2015年河北省中考数学试题与答案(清晰扫描版)

合集下载

河北中考数学真题测试卷有答案

河北中考数学真题测试卷有答案

2015年河北省中考数学试卷一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分每小题的四个选项中只有一个是正确的)1.计算:3﹣2×(﹣1)=()A .5 B.1 C.﹣1 D.62.下列说法正确的是()A. 1的相反数是﹣1 B. 1的倒数是﹣1C. 1的立方根是±1 D.﹣1是无理数3.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A. B. C. D.4.下列运算正确的是()5.A.()﹣1=﹣ B.6×107=6000000 C.(2a)2=2a2 D.a3•a2=a55.如图所示的三视图所对应的几何体是()A. B. C. D.6.如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O 的是()A .△ABE B.△ACF C.△ABD D.△ADE7.在数轴上标注了四段范围,如图,则表示的点落在()A .段①B.段②C.段③D.段④8.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A .120°B.130°C.140°D.150°9.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A. B.C. D.10.一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()A. B. C. D.11.利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×2 12.若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A .a<1 B.a>1 C.a≤1D.a≥113.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是()A .B.C.D.14.如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A .1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣415.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB 的大小.其中会随点P的移动而变化的是()A .②③B.②⑤C.①③④D.④⑤16.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以二.填空题(4个小题,每小题3分,共12分)17.若|a|=20150,则a=.18.若a=2b≠0,则的值为.19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.20.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=.三.解答题(共6个小题,共66分)21.老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.22.嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为.23.水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?24.某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表第一次第二次第三次A产品单价(元/件) 6 5.2 6.5B产品单价(元/件) 3.5 4 3并求得了A产品三次单价的平均数和方差:2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]==5.9,s(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了%(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.25.如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.26.平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.探究:当半圆K与矩形ABCD的边相切时,求sinα的值.参考答案一、选择题1.A.解析:先计算乘法运算,再计算加法运算即可得到结果.3-2×(-1)=3-(-2)=3+2=5,故选A.点评:本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序2.A解析:1的相反数是-1,故A正确;1的倒数还是1,故B错误;1的立方根是1,故C错误;-1是有理数,故D错误;综上所述,应选A.点评:本题考查了相反数、倒数、立方根、无理数等概念,解题的关键是熟练掌握这些概念.3.C解析:严格按照图中的顺序向右上翻折,向左上角翻折,左上角打孔,展开得到图形C.故选C.点评:本题考查了图形变换,解题的关键是通过图形操作或通过轴对称的性质解题.4.D解析:根据运算法则分别计算,然后进行判断.解:由于121-⎪⎭⎫⎝⎛=(2-1)-1=2(-1)×(-1)=2 A错误6×107=6×10000000=60000000 B错误(2a)2=22×a2=4 a2C错误a3·a2=a3+2=a5D正确故选D.点评:本题考查了负整指数幂、科学记数法、积的乘方以及同底数幂的乘法等内容,解题的关键是熟练掌握运算法则.5.B解析:经分析发现,只有B几何体的主视图和已知三视图中的主视图一致,接下来再比较左视图与俯视图,不难发现视图左视图、俯视图也相同,故选B.点评:本题考查了简单几何体的三视图,解题的关键是准确掌握三视图的概念.6.B解析:根据三点确定一个圆,诸一对各个三角形进行分析,看其能否确定⊙O .因为A 、B 、E 三点在⊙O 上,所以O 是△ABE 的外接圆圆心;由于F 不在⊙O 上,所以O 不是△ACF 的外接圆的圆心;因为A 、B 、D 三点在⊙O 上,所以O 是△ABD 的外接圆圆心;因为A 、D 、E 三点在⊙O 上,所以O 是△ADE 的外接圆圆心.故选B .点评:本题考查了三角形的外接圆与外心;圆的认识;确定圆的条件.解题的关键是看那三个点可以确定⊙O .7.C 解析:因为8=22≈2.828,所以8对应的点落在2.8~2.9之间,故选C . 点评:本题考查了实数与数轴间的对应关系以及无理数大小的估算,解题的关键是对8的值进行估算.8.C解析:过点C 作CM ∥AB ,因为AB ∥EF ,所以CM ∥EF ,因为∠BAC =50°,CD ⊥EF ,所以∠MCA =∠BAC =50°,∠MCD =∠FDC =90°,所以∠ACD =∠MCA +∠MCD =50°+90°=140°.故选C .点评:本题考查了平行线与垂线的性质,解题的关键是能在图形中识别角与角的关系.9.D解析::先画出P 、Q 两点,再分别以P 、Q 为参照点画南偏东30°线和南偏西45°线,交点记为R .如下图:可见,与选项D 一致,故选D .点评:本题考查了方位角以及物体位置的确定,解题的关键是方位角概念及其运用.10.C解析:由于y 与x 成反比例关系,可设y =x k .由于x =2时,y =20,所以20=2k ,即k =40,所以函数解析式为y =x40,显然(1,40)是该函数图象上的点,故选C . 点评:本题考查了反比例函数的实际应用、确定反比例函数关系式、反比例函数的图象等内容,解题的关键是依据实际问题确定反比例函数关系式并能够迅速画出其图象.11.D解析:①×5+②×2得20x +19y =-38,所以A 错误;①×3+②×(-5)得-19x +30y =-60,所以B 错误;①×5+②×3得25x +16y =-32,所以C 错误;①×(-5)+②×2得31y =62,消去了x ,所以D 正确.故选D .点评:本题考查了解二元一次方程组的方法,解题的关键是掌握加减法消元的方法以及整式的相关运算.12.B解析:一元二次方程不存在实数根,所以b 2-4ac <0,即22-4×1×a <0,解得a >1,故选B .点评:本题考查了根据一元二次方程的判别式,求字母的取值范围,解题的关键是掌握一元二次方程根的判别式的情况.13.B解析:求这类简单事件的概率的主要步骤是:先找出所有等可能的结果总数,再找出向上一面的点数与点数3相差2的结果数,然后求概率.总共有6种情况(1,2,3,4,5,6);与点数3相差2的情况有两种(1,5),所以是P =62=31.故选B . 点评:本题考查等可能条件下的概率的计算,掌握概率的意义,列举出所有等可能的结果数是解题的关键所在.14.D解析:方法一:把y =a 代入y =-32x -3,解得x =-239a +,∴直线l :y =-32x -3与直线y =a (a 为常数)的交点坐标为(-239a +,a ),由于该点在第四象限,∴-239a +>0且a <0,解得a <-3,即a 可能在-10<a <-4内,故选D .方法二:由于直线l :y =-32x -3与y 轴的交点坐标为(0,-3),所以要使y =a 与l 的交点在第四象限,直线y =a 应位于点(0,-3)下方,即a 的取值应小于-3,因此a 可能在-10<a <-4内,故选D .点评:本题考查了一次函数与一元一次不等式,解题的关键是会用图象法求不等式的解集.15.B .解析:首先确定图形变化过程中的不变量,然后利用排除法解决问题.在点P 移动过程中,M 、N 永远是PA 、PB 的中点,即MN 恒为△PAB 的中位线,所以MN 平行且等于AB 的一半,所以MN 的长不变,且△PMN ∽△PAB ,由相似三角形的性质可知直线MN ,AB 之间的距离也不改变.由于l ∥AB ,所以变化过程中三角形的面积不变,因此P 运动过程中值不变的①③④,所以运动过程中,随P 移动而变化的有②⑤,故选B . 点评:本题考查了三角形中位线定理,三角形的面积与等积变换,三角形相似的性质与判定等内容,解题的关键是确定图形变化过程的不变量.16.A解析:按要求剪切,动手操作进行拼接.对剪开后的纸片进行旋转平移操作,可得下面的图形:可见,甲、乙都可以拼成和原来面积相等的正方形,故选A .点评:本题考查了图形的剪切与拼图变换,解题的关键是图形平移旋转性质的综合运用.二、填空题17.±1解析:先计算20150=1,再根据|a|=1,确定a 的值.因为20150=1,所以|a|=1,因此a =±1,故答案为±1.点评:本题考查了零指数幂及绝对值,解题的关键是掌握任何非零数的零次幂等于1,互为相反数的两个数的绝对值相等.18.23 解析:分子、分母分别分解因式,然后约分化简,最后将a =2b 代入求值. aba b a --222=)())((b a a b a b a --+=a b a +=b b b 22+=23,故答案为23. 点评:本题考查了因式分解,分式的化简求值,解题的关键是对分子、分母分解因式,约分化简.19.24解析:依题意∠3=90°-60°=30°,∠2=5180)25(︒⨯--90°=18°,∠1=6180)26(︒⨯--5180)25(︒⨯-=12°,所以∠3+∠1-∠2=30°+12°-18°=24°,故答案为24. 点评:本题考查了正多边形内角性质与角的计算,解题的关键是根据多边形的内角计算出相关角的大小.20.9解析:由于∠BOC =9°,且OA =1.根据画法可知∠A 1AA 2=∠AA 2 A 1=18°,∠A 3A 1A 2=∠A 1 A 3A 2=∠BOC +∠AA 2 A 1=27°,……,可见△A k OA k+1的外角∠A k A k-1A k+1满足如下规律:k =1时,外角为18°,k =2时,外角为27°,……,即∠A k A k-1A k+1=9°+k×9°,因此当k =9时,外角为90°,此时A 8A 9⊥OC ,即A 8A 9是点A 8到OC 的距离,在此以后所画弧不会与∠BOC 的边有交点,因此满足条件的线段能画9条,故答案为9.点评:本题考查了等腰三角形的性质,三角形内、外角的关系,点到直线的距离等内容,解题的关键是根据等腰三角形的性质以及三角形内、外角关系寻求角的变化规律.三、解答题21.解析:根据被减式、减式、差的关系求被减式,然后化简并代入求值.解:(1)设所捂的二次三项式为 A ,则A =x 2-5x +1+3x =x 2-2x +1(2)若x =6+1,则A =(x -1)2=(6+1-1)2=6点评:本题考查了二次三项式的概念,整式的加减以及正式的化简求值,解题的关键是根据被减式、减式、差的关系求被减式.22.解析:(1)根据题意和作图补全条件和结论;(2)利用“SSS”证明三角形全等,根据三角形全等的性质得到对应角相等,从而判断对边是否平行,进而判断四边形为平行四边形;(3)分清命题的条件和结论写出命题的逆命题.解:(1)CD ; 平行(2)证明:如图所示,连接BD ,.在△ABD 和△CDB 中,∵AB =CD ,AD =CB ,BD =DB∴△ABD ≌△CDB∴∠1=∠2,∠3=∠4∴AB ∥CD ,AD ∥CB∴四边形ABCD 是平行四边形.(3)平行四边形的对边相等.点评:本题考查了三角形全等的判定与性质、平行四边形的判定,命题与逆命题,解题的关键是证明△ABD ≌△CDB ,并按题目要求方法判断四边形ABCD 是平行四边形.23.解析:根据题中数量关系“水面高度=放入球后水面上升的高度+原有水面高度”列出一次函数表达式,根据水面高度不超过260毫米列出不等式确定放入小球的数量. 解:(1)y =4x 大+210;(2)①当x 大=6时,y =4×6+210=234,∴y =x 小+234.②依题意,得 3x 小+234≤260, 解得 x 小≤832 ∵x 小为自然数,∴x 小最大为8,即最多能放入8个小球.点评:本题考查了一次函数的实际应用以及一元一次不等式的应用,解题的关键是依据实际问题中的数量关系列出一次函数的表达式与不等式.24.解析:(1)根据题目提供数据补充折线统计图即可;(2)分别计算平均数和方差即可;(3)首先确定这四次单价的中位数,然后确定第四次调价的范围,根据“A 产品这四次调价的中位数是B 产品四次单价中位数的2倍少1”列式求m 即可.解:(1)如图所示; 25(2)B x =31(3.5+4+3)=3.5 2B S =3)5.33()5.34()5.35.3(222-+-+-=61 ∵61<15043,∴B 产品的单价波动小.(3)第四次调价后,对于A 产品,这四次单价的中位数为25.66+=425; 对于B 产品,∵m >0,∴第四次单价大于3. 又∵245.3+×2-1=213>425, ∴第四次单价小于4. ∴25.3%)1(3++m ×2-1=425, ∴m =25. 点评:本题考查了统计表、折线统计图、平均数、方差及其应用、中位数等内容,解题的关键是根据统计数据分析的相关公式计算平均数、方差、以及中位数.25.解析:将相应的点的坐标代入y =-(x -h)2+1中确定系数h 的值,然后确定函数解析式,进而指出对称轴,顶点坐标以及函数的增减性等内容.解:(1)把x =2,y =1代入y =-(x -h)2+1,得 h =2,∴解析式为y =-(x -2)2+1(或y =-x 2+4x -3),对称轴为x =2,顶点B (2,1).(2)C 点的横坐标为0,则y C =-h 2+1,∴当h =0时,y C 有最大值为1.此时,l 为y =-x 2+1,对称轴为y 轴,当x≥0时,y 随着x 的增大而减小,∴x 1>x 2≥0时,y 1<y 2.(3)把OA 分1∶4两部分的点为(-1,0)或(-4,0),把x =-1,y =0代入y =-(x -h)2+1,得h =0或h =-2.但h =-2时,OA 被分为三部分,不合题意,舍去.同样,把x =-4,y =0代入y =-(x -h)2+1,得h =-5或h =-3(舍去).∴h 的值为0或-5.点评:本题考查了待定系数法求二次函数的解析式,二次函数的对称轴与顶点坐标,二次函数的增减性及其应用,二次函数与几何综合等内容,解题的关键是根据函数图象经过的点利用待定系数法确定函数表达式,并根据题目要求对待定系数进行取舍.26.解析:(1)通过计算可以断定P 在直线AB 上,若OQ 经过B 点,根据角之间的关系,可得旋转角α=∠DOQ -∠AOB ;(2)利用三角形三边关系以及线段间的关系,可以判断PA 何时最小及求最小值;(3)对阴影进行分割,将其分成扇形和三角形两部分,然后求两部分面积之和,可得阴影部分面积.在此基础上利用三角形相似,解决用含x 的代数式表示BN 长的问题.最后利用切线的性质解决求角的正弦值问题.解:发现(1)在(提示:根据OA÷cos60°=2,可以说明P 在过A 点且与OA 垂直的直线上,即P 在直线AB 上)当OQ 过点B 时,在Rt △OAB 中,AO =AB ,得∠DOQ =∠ABO =45°,∴α=60°-45°=15°.(2)如图①,连接AP ,有OA +AP≥OP ,当OP 过点A ,即α=60°时等号成立. ∴AP≥OP -OA =2-1=1.∴当α=60°时,P ,A 间的距离最小.PA 的最小值为1.(3)如图①,设半圆K 与PC 的交点为R ,连接RK ,过点P 作PH ⊥AD 于点H ,过点R 作RE ⊥KQ 于点E .在Rt △OPH 中,PH =AB =1,OP =2,∴∠POH =30°,∴α=60°-30°=30°.由AD ∥BC 知,∠RPQ =∠POH =30°.∴∠RKQ =2×30°=60°.∴S 扇形RKQ =36021602⎪⎭⎫ ⎝⎛π=24π. 在Rt △RKE 中,RE =RK·sin60°=43,∴S △RKP =21PK·RE =163. ∴S 阴影=24π+163 拓展 如图③,∠OAN =∠MBN =90°,∠ANO =∠BNM ,∴△AON ∽△BMN , ∴BN AN =BMAO ,即BN BN -1=x 1,∴BN =1+x x 如图②,当点Q 落在BC 上时,x 取得最大值,作QF ⊥AD 于点F . BQ =AF =22QF OQ --OA =2213--1=22-1.∴x 的范围是0<x≤22-1探究 半圆与矩形相切,分三种情况:①如图③,半圆K 与BC 切于点T ,设直线KT 与AD 和OQ 的初始位置所在直线分别交于点S ,O′,则∠KSO =∠KTB =90°,作KG ⊥OO′于点G .Rt △OSK 中,OS =22SK OK -=222325⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=2. 图③图①图②Rt △OSO′中,SO′=OS·tan60°=23,KO′=23-23 Rt △KGO′中,∠O′=30°,∴KG =21KO′=3-43 ∴Rt △OGK 中,sinα=OK KG =25433-=10334-. ②半圆K 与AD 切于点T ,如图④,同理可得:sinα=OKKG =2521K O '=25)(21KT T O -' =5213212522-⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=10126-. ③当半圆K 与CD 相切时,点Q 与点D 重合,且为切点. ∴α=60°. ∴sinα=sin60°=23. 综上所述,sinα的值为10334-或10126-或23. 点评:本题考查了图形变换(旋转),三角形三边关系、线段间的关系,扇形和三角形的面积计算,三角形相似和几何与函数结合,切线的性质与解直角三角形等内容,解题的关键是通过前三问寻求求解的一般规律,然后将图形与函数结合,并把它应用到探究过程中,同时是发挥动态想象,清楚每一种情况的图形.图④。

