2016-2017年江苏省南京市鼓楼区九年级(下)期中数学试卷及答案
【鼓楼区】2016-2017学年下学期中考二模数学试卷及答案
D.用一根绳子围成一个平面图形,正方形的面积最大
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解答过程,请把答案直 接填写在答.题.卡.相.应.位.置.上) 7. 2 的相反数是 ▲ , 2 的倒数是 ▲ . 8.若△ABC∽△DEF,请写出 1 个正确的结论: ▲ .
P
Aα
βC
B
Q
D
23.(8 分)
(第 22 题)
命题:有两个角相等的三角形是等腰三角形(简称“等角对等边”).
已知:如图,△ABC 中,∠B=∠C.
求证:AB=AC.
三位同学作出了三种不同的辅助线,并完成了命题的证明. 小刚的方法:作∠BAC 的平分线 AD,可证△ABD≌△ACD,得 AB=AC; 小亮的方法:作 BC 边上的高 AD,可证△ABD≌△ACD,得 AB=AC; 小莉的方法:作 BC 边上的中线 AD.
三、解答题(本大题共 11 小题,共 88 分.请在答.题.卡.指.定.区.域.内作答,解答时应写出文 字说明、证明过程或演算步骤)
17.(6 分)先化简,再求值: x2-1 + x2-2x ÷x,其中 x=3. x2-2x+1 x-2
18.(7 分)(1)解不等式 x - x - 1 ≤1,并把它的解集在数轴上表示出来;
y
且∠CBP=60°.
①求∠OBD 的度数; ②求点 P 的坐标.
AO
Bx
D
(第 26 题)
27.(12 分)
【问题提出】
我们借助学习“图形的判定”获得的经验与方法对“平行四边形的判定”进一步探究.
【初步思考】
A
D
在一个四边形中,我们把“一组对边平行、一组对边相等、
2016年江苏省九年级下学期期中考试数学试卷(附答案)
三、解答题(本大题共10小题,共计84分.解答时应写出必要的证明过程或演算步骤.)
19.(本题满分8分)
(1)计算: ,(2)化简:
20.(本题满分8分)
(1)解不等式组: (2)解方程: .
21.(本题满分8分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.
江苏省九年级下学期期中考试数学试卷
注意事项:1.本卷满分130分.考试时间为120分钟.
2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果.
一、精心选一选(本大题共10小题,每小题3分,共30分,每题的四个选项中,只有一个符合题意):
1. 的绝对值是()
A. B. C. D.
2.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为( )
A.1个B.2个C.3个D.4个
二、仔细填一填(本大题共8小题,每空2分,共计16分):
11.函数 中,自变量 的取值范围是.
12.因式分解: =.
13.平面直角坐标系中,点A(2,3)关于x轴的对称点坐标为.
14.如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于.
购车预算(万元)
频数
频率
0~5
20
0.05
5~10
a
0.13
10~15
152
0.38
15~20
b
d
20~25
28
0.07
25~30
24
0.06
合计
九年级(下)期中数学试卷附答案
九年级(下)期中数学试卷一、选择题(本题共14个小题,每小题3分,共42分)1.﹣6的绝对值是()A.﹣6 B.6 C.D.﹣2.如图所示,直线a∥b,∠B=22°,∠C=50°,则∠A的度数为()A.22°B.28°C.32°D.38°3.下列运算正确的是()A.a2•a3=a6 B.(a3)2=a9C.(﹣)﹣2=4 D.(sin30°﹣π)0=04.不等式组的解集在数轴上表示为()A.B.C.D.5.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最大值()A.6 B.7 C.8 D.96.如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.B.C.D.7.某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是()A.10% B.20% C.30% D.40%8.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小9.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用时间与乙搬运8000kg所用时间相等,求甲、乙两人每小时分别搬运多少kg货物,设甲每小时搬运xkg货物,则可列方程为()A.B.C.D.10.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣2 B.C.π﹣4 D.11.任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A .△EGH 为等腰三角形B .△EGF 为等边三角形C .四边形EGFH 为菱形D .△EHF 为等腰三角形12.二次函数y=x 2﹣2x +4化为y=a (x ﹣h )2+k 的形式,下列正确的是( ) A .y=(x ﹣1)2+2 B .y=(x ﹣1)2+3 C .y=(x ﹣2)2+2 D .y=(x ﹣2)2+4 13.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为 ( )A .y=xB .y=xC .y=xD .y=x14.反比例函数y=(a >0,a 为常数)和y=在第一象限内的图象如图所示,点M 在y=的图象上,MC ⊥x 轴于点C ,交y=的图象于点A ;MD ⊥y 轴于点D ,交y=的图象于点B ,当点M 在y=的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论的个数是( )A .0B .1C .2D .3二、填空题(本大题共5小题,每小题3分,共15分)15.在实数范围内分解因式:x4﹣36=.16.计算:﹣(a+1)=.17.如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=.18.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.19.已知以点C(a,b)为圆心,半径为r的圆的标准方程为(x﹣a)2+(y﹣b)2=r2.例如:以A(2,3)为圆心,半径为2的圆的标准方程为(x﹣2)2+(y﹣3)2=4,则以原点为圆心,过点P(1,0)的圆的标准方程为.二、填空题(本大题共7小题,共63分)20.计算:20170+|1﹣sin30°|﹣()﹣1+.21.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了名学生,a=%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.22.禁渔期间,我渔政船在A处发现正北方向B处有一艘可以船只,测得A、B 两处距离为200海里,可疑船只正沿南偏东45°方向航行,我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).23.如图,在△ABC中,以BC为直径的圆交AC于点D,∠ABD=∠ACB.(1)求证:AB是圆的切线;(2)若点E是BC上一点,已知BE=4,tan∠AEB=,AB:BC=2:3,求圆的直径.24.孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.25.【问题背景】如图1,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD 之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图2),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD【简单应用】(1)在图1中,若AC=,BC=2,则CD=.(2)如图3,AB是⊙O的直径,点C、D在⊙O上,=,若AB=13,BC=12,求CD的长.【拓展规律】(3)如图4,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)26.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线和直线BC的解析式;(2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本题共14个小题,每小题3分,共42分)1.﹣6的绝对值是()A.﹣6 B.6 C.D.﹣【考点】15:绝对值.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣6的绝对值是6.故选:B.2.如图所示,直线a∥b,∠B=22°,∠C=50°,则∠A的度数为()A.22°B.28°C.32°D.38°【考点】JA:平行线的性质.【分析】如图,由平行线的性质可求得∠1=∠C,再根据三角形外角的性质可求得∠A.【解答】解:如图,∵a∥b,∴∠1=∠C=50°,又∠1=∠A+∠B,∴∠A=∠1﹣∠B=50°﹣22°=28°,故选:B.3.下列运算正确的是()A.a2•a3=a6 B.(a3)2=a9C.(﹣)﹣2=4 D.(sin30°﹣π)0=0【考点】47:幂的乘方与积的乘方;46:同底数幂的乘法;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】结合选项分别进行幂的乘方和积的乘方、负整数指数幂、零指数幂等运算,然后选项正确选项.【解答】解:A、a2•a3=a5,原式计算错误,故本选项错误;B、(a3)2=a6,原式计算错误,故本选项错误;C、(﹣)﹣2=4,原式计算正确,故本选项正确;D、(sin30°﹣π)0=1,原式计算错误,故本选项错误.故选C.4.不等式组的解集在数轴上表示为()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可【解答】解:由x﹣1≥0,得x≥1,由4﹣2x>0,得x<2,不等式组的解集是1≤x<2,故选:D.5.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最大值()A.6 B.7 C.8 D.9【考点】I8:专题:正方体相对两个面上的文字.【分析】根据相对的面相隔一个面得到相对的2个数,相加后比较即可.【解答】解:易得2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最大的是8.故选C.6.如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.B.C.D.【考点】X5:几何概率;MI:三角形的内切圆与内心.【分析】由AB=15,BC=12,AC=9,得到AB2=BC2+AC2,根据勾股定理的逆定理得到△ABC为直角三角形,于是得到△ABC的内切圆半径==3,求得直角三角形的面积和圆的面积,即可得到结论.【解答】解:∵AB=15,BC=12,AC=9,∴AB2=BC2+AC2,∴△ABC为直角三角形,∴△ABC的内切圆半径==3,=AC•BC=×12×9=54,∴S△ABCS圆=9π,∴小鸟落在花圃上的概率==,故选B.7.某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是()A.10% B.20% C.30% D.40%【考点】AD:一元二次方程的应用.【分析】如果价格每次降价的百分率为x,降一次后就是降到价格的(1﹣x)倍,连降两次就是降到原来的(1﹣x)2倍.则两次降价后的价格是150×(1﹣x)2,即可列方程求解.【解答】解:设平均每次降价的百分率为x,由题意得150×(1﹣x)2=96,解得:x1=0.2,x2=1.8(不符合题意,舍去).答:平均每次降价的百分率是20%.故选:B.8.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.【解答】解:A、==8,==8,故此选项正确;B、甲得分次数最多是8分,即众数为8分,乙得分最多的是9分,即众数为9分,故此选项正确;C、∵甲得分从小到大排列为:7、8、8、8、9,∴甲的中位数是8分;∵乙得分从小到大排列为:6、7、9、9、9,∴乙的中位数是9分;故此选项错误;D、∵=×[(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=×2=0.4,=×[(7﹣8)2+(9﹣8)2+(6﹣8)2+(9﹣8)2+(9﹣8)2]=×8=1.6,∴<,故D正确;故选:C.9.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用时间与乙搬运8000kg所用时间相等,求甲、乙两人每小时分别搬运多少kg货物,设甲每小时搬运xkg货物,则可列方程为()A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【分析】设甲搬运工每小时搬运x千克,则乙搬运工每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.【解答】解:设甲搬运工每小时搬运x千克,则乙搬运工每小时搬运(x+600)千克,由题意得,故选B10.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣2 B.C.π﹣4 D.【考点】M5:圆周角定理;MO:扇形面积的计算.【分析】先证得△OBC是等腰直角三角形,然后根据S阴影=S扇形OBC﹣S△OBC即可求得.【解答】解:∵∠BAC=45°,∴∠BOC=90°,∴△OBC是等腰直角三角形,∵OB=2,∴S阴影=S扇形OBC﹣S△OBC=π×22﹣×2×2=π﹣2.故选A.11.任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形 D.△EHF为等腰三角形【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据等腰三角形的定义、菱形的定义、等边三角形的定义一一判断即可.【解答】解:A、正确.∵EG=EH,∴△EGH是等腰三角形.B、错误.∵EG=GF,∴△EFG是等腰三角形,若△EFG是等边三角形,则EF=EG,显然不可能.C、正确.∵EG=EH=HF=FG,∴四边形EHFG是菱形.D、正确.∵EH=FH,∴△EFH是等腰三角形.故选B.12.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣1)2+3 C.y=(x﹣2)2+2 D.y=(x﹣2)2+4【考点】H9:二次函数的三种形式.【分析】根据配方法,可得顶点式函数解析式.【解答】解:y=x2﹣2x+4配方,得y=(x﹣1)2+3,故选:B.13.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y=x B.y=x C.y=x D.y=x【考点】FI:一次函数综合题.【分析】设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,B过A 作AC⊥OC于C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标即可得到该直线l的解析式.【解答】解:设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,B 过A作AC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l 将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO 面积是5,∴OB•AB=5,∴AB=, ∴OC=,由此可知直线l 经过(,3), 设直线方程为y=kx ,则3=k ,k=, ∴直线l 解析式为y=x ,故选C .14.反比例函数y=(a >0,a 为常数)和y=在第一象限内的图象如图所示,点M 在y=的图象上,MC ⊥x 轴于点C ,交y=的图象于点A ;MD ⊥y 轴于点D ,交y=的图象于点B ,当点M 在y=的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论的个数是( )A.0 B.1 C.2 D.3【考点】G2:反比例函数的图象;G4:反比例函数的性质.【分析】①由反比例系数的几何意义可得答案;②由四边形OAMB的面积=矩形OCMD面积﹣(三角形ODB面积+面积三角形OCA),解答可知;③连接OM,点A是MC的中点可得△OAM和△OAC的面积相等,根据△ODM 的面积=△OCM的面积、△ODB与△OCA的面积相等解答可得.【解答】解:①由于A、B在同一反比例函数y=图象上,则△ODB与△OCA的面积相等,都为×2=1,正确;②由于矩形OCMD、三角形ODB、三角形OCA为定值,则四边形MAOB的面积不会发生变化,正确;③连接OM,点A是MC的中点,则△OAM和△OAC的面积相等,∵△ODM的面积=△OCM的面积=,△ODB与△OCA的面积相等,∴△OBM与△OAM的面积相等,∴△OBD和△OBM面积相等,∴点B一定是MD的中点.正确;故选:D.二、填空题(本大题共5小题,每小题3分,共15分)15.在实数范围内分解因式:x4﹣36=(x2+6)(x+)(x﹣).【考点】58:实数范围内分解因式.【分析】原式利用平方差公式分解即可.【解答】解:原式=(x2+6)(x2﹣6)=(x2+6)(x+)(x﹣),故答案为:(x2+6)(x+)(x﹣)16.计算:﹣(a+1)=.【考点】6B:分式的加减法.【分析】根据分式的运算即可求出答案.【解答】解:原式=﹣=故答案为:17.如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=.【考点】LE:正方形的性质;KW:等腰直角三角形;T7:解直角三角形.【分析】作EF⊥BC于F,如图,设DE=CE=a,根据等腰直角三角形的性质得CD= CE=a,∠DCE=45°,再利用正方形的性质得CB=CD=a,∠BCD=90°,接着判断△CEF为等腰直角三角形得到CF=EF=CE=a,然后在Rt△BEF中根据正切的定义求解.【解答】解:作EF⊥BC于F,如图,设DE=CE=a,∵△CDE为等腰直角三角形,∴CD=CE=a,∠DCE=45°,∵四边形ABCD为正方形,∴CB=CD=a,∠BCD=90°,∴∠ECF=45°,∴△CEF为等腰直角三角形,∴CF=EF=CE=a,在Rt△BEF中,tan∠EBF===,即tan∠EBC=.故答案为.18.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是 1.2.【考点】PB:翻折变换(折叠问题).【分析】如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到=求出FM即可解决问题.【解答】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴=,∵CF=2,AC=6,BC=8,∴AF=4,AB==10,∴=,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.19.已知以点C(a,b)为圆心,半径为r的圆的标准方程为(x﹣a)2+(y﹣b)2=r2.例如:以A(2,3)为圆心,半径为2的圆的标准方程为(x﹣2)2+(y﹣3)2=4,则以原点为圆心,过点P(1,0)的圆的标准方程为x2+y2=1.【考点】D5:坐标与图形性质.【分析】根据以点C(a,b)为圆心,半径为r的圆的标准方程为(x﹣a)2+(y ﹣b)2=r2进行判断即可.【解答】解:∵以点C(a,b)为圆心,半径为r的圆的标准方程为(x﹣a)2+(y﹣b)2=r2,∴以原点为圆心,过点P(1,0)的圆的标准方程为(x﹣0)2+(y﹣0)2=12,即x2+y2=1,故答案为:x2+y2=1.二、填空题(本大题共7小题,共63分)20.计算:20170+|1﹣sin30°|﹣()﹣1+.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:20170+|1﹣sin30°|﹣()﹣1+=1+﹣3+4=221.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了50名学生,a=30%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为36度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由赞同的人数20,所占40%,即可求出样本容量,进而求出a的值;(2)由(1)可知抽查的人数,即可求出无所谓态度的人数,即可将条形统计图补充完整;(3)求出不赞成人数的百分数,即可求出圆心角的度数;(4)求出“赞同”和“非常赞同”两种态度的人数所占的百分数,用样本估计总体的思想计算即可.【解答】解:(1)20÷40%=50(人),无所谓态度的人数为50﹣10﹣20﹣5=15,则a=×100%=30%;(2)补全条形统计图如图所示:(3)不赞成人数占总人数的百分数为×100%=10%,持“不赞同”态度的学生人数的百分比所占扇形的圆心角为10%×360°=36°,(4)“赞同”和“非常赞同”两种态度的人数所占的百分数为×100%=60%,则该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和为3000×60%=1800(人).故答案为(1)50;30;(3)36.22.禁渔期间,我渔政船在A处发现正北方向B处有一艘可以船只,测得A、B 两处距离为200海里,可疑船只正沿南偏东45°方向航行,我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).【考点】TB:解直角三角形的应用﹣方向角问题.【分析】先过点C作CD⊥AB,垂足为点D,设BD=x海里,得出AD=海里,在Rt△BCD中,根据tan45°=,求出CD,再根据BD=CD求出BD,在Rt△BCD中,根据cos45°=,求出BC,从而得出答案.【解答】解:过点C作CD⊥AB,垂足为点D,设BD=x海里,则AD=海里,∵∠ABC=45°,∴BD=CD=x,∵∠BAC=30°,∴tan30°=,在Rt△ACD中,则CD=AD•tan30°=,则x=,解得,x=100﹣100,即BD=100﹣100,在Rt△BCD中,cos45°=,解得:BC=100﹣100,则÷4=25(﹣)(海里/时),则该可疑船只的航行速度约为25(﹣)海里/时.23.如图,在△ABC中,以BC为直径的圆交AC于点D,∠ABD=∠ACB.(1)求证:AB是圆的切线;(2)若点E是BC上一点,已知BE=4,tan∠AEB=,AB:BC=2:3,求圆的直径.【考点】MD:切线的判定.【分析】(1)欲证明AB是圆的切线,只要证明∠ABC=90°即可.(2)在RT△AEB中,根据tan∠AEB=,求出BC,在RT△ABC中,根据=求出AB即可.【解答】(1)证明:∵BC是直径,∴∠BDC=90°,∴∠ACB+∠DBC=90°,∵∠ABD=∠ACB,∴∠ABD+∠DBC=90°∴∠ABC=90°∴AB⊥BC,∴AB是圆的切线.(2)解:在RT△AEB中,tan∠AEB=,∴=,即AB=BE=,在RT△ABC中,=,∴BC=AB=10,∴圆的直径为10.24.孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B 两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.【考点】FH:一次函数的应用;9A:二元一次方程组的应用.【分析】(1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B 种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;(2)设购买A种树木为a棵,则购买B种树木为棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得a的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答.【解答】解:(1)设A种树每棵x元,B种树每棵y元,依题意得:,解得.答:A种树每棵100元,B种树每棵80元;(2)设购买A种树木为a棵,则购买B种树木为棵,则a≥3,解得a≥75.设实际付款总金额是y元,则y=0.9[100a+80],即y=18a+7200.∵18>0,y随a的增大而增大,∴当a=75时,y最小.75+7200=8550(元).即当a=75时,y最小值=18×答:当购买A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元.25.【问题背景】如图1,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD 之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图2),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD【简单应用】(1)在图1中,若AC=,BC=2,则CD=3.(2)如图3,AB是⊙O的直径,点C、D在⊙O上,=,若AB=13,BC=12,求CD的长.【拓展规律】(3)如图4,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)【考点】MR:圆的综合题.【分析】(1)代入结论:AC+BC=CD,直接计算即可;(2)如图3,作辅助线,根据直径所对的圆周角是直角得:∠ADB=∠ACB=90°,由弧相等可知所对的弦相等,得到满足图1的条件,所以AC+BC=CD,代入可得CD的长;(3)介绍两种解法:解法一:作辅助线,构建如图3所示的图形,由AC+BC=D1C,得D1C=,在直角△CDD1,利用勾股定理可得CD的长;解法二:如图5,根据小吴同学的思路作辅助线,构建全等三角形:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处,得△BCD≌△AED,证明△CDE是等腰直角三角形,所以CE=CD,从而得出结论.【解答】解:(1)由题意知:AC+BC=CD,∴+2=CD,∴CD=3;故答案为:3;(2)如图3,连接AC、BD、AD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,∵=,∴AD=BD,∵AB=13,BC=12,∴由勾股定理得:AC=5,由图1得:AC+BC=CD,5+12=CD,∴CD=;(3)解法一:以AB为直径作⊙O,连接DO并延长交⊙O于点D1,连接D1A、D1B、D1C、CD,如图4,由(2)得:AC+BC=D1C,∴D1C=,∵D1D是⊙O的直径,∴∠D1CD=90°,∵AC=m,BC=n,∴由勾股定理可求得:AB2=m2+n2,∴D1D2=AB2=m2+n2,∵D1C2+DC2=D1D2,∴CD2=m2+n2﹣=,∵m<n,∴CD=;解法二:如图5,∵∠ACB=∠DB=90°,∴A、B、C、D在以AB为直径的圆上,∴∠DAC=∠DBC,将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处,∴△BCD≌△AED,∴CD=ED,∠ADC=∠ADE,∴∠ADC﹣∠ADC=∠ADE﹣∠ADC,即∠ADB=∠CDE=90°,∴△CDE是等腰直角三角形,所以CE=CD,∵AC=m,BC=n=AE,∴CE=n﹣m,∴CD=.26.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线和直线BC的解析式;(2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)设交点式y=a(x+1)(x﹣4),然后把C点坐标代入求出a的值即可得到抛物线解析式;然后利用待定系数法求直线BC的解析式;(2)易得△ABE只能是以E点为直角顶点的三角形,利用勾股定理的逆定理可证明ACB=90°,再证明△ACB∽△COB,所以当点E在点C时满足条件;当E为点C在抛物线上的对称点时也满足条件,然后利用对称性写出E点坐标即可.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣4),把C(0,2)代入得a•1•(﹣4)=2,解得a=﹣,∴抛物线解析式为y=﹣(x+1)(x﹣4),即y=﹣x2+x+2;设直线BC的解析式为y=mx+n,把C(0,2),B(4,0)代入得,解得,∴直线BC的解析式为y=﹣x+2;(2)存在.由图象可得以A或B点为直角顶点的△ABE不存在,∴△ABE只能是以E点为直角顶点的三角形,∵AC2=12+22=5,BC2=42+22=20,AB2=52=25,∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°,∵∠ABC=∠CBO,∴△ACB∽△COB∴当点E在点C时,以A、B、E为顶点的三角形与△COB相似;∵点C关于直线x=的对称点的坐标为(3,2),∴点E的坐标为(3,2)时,以A、B、E为顶点的三角形与△COB相似,综上所述,点E的坐标为(0,2)或(3,2).。
