-AD2=CD2,BC2-DB2=CD2,
∴2AD· DB=2CD2,即CD2=AD· DB. 在Rt△ACD中,AC2=AD2+CD2=AD2+AD· DB =AD(AD+DB)=AD· AB, 即AC2=AD· AB. 在Rt△BCD中,BC2=CD2+BD2=AD· DB+BD2 =BD(AD+DB)=BD· AB,
返回
[研一题] [例2] 如图所示,CD垂直平分AB,
点E在CD上,DF⊥AC,DG⊥BE,F、
G分别为垂足. 求证:AF· AC=BG· BE. 分析:本题考查射影定理的应用,以及利用分割法 分析解决问题的能力,解答本题需要将原图形分割成两 个直角三角形,然后分别利用射影定理求证. 返回
证明:因为 CD 垂直平分 AB, 所以△ACD 和△BDE 均为直角三 角形,并且 AD=BD. 又因为 DF⊥AC,DG⊥BE, 所以 AF· AC=AD2, BG· BE=DB2. 因为 AD2=DB2, 所以 AF· AC=BG· BE.

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)

其在几何相关量的计算中的应用,是高考模拟命题的一
个考向.
返回
[考题印证]
(2012· 中山模拟) 如图,在△ABC中,
D、F分别在AC、BC上,且AB⊥AC,AF ⊥BC,BD=DC=FC=1.求AC的长. [命题立意] 综合应用. 本题主要考查射影定理和勾股定理的
返回
解:在△ABC中,设AC为x,
例中项;两直角边分别是它们在斜边上射影 与 斜边 的比例 中项.
返回
[小问题·大思维] 1.线段的正射影还是线段吗?
提示:不一定.当该线段所在的直线与已知直线垂直时,
线段的正射影为一个点. 2.如何用勾股定理证明射影定理? 提示:如图,在Rt△ABC中, ∵AB2=AC2+BC2, ∴(AD+DB)2=AC2+BC2,
即BC2=BD· AB.
返回
[研一题] [例1] 如图,在Rt△ABC中,∠ACB
=90°,CD是AB边上的高,已知BD=4, AB=29,试求BC,AC和CD的长度. 分析:本题考查射影定理与勾股定理的应用.解答 本题可由已知条件先求出AD,然后利用射影定理求BC,
AC和CD的长度.
返回
解:∵BD=4,AB=29, ∴AD=25 由射影定理得 CD2=AD· BD=25×4=100, ∴CD=10. BC2=BD· BA=4×29. ∴BC=2 29. AC2=AD· AB=25×29,∴AC=5 29.
3 3
整理得 x6=4.∴x= 2.∴AC= 2.
返回
点击下图进入“创新演练”
返回
∴∠ABE+∠BAE=90°.
同理,∠H+∠HAF=90° ∴∠ABE=∠H.又∠BFG=∠HFA, ∴△BFG∽△HFA. ∴BF∶HF=FG∶AF. ∴BF· AF=FG· FH. Rt△ADB中,DF2=BF· AF,

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)
返回
[读教材·填要点]
1.射影的有关概念
(1)从一点向一直线所引垂线的垂足,叫做这个点在这 条直线上的 正射影 . (2)线段的两个端点在这条直线上的正射影间的线段, 叫做这条线段在直线上的 正射影 .
(3) 点和线段 的正射影简称为射影.
返回
2.射影定理 直角三角形斜边上的 两直角边在斜边上射影 的比
返回
[研一题] [例2] 如图所示,CD垂直平分AB,
点E在CD上,DF⊥AC,DG⊥BE,F、
G分别为垂足. 求证:AF· AC=BG· BE. 分析:本题考查射影定理的应用,以及利用分割法 分析解决问题的能力,解答本题需要将原图形分割成两 个直角三角形,然后分别利用射影定理求证. 返回
证明:因为 CD 垂直平分 AB, 所以△ACD 和△BDE 均为直角三 角形,并且 AD=BD. 又因为 DF⊥AC,DG⊥BE, 所以 AF· AC=AD2, BG· BE=DB2. 因为 AD2=DB2, 所以 AF· AC=BG· BE.
其在几何相关量的计算中的应用,是高考模拟命题的一
个考向.
返回
[考题印证]
(2012· 中山模拟) 如图,在△ABC中,
D、F分别在AC、BC上,且AB⊥AC,AF ⊥BC,BD=DC=FC=1.求AC的长. [命题立意] 综合应用. 本题主要考查射影定理和勾股定理的
返回
解:在△ABC中,设AC为x,
∴AD2+2· DB+DB2=AC2+BC2, AD·
即2AD· DB=AC2-AD2+BC2-DB2. 返回
∵AC2-AD2=CD2,BC2-DB2=CD2,
∴2AD· DB=2CD2,即CD2=AD· DB. 在Rt△ACD中,AC2=AD2+CD2=AD2+AD· DB =AD(AD+DB)=AD· AB, 即AC2=AD· AB. 在Rt△BCD中,BC2=CD2+BD2=AD· DB+BD2 =BD(AD+DB)=BD· AB,