河北省中考数学试题及解析

河北省中考数学试题及解析

2015 年河北省中考数学试卷一.选择题( 1-10 小题每题 3 分, 11-16 小题每题 3 分,共 42 分每题的四个选项中只有一个是正确的)1.( 3 分)(2015?河北)计算:3﹣2×(﹣ 1) =()A. 5B.1C.﹣1D. 62.( 3 分)(2015?河北)以下说法正确的选项是()A. 1 的相反数是﹣ 1B. 1 的倒数是﹣ 1C. 1 的立方根是±1D.﹣ 1 是无理数3.( 3 分)(2015?河北)一张菱形纸片按如图1、图 2 挨次对折后,再按如图 3 打出一个圆形小孔,则睁开摊平后的图案是()A.B.C.D.4.( 3 分)(2015?河北)以下运算正确的选项是()A.()﹣1=﹣B.6×10 7=6000000C.(2a)2=2a2D.325a?a =a5.( 3 分)(2015?河北)以下图的三视图所对应的几何体是()A.B.C.D.6.( 3 分)(2015?河北)如图,AC,BE是⊙O 的直径,弦AD与 BE交于点 F,以下三角形中,外心不是点O的是()A.△ABE B.△ ACF C.△ ABD D.△ADE7.( 3分)(2015?河北)在数轴上标明了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④8.( 3分)(2015?河北)如图, AB∥EF,CD⊥EF,∠ BAC=50°,则∠ ACD=()A. 120°B.130°C. 140°D. 150°9.( 3分)(2015?河北)已知:岛P 位于岛 Q的正西方,由岛P, Q分别测得船 R 位于南偏东 30°和南偏西 45°方向上,切合条件的表示图是()A.B.C.D.10.( 3 分)(2015?河北)一台印刷机每年可印刷的书籍数目y(万册)与它的使用时间x(年)成反比率关系,当x=2 时, y=20.则 y 与 x 的函数图象大概是()A.B.C.D.11.( 2 分)(2015?河北)利用加减消元法解方程组,以下做法正确的选项是()A.要消去 y,能够将①× 5+②×2B.要消去 x,能够将①× 3+②×(﹣5)C.要消去 y,能够将①× 5+②×3D.要消去 x,能够将①×(﹣ 5)+②× 212.( 2 分)(2015?河北)若对于 x 的方程 x2+2x+a=0 不存在实数根,则 a 的取值范围是()A. a<1B.a> 1C. a≤1D. a≥113.( 2 分)(2015?河北)将一质地均匀的正方体骰子掷一次,察看向上一面的点数,与点数 3 相差 2 的概率是()A.B.C.D.14.( 2 分)(2015?河北)如图,直线l :y=﹣x﹣ 3 与直线 y=a( a 为常数)的交点在第四象限,则 a 可能在()A. 1<a< 2B.﹣ 2< a<0C.﹣ 3≤a≤﹣ 2D.﹣10< a<﹣ 415.( 2 分)(2015?河北)如图,点A,B 为定点,定直线 l ∥AB, P 是 l 上一动点,点M, N 分别为 PA, PB 的中点,对以下各值:①线段 MN的长;②△ PAB 的周长;③△ PMN 的面积;④直线 MN, AB之间的距离;⑤∠ APB 的大小.此中会随点 P 的挪动而变化的是()A.②③B.② ⑤C.①③④D.④⑤16.(2 分)(2015?河北)如图是甲、乙两张不一样的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与本来面积相等的正方形,则()A.甲、乙都能够C.甲不可以够、乙能够B.甲、乙都不可以够D.甲能够、乙不可以够二. 填空题( 4 个小题,每题 3 分,共 12 分)17.( 3分)(2015?河北)若 |a|=20150,则 a=.18.( 3分)(2015?河北)若 a=2b≠0,则的值为.19.( 3 分)(2015?河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重归并叠在一同,如图,则∠3+∠1﹣∠ 2=.20.( 3 分)(2015?河北)如,∠ BOC=9°,点 A 在 OB上,且 OA=1,按以下要求画:以 A 心, 1 半径向右画弧交OC于点 A1,得第 1 条段 AA1;再以 A1心, 1 半径向右画弧交OB于点 A2,得第 2 条段 A1A2;再以 A2心, 1 半径向右画弧交OC于点 A3,得第 3 条段 A2A3;⋯画下去,直到得第n 条段,以后就不可以再画出切合要求的段了,n=.三. 解答(共 6 个小,共66 分)21.( 10 分)(2015?河北)老在黑板上写了一个正确的演算程随后用手掌捂住了如所示的一个二次三式,形式如:(1)求所捂的二次三式;(2)若 x=+1,求所捂二次三式的.22.( 10 分)(2015?河北)嘉淇同学要明命“两分相等的四形是平行四形”是正确的,她先用尺作出了如 1 的四形ABCD,并写出了以下不完好的已知和求.已知:如1,在四形ABCD中, BC=AD, AB=求:四形ABCD是四形.(1)在方框中填空,以全已知和求;(2)按嘉淇的想法写出明;(3)用文字表达所命的抗命.23.(10 分)(2015?河北)水平搁置的容器内原有210 毫米高的水,如,将若干个球逐个放入容器中,每放入一个大球水面就上涨 4 毫米,每放入一个小球水面就上涨 3 毫米,假定放入容器中的全部球完好淹没水中且水不溢出.水面高y 毫米.(1)只放入大球,且个数x 大,求 y 与 x 大的函数关系式(不用写出x 大的范);(2)放入 6 个大球后,开始放入小球,且小球个数x 小①求 y 与 x 小的函数关系式(不用写出x 小范);②限制水面高不超260 毫米,最多能放入几个小球24.( 11 分)(2015?河北)某厂生A,B 两种品,其价随市化而做相整.人依据前三次价化的状况,制了如表表及不完好的折.A, B 品价化表第一次第二次第三次A 品价(元/ 件)6B 品价(元/ 件)43并求得了 A 品三次价的均匀数和方差:=, s A2=[ ( 6)2 +()2+()2]=(1)全如中 B 品价化的折.B 品第三次的价比前一次的价降低了%(2)求 B品三次价的方差,并比哪一种品的价波小;(3)该厂决定第四次调价, A 产品的单价仍为元 / 件, B 产品的单价比 3 元/ 件上浮 m%( m>0),使得 A 产品这四次单价的中位数是 B 产品四次单价中位数的 2 倍少 1,求 m的值.25.( 11 分)(2015?河北)如图,已知点O( 0, 0), A(﹣ 5, 0),B( 2,1),抛物线l : y= 2(1) l 经过点 B,求它的分析式,并写出此时l 的对称轴及极点坐标;(2)设点 C 的纵坐标为 y c,求 y c的最大值,此时 l 上有两点( x1,y1),( x2,y2),此中 x1>x2≥0,比较 y1与 y2的大小;(3)当线段OA被 l 只分为两部分,且这两部分的比是1: 4 时,求 h 的值.26.(14 分)(2015?河北)平面上,矩形 ABCD与直径为 QP的半圆 K 如图 1 摆放,分别延伸DA和QP交于点 O,且∠ DOQ=60°, OQ=0D=3, OP=2, OA=AB=1.让线段 OD及矩形 ABCD地点固定,将线段 OQ连带着半圆 K 一同绕着点 O按逆时针方向开始旋转,设旋转角为α(0°≤α≤ 60°).发现:直线 AB上.(填“在”或“不在”)求(1)当α=0°,即初始地点时,点P当α是多少时, OQ经过点 B.(2)在 OQ旋转过程中,简要说明α是多少时,点 P, A 间的距离最小并指出这个最小值;(3)如图 2,当点 P 恰巧落在 BC边上时,求 a 及 S 暗影拓展:如图 3,当线段 OQ与 CB边交于点 M,与 BA边交于点 N 时,设 BM=x( x> 0),用含 x 的代数式表示 BN的长,并求 x 的取值范围.研究:当半圆K 与矩形 ABCD的边相切时,求sin α的值.2015 年河北省中考数学试卷参照答案与试题分析一.选择题( 1-10 小题每题 3 分, 11-16 小题每题 3 分,共 42 分每题的四个选项中只有一个是正确的)1.( 3 分)(2015?河北)计算:3﹣2×(﹣1) =()A. 5B.1C.﹣1D. 6考点:有理数的混淆运算.剖析:先算乘法,再算减法,由此次序计算即可.解答:解:原式 =3﹣(﹣ 2)=3+2=5.应选: A.评论:本题考察有理数的混淆运算,掌握运算次序与符号的判断是解决问题的重点.2.( 3 分)(2015?河北)以下说法正确的选项是()A. 1的相反数是﹣ 1B. 1 的倒数是﹣ 1C. 1的立方根是±1D.﹣ 1 是无理数考点:立方根;相反数;倒数;无理数.剖析:依据相反数、倒数、立方根,即可解答.解答:解: A、1 的相反数是﹣1,正确;B、 1 的倒数是1,故错误;C、 1 的立方根是1,故错误;D、﹣ 1 是有理数,故错误;应选: A.评论:本题考察了相反数、倒数、立方根,解决本题的重点是熟记相反数、倒数、立方根的定义.3.( 3 分)(2015?河北)一张菱形纸片按如图1、图 2 挨次对折后,再按如图 3 打出一个圆形小孔,则睁开摊平后的图案是()A.B.C.D.考点:剪纸问题.剖析:对于此类问题,学生只需亲身着手操作,答案就会很直观地体现.解答:解:严格依据图中的次序向右翻折,向右上角翻折,打出一个圆形小孔,睁开获得结论.应选 C.评论:本题主要考察了剪纸问题;学生的着手能力及空间想象能力是特别重要的,做题时,要注意培育.4.( 3 分)(2015?河北)以下运算正确的选项是()A.()﹣1=﹣B. 6×10 7=6000000C.(2a)2=2a232=a5D. a?a考点:幂的乘方与积的乘方;科学记数法—原数;同底数幂的乘法;负整数指数幂.剖析:A:依据负整数指数幂的运算方法判断即可.B:科学记数法a×10n表示的数“复原”成往常表示的数,就是把 a 的小数点向右移动 n 位所获得的数,据此判断即可.C:依据积的乘方的运算方法判断即可.D:依据同底数幂的乘法法例判断即可.解答:解:∵ =2,∴选项 A 不正确;∵6×10 7=,∴选项 B 不正确;∵( 2a)2=4a2,∴选项 C 不正确;325∵a?a =a ,∴选项 D 正确.应选: D.评论:( 1)本题主要考察了幂的乘方和积的乘方,要娴熟掌握,解答本题的重点是要明确:m n mn n n n①( a ) =a ( m,n 是正整数);②( ab) =a b ( n 是正整数).( 2)本题还考察了负整数指数幂的运算,要娴熟掌握,解答本题的重点是要明确:﹣ p①a =(a≠0, p 为正整数);②计算负整数指数幂时,必定要依据负整数指数幂的意义计算;③当底数是分数时,只需把分子、分母颠倒,负指数便可变成正指数.(3)本题还考察了同底数幂的乘法法例:同底数幂相乘,底数不变,指数相加,要娴熟掌握,解答本题的重点是要明确:①底数一定同样;②依据运算性质,只有相乘时才是底数不变,指数相加.(4)本题还考察了科学计数法﹣原数,要娴熟掌握,解答本题的重点是要明确:科学记数法 a×10 n表示的数“复原”成往常表示的数,就是把 a 的小数点向右挪动n 位所获得的数.若科学记数法表示较小的数a×10﹣n,复原为本来的数,需要把 a 的小数点向左挪动n 位获得原数.5.( 3 分)(2015?