2016-17江苏省九年级数学下学期期中考试试卷(附答案)
²D²F ²E 江苏省九年级数学下学期期中考试试卷一、选择题(本大题共l0小题.每小题3分.共30分)1.9的算术平方根是 ( ) A .3 B .-3 C .±3 D .32.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+17by ax by ax 的解,则a b -的值为( )A .-1B .1C .2D .33.分解因式269ab ab a -+的最终结果是 ( ) A .a(b -3) B .a(b 2-6b+9) C .a(b -3)2 D .(ab -3)24.已知圆锥的底面半径为4cm ,高为3cm ,则圆锥的侧面积是 ( ) A .20 cm 2 B .20兀cm 2 C .12兀cm 2 D .10兀cm 25.下列命题是假命题的是 ( )A .菱形的对角线互相垂直平分 B. 有一斜边与一直角边对应相等的两直角三角形全等 C .有一组邻边相等且垂直的平行四边形是正方形 D .对角线相等的四边形是矩形 6.如图,点A 、B 、C 是正方体三条相邻棱的中点,沿A 、B 、C 三点所在的平面将该正方体的 一个角切去后,所得几何体的正确展开图为 ( )7.如图,在8×4的矩形网格中,每格小正方形的边长都是1, 若△ABC 的三个顶点在图中相应的格点上,图中点D 、点E 、点F也都在格点上,则下列与△ABC 相似的三角形是 ( )A .△ACDB .△ADFC .△BDFD .△CDE8.某市70%的家庭年收入不少于3万元,下面一定不少于3万元的是( ) A .年收入的平均数 B .年收入的中位数C .年收入的众数D .年收入的平均数和众数 9.二次函数2y ax bx c =++的图象如图所示,反比例函数by x=与一次函数y cx a =+在同一平面( )10、在△ABC 中,∠ABC =30°,∠BAC =70°。
江苏省南京市鼓楼区2016_2017学年九年级数学上学期期中试卷(含解析)苏科版
2016-2017学年江苏省南京市鼓楼区九年级(上)期中数学试卷一、选择题(共6小题,每小题2分,满分12分)1.方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣12.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定3.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm24.某单位要招聘1名英语翻译,张明参加招聘考试的成绩如表所示:听说读写张明 90 80 83 82若把听、说、读、写的成绩按3:3:2:2计算平均成绩,则张明的平均成绩为()A.82 B.83 C.84 D.855.如图,有一圆O通过△ABC的三个顶点.若∠B=75°,∠C=60°,且的长度为4π,则BC的长度为何?()A.8 B.8 C.16 D.166.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.均不可能二、填空题(共10小题,每小题2分,满分20分)7.用配方法解方程x2﹣4x=5时,方程的两边同时加上,使得方程左边配成一个完全平方式.8.若⊙O的直径为2,OP=2,则点P与⊙O的位置关系是:点P在⊙O .9.若一元二次方程2x2+4x+1=0的两根是x1、x2,则x1+x2的值是.10.一只不透明的袋子中装有2个红球、3个白球,这些球除颜色外都相同,摇匀后从中任意摸出一个球,摸到红球的概率是.11.如图,四个小正方形的边长都是1,若以O为圆心,OG为半径作弧分别交AB、DC于点E、F,则图中阴影部分的面积为.12.如图所示圆中,AB为直径,弦CD⊥AB,垂足为H.若HB=2,HD=4,则AH= .13.如图,AB为⊙O的直径,弦CD与AB交于点E,连接AD.若∠C=80°,∠CEA=30°,则∠CDA= °.14.如图,某单位准备将院内一块长30m,宽20m的长方形花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草,如图,要使种植花草的面积为532m2,设小道进出口的宽度为x m,根据条件,可列出方程:.15.将一个三角形纸板按如图所示的方式放置一个破损的量角器上,使点C落在半圆上,若点A、B 处的读数分别为65°、20°,则∠ACB的大小为°.16.如图,△ABC中,∠B=90°,AB=11,BC=10,若⊙O的半径为5且与AB、BC相切,以下说法不正确的是.①圆心O是∠B的角平分线与AC的交点;②圆心O是∠B的角平分线与AB的垂直平分线的交点;③圆心O是AB的垂直平分线与BC的垂直平分线的交点;④圆心O是∠B的角平分线与BC的垂直平分线的交点.三、解答题(共11小题,满分88分)17.解下列一元二次方程.(1)x2+6x+5=0;(2)x2+x﹣1=0.18.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲 a 7 7 1.2乙7 b 8 c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?19.已知关于x的方程mx2﹣(m+2)x+2=0(1)求证:不论m为何值,方程总有实数根;(2)若方程的一个根是2,求m的值及方程的另一个根.20.甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选2名同学打第一场比赛.(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是;(2)随机选取2名同学,求其中有乙同学的概率.21.在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;(Ⅱ)如图2,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.22.我们知道,各类方程的解法虽然不尽相同,但是它们的基本思想都是“转化”,即把未知转化为已知.用“转化”的数学思想,我们还可以解一些新方程.认识新方程:像=x这样,根号下含有未知数的方程叫做无理方程,可以通过方程两边平方把它转化为2x+3=x2,解得x1=3,x2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,x2=﹣1是原方程的增根,舍去,所以原方程的解是x=3.运用以上经验,解下列方程:(1)=x;(2)x+2=6.23.圆心相同,半径不相等的两个圆叫做同心圆,用大圆的面积减去小圆的面积就是圆环的面积.(1)如图1,大圆的弦AB切小圆于点P,求证:AP=BP;(2)若AB=2a,请用含有a的代数式表示图1中的圆环面积;(3)如图2,若大圆的弦AB交小圆于C、D两点,且AB=8,CD=6,则圆环的面积为7π.24.某农场去年种植南瓜10亩,总产量为20000kg,今年该农场扩大了种植面积,并引进新品种,使产量增长到60000kg.已知今年种植面积的增长率是今年平均亩产量增长率的2倍,求今年平均亩产量的增长率.25.如图,已知△ABC,利用尺规完成下列作图(不写画法,保留作图痕迹).(1)作△ABC的外接圆;(2)若△ABC所在平面内有一点D,满足∠CAB=∠CDB,BC=BD,求作点D.26.某青年旅社有60间客房供游客居住,在旅游旺季,当客房的定价为每天200元时,所有客房都可以住满.客房定价每提高10元,就会有1个客房空闲,对有游客入住的客房,旅社还需要对每个房间支出20元/每天的维护费用,设每间客房的定价提高了x元.(1)填表(不需化简)入住的房间数量房间价格总维护费用提价前 60 200 60×20提价后60﹣200+x (60﹣)×20(2)若该青年旅社希望每天纯收入为14000元且能吸引更多的游客,则每间客房的定价应为多少元?(纯收入=总收入﹣维护费用)27.问题呈现:如图1,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,BE⊥DC交DC的延长线于点E.求证:BE 是⊙O的切线.问题分析:连接OB,要证明BE是⊙O的切线,只要证明OB ⊥BE,由题意知∠E=90°,故只需证明OB ∥DE.解法探究:(1)小明对这个问题进行了如下探索,请补全他的证明思路:如图2,连接AD,由∠ECB是圆内接四边形ABCD的一个外角,可证∠ECB=∠BAD,因为OB=OC,所以∠CBO=∠BCO ,因为BD=BA,所以∠BAD=∠BDA ,利用同弧所对的圆周角相等和等量代换,得到∠ECB=∠CBO ,所以DE∥OB,从而证明出BE是⊙O的切线.(2)如图3,连接AD,作直径BF交AD于点H,小丽发现BF⊥AD,请说明理由.(3)利用小丽的发现,请证明BE是⊙O的切线.(要求给出两种不同的证明方法).2016-2017学年江苏省南京市鼓楼区九年级(上)期中数学试卷参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣1【考点】解一元二次方程-因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2=x,x2﹣x=0,x(x﹣1)=0,x=0,x﹣1=0,x1=0,x2=1,故选C.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.2.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定【考点】根的判别式.【分析】将方程的系数代入根的判别式中,得出△=0,由此即可得知该方程有两个相等的实数根.【解答】解:在方程x2﹣4x+4=0中,△=(﹣4)2﹣4×1×4=0,∴该方程有两个相等的实数根.故选B.【点评】本题考查了根的判别式,解题的关键是代入方程的系数求出△=0.本题属于基础题,难度不大,解决该题型题目时,根据根的判别式得正负确定方程解得个数是关键.3.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【考点】圆锥的计算.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,圆锥侧面展开图的面积为:S侧=×2×6π×10=60π,所以圆锥的侧面积为60πcm2.故选:C.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.4.某单位要招聘1名英语翻译,张明参加招聘考试的成绩如表所示:听说读写张明 90 80 83 82若把听、说、读、写的成绩按3:3:2:2计算平均成绩,则张明的平均成绩为()A.82 B.83 C.84 D.85【考点】加权平均数.【分析】根据加权平均数的计算公式进行计算即可.【解答】解:张明的平均成绩为:(90×3+80×3+83×2+82×2)÷10=84;故选C.【点评】此题考查了加权平均数的计算公式,要熟练掌握,解答此题的关键是要明确:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.5.如图,有一圆O通过△ABC的三个顶点.若∠B=75°,∠C=60°,且的长度为4π,则BC的长度为何?()A.8 B.8 C.16 D.16【考点】弧长的计算.【分析】由三角形的内角和公式求出∠A,即可求得圆心角∠BOC=90°,由弧长公式求得半径,再由勾股定理求得结论.【解答】解:连接OB,OC,∵∠B=75°,∠C=60°,∴∠A=45°,∴∠BOC=90°,∵的长度为4π,∴=4π,∴OB=8,∴BC===8,故选B.【点评】本题主要考查了三角形内角和定理,弧长公式,圆周角定理,勾股定理,熟记弧长公式是解决问题的关键.6.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.均不可能【考点】垂径定理的应用.【分析】要确定圆的大小需知道其半径.根据垂径定理知第①块可确定半径的大小.【解答】解:第①块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选A.【点评】本题考查了垂径定理的应用,确定圆的条件,解题的关键是熟练掌握:圆上任意两弦的垂直平分线的交点即为该圆的圆心.二、填空题(共10小题,每小题2分,满分20分)7.用配方法解方程x2﹣4x=5时,方程的两边同时加上 4 ,使得方程左边配成一个完全平方式.【考点】解一元二次方程-配方法.【分析】要使方程左边配成一个完全平方式,需要等式两边同时加上一次项系数一半的平方.【解答】解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴用配方法解方程x2﹣4x=5时,方程的两边同时加上4,使得方程左边配成一个完全平方式.【点评】此题考查配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.8.若⊙O的直径为2,OP=2,则点P与⊙O的位置关系是:点P在⊙O 外.【考点】点与圆的位置关系.【分析】由条件可求得圆的半径为1,由条件可知点P到圆心的距离大于半径,可判定点P在圆外.【解答】解:∵⊙O的直径为2,∴⊙O的半径为1,∵OP=2>1,∴点P在⊙O外,故答案为:外.【点评】本题主要考查点与圆的位置关系,利用点到圆心的距离d与半径r的大小关系判定点与圆的位置关系是解题的关键.9.若一元二次方程2x2+4x+1=0的两根是x1、x2,则x1+x2的值是﹣2 .【考点】根与系数的关系.【分析】根据根与系数的关系即可得出x1+x2的值,此题的解.【解答】解:∵一元二次方程2x2+4x+1=0的两根是x1、x2,∴x1+x2=﹣=﹣2.故答案为:﹣2.【点评】本题考查了根与系数的关系,熟练掌握两根之和为﹣是解题的关键.10.一只不透明的袋子中装有2个红球、3个白球,这些球除颜色外都相同,摇匀后从中任意摸出一个球,摸到红球的概率是.【考点】概率公式.【分析】先求出总球的个数,再根据概率公式进行计算即可得出答案.【解答】解:∵有2个红球、3个白球,∴共有2+3=5个球,∴摸到红球的概率是;故答案为:.【点评】此题主要考查了概率公式的应用,关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.11.如图,四个小正方形的边长都是1,若以O为圆心,OG为半径作弧分别交AB、DC于点E、F,则图中阴影部分的面积为.【考点】扇形面积的计算.【分析】先根据OD=OF得出∠DOF=60°,同理可得出∠AOE=60°,进而得出∠EOF的度数,根据扇形的面积公式即可得出结论.【解答】解:∵OD=1,OF=OG=2,∴cos∠DOF==,∴∠DOF=60°.同理,∠AOE=60°,∴∠EOF=180°﹣60°﹣60°=60°,∴图中阴影部分的面积==.故答案为:.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.12.如图所示圆中,AB为直径,弦CD⊥AB,垂足为H.若HB=2,HD=4,则AH= 8 .【考点】垂径定理;勾股定理.【分析】取AB的中点O,连接OD,设OD=r,则OH=r﹣2,再根据勾股定理求出r的值,进而可得出结论.【解答】解:取AB的中点O,连接OD,设OD=r,则OH=r﹣2,在Rt△ODH中,∵OH2+DH2=OD2,即(r﹣2)2+42=r2,解得r=5,∴AH=AB﹣BH=10﹣2=8.故答案为:8.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.13.如图,AB为⊙O的直径,弦CD与AB交于点E,连接AD.若∠C=80°,∠CEA=30°,则∠CDA= 20 °.【考点】圆周角定理.【分析】根据三角形的内角和得到∠CAB=180°﹣80°﹣30°=70°,连接BC,由AB为⊙O的直径,得到∠ACB=90°,根据圆周角定理即可得到结论.【解答】解:∵∠C=80°,∠CEA=30°,∴∠CAB=180°﹣80°﹣30°=70°,连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=20°,∴∠CDA=∠B=20°,故答案为:20.【点评】本题考查了圆周角定理,三角形的内角和,正确的作出辅助线是解题的关键.14.如图,某单位准备将院内一块长30m,宽20m的长方形花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草,如图,要使种植花草的面积为532m2,设小道进出口的宽度为x m,根据条件,可列出方程:x2﹣35x+34=0 .【考点】由实际问题抽象出一元二次方程.【分析】设小道进出口的宽度为xm,根据矩形的面积以及平行四边形的面积结合种植花草的面积为532m2,即可列出关于x的一元二次方程,整理后即可得出结论.【解答】解:设小道进出口的宽度为xm,根据题意,得:30×20﹣20×2x﹣30x+2xx=532,整理,得:x2﹣35x+34=0.故答案为:x2﹣35x+34=0.【点评】本题考查了由实际问题抽象出一元二次方程,根据数量关系列出关于x的一元二次方程是解题的关键.15.将一个三角形纸板按如图所示的方式放置一个破损的量角器上,使点C落在半圆上,若点A、B处的读数分别为65°、20°,则∠ACB的大小为22.5 °.【考点】圆周角定理.【分析】设半圆圆心为O,连OA,OB,则∠AOB=86°﹣30°=56°,根据圆周角定理得∠ACB=∠AOB,即可得到∠ACB的大小.【解答】解:连结OA、OB,如图,∵点A、B的读数分别为65°,20°,∴∠AOB=65°﹣20°=45°,∴∠ACB=∠AOB=22.5°.故答案为:22.5.【点评】本题考查了圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,会使用量角器是解决本题的关键.16.如图,△ABC中,∠B=90°,AB=11,BC=10,若⊙O的半径为5且与AB、BC相切,以下说法不正确的是①②③.①圆心O是∠B的角平分线与AC的交点;②圆心O是∠B的角平分线与AB的垂直平分线的交点;③圆心O是AB的垂直平分线与BC的垂直平分线的交点;④圆心O是∠B的角平分线与BC的垂直平分线的交点.【考点】切线的性质;线段垂直平分线的性质.【分析】首先连接OD,OE,易得四边形ODBE是正方形,即可得点O在∠B的平分线上,OE是BC的垂直平分线,OD不是AB的垂直平分线,O不在AC的垂直平分线上,点O不在AC上.【解答】解:∵⊙O的半径为5且与AB、BC相切,∴OD⊥AB,OE⊥BC,OD=OE=5,∵∠B=90°,∴四边形ODBE是正方形,∴BE=BD=OE=OD=5,∴点O在∠B的平分线上,CE=BC﹣BE=5,AD=AB﹣BD=11﹣5=6,∴OE是BC的垂直平分线,OD不是AB的垂直平分线,∵OA==,OC==5,∴OA≠OC,即O不在AC的垂直平分线上;∵AC==,∴点O不在AC上.∴①②③错误,④正确.故答案为:①②③.【点评】此题考查了切线的性质、角平分线的性质以及线段垂直平分线的性质.注意证得四边形ODBE 是正方形是关键.三、解答题(共11小题,满分88分)17.解下列一元二次方程.(1)x2+6x+5=0;(2)x2+x﹣1=0.【考点】解一元二次方程-因式分解法.【分析】(1)因式分解法求解可得;(2)公式法求解可得.【解答】解:(1)(x+1)(x+5)=0,∴x+1=0或x+5=0,解得:x=﹣1或x=﹣5;(2)∵a=1,b=1,c=﹣1,∴b2﹣4ac=1+4=5,∴x=,∴x1=,x2=.【点评】本题主要考查解一元二次方程的能力,根据不同的方程选择合适的方法是解题的关键.18.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲 a 7 7 1.2 乙7b8c(1)写出表格中a ,b ,c 的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?【考点】方差;条形统计图;折线统计图;中位数;众数.【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可; (2)结合平均数和中位数、众数、方差三方面的特点进行分析. 【解答】解:(1)甲的平均成绩a==7(环),∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10, ∴乙射击成绩的中位数b==7.5(环),其方差c=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2(环);(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定; 综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大. 【点评】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.19.已知关于x的方程mx2﹣(m+2)x+2=0(1)求证:不论m为何值,方程总有实数根;(2)若方程的一个根是2,求m的值及方程的另一个根.【考点】根与系数的关系;根的判别式.【分析】(1)分类讨论:当m=0时,方程为一元一次方程,有一个实数解;当m≠0时,计算判别式得到△=(m﹣2)2≥0,则方程有两个实数解,于是可判断不论m为何值,方程总有实数根;(2)设方程的另一个根为t,利用根与系数的关系得到2+t=,2t=,然后解关于t与m的方程组即可.【解答】(1)证明:当m=0时,方程变形为﹣2x+2=0,解得x=1;当m≠0时,△=(m+2)2﹣4m2=(m﹣2)2≥0,方程有两个实数解,所以不论m为何值,方程总有实数根;(2)设方程的另一个根为t,根据题意得2+t=,2t=,则2+t=1+2t,解得t=1,所以m=1,即m的值位1,方程的另一个根为1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.20.甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选2名同学打第一场比赛.(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是;(2)随机选取2名同学,求其中有乙同学的概率.【考点】列表法与树状图法;概率公式.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出选取2名同学中有乙同学的结果数,然后根据概率公式求解.【解答】解:(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中选取2名同学中有乙同学的结果数为6,所以有乙同学的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21.在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;(Ⅱ)如图2,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.【考点】切线的性质.【分析】(Ⅰ)连接OC,首先根据切线的性质得到∠OCP=90°,利用∠CAB=27°得到∠COB=2∠CAB=54°,然后利用直角三角形两锐角互余即可求得答案;(Ⅱ)根据E为AC的中点得到OD⊥AC,从而求得∠AOE=90°﹣∠EAO=80°,然后利用圆周角定理求得∠ACD=∠AOD=40°,最后利用三角形的外角的性质求解即可.【解答】解:(Ⅰ)如图,连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(Ⅱ)∵E为AC的中点,∴OD⊥AC,即∠AEO=90°,在Rt△AOE中,由∠EAO=10°,得∠AOE=90°﹣∠EAO=80°,∴∠ACD=∠AOD=40°,∵∠ACD是△ACP的一个外角,∴∠P=∠ACD﹣∠A=40°﹣10°=30°.【点评】本题考查了切线的性质,解题的关键是能够利用圆的切线垂直于经过切点的半径得到直角三角形,难度不大.22.我们知道,各类方程的解法虽然不尽相同,但是它们的基本思想都是“转化”,即把未知转化为已知.用“转化”的数学思想,我们还可以解一些新方程.认识新方程:像=x这样,根号下含有未知数的方程叫做无理方程,可以通过方程两边平方把它转化为2x+3=x2,解得x1=3,x2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,x2=﹣1是原方程的增根,舍去,所以原方程的解是x=3.运用以上经验,解下列方程:(1)=x;(2)x+2=6.【考点】无理方程;分式方程的增根.【分析】(1)根据平方,可得整式方程,根据解整式方程,可得答案;(2)根据平方,可得整式方程,根据解整式方程,可得答案.【解答】解:(1)两边平方,得16﹣6x=x2,整理得:x2+6x﹣16=0,解得x1=﹣8,x1=2;经检验x=﹣8是增根,所以原方程的根为x=2;(2)移项得:2=6﹣x两边平方,得4x﹣12=x2﹣12x+36,解得x1=4,x2=12(不符合题意,舍).【点评】本题考查了无理方程,利用平方转化成整式方程是解无理方程的关键,注意要检验方程的根.23.圆心相同,半径不相等的两个圆叫做同心圆,用大圆的面积减去小圆的面积就是圆环的面积.(1)如图1,大圆的弦AB切小圆于点P,求证:AP=BP;(2)若AB=2a,请用含有a的代数式表示图1中的圆环面积;(3)如图2,若大圆的弦AB交小圆于C、D两点,且AB=8,CD=6,则圆环的面积为7π.【考点】切线的性质.【分析】(1)根据切线的性质以及垂径定理即可证明.(2)根据圆环的面积等于两圆的面积差,再根据切线的性质定理、勾股定理、垂径定理求解.(3)首先连接OA,OC,由勾股定理可得:OE2=OA2﹣AE2,OE2=OC2﹣CE2,继而可得OA2﹣OC2=7,则可求得圆环的面积【解答】(1)证明:如图1中,连接OP.∵AB是小圆的切线,P是切点,∴OP⊥AB,∴PA=PB.(2)解:如图1中,连接OB.∵大圆的弦AB是小圆的切线,∴OP⊥AB,AP=PB,∴OB2﹣OP2=(2a÷2)2=a2,∵S圆环=S大﹣S小=πOB2﹣πOP2=π(OB2﹣OP2),∴S圆环=πa2.(3)解:如图2中,连接OA,OC,作OE⊥AB于点E.在Rt△AOE与Rt△OCE中:OE2=OA2﹣AE2,OE2=OC2﹣CE2,∴OA2﹣AE2=OC2﹣CE2,∴OA2﹣OC2=AE2﹣CE2,∵AB=8,CD=6,∴AE=EB=4,CE=DE=3,∴OA2﹣OC2=7,∴圆环的面积为:πOA2﹣πOC2=π(OA2﹣OC2)=7π.故答案为7π.【点评】此题考查了垂径定理、勾股定理、圆的面积的等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,注意数形结合思想的应用,属于中考常考题型.24.某农场去年种植南瓜10亩,总产量为20000kg,今年该农场扩大了种植面积,并引进新品种,使产量增长到60000kg.已知今年种植面积的增长率是今年平均亩产量增长率的2倍,求今年平均亩产量的增长率.【考点】一元二次方程的应用.【分析】根据增长后的产量=增长前的产量(1+增长率),设南瓜亩产量的增长率为x,则种植面积的增长率为2x,列出方程求解.【解答】解:设南瓜亩产量的增长率为x,则种植面积的增长率为2x.根据题意,得10(1+2x)2000(1+x)=60000.解得:x1=0.5,x2=﹣2(不合题意,舍去).答:南瓜亩产量的增长率为50%.【点评】本题考查的是基本的一元二次方程的应用题,解题的关键是了解有关增长率问题的一般解法,难度一般.25.如图,已知△ABC,利用尺规完成下列作图(不写画法,保留作图痕迹).(1)作△ABC的外接圆;(2)若△ABC所在平面内有一点D,满足∠CAB=∠CDB,BC=BD,求作点D.【考点】作图—复杂作图;圆周角定理;三角形的外接圆与外心.【分析】(1)作出BD、BC的垂直平分线,两线的交点就是⊙O的圆心O的位置,然后以O为圆心AO 长为半径画圆即可;(2)以B为圆心,BC长为半径化弧,交⊙O于点D,再连接BD,CD即可.【解答】解:(1)如图所示:⊙O即为所求;(2)如图所示:点D即为所求.【点评】此题主要考查了复杂作图,以及圆周角定理,关键是掌握三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.在同圆或等圆中,同弧或等弧所对的圆周角相等.26.某青年旅社有60间客房供游客居住,在旅游旺季,当客房的定价为每天200元时,所有客房都可以住满.客房定价每提高10元,就会有1个客房空闲,对有游客入住的客房,旅社还需要对每个房间支出20元/每天的维护费用,设每间客房的定价提高了x元.(1)填表(不需化简)入住的房间数量房间价格总维护费用提价前 60 200 60×20提价后60﹣200+x (60﹣)×20(2)若该青年旅社希望每天纯收入为14000元且能吸引更多的游客,则每间客房的定价应为多少元?(纯收入=总收入﹣维护费用)【考点】一元二次方程的应用.【分析】(1)住满为60间,x表示每个房间每天的定价增加量;定价每增加10元时,就会有一个房间空闲,房间空闲个数为,入住量=60﹣房间空闲个数,列出代数式;(2)用:每天的房间收费=每间房实际定价×入住量,每间房实际定价=200+x,列出方程.【解答】解:(1)∵增加10元,就有一个房间空闲,增加20元就有两个房间空闲,以此类推,空闲的房间为,∴入住的房间数量=60﹣,房间价格是(200+x)元,总维护费用是(60﹣)×20.故答案是:60﹣;200+x;(60﹣)×20;(2)依题意得:(200+x)(60﹣)﹣(60﹣)×20=14000,。
南京市鼓楼区九年级下期中数学试卷及答案-超值