高中数学 1.4直角三角形的射影定理课件 新人教A版选修4-1

高中数学 1.4直角三角形的射影定理课件 新人教A版选修4-1


2.如图,在△ABC中,D、F分别在AC、BC上,

且AB⊥AC,AF⊥BC,BD=DC=FC=1,求AC.


精选ppt
7
解析:在△ABC 中,设 AC 为 x,
∵AB⊥AC,AF⊥BC,又 FC=1,根据射影定理,得 AC2=FC·BC,
即 BC=x2.再由射影定理,得 AF2=BF·FC=(BC-FC)·FC,
证明:∵CD垂直平分AB,

∴△ACD和△BED均为直角三角形,并且AD=DB,
目 链
又∵DF⊥AC,DG⊥BE,

∴AD2=AF·AC,DB2=BG·BE,
∴AF·AC=BG·BE.
精选ppt
13
析疑难


力栏 目 链

精选ppt
14
例 已知CD是△ABC的高,DE⊥CA于E, DF⊥CB于F,如图所示.求证 △CEF∽△CBA.
再将线段进行代换,就可以实现等积式的证明.
证明:∵在 Rt△ABC 中,∠ACB=90°,CD⊥AB,
∴CD2=AD·BD,∴CD4=AD2·BD2.
栏 目
又∵在 Rt△ADC 中,DE⊥AC,在 Rt△BDC 中,DF⊥BC,
链 接
∴AD2=AE·AC,BD2=BF·BC.∴CD4=AE·BF·AC·BC.
精选ppt
15
【疑难点辨析】由于射影定理得出的结论(等式)较多,
在解有复杂图形的问题时,有时因选不准题目所需的等栏
式,而使问题复杂化.



精选ppt
16
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!

高中数学第一讲相似三角形的判定及有关性质1.4直角三角形的射影定理课件新人教A版选修4-1

高中数学第一讲相似三角形的判定及有关性质1.4直角三角形的射影定理课件新人教A版选修4-1

3.如图所示,线段 AB 的两个端点 A 和 B 在直线 MN 上的正射影分别是 A′和 B′,线段 A′B′是线段 AB 在 直线 MN 上的正射影.特别地,如果线段 AB 垂直于直线 MN,那么 AB 在 ,在 Rt△ABC 中,AC⊥CB,CD⊥AB 于
证明:因为 CD 垂直平分 AB, 所以△ACD 和△BED 均为直角三角形,并且 AD= DB, 又因为 DF⊥AC,DG⊥BE,
运用射影定理时,要注意其成立的条件,要结合图 形去记忆定理.当所给条件中具备运用定理的条件时, 可直接运用定理,有时也可通过作垂线使之满足定理运 用的条件,再运用定理.在处理一些综合问题时,常常 与相似三角形的知识相联系,要注意它们的综合运用.
所以由射影定理可得 AC2=AD·AB=AD(AD+3).
4.在△ABC 中,∠A=90°,AD⊥BC 于点 D,AD =6,BD=12,则 CD=________,AC=__________,AB2∶ AC2=__________.
解析:如图所示, AB2=AD2+BD2,
又因为 AD=6,BD=12,
第一讲 相似三角形的判定及有关性质
[知识提炼·梳理]
1.射影 (1)点在直线上的正射影:从一点向一直线所引垂线 的垂足. (2)线段在直线上的正射影:线段的两个端点在这条 直线上的正射影间的线段. (3)点和线段的正射影简称为射影.
以上给出了一些图形的变式,不要把正射影理解为只 是由一点向水平线引垂线的特殊情形.
[变式训练] 如图所示,在△ABC 中, D、F 分别在 AC、BC 上,且 AB⊥AC, AF⊥BC,BD=DC=FC=1,求 AC.
解:在△ABC 中,设 AC 为 x, 因为 AB⊥AC,AF⊥BC,又 FC=1,