河北)以下图的三视图所对应的几何体是()A.B.C.D.考点:由三视图判断几何体.剖析:对所给四个几何体,分别从主视图和俯视图进行判断.解答:解:从主视图可判断 A 错误;从俯视图可判断C、 D 错误.应选 B.评论:本题考察了由三视图判断几何体:由三视图想象几何体的形状,第一应分别依据主视图、俯视图和左视图想象几何体的前面、上边和左边面的形状,而后综合起来考虑整体形状.6.( 3 分)(2015?河北)如图,AC,BE是⊙O 的直径,弦AD与 BE交于点 F,以下三角形中,外心不是点O的是()A.△ABE B.△ ACF C.△ ABD D.△ADE考点:三角形的外接圆与外心.剖析:利用外心的定义,外心:三角形外接圆的圆心是三角形三条边垂直均分线的交点,叫做三角形的外心,从而判断得出即可.解答:解:以下图:只有△ ACF 的三个极点不都在圆上,故外心不是点O的是△ ACF.应选: B.评论:本题主要考察了三角形外心的定义,正确掌握外心的定义是解题重点.7.( 3 分)(2015?河北)在数轴上标明了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④考点:估量无理数的大小;实数与数轴.剖析:依据数的平方,即可解答.2解答:解: =,=, =, =, 3 =9,∴,∴的点落在段③,应选: C.评论:本题考察了估量无理数的大小,解决本题的重点是计算出各数的平方.8.( 3 分)(2015?河北)如图,AB∥EF,CD⊥EF,∠ BAC=50°,则∠ ACD=()A. 120°B.130°C. 140°D. 150°考点:平行线的性质;垂线.剖析:如图,作协助线;第一运用平行线的性质求出∠DGC的度数,借助三角形外角的性质求出∠ ACD即可解决问题.解答:解:如图,延伸AC交 EF于点 G;∵AB∥EF,∴∠ DGC=∠BAC=50°;∵CD⊥EF,∴∠ CDG=90°,∴∠ ACD=90°+50°=140°,应选 C.评论:该题主要考察了垂线的定义、平行线的性质、三角形的外角性质等几何知识点及其应用问题;解题的方法是作协助线,将分别的条件集中;解题的重点是灵巧运用平行线的性质、三角形的外角性质等几何知识点来剖析、判断、解答.9.( 3 分)(2015?河北)已知:岛P 位于岛 Q的正西方,由岛东 30°和南偏西45°方向上,切合条件的表示图是()A.B.C.P, Q分别测得船D.R 位于南偏考点:方向角.剖析:依据方向角的定义,即可解答.解答:解:依据岛P, Q分别测得船R 位于南偏东30°和南偏西45°方向上,故 D 切合.应选: D.评论:本题考察了方向角,解决本题的重点是熟记方向角的定义.10.( 3 分)(2015?河北)一台印刷机每年可印刷的书籍数目y(万册)与它的使用时间成反比率关系,当x=2 时, y=20.则 y 与 x 的函数图象大概是()A.B.C.D.x(年)考点:反比率函数的应用;反比率函数的图象.剖析:设 y=(k≠0),依据当x=2 时, y=20,求出 k,即可得出y 与 x 的函数图象.解答:解:设 y=(k≠0),∵当 x=2 时, y=20,∴k=40,∴y=,则 y 与 x 的函数图象大概是应选: C.C,评论:本题考察了反比率函数的应用,重点是依据题意设出分析式,依据函数的分析式得出函数的图象.11.( 2 分)(2015?河北)利用加减消元法解方程组,以下做法正确的选项是()A.要消去 y,能够将①× 5+②×2B.要消去 x,能够将①× 3+②×(﹣5)C.要消去 y,能够将①× 5+②×3D.要消去 x,能够将①×(﹣5)+②×2考点:解二元一次方程组.专题:计算题.剖析:方程组利用加减消元法求出解即可.解答:解:利用加减消元法解方程组,要消去x,能够将①×(﹣5)+②× 2.应选 D评论:本题考察认识二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.( 2 分)(2015?河北)若对于 x 的方程A. a<1B.a> 1x2+2x+a=0 不存在实数根,则C. a≤1a 的取值范围是(D. a≥1)考点:根的鉴别式.2剖析:依据根的鉴别式得出 b ﹣ 4ac <0,代入求出不等式的解集即可获得答案.2解答:解:∵对于x 的方程 x +2x+a=0 不存在实数根,22∴b﹣ 4ac=2 ﹣4×1×a< 0,解得: a> 1.应选 B.评论:本题主要考察了一元二次方程根的状况与鉴别式,重点是掌握一元二次方程根的状况与鉴别式△的关系:(1)△> 0? 方程有两个不相等的实数根;(2)△ =0 ? 方程有两个相等的实数根;(3)△< 0? 方程没有实数根.13.( 2 分)(2015?河北)将一质地均匀的正方体骰子掷一次,察看向上一面的点数,与点数 3相差 2的概率是()A.B.C.D.考点:概率公式.剖析:由一枚质地均匀的正方体骰子的六个面上分别刻有 1 到 6 的点数,掷一次这枚骰子,向上的一面的点数为与点数 3 相差 2 的有 2 种状况,直接利用概率公式求解即可求得答案.解答:解:∵一枚质地均匀的正方体骰子的六个面上分别刻有 1 到 6 的点数,掷一次这枚骰子,向上的一面的点数为点数 3 相差 2 的有 2种状况,∴掷一次这枚骰子,向上的一面的点数为点数 3 相差 2 的概率是: =.应选 B.评论:本题考察了概率公式的应用.注意用到的知识点为:概率=所讨状况数与总状况数之比.14.( 2 分)(2015?河北)如图,直线l :y=﹣x﹣ 3 与直线y=a( a 为常数)的交点在第四象限,则 a 可能在()A. 1<a< 2B.﹣ 2< a<0C.﹣ 3≤a≤﹣ 2D.﹣10< a<﹣ 4考点:两条直线订交或平行问题.专题:计算题.剖析:先求出直线y=﹣x﹣ 3 与 y 轴的交点,则依据题意获得a<﹣ 3 时,直线y=﹣ x﹣ 3 与直线 y=a( a 为常数)的交点在第四象限,而四个选项中,只有﹣10< a<﹣ 4 知足条件,应选D.解答:解:∵直线y=﹣x﹣ 3 与 y 轴的交点为(0,﹣ 3),而直线 y=﹣ x﹣ 3 与直线 y=a( a 为常数)的交点在第四象限,∴a<﹣ 3.应选 D.评论:本题考察了两直线订交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所构成的二元一次方程组的解;若两条直线是平行的关系,那么它们的自变量系数同样,即 k 值同样.15.( 2 分)(2015?河北)如图,点A,B 为定点,定直线l ∥AB, P 是l上一动点,点M, N 分别为 PA, PB 的中点,对以下各值:①线段 MN的长;②△ PAB 的周长;③△ PMN 的面积;④直线 MN, AB之间的距离;⑤∠ APB 的大小.此中会随点P 的挪动而变化的是()A.②③B.② ⑤C.①③④D.④⑤考点:三角形中位线定理;平行线之间的距离.剖析:依据三角形的中位线平行于第三边而且等于第三边的一半可得MN=AB,从而判断出①不变;再依据三角形的周长的定义判断出②是变化的;确立出点P 到 MN的距离不变,而后依据等底等高的三角形的面积相等确立出③不变;依据平行线间的距离相等判断出④不变;依据角的定义判断出⑤变化.解答:解:∵点 A, B 为定点,点M, N 分别为 PA, PB的中点,∴MN是△ PAB的中位线,∴MN=AB,即线段 MN的长度不变,故①错误;PA、 PB的长度随点P 的挪动而变化,因此,△ PAB 的周长会随点P 的挪动而变化,故②正确;∵MN的长度不变,点P 到 MN的距离等于l 与 AB 的距离的一半,∴△ PMN的面积不变,故③错误;直线 MN, AB 之间的距离不随点P 的挪动而变化,故④错误;∠APB的大小点 P 的挪动而变化,故⑤正确.综上所述,会随点P 的挪动而变化的是②⑤.应选 B.评论:本题考察了三角形的中位线平行于第三边而且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的重点.16.(2 分)(2015?河北)如图是甲、乙两张不一样的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与本来面积相等的正方形,则()A.甲、乙都能够B.甲、乙都不可以够C.甲不可以够、乙能够D.甲能够、乙不可以够考点:图形的剪拼.剖析:依据图形可得甲能够拼一个边长为的正方形,图乙能够拼一个边长为的正方形.解答:解:所作图形以下图,甲乙都能够拼一个与本来面积相等的正方形.应选 A.评论:本题考察了图形的简拼,解答本题的重点是依据题意作出图形.二. 填空题( 4 个小题,每题 3 分,共 12 分)17.( 3 分)(2015?河北)若 |a|=20150,则 a= ±1 .考点:绝对值;零指数幂.剖析:先依据 0 次幂,获得 |a|=1 ,再依据互为相反数的绝对值相等,即可解答.∴|a|=1 ,∴a=±1,故答案为:± 1.评论:本题考察了绝对值,解决本题的重点是熟记互为相反数的两个数绝对值相等.18.( 3 分)(2015?河北)若a=2b≠0,则的值为.考点:分式的化简求值.专题:计算题.剖析:把 a=2b 代入原式计算,约分即可获得结果.解答:解:∵ a=2b,∴原式 ==,故答案为:评论:本题考察了分式的化简求值,娴熟掌握运算法例是解本题的重点.19.( 3 分)(2015?河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重归并叠在一同,如图,则∠3+∠1﹣∠ 2=24°.考点:多边形内角与外角.剖析:第一依据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,而后分别求出∠ 3、∠ 1、∠2的度数是多少,从而求出∠ 3+∠1﹣∠2 的度数即可.解答:解:正三角形的每个内角是:180°÷ 3=60°,正方形的每个内角是:360°÷ 4=90°,正五边形的每个内角是:( 5﹣ 2)× 180°÷5=3×180°÷5=540°÷5=108°,正六边形的每个内角是:( 6﹣ 2)× 180°÷6=4×180°÷6=720°÷6=120°,则∠ 3+∠1﹣∠2=(90°﹣ 60°) +(120°﹣ 108°)﹣( 108°﹣ 90°)=30°+12°﹣ 18°=24°.故答案为: 24°.点:此主要考了多形内角和定理,要熟掌握,解答此的关是要明确:( 1) n 形的内角和 =(n 2)?180 (n≥3)且 n 整数).( 2)多形的外角和指每个点取一个外角, n 形取 n 个外角,无数是几,其外角和永360°.20.( 3 分)(2015?河北)如,∠ BOC=9°,点 A 在 OB上,且 OA=1,按以下要求画:以 A 心, 1 半径向右画弧交OC于点 A1,得第 1 条段 AA1;再以 A1心, 1 半径向右画弧交OB于点A2,得第 2条段 A1A2;再以 A2心, 1 半径向右画弧交OC于点A3,得第 3条段 A2A3;⋯画下去,直到得第n 条段,以后就不可以再画出切合要求的段了,n=9 .考点:等腰三角形的性.剖析:依据等腰三角形的性和三角形外角的性挨次可得∠A1AB的度数,∠A 2A1C的度数,∠A3A2B的度数,∠A 4A3 C的度数,⋯,依此获得律,再依据三角形外角小于90°即可求解.