九年级(下)期中试卷数 学注意事项:本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题卡...相应位置....上) 1.4的算术平方根是A .±2B .2C .±16D .162.计算(-a 3)2的结果是A .-a 6B .-a 5C .a6D .a53.如图是某几何体的三种视图,则这个几何体是A .圆锥B .圆柱C .球D .四棱锥4B .-12C 5.对于代数式x 2-10x +24,下列说法中错误的是 A .次数为2、项数为3 B .因式分解的结果是(x -4)(x -6)C .该代数式的值可能等于0D .该代数式的值可能小于-16.如图,△ABC 是⊙O 的内接三角形,∠A =30°,BC =2,把△ABC 绕点O 按逆时针方向旋转90°得到△BED ,则对应点C 、D 之间的距离为A .1B . 2C . 3D .2 二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.-3的相反数是 ▲ ,-3的倒数是 ▲ .8.截止于2017年3月1日,南京市鼓楼区团区委官方微博的粉丝数量为25 000,将25 000 用科9.计算18a 的结果是 ▲ .10.不等式x -2<3的解集是 ▲ .11.某市在一次空气污染指数抽查中,收集到10天的数据如下:106,60,74,100,92,67,75,67,87,119.该组数据的中位数是 ▲ .12.已知圆锥的底面半径为4 cm ,圆锥的母线长为5 cm ,则圆锥的侧面积为 ▲ cm 2. 13.如图,∠1,∠2,∠3是五边形ABCDE 的3个外角,若∠A +∠B =220°,则∠1+∠2+∠3= ▲ °.14.以菱形ABCD 的对角线交点O 为原点,对角线AC AD 的中点E 的坐标为(-1,2),则BC 的中点F 15.在直角坐标系中,把四边形ABCD 以原点O ˊB ˊC ˊD ˊ.若点A 和它的对应点A ˊ的坐标分别为(2,3),(6,9),则四边形ABCD 的面积四边形A ˊB ˊC ˊD ˊ的面积= ▲ .左视图(第4题) (第6题)(第14题)1 2 3 A B C D E(第13题)16.已知二次函数y 1=ax 2+bx +c 图像与一次函数y 2=kx 的图像交于点M 、N ,点M 、N 的横坐标分别为m 、n (m <n ).下列结论:①若a >0,则当m <x <n 时,y 1<y 2;②若a <0,则当x <m 或x >n 时,y 1>y 2;③b -k =am +an ;④c =amn .其中所以正确结论的序号是 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算:2-1×4+(-2)4÷4+cos60°.18.(7分)解方程组⎩⎨⎧x -3y =-1,3x +y =7.19.(9分)已知代数式1x -1+x 2-3xx 2-1,回答下列问题.(1)化简这个代数式; (2)“当x =1时,该代数式的值为0”,这个说法正确吗?请说明理由. 20.(7分)某中学九年级男生共450人,现随机抽取了部分九年级男生进行引体向上测试,相关数据的统计图如下.(1)设学生引体向上测试成绩为x (单位:个).学校规定:当0≤x <2时成绩等级为不及格,当2≤x <4时成绩等级为及格,当5≤x <6时成绩等级为良好,当x ≥6时成绩等级为优秀.用适当的统计图表示“不及格”、“及格”、“良好”、“优秀”四个等级学生人数所占百分比; (2)估计全校九年级男生引体向上测试优秀的人数. 21.(8分)如图,在△ABC 中,AB =AC ,D 是边BC 上一点,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,△AEF ∽△ABC .(1)求证:△AED ≌△AFD ;(2)若BC =2AD ,求证:四边形AEDF 是正方形.22.(8分)甲、乙两人用两颗骰子玩游戏.这两颗骰子的一些面标记字母A ,而其余的面则标记字母B .两个人轮流掷骰子,游戏规则如下:两颗骰子的顶面字母相同时,甲赢;两颗骰子的顶面字母不同时,乙赢.已知第一颗骰子各面的标记为4A2B ,回答下列问题:(1)若第二颗骰子各面的标记为2A4B ,求甲、乙两人获胜的概率各是多少? (2)若要使两人获胜概率相等,则第二颗骰子要有 ▲ 个面标记字母A .x /个C D E B A F(第21题)23.(8分)按要求完成下列尺规作图(不写作图,保留作图痕迹).(1)如图①,点A、B、C是平行四边形ABCD的三个顶点,求作平行四边形ABCD;(2)如图②,点O、P、Q分别是平行四边形EFGH三边EH、EF、FG的中点,求作平行四边形EFGH.24.(8分)甲、乙两人骑车分别从A、B两地同时出发,沿同一路线匀速骑行,两人先相向而行,甲到达B 地后停留20min再以原速返回A地,当两人到达A地后停止骑行.设甲出发x min后距离A地的路程为y km.图中的折线表示甲在整个骑行过程中y与x的函数关系.(1)A、B两地之间的路程是▲ km;(2)求甲从B地返回A地时,y与x的函数表达式;(3)在整个骑行过程中,两人只相遇了1次,乙的骑行速度可能是(▲).A.0.1B.0.15C.0.2D.0.2525.(8分)某校九年级数学兴趣小组的活动课题是“测量物体高度”.小组成员小明与小红分别采用不同的35° ECFH 17°45°AB C图①OP Q图②(第23题)y(第24题)(2)数学老师说小红的结果较准确,而小明的结果与古塔的实际高度偏差较大.针对小明的测量方案分析测量发生偏差的原因;(3)利用小明与小红的测量数据,估算该古塔底面圆直径的长度为▲ m.26.(8分)某水果店出售一种水果,每只定价20元时,每周可卖出300只.试销发现以下两种情况:情况1:如果每只水果每降价1元,那么每周可多卖出25只;情况2:如果每只水果每涨价1元,那么每周将少卖出10只.(1)根据情况1,如何定价,才能使一周销售收入最多?(2)如果物价局规定该种水果每只价格只能在22元~24元之间(包括22元与24元)那么根据以上两种情况,你认为应当如何定价才能使一周销售收入最多?并说明理由.27.(10分)在正方形ABCD中,有一直径为CD的半圆,圆心为点O,CD=2,现有两点E、F,分别从点A、点C同时出发,点E沿线段AD以每秒1个单位长度的速度向点D运动,点F沿线段CB以每秒2个单位长度的速度向点B运动,当点F运动到点B时,点E也随之停止运动.设点E离开点A的时间为t(s),回答下列问题:(1)如图①,根据下列条件,分别求出t的值.①EF与半圆相切;②△EOF是等腰三角形.(2)如图②,点P是EF的中点,Q是半圆上一点,请直接写出PQ+OQ的最小值与最大值.EA DEA DA D九年级(下)期中考试 数学试题参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.3,-138.2.5×1049.6a 10.x <3 11.8112.20π 13.220° 14.(1,-2) 15.1916.①②④. 三、解答题(本大题共11小题,共88分) 17.(7分)解:2-1×6-(-2)4÷4+cos60°=12×6-16÷4+12………………………………………………………………………3分 =3-4+12…………………………………………………………………………………5分 =-12.……………………………………………………………………………………7分18.(7分)解方程组⎩⎨⎧x -3y =-1,①3x +y =7. ②解:由①+②×3,得x =2,……………………………………………………………3分把x =2代入①,得y =1, ……………………………………………………………5分∴方程组⎩⎨⎧x -3y =-1,3x +y =7的解为⎩⎨⎧x =2y =1.…………………………………………………7分19.(9分)解:(1)1x -1+x 2-3xx 2-1=x +1(x +1)(x -1)+x 2-3x (x +1)(x -1)……………………………………………………………2分 =(x -1)2(x +1)(x -1) ……………………………………………………………………………4分 =x -1x +1. …………………………………………………………………………………6分 (2)不正确. …………………………………………………………………………7分因为当x =1时,代数式1x -1+x 2-3x x 2-1中的分母x -1,x 2-1都等于0,该代数式在实数范围内无意义,所以这个说法不正确.………………………………………………………9分 20.(7分)(1)解:如图所示: ……………………………………………………………5分(2)450×30%=135(人)答:估计全校九年级男生引体向上测试优秀的人数为135人.…………………………………………………………………………………………………2分 21.(8分)(1)证明:∵△AEF ∽△ABC ,∴AE AB =AFAC,∵AB =AC ,∴AE =AF ,………………………………………1分 ∵DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,∴∠AED =∠AFD =90°,……………………………………………………2分 在Rt △AED 和Rt △AFD 中,∠AED =∠AFD =90°, ⎩⎨⎧AE =AF ,AD =AD ,∴Rt △AED ≌Rt △AFD .………………………………………………………4分(2)证明:∵Rt △AED ≌Rt △AFD ,∴∠EAD =∠FAD , ∵AB =AC ,∴AD ⊥BC ,BC =2BD ,………………………………………………………5分 ∵BC =2AD ,不及格 10% 及格 20% 良好40% 优秀30%某中学抽样九年级男生引体向上 等级人数分布扇形统计图∴BD =AD , ∵AD ⊥BC ,∴∠ADB =90°,∴∠B =∠BAD =45°,…………………………………………………………6分 ∴∠BAC =2∠BAD =90°, ∵∠AED =∠AFD =90°,∴四边形AEDF 是矩形,………………………………………………………7分 ∵AE =AF ,∴矩形AEDF 是正方形.………………………………………………………8分22.(8分)M ,它的发生有16种可能,P (M )=49,“两颗骰子的顶面字母不同”记为事件N ,它的发生有20种可能,P (N )=59,∴甲、乙两人获胜的概率各是49、59.…………………………………………………………………………………………………6分 (2)3.………………………………………………………………………………………8分 23.(8分)解:(1)如图①,四边形ABCD 即为所求.…………………………………4分(2)如图②,四边形EFGH 即为所求.……………………………………………………8分24.(8分)解:(1)25km .…………………………………………………………………2分(2)∵甲从A 地到B 地的速度为25÷50=0.5km/min ,∴甲从B 地返回A 地的速度也为0.5km/min ,∵甲到达B 地后停留20min 再以原速返回A 地,∴甲从B 地返回A 地时以出发70分钟,且距离A 地25km ,图① A B C D 图②P Q O EH F G∴y =25-0.5(x -70)=60-0.5x .………………………………………………6分 (3)D .…………………………………………………………………………………8分 25.(8分)解:(1)设CH =x , 在Rt△CHF 中,∵∠CFH =∠FCH =45°,∴CH =FH =x ,在Rt△CHE 中,∴tan∠CEH =CH EH,∴xx+58.8=tan17°=0.30, ∴x =25.2,即CH =25.2(m ),∴CD =CH +DH =25.2+1.6=26.8(m ),答:这棵树AB 的高度为26.8m .………………………………………………………4分(2)原因:小明测量的只是测角器所在位置与古塔底部边缘的最短距离,不是测量测角器所在位置与底面圆心的最短距离.………………………………………………………6分(3)12. …………………………………………………………………………………8分 26.(8分)解:(1)根据情况1,设当每只定价为x 元时,一周销售收入为y 1元.…………………………………………………………………………………………………1分y 1=x [300+25(20-x )]=-25x 2+800x ,当x =16时,y 1有最大值,最大值为6500元.…………………………………3分 答:当定价为16元时,一周销售收入最多,最多为6500元.(2)根据情况2,设当每只定价为x 元时,一周销售收入为y 2元. y 2=x [300-25(x -20)]=-10x 2+500x ,当x =25时,y 2有最大值,最大值为6250元, …………………………………5分 当22≤x ≤24时,y 1随x 的增大而减小,而y 2随x 的增大而增大,……………6分 当x =22时,y 1最大,最大值为5500,当x =24时,y 2最大,最大值为6000>5500.答:当定价为24元时,一周销售收入最多,最多为6000元.…………………8分27.(10分)(1)①解:如图,设EF 与半圆相切于点G ,过点E 作EH ⊥BC ,垂足为点H . ∵四边形ABCD 是正方形,∴AB =BC =CD =AD =2,∠A =∠B =∠ADC =∠BCD =90°, ∴OD ⊥AD ,且AD 经过半径OD 的外端点D , ∴AD 与半圆相切于点D ,同理可证:BC 与半圆相切于点C , ∴ED =EG =2-t ,CF =FG =2t , ∴EF =2+t ,∵EH ⊥BC ,垂足为点H ,∴∠BHE =90°,∵∠A =∠B =90°,∴四边形ABHE 是矩形,∴EH =AB =2,BH =AE =t ,∴HF =2-3t ,在△EHF 中,∠EHF =90°,∴EH 2+HF 2=EF 2,∴22+(2-3t )2=(2+t )2,解这个方程,得t 1=1-22<1,t 2=1+22>1(不合题意,舍去),∴当EF 与半圆相切时,t 的值为1-22.………………………………………………4分②解:在△EDO 中,∵∠EDO =90°,∴OE 2=t 2-4t +5,E CA FB D H 17° 45° A D E同理可证:OF 2=1+4t 2, EF 2=9t 2-12t +8,第一种情况:当OE =OF 时,则OE 2=OF 2,∴t 2-4t +5=1+4t 2,解这个方程,得t 1=23<1,t 2=-2<0(不合题意,舍去), 第二种情况:当OE =EF 时,则OE 2=EF 2,∴t 2-4t +5=9t 2-12t +8,此方程无解,第三种情况:当OF =EF 时,则OF 2=EF 2,∴1+4t 2=9t 2-12t +8,解这个方程,得t 1=1,t 2=1.4>1(不合题意,舍去),综上所述:当△EOF 是等腰三角形时,t 的值为23或1.………………………………8分 (3)1、32.………………………………………………………………………………10分。
南京市鼓楼区2016-2017年九年级上期中数学试卷(有答案)
2016-2017学年江苏省南京市鼓楼区九年级(上)期中数学试卷一、选择题(共6小题,每小题2分,满分12分)1.方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣12.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定3.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm24.某单位要招聘1名英语翻译,张明参加招聘考试的成绩如表所示:A.82 B.83 C.84 D.855.如图,有一圆O通过△ABC的三个顶点.若∠B=75°,∠C=60°,且的长度为4π,则BC的长度为何?()A.8 B.8C.16 D.166.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.均不可能二、填空题(共10小题,每小题2分,满分20分)7.用配方法解方程x2﹣4x=5时,方程的两边同时加上,使得方程左边配成一个完全平方式.8.若⊙O的直径为2,OP=2,则点P与⊙O的位置关系是:点P在⊙O.9.若一元二次方程2x2+4x+1=0的两根是x1、x2,则x1+x2的值是.10.一只不透明的袋子中装有2个红球、3个白球,这些球除颜色外都相同,摇匀后从中任意摸出一个球,摸到红球的概率是.11.如图,四个小正方形的边长都是1,若以O为圆心,OG为半径作弧分别交AB、DC于点E、F,则图中阴影部分的面积为.12.如图所示圆中,AB为直径,弦CD⊥AB,垂足为H.若HB=2,HD=4,则AH=.13.如图,AB为⊙O的直径,弦CD与AB交于点E,连接AD.若∠C=80°,∠CEA=30°,则∠CDA=°.14.如图,某单位准备将院内一块长30m,宽20m的长方形花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草,如图,要使种植花草的面积为532m2,设小道进出口的宽度为x m,根据条件,可列出方程:.15.将一个三角形纸板按如图所示的方式放置一个破损的量角器上,使点C落在半圆上,若点A、B处的读数分别为65°、20°,则∠ACB的大小为°.16.如图,△ABC 中,∠B=90°,AB=11,BC=10,若⊙O 的半径为5且与AB 、BC 相切,以下说法不正确的是 .①圆心O 是∠B 的角平分线与AC 的交点;②圆心O 是∠B 的角平分线与AB 的垂直平分线的交点; ③圆心O 是AB 的垂直平分线与BC 的垂直平分线的交点; ④圆心O 是∠B 的角平分线与BC 的垂直平分线的交点. 三、解答题(共11小题,满分88分) 17.解下列一元二次方程. (1)x 2+6x +5=0; (2)x 2+x ﹣1=0.18.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图: 根据以上信息,整理分析数据如下:(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?19.已知关于x 的方程mx 2﹣(m +2)x +2=0 (1)求证:不论m 为何值,方程总有实数根;(2)若方程的一个根是2,求m 的值及方程的另一个根.20.甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选2名同学打第一场比赛. (1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是 ;(2)随机选取2名同学,求其中有乙同学的概率. 21.在⊙O 中,AB 为直径,C 为⊙O 上一点.(Ⅰ)如图1.过点C 作⊙O 的切线,与AB 的延长线相交于点P ,若∠CAB=27°,求∠P 的大小; (Ⅱ)如图2,D 为上一点,且OD 经过AC 的中点E ,连接DC 并延长,与AB 的延长线相交于点P ,若∠CAB=10°,求∠P 的大小.22.我们知道,各类方程的解法虽然不尽相同,但是它们的基本思想都是“转化”,即把未知转化为已知.用“转化”的数学思想,我们还可以解一些新方程. 认识新方程: 像=x 这样,根号下含有未知数的方程叫做无理方程,可以通过方程两边平方把它转化为2x +3=x 2,解得x 1=3,x 2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,x 2=﹣1是原方程的增根,舍去,所以原方程的解是x=3.运用以上经验,解下列方程:(1)=x;(2)x+2=6.23.圆心相同,半径不相等的两个圆叫做同心圆,用大圆的面积减去小圆的面积就是圆环的面积.(1)如图1,大圆的弦AB切小圆于点P,求证:AP=BP;(2)若AB=2a,请用含有a的代数式表示图1中的圆环面积;(3)如图2,若大圆的弦AB交小圆于C、D两点,且AB=8,CD=6,则圆环的面积为7π.24.某农场去年种植南瓜10亩,总产量为20000kg,今年该农场扩大了种植面积,并引进新品种,使产量增长到60000kg.已知今年种植面积的增长率是今年平均亩产量增长率的2倍,求今年平均亩产量的增长率.25.如图,已知△ABC,利用尺规完成下列作图(不写画法,保留作图痕迹).(1)作△ABC的外接圆;(2)若△ABC所在平面内有一点D,满足∠CAB=∠CDB,BC=BD,求作点D.26.某青年旅社有60间客房供游客居住,在旅游旺季,当客房的定价为每天200元时,所有客房都可以住满.客房定价每提高10元,就会有1个客房空闲,对有游客入住的客房,旅社还需要对每个房间支出20元/每天的维护费用,设每间客房的定价提高了x元.(1)填表(不需化简))×收入=总收入﹣维护费用)27.问题呈现:如图1,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,BE⊥DC交DC的延长线于点E.求证:BE 是⊙O的切线.问题分析:连接OB,要证明BE是⊙O的切线,只要证明OB⊥BE,由题意知∠E=90°,故只需证明OB∥DE.解法探究:(1)小明对这个问题进行了如下探索,请补全他的证明思路:如图2,连接AD,由∠ECB是圆内接四边形ABCD的一个外角,可证∠ECB=∠BAD,因为OB=OC,所以∠CBO=∠BCO,因为BD=BA,所以∠BAD=∠BDA,利用同弧所对的圆周角相等和等量代换,得到∠ECB=∠CBO,所以DE∥OB,从而证明出BE是⊙O的切线.(2)如图3,连接AD,作直径BF交AD于点H,小丽发现BF⊥AD,请说明理由.(3)利用小丽的发现,请证明BE是⊙O的切线.(要求给出两种不同的证明方法).2016-2017学年江苏省南京市鼓楼区九年级(上)期中数学试卷参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣1【考点】解一元二次方程-因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2=x,x2﹣x=0,x(x﹣1)=0,x=0,x﹣1=0,x1=0,x2=1,故选C.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.2.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定【考点】根的判别式.【分析】将方程的系数代入根的判别式中,得出△=0,由此即可得知该方程有两个相等的实数根.【解答】解:在方程x2﹣4x+4=0中,△=(﹣4)2﹣4×1×4=0,∴该方程有两个相等的实数根.故选B.【点评】本题考查了根的判别式,解题的关键是代入方程的系数求出△=0.本题属于基础题,难度不大,解决该题型题目时,根据根的判别式得正负确定方程解得个数是关键.3.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【考点】圆锥的计算.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.故选:C.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.4.某单位要招聘1名英语翻译,张明参加招聘考试的成绩如表所示:A.82 B.83 C.84 D.85【考点】加权平均数.【分析】根据加权平均数的计算公式进行计算即可.【解答】解:张明的平均成绩为:(90×3+80×3+83×2+82×2)÷10=84;故选C.【点评】此题考查了加权平均数的计算公式,要熟练掌握,解答此题的关键是要明确:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.5.如图,有一圆O通过△ABC的三个顶点.若∠B=75°,∠C=60°,且的长度为4π,则BC的长度为何?()A.8 B.8C.16 D.16【考点】弧长的计算.【分析】由三角形的内角和公式求出∠A,即可求得圆心角∠BOC=90°,由弧长公式求得半径,再由勾股定理求得结论.【解答】解:连接OB,OC,∵∠B=75°,∠C=60°,∴∠A=45°,∴∠BOC=90°,∵的长度为4π,∴=4π,∴OB=8,∴BC===8,故选B.【点评】本题主要考查了三角形内角和定理,弧长公式,圆周角定理,勾股定理,熟记弧长公式是解决问题的关键.6.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.均不可能【考点】垂径定理的应用.【分析】要确定圆的大小需知道其半径.根据垂径定理知第①块可确定半径的大小.【解答】解:第①块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选A.【点评】本题考查了垂径定理的应用,确定圆的条件,解题的关键是熟练掌握:圆上任意两弦的垂直平分线的交点即为该圆的圆心.二、填空题(共10小题,每小题2分,满分20分)7.用配方法解方程x2﹣4x=5时,方程的两边同时加上4,使得方程左边配成一个完全平方式.【考点】解一元二次方程-配方法.【分析】要使方程左边配成一个完全平方式,需要等式两边同时加上一次项系数一半的平方.【解答】解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴用配方法解方程x2﹣4x=5时,方程的两边同时加上4,使得方程左边配成一个完全平方式.【点评】此题考查配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.8.若⊙O的直径为2,OP=2,则点P与⊙O的位置关系是:点P在⊙O外.【考点】点与圆的位置关系.【分析】由条件可求得圆的半径为1,由条件可知点P到圆心的距离大于半径,可判定点P在圆外.【解答】解:∵⊙O的直径为2,∴⊙O的半径为1,∵OP=2>1,∴点P在⊙O外,故答案为:外.【点评】本题主要考查点与圆的位置关系,利用点到圆心的距离d与半径r的大小关系判定点与圆的位置关系是解题的关键.9.若一元二次方程2x2+4x+1=0的两根是x1、x2,则x1+x2的值是﹣2.【考点】根与系数的关系.【分析】根据根与系数的关系即可得出x1+x2的值,此题的解.【解答】解:∵一元二次方程2x2+4x+1=0的两根是x1、x2,∴x1+x2=﹣=﹣2.故答案为:﹣2.【点评】本题考查了根与系数的关系,熟练掌握两根之和为﹣是解题的关键.10.一只不透明的袋子中装有2个红球、3个白球,这些球除颜色外都相同,摇匀后从中任意摸出一个球,摸到红球的概率是.【考点】概率公式.【分析】先求出总球的个数,再根据概率公式进行计算即可得出答案.【解答】解:∵有2个红球、3个白球,∴共有2+3=5个球,∴摸到红球的概率是;故答案为:.【点评】此题主要考查了概率公式的应用,关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.11.如图,四个小正方形的边长都是1,若以O为圆心,OG为半径作弧分别交AB、DC于点E、F,则图中阴影部分的面积为.【考点】扇形面积的计算.【分析】先根据OD=OF得出∠DOF=60°,同理可得出∠AOE=60°,进而得出∠EOF的度数,根据扇形的面积公式即可得出结论.【解答】解:∵OD=1,OF=OG=2,∴cos∠DOF==,∴∠DOF=60°.同理,∠AOE=60°,∴∠EOF=180°﹣60°﹣60°=60°,∴图中阴影部分的面积==.故答案为:.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.12.如图所示圆中,AB为直径,弦CD⊥AB,垂足为H.若HB=2,HD=4,则AH=8.【考点】垂径定理;勾股定理.【分析】取AB的中点O,连接OD,设OD=r,则OH=r﹣2,再根据勾股定理求出r的值,进而可得出结论.【解答】解:取AB的中点O,连接OD,设OD=r,则OH=r﹣2,在Rt△ODH中,∵OH2+DH2=OD2,即(r﹣2)2+42=r2,解得r=5,∴AH=AB﹣BH=10﹣2=8.故答案为:8.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.13.如图,AB为⊙O的直径,弦CD与AB交于点E,连接AD.若∠C=80°,∠CEA=30°,则∠CDA=20°.【考点】圆周角定理.【分析】根据三角形的内角和得到∠CAB=180°﹣80°﹣30°=70°,连接BC,由AB为⊙O的直径,得到∠ACB=90°,根据圆周角定理即可得到结论.【解答】解:∵∠C=80°,∠CEA=30°,∴∠CAB=180°﹣80°﹣30°=70°,连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=20°,∴∠CDA=∠B=20°,故答案为:20.【点评】本题考查了圆周角定理,三角形的内角和,正确的作出辅助线是解题的关键.14.如图,某单位准备将院内一块长30m,宽20m的长方形花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草,如图,要使种植花草的面积为532m2,设小道进出口的宽度为x m,根据条件,可列出方程:x2﹣35x+34=0.【考点】由实际问题抽象出一元二次方程.【分析】设小道进出口的宽度为xm,根据矩形的面积以及平行四边形的面积结合种植花草的面积为532m2,即可列出关于x的一元二次方程,整理后即可得出结论.【解答】解:设小道进出口的宽度为xm,根据题意,得:30×20﹣20×2x﹣30x+2xx=532,整理,得:x2﹣35x+34=0.故答案为:x2﹣35x+34=0.【点评】本题考查了由实际问题抽象出一元二次方程,根据数量关系列出关于x的一元二次方程是解题的关键.15.将一个三角形纸板按如图所示的方式放置一个破损的量角器上,使点C落在半圆上,若点A、B处的读数分别为65°、20°,则∠ACB的大小为22.5°.【考点】圆周角定理.