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)

∴AD2+2· DB+DB2=AC2+BC2, AD·
即2AD· DB=AC2-AD2+BC2-DB2. 返回
∵AC2-AD2=CD2,BC2-来自B2=CD2,∴2AD· DB=2CD2,即CD2=AD· DB. 在Rt△ACD中,AC2=AD2+CD2=AD2+AD· DB =AD(AD+DB)=AD· AB, 即AC2=AD· AB. 在Rt△BCD中,BC2=CD2+BD2=AD· DB+BD2 =BD(AD+DB)=BD· AB,
例中项;两直角边分别是它们在斜边上射影 与 斜边 的比例 中项.
返回
[小问题·大思维] 1.线段的正射影还是线段吗?
提示:不一定.当该线段所在的直线与已知直线垂直时,
线段的正射影为一个点. 2.如何用勾股定理证明射影定理? 提示:如图,在Rt△ABC中, ∵AB2=AC2+BC2, ∴(AD+DB)2=AC2+BC2,
返回
[悟一法] 运用射影定理时,要注意其成立的条件,要结合图 形去记忆定理,当所给条件中具备定理的条件时,可直
接运用定理,不具备时可通过作垂线使之满足定理的条
件,再运用定理.
返回
[通一类]
1.如图,在△ABC 中,∠ACB=90° ,CD 3 ⊥AB 于 D, DE⊥BC 于 E, AD= 10, 若 2 BE=2,求 BC 的长.
3 3
整理得 x6=4.∴x= 2.∴AC= 2.
返回
点击下图进入“创新演练”
返回
解:∵∠ACB=90° ,CD⊥AB, ∴BC2=BD· AB=BD· (BD+AD). 3 3 2 2 ∵AD= 10,∴BC =BD + 10BD① 2 2 ∵CD⊥AB,DE⊥BC,∴BD2=BE· BC.

1.4 直角三角形的射影定理 课件(人教A选修4-1)

1.4 直角三角形的射影定理 课件(人教A选修4-1)

3.Rt△ABC中有正方形DEFG, 点D、G分别在AB、 AC上,
E、F在斜边BC上.
求证:EF2=BE· FC.
证明:过点 A 作 AH⊥BC 于 H. 则 DE∥AH∥GF. DE BE GF FC ∴AH=BH,AH=CH. DE· GF BE· FC ∴ = . AH2 BH· CH 又∵AH2=BH· CH, ∴DE· GF=BE· FC. 而 DE=GF=EF, ∴EF2=BE· FC.
4.如图所示,设 CD 是 Rt△ABC 的斜边 AB 上的高. 求证:CA· CD=BC· AD. 证明:由射影定理知:
CD2=AD· BD, CA2=AD· AB, BC2=BD· AB. ∴CA· CD= AD2· AB=AD· BD· BD· AB, BC· AD=AD· AB· BD. 即 CA· CD=BC· AD.
(2)图形语言: 如图,在Rt△ABC中,CD为斜边AB上的高, BD 则有CD2= AD· , AB AC2= AD· , AB BC2= BD· .
[例1]
如图,在Rt△ABC中,CD为
斜边AB上的高,若AD=2 cm,DB=6 cm, 求CD,AC,BC的长. [思路点拨] 在直角三角形内求线段
(1)在Rt△ABC中,共有AC、BC、CD、AD、BD和 AB六条线段,已知其中任意两条,便可求出其余四条.
(2)射影定理中每个等积式中含三条线段,若已知两
条可求出第三条.
1.如图,在Rt△ABC中,∠C=90°, CD是AB上的 高.已知BD=4,
AB=29,试求出图中其他未知线 段的长.
解:由射影定理,得 BC2=BD· AB, ∴BC= BD· AB= 4×29=2 29. 又∵AD=AB-BD=29-4=25. 且 AC2=AB2-BC2, ∴AC= AB2-BC2= 292-4×29=5 29. ∵CD2=AD· BD, ∴CD= AD· BD= 25×4=10.