解答:解:由意可知:AO=A1A, A1A=A2A1,⋯,∠ AOA1=∠OA1A,∠A1OA2=∠A1A2A,⋯,∵∠ BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°的度数,∠A4A3C=45,⋯,∴9°n<90°,解得 n< 10.故答案: 9.点:考了等腰三角形的性:等腰三角形的两个底角相等;三角形外角的性:三角形的一个外角等于和它不相的两个内角的和.三. 解答(共 6 个小,共66 分)21.( 10 分)(2015?河北)老在黑板上写了一个正确的演算程随后用手掌捂住了如所示的一个二次三式,形式如:(1)求所捂的二次三式;(2)若 x=+1,求所捂二次三式的.考点:整式的混淆运算—化求.:算.剖析:( 1)依据意列出关系式,去括号归并即可获得果;( 2)把 x 的代入算即可求出.解答:解:( 1)所捂的二次三式A,依据意得:25x+1+3x=x2A=x2x+1;(2)当 x=+1 ,原式 =7+2 2 2+1=6.点:此考了整式的混淆运算化求,熟掌握运算法是解本的关.22.( 10 分)(2015?河北)嘉淇同学要明命“两分相等的四形是平行四形”是正确的,她先用尺作出了如 1 的四形ABCD,并写出了以下不完好的已知和求.已知:如1,在四形ABCD中, BC=AD, AB= CD求证:四边形ABCD是平行四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字表达所证命题的抗命题为平行四边形两组对边分别相等.考点:平行四边形的判断;命题与定理.剖析:( 1)命题的题设为“两组对边分别相等的四边形”,结论是“是平行四边形”,根据题设可得已知:在四边形 ABCD中, BC=AD,AB=CD,求证:四边形 ABCD是平行四边形;(2)连结BD,利用 SSS定理证明△ ABD≌△ CDB 可得∠ ADB=∠DBC,∠ ABD=∠CDB,从而可得 AB∥CD,AD∥CB,依据两组对边分别平行的四边形是平行四边形可得四边形(3)把命题“两组对边分别相等的四边形是平行四边形”的题设和结论对调可得平行四边形两组对边分别相等.解答:解:( 1)已知:如图1,在四边形 ABCD中, BC=AD, AB=CD求证:四边形 ABCD是平行四边形.(2)证明:连结 BD,在△ABD和△CDB中,,∴△ ABD≌△ CDB( SSS),∴∠ ADB=∠DBC,∠ ABD=∠CDB,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形;( 2)用文字表达所证命题的抗命题为:平行四边形两组对边分别相等.评论:本题主要考察了平行四边形的判断,重点是掌握两组对边分别平行的四边形是平行四边形.23.(10 分)(2015?河北)水平搁置的容器内原有210 毫米高的水,如图,将若干个球逐个放入该容器中,每放入一个大球水面就上涨 4 毫米,每放入一个小球水面就上涨 3 毫米,假定放入容器中的全部球完好淹没水中且水不溢出.设水面高为y 毫米.(1)只放入大球,且个数为x 大,求 y 与 x 大的函数关系式(不用写出x 大的范围);(2)仅放入 6 个大球后,开始放入小球,且小球个数为x 小①求 y 与 x 小的函数关系式(不用写出x 小范围);②限制水面高不超出260 毫米,最多能放入几个小球考点:一次函数的应用.剖析:( 1)依据每放入一个大球水面就上涨 4 毫米,即可解答;(2)①依据 y=放入大球上边的高度 +放入小球上边的高度,即可解答;②依据题意列出不等式,即可解答.解答:解:( 1)依据题意得:y=4x 大+210;(2)①当 x 大=6 时, y=4×6+210=234,∴y=3x 小 +234;②依题意,得 3x 小 +234≤260,解得:,∵x小为自然数,∴x小最大为 8,即最多能放入8 个小球.评论:本题考察了一次函数的应用,解决本题的重点是依据题意,列出函数关系式、一元一次不等式.24.( 11 分)(2015?河北)某厂生产A,B 两种产品,其单价随市场变化而做相应调整.营销人员依据前三次单价变化的状况,绘制了如表统计表及不完好的折线图.A, B 产品单价变化统计表第一次第二次第三次A 产品单价(元/ 件)6B 产品单价(元/ 件)4并求得了 A 产品三次单价的均匀数和方差:32 2 =, s A =[ ( 6﹣)(1)补全如图中22+(﹣) +(﹣) ]=B 产品单价变化的折线图. B 产品第三次的单价比前一次的单价降低了25 %(2)求 B产品三次单价的方差,并比较哪一种产品的单价颠簸小;(3)该厂决定第四次调价, A 产品的单价仍为元/ 件, B 产品的单价比 3 元/ 件上浮 m%( m>0),使得 A 产品这四次单价的中位数是 B 产品四次单价中位数的 2 倍少 1,求 m的值.考点:方差;统计表;折线统计图;算术均匀数;中位数.剖析:( 1)依据题目供给数据增补折线统计图即可;(2)分别计算均匀数及方差即可;(3)第一确立这四次单价的中位数,而后确立第四次调价的范围,依据“A 产品这四次单价的中位数是 B 产品四次单价中位数的 2 倍少 1”列式求 m即可.解答:解:( 1)如图 2 所示:B 产品第三次的单价比前一次的单价降低了=25%,(2) =( +4+3)=,==,∵B产品的方差小,∴B产品的单价颠簸小;(3)第四次调价后,对于 A 产品,这四次单价的中位数为 =;对于B 产品,∵ m< 0,∴第四次单价大于3,∵﹣ 1>,∴第四次单价小于4,∴× 2﹣ 1=,∴m=25.评论:本题考察了方差、条形统计图、算术均匀数、中位数的知识,解题的重点是依据方差公式进行相关的运算,难度不大.25.( 11 分)(2015?河北)如图,已知点O( 0, 0), A(﹣ 5, 0),B( 2,1),抛物线l : y= 2(1) l 经过点 B,求它的分析式,并写出此时l 的对称轴及极点坐标;(2)设点 C 的纵坐标为 y c,求 y c的最大值,此时 l 上有两点( x1,y1),( x2,y2),此中 x1>x2≥0,比较 y1与 y2的大小;(3)当线段OA被 l 只分为两部分,且这两部分的比是1: 4 时,求 h 的值.考点:二次函数综合题.剖析:( 1)把点 B 的坐标代入函数分析式,列出对于h 的方程,借助于方程能够求得 h 的值;利用抛物线函数分析式获得该图象的对称轴和极点坐标;( 2)把点 C 的坐标代入函数分析式获得:y C=﹣ h2+1,则由二次函数的最值的求法易得 y c的最大值,并能够求得此时抛物线的分析式,依据抛物线的增减性来求y1与 y2的大小;( 3)依据已知条件“ O( 0, 0),A(﹣ 5,0),线段 OA被 l 只分为两部分,且这两部分的比是1:4”能够推知把线段OA被 l 只分为两部分的点的坐标分别是(﹣1, 0),(﹣ 4,0).由二次函数图象上点的坐标特点能够求得h 的值.2解答:解:( 1)把点 B的坐标 B(2, 1)代入 y=﹣( x﹣ h) +1,得1=﹣( 2﹣ h)2+1.解得 h=2.22则该函数分析式为y=﹣( x﹣ 2) +1(或 y=﹣ x +4x﹣ 3).故抛物线l 的对称轴为x=2,极点坐标是(2, 1);2( 2)点 C 的横坐标为0,则 y C=﹣ h +1.当 h=0 时, y C=有最大值1,2因此,当x≥0时, y 随 x 的增大而减小,因此, x1> x2≥0, y1<y2;y 轴,张口方向向下,( 3)∵线段OA被l只分为两部分,且这两部分的比是1: 4,且O( 0, 0),A(﹣ 5,0),∴把线段OA被把 x=﹣1, y=0l 只分为两部分的点的坐标分别是(﹣2代入 y=﹣( x﹣ h) +1,得1, 0),(﹣ 4, 0).20=﹣(﹣ 1﹣ h) +1,解得 h1=0,h2=﹣ 2.可是当 h=﹣ 2 时,线段OA被抛物线l 分为三部分,不合题意,舍去.2h=﹣ 5 或 h=﹣ 3(舍去).综上所述, h 的值是 0 或﹣ 5.评论:本题考察了二次函数综合题.该题波及到了待定系数法求二次函数分析式,二次函数图象上点的坐标特点,二次函数最值的求法以及点的坐标与图形的性质等知识点,综合性比较强,难度较大.解答( 3)题时,注意对 h 的值依据实质意义进行弃取.26.(14 分)(2015?河北)平面上,矩形ABCD与直径为 QP的半圆 K 如图 1 摆放,分别延伸DA和 QP交于点 O,且∠ DOQ=60°, OQ=0D=3, OP=2, OA=AB=1.让线段OD及矩形 ABCD地点固定,将线段OQ连带着半圆K 一同绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤ 60°).发现:(1)当α=0°,即初始地点时,点P在直线AB上.(填“在”或“不在”)求当α 是多少时, OQ经过点 B.(2)在 OQ旋转过程中,简要说明α是多少时,点 P, A 间的距离最小并指出这个最小值;(3)如图 2,当点 P 恰巧落在 BC边上时,求 a 及 S 暗影拓展:如图 3,当线段 OQ与 CB边交于点 M,与 BA边交于点 N 时,设 BM=x( x> 0),用含 x 的代数式表示 BN的长,并求 x 的取值范围.研究:当半圆K 与矩形 ABCD的边相切时,求sin α的值.考点:圆的综合题.剖析:( 1)在,当 OQ过点 B 时,在 R t△OAB中,AO=AB,获得∠ DOQ=∠ABO=45°,求得α=60°﹣45°=15°;(2)如图 2,连结 AP,由 OA+AP≥OP,当 OP过点 A,即α=60°时,等号建立,于是有 AP≥OP﹣ OA=2﹣ 1=1,当α=60°时, P、 A 之间的距离最小,即可求得结果(3)如图 2,设半圆 K 与 PC交点为 R,连结 RK,过点 P 作 PH⊥AD 于点 H,过点 R 作RE⊥KQ于点 E,在 R t△OPH中, PH=AB=1, OP=2,获得∠ POH=30°,求得α=60°﹣30°=30°,因为AD∥BC,获得∠ RPO=∠POH=30°,求出∠ RKQ=2×30°=60°,于是获得结果;拓展:如图 5,由∠ OAN=∠MBN=90°,∠ ANO=∠BNM,获得△ AON∽△ BMN 求出 BN=,如图 4,当点 Q落在 BC上时, x 取最大值,作 QF⊥AD于点 F, BQ=AF=﹣ AO=2﹣ 1,求出x的取值范围是 0<x≤﹣ 1;研究:半圆K 与矩形 ABCD的边相切,分三种状况;①如图 5,半圆 K 与 BC相切于点 T,设直线 KT 与 AD,OQ的初始地点所在的直线分别交于点S,O′,于是获得∠ KSO=∠KTB=90°,作 KG⊥OO′于 G,在 R t△OSK中,求出OS==2,在 R t△OSO′中, SO′=OS?tan60°=2, KO′=2﹣在 R t△KGO′中,∠O′=30°,求得 KG=KO′=﹣,在 R t△OGK中,求得结果;②当半圆理可得 sin α的值③当半圆 K 与 CD切线时,点 Q与点于是结论可求.K 与AD相切于T,如图6,同D 重合,且为切点,获得α=60°解答:解:发现:( 1)在,当 OQ过点 B 时,在 R t△OAB中, AO=AB,∴∠ DOQ=∠ABO=45°,∴α =60°﹣ 45°=15°;(2)如图 2,连结 AP,∵OA+AP≥OP,。