【分析】设半圆圆心为O,连OA,OB,则∠AOB=86°﹣30°=56°,根据圆周角定理得∠ACB=∠AOB,即可得到∠ACB的大小.【解答】解:连结OA、OB,如图,∵点A、B的读数分别为65°,20°,∴∠AOB=65°﹣20°=45°,∴∠ACB=∠AOB=22.5°.故答案为:22.5.【点评】本题考查了圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,会使用量角器是解决本题的关键.16.如图,△ABC中,∠B=90°,AB=11,BC=10,若⊙O的半径为5且与AB、BC相切,以下说法不正确的是①②③.①圆心O是∠B的角平分线与AC的交点;②圆心O是∠B的角平分线与AB的垂直平分线的交点;③圆心O是AB的垂直平分线与BC的垂直平分线的交点;④圆心O是∠B的角平分线与BC的垂直平分线的交点.【考点】切线的性质;线段垂直平分线的性质.【分析】首先连接OD,OE,易得四边形ODBE是正方形,即可得点O在∠B的平分线上,OE是BC的垂直平分线,OD不是AB的垂直平分线,O不在AC的垂直平分线上,点O不在AC上.【解答】解:∵⊙O的半径为5且与AB、BC相切,∴OD⊥AB,OE⊥BC,OD=OE=5,∵∠B=90°,∴四边形ODBE是正方形,∴BE=BD=OE=OD=5,∴点O在∠B的平分线上,CE=BC﹣BE=5,AD=AB﹣BD=11﹣5=6,∴OE是BC的垂直平分线,OD不是AB的垂直平分线,∵OA==,OC==5,∴OA≠OC,即O不在AC的垂直平分线上;∵AC==,∴点O不在AC上.∴①②③错误,④正确.故答案为:①②③.【点评】此题考查了切线的性质、角平分线的性质以及线段垂直平分线的性质.注意证得四边形ODBE是正方形是关键.三、解答题(共11小题,满分88分)17.解下列一元二次方程.(1)x2+6x+5=0;(2)x2+x﹣1=0.【考点】解一元二次方程-因式分解法.【分析】(1)因式分解法求解可得;(2)公式法求解可得.【解答】解:(1)(x+1)(x+5)=0,∴x +1=0或x +5=0, 解得:x=﹣1或x=﹣5; (2)∵a=1,b=1,c=﹣1, ∴b 2﹣4ac=1+4=5, ∴x=, ∴x 1=,x 2=.【点评】本题主要考查解一元二次方程的能力,根据不同的方程选择合适的方法是解题的关键. 18.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图: 根据以上信息,整理分析数据如下:(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?【考点】方差;条形统计图;折线统计图;中位数;众数.【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可; (2)结合平均数和中位数、众数、方差三方面的特点进行分析. 【解答】解:(1)甲的平均成绩a==7(环),∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10, ∴乙射击成绩的中位数b==7.5(环),其方差c=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2(环);(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定; 综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大. 【点评】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析. 19.已知关于x 的方程mx 2﹣(m +2)x +2=0(1)求证:不论m为何值,方程总有实数根;(2)若方程的一个根是2,求m的值及方程的另一个根.【考点】根与系数的关系;根的判别式.【分析】(1)分类讨论:当m=0时,方程为一元一次方程,有一个实数解;当m≠0时,计算判别式得到△=(m﹣2)2≥0,则方程有两个实数解,于是可判断不论m为何值,方程总有实数根;(2)设方程的另一个根为t,利用根与系数的关系得到2+t=,2t=,然后解关于t与m的方程组即可.【解答】(1)证明:当m=0时,方程变形为﹣2x+2=0,解得x=1;当m≠0时,△=(m+2)2﹣4m2=(m﹣2)2≥0,方程有两个实数解,所以不论m为何值,方程总有实数根;(2)设方程的另一个根为t,根据题意得2+t=,2t=,则2+t=1+2t,解得t=1,所以m=1,即m的值位1,方程的另一个根为1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.20.甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选2名同学打第一场比赛.(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是;(2)随机选取2名同学,求其中有乙同学的概率.【考点】列表法与树状图法;概率公式.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出选取2名同学中有乙同学的结果数,然后根据概率公式求解.【解答】解:(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中选取2名同学中有乙同学的结果数为6,所以有乙同学的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21.在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;(Ⅱ)如图2,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.【考点】切线的性质.【分析】(Ⅰ)连接OC,首先根据切线的性质得到∠OCP=90°,利用∠CAB=27°得到∠COB=2∠CAB=54°,然后利用直角三角形两锐角互余即可求得答案;(Ⅱ)根据E为AC的中点得到OD⊥AC,从而求得∠AOE=90°﹣∠EAO=80°,然后利用圆周角定理求得∠ACD=∠AOD=40°,最后利用三角形的外角的性质求解即可.【解答】解:(Ⅰ)如图,连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(Ⅱ)∵E为AC的中点,∴OD⊥AC,即∠AEO=90°,在Rt△AOE中,由∠EAO=10°,得∠AOE=90°﹣∠EAO=80°,∴∠ACD=∠AOD=40°,∵∠ACD是△ACP的一个外角,∴∠P=∠ACD﹣∠A=40°﹣10°=30°.【点评】本题考查了切线的性质,解题的关键是能够利用圆的切线垂直于经过切点的半径得到直角三角形,难度不大.22.我们知道,各类方程的解法虽然不尽相同,但是它们的基本思想都是“转化”,即把未知转化为已知.用“转化”的数学思想,我们还可以解一些新方程.认识新方程:像=x这样,根号下含有未知数的方程叫做无理方程,可以通过方程两边平方把它转化为2x+3=x2,解得x1=3,x2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,x2=﹣1是原方程的增根,舍去,所以原方程的解是x=3.运用以上经验,解下列方程:(1)=x;(2)x+2=6.【考点】无理方程;分式方程的增根.【分析】(1)根据平方,可得整式方程,根据解整式方程,可得答案;(2)根据平方,可得整式方程,根据解整式方程,可得答案.【解答】解:(1)两边平方,得16﹣6x=x2,整理得:x2+6x﹣16=0,解得x1=﹣8,x1=2;经检验x=﹣8是增根,所以原方程的根为x=2;(2)移项得:2=6﹣x两边平方,得4x﹣12=x2﹣12x+36,解得x1=4,x2=12(不符合题意,舍).【点评】本题考查了无理方程,利用平方转化成整式方程是解无理方程的关键,注意要检验方程的根.23.圆心相同,半径不相等的两个圆叫做同心圆,用大圆的面积减去小圆的面积就是圆环的面积.(1)如图1,大圆的弦AB切小圆于点P,求证:AP=BP;(2)若AB=2a,请用含有a的代数式表示图1中的圆环面积;(3)如图2,若大圆的弦AB交小圆于C、D两点,且AB=8,CD=6,则圆环的面积为7π.【考点】切线的性质.【分析】(1)根据切线的性质以及垂径定理即可证明.(2)根据圆环的面积等于两圆的面积差,再根据切线的性质定理、勾股定理、垂径定理求解.(3)首先连接OA,OC,由勾股定理可得:OE2=OA2﹣AE2,OE2=OC2﹣CE2,继而可得OA2﹣OC2=7,则可求得圆环的面积【解答】(1)证明:如图1中,连接OP.∵AB是小圆的切线,P是切点,∴OP⊥AB,∴PA=PB.(2)解:如图1中,连接OB.∵大圆的弦AB是小圆的切线,∴OP⊥AB,AP=PB,∴OB2﹣OP2=(2a÷2)2=a2,=S大﹣S小=πOB2﹣πOP2=π(OB2﹣OP2),∵S圆环=πa2.∴S圆环(3)解:如图2中,连接OA,OC,作OE⊥AB于点E.在Rt△AOE与Rt△OCE中:OE2=OA2﹣AE2,OE2=OC2﹣CE2,∴OA2﹣AE2=OC2﹣CE2,∴OA2﹣OC2=AE2﹣CE2,∵AB=8,CD=6,∴AE=EB=4,CE=DE=3,∴OA2﹣OC2=7,∴圆环的面积为:πOA2﹣πOC2=π(OA2﹣OC2)=7π.故答案为7π.【点评】此题考查了垂径定理、勾股定理、圆的面积的等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,注意数形结合思想的应用,属于中考常考题型.24.某农场去年种植南瓜10亩,总产量为20000kg,今年该农场扩大了种植面积,并引进新品种,使产量增长到60000kg.已知今年种植面积的增长率是今年平均亩产量增长率的2倍,求今年平均亩产量的增长率.【考点】一元二次方程的应用.【分析】根据增长后的产量=增长前的产量(1+增长率),设南瓜亩产量的增长率为x,则种植面积的增长率为2x,列出方程求解.【解答】解:设南瓜亩产量的增长率为x,则种植面积的增长率为2x.根据题意,得10(1+2x)2000(1+x)=60000.解得:x1=0.5,x2=﹣2(不合题意,舍去).答:南瓜亩产量的增长率为50%.【点评】本题考查的是基本的一元二次方程的应用题,解题的关键是了解有关增长率问题的一般解法,难度一般.25.如图,已知△ABC,利用尺规完成下列作图(不写画法,保留作图痕迹).(1)作△ABC的外接圆;(2)若△ABC所在平面内有一点D,满足∠CAB=∠CDB,BC=BD,求作点D.【考点】作图—复杂作图;圆周角定理;三角形的外接圆与外心.【分析】(1)作出BD、BC的垂直平分线,两线的交点就是⊙O的圆心O的位置,然后以O为圆心AO 长为半径画圆即可;(2)以B为圆心,BC长为半径化弧,交⊙O于点D,再连接BD,CD即可.【解答】解:(1)如图所示:⊙O即为所求;(2)如图所示:点D即为所求.【点评】此题主要考查了复杂作图,以及圆周角定理,关键是掌握三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.在同圆或等圆中,同弧或等弧所对的圆周角相等.26.某青年旅社有60间客房供游客居住,在旅游旺季,当客房的定价为每天200元时,所有客房都可以住满.客房定价每提高10元,就会有1个客房空闲,对有游客入住的客房,旅社还需要对每个房间支出20元/每天的维护费用,设每间客房的定价提高了x元.(1)填表(不需化简))×收入=总收入﹣维护费用)【考点】一元二次方程的应用.【分析】(1)住满为60间,x表示每个房间每天的定价增加量;定价每增加10元时,就会有一个房间空闲,房间空闲个数为,入住量=60﹣房间空闲个数,列出代数式;(2)用:每天的房间收费=每间房实际定价×入住量,每间房实际定价=200+x,列出方程.【解答】解:(1)∵增加10元,就有一个房间空闲,增加20元就有两个房间空闲,以此类推,空闲的房间为,∴入住的房间数量=60﹣,房间价格是(200+x)元,总维护费用是(60﹣)×20.故答案是:60﹣;200+x;(60﹣)×20;(2)依题意得:(200+x)(60﹣)﹣(60﹣)×20=14000,整理,得x2﹣420x+32000=0,解得x1=320,x2=100.当x=320时,有游客居住的客房数量是:60﹣=28(间).当x=100时,有游客居住的客房数量是:60﹣=50(间).所以当x=100时,能吸引更多的游客,则每个房间的定价为200+100=300(元).答:每间客房的定价应为300元.【点评】本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.27.问题呈现:如图1,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,BE⊥DC交DC的延长线于点E.求证:BE 是⊙O的切线.问题分析:连接OB,要证明BE是⊙O的切线,只要证明OB⊥BE,由题意知∠E=90°,故只需证明OB∥DE.解法探究:(1)小明对这个问题进行了如下探索,请补全他的证明思路:。
南京市鼓楼区九年级下期中数学试卷及答案-精校
九年级(下)期中试卷数 学注意事项:本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题卡...相应位置....上) 1.4的算术平方根是A .±2B .2C .±16D .162.计算(-a 3)2的结果是A .-a 6B .-a 5C .a6D .a53.如图是某几何体的三种视图,则这个几何体是A .圆锥B .圆柱C .球D .四棱锥4B .-12C5.对于代数式x 2-10x +24,下列说法中错误的是 A .次数为2、项数为3 B .因式分解的结果是(x -4)(x -6)C .该代数式的值可能等于0D .该代数式的值可能小于-16.如图,△ABC 是⊙O 的内接三角形,∠A =30°,BC =2,把△ABC 绕点O 按逆时针方向旋转90°得到△BED ,则对应点C 、D 之间的距离为A .1B . 2C . 3D .2 二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.-3的相反数是 ▲ ,-3的倒数是 ▲ .8.截止于2017年3月1日,南京市鼓楼区团区委官方微博的粉丝数量为25 000,将25 000 用科9.计算18a10.不等式x -2<3的解集是 ▲ .11.某市在一次空气污染指数抽查中,收集到10天的数据如下:106,60,74,100,92,67,75,67,87,119.该组数据的中位数是 ▲ .12.已知圆锥的底面半径为4 cm ,圆锥的母线长为5 cm ,则圆锥的侧面积为 ▲ cm 2. 13.如图,∠1,∠2,∠3是五边形ABCDE 的3个外角,若∠A +∠B =220°,则∠1+∠2+∠3= ▲ °.14.以菱形ABCD 的对角线交点O 为原点,对角线AC AD 的中点E 的坐标为(-1,2),则BC 的中点F 15.在直角坐标系中,把四边形ABCD 以原点O ˊB ˊC ˊD ˊ.若点A 和它的左视图(第4题) (第6题)(第14题)1 2 3A BCD E(第13题)对应点A ˊ的坐标分别为(2,3),(6,9),则四边形ABCD 的面积四边形A ˊB ˊC ˊD ˊ的面积= ▲ .16.已知二次函数y 1=ax 2+bx +c 图像与一次函数y 2=kx 的图像交于点M 、N ,点M 、N 的横坐标分别为m 、n (m <n ).下列结论:①若a >0,则当m <x <n 时,y 1<y 2;②若a <0,则当x <m 或x >n 时,y 1>y 2;③b -k =am +an ;④c =amn .其中所以正确结论的序号是 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算:2-1×4+(-2)4÷4+cos60°.18.(7分)解方程组⎩⎨⎧x -3y =-1,3x +y =7.19.(9分)已知代数式1x -1+x 2-3xx 2-1,回答下列问题.(1)化简这个代数式; (2)“当x =1时,该代数式的值为0”,这个说法正确吗?请说明理由. 20.(7分)某中学九年级男生共450人,现随机抽取了部分九年级男生进行引体向上测试,相关数据的统计图如下.(1)设学生引体向上测试成绩为x (单位:个).学校规定:当0≤x <2时成绩等级为不及格,当2≤x <4时成绩等级为及格,当5≤x <6时成绩等级为良好,当x ≥6时成绩等级为优秀.用适当的统计图表示“不及格”、“及格”、“良好”、“优秀”四个等级学生人数所占百分比; (2)估计全校九年级男生引体向上测试优秀的人数. 21.(8分)如图,在△ABC 中,AB =AC ,D 是边BC 上一点,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,△AEF ∽△ABC .(1)求证:△AED ≌△AFD ;(2)若BC =2AD ,求证:四边形AEDF 是正方形.22.(8分)甲、乙两人用两颗骰子玩游戏.这两颗骰子的一些面标记字母A ,而其余的面则标记字母B .两个人轮流掷骰子,游戏规则如下:两颗骰子的顶面字母相同时,甲赢;两颗骰子的顶面字母不同时,乙赢.已知第一颗骰子各面的标记为4A2B ,回答下列问题:(1)若第二颗骰子各面的标记为2A4B ,求甲、乙两人获胜的概率各是多少?x /个C D E B A F(第21题)(2)若要使两人获胜概率相等,则第二颗骰子要有 ▲ 个面标记字母A .23.(8分)按要求完成下列尺规作图(不写作图,保留作图痕迹).(1)如图①,点A 、B 、C 是平行四边形ABCD 的三个顶点,求作平行四边形ABCD ;(2)如图②,点O 、P 、Q 分别是平行四边形EFGH 三边EH 、EF 、FG 的中点,求作平行四边形EFGH .24.(8分)甲、乙两人骑车分别从A 、B 两地同时出发,沿同一路线匀速骑行,两人先相向而行,甲到达B地后停留20 min 再以原速返回A 地,当两人到达A 地后停止骑行.设甲出发xmin 后距离A 地的路程为ykm .图中的折线表示甲在整个骑行过程中y 与x 的函数关系. (1)A 、B 两地之间的路程是 ▲ km ;(2)求甲从B 地返回A 地时,y 与x 的函数表达式;(3)在整个骑行过程中,两人只相遇了1次,乙的骑行速度可能是( ▲ ).A .0.1B .0.15C .0.2D .0.2525.(8分)某校九年级数学兴趣小组的活动课题是“测量物体高度”.小组成员小明与小红分别采用不同的CA B C 图①OP Q图② (第23题) y (第24题)(2)数学老师说小红的结果较准确,而小明的结果与古塔的实际高度偏差较大.针对小明的测量方案分析测量发生偏差的原因;(3)利用小明与小红的测量数据,估算该古塔底面圆直径的长度为▲ m.26.(8分)某水果店出售一种水果,每只定价20元时,每周可卖出300只.试销发现以下两种情况:情况1:如果每只水果每降价1元,那么每周可多卖出25只;情况2:如果每只水果每涨价1元,那么每周将少卖出10只.(1)根据情况1,如何定价,才能使一周销售收入最多?(2)如果物价局规定该种水果每只价格只能在22元~24元之间(包括22元与24元)那么根据以上两种情况,你认为应当如何定价才能使一周销售收入最多?并说明理由.27.(10分)在正方形ABCD中,有一直径为CD的半圆,圆心为点O,CD=2,现有两点E、F,分别从点A、点C同时出发,点E沿线段AD以每秒1个单位长度的速度向点D运动,点F沿线段CB以每秒2个单位长度的速度向点B运动,当点F运动到点B时,点E也随之停止运动.设点E离开点A的时间为t(s),回答下列问题:(1)如图①,根据下列条件,分别求出t的值.①EF与半圆相切;②△EOF是等腰三角形.(2)如图②,点P是EF的中点,Q是半圆上一点,请直接写出PQ+OQ的最小值与最大值.EA DEA DA D九年级(下)期中考试 数学试题参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.3,-138.2.5×1049.6a 10.x <3 11.8112.20π 13.220° 14.(1,-2) 15.1916.①②④. 三、解答题(本大题共11小题,共88分) 17.(7分)解:2-1×6-(-2)4÷4+cos60°=12×6-16÷4+12………………………………………………………………………3分 =3-4+12…………………………………………………………………………………5分=-12.……………………………………………………………………………………7分18.(7分)解方程组⎩⎨⎧x -3y =-1,①3x +y =7. ②解:由①+②×3,得x =2,……………………………………………………………3分 把x =2代入①,得y =1, ……………………………………………………………5分∴方程组⎩⎨⎧x -3y =-1,3x +y =7的解为⎩⎨⎧x =2y =1.…………………………………………………7分19.(9分)解:(1)1x -1+x 2-3xx 2-1=x +1(x +1)(x -1)+x 2-3x (x +1)(x -1)……………………………………………………………2分 =(x -1)2(x +1)(x -1) ……………………………………………………………………………4分 =x -1x +1. …………………………………………………………………………………6分 (2)不正确. …………………………………………………………………………7分因为当x =1时,代数式1x -1+x 2-3x x 2-1中的分母x -1,x 2-1都等于0,该代数式在实数范围内无意义,所以这个说法不正确.………………………………………………………9分 20.(7分)(1)解:如图所示: ……………………………………………………………5分(2)450×30%=135(人)答:估计全校九年级男生引体向上测试优秀的人数为135人.…………………………………………………………………………………………………2分 21.(8分)(1)证明:∵△AEF ∽△ABC ,∴AE AB =AFAC,∵AB =AC ,∴AE =AF ,………………………………………1分 ∵DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,∴∠AED =∠AFD =90°,……………………………………………………2分 在Rt △AED 和Rt △AFD 中,∠AED =∠AFD =90°, ⎩⎨⎧AE =AF ,AD =AD ,∴Rt △AED ≌Rt △AFD .………………………………………………………4分(2)证明:∵Rt △AED ≌Rt △AFD ,∴∠EAD =∠FAD , ∵AB =AC ,不及格10% 及格 20%良好 40% 优秀30%某中学抽样九年级男生引体向上等级人数分布扇形统计图∴AD ⊥BC ,BC =2BD ,………………………………………………………5分 ∵BC =2AD , ∴BD =AD , ∵AD ⊥BC ,∴∠ADB =90°,∴∠B =∠BAD =45°,…………………………………………………………6分 ∴∠BAC =2∠BAD =90°, ∵∠AED =∠AFD =90°,∴四边形AEDF 是矩形,………………………………………………………7分 ∵AE =AF ,∴矩形AEDF 是正方形.………………………………………………………8分22.(8分)M ,它的发生有16种可能,P (M )=49,“两颗骰子的顶面字母不同”记为事件N ,它的发生有20种可能,P (N )=59,∴甲、乙两人获胜的概率各是49、59.…………………………………………………………………………………………………6分 (2)3.………………………………………………………………………………………8分 23.(8分)解:(1)如图①,四边形ABCD 即为所求.…………………………………4分(2)如图②,四边形EFGH 即为所求.……………………………………………………8分24.(8分)解:(1)25km .…………………………………………………………………2分(2)∵甲从A 地到B 地的速度为25÷50=0.5km/min ,∴甲从B 地返回A 地的速度也为0.5km/min ,图① A B C D 图② P Q O EH F G∵甲到达B 地后停留20min 再以原速返回A 地,∴甲从B 地返回A 地时以出发70分钟,且距离A 地25km ,∴y =25-0.5(x -70)=60-0.5x .………………………………………………6分 (3)D .…………………………………………………………………………………8分 25.(8分)解:(1)设CH =x , 在Rt△CHF 中,∵∠CFH =∠FCH =45°,∴CH =FH =x ,在Rt△CHE 中,∴tan∠CEH =CH EH,∴xx +58.8=tan17°=0.30, ∴x =25.2,即CH =25.2(m ),∴CD =CH +DH =25.2+1.6=26.8(m ), 答:这棵树AB 的高度为26.8m .………………………………………………………4分(2)原因:小明测量的只是测角器所在位置与古塔底部边缘的最短距离,不是测量测角器所在位置与底面圆心的最短距离.………………………………………………………6分(3)12. …………………………………………………………………………………8分 26.(8分)解:(1)根据情况1,设当每只定价为x 元时,一周销售收入为y 1元.…………………………………………………………………………………………………1分y 1=x [300+25(20-x )]=-25x 2+800x ,当x =16时,y 1有最大值,最大值为6500元.…………………………………3分 答:当定价为16元时,一周销售收入最多,最多为6500元.(2)根据情况2,设当每只定价为x 元时,一周销售收入为y 2元. y 2=x [300-25(x -20)]=-10x 2+500x ,当x =25时,y 2有最大值,最大值为6250元, …………………………………5分 当22≤x ≤24时,y 1随x 的增大而减小,而y 2随x 的增大而增大,……………6分 当x =22时,y 1最大,最大值为5500,当x =24时,y 2最大,最大值为6000>5500.答:当定价为24元时,一周销售收入最多,最多为6000元.…………………8分27.(10分)(1)①解:如图,设EF 与半圆相切于点G ,过点E 作EH ⊥BC ,垂足为点H . ∵四边形ABCD 是正方形,∴AB =BC =CD =AD =2,∠A =∠B =∠ADC =∠BCD =90°, ∴OD ⊥AD ,且AD 经过半径OD 的外端点D , ∴AD 与半圆相切于点D ,同理可证:BC 与半圆相切于点C , ∴ED =EG =2-t ,CF =FG =2t , ∴EF =2+t ,∵EH ⊥BC ,垂足为点H ,∴∠BHE =90°,∵∠A =∠B =90°,∴四边形ABHE 是矩形, ∴EH =AB =2,BH =AE =t ,∴HF =2-3t ,在△EHF 中,∠EHF =90°,∴EH 2+HF 2=EF 2,∴22+(2-3t )2=(2+t )2,解这个方程,得t 1=1-22<1,t 2=1+22>1(不合题意,舍去),E CA F D H 17° 45° A D E∴当EF 与半圆相切时,t 的值为1-22.………………………………………………4分②解:在△EDO 中,∵∠EDO =90°,∴OE 2=t 2-4t +5,同理可证:OF 2=1+4t 2, EF 2=9t 2-12t +8,第一种情况:当OE =OF 时,则OE 2=OF 2,∴t 2-4t +5=1+4t 2,解这个方程,得t 1=23<1,t 2=-2<0(不合题意,舍去), 第二种情况:当OE =EF 时,则OE 2=EF 2,∴t 2-4t +5=9t 2-12t +8,此方程无解,第三种情况:当OF =EF 时,则OF 2=EF 2,∴1+4t 2=9t 2-12t +8,解这个方程,得t 1=1,t 2=1.4>1(不合题意,舍去),综上所述:当△EOF 是等腰三角形时,t 的值为23或1.………………………………8分 (3)1、32.………………………………………………………………………………10分。
2016届九年级(下)期中数学试卷(解析版)