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)

1.4 直角三角形的射影定理 课件(人教A选修4-1)(2)

例中项;两直角边分别是它们在斜边上射影 与 斜边 的比例 中项.
返回
[小问题·大思维] 1.线段的正射影还是线段吗?
提示:不一定.当该线段所在的直线与已知直线垂直时,
线段的正射影为一个点. 2.如何用勾股定理证明射影定理? 提示:如图,在Rt△ABC中, ∵AB2=AC2+BC2, ∴(AD+DB)2=AC2+BC2,
返回
[读教材·填要点]
1.射影的有关概念
(1)从一点向一直线所引垂线的垂足,叫做这个点在这 条直线上的 正射影 . (2)线段的两个端点在这条直线上的正射影间的线段, 叫做这条线段在直线上的 正射影 .
(3) 点和线段 的正射影简称为射影.
返回
2.射影定理 直角三角形斜边上的 两直角边在斜边上射影 的比
3 3
整理得 x6=4.∴x= 2.∴AC= 2.
返回
点击下图进入“创新演练”
返回
返回
[悟一法] 将原图分成两部分来看,分别在两个三角形中运用 射影定理,实现了沟通两个比例式的目的,在求解此类
问题时,一定要注意对图形进行剖析.
返回
[通一类] 2.如图,AD、BE是△ABC的高,DF ⊥AB于F,交BE于G,FD的延长线 交AC的延长线于H, 求证:DF2=FG· FH.
返回
证明:∵BE⊥AC,
返回
[研一题] [例2] 如图所示,CD垂直平分AB,
点E在CD上,DF⊥AC,DG⊥BE,F、
G分别为垂足. 求证:AF· AC=BG· BE. 分析:本题考查射影定理的应用,以及利用分割法 分析解决问题的能力,解答本题需要将原图形分割成两 个直角三角形,然后分别利用射影定理求证. 返回
证明:因为 CD 垂直平分 AB, 所以△ACD 和△BDE 均为直角三 角形,并且 AD=BD. 又因为 DF⊥AC,DG⊥BE, 所以 AF· AC=AD2, BG· BE=DB2. 因为 AD2=DB2, 所以 AF· AC=BG· BE.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AC -AD =CD BC -BD =CD
2010-9-7
A
D
B
2010-9-7
讨论: 讨论:
1.线段在直线上的射影结果 . 点或线段 2.直线在直线上的射影结果 . 点或直线
2010-9-7
已知直角三角形ABC,CD垂直 , 垂直 垂直AB 已知直角三角形 问:1.图中有几个 △? .图中有几个Rt△ 2.有几对△相似? 2.有几对△相似?
C
2
3.CD =? ADDB . ? AC =? ADAB A ? BC =? BDBA ?
直角三角形的射影定理
2010-9-7
. B
A
M B’ A’ N 1.射影: 射影: 射影 (1)太阳光垂直照在 点,留在直线 )太阳光垂直照在A点 MN上的影子应是什么? 点A′ 上的影子应是什么? 上的影子应是什么 上的影子是什么? (2)线段留在 )线段留在MN上的影子是什么? 上的影子是什么 定义: 定义: 线段A’B’ 线段 过线段AB的两个端点分别作直线 的两个端点分别作直线l的垂 过线段 的两个端点分别作直线 的垂 垂足A’, 之间的线段 之间的线段A’B’叫做线 线,垂足 ,B’之间的线段 叫做线 在直线l上的正射影, 射影。 段AB在直线 上的正射影,简称射影。 在直线 上的正射影 简称射影
A
D
B
利用射影定理证明勾股定理: 利用射影定理证明勾股定理
AC + BC = AD AB + BD AB = AB
勾股定理证明射影定理 AB =(AD+DB) =AD +2AD DB +DB AC +BC =AB
2 2 2 2 2 2 2
2
2
2
2
C
2 2
2010-9-7
2
D
B
2
C
1.直角三角形中,斜边 .直角三角形中 斜边 2 上的高线是两条直角 CD = AD DB 边在斜边上的射影的 2 AC = AD AB 比例中项; 比例中项 2.每一条直角边是这 . 2 BC = BD AB 条直角边在斜边上的 射影和斜边的比例中 项;
2010-9-7
相关文档
最新文档