2015河北中考数学试题(附答案及举一反三试题)

2015河北中考数学试题(附答案及举一反三试题)

答案:B
拓展:外心
举一反三:外心
答案:C 过点C做AB的平行线GH ∵内错角 ∴BAC=ACG=50 GCD=CDF=90 ACD=ACG+GCD=140
答案:D
答案:C 首先找反比例函数图像 再根据所给关系找点
答案:D
答案:B 与点3相差2的数有:1、5 则题干转换为:掷骰子掷到1、5的概率为 2/6=1/3
举一反三
1.【2013重庆假期作业】在△ABC中,AB=AC,D是BC的中点,则∠ADB是() A.锐角 B.钝角 C.直角 D.无法确定 答案:C 分析:等腰三角形性质,三线合一
A.10 B.20 C.30 D.40
答案:A 分析:∠C=70 ∠ADE=∠AED=∠EDC+∠C 则∠ADC=∠ADE+∠EDC=2∠EDC+∠C=90 ∴∠EDC=10
一次函数的应用 180km A B
C
20km
160km
答案:40km 分析: 由题分析可知
求得摩托车的函数公式为 Y=40x+20 当x=3时 Y=140 此时距C地为180-140=40km
二 次 函 数
二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题三角形内角为60 五边形内角108 六边形内角120 ∠3=90-60=30 ∠2=108-90=18 ∠1=120-108=12
分式的化简求值
分式的化简求值: (1)代入 (2)利用已知,求 出关系
判定的方式 定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。 判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也 相等(简称:等角对等边)。 在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这 个三角形是等腰三角形,且该角为顶角。 在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个 三角形是等腰三角形,且该角为顶角。 在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角 形是等腰三角形,且该边为底边。 显然,以上三条定理是“三线合一”的逆定理。 有两条角平分线(或中线,或高)相等的三角形是等腰三角形。 有两边相等且有一个角的度数是60度的三角形是等边三角形。

2015年河北中考数学真题卷含答案解析

2015年河北中考数学真题卷含答案解析

2015年河北省初中毕业生升学文化课考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共42分)一、选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算:3-2×(-1)=( )A.5B.1C.-1D.62.下列说法正确的是( ) A.1的相反数是-1 B.1的倒数是-1 C.1的立方根是±1D.-1是无理数3.一张菱形纸片按图1、图2依次对折后,再按图3打出一个圆形小孔,则展开铺平后的图案是( )4.下列运算正确的是( ) A.(12)-1=-12B.6×107=6 000 000 C.(2a)2=2a 2D.a 3·a 2=a 55.图中的三视图所对应的几何体是( )点O的是( ) 6.如图,AC,BE是☉O的直径,弦AD与BE交于点F,下列三角形中,外心不是··A.△ABEB.△ACFC.△ABDD.△ADE7.在数轴上标注了四段范围,如图,则表示√8的点落在( )A.段①B.段②C.段③D.段④8.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=( )A.120°B.130°C.140°D.150°9.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上.符合条件的示意图是( )10.一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y 与x 的函数图象大致是( )11.利用加减消元法解方程组{2x +5y =-10,①5x -3y =6,②下列做法正确的是( )A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×2 12.若关于x 的方程x 2+2x+a=0不存在...实数根,则a 的取值范围是( ) A.a<1 B.a>1 C.a ≤1 D.a ≥113.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( ) A.12B.13C.15D.1614.如图,直线l:y=-23x-3与直线y=a(a 为常数)的交点在第四象限,则a 可能在( )A.1<a<2B.-2<a<0C.-3≤a ≤-2D.-10<a<-415.如图,点A,B 为定点,定直线l ∥AB,P 是l 上一动点,点M,N 分别为PA,PB 的中点,对于下列各值:①线段MN 的长;②△PAB 的周长; ③△PMN 的面积;④直线MN,AB 之间的距离; ⑤∠APB 的大小.其中会随点P 的移动而变化的是( ) A.②③B.②⑤C.①③④D.④⑤16.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )A.甲、乙都可以B.甲、乙都不可以C.甲不可以,乙可以D.甲可以,乙不可以第Ⅱ卷(非选择题,共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.若|a|=2 0150,则a= . 18.若a=2b ≠0,则a 2-b 2a 2-ab 的值为 .19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1-∠2= °.20.如图,∠BOC=9°,点A 在OB 上,且OA=1.按下列要求画图: 以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n= .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分10分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下: -3x=x2-5x+1.(1)求所捂的二次三项式;(2)若x=√6+1,求所捂二次三项式的值.22.(本小题满分10分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;证明:(3)用文字叙述所证命题的逆命题为.23.(本小题满分10分)水平放置的容器内原有210毫米高的水,如图.将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小.①求y与x小的函数关系式(不必写出x小的范围);②限定水面高不超过260毫米,最多能放入几个小球?24.(本小题满分11分)某厂生产A,B 两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线图:A,B 产品单价变化统计表第一次 第二次 第三次 A 产品单价(元/件) 6 5.2 6.5 B 产品单价(元/件)3.543并求得了A 产品三次单价的平均数和方差:x A =5.9;s A 2=13[(6-5.9)2+(5.2-5.9)2+(6.5-5.9)2]=43150. (1)补全图中B 产品单价变化的折线图.B 产品第三次的单价比上一次的单价降低了 %;(2)求B 产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调m%(m>0),使得A 产品这四次单价的中位数是B 产品四次单价中位数的2倍少1,求m 的值.25.(本小题满分11分)如图,已知点O(0,0),A(-5,0),B(2,1),抛物线l:y=-(x-h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y C,求y C的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分...,且这两部分的比是1∶4时,求h的值.26.(本小题满分14分)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).图1发现(1)当α=0°,即初始位置时,点P 直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B;(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小,并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求α及S阴影.图2拓展如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.图3探究当半圆K与矩形ABCD的边相切时,求sinα的值.备用图答案全解全析:一、选择题1.A 原式=3-(-2)=3+2=5,故选A.2.A 根据在一个数的前面加上负号就是这个数的相反数,知1的相反数是-1,故选A.3.C 可以动手操作,也可根据对折的顺序及菱形的对称性来判断.选C.4.DA.(12)-1=2,本选项错误; B.6×107=60 000 000,本选项错误; C.(2a)2=4a 2,本选项错误;D.a 3·a 2=a 3+2=a 5,本选项正确,故选D. 5.B 根据主视图排除选项A,C,D,故选B.6.B 外心即为三角形外接圆的圆心,∵△ACF 的顶点F 不在圆O 上,∴圆O 不是△ACF 的外接圆,∴点O 不是△ACF 的外心,故选B.7.C ∵2.82=7.84,2.92=8.41,∴√2.82<√8<√2.92,故选C. 8.C 延长AC 交直线EF 于点G,∵AB ∥EF,∴∠BAC=∠CGD=50°,∵∠ACD 是△CDG 的外角,∴∠ACD=∠CGD+∠CDG=50°+90°=140°,故选C.9.D 本题考查方向角的简单识别,选D.10.C 由题意设y=k x (k>0,x>0),因为当x=2时,y=20,所以k=40,故选C.11.D 解二元一次方程组时,在消去一个未知数之前应先计算方程组的各个方程中这个未知数的系数的最小公倍数,然后进行消元,选项D 正确.12.B 由题意知Δ=4-4a<0,∴a>1,故选B.13.B ∵任意抛掷一枚质地均匀的正方体骰子一次,向上一面的点数有6种情况,与点数3相差2的点数为1或5,∴任意抛掷一枚质地均匀的正方体骰子一次,向上一面的点数与点数3相差2的概率为26=13.故选B.14.D 直线y=-23x-3与y 轴的交点坐标为(0,-3),若直线y=a 与直线y=-23x-3的交点在第四象限,则a<-3,故选D.15.B ∵点M,N 分别为PA,PB 的中点,∴无论点P 怎样移动,总有MN=12AB,直线l 与直线MN 的距离及直线MN,AB 之间的距离不变,所以选项①③④中的值不变.随着点P 的移动,点P 与点A,B 的距离及∠APB 的大小发生变化,故选B.16.A 将甲纸片拼成如图1所示的正方形,其面积与原来矩形的面积相等,将乙纸片拼成如图2所示的正方形,其面积与原来矩形的面积相等,故选A.图1 图2二、填空题17.答案 ±1解析 ∵|a|=2 0150=1,∴a=±1. 18.答案 32解析 ∵a=2b ≠0,∴原式=(a+b)(a -b)a(a -b)=a+b a =2b+b 2b =32. 19.答案 24解析 正三角形、正方形、正五边形、正六边形的每个内角的度数分别为60°、90°、108°、120°,由题图可知∠3=90°-60°=30°,∠1=120°-108°=12°,∠2=108°-90°=18°,所以∠3+∠1-∠2=30°+12°-18°=24°.20.答案 9解析 由题意可知:AO=A 1A,A 1A=A 2A 1,……,则∠AOA 1=∠OA 1A,∠A 1AA 2=∠A 1A 2A,……,∵∠BOC=9°,∴∠A 1AB=2×9°=18°,∠A 2A 1C=27°,∠A 3A 2B=36°,∠A 4A 3C=45°,……, ∴9°(n+1)=90°,解得n=9. 三、解答题21.解析 (1)设所捂的二次三项式为A,则A=x 2-5x+1+3x(2分)=x 2-2x+1.(4分)(2)若x=√6+1,则A=(x-1)2(6分)=(√6+1-1)2(7分)=6.(10分)22.解析 (1)CD.(1分)平行.(2分)(2)证明:连结BD.(3分)在△ABD和△CDB中,∵AB=CD,AD=CB,BD=DB,∴△ABD≌△CDB.(5分)∴∠1=∠2,∠3=∠4,∴AB∥CD,AD∥CB.(7分)∴四边形ABCD是平行四边形.(8分)(3)平行四边形的对边相等.(10分)23.解析(1)y=4x大+210.(3分)(2)①当x大=6时,y=4×6+210=234.∴y=3x小+234;(7分)②依题意,得3x小+234≤260,解得x小≤82,(9分)3∵x小为自然数,∴x小最大为8,即最多能放入8个小球.(10分)评析一次函数的应用问题大多数以生活情境为背景命题,解答此类试题,应在弄懂题意的前提下,建立函数模型,然后结合函数性质以及方程(组),不等式知识作答.24.解析(1)如图所示.(2分)25.(4分)(2)x B=1(3.5+4+3)=3.5,s B 2=(3.5-3.5)2+(4-3.5)2+(3-3.5)2 =16.(7分)∵16<43150,∴B 产品的单价波动小.(8分)(3)第四次调价后,对于A 产品,这四次单价的中位数为6+6.52=254;(9分)对于B 产品,∵m>0,∴第四次单价大于3.又∵3.5+42×2-1=132>254, ∴第四次单价小于4.∴3(1+m%)+3.52×2-1=254,(10分)∴m=25.(11分)25.解析 (1)把x=2,y=1代入y=-(x-h)2+1,得h=2.∴解析式为y=-(x-2)2+1(或y=-x 2+4x-3).(2分)对称轴为直线x=2,顶点为B(2,1).(4分)(2)点C 的横坐标为0,则y C =-h 2+1,∴当h=0时,y C 有最大值,为1.(5分)此时,l 为y=-x 2+1,对称轴为y 轴,当x ≥0时,y 随着x 的增大而减小, ∴x 1>x 2≥0时,y 1<y 2.(7分)(3)把线段OA 分成1∶4两部分的点为(-1,0)或(-4,0).把x=-1,y=0代入y=-(x-h)2+1,得h=0或h=-2. 但h=-2时,线段OA 被分为三部分,不合题意,舍去.同样,把x=-4,y=0代入y=-(x-h)2+1,得h=-5或h=-3(舍去). ∴h 的值为0或-5.(11分)26.解析 发现 (1)在.(1分)当OQ 过点B 时,在Rt △OAB 中,AO=AB,得∠DOQ=∠ABO=45°,∴α=60°-45°=15°.(3分)(2)如图1,连结AP,有OA+AP ≥OP,当OP 过点A,即α=60°时等号成立.∴AP ≥OP-OA=2-1=1.∴当α=60°时,P,A 间的距离最小.(5分)PA 的最小值为1.(6分)图1(3)如图1,设半圆K 与PC 交点为R,连结RK,过点P 作PH ⊥AD 于点H,过点R 作RE ⊥KQ 于点E.在Rt △OPH 中,PH=AB=1,OP=2,∴∠POH=30°,∴α=60°-30°=30°.(7分)由AD ∥BC 知,∠RPQ=∠POH=30°.∴∠RKQ=2×30°=60°.∴S 扇形RKQ =60π(12)2360=π24.在Rt △RKE 中,RE=RK ·sin 60°=√34, ∴S △RKP =12PK ·RE=√316.∴S 阴影=π24+√316.(8分)拓展 如图3,∠OAN=∠MBN=90°,∠ANO=∠BNM,∴△AON ∽△BMN,∴AN BN =AO BM ,即1-BN BN =1x, ∴BN=x x+1.(10分)如图2,当点Q 落在BC 上时,x 取最大值,作QF ⊥AD 于点F.图2BQ=AF=√OQ 2-QF 2-AO=√32-12-1=2√2-1.∴x 的取值范围是0<x ≤2√2-1.(11分)[注:如果考生答“x ≤2√2-1或x<2√2-1”均不扣分]探究 半圆与矩形相切,分三种情况:①如图3,半圆K 与BC 切于点T,设直线KT 与AD 和OQ 的初始位置所在直线分别交于点S,O',则∠KSO=∠KTB=90°,作KG ⊥OO'于点G.图3Rt △OSK 中,OS=√OK 2-SK 2=√(5)2-(3)2=2. Rt △OSO'中,SO'=OS ·tan 60°=2√3,KO'=2√3-32.Rt △KGO'中,∠O'=30°,∴KG=12KO'=√3-34.∴Rt △OGK 中,sin α=KG =√3-3452=4√3-3.②半圆K 与AD 切于点T,如图4,图4同理可得sin α=KG OK =12O'K 52=12(O'T -KT)52=√(52)2-(12)2×√3-125=6√2-110.③当半圆K 与CD 相切时,点Q 与点D 重合,且为切点. ∴α=60°,∴sin α=sin 60°=√32.综上所述,sin α的值为4√3-310或6√2-110或√32.(14分)。