九年级(下)期中数学试卷学校:班级:教师:科目:得分:一、选择题(每小题3分,共30分)1.如果a与﹣2的和为0,那么a是()A.2 B.C.﹣D.﹣22.下列运算正确的是()A.a3•a2=a6B.(﹣a2)3=﹣a6 C.(ab)3=ab3D.a8÷a2=a43.在等边三角形、正方形、菱形和等腰梯形中,是中心对称图形的个数为()A.1个B.2个C.3个D.4个4.下面四个几何体中,俯视图为四边形的是()A.B.C.D.5.下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.想了解某种饮料中含色素的情况,宜采用抽样调查C.数据1,1,2,2,3的众数是3D.一组数据的波动越大,方差越小6.从1~9这九个自然数中任取一个,是2的倍数的概率是()A.B.C.D.7.下列关于x的一元二次方程中一定有实数根的是()A.x2﹣2x+4=0 B.x2+2x+4=0 C.x2﹣2x﹣4=0 D.x2+4=08.在半径等于4cm的圆内有长为4cm的弦,则此弦所对的圆周角为()A.60°B.120°C.30°或150°D.60°或120°9.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.10.如图,边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A. a B.a C.D.二、填空题(共8小题,每小题3分,满分24分)11.4是的算术平方根.12.因式分解:x2y﹣y=.13.函数中,自变量x的取值范围是.14.如图,AB∥CD,∠C=20°,∠A=55°,则∠E=.15.已知a﹣2b=﹣2,则4﹣2a+4b的值为.16.某市南线路段的304盏太阳能路灯一年大约可节电226 900千瓦时,226 900千瓦时用科学记数法表示为千瓦时(保留两个有效数字).17.已知扇形的圆心角为120°,半径为15cm,则扇形的弧长为cm(结果保留π).18.如图,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连结OB1、OB2、OB3,那么图中阴影部分的面积之和为.三、解答题(本大题共76分)19.计算:.20.先化简,再求值:,其中.21.解不等式组,并把解集在数轴上表示出来.22.解方程:.23.如图,在△ABC中,AB=AC,点O是BC的中点,连接AO,在AO的延长线上取一点D,连接BD,CD(1)求证:△ABD≌△ACD;(2)当AO与AD满足什么数量关系时,四边形ABDC是菱形?并说明理由.24.吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康、有消息称,我国准备从2011年元月一日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了多少人?(2)请你把统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持“警示戒烟”这种方式?25.如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一不明国籍的渔船C,求此时渔船C与海监船B的距离是多少.(结果保留根号)26.如图,AB为⊙O直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于C点,过C点作CD⊥AE的延长线于D点,直线CD与射线AB交于P点.(1)求证:DC为⊙O切线;(2)若DC=1,AC=,①求⊙O半径长;②求PB的长.27.如图,一次函数y=kx+2的图象与反比例函数的图象交于点P,点P在第一象限,PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,.(1)求点D的坐标及BD长;(2)求一次函数与反比例函数的解析式;(3)根据图象直接写出当x>0时,一次函数的值大于反比例函数值的x的取值范围;(4)若双曲线上存在一点Q,使以B、D、P、Q为顶点的四边形是直角梯形,请直接写出符合条件的Q点的坐标.28.“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存量…依此类推.他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.时段x 还车数(辆)借车数(辆)存量y(辆)6:00﹣7:00 1 45 5 1007:00﹣8:00 2 43 11 n……………根据所给图表信息,解决下列问题:(1)m=,解释m的实际意义:;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.29.如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线分别交OA,AB于E,F,设动点P,Q同时出发,当点P到达点B时,点Q也停止运动,他们运动的时间为t秒(t≥0).(1)点E的坐标为,F的坐标为;(2)当t为何值时,四边形POFE是平行四边形;(3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由.2015-2016学年九年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.如果a与﹣2的和为0,那么a是()A.2 B.C.﹣D.﹣2【考点】相反数.【分析】根据相反数的概念,互为相反数的两个数和为0,即可得出答案.【解答】解:由题意得a﹣2=0,则a=2.故选A.2.下列运算正确的是()A.a3•a2=a6B.(﹣a2)3=﹣a6 C.(ab)3=ab3D.a8÷a2=a4【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、应为a3•a2=a5,故A错误;B、(﹣a2)3=﹣a6,故B正确;C、应为(ab)3=a3b3,故C错误;D、应为a8÷a2=a6,故D错误.故选:B.3.在等边三角形、正方形、菱形和等腰梯形中,是中心对称图形的个数为()A.1个B.2个C.3个D.4个【考点】中心对称图形.【分析】根据中心对称图形的概念进而判断得出答案.【解答】解:在等边三角形、正方形、菱形和等腰梯形中,是中心对称图形有正方形、菱形共有2个.故选:B.4.下面四个几何体中,俯视图为四边形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】俯视图是指从物体上面看,所得到的图形.【解答】解:A、圆柱的俯视图是圆;B、三棱锥的俯视图是三角形;C、球的俯视图是圆;D、正方体的俯视图是四边形.故选D.5.下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.想了解某种饮料中含色素的情况,宜采用抽样调查C.数据1,1,2,2,3的众数是3D.一组数据的波动越大,方差越小【考点】随机事件;全面调查与抽样调查;众数;方差.【分析】利用必然事件的定义、普查和抽样调查的特点、众数的定义、方差的定义即可作出判断.【解答】解:A、打开电视,正在播放《新闻联播》是随机事件,故本选项错误,B、想了解某饮料中含色素的情况,应用抽样调查,故本选项正确,C、数据1,1,2,2,3的众数是1、2,故本选项错误,D、一组数据的波动越大,方差越大,故本选项错误,故选B.6.从1~9这九个自然数中任取一个,是2的倍数的概率是()A.B.C.D.【考点】概率公式.【分析】先从1~9这九个自然数中找出是2的倍数的有2、4、6、8共4个,然后根据概率公式求解即可.【解答】解:1~9这九个自然数中,是2的倍数的数有:2、4、6、8,共4个,∴从1~9这九个自然数中任取一个,是2的倍数的概率是:.故选B.7.下列关于x的一元二次方程中一定有实数根的是()A.x2﹣2x+4=0 B.x2+2x+4=0 C.x2﹣2x﹣4=0 D.x2+4=0【考点】根的判别式.【分析】分别求出每个一元二次方程根的判别式△与0的关系,进而选择正确的选项.【解答】解:A、x2﹣2x+4=0,△=4﹣4×4=﹣12<0,此选项错误;B、x2+2x+4=0,△=4﹣4×4=﹣12<0,此选项错误;C、x2﹣2x﹣4=0,△=4+4×4=20>0,此选项正确;D、x2+4=0,△=0﹣4×4=﹣16<0,此选项错误;故选C.8.在半径等于4cm的圆内有长为4cm的弦,则此弦所对的圆周角为()A.60°B.120°C.30°或150°D.60°或120°【考点】圆周角定理;解直角三角形.【分析】先画图,再根据垂径定理得出AC,根据三角函数得出∠O,由圆周角定理得出答案.【解答】解:如图,过点O作OD⊥AB,交⊙O于点D,交AB于点C,∵OA=4,AB=4,∴AC=2,∴sin∠O==,∴∠O=60°,∴∠E=60°,∴∠F=120°,故选D.9.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题主要考查一次函数和二次函数的图象所经过的象限的问题,关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x=,与y轴的交点坐标为(0,c).【解答】解:解法一:逐项分析A、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B、由函数y=mx+m的图象可知m<0,对称轴为x===<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x===<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;解法二:系统分析当二次函数开口向下时,﹣m<0,m>0,一次函数图象过一、二、三象限.当二次函数开口向上时,﹣m>0,m<0,对称轴x=<0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限.故选:D.10.如图,边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A. a B.a C.D.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【解答】解:如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,MG⊥CH时,MG最短,即HN最短,此时∵∠BCH=×60°=30°,CG=AB=×2a=a,∴MG=CG=×a=,∴HN=,故选:D.二、填空题(共8小题,每小题3分,满分24分)11.4是16的算术平方根.【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.12.因式分解:x2y﹣y=y(x+1)(x﹣1).【考点】提公因式法与公式法的综合运用.【分析】首先提公因式y,再利用平方差进行二次分解即可.【解答】解:原式=y(x2﹣1)=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).13.函数中,自变量x的取值范围是x≠﹣5.【考点】函数自变量的取值范围.【分析】根据分式的意义,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x+5≠0,解得x≠﹣5.故答案为x≠﹣5.14.如图,AB∥CD,∠C=20°,∠A=55°,则∠E=35°.【考点】平行线的性质.【分析】根据平行线的性质求出∠EFD,根据三角形外角性质得出∠E=∠EFD﹣∠C,代入求出即可.【解答】解:∵AB∥CD,∠A=55°,∴∠EFD=∠A=55°,∵∠C=20°,∴∠E=∠EFD﹣∠C=55°﹣20°=35°,故答案为:35°.15.已知a﹣2b=﹣2,则4﹣2a+4b的值为8.【考点】代数式求值.【分析】原式后两项提取﹣2变形后,将已知等式的值代入计算即可求出值.【解答】解:∵a﹣2b=﹣2,∴4﹣2a+4b=4﹣2(a﹣2b)=4+4=8.故答案为:816.某市南线路段的304盏太阳能路灯一年大约可节电226 900千瓦时,226 900千瓦时用科学记数法表示为 2.3×105千瓦时(保留两个有效数字).【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.题中226 900有6位整数,n=6﹣1=5.有效数字是从左边第一个不是0的数字起后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:226 900=2.269×105≈2.3×105.故答案为:2.3×105.17.已知扇形的圆心角为120°,半径为15cm,则扇形的弧长为10πcm(结果保留π).【考点】弧长的计算.【分析】根据弧长公式计算.【解答】解:l===10πcm.18.如图,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连结OB1、OB2、OB3,那么图中阴影部分的面积之和为.【考点】反比例函数系数k的几何意义.【分析】先根据反比例函数上的点向x轴、y轴引垂线形成的矩形面积等于反比例函数的|k|,得到S△OB1C1=S△OB2C2=S△OB3C3=|k|=2,再根据相似三角形的面积比等于相似比的平方得到3个阴影部分的三角形的面积从而求得面积和.【解答】解:根据题意可知S△OB1C1=S△OB2C2=S△OB3C3=|k|=2,∵OA1=A1A2=A2A3,A1B1∥A2B2∥A3B3∥y轴,设图中阴影部分的面积从左向右依次为s1,s2,s3则s1=|k|=2,∵OA1=A1A2=A2A3,∴s2:S△OB2C2=1:4,s3:S△OB3C3=1:9,∴图中阴影部分的面积分别是s1=2,s2=,s3=,∴图中阴影部分的面积之和=2++=2.故答案为:2.三、解答题(本大题共76分)19.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别根据绝对值的性质、负整数指数幂的运算法则及数的开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=3+1﹣2+3=5.20.先化简,再求值:,其中.【考点】分式的化简求值;二次根式的化简求值.【分析】先将括号内通分,合并;再将除法问题转化为乘法问题;约分化简后,在原式有意义的条件下,代入计算即可【解答】解:===,当时,原式===.21.解不等式组,并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】对不等式2﹣x>0,移项得x<2,对不等式两边乘以6,然后再移项、合并同类项解出不等式的解,再根据不等式组解集的口诀:大小小大中间找,来求出不等式组的解.【解答】解:由题意,解不等式①,得x<2,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<2.不等式组的解集在数轴上表示如下:22.解方程:.【考点】解分式方程.【分析】由于x2﹣4=(x+2)(x﹣2),本题的最简公分母是(x+2)(x﹣2),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边同乘(x﹣2)(x+2),得:x(x+2)﹣(x2﹣4)=1,化简,得2x=﹣3,∴x=,检验:当x=时,(x﹣2)(x+2)≠0,∴x=是原方程的根.23.如图,在△ABC中,AB=AC,点O是BC的中点,连接AO,在AO的延长线上取一点D,连接BD,CD(1)求证:△ABD≌△ACD;(2)当AO与AD满足什么数量关系时,四边形ABDC是菱形?并说明理由.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)利用全等三角形的判定方法结合SAS得出即可;(2)利用菱形的判定方法对角线互相垂直且平分的四边形是菱形得出即可.【解答】(1)证明:∵AB=AC,点O是BC的中点,∴∠BAO=∠CAO,在△ABD和△ACD中∵,∴△ABD≌△ACD(SAS);(2)解:当AO=AD时,四边形ABDC是菱形.理由:∵AO=AD,∴AO=DO,又∵BO=CO,AO⊥BC,∴四边形ABDC是菱形.24.吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康、有消息称,我国准备从2011年元月一日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了多少人?(2)请你把统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持“警示戒烟”这种方式?【考点】扇形统计图;用样本估计总体;条形统计图.【分析】(1)根据替代品戒烟30人占总体的10%,即可求得总人数;(2)根据求得的总人数,结合扇形统计图可以求得药物戒烟的人数,从而求得警示戒烟的人数,再根据各部分的人数除以总人数,即可求得各部分所占的百分比;(3)根据扇形统计图中“强制戒烟”的百分比即可回答其概率,再进一步根据样本估计总体.【解答】解:(1)30÷10%=300(人).∴一共调查了300人.(2)由(1)可知,总人数是300人.药物戒烟:300×15%=45(人);警示戒烟:300﹣120﹣30﹣45=105(人);105÷300=35%;强制戒烟:120÷300=40%.完整的统计图如图所示:(3)设该市发支持“强制戒烟”的概率为P,由(1)可知,P=120÷300=40%=0.4.支持“警示戒烟”这种方式的人有10000•35%=3500(人).25.如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一不明国籍的渔船C,求此时渔船C与海监船B的距离是多少.(结果保留根号)【考点】解直角三角形的应用-方向角问题.【分析】首先过点B作BD⊥AC于D,由题意可知,∠BAC=45°,∠ABC=90°+15°=105°,则可求得∠ACD的度数,然后利用三角函数的知识求解即可求得答案.【解答】解:由题意可知,∠BAC=45°,∠ABC=90°+15°=105°,∴∠ACB=180°﹣∠BAC﹣∠ABC=30°.作BD⊥AC于D.在Rt△ABD中,(海里),在Rt△BCD中,(海里).答:此时渔船C与海监船B的距离是海里.26.如图,AB为⊙O直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于C点,过C点作CD⊥AE的延长线于D点,直线CD与射线AB交于P点.(1)求证:DC为⊙O切线;(2)若DC=1,AC=,①求⊙O半径长;②求PB的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连结OC,如图,由AC平分∠EAB得到∠1=∠2,加上∠2=∠3,则∠1=∠3,于是可判断OC∥AD,由于CD⊥AD,所以OC⊥CD,则根据切线的判定定理得到DC为⊙O切线;(2)①连结BC,如图,在Rt△ACD中利用勾股定理计算出AD=2,再Rt△ACD∽Rt△ABC,利用相似比计算出AB=,从而得到⊙O半径长为;②证明△EOC∽△EAD,然后利用相似比可计算出BE的长.【解答】(1)证明:连结OC,如图,∵AC平分∠EAB,∴∠1=∠2,∵OA=OC,∴∠2=∠3,∴∠1=∠3,∴OC∥AD,∵CD⊥AD,∴OC⊥CD,∴DC为⊙O切线;(2)解:①连结BC,如图,在Rt△ACD中,∵CD=1,AC=,∴AD==2,∵AB为直径,∴∠ACB=90°,∵∠1=∠2,∴Rt△ACD∽Rt△ABC,∴AC:AB=AD:AC,即:AB=2:,∴AB=,∴⊙O半径长为;②∵OC∥AD,∴△EOC∽△EAD,∴=,即=,∴BE=.27.如图,一次函数y=kx+2的图象与反比例函数的图象交于点P,点P在第一象限,PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,.(1)求点D的坐标及BD长;(2)求一次函数与反比例函数的解析式;(3)根据图象直接写出当x>0时,一次函数的值大于反比例函数值的x的取值范围;(4)若双曲线上存在一点Q,使以B、D、P、Q为顶点的四边形是直角梯形,请直接写出符合条件的Q点的坐标.【考点】反比例函数综合题;反比例函数图象上点的坐标特征;反比例函数与一次函数的交点问题;直角梯形;相似三角形的判定与性质.【分析】(1)把x=0代入y=kx+2即可求出D的坐标;根据相似三角形的判定得出=,求出AP,即可求出BD;(2)根据三角形PBD的面积求出P的坐标,把P的坐标分别代入一次函数和反比例函数的解析式求出即可;(3)根据图象上P的坐标求出即可;(4)作DQ∥x轴,把y=2代入反比例函数的解析式,求出即可.【解答】解:(1)在y=kx+2中,当x=0,得:y=2,∴点D的坐标是(0,2),∵AP∥OD,∴△PAC∽△DOC,∵=,∴==,∴AP=6,∵BD=6﹣2=4,答:点D的坐标是(0,2),BD的长是4.(2)∵S△PBD=PB•BD=×PB×4=4,∴BP=2,∴P(2,6),把P(2,6)分别代入y=kx+2和y=得:k=2,m=12,∴一次函数的解析式是y=2x+2,反比例函数的解析式是y=,(3)由图形可知一次函数的值大于反比例函数值的x的取值范围是x>2.(4)Q(6,2).28.“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存量…依此类推.他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.时段x 还车数(辆)借车数(辆)存量y(辆)6:00﹣7:00 1 45 5 100 7:00﹣8:00 2 43 11 n ……………根据所给图表信息,解决下列问题:(1)m=60,解释m的实际意义:该停车场当日6:00时的自行车数;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.【考点】二次函数的应用.【分析】(1)根据题意m+45﹣5=100,说明6点之前的存量为60;(2)先求出n的值,然后利用待定系数法确定二次函数的解析式;(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,把x=3代入y=﹣4x2+44x+60得到8:00~9:00的存量为156;把x=4代入y=﹣4x2+44x+60得到9:00~10:00的存量为172,所以156﹣x+(3x﹣4)=172,然后解方程即可.【解答】解:(1)m+45﹣5=100,解得m=60,即6点之前的存量为60.m表示该停车场当日6:00时的自行车数;(2)n=100+43﹣11=132,设二次函数的解析式为y=ax2+bx+c,把(1,100),(2,132)、(0,60)代入得,解得,所以二次函数的解析式为y=﹣4x2+44x+60(x为1﹣12的整数);(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,把x=3代入y=﹣4x2+44x+60得y=﹣4×32+44×3+60=156,把x=4代入y=﹣4x2+44x+60得y=﹣4×42+44×4+60=172,即此时段的存量为172,所以156﹣x+(3x﹣4)=172,解得x=10,答:此时段借出自行车10辆.29.如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线分别交OA,AB于E,F,设动点P,Q同时出发,当点P到达点B时,点Q也停止运动,他们运动的时间为t秒(t≥0).(1)点E的坐标为(t,t),F的坐标为(10﹣t,t);(2)当t为何值时,四边形POFE是平行四边形;(3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)过点A作AD⊥OB,由点A的坐标为(6,8),可得OD=6,AD=8,然后由勾股定理得:OA=10,由OA=OB可得:OB=10,进而可得:BD=4,进而可得点B的坐标为:(10,0),然后设OA的关系式:y=kx,然后将A(6,8)代入即可得直线OA的关系式,然后设直线AB的关系式为:y=kx+b,然后将A,B两点代入,即可确定直线AB的关系式,由过点Q作x轴的平行线分别交OA,AB于E,F,可知点Q、E、F三点的纵坐标相等均为t,然后由点E在OA上,点F在AB上,将点E、F的纵坐标分别代入对应的关系式,即可得到得到点E、F的坐标;(2)由EF∥OP,欲使四边形POFE是平行四边形,只需EF=OP即可,从而可得关于t的等式,解答即可;(3)分三种情况讨论:①PE⊥EF,②PE⊥PF,③EF⊥PF即可.【解答】解:(1)过点A作AD⊥OB,垂足为D,如图1,∵点A的坐标为(6,8),∴OD=6,AD=8,由勾股定理得:OA=10,∵OA=OB,∴OB=10,∴BD=4,∴点B的坐标为:(10,0),设直线OA的关系式:y=kx,将A(6,8)代入上式,得:6k=8,解得:k=,所以直线OA的关系式:y=x,设直线AB的关系式为:y=kx+b,将A,B两点代入上式得:,解得:,所以直线AB的关系式为:y=﹣2x+20,∵过点Q作x轴的平行线分别交OA,AB于E,F,∴点Q、E、F三点的纵坐标相等,∵动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,∴t秒后,OQ=t,OP=2t,∴Q、E、F三点的纵坐标均为t,将点E的纵坐标t代入y=x,得:x=t,∴E点的坐标为:(,t),将点E的纵坐标t代入y=﹣2x+20,得:x=10﹣t,∴F点的坐标为:(10﹣t,t),故答案为:(t,t),(10﹣t,t);(2)由(1)知:E(t,t),F(10﹣t,t),∴EF=10﹣t﹣t=10﹣t,∵四边形POFE是平行四边形,∴EF∥OP,且EF=OP,即10﹣t=2t,解得:t=,∴当t为时,四边形POFE是平行四边形;(3)过点E作EM⊥OB,垂足为M,过点F作FN⊥OB,垂足为N,可得四边形EMNF是矩形,如图2,①当EF⊥PF时,PE2+PF2=EF2,由(1)知:OM=t,EM=FN=t,ON=10﹣t,EF=10﹣,∴PM=,PN=10﹣,∵PE2=ME2+MP2,PF2=PN2+FN2,∴t2+(t)2+(10﹣t)2+t2=(10﹣)2,解得:t1=0(舍去),t2=;②当PE⊥EF时,如图3,可得四边形EPNF是矩形,∵四边形EPNF是矩形,∴EF=PN,即:EF=ON﹣OP,∴10﹣=10﹣﹣2t,解得t=0(舍去);③当EF⊥PF时,如图4,可得四边形EMPF是矩形,∵四边形EMPF是矩形,∴EF=MP,即EF=OP﹣OM,∴10﹣=2t﹣t,解得:t=4,∴当t=和4时,使△PEF为直角三角形.2016年8月8日。
2016年江苏省南京市中考数学试卷附详细答案(原版+解析版)
2016年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)为了方便市民出行,提倡低碳交通,近几年南京市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达70000辆,用科学记数法表示70000是()A.0.7×105B.7×104C.7×105D.70×1032.(2分)数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5 B.﹣3﹣5 C.|﹣3+5| D.|﹣3﹣5|3.(2分)下列计算中,结果是a6的是()A.a2+a4B.a2•a3C.a12÷a2D.(a2)34.(2分)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,75.(2分)已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.26.(2分)若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或6二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)化简:=;=.8.(2分)若式子在实数范围内有意义,则x的取值范围是.9.(2分)分解因式:2a(b+c)﹣3(b+c)=.10.(2分)比较大小:﹣3.11.(2分)分式方程的解是.12.(2分)设x1、x2是方程x2﹣4x+m=0的两个根,且x1+x2﹣x1x2=1,则x1+x2=,m=.13.(2分)如图,扇形OAB的圆心角为122°,C是上一点,则∠ACB=°.14.(2分)如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是.15.(2分)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.16.(2分)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)解不等式组,并写出它的整数解.18.(7分)计算﹣.19.(7分)某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图.(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是()A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数20.(8分)我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.21.(8分)用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.22.(8分)某景区7月1日﹣7月7日一周天气预报如图,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.23.(8分)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为L/km、L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?24.(7分)如图,在▱ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.(1)求证:∠D=∠F;(2)用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图的痕迹,不写作法).25.(9分)图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tan,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?26.(8分)如图,O是△ABC内一点,⊙O与BC相交于F、G两点,且与AB、AC分别相切于点D、E,DE∥BC,连接DF、EG.(1)求证:AB=AC.(2)已知AB=10,BC=12,求四边形DFGE是矩形时⊙O的半径.27.(11分)如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图象;也可以把函数y=x的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=2x的图象.类似地,我们可以认识其他函数.(1)把函数y=的图象上各点的纵坐标变为原来的倍,横坐标不变,得到函数y=的图象;也可以把函数y=的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=的图象.(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.(Ⅰ)函数y=x2的图象上所有的点经过④→②→①,得到函数的图象;(Ⅱ)为了得到函数y=﹣(x﹣1)2﹣2的图象,可以把函数y=﹣x2的图象上所有的点.A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥(3)函数y=的图象可以经过怎样的变化得到函数y=﹣的图象?(写出一种即可)2016年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)为了方便市民出行,提倡低碳交通,近几年南京市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达70000辆,用科学记数法表示70000是()A.0.7×105B.7×104C.7×105D.70×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:70000=7×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2分)数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5 B.﹣3﹣5 C.|﹣3+5| D.|﹣3﹣5|【分析】由距离的定义和绝对值的关系容易得出结果.【解答】解:∵点A、B表示的数分别是5、﹣3,∴它们之间的距离=|﹣3﹣5|=8,故选:D.【点评】本题考查绝对值的意义、数轴上两点间的距离;理解数轴上两点间的距离与绝对值的关系是解决问题的关键.3.(2分)下列计算中,结果是a6的是()A.a2+a4B.a2•a3C.a12÷a2D.(a2)3【分析】A:根据合并同类项的方法判断即可.B:根据同底数幂的乘法法则计算即可.C:根据同底数幂的除法法则计算即可.D:幂的乘方的计算法则:(a m)n=a mn(m,n是正整数),据此判断即可.【解答】解:∵a2+a4≠a6,∴选项A的结果不是a6;∵a2•a3=a5,∴选项B的结果不是a6;∵a12÷a2=a10,∴选项C的结果不是a6;∵(a2)3=a6,∴选项D的结果是a6.故选:D.【点评】(1)此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(3)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(4)此题还考查了合并同类项的方法,要熟练掌握.4.(2分)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,7【分析】在能够组成三角形的条件下,如果满足较小两边平方的和等于最大边的平方是直角三角形;满足较小两边平方的和大于最大边的平方是锐角三角形;满足较小两边平方的和小于最大边的平方是钝角三角形,依此求解即可.【解答】解:A、因为32+42>42,所以三条线段能组锐角三角形,不符合题意;B、因为32+42=52,所以三条线段能组成直角三角形,不符合题意;C、因为3+4>6,且32+42<62,所以三条线段能组成钝角三角形,符合题意;D、因为3+4=7,所以三条线段不能组成三角形,不符合题意.故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.掌握组成钝角三角形的条件是解题的关键.5.(2分)已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.2【分析】根据题意画出图形,利用正六边形中的等边三角形的性质求解即可.【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴OA=AB=2,∴OG=OA•sin60°=2×=,∴边长为2的正六边形的内切圆的半径为.故选B.【点评】本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算,记住基本概念是解题的关键,属于中考常考题型.6.(2分)若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或6【分析】根据数据x1,x2,…x n与数据x1+a,x2+a,…,x n+a的方差相同这个结论即可解决问题.【解答】解:∵一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故选C.【点评】本题考查方差、平均数等知识,解题的关键利用结论:数据x1,x2,…x n 与数据x1+a,x2+a,…,x n+a的方差相同解决问题,属于中考常考题型.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)化简:=2;=2.【分析】根据二次根式的性质和立方根的定义化简即可.【解答】解:==2;=2.故答案为:2;2.【点评】本题考查了二次根式的性质与化简,立方根的定义,是基础题,熟记概念是解题的关键.8.(2分)若式子在实数范围内有意义,则x的取值范围是x≥1.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.9.(2分)分解因式:2a(b+c)﹣3(b+c)=(b+c)(2a﹣3).【分析】直接提取公因式b+c即可.【解答】解:原式=(b+c)(2a﹣3),故答案为:(b+c)(2a﹣3).【点评】此题主要考查了提公因式法分解因式,关键是正确找出公因式.10.(2分)比较大小:﹣3<.【分析】先判断出﹣3与﹣2的符号,进而可得出结论.【解答】解:∵4<5<9,∴2<<3,∴﹣3<0,﹣2>0,∴﹣3<.故答案为:<.【点评】本题考查的是实数的大小比较,熟知正数与负数比较大小的法则是解答此题的关键.11.(2分)分式方程的解是3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=3(x﹣2),去括号得:x=3x﹣6,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.(2分)设x1、x2是方程x2﹣4x+m=0的两个根,且x1+x2﹣x1x2=1,则x1+x2= 4,m=3.【分析】根据根与系数的关系找出x1+x2=﹣=4,x1x2==m,将其代入等式x1+x2﹣x1x2=1中得出关于m的一元一次方程,解方程即可得出m的值,从而此题得解.【解答】解:∵x1、x2是方程x2﹣4x+m=0的两个根,∴x1+x2=﹣=4,x1x2==m.∵x1+x2﹣x1x2=4﹣m=1,∴m=3.故答案为:4;3.【点评】本题考查了根与系数的关系,解题的关键是找出x1+x2=4,x1x2=m.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.13.(2分)如图,扇形OAB的圆心角为122°,C是上一点,则∠ACB=119°.【分析】在⊙O上取点D,连接AD,BD,根据圆周角定理求出∠D的度数,由圆内接四边形的性质即可得出结论.【解答】解:如图所示,在⊙O上取点D,连接AD,BD,∵∠AOB=122°,∴∠ADB=∠AOB=×122°=61°.∵四边形ADBC是圆内接四边形,∴∠ACB=180°﹣61°=119°.故答案为:119.【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出圆周角是解答此题的关键.14.(2分)如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是①②③.【分析】根据全等三角形的性质得出∠AOB=∠AOD=90°,OB=OD,再根据全等三角形的判定定理得出△ABC≌△ADC,进而得出其它结论.【解答】解:∵△ABO≌△ADO,∴∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故③正确∴BC=DC,故②正确;故答案为①②③.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法:SSS,SAS,ASA,AAS,以及HL,是解题的关键.15.(2分)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出DB,再根据相似三角形对应边成比例列式计算即可得解.【解答】解:∵EF是△ODB的中位线,∴DB=2EF=2×2=4,∵AC∥BD,∴△AOC∽△BOD,∴=,即=,解得AC=.故答案为:.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,相似三角形的判定与性质,熟记定理与性质是解题的关键.16.(2分)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13cm.【分析】根据正方形的面积可用对角线进行计算解答即可.【解答】解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.【点评】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)解不等式组,并写出它的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可.【解答】解:解不等式3x+1≤2(x+1),得:x≤1,解不等式﹣x<5x+12,得:x>﹣2,则不等式组的解集为:﹣2<x≤1,则不等式组的整数解为﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.(7分)计算﹣.【分析】首先进行通分运算,进而合并分子,进而化简求出答案.【解答】解:﹣=﹣==.【点评】此题主要考查了分式的加减运算,正确进行通分运算是解题关键.19.(7分)某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图.(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是()A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数【分析】(1)用九年级学生的总分除以总人数即可得出答案;(2)根据条形统计图和扇形统计图不能求出众数和中位数,从而得出答案.【解答】解:(1)根据题意得:(80×1000×60%+82.5×1000×40%)÷1000=81(分),答:该校九年级学生本次数学测试成绩的平均数是81分;(2)A、根据统计图不能求出九年级学生成绩的众数,故本选项错误;B.根据统计图不能求出九年级学生成绩的中位数,故本选项错误;C.随机抽取一个班,该班学生成绩的平均数不一定等于九年级学生成绩的平均数,故本选项错误;D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数,故本选项正确;故选D.【点评】本题考查了众数、平均数和中位数的定义.一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.20.(8分)我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.【分析】(1)根据平移的性质即可得到结论;(2)根据轴对称的性质即可得到结论;(3)同(2);(4)由旋转的性质即可得到结论.【解答】解:(1)平移的性质:平移前后的对应线段相等且平行.所以与对应线段有关的结论为:AB=A′B′,AB∥A′B′;(2)轴对称的性质:AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.(3)轴对称的性质:轴对称图形对称轴是任何一对对应点所连线段的垂直平分线.所以与对应点有关的结论为:l垂直平分AA′.(4)OA=OA′,∠AOA′=∠BOB′.故答案为:(1)AB=A′B′,AB∥A′B′;(2)AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.;(3)l垂直平分AA′;(4)OA=OA′,∠AOA′=∠BOB′.【点评】本题考查了旋转的性质,平移的性质,轴对称的性质,余角和补角的性质,熟练掌握各性质是解题的关键.21.(8分)用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.【分析】证法1:根据平角的定义得到∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=540°,再根据三角形内角和定理和角的和差关系即可得到结论;证法2:要求证∠BAE+∠CBF+∠ACD=360°,根据三角形外角性质得到∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,则∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),然后根据三角形内角和定理即可得到结论.【解答】证明:证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.证法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=360°.故答案为:平角等于180°,∠1+∠2+∠3=180°.【点评】本题考查了多边形的外角和:n边形的外角和为360°.也考查了三角形内角和定理和外角性质.22.(8分)某景区7月1日﹣7月7日一周天气预报如图,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.【分析】(1)由天气预报是晴的有4天,直接利用概率公式求解即可求得答案;(2)首先利用列举法可得:随机选择连续的两天等可能的结果有:晴晴,晴雨,雨阴,阴晴,晴晴,晴阴,然后直接利用概率公式求解即可求得答案.【解答】解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为:;(2)∵随机选择连续的两天等可能的结果有:晴晴,晴雨,雨阴,阴晴,晴晴,晴阴,∴随机选择连续的两天,恰好天气预报都是晴的概率为:=.【点评】此题考查了列举法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为0.13L/km、0.14 L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?【分析】(1)和(2):先求线段AB的解析式,因为速度为50km/h的点在AB上,所以将x=50代入计算即可,速度是100km/h的点在线段BC上,可由已知中的“该汽车的速度每增加1km/h,耗油量增加0.002L/km”列式求得,也可以利用解析式求解;(3)观察图形发现,两线段的交点即为最低点,因此求两函数解析式组成的方程组的解即可.【解答】解:(1)设AB的解析式为:y=kx+b,把(30,0.15)和(60,0.12)代入y=kx+b中得:解得∴AB:y=﹣0.001x+0.18,当x=50时,y=﹣0.001×50+0.18=0.13,由线段BC上一点坐标(90,0.12)得:0.12+(100﹣90)×0.002=0.14,∴当x=100时,y=0.14,故答案为:0.13,0.14;(2)由(1)得:线段AB的解析式为:y=﹣0.001x+0.18;(3)设BC的解析式为:y=kx+b,把(90,0.12)和(100,0.14)代入y=kx+b中得:解得,∴BC:y=0.002x﹣0.06,根据题意得解得,答:速度是80km/h时,该汽车的耗油量最低,最低是0.1L/km.【点评】本题考查了一次函数的应用,正确求出两线段的解析式是解好本题的关键,因为系数为小数,计算要格外细心,容易出错;另外,此题中求最值的方法:两图象的交点,方程组的解;同时还有机地把函数和方程结合起来,是数学解题方法之一,应该熟练掌握.24.(7分)如图,在▱ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.(1)求证:∠D=∠F;(2)用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图的痕迹,不写作法).【分析】(1)BF交AD于G,先利用AD∥BC得到∠FBC=∠FGE,加上∠FBC=∠DCE,所以∠FGE=∠DCE,然后根据三角形内角和定理易得∠D=∠F;(2)分别作BC和BF的垂直平分线,它们相交于点O,然后以O为圆心,OC 为半径作△BCF的外接圆⊙O,⊙O交AD于P,连结BP、CP,则根据圆周角定理得到∠F=∠BPC,而∠F=∠D,所以∠D=∠BPC,接着可证明∠PCD=∠APB=∠PBC,于是可判断△BPC∽△CDP.【解答】(1)证明:BF交AD于G,如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠FBC=∠FGE,而∠FBC=∠DCE,∴∠FGE=∠DCE,∵∠GEF=∠DEC,∴∠D=∠F;(2)解:如图,点P为所作.【点评】本题考查了作图﹣相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.也考查了平行四边形的性质.解决(2)小题的关键是利用圆周角定理作∠BPC=∠F.25.(9分)图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tan,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?【分析】(1)过点P作PH⊥OA于H,如图,设PH=3x,运用三角函数可得OH=6x,AH=2x,根据条件OA=4可求出x,即可得到点P的坐标;(2)若水面上升1m后到达BC位置,如图,运用待定系数法可求出抛物线的解析式,然后求出y=1时x的值,就可解决问题.【解答】解:(1)过点P作PH⊥OA于H,如图.设PH=3x,在Rt△OHP中,∵tanα==,∴OH=6x.在Rt△AHP中,∵tanβ==,∴AH=2x,∴OA=OH+AH=8x=4,∴x=,∴OH=3,PH=,∴点P的坐标为(3,);(2)若水面上升1m后到达BC位置,如图,过点O(0,0),A(4,0)的抛物线的解析式可设为y=ax(x﹣4),∵P(3,)在抛物线y=ax(x﹣4)上,∴3a(3﹣4)=,解得a=﹣,∴抛物线的解析式为y=﹣x(x﹣4).当y=1时,﹣x(x﹣4)=1,解得x1=2+,x2=2﹣,∴BC=(2+)﹣(2﹣)=2=2×1.41=2.82≈2.8.答:水面上升1m,水面宽约为2.8米.【点评】本题主要考查了三角函数、运用待定系数法求抛物线的解析式、解一元二次方程等知识,出现角的度数(30°、45°或60°)或角的三角函数值,通常放到直角三角形中通过解直角三角形来解决问题.26.(8分)如图,O是△ABC内一点,⊙O与BC相交于F、G两点,且与AB、AC分别相切于点D、E,DE∥BC,连接DF、EG.(1)求证:AB=AC.(2)已知AB=10,BC=12,求四边形DFGE是矩形时⊙O的半径.【分析】(1)由切线长定理可知AD=AE,易得∠ADE=∠AED,因为DE∥BC,由平行线的性质得∠ADE=∠B,∠AED=∠C,可得∠B=∠C,易得AB=AC;(2)如图,连接AO,交DE于点M,延长AO交BC于点N,连接OE、DG,设⊙O半径为r,由△AOD∽△ABN得=,得到AD=r,再由△GBD∽△ABN 得=,列出方程即可解决问题.【解答】(1)证明:∵AD、AE是⊙O的切线,∴AD=AE,∴∠ADE=∠AED,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠B=∠C,∴AB=AC;(2)解:如图,连接AO,交DE于点M,延长AO交BC于点N,连接OE、DG,设⊙O半径为r,∵四边形DFGE是矩形,∴∠DFG=90°,∴DG是⊙O直径,∵⊙O与AB、AC分别相切于点D、E,∴OD⊥AB,OE⊥AC,∵OD=OE,OE⊥AC,∵OD=OE.∴AN平分∠BAC,∵AB=AC,∴AN⊥BC,BN=BC=6,在RT△ABN中,AN===8,∵OD⊥AB,AN⊥BC,∴∠ADO=∠ANB=90°,∵∠OAD=∠BAN,∴△AOD∽△ABN,∴=,即=,∴AD=r,∴BD=AB﹣AD=10﹣r,∵OD⊥AB,∴∠GDB=∠ANB=90°,∵∠B=∠B,∴△GBD∽△ABN,∴=,即=,∴r=,∴四边形DFGE是矩形时⊙O的半径为.【点评】本题考查圆、切线的性质、矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是利用参数解决问题,学会用方程的思想思考问题,属于中考压轴题.27.(11分)如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图象;也可以把函数y=x的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=2x的图象.类似地,我们可以认识其他函数.(1)把函数y=的图象上各点的纵坐标变为原来的6倍,横坐标不变,得到函数y=的图象;也可以把函数y=的图象上各点的横坐标变为原来的6倍,纵坐标不变,得到函数y=的图象.(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.(Ⅰ)函数y=x2的图象上所有的点经过④→②→①,得到函数y=4(x﹣1)2﹣2的图象;(Ⅱ)为了得到函数y=﹣(x﹣1)2﹣2的图象,可以把函数y=﹣x2的图象上所有的点D.A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥(3)函数y=的图象可以经过怎样的变化得到函数y=﹣的图象?(写出一种即可)。
南京市鼓楼区2016-2017学年第一学期九年级数学期中试卷
九年级(上)期中试卷数 学一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.方程x 2=x 的根是A .x =1B .x =-1C .x 1=0,x 2=1D .x 1=0,x 2=-12.一元二次方程x 2-4x +4=0的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定3.如图,若圆锥的底面半径r 为6 cm ,高h 为8 cm ,则圆锥的侧面积为A .30π cm 2B .48π cm 2C .60π cm 2D .80π cm 24.某单位要招聘1名英语翻译,张明参加招聘考试的成绩如下表所示.若把听、说、读、写的成绩按3∶3∶2∶2计算平均成绩,则张明的平均成绩为 A .82 B .83 C .84 D .855.如图,⊙O 经过△ABC 的三个顶点.若∠B =75°,∠C =60°,且BC ︵的长度为4π,则弦 BC 的长度为 A .8B .8 2C .16D .16 26.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能....配到与原来一样大...小.的圆形镜子的碎片是 A .① B .②C .③D .均不可能二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题..卡相应位置.....上) 7. 用配方法解方程x 2-4x =5时,方程的两边同时加上 ▲ ,可使方程左边配成一个完全平方式.8. 若⊙O 的直径为2,OP =2,则点P 与⊙O 的位置关系是:点P 在⊙O ▲ .9. 若一元二次方程2x 2+4x +1=0的两根是x 1、x 2,则x 1+x 2的值是 ▲ .10.一只不透明的袋子中装有2个红球、3个白球,这些球除颜色外都相同.搅匀后从中任意摸出一个球,摸到红球的概率是 ▲ .11.如图,四个小正方形的边长都是1,若以O 为圆心,OG 为半径作弧分别交AB 、DC 于点E 、F ,则图中阴影部分的面积为 ▲ .12.如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为H ,若HB =2,HD =4,则AH = ▲ .13.如图,AB 为⊙O 的直径,弦CD 与AB 交于点E ,连接AD .若∠C =80°,∠CEA =30°,则∠CDA= ▲ °.14.如图,某单位准备将院内一块长30 m ,宽20 m 的长方形花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.要使种植花草的面积为532 m 2,设小道进出口的宽度为x m ,根据条件,可列出方程: ▲ .15.将一个三角形纸板按如图所示的方式放置在一个破损的量角器上,使点C 落在半圆上.若点A 、B 处的读数分别为65°、20°,则∠ACB 的大小为 ▲ °.16.如图,△ABC 中,∠B =90°,AB =11,BC =10.若⊙O 的半径为5且与AB 、BC 相切,以下说法不.正确..的是 ▲ . ①圆心O 是∠B 的角平分线与AC 的交点;②圆心O 是∠B 的角平分线与AB 的垂直平分线的交点; ③圆心O 是AB 的垂直平分线与BC 的垂直平分线的交点;④圆心O 是∠B 的角平分线与BC 的垂直平分线的交点.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)(第15题)CAB(第16题)ABC10 11DBA EFG(第11题)OCDE (第13题)OCDH (第12题)(第14题)xxx17.(8分)解下列一元二次方程.(1)x 2+6x +5=0; (2)x 2+x -1=0. 18.(8分)甲、乙两名队员参加射击训练,根据训练成绩绘制统计图如下:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环 方差 甲 a 7 7 乙7b8c(1)求出表格中a ,b ,c 的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?19.(6分)已知关于x 的方程..mx 2-(m +2)x +2=0.(1)求证:不论m 为何值,该方程总有实数根;(2)若方程有一个根是2,求m 的值以及方程的另一个根.20.(5分)甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选2名同学打第一场比赛.(2)随机选取2名同学,求其中有乙同学的概率.21.(8分)在⊙O 中,AB 为直径,C 为⊙O 上一点.(1)如图1,过点C 作⊙O 的切线,与AB 的延长线相交于点P ,若∠CAB =27°,求∠P 的大小;乙队员射击训练成绩折线统计图(第18题)成绩/环甲队员射击训练成绩条形统计图(2)如图2,D 为AC ︵上一点,OD ⊥AC ,垂足为E ,连接DC 并延长,与AB 的延长线相交于点P ,若∠CAB =10°,求∠P 的大小.22.(7分)我们知道,各类方程的解法虽然不尽相同,但是它们的基本思想都是“转化”,即把未知 转化为已知.用“转化”的数学思想,我们还可以解一些新方程. 认识新方程:像2x +3=x 这样,根号下含有未知数的方程叫做无理方程,可以通过方程两边平方把它转化为2x +3=x 2,解得x 1=3,x 2=-1.但由于两边平方,可能产生增根,所以需要检验....,经检验,x 2=-1是原方程的增根,舍去,所以原方程的解是x =3. 运用以上经验,解下列方程:(1)16-6x =x ; (2)x +2x -3=6. 23.(8分)圆心相同,半径不相等的两个圆叫做同心圆,用大圆的面积减去小圆的面积就是圆环的面积.(1)如图1,大圆的弦AB 切小圆于点P ,求证:AP =BP ; (2)若AB =2a ,请用含有a 的代数式表示图1中的圆环面积;(3)如图2,若大圆的弦AB 交小圆于C 、D 两点,且AB =8,CD =6,则圆环的面积为 ▲ .24.(7分)某农场去年种植南瓜10亩,总产量为20 000公斤.今年该农场扩大了种植面积,并引进新品种,使总产量增长到60 000公斤.已知种植面积的增长率是平均亩产量增长率的2倍,求平均亩产量的增长率.25.(7分)如图,已知△ABC ,利用尺规完成下列作图(不写画法,保留作图痕迹). (1)作△ABC 的外接圆;(2)若△ABC 所在..平面内...有一点D ,满足∠CAB =∠CDB ,BC =BD ,求作点D .A图2(第21题)AP图1图1(第23题)图226.(8分)某青年旅社有60间客房供游客居住,在旅游旺季,当客房的定价为每天200元时,所有客房都可以住满.客房定价每提高10元,就会有1个客房空闲, 对有游客入住的客房,旅社还需要对每个房间支出20元/每天的维护费用.设每间客房的定价提高了x 元. (1)填表(不需化简)(2)若该青年旅社希望每天纯收入为14000元且能吸引更多的游客........,则每间客房的定价 应为多少元?(纯收入=总收入-维护费用)27.(16分)问题呈现:如图1,⊙O 是Rt △ABC 的外接圆,∠ABC =90°,弦BD =BA ,BE ⊥DC 交DC 的延长线于点E .求证:BE 是⊙O 的切线.AB C图1ABC图2问题分析:连接OB ,要证明BE 是⊙O 的切线,只要证明OB ▲ BE ,由题意知∠E =90°,故只需证明OB ▲ DE . 解法探究:(1)小明对这个问题进行了如下探索,请补全他的证明思路:如图2,连接AD ,由∠ECB 是圆内接四边形ABCD 的一个外角,可证∠ECB =∠BAD ,因为OB =OC ,所以 ▲ ,因为BD =BA ,所以 ▲ ,利用同弧所对的圆周角相等和等量代换,得到 ▲ ,所以DE ∥OB ,从而证明出BE 是⊙O 的切线.