2015年河北省中考数学试卷和解析答案

2015年河北省中考数学试卷和解析答案

2015年河北省中考数学试卷一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分.每小题地四个选项中只有一个是正确地)1.(3分)计算:3﹣2×(﹣1)=()A.5 B.1 C.﹣1 D.62.(3分)下列说法正确地是()A.1地相反数是﹣1 B.1地倒数是﹣1C.1地立方根是±1 D.﹣1是无理数3.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后地图案是()A.B.C.D.4.(3分)下列运算正确地是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2D.a3•a2=a55.(3分)如图所示地三视图所对应地几何体是()A.B.C.D.6.(3分)如图,AC,BE是⊙O地直径,弦AD与BE交于点F,下列三角形中,外心不是点O地是()A.△ABE B.△ACF C.△ABD D.△ADE7.(3分)在数轴上标注了四段范围,如图,则表示地点落在()A.段①B.段②C.段③D.段④8.(3分)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140° D.150°9.(3分)已知:岛P位于岛Q地正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件地示意图是()A.B.C.D.10.(3分)一台印刷机每年可印刷地书本数量y(万册)与它地使用时间x(年)成反比例关系,当x=2时,y=20.则y与x地函数图象大致是()A.B.C.D.11.(2分)利用加减消元法解方程组,下列做法正确地是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×2 12.(2分)若关于x地方程x2+2x+a=0不存在实数根,则a地取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥113.(2分)将一质地均匀地正方体骰子掷一次,观察向上一面地点数,与点数3相差2地概率是()A.B.C.D.14.(2分)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)地交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣415.(2分)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB地中点,对下列各值:①线段MN地长;②△PAB地周长;③△PMN地面积;④直线MN,AB之间地距离;⑤∠APB地大小.其中会随点P地移动而变化地是()A.②③B.②⑤C.①③④D.④⑤16.(2分)如图是甲、乙两张不同地矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等地正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以二.填空题(4个小题,每小题3分,共12分)17.(3分)若|a|=20150,则a=.18.(3分)若a=2b≠0,则地值为.19.(3分)平面上,将边长相等地正三角形、正方形、正五边形、正六边形地一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.20.(3分)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求地线段了,则n=.三.解答题(共6个小题,共66分)21.(10分)老师在黑板上书写了一个正确地演算过程,随后用手掌捂住了如图所示地一个二次三项式,形式如图:(1)求所捂地二次三项式;(2)若x=+1,求所捂二次三项式地值.22.(10分)嘉淇同学要证明命题“两组对边分别相等地四边形是平行四边形”是正确地,她先用尺规作出了如图1地四边形ABCD,并写出了如下不完整地已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=求证:四边形ABCD是四边形.(1)填空,补全已知和求证;(2)按嘉淇地想法写出证明;(3)用文字叙述所证命题地逆命题为.23.(10分)水平放置地容器内原有210毫米高地水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中地所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大地函数关系式(不必写出x大地范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小地函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?24.(11分)某厂生产A ,B 两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化地情况,绘制了如表统计表及不完整地折线图. A ,B 产品单价变化统计表并求得了A 产品三次单价地平均数和方差:=5.9,s A 2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1)补全如图中B 产品单价变化地折线图.B 产品第三次地单价比上一次地单价降低了 %(2)求B 产品三次单价地方差,并比较哪种产品地单价波动小;(3)该厂决定第四次调价,A 产品地单价仍为6.5元/件,B 产品地单价比3元/件上调m%(m >0),使得A 产品这四次单价地中位数是B 产品四次单价中位数地2倍少1,求m 地值.25.(11分)如图,已知点O (0,0),A (﹣5,0),B (2,1),抛物线l :y=﹣(x ﹣h )2+1(h 为常数)与y 轴地交点为C .(1)l 经过点B ,求它地解析式,并写出此时l 地对称轴及顶点坐标;(2)设点C 地纵坐标为y c ,求y c 地最大值,此时l 上有两点(x 1,y 1),(x 2,y 2),其中x1>x2≥0,比较y1与y2地大小;(3)当线段OA被l只分为两部分,且这两部分地比是1:4时,求h地值.26.(14分)平面上,矩形ABCD与直径为QP地半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间地距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x地代数式表示BN地长,并求x地取值范围.探究:当半圆K与矩形ABCD地边相切时,求sinα地值.2015年河北省中考数学试卷参考答案与试题解析一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分.每小题地四个选项中只有一个是正确地)1.(3分)计算:3﹣2×(﹣1)=()A.5 B.1 C.﹣1 D.6【分析】先算乘法,再算减法,由此顺序计算即可.【解答】解:原式=3﹣(﹣2)=3+2=5.故选:A.2.(3分)下列说法正确地是()A.1地相反数是﹣1 B.1地倒数是﹣1C.1地立方根是±1 D.﹣1是无理数【分析】根据相反数、倒数、立方根,即可解答.【解答】解:A、1地相反数是﹣1,正确;B、1地倒数是1,故错误;C、1地立方根是1,故错误;D、﹣1是有理数,故错误;故选:A.3.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后地图案是()A.B.C.D.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中地顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选:C.4.(3分)下列运算正确地是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2D.a3•a2=a5【分析】A:根据负整数指数幂地运算方法判断即可.B:科学记数法a×10n表示地数“还原”成通常表示地数,就是把a地小数点向右移动n位所得到地数,据此判断即可.C:根据积地乘方地运算方法判断即可.D:根据同底数幂地乘法法则判断即可.【解答】解:∵=2,∴选项A不正确;∵6×107=60000000,∴选项B不正确;∵(2a)2=4a2,∴选项C不正确;∵a3•a2=a5,∴选项D正确.故选:D.5.(3分)如图所示地三视图所对应地几何体是()A.B.C.D.【分析】对所给四个几何体,分别从主视图和俯视图进行判断.【解答】解:从主视图可判断A,C、D错误.故选:B.6.(3分)如图,AC,BE是⊙O地直径,弦AD与BE交于点F,下列三角形中,外心不是点O地是()A.△ABE B.△ACF C.△ABD D.△ADE【分析】利用外心地定义,外心:三角形外接圆地圆心是三角形三条边垂直平分线地交点,叫做三角形地外心,进而判断得出即可.【解答】解:如图所示:只有△ACF地三个顶点不都在圆上,故外心不是点O地是△ACF.故选:B.7.(3分)在数轴上标注了四段范围,如图,则表示地点落在()A.段①B.段②C.段③D.段④【分析】根据数地平方,即可解答.【解答】解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴,∴地点落在段③,故选:C.8.(3分)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140° D.150°【分析】如图,作辅助线;首先运用平行线地性质求出∠DGC地度数,借助三角形外角地性质求出∠ACD即可解决问题.【解答】解:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选:C.9.(3分)已知:岛P位于岛Q地正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件地示意图是()A.B.C.D.【分析】根据方向角地定义,即可解答.【解答】解:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D符合.故选:D.10.(3分)一台印刷机每年可印刷地书本数量y(万册)与它地使用时间x(年)成反比例关系,当x=2时,y=20.则y与x地函数图象大致是()A.B.C.D.【分析】设y=(k≠0),根据当x=2时,y=20,求出k,即可得出y与x地函数图象.【解答】解:设y=(k≠0),∵当x=2时,y=20,∴k=40,∴y=,则y与x地函数图象大致是C,故选:C.11.(2分)利用加减消元法解方程组,下列做法正确地是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×2【分析】方程组利用加减消元法求出解即可.【解答】解:利用加减消元法解方程组,要消去x,可以将①×(﹣5)+②×2.故选:D.12.(2分)若关于x地方程x2+2x+a=0不存在实数根,则a地取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥1【分析】根据根地判别式得出b2﹣4ac<0,代入求出不等式地解集即可得到答案.【解答】解:∵关于x地方程x2+2x+a=0不存在实数根,∴b2﹣4ac=22﹣4×1×a<0,解得:a>1.故选:B.13.(2分)将一质地均匀地正方体骰子掷一次,观察向上一面地点数,与点数3相差2地概率是()A.B.C.D.【分析】由一枚质地均匀地正方体骰子地六个面上分别刻有1到6地点数,掷一次这枚骰子,向上地一面地点数为与点数3相差2地有2种情况,直接利用概率公式求解即可求得答案.【解答】解:∵一枚质地均匀地正方体骰子地六个面上分别刻有1到6地点数,掷一次这枚骰子,向上地一面地点数为点数3相差2地有2种情况,∴掷一次这枚骰子,向上地一面地点数为点数3相差2地概率是:=.故选:B.14.(2分)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)地交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣4【分析】先求出直线y=﹣x﹣3与y轴地交点,则根据题意得到a<﹣3时,直线y=﹣x﹣3与直线y=a(a为常数)地交点在第四象限,而四个选项中,只有﹣10<a<﹣4满足条件,故选D.【解答】解:∵直线y=﹣x﹣3与y轴地交点为(0,﹣3),而直线y=﹣x﹣3与直线y=a(a为常数)地交点在第四象限,∴a<﹣3.故选:D.15.(2分)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB地中点,对下列各值:①线段MN地长;②△PAB地周长;③△PMN地面积;④直线MN,AB之间地距离;⑤∠APB地大小.其中会随点P地移动而变化地是()A.②③B.②⑤C.①③④D.④⑤【分析】根据三角形地中位线平行于第三边并且等于第三边地一半可得MN=AB,从而判断出①不变;再根据三角形地周长地定义判断出②是变化地;确定出点P到MN地距离不变,然后根据等底等高地三角形地面积相等确定出③不变;根据平行线间地距离相等判断出④不变;根据角地定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB地中点,∴MN是△PAB地中位线,∴MN=AB,即线段MN地长度不变,故①错误;PA、PB地长度随点P地移动而变化,所以,△PAB地周长会随点P地移动而变化,故②正确;∵MN地长度不变,点P到MN地距离等于l与AB地距离地一半,∴△PMN地面积不变,故③错误;直线MN,AB之间地距离不随点P地移动而变化,故④错误;∠APB地大小点P地移动而变化,故⑤正确.综上所述,会随点P地移动而变化地是②⑤.故选:B.16.(2分)如图是甲、乙两张不同地矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等地正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以【分析】根据图形可得甲可以拼一个边长为地正方形,图乙可以拼一个边长为地正方形.【解答】解:所作图形如图所示,甲乙都可以拼一个与原来面积相等地正方形.故选:A.二.填空题(4个小题,每小题3分,共12分)17.(3分)若|a|=20150,则a=±1.【分析】先根据0次幂,得到|a|=1,再根据互为相反数地绝对值相等,即可解答.【解答】解:∵|a|=20150,∴|a|=1,∴a=±1,故答案为:±1.18.(3分)若a=2b≠0,则地值为.【分析】把a=2b代入原式计算,约分即可得到结果.【解答】解:∵a=2b,∴原式==,故答案为:19.(3分)平面上,将边长相等地正三角形、正方形、正五边形、正六边形地一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.【分析】首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形地每个内角地度数是多少,然后分别求出∠3、∠1、∠2地度数是多少,进而求出∠3+∠1﹣∠2地度数即可.【解答】解:正三角形地每个内角是:180°÷3=60°,正方形地每个内角是:360°÷4=90°,正五边形地每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形地每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°.故答案为:24°.20.(3分)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求地线段了,则n= 9.【分析】根据等腰三角形地性质和三角形外角地性质依次可得∠A1AB地度数,∠A2A1C地度数,∠A3A2B地度数,∠A4A3C地度数,…,依此得到规律,再根据三角形外角小于90°即可求解.【解答】解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°地度数,∠A4A3C=45°,…,∴9°n<90°,解得n<10.由于n为整数,故n=9.故答案为:9.三.解答题(共6个小题,共66分)21.(10分)老师在黑板上书写了一个正确地演算过程,随后用手掌捂住了如图所示地一个二次三项式,形式如图:(1)求所捂地二次三项式;(2)若x=+1,求所捂二次三项式地值.【分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)把x地值代入计算即可求出值.【解答】解:(1)设所捂地二次三项式为A,根据题意得:A=x2﹣5x+1+3x=x2﹣2x+1;(2)当x=+1时,原式=7+2﹣2﹣2+1=6.22.(10分)嘉淇同学要证明命题“两组对边分别相等地四边形是平行四边形”是正确地,她先用尺规作出了如图1地四边形ABCD,并写出了如下不完整地已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(1)填空,补全已知和求证;(2)按嘉淇地想法写出证明;(3)用文字叙述所证命题地逆命题为平行四边形两组对边分别相等.【分析】(1)命题地题设为“两组对边分别相等地四边形”,结论是“是平行四边形”,根据题设可得已知:在四边形ABCD中,BC=AD,AB=CD,求证:四边形ABCD 是平行四边形;(2)连接BD,利用SSS定理证明△ABD≌△CDB可得∠ADB=∠DBC,∠ABD=∠CDB,进而可得AB∥CD,AD∥CB,根据两组对边分别平行地四边形是平行四边形可得四边形ABCD是平行四边形;(3)把命题“两组对边分别相等地四边形是平行四边形”地题设和结论对换可得平行四边形两组对边分别相等.【解答】解:(1)已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(2)证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∠ABD=∠CDB,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形;(3)用文字叙述所证命题地逆命题为:平行四边形两组对边分别相等.23.(10分)水平放置地容器内原有210毫米高地水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中地所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大地函数关系式(不必写出x大地范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小地函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?【分析】(1)根据每放入一个大球水面就上升4毫米,即可解答;(2)①根据y=放入大球上面地高度+放入小球上面地高度,即可解答;②根据题意列出不等式,即可解答.【解答】解:(1)根据题意得:y=4x大+210;(2)①当x大=6时,y=4×6+210=234,∴y=3x小+234;②依题意,得3x小+234≤260,解得:,∵x小为自然数,∴x小最大为8,即最多能放入8个小球.24.(11分)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化地情况,绘制了如表统计表及不完整地折线图.A,B产品单价变化统计表并求得了A产品三次单价地平均数和方差:2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]==5.9,s(1)补全如图中B产品单价变化地折线图.B产品第三次地单价比上一次地单价降低了25%(2)求B产品三次单价地方差,并比较哪种产品地单价波动小;(3)该厂决定第四次调价,A产品地单价仍为6.5元/件,B产品地单价比3元/件上调m%(m>0),使得A产品这四次单价地中位数是B产品四次单价中位数地2倍少1,求m地值.【分析】(1)根据题目提供数据补充折线统计图即可;(2)分别计算平均数及方差即可;(3)首先确定这四次单价地中位数,然后确定第四次调价地范围,根据“A产品这四次单价地中位数是B产品四次单价中位数地2倍少1”列式求m即可.【解答】解:(1)如图2所示:B产品第三次地单价比上一次地单价降低了=25%,(2)=(3.5+4+3)=3.5,==,∵B产品地方差小,∴B产品地单价波动小;(3)第四次调价后,对于A产品,这四次单价地中位数为=;对于B产品,∵m>0,∴第四次单价大于3,∵﹣1>,∴第四次单价小于4,∴×2﹣1=,∴m=25.25.(11分)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴地交点为C.(1)l经过点B,求它地解析式,并写出此时l地对称轴及顶点坐标;(2)设点C地纵坐标为y c,求y c地最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2地大小;(3)当线段OA被l只分为两部分,且这两部分地比是1:4时,求h地值.【分析】(1)把点B地坐标代入函数解析式,列出关于h地方程,借助于方程可以求得h地值;利用抛物线函数解析式得到该图象地对称轴和顶点坐标;(2)把点C地坐标代入函数解析式得到:y C=﹣h2+1,则由二次函数地最值地求法易得y c地最大值,并可以求得此时抛物线地解析式,根据抛物线地增减性来求y1与y2地大小;(3)根据已知条件“O(0,0),A(﹣5,0),线段OA被l只分为两部分,且这两部分地比是1:4”可以推知把线段OA被l只分为两部分地点地坐标分别是(﹣1,0),(﹣4,0).由二次函数图象上点地坐标特征可以求得h地值.【解答】解:(1)把点B地坐标B(2,1)代入y=﹣(x﹣h)2+1,得1=﹣(2﹣h)2+1.解得h=2.则该函数解析式为y=﹣(x﹣2)2+1(或y=﹣x2+4x﹣3).故抛物线l地对称轴为x=2,顶点坐标是(2,1);(2)点C地横坐标为0,则y C=﹣h2+1.当h=0时,y C=有最大值1,此时,抛物线l为:y=﹣x2+1,对称轴为y轴,开口方向向下,所以,当x≥0时,y随x地增大而减小,所以,x1>x2≥0,y1<y2;(3)∵线段OA被l只分为两部分,且这两部分地比是1:4,且O(0,0),A (﹣5,0),∴把线段OA被l只分为两部分地点地坐标分别是(﹣1,0),(﹣4,0).把x=﹣1,y=0代入y=﹣(x﹣h)2+1,得0=﹣(﹣1﹣h)2+1,解得h1=0,h2=﹣2.但是当h=﹣2时,线段OA被抛物线l分为三部分,不合题意,舍去.同样,把x=﹣4,y=0代入y=﹣(x﹣h)2+1,得h=﹣5或h=﹣3(舍去).综上所述,h地值是0或﹣5.26.(14分)平面上,矩形ABCD与直径为QP地半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P在直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间地距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x地代数式表示BN地长,并求x地取值范围.探究:当半圆K与矩形ABCD地边相切时,求sinα地值.【分析】(1)在,当OQ过点B时,在R t△OAB中,AO=AB,得到∠DOQ=∠ABO=45°,求得α=60°﹣45°=15°;(2)如图2,连接AP,由OA+AP≥OP,当OP过点A,即α=60°时,等号成立,于是有AP≥OP﹣OA=2﹣1=1,当α=60°时,P、A之间地距离最小,即可求得结果(3)如图2,设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,过点R作RE⊥KQ于点E,在R t△OPH中,PH=AB=1,OP=2,得到∠POH=30°,求得α=60°﹣30°=30°,由于AD∥BC,得到∠RPO=∠POH=30°,求出∠RKQ=2×30°=60°,于是得到结果;拓展:如图5,由∠OAN=∠MBN=90°,∠ANO=∠BNM,得到△AON∽△BMN求出BN=,如图4,当点Q落在BC上时,x取最大值,作QF⊥AD于点F,BQ=AF=﹣AO=2﹣1,求出x地取值范围是0<x≤2﹣1;探究:半圆K与矩形ABCD地边相切,分三种情况;①如图5,半圆K与BC相切于点T,设直线KT与AD,OQ地初始位置所在地直线分别交于点S,O′,于是得到∠KSO=∠KTB=90°,作KG⊥OO′于G,在R t△OSK中,求出OS==2,在R t△OSO′中,SO′=OS•tan60°=2,KO′=2﹣在R t△KGO′中,∠O′=30°,求得KG=KO′=﹣,在R t△OGK中,求得结果;②当半圆K与AD相切于T,如图6,同理可得sinα地值③当半圆K与CD切线时,点Q与点D重合,且为切点,得到α=60°于是结论可求.【解答】解:发现:(1)在,当OQ过点B时,在R t△OAB中,AO=AB,∴∠DOQ=∠ABO=45°,∴α=60°﹣45°=15°;(2)如图2,连接AP,∵OA+AP≥OP,当OP过点A,即α=60°时,等号成立,∴AP≥OP﹣OA=2﹣1=1,∴当α=60°时,P、A之间地距离最小,∴PA地最小值=1;(3)如图2,设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,过点R作RE⊥KQ于点E,在Rt△OPH中,PH=AB=1,OP=2,∴∠POH=30°,∴α=60°﹣30°=30°,∵AD∥BC,∴∠RPO=∠POH=30°,∴∠RKQ=2×30°=60°,==,∴S扇形KRQ在Rt△RKE中,RE=RK•sin60°=,∴S=•RE=,∴S阴影=+;△PRK拓展:如图5,∵∠OAN=∠MBN=90°,∠ANO=∠BNM,∴△AON∽△BMN,∴,即,∴BN=,如图4,当点Q落在BC上时,x取最大值,作QF⊥AD于点F,BQ=AF=﹣AO=2﹣1,∴x地取值范围是0<x≤2﹣1;探究:半圆K与矩形ABCD地边相切,分三种情况;①如图5,半圆K与BC相切于点T,设直线KT与AD,OQ地初始位置所在地直线分别交于点S,O′,则∠KSO=∠KTB=90°,作KG⊥OO′于G,在R t△OSK中,OS==2,在Rt△OSO′中,SO′=OS•tan60°=2,KO′=2﹣,在Rt△KGO′中,∠O′=30°,∴KG=KO′=﹣,∴在Rt△OGK中,sinα===,②当半圆K与AD相切于T,如图6,同理可得sinα====;③当半圆K与CD切线时,点Q与点D重合,且为切点,∴α=60°,∴sinα=sin60,综上所述sinα地值为:或或.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