(2)如图3,连接AD ,作直径BF 交AD 于点H ,小丽发现BF ⊥AD ,请说明理由.(3)利用小丽的发现,请证明BE 是⊙O 的切线(要求..给出两种不同的证明方法...........).九年级(上)期中试卷数学参考答案说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)(第25题)图3AE图1D 备用图AE二、填空题(本大题共10小题,每小题2分,共20分)7.4 8.外 9.-2 10.25 11.23π 12.813.20 14.(30-2x )(20-x )=532 15.22.5 16.①②③. 三、解答题(本大题共11小题,共68分) 17.(8分)计算:(1)x 2+6x +5=0;解:x 2+6x +9 =-5+9………………………………………………………………………1分(x +3)2=4……………………………………………………………………………2分 x +3=2或x +1=-2 ………………………………………………………………3分 ∴x 1=-1,x 2=-3………………………………………………………………4分(2)x 2+x -1=0;解:a =1,b =1,c =-1 ……………………………………………………………………1分 b 2-4ac =12-4×1×(-1)=5 ………………………………………………………………2分 x =-b ±b 2-4ac 2a =-1±52×1………………………………………………………………3分∴x 1=-1+52,x 2=-1-52………………………………………………………………4分18.(8分)解:(1)甲的平均成绩a =5×1+6×2+7×4+8×2+9×11+2+4+2+1=7(环) ………………2分∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b =7+82=7.5(环) ………………………………………………3分其方差c =110×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2] =110×(16+9+1+3+4+9) =4.2(环2);……………………………………………………………………………5分 (2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;……………………………………………………7分综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.也可以选择甲参赛,因为甲的稳定性更高,更能稳妥的获奖.(学生的解答只要合理即可)………………………………………………………………………………8分19.(6分)(1)①当m=0时,原方程为一次方程,此时x=1,∴当m=0时,方程有实数根;………………………………………………………1分②当m≠0时,b2-4ac=(m+2)2-4×m×2=(m-2)2,∵(m-2)2≥0,∴方程有实数根.……………………………………………………3分综上所述,无论m为何值,该方程总有实数根.………………………………………4分(2)将x=2带入原方程,得4m-2(m+2)+2=0,解这个方程,得m=1,…………………………………………………………5分将m=1带入原方程,解得另一个根为x=1.………………………………………6分20.(5分)21.(8分)解:(1)如图,连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,……………………………1分∵∠CAB=27°,∴∠COB=2∠CAB=54°,………………………………………………2分在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°-∠COP=36°………………………………………………………………3分(2)∵OD ⊥AC ,∴∠AEO =90°,AD ︵=CD ︵…………………………………………………5分在Rt △AOE 中,由∠EAO =10°,得∠AOD =90°-∠EAO =80°,……………………6分 ∴∠ACD =12∠AOD =40°, ………………………………………………………………7分∵∠ACD 是△ACP 的一个外角,∴∠P =∠ACD ﹣∠A =40°﹣10°=30°.…………………………………………………8分 22.(本题7分) (1)x =16-6x解:两边平方得:x 2=16-6x ……………………………………………………………………1分 移项得, x 2+6x -16=0(x +8) (x -2)=0x 1=2,x 2=-8 …………………………………………………………………2分 经检验,x 2=-8是原方程的增根,舍去,所以原方程的解是x =2.………………………………………………………3分(2)x +2x -3=6解:移项,得 2x -3=6-x …………………………………………………………………4分两边平方,得4(x -3)=(6-x )2 ………………………………………………………………5分x 2-16x +48=0(x -12)(x -4)=0x 1=4,x 2=12 (6)分经检验,x 2=12是原方程的增根,舍去,所以原方程的解是x =4.……………………………………………………………7分23.(8分)(1)证明:连结OP∵直线l 与小圆⊙O 相切于点P∴OP ⊥l ,即OP ⊥AB …………………………………………………………………1分 ∴AP =BP……………………………………………………………………………2分 (2)解:连结OAAP图①A图②由(1)得:OP ⊥AB ,AP =12AB ……………………………………………………3分∴在Rt △AOP 中,OA 2-OP 2=AP 2=14AB 2…………………………………………4分∴S 圆环=πOA 2-πOP 2=π4AB 2=π4×(2a )2=πa 2 ………………………………………6分(3)7π…………………………………………………………………………………8分24.(本题7分)解:设平均亩产量的增长率为x ,则种植面积的增长率为2x .………………………………1分根据题意,得 10(1+2x )·2000(1+x )=60000. ………………………………………4分 整理,得 2x 2+3x -2=0…………………………………………………5分 解这个方程,得 x 1=0.5,x 2=-2(舍去). …………………………………6分 答:平均亩产量的增长率为50%.…………………………………………………………7分 25.(本题7分)(1)如图1,⊙O 即为所求. …………………………………………………………………3分(2)如图2,D 1、D 2即为所求. ………………………………………………………………7分 26.(8分)(1)60-x 10,200+x ,20×(60-x10); ……………………………………………………3分(2)根据题意,得(60-x 10)·(200+x )-20×(60-x 10)=14000;……………………………………………5分整理,得: x 2-420x +32000=0,图1图2解这个方程,得 x 1=320,x 2=100.……………………………………………6分当x =320时,有游客居住的客房数量为60-32010=28(间), 当x =100时,有游客居住的客房数量为60-10010=50(间)………………………7分 所以当x =100时能吸引更多的游客,则每个房间的定价应为200+100=300(元).答:每个房间的定价应为300元.……………………………………………………8分27.(16分)问题分析:垂直或“⊥”…………………………………………………………………………1分 平行或“∥”…………………………………………………………………………2分 解法探究:(1)∠CBO =∠BCO ……………………………………………………………………………3分 ∠BAD =∠BDA ……………………………………………………………………………4分 ∠ECB =∠CBO ……………………………………………………………………………5分(2)如图3,连接OD ,∴OD =OA .…………………………………………………………6分∵BD =BA ,∴BF 垂直平分AD , ………………………………………………………………………7分 根据垂径定理即BF ⊥AD . ………………………………………………………………………………8分以下方法供参考,一种正确的方法4分,两种不同的方法共8分方法1:通过证明∠OBD =∠BDC 来证明结论.∵BF ⊥AD ,∴根据垂径定理,BF 平分AD ︵.∴FD ︵=F A ︵,∴∠FBD =∠FBA . …………………………………………………9分∵OB =OA ,∴∠FBA =∠CAB .∴∠FBD =∠CAB . …………………………………………………………………10分∵∠CAB =∠CDB .E 图3 AE 备用图∴∠FBD =∠CDB . …………………………………………………………………11分 ∴DE ∥OB .∵∠E =90°,∴∠EBO =90°.∴BE 是⊙O 的切线.…………………………………………………………………12分 方法2:通过证明∠BOC =∠DCO 来证明结论.∵BF ⊥AD ,∴根据垂径定理,BF 平分AD ︵.∴FD ︵=F A ︵,∴∠FBD =∠FBA ,∴∠ABD =2∠FBA .∵∠ACD =∠ABD ,∴∠ACD =2∠FBA . ……………………………………………9分 ∵∠BOC 是△ABO 的外角,∴∠BOC =2∠CAB . ……………………………………10分 又∵OB =OA ,∴∠FBA =∠CAB .∴∠BOC =∠ACD .………………………………………………………………………11分 ∴DE ∥OB .∵∠E =90°,∴∠EBO =90°.∴BE 是⊙O 的切线. ……………………………………………………………………12分 方法3:通过证明四边形BEDH 是矩形.∵BF ⊥AD ,∴∠BHD =90°∵∠ABC =90°,∴AC 是⊙O 的直径. …………………………………………………9分 ∴∠ADC =90°. …………………………………………………………………………10分 又∵∠E =90°,∴四边形BEDH 是矩形. ………………………………………………………………11分 ∴∠EBO =90°.∴BE 是⊙O 的切线. ……………………………………………………………………12分 方法4:通过证明OH 是△ACD 的中位线∵BF ⊥AD ,∴根据垂径定理,AH =DH .又∵∠ABC =90°,∴AC 是⊙O 的直径.……………………………………………9分 ∴AO =CO ,∴OH 是△ACD 的中位线. …………………………………………………………10分 ∴OH ∥DC ,即DE ∥OB . …………………………………………………………11分 ∵∠E =90°,∴∠EBO =90°.∴BE 是⊙O 的切线.…………………………12分。
2019年南京市鼓楼区九年级下期中数学测试卷(附答案)(精校版)
南京市鼓楼区九年级(下)期中试卷数 学注意事项:本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题卡...相应位置....上) 1.4的算术平方根是A .±2B .2C .±16D .162.计算(-a 3)2的结果是A .-a 6B .-a 5C .a 6D .a 53.如图是某几何体的三种视图,则这个几何体是A .圆锥B .圆柱C .球D .四棱锥4A .-1B .-12C .32D .25.对于代数式x 2-10x +24,下列说法中错误的是A .次数为2、项数为3B .因式分解的结果是(x -4)(x -6)C .该代数式的值可能等于0D .该代数式的值可能小于-16.如图,△ABC 是⊙O 的内接三角形,∠A =30°,BC =2,把△ABC 绕点O 按逆时针方向旋转90°得到△BED ,则对应点C 、D 之间的距离为A .1B . 2C . 3D .2二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.-3的相反数是 ,-3的倒数是 .8.截止于2017年3月1日,南京市鼓楼区团区委官方微博的粉丝数量为25 000,将25 000 用科学记数法表示为 .9.计算18a ·2a 的结果是 . 10.不等式x -12<x 3的解集是 .11.某市在一次空气污染指数抽查中,收集到10天的数据如下:106,60,74,100,92,67,75,67,87,119.该组数据的中位数是 .12.已知圆锥的底面半径为4 cm ,圆锥的母线长为5 cm ,则圆锥的侧面积为 cm 2.左视图(第4题)(第6题)13.如图,∠1,∠2,∠3是五边形ABCDE 的3个外角,若∠A +∠B =220°,则∠1+∠2+∠3= °.14.以菱形ABCD 的对角线交点O 为原点,对角线建立如图所示直角坐标系,AD 的中点E 的坐标为(-1,2),则BC 的中点F 的坐标为 .15.在直角坐标系中,把四边形ABCD 以原点O 为位似中心放缩,得到四边形A ˊB ˊC ˊD ˊ.若点A 和它的对应点A ˊ的坐标分别为(2,3),(6,9),则四边形ABCD 的面积四边形A ˊB ˊC ˊD ˊ的面积= .16.已知二次函数y 1=ax 2+bx +c 图像与一次函数y 2=kx 的图像交于点M 、N ,点M 、N 的横坐标分别为m 、n (m <n ).下列结论:①若a >0,则当m <x <n 时,y 1<y 2;②若a <0,则当x <m 或x >n 时,y 1>y 2;③b -k =am +an ;④c =amn . 其中所以正确结论的序号是 .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算:2-1×4+(-2)4÷4+cos60°.18.(7分)解方程组⎩⎨⎧x -3y =-1,3x +y =7.19.(9分)已知代数式1x -1+x 2-3x x 2-1,回答下列问题.(1)化简这个代数式; (2)“当x =1时,该代数式的值为0”,这个说法正确吗?请说明理由.20.(7分)某中学九年级男生共450人,现随机抽取了部分九年级男生进行引体向上测试,相关数据的统计图如下.(1x <2时成绩等级为不及格,当2≤x <4时成绩等级为及格,当5≤x <6时成绩等级为良好,当x ≥6时成绩等级为优秀.用适当的统计图表示“不及格”、“及格”、“良好”、“优秀”四个等级学生人数所占百分比; (2)估计全校九年级男生引体向上测试优秀的人数.x /个(第14题) 12 3A B CDE (第13题)21.(8分)如图,在△ABC 中,AB =AC ,D 是边BC 上一点,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,△AEF ∽△ABC .(1)求证:△AED ≌△AFD ;(2)若BC =2AD ,求证:四边形AEDF是正方形.22.(8分)甲、乙两人用两颗骰子玩游戏.这两颗骰子的一些面标记字母A ,而其余的面则标记字母B .两个人轮流掷骰子,游戏规则如下:两颗骰子的顶面字母相同时,甲赢;两颗骰子的顶面字母不同时,乙赢.已知第一颗骰子各面的标记为4A2B ,回答下列问题:(1)若第二颗骰子各面的标记为2A4B ,求甲、乙两人获胜的概率各是多少? (2)若要使两人获胜概率相等,则第二颗骰子要有 个面标记字母A . 23.(8分)按要求完成下列尺规作图(不写作图,保留作图痕迹).(1)如图①,点A 、B 、C 是平行四边形ABCD 的三个顶点,求作平行四边形ABCD ;(2)如图②,点O 、P 、Q 分别是平行四边形EFGH 三边EH 、EF 、FG 的中点,求作平行四边形EFGH .24.(8分)甲、乙两人骑车分别从A 、B 两地同时出发,沿同一路线匀速骑行,两人先相向而行,甲到达B地后停留20 min 再以原速返回A 地,当两人到达A 地后停止骑行.设甲出发x min 后距离A 地的路程为y km .图中的折线表示甲在整个骑行过程中y 与x 的函数关系. (1)A 、B 两地之间的路程是 km ;(2)求甲从B 地返回A 地时,y 与x 的函数表达式;(3)在整个骑行过程中,两人只相遇了1次,乙的骑行速度可能是( ).A .0.1B .0.15C .0.2D .0.25A B C 图①O P Q 图② (第23题) y (第24题) C D E B A F (第21题)25.(8分)某校九年级数学兴趣小组的活动课题是“测量物体高度”.小组成员小明与小红分别采用不同的CHD(2)数学老师说小红的结果较准确,而小明的结果与古塔的实际高度偏差较大.针对小明的测量方案分析测量发生偏差的原因;(3)利用小明与小红的测量数据,估算该古塔底面圆直径的长度为m.26.(8分)某水果店出售一种水果,每只定价20元时,每周可卖出300只.试销发现以下两种情况:情况1:如果每只水果每降价1元,那么每周可多卖出25只;情况2:如果每只水果每涨价1元,那么每周将少卖出10只.(1)根据情况1,如何定价,才能使一周销售收入最多?(2)如果物价局规定该种水果每只价格只能在22元~24元之间(包括22元与24元)那么根据以上两种情况,你认为应当如何定价才能使一周销售收入最多?并说明理由.27.(10分)在正方形ABCD中,有一直径为CD的半圆,圆心为点O,CD=2,现有两点E、F,分别从点A、点C同时出发,点E沿线段AD以每秒1个单位长度的速度向点D运动,点F沿线段CB以每秒2个单位长度的速度向点B运动,当点F运动到点B时,点E也随之停止运动.设点E离开点A 的时间为t(s),回答下列问题:(1)如图①,根据下列条件,分别求出t的值.①EF与半圆相切;②△EOF是等腰三角形.(2)如图②,点P是EF的中点,Q是半圆上一点,请直接写出PQ+OQ的最小值与最大值.九年级(下)期中考试 数学试题参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.3,-13 8.2.5×104 9.6a 10.x <3 11.81 12.20π 13.220° 14.(1,-2) 15.19 16.①②④. 三、解答题(本大题共11小题,共88分)17.(7分)解:2-1×6-(-2)4÷4+cos60°=12×6-16÷4+12 ………………………………………………………………………3分 =3-4+12…………………………………………………………………………………5分 =-12.……………………………………………………………………………………7分图①图②备用图A DA D EA D E (第27题)18.(7分)解方程组⎩⎨⎧x -3y =-1,①3x +y =7. ②解:由①+②×3,得x =2,……………………………………………………………3分 把x =2代入①,得y =1, ……………………………………………………………5分∴方程组⎩⎨⎧x -3y =-1,3x +y =7的解为⎩⎨⎧x =2y =1.…………………………………………………7分19.(9分)解:(1)1x -1+x 2-3x x 2-1=x +1(x +1)(x -1)+x 2-3x (x +1)(x -1) ……………………………………………………………2分 =(x -1)2(x +1)(x -1) ……………………………………………………………………………4分 =x -1x +1. …………………………………………………………………………………6分 (2)不正确. …………………………………………………………………………7分因为当x =1时,代数式1x -1+x 2-3x x 2-1中的分母x -1,x 2-1都等于0,该代数式在实数范围内无意义,所以这个说法不正确.………………………………………………………9分 20.(7分)(1)解:如图所示: ……………………………………………………………5分(2)450×30%=135(人)答:估计全校九年级男生引体向上测试优秀的人数为135人.…………………………………………………………………………………………………2分 21.(8分)(1)证明:∵△AEF ∽△ABC ,∴AE AB =AFAC ,∵AB =AC ,∴AE =AF ,………………………………………1分 ∵DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,∴∠AED =∠AFD =90°,……………………………………………………2分 在Rt △AED 和Rt △AFD 中,∠AED =∠AFD =90°, ⎩⎨⎧AE =AF ,AD =AD ,∴Rt △AED ≌Rt △AFD .………………………………………………………4分(2)证明:∵Rt △AED ≌Rt △AFD ,∴∠EAD =∠F AD , ∵AB =AC ,∴AD ⊥BC ,BC =2BD ,………………………………………………………5分 ∵BC =2AD , ∴BD =AD , ∵AD ⊥BC , ∴∠ADB =90°,不及格 10% 及格 20% 良好 40%优秀30%某中学抽样九年级男生引体向上 等级人数分布扇形统计图∴∠B =∠BAD =45°,…………………………………………………………6分 ∴∠BAC =2∠BAD =90°, ∵∠AED =∠AFD =90°,∴四边形AEDF 是矩形,………………………………………………………7分 ∵AE =AF ,∴矩形AEDF 是正方形.………………………………………………………8分22.(8分)件M ,它的发生有16种可能,P (M )=49,“两颗骰子的顶面字母不同”记为事件N ,它的发生有20种可能,P (N )=59,∴甲、乙两人获胜的概率各是49、59.…………………………………………………………………………………………………6分 (2)3.………………………………………………………………………………………8分 23.(8分)解:(1)如图①,四边形ABCD 即为所求.…………………………………4分(2)如图②,四边形EFGH 即为所求.……………………………………………………8分24.(8分)解:(1)25 km .…………………………………………………………………2分 (2)∵甲从A 地到B 地的速度为25÷50=0.5 km/min ,∴甲从B 地返回A 地的速度也为0.5 km/min , ∵甲到达B 地后停留20 min 再以原速返回A 地,∴甲从B 地返回A 地时以出发70分钟,且距离A 地25 km ,∴y =25-0.5(x -70)=60-0.5x .………………………………………………6分 (3)D .…………………………………………………………………………………8分 25.(8分)解:(1)设CH =x , 在Rt △CHF 中,∵∠CFH =∠FCH =45°,∴CH =FH =x ,C图① A B C D图② P Q O E H F G在Rt △CHE 中,∴tan ∠CEH =CHEH,∴x x +58.8=tan17°=0.30, ∴x =25.2,即CH =25.2(m ),∴CD =CH +DH =25.2+1.6=26.8(m ),答:这棵树AB 的高度为26.8m .………………………………………………………4分(2)原因:小明测量的只是测角器所在位置与古塔底部边缘的最短距离,不是测量测角器所在位置与底面圆心的最短距离.………………………………………………………6分(3)12. …………………………………………………………………………………8分 26.(8分)解:(1)根据情况1,设当每只定价为x 元时,一周销售收入为y 1元.…………………………………………………………………………………………………1分y 1=x [300+25(20-x )]=-25x 2+800x ,当x =16时,y 1有最大值,最大值为6500元.…………………………………3分 答:当定价为16元时,一周销售收入最多,最多为6500元.(2)根据情况2,设当每只定价为x 元时,一周销售收入为y 2元. y 2=x [300-25(x -20)]=-10x 2+500x ,当x =25时,y 2有最大值,最大值为6250元, …………………………………5分 当22≤x ≤24时,y 1随x 的增大而减小,而y 2随x 的增大而增大,……………6分 当x =22时,y 1最大,最大值为5500,当x =24时,y 2最大,最大值为6000>5500.答:当定价为24元时,一周销售收入最多,最多为6000元.…………………8分27.(10分)(1)①解:如图,设EF 与半圆相切于点G ,过点E 作EH ⊥BC ,垂足为点H . ∵四边形ABCD 是正方形,∴AB =BC =CD =AD =2,∠A =∠B =∠ADC =∠BCD =90°, ∴OD ⊥AD ,且AD 经过半径OD 的外端点D , ∴AD 与半圆相切于点D ,同理可证:BC 与半圆相切于点C , ∴ED =EG =2-t ,CF =FG =2t , ∴EF =2+t ,∵EH ⊥BC ,垂足为点H ,∴∠BHE =90°,∵∠A =∠B =90°,∴四边形ABHE 是矩形,∴EH =AB =2,BH =AE =t ,∴HF =2-3t ,在△EHF 中,∠EHF =90°,∴EH 2+HF 2=EF 2, ∴22+(2-3t )2=(2+t )2,解这个方程,得t 1=1-22<1,t 2=1+22>1(不合题意,舍去),∴当EF 与半圆相切时,t 的值为1-22.………………………………………………4分 ②解:在△EDO 中,∵∠EDO =90°,∴OE 2=t 2-4t +5, 同理可证:OF 2=1+4t 2, EF 2=9t 2-12t +8, 第一种情况:当OE =OF 时,则OE 2=OF 2, ∴t 2-4t +5=1+4t 2,解这个方程,得t 1=23<1,t 2=-2<0(不合题意,舍去), 第二种情况:当OE =EF 时,则OE 2=EF 2, ∴t 2-4t +5=9t 2-12t +8,此方程无解, 第三种情况:当OF =EF 时,则OF 2=EF 2,AD E∴1+4t 2=9t 2-12t +8,解这个方程,得t 1=1,t 2=1.4>1(不合题意,舍去),综上所述:当△EOF 是等腰三角形时,t 的值为23或1.………………………………8分 (3)1、32.………………………………………………………………………………10分。
鼓楼中学九年级数学下册期中测试题(含答案解析)
鼓楼中学2019九年级数学下册期中测试题(含答案解析)鼓楼中学2019九年级数学下册期中测试题(含答案解析)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题纸相应位置上)1.下列剪纸作品都是轴对称图形.其中对称轴条数最多的作品是2.下列算式结果为-3的是A.-│-3│ B.(-3)0 C.-(-3)D.(-3)-1 3.使分式4x-2有意义的x的取值范围是A.x>2 B.x<2 C.x≠2 D.x≥24.下列从左边到右边的变形,是因式分解的是A.(a-1)(a-2)=a2-3a+2 B.a2-3a+2=(a-1)(a-2) C.(a-1)2+(a-1)=a2-a D.a2-3a+2=(a-1)2-(a-1) 5.下列命题中,假命题的是A.两组对边分别相等的四边形是平行四边形B.一组对边平行且相等的四边形是平行四边形C.一组对边平行,一组对角相等的四边形是平行四边形D.一组对边相等,一组对角相等的四边形是平行四边形6.对函数y=x3的描述:①y随x的增大而增大,②它的图象是中心对称图形,③它的自变量取值范围是x≠0.正确的是A.①②B.①③C.②③D.①②③二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.9的平方根是▲ .8.一个多边形的每个外角都等于72°,则这个多边形的边数是▲ .9.已知方程组x+y=1,2x-y=2的解为x=1,y=0.则一次函数y=-x+1和y=2x-2的图象的交点坐标为▲ .10.计算(18 -8 )×2 的结果是▲ .11.已知x1、x2是一元二次方程x2+x=1的两个根,则x1x2=▲ .12.如果代数式2x+y的值是3,那么代数式7-6x-3y的值是▲ .13.已知点A(2,y1)、B(m,y2)是反比例函数y=6 x的图象上的两点,且y1<y2.写出满足条件的m的一个值,m可以是▲.14.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3=▲ °.15.如图,△ABC中,AB=AC=13 cm,BC=10 cm.则△ABC内切圆的半径是▲ cm.16.如图,方格纸中有三个格点A、B、C,则sin∠ABC=▲ .三、解答题(本大题共11小题,共88分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(12分)(1)解方程组x+2y=6,3x-2y=2.(2)解不等式2x-1≥3x-12,并把它的解集在数轴上表示出来.18.(8分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总数排列名次,在规定时间内每人踢100个以上(含100个)为优秀,下表是成绩最好的甲、乙两班各5名学生的比赛数据.(单位:个)1号2号3号4号5号总数甲班89 100 96 118 97 500[来源:学。
2016年江苏省九年级下学期期中考试数学试题(附答案)
江苏省九年级下学期期中考试数学试题一. 仔细选一选 (本大题有10个小题, 每小题3分, 共30分)1.下列等式正确的是( ▲ )A .(-a 2)3=-a 5 B.a 8÷a 2=a 4 C.a 3+a 3=2a 3 D.(ab)4=a 4b 2.2014年某市启动了历史上规模最大的轨道交通投资建设,预计某市轨道交通投资将达51 800 000 000元人民币. 将51 800 000 000用科学记数法表示正确的是( ▲ )A. 5.18³1010B. 51.8³109C. 0.518³1011D. 518³1083.下面四个几何体中,左视图是四边形的几何体共有( ▲ )A. 1个B. 2个C. 3个D. 4个 4.不等式组21318x x --⎧⎨->⎩≥的解集在数轴上可表示为( ▲ )A . B.C. D.5.圆锥的底面半径为2,母线长为4,则它的侧面积为 ( ▲ ) A .8πB .π12C .43πD .4π6. 若一个多边形的内角和等于720,则这个多边形的边数是 ( ▲ )A .5B .6C .7D .87.为了解某班学生每天使用零花钱的情况,随机调查了15名同学,结果如下表:下列说法正确的是( ▲ )A .众数是5元B .平均数是2.5元C .极差是4元D .中位数是3元8. 如图,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是( ▲ )A .32 cmB .3cmC .332 cm D .1cm9.如图,已知A 、B 两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D 是⊙C 上的一个动点,射线AD 与y 轴交于点E ,则△ABE 面积的最大值是( ▲ )A .3B .113C .103 D .4 10.设一元二次方程(x ﹣1)(x ﹣2)=m (m >0)的两实根分别为α,β,且α<β,则α,β满足( ▲ )A .1<α<β<2B .1<α<2<βC .α<1<β<2D .α<1且β>2二. 认真填一填 (本大题有8个小题, 每小题2分, 共16分)11.函数y =1x +2中自变量的取值范围是___▲___. 12. 因式分解:12-a = ▲ .0 1 2 3 412340 1 2 3 40 1 2 3 4第8题图第21题图FA B C DE 13.已知方程032=+-k x x 有两个相等的实数根,则k = ▲ .14. 已知抛物线223y x bx =-+的对称轴是直线1x =,则b 的值为 ▲ .15.如图,AB 是⊙O 的直径,CD 是⊙O 的弦.若∠BAC=23°,则∠ADC 的度数为 ▲ .16.如图,小红站在水平面上的点A 处,测得旗杆BC 顶点C 的仰角为60°,点A 到旗杆的水平距离为a 米.若小红的水平视线与地面的距离为b 米,则旗杆BC 的长为____▲____米。
江苏省南京市鼓楼区九年级数学下学期期中(一模)试题
填“>” <”“=”)江苏省南京市鼓楼区 2016 年九年级数学下学期期中(一模)试题注意事项:本试卷共 6页.全卷满分 120分.考试时间为 120分钟 .考生答题全部答在答题纸上,答在本 试卷上无效 .选择题(本大题共 6 小题,每小题 2分. 在每小题所给出的四个选项中,恰有一项是符合题 目要求的,请将正确选项前的字母代号填在答题卡相应位置上)1. 比 1大的无理数是二、填空题(本大题共 6小题,每小题 2 分,共 20分,不需写出解答过程,请把答案直接 填写在答题卡相应位置上)7.16 的平方根是 _______ ,9 的立方根是 _________ .8.2016 年 3 月,鼓楼区的二手房均价约为 25000 元/平方米,若以均价购买一套 100 平方米 的二手房,该套房屋的总价用科学计数法表示为 ________________ 元 . 因式分解: 3a 3 12a ___________ .为了估计鱼塘青鱼的数量(鱼塘只有青鱼) ,将 200 条鲤鱼放进鱼塘,随机捕捞出一条鱼, 记下品种后放回,稍后再随机捕捞出一条鱼记下品种,多次重复后发现鲤鱼出现的频率为0.2 ,那么可以估计鱼塘里青鱼的数量为 _____________ 条.计算 18a 2 2a 2 (a 0)的结果是 _________ .A.3.14B.C.22 7D.2. 一组数据 A.3,4,0,4 4,5,3,4,4 的中位数、众数和方差分别是 B. 4,4,4,4C.4,4,0,4D.4,3,0,43. 计算 x 2 x 3 x 的结果是A. x 4B.x 5C.x 64. 如图,菱形 A. 125C.12用一张半径为ABCD 中, B.AB =5,BD =6,则菱形的高为24 5D.24 20 的扇形纸片制成一个圆锥(接缝忽略不计)如果圆锥底面的半径为 10,那么扇形的圆心角为A.60 °B.90C.135°D.1806.等腰直角△ ABC 中,∠ BAC =90°, BC =8,⊙O 过点B , 1,则⊙ O 的半径为C , 点O 在△ ABC 的外部,且 OA = A. 4 B.5 C.D.42点A ( x 1, y 1 ),B ( x 2,y 2 ) 是反比例函数 y2图像上的两点,若 x 1 x 2 0 ,则 y 1 xy2D.x 7如图,将一张矩形纸片沿EF 折叠后,点D、C 分别落在点D', C'的位置,若 1 40 ,则D'EF _______ .若ABC 的三边长分别为6、8、10,则ABC 的内切圆半径为______已知y是x的二次函数,函数y与自变量x的部分对应值如下表:x-2-1012y04664该二次函数图像向左平移_____ 个单位,图像经过原点.如图,在平面直角坐标系中,点A,B的坐标分别为(0,1)和( 3,0),若在第四象限存在点 C ,使OBC 和OAB 相似,则点 C 的坐标是.三、解答题(本大题共11 题,共88分,请在答题卡指定区域作答,解答题时应写出文字说明,证明过程或演算步骤)(5 分)计算:(x 3)(3 x)(x2 x 1).(7分)(1)解不等式(3 2x 5)>2(4x 3)并将其解集在数轴上表示出来.(2)写出一个一元一次不等式,使它和(1)中的不等式组的解集为x≤2,这个不等式可以是___________ .7 分)(1)解方程:2 4;2x 1 4x2 1 ;2x 1 4 1方程2x 1x 的解为_______________________24(7 分)网易新闻的“数读”专栏旨在用数据说话,提供轻量化的阅读体验。
鼓楼中学初三数学下册期中测试题
鼓楼中学初三数学下册期中测试题鼓楼中学2019九年级数学下册期中测试题(含答案剖析)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是相符标题要求的,请将正确选项前的字母代号填涂在答题纸相应位置上)1.下列剪纸作品都是轴对称图形.此中对称轴条数最多的作品是2.下列算式终于为-3的是A.-│-3│ B.(-3)0 C.-(-3) D.(-3)-13.使分式4x-2有意义的x的取值范畴是A.x>2 B.x<2 C.x≠2 D.x≥24.下列从左边到右边的变形,是因式分化的是A.(a-1)(a-2)=a2-3a+2 B.a2-3a+2=(a-1)(a-2)C.(a-1)2+(a-1)=a2-a D.a2-3a+2=(a-1)2-(a-1)5.下列命题中,假命题的是A.两组对边分别相等的四边形是平行四边形B.一组对边平行且相等的四边形是平行四边形C.一组对边平行,一组对角相等的四边形是平行四边形D.一组对边相等,一组对角相等的四边形是平行四边形6.对函数y=x3的描述:①y随x的增大而增大,②它的图象是中心对称图形,③它的自变量取值范畴是x≠0.正确的是A.①② B.①③ C.②③ D.①②③二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答历程,请把答案直接填写在答题纸相应位置上)7.9的平方根是▲ .8.一个多边形的每个外角都即是72°,则这个多边形的边数是▲ .9.已知方程组x+y=1,2x-y=2的解为x=1,y=0.则一次函数y=-x+1和y=2x-2的图象的交点坐标为▲ .10.谋略(18 -8 )×2 的终于是▲ .11.已知x1、x2是一元二次方程x2+x=1的两个根,则x1x2=▲ .12.要是代数式2x+y的值是3,那么代数式7-6x-3y的值是▲ .13.已知点A(2,y1)、B(m,y2)是反比例函数y= 6 x 的图象上的两点,且y1<y2.写出满足条件的m的一个值,m可以是▲ .14.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3=▲ °.15.如图,△ABC中,AB=AC=13 cm,BC=10 cm.则△ABC 内切圆的半径是▲ c m.16.如图,方格纸中有三个格点A、B、C,则sin∠ABC=▲ .三、解答题(本大题共11小题,共88分.请在答题纸指定地区内作答,解答时应写出文字说明、证明历程或演算步骤)17.(12分)(1)解方程组 x+2y=6,3x-2y=2.(2)解不等式2x-1≥3x-12,并把它的解集在数轴上表示出来.18.(8分)某校八年级学生开展踢毽子比赛活动,每班派5名学生到场,按团体总数排列名次,在准则时间内每人踢100个以上(含100个)为优秀,下表是成绩最好的甲、乙两班各5名学生的比赛数据.(单位:个)1号 2号 3号 4号 5号总数甲班 89 100 96 118 97 500[来源:学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年江苏省南京市鼓楼区九年级(下)期中数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题卡相应位置上)1.(2分)4的算术平方根是()A.±2 B.2 C.±16 D.162.(2分)计算(﹣a3)2的结果是()A.﹣a6B.﹣a5 C.a6D.a53.(2分)如图是某几何体的三种视图,则这个几何体是()A.圆锥B.圆柱C.球D.四棱锥4.(2分)若在数轴上画出表示下列各数的点,则与原点距离最近的点是()A.﹣1 B.﹣ C.D.25.(2分)对于代数式x2﹣10x+24,下列说法中错误的是()A.次数为2,项数为3 B.因式分解的结果是(x﹣4)(x﹣6)C.该代数式的值可能等于0 D.该代数式的值可能小于﹣16.(2分)如图,△ABC是⊙O的内接三角形,∠A=30°,BC=,把△ABC绕点O按逆时针方向旋转90°得到△BED,则对应点C、D之间的距离为()A.1 B.C.D.2二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)﹣3的相反数是;﹣3的倒数是.8.(2分)截止于2017年3月1日,南京市鼓楼区团区委官方微博的粉丝数量为25 000,将25 000用科学记数法表示为.9.(2分)计算•的结果是.10.(2分)不等式<的解集是.11.(2分)某市在一次空气污染指数抽查中,收集到10天的数据如下:106,60,74,100,92,67,75,67,87,119.该组数据的中位数是.12.(2分)已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是.13.(2分)如图,∠1,∠2,∠3是五边形ABCDE的3个外角,若∠A+∠B=220°,则∠1+∠2+∠3=°.14.(2分)以菱形ABCD的对角线交点O为原点,对角线AC、BD所在直线为坐标轴,建立如图所示直角坐标系,AD的中点E的坐标为(﹣1,2),则BC的中点F的坐标为.15.(2分)在直角坐标系中,把四边形ABCD以原点O为位似中心放缩,得到四边形AˊBˊCˊDˊ.若点A和它的对应点Aˊ的坐标分别为(2,3),(6,9),则=.16.(2分)已知二次函数y1=ax2+bx+c图象与一次函数y2=kx的图象交于点M,N,点M,N的横坐标分别为m,n(m<n).下列结论:①若a>0,则当m<x<n 时,y1<y2;②若a<0,则当x<m或x>n时,y1>y2;③b﹣k=am+an;④c=amn.其中所有正确结论的序号是.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算:2﹣1×4+(﹣2)4÷4+cos60°.18.(7分)解方程组.19.(9分)已知代数式+,回答下列问题.(1)化简这个代数式;(2)“当x=1时,该代数式的值为0”,这个说法正确吗?请说明理由.20.(7分)某中学九年级男生共450人,现随机抽取了部分九年级男生进行引体向上测试,相关数据的统计图如图.(1)设学生引体向上测试成绩为x(单位:个).学校规定:当0≤x<2时成绩等级为不及格,当2≤x<4时成绩等级为及格,当5≤x<6时成绩等级为良好,当x≥6时成绩等级为优秀.用适当的统计图表示“不及格”、“及格”、“良好”、“优秀”四个等级学生人数所占百分比;(2)估计全校九年级男生引体向上测试优秀的人数.21.(8分)如图,在△ABC中,AB=AC,D是边BC上一点,DE⊥AB,DF⊥AC,垂足分别是E、F,△AEF∽△ABC.(1)求证:△AED≌△AFD;(2)若BC=2AD,求证:四边形AEDF是正方形.22.(8分)甲、乙两人用两颗骰子玩游戏.这两颗骰子的一些面标记字母A,而其余的面则标记字母B.两个人轮流掷骰子,游戏规则如下:两颗骰子的顶面字母相同时,甲赢;两颗骰子的顶面字母不同时,乙赢.已知第一颗骰子各面的标记为4A2B,回答下列问题:(1)若第二颗骰子各面的标记为2A4B,求甲、乙两人获胜的概率各是多少?(2)若要使两人获胜概率相等,则第二颗骰子要有个面标记字母A.23.(8分)按要求完成下列尺规作图(不写作图,保留作图痕迹).(1)如图①,点A、B、C是平行四边形ABCD的三个顶点,求作平行四边形ABCD;(2)如图②,点O、P、Q分别是平行四边形EFGH三边EH、EF、FG的中点,求作平行四边形EFGH.24.(8分)甲、乙两人骑车分别从A、B两地同时出发,沿同一路线匀速骑行,两人先相向而行,甲到达B地后停留20min再以原速返回A地,当两人到达A 地后停止骑行.设甲出发xmin后距离A地的路程为ykm.图中的折线表示甲在整个骑行过程中y与x的函数关系.(1)A、B两地之间的路程是km;(2)求甲从B地返回A地时,y与x的函数表达式;(3)在整个骑行过程中,两人只相遇了1次,乙的骑行速度可能是.A.0.1 B.0.15 C.0.2 D.0.25.25.(8分)某校九年级数学兴趣小组的活动课题是“测量物体高度”.小组成员小明与小红分别采用不同的方案测量同一个底面为圆形的古塔高度,以下是他们研究报告的部分记录内容:,(1)写出小红研究报告中“计算古塔高度”的解答过程;(2)数学老师说小红的结果较准确,而小明的结果与古塔的实际高度偏差较大.针对小明的测量方案分析测量发生偏差的原因;(3)利用小明与小红的测量数据,估算该古塔底面圆直径的长度为m.26.(8分)某水果店出售一种水果,每只定价20元时,每周可卖出300只.试销发现以下两种情况:情况1:如果每只水果每降价1元,那么每周可多卖出25只;情况2:如果每只水果每涨价1元,那么每周将少卖出10只.(1)根据情况1,如何定价,才能使一周销售收入最多?(2)如果物价局规定该种水果每只价格只能在22元~24元之间(包括22元与24元),你认为应当如何定价才能使一周销售收入最多?并说明理由.27.(10分)在正方形ABCD中,有一直径为CD的半圆,圆心为点O,CD=2,现有两点E、F,分别从点A、点C同时出发,点E沿线段AD以每秒1个单位长度的速度向点D运动,点F沿线段CB以每秒2个单位长度的速度向点B运动,当点F运动到点B时,点E也随之停止运动.设点E离开点A的时间为t(s),回答下列问题:(1)如图①,根据下列条件,分别求出t的值.①EF与半圆相切;②△EOF是等腰三角形.(2)如图②,点P是EF的中点,Q是半圆上一点,请直接写出PQ+OQ的最小值与最大值.2016-2017学年江苏省南京市鼓楼区九年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题卡相应位置上)1.(2分)4的算术平方根是()A.±2 B.2 C.±16 D.16【解答】解:∵22=4,∴4的算术平方根是2.故选:B.2.(2分)计算(﹣a3)2的结果是()A.﹣a6B.﹣a5 C.a6D.a5【解答】解:原式=a6,故选:C.3.(2分)如图是某几何体的三种视图,则这个几何体是()A.圆锥B.圆柱C.球D.四棱锥【解答】解:∵主视图和左视图都是三角形,∴此几何体为锥体,∵俯视图是一个圆,∴此几何体为圆锥.故选:A.4.(2分)若在数轴上画出表示下列各数的点,则与原点距离最近的点是()A.﹣1 B.﹣ C.D.2【解答】解:|2|>|﹣1|>||>|﹣|,则与原点距离最近的点是﹣,故选:B.5.(2分)对于代数式x2﹣10x+24,下列说法中错误的是()A.次数为2,项数为3 B.因式分解的结果是(x﹣4)(x﹣6)C.该代数式的值可能等于0 D.该代数式的值可能小于﹣1【解答】解:代数式x2﹣10x+24=(x﹣4)(x﹣6)=(x﹣5)2﹣1,A、次数为2,项数为3;正确.B、因式分解的结果是(x﹣4)(x﹣6);正确.C、该代数式的值可能等于0;正确.D、错误.代数式的最小值为﹣1.故选:D.6.(2分)如图,△ABC是⊙O的内接三角形,∠A=30°,BC=,把△ABC绕点O按逆时针方向旋转90°得到△BED,则对应点C、D之间的距离为()A.1 B.C.D.2【解答】解:连接OC、OB、OD,由圆周角定理得,∠BOC=2∠A=60°,∴△OCB是等边三角形,∴OC=OB=BC=,由旋转的性质可知,∠COD=90°,∴CD==2,故选:D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)﹣3的相反数是3;﹣3的倒数是﹣.【解答】解:﹣3的相反数是3;﹣3的倒数是﹣.故答案是:3,﹣.8.(2分)截止于2017年3月1日,南京市鼓楼区团区委官方微博的粉丝数量为25 000,将25 000用科学记数法表示为 2.5×104.【解答】解:将25 000用科学记数法表示为:2.5×104.故答案为:2.5×104.9.(2分)计算•的结果是6a.【解答】解:•==6a.故答案为:6a.10.(2分)不等式<的解集是x<3.【解答】解:<,去分母得:3(x﹣1)<2x,去括号得:3x﹣3<2x,移项、合并同类项得:x<3,故答案为x<3.11.(2分)某市在一次空气污染指数抽查中,收集到10天的数据如下:106,60,74,100,92,67,75,67,87,119.该组数据的中位数是81.【解答】解:将这组数据按从小到大的顺序排列为,60,67,67,74,75,87,92,100,106,119,处于中间位置的那个数是75和87,那么由中位数的定义可知,这组数据的中位数是81.故答案为:81.12.(2分)已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是20πcm2.【解答】解:这个圆锥的侧面积=•2π•4•5=20π(cm2).故答案为20πcm2.13.(2分)如图,∠1,∠2,∠3是五边形ABCDE的3个外角,若∠A+∠B=220°,则∠1+∠2+∠3=220°.【解答】解:∵∠A+∠B=220°,∴与∠A和∠B相邻的外角的度数和是:180°×2﹣220°=140°,∴∠1+∠2+∠3=360°﹣140°=220°.故答案是:220.14.(2分)以菱形ABCD的对角线交点O为原点,对角线AC、BD所在直线为坐标轴,建立如图所示直角坐标系,AD的中点E的坐标为(﹣1,2),则BC的中点F的坐标为(1,﹣2).【解答】解:过E作EG⊥AC于G,过F作FH⊥AC于H,∵AD的中点E的坐标为(﹣1,2),∴A(﹣2,0),D(0,4),∵四边形ABCD是菱形,∴OB=OD,OA=OC,∴B(0,﹣4),C(2,0),∴BC的中点F的坐标为(1,﹣2).故答案为:(1,﹣2).15.(2分)在直角坐标系中,把四边形ABCD以原点O为位似中心放缩,得到四边形AˊBˊCˊDˊ.若点A和它的对应点Aˊ的坐标分别为(2,3),(6,9),则=.【解答】解:∵点A和它的对应点Aˊ的坐标分别为(2,3),(6,9),∴四边形ABCD以原点O为位似中心扩大3倍,得到四边形AˊBˊCˊDˊ,即四边形ABCD与四边形AˊBˊCˊDˊ的相似比为,∴=,故答案为:.16.(2分)已知二次函数y1=ax2+bx+c图象与一次函数y2=kx的图象交于点M,N,点M,N的横坐标分别为m,n(m<n).下列结论:①若a>0,则当m<x<n 时,y1<y2;②若a<0,则当x<m或x>n时,y1>y2;③b﹣k=am+an;④c=amn.其中所有正确结论的序号是①④.【解答】解:①如图,a>0时,m<x<n时,y1<y2,故①符合题意;②如图2,a<0时,当x<m或x>n时,y2>y1,故②不符合题意;③ax2+bx+c=kx,化简,得ax2+(b﹣k)x+c=0,m+n=﹣,∴am+an=k﹣b,故③不符合题意;④ax2+bx+c=kx,化简,得ax2+(b﹣k)x+c=0,mn=,c=amn,故④符合题意;故答案为:①④.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算:2﹣1×4+(﹣2)4÷4+cos60°.【解答】解:2﹣1×4+(﹣2)4÷4+cos60°=×4+16÷4+0.5=2+4+0.5=6.518.(7分)解方程组.【解答】解:解方程组由①+②×3,得x=2,把x=2代入①,得y=1,∴方程组的解为.19.(9分)已知代数式+,回答下列问题.(1)化简这个代数式;(2)“当x=1时,该代数式的值为0”,这个说法正确吗?请说明理由.【解答】解:(1)原式==;(2)当x=1时,该代数式的值为0”,这个说法不正确,理由如下当x=1时,+无意义.20.(7分)某中学九年级男生共450人,现随机抽取了部分九年级男生进行引体向上测试,相关数据的统计图如图.(1)设学生引体向上测试成绩为x(单位:个).学校规定:当0≤x<2时成绩等级为不及格,当2≤x<4时成绩等级为及格,当5≤x<6时成绩等级为良好,当x≥6时成绩等级为优秀.用适当的统计图表示“不及格”、“及格”、“良好”、“优秀”四个等级学生人数所占百分比;(2)估计全校九年级男生引体向上测试优秀的人数.【解答】解:(1)如图所示:(2)450×30%=135(人)答:估计全校九年级男生引体向上测试优秀的人数为135人.21.(8分)如图,在△ABC中,AB=AC,D是边BC上一点,DE⊥AB,DF⊥AC,垂足分别是E、F,△AEF∽△ABC.(1)求证:△AED≌△AFD;(2)若BC=2AD,求证:四边形AEDF是正方形.【解答】(1)证明:∵△AEF∽△ABC,∴=,∵AB=AC,∴AE=AF,∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD;(2)证明:∵Rt△AED≌Rt△AFD,∴∠EAD=∠FAD,∵AB=AC,∴AD⊥BC,BC=2BD,∵BC=2AD,∴BD=AD,∵AD⊥BC,∴∠ADB=90°,∴∠B=∠BAD=45°,∴∠BAC=2∠BAD=90°,∵∠AED=∠AFD=90°,∴四边形AEDF是矩形,∵AE=AF,∴矩形AEDF是正方形.22.(8分)甲、乙两人用两颗骰子玩游戏.这两颗骰子的一些面标记字母A,而其余的面则标记字母B.两个人轮流掷骰子,游戏规则如下:两颗骰子的顶面字母相同时,甲赢;两颗骰子的顶面字母不同时,乙赢.已知第一颗骰子各面的标记为4A2B,回答下列问题:(1)若第二颗骰子各面的标记为2A4B,求甲、乙两人获胜的概率各是多少?(2)若要使两人获胜概率相等,则第二颗骰子要有3个面标记字母A.【解答】解:(1)用表格列出所有可能出现的结果:由表格可知,共有36种可能出现的结果,并且它们是等可能的.“两颗骰子的顶面字母相同”记为事件M,它的发生有16种可能,P(M)=,“两颗骰子的顶面字母不同”记为事件N,它的发生有20种可能,P(N)=,∴甲、乙两人获胜的概率各是、.(2)若要使两人获胜概率相等,则第二枚正方体要有3个面标记字母A.由表格可知,此时甲获胜的概率为=,乙获胜的概率为=,故答案为:3.23.(8分)按要求完成下列尺规作图(不写作图,保留作图痕迹).(1)如图①,点A、B、C是平行四边形ABCD的三个顶点,求作平行四边形ABCD;(2)如图②,点O、P、Q分别是平行四边形EFGH三边EH、EF、FG的中点,求作平行四边形EFGH.【解答】解:(1)如图①,四边形ABCD即为所求;(2)如图②,四边形EFGH即为所求.24.(8分)甲、乙两人骑车分别从A、B两地同时出发,沿同一路线匀速骑行,两人先相向而行,甲到达B地后停留20min再以原速返回A地,当两人到达A 地后停止骑行.设甲出发xmin后距离A地的路程为ykm.图中的折线表示甲在整个骑行过程中y与x的函数关系.(1)A、B两地之间的路程是25km;(2)求甲从B地返回A地时,y与x的函数表达式;(3)在整个骑行过程中,两人只相遇了1次,乙的骑行速度可能是D.A.0.1 B.0.15 C.0.2 D.0.25.【解答】解:(1)观察函数图象,可知:A、B两地之间的路程是25km.故答案为:25.(2)∵甲从A地到B地的速度为25÷50=0.5(km/min),∴甲从B地返回A地的速度也为0.5km/min.∵甲到达B地后停留20min再以原速返回A地,∴甲从B地返回A地时已出发70分钟,且距离A地25km,∴y=25﹣0.5(x﹣70)=60﹣0.5x.(3)当y=60﹣0.5x=0时,x=120.∵在整个骑行过程中,两人只相遇了1次,∴乙到达A所用的时间t<120,又∵乙的骑行速度v=,∴t >≈0.21.故答案为:D.25.(8分)某校九年级数学兴趣小组的活动课题是“测量物体高度”.小组成员小明与小红分别采用不同的方案测量同一个底面为圆形的古塔高度,以下是他们研究报告的部分记录内容:,(1)写出小红研究报告中“计算古塔高度”的解答过程;(2)数学老师说小红的结果较准确,而小明的结果与古塔的实际高度偏差较大.针对小明的测量方案分析测量发生偏差的原因;(3)利用小明与小红的测量数据,估算该古塔底面圆直径的长度为 12 m.【解答】解:(1)设CH=x ,在Rt △CHF 中,∵∠CFH=∠FCH=45°,∴CH=FH=x ,在Rt △CHE 中,∵tan ∠CEH=, ∴=tan17°=0.30,∴x=25.2,即CH=25.2(m ),∴CD=CH +DH=25.2+1.6=26.8(m ),答:古塔CD 的高度为26.8m ;(2)原因:小明测量的只是测角器所在位置与古塔底部边缘的最短距离,不是测量测角器所在位置与底面圆心的最短距离.(3)如图,在EH 上取一点P 使∠CPH=35°,则PG=30,在Rt △CHP 中,CH=25.2,∴PH===36,∴GH=PH ﹣PG=6,∴该古塔底面圆直径的长度=2×6=12(m ).故答案为:12.26.(8分)某水果店出售一种水果,每只定价20元时,每周可卖出300只.试销发现以下两种情况:情况1:如果每只水果每降价1元,那么每周可多卖出25只;情况2:如果每只水果每涨价1元,那么每周将少卖出10只.(1)根据情况1,如何定价,才能使一周销售收入最多?(2)如果物价局规定该种水果每只价格只能在22元~24元之间(包括22元与24元),你认为应当如何定价才能使一周销售收入最多?并说明理由.【解答】解:(1)根据情况1,设当每只定价为x元时,一周销售收入为y1元,y1=x[300+25(20﹣x)]=﹣25x2+800x=﹣25(x﹣16)2+6400,∴当x=16时,y1有最大值,答:当定价为16元时,一周销售收入最多;(2)当定价为24元时,一周销售收入最多,理由:根据情况2,设当每只定价为x元时,一周销售收入为y2元,y2=x[300﹣10(x﹣20)]=﹣10x2+500x=﹣10(x﹣25)2+6250,∴当22≤x≤24时,y2随x的增大而增大,∴当x=24时,y2取得最大值,即当定价为24元时,一周销售收入最多.27.(10分)在正方形ABCD中,有一直径为CD的半圆,圆心为点O,CD=2,现有两点E、F,分别从点A、点C同时出发,点E沿线段AD以每秒1个单位长度的速度向点D运动,点F沿线段CB以每秒2个单位长度的速度向点B运动,当点F运动到点B时,点E也随之停止运动.设点E离开点A的时间为t(s),回答下列问题:(1)如图①,根据下列条件,分别求出t的值.①EF与半圆相切;②△EOF是等腰三角形.(2)如图②,点P是EF的中点,Q是半圆上一点,请直接写出PQ+OQ的最小值与最大值.【解答】解:(1)①如图,设EF与半圆相切于点G,过点E作EH⊥BC,垂足为点H.如图①,∵四边形ABCD是正方形,∴AB=BC=CD=AD=2,∠A=∠B=∠ADC=∠BCD=90°,∴OD⊥AD,OC⊥BC,∴AD与半圆相切于点D,BC与半圆相切于点C,∴ED=EG=2﹣t,CF=FG=2t,∴EF=2+t,∵EH⊥BC,垂足为点H,∴∠BHE=90°,∵∠A=∠B=90°,∴四边形ABHE是矩形,∴EH=AB=2,BH=AE=t,∴HF=2﹣3t,在△EHF中,∠EHF=90°,∴EH2+HF2=EF2,∴22+(2﹣3t)2=(2+t)2,解这个方程,得t1=1﹣<1,t2=1+>1(不合题意,舍去),∴当EF与半圆相切时,t的值为1﹣.②在△EDO中,∵∠EDO=90°,∴OE2=t2﹣4t+5,同理可证:OF2=1+4t2,EF2=9t2﹣12t+8,第一种情况:当OE=OF时,则OE2=OF2,∴t2﹣4t+5=1+4t2,解这个方程,得t1=<1,t2=﹣2<0(不合题意,舍去),第二种情况:当OE=EF时,则OE2=EF2,∴t2﹣4t+5=9t2﹣12t+8,此方程无解,第三种情况:当OF=EF时,则OF2=EF2,∴1+4t2=9t2﹣12t+8,解这个方程,得t1=1,t2=1.4>1(不合题意,舍去),综上所述:当△EOF是等腰三角形时,t的值为或1.(2)如图①当点P在半圆上时,PQ的最小值为0,此时PQ+OQ的最小值为1.②当点F运动到B时,点P与点O之间的结论最大,当Q与D重合时,PQ+OQ的值最大,最大值=+1=1+.∴PQ+OQ的最小值为1,最大值为1+.。