2015年河北省中考数学试卷(含详细答案)

2015年河北省中考数学试卷(含详细答案)

绝密★启用前河北省2015年初中毕业生升学文化课考试数学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题共42分)一、选择题(本大题共16小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:32(1)-⨯-=( )A.5B.1C.1-D.62.下列说法正确的是( )A.1的相反数是1-B.1的倒数是1-C.1的立方根是1±D.1-是无理数3.一张菱形纸片按图1、图2依次对折后,再按图3打出一个圆形小孔,则展开铺平后的图案是 ( )图1图2 图3AB CD4.下列运算正确的是( )A.111()22-=-B.76106000000⨯=C.22(2)2a a=D.325a a a=5.右图中的三视图所对应的几何体是( )A BC D6.如图,,AC BE是O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是( )A.ABE△B.ACF△C.ABD△D.ADE△7.在数轴上标注了四段范围,如图,( )A.段①B.段②C.段③D.段④8.如图,AB EF∥,CD EF⊥,50BAC∠=,则ACD∠=( )A.120B.130C.140D.1509.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30和南偏西45方向上.符合条件的示意图是( )A BC D毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共26页)数学试卷第2页(共26页)数学试卷 第3页(共26页) 数学试卷 第4页(共26页)10.一台印刷机每年印刷的书本数量y (万册)与它的使用时间x (年)成反比例关系,当2x =时,20y =,则y 与x 的函数图象大致是( )AB C D 11.利用加减消元法解方程组2510, 536, x y x y +=-⎧⎨-=⎩①②下列做法正确的是( )A .要消去y ,可以将52⨯+⨯①②B .要消去x ,可以将3(5)⨯+⨯-①②C .要消去y ,可以将53⨯+⨯①②D .要消去x ,可以将(5)2⨯-+⨯①②12.若关于x 的方程220x x a ++=不存在实数根,则a 的取值范围是( )A .1a <B .1a >C .1a ≤D .1a ≥13.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( )A .12B .13C .15D .1614.如图,直线l :233y x =--与直线y a =(a 为常数)的交点在第四象限,则a 可能在( )A .12a <<B .20a -<<C .32a --≤≤D .104a --<<15.如图,点A ,B 为定点,定直线l AB ∥,P 是l 上一动点,点M ,N 分别为,PA PB 的中点,对于下列各值: ①线段MN 的长; ②PAB △的周长; ③PMN △的面积;④直线,MN AB 之间的距离; ⑤APB ∠的大小.其中会随点P 的移动而变化的是( )A .②③B .②⑤C .①③④D .④⑤16.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )A .甲、乙都可以B .甲、乙都不可以C .甲不可以,乙可以D .甲可以,乙不可以第Ⅱ卷(非选择题 共78分)二、填空题(本大题共4小题,每小题3分,共12分.把答案填写在题中的横线上) 17.若0||2015a =,则a = .18.若20a b =≠,则222a b a ab--的值为 .19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则312∠+∠-∠=.20.如图,9BOC ∠=,点A 在OB 上,且1OA =.按下列要求画图:以A 为圆心,1为半径向右画弧交OC 于点1A ,得第1条线段1AA ; 再以1A 为圆心,1为半径向右画弧交OB 于点2A ,得第2条线段12A A ; 再以2A 为圆心,1为半径向右画弧交OC 于点3A ,得第3条线段23A A ; ……这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n =.数学试卷 第5页(共26页) 数学试卷 第6页(共26页)三、解答题(本大题共6小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分10分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:2351x x x -=-+.(1)求所捂的二次三项式;(2)若1x ,求所捂二次三项式的值.22.(本小题满分10分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD ,并写出了如下不完整的已知和求证. (1)在方框中填空,以补全已知和求证; (2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为 .23.(本小题满分10分)水平放置的容器内原有210毫米高的水,如图.将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y 毫米. (1)只放入大球,且个数为x 大,求y 与x 大的函数关系式(不必写出x 大的范围); (2)仅放入6个大球后,开始放入小球,且小球个数为x 小. ①求y 与x 小的函数关系式(不必写出x 小的范围);②限定水面高不超过260毫米,最多能放入几个小球?24.(本小题满分11分)某厂生产,A B 两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线图:,A B 产品单价变化折线图第三次并求得了产品三次单价的平均数和方差:5.9A x =;2222143[(6 5.9)(5.2 5.9)(6.5 5.9)]3150A S =-+-+-=. (1)补全图中B 产品单价变化的折线图.B 产品第三次的单价比上一次的单价降低了 %;(2)求B 产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调(0)m m >%,使得A 产品这四次单价的中位数是B 产品四次单价中位数的2倍少1,求m 的值.我的想法是:利用三角形全等,依据“两组对边分别平行的四边形是平行四边形”来证明.嘉淇毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共26页) 数学试卷 第8页(共26页)25.(本小题满分11分)如图,已知点)(0,0O ,0()5,A -,()2,1B ,抛物线l :2()1y x h =--+(h 为常数)与y 轴的交点为C .(1)l 经过点B ,求它的解析式,并写出此时l 的对称轴及顶点坐标;(2)设点C 的纵坐标为C y ,求C y 的最大值,此时l 上有两点11(,)x y ,22(,)x y ,其中120x x >≥,比较1y 与2y 的大小;(3)当线段OA 被l 只分为两部分,且这两部分的比是1:4时,求h 的值.26.(本小题满分14分)平面上,矩形ABCD 与直径为QP 的半圆K 如图1摆放,分别延长DA 和QP 交于点O ,且60DOQ ∠=,3OQ OD ==,2OP =,1OA AB ==.让线段OD 及矩形ABCD 位置固定,将线段OQ 连带着半圆K 一起绕着点O 按逆时针方向开始旋转,设旋转角为(060)αα≤≤.发现 (1)当0α=,即初始位置时,点P 直线AB 上(填“在”或“不在”). 求当α是多少时,OQ 经过点B ?(2)在OQ 旋转过程中,简要说明α是多少时,点P ,A 间的距离最小?并指出这个最小值;(3)如图2,当点P 恰好落在BC 边上时,求α及S 阴影.图2图3图4拓展 如图3,当线段OQ 与CB 边交于点M ,与BA 边交于点N 时,设()0BM x x =>,用含x 的代数式表示BN 的长,并求x 的取值范围. 探究 当半圆K 与矩形ABCD 的边相切时,求sin α的值.图15 / 13河北省2015年初中毕业生升学文化课考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】32(1)3(2)325-⨯-=--=+=,故选A . 【考点】有理数的运算 2.【答案】A【解析】1的相反数是1-,1的倒数是1,1的立方根是1,1-是有理数,故选A . 【考点】相反数、倒数、立方根及无理数的概念 3.【答案】C【解析】将菱形按图依次对折后,在菱形的钝角处有两个对称的圆孔,故选C . 【考点】图形的折叠 4.【答案】D【解析】111()2122-==,761060000000⨯=,()2224=a a ,325∙=a a a ,故选D .【考点】幂的运算 5.【答案】B【解析】从正面看到的是几何体的主视图,由主视图可推断只有B 符合,故选B . 【考点】几何体的三视图 6v 【答案】B【解析】△ABE ,△ABD ,△ADE 的顶点都在O 上,其外心都是点O ,而△AC F 的顶点F 不在O 上,所以△ACF 的外心不是点O ,故选B . 【考点】三角形的外心 7.【答案】C2 1.414 2.828=⨯=C .数学试卷 第11页(共26页)数学试卷 第12页(共26页)【考点】数轴与无理数的估算 8.【答案】C【解析】如图,过点C 作∥CH AB ,∵∥A B E F ,∴∥C H E F ,∴ 50∠=∠=︒H C A C A B ,180∠+∠=︒HCD CDE ,∵ ⊥CD EF ,∴90∠=︒CDE ,2∴90∠=︒HCD ,。

2015年河北省中考数学试题及解析

2015年河北省中考数学试题及解析

2015年河北省中考数学试卷一选择题(1-10小题每小题3分,11-16小题每小题3分,共42分每小题的四个选项中只有一个是正确的)1(3分)(2015•河北)计算:3﹣2×(﹣1)=()A 5B 1 C﹣1 D 62(3分)(2015•河北)下列说法正确的是()A1的相反数是﹣1 B1的倒数是﹣1C1的立方根是±1 D﹣1是无理数3(3分)(2015•河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A B C D4(3分)(2015•河北)下列运算正确的是()A()﹣1=﹣B6×107=6000000C (2a)2=2a2D a3•a2=a55(3分)(2015•河北)如图所示的三视图所对应的几何体是()A B C D6(3分)(2015•河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O 的是()A △ABEB △ACF C△ABD D△ADE7(3分)(2015•河北)在数轴上标注了四段范围,如图,则表示的点落在()A段①B段②C段③D段④8(3分)(2015•河北)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A120°B130°C140°D150°9(3分)(2015•河北)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A B C D10(3分)(2015•河北)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20则y 与x 的函数图象大致是()A B C D11(2分)(2015•河北)利用加减消元法解方程组,下列做法正确的是()A要消去y,可以将①×5+②×2 B要消去x,可以将①×3+②×(﹣5)C要消去y,可以将①×5+②×3 D要消去x,可以将①×(﹣5)+②×212(2分)(2015•河北)若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A a<1 B a>1 C a≤1 D a≥113(2分)(2015•河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是()A B C D14(2分)(2015•河北)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A1<a<2 B﹣2<a<0 C﹣3≤a≤﹣2 D﹣10<a<﹣415(2分)(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小其中会随点P的移动而变化的是()A②③B②⑤C①③④D④⑤16(2分)(2015•河北)如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A甲、乙都可以B甲、乙都不可以C甲不可以、乙可以D甲可以、乙不可以二填空题(4个小题,每小题3分,共12分)17(3分)(2015•河北)若|a|=20150,则a=18(3分)(2015•河北)若a=2b≠0,则的值为19(3分)(2015•河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=20(3分)(2015•河北)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=三解答题(共6个小题,共66分)21(10分)(2015•河北)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值22(10分)(2015•河北)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证已知:如图1,在四边形ABCD中,BC=AD,AB=求证:四边形ABCD是四边形(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为23(10分)(2015•河北)水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出设水面高为y毫米(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?24(11分)(2015•河北)某厂生产A,B两种产品,其单价随市场变化而做相应调整营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图A,B产品单价变化统计表第一次第二次第三次A产品单价(元/件) 6 52 65B产品单价(元/件)35 4 3并求得了A产品三次单价的平均数和方差:=59,s A2=[(6﹣59)2+(52﹣59)2+(65﹣59)2]=(1)补全如图中B产品单价变化的折线图B产品第三次的单价比上一次的单价降低了%(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为65元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值25(11分)(2015•河北)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值26(14分)(2015•河北)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°)发现:(1)当α=0°,即初始位置时,点P直线AB上(填“在”或“不在”)求当α是多少时,OQ经过点B(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x 的代数式表示BN的长,并求x的取值范围探究:当半圆K与矩形ABCD的边相切时,求sinα的值2015年河北省中考数学试卷参考答案与试题解析一选择题(1-10小题每小题3分,11-16小题每小题3分,共42分每小题的四个选项中只有一个是正确的)1(3分)(2015•河北)计算:3﹣2×(﹣1)=()A 5B 1 C﹣1 D 6考点:有理数的混合运算分析:先算乘法,再算减法,由此顺序计算即可解答:解:原式=3﹣(﹣2)=3+2=5故选:A点评:此题考查有理数的混合运算,掌握运算顺序与符号的判定是解决问题的关键2(3分)(2015•河北)下列说法正确的是()A1的相反数是﹣1 B1的倒数是﹣1C1的立方根是±1 D﹣1是无理数考点:立方根;相反数;倒数;无理数分析:根据相反数、倒数、立方根,即可解答解答:解:A、1的相反数是﹣1,正确;B、1的倒数是1,故错误;C、1的立方根是1,故错误;D、﹣1是有理数,故错误;故选:A点评:本题考查了相反数、倒数、立方根,解决本题的关键是熟记相反数、倒数、立方根的定义3(3分)(2015•河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A B C D考点:剪纸问题分析:对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现解答:解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论故选C点评:此题主要考查了剪纸问题;学生的动手能力及空间想象能力是非常重要的,做题时,要注意培养4(3分)(2015•河北)下列运算正确的是()B6×107=6000000A()﹣1=﹣C(2a)2=2a2D a3•a2=a5考点:幂的乘方与积的乘方;科学记数法—原数;同底数幂的乘法;负整数指数幂分析:A:根据负整数指数幂的运算方法判断即可B:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n 位所得到的数,据此判断即可C:根据积的乘方的运算方法判断即可D:根据同底数幂的乘法法则判断即可解答:解:∵=2,∴选项A不正确;∵6×107=60000000,∴选项B不正确;∵(2a)2=4a2,∴选项C不正确;∵a3•a2=a5,∴选项D正确故选:D点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数)(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数(3)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加(4)此题还考查了科学计数法﹣原数,要熟练掌握,解答此题的关键是要明确:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数若科学记数法表示较小的数a×10﹣n,还原为原来的数,需要把a的小数点向左移动n位得到原数5(3分)(2015•河北)如图所示的三视图所对应的几何体是()A B C D考点:由三视图判断几何体分析:对所给四个几何体,分别从主视图和俯视图进行判断解答:解:从主视图可判断A错误;从俯视图可判断C、D 错误故选B点评:本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状6(3分)(2015•河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F ,下列三角形中,外心不是点O的是()A △ABE B△ACF C △ABD D△ADE考点:三角形的外接圆与外心分析:利用外心的定义,外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,进而判断得出即可解答:解:如图所示:只有△ACF的三个顶点不都在圆上,故外心不是点O的是△ACF 故选:B点评:此题主要考查了三角形外心的定义,正确把握外心的定义是解题关键7(3分)(2015•河北)在数轴上标注了四段范围,如图,则表示的点落在()A段①B段②C段③D段④考点:估算无理数的大小;实数与数轴分析:根据数的平方,即可解答解答:解:262=676,272=729,282=784,292=841,32=9,∵784<8<841,∴,∴的点落在段③,故选:C点评:本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方8(3分)(2015•河北)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A120°B130°C140°D150°考点:平行线的性质;垂线分析:如图,作辅助线;首先运用平行线的性质求出∠DGC的度数,借助三角形外角的性质求出∠ACD即可解决问题解答:解:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选C点评:该题主要考查了垂线的定义、平行线的性质、三角形的外角性质等几何知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用平行线的性质、三角形的外角性质等几何知识点来分析、判断、解答9(3分)(2015•河北)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A B C D考点:方向角分析:根据方向角的定义,即可解答解答:解:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D 符合故选:D点评:本题考查了方向角,解决本题的关键是熟记方向角的定义10(3分)(2015•河北)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20则y 与x的函数图象大致是()A B C D考点:反比例函数的应用;反比例函数的图象分析:设y=(k≠0),根据当x=2时,y=20,求出k,即可得出y与x的函数图象解答:解:设y=(k≠0),∵当x=2时,y=20,∴k=40,∴y=,则y与x的函数图象大致是C,故选:C点评:此题考查了反比例函数的应用,关键是根据题意设出解析式,根据函数的解析式得出函数的图象11(2分)(2015•河北)利用加减消元法解方程组,下列做法正确的是()A要消去y,可以将①×5+②×2 B要消去x,可以将①×3+②×(﹣5)C要消去y,可以将①×5+②×3 D 要消去x,可以将①×(﹣5)+②×2考点:解二元一次方程组专题:计算题分析:方程组利用加减消元法求出解即可解答:解:利用加减消元法解方程组,要消去x,可以将①×(﹣5)+②×2故选D点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法12(2分)(2015•河北)若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A a<1 B a>1 C a≤1 D a≥1考点:根的判别式分析:根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案解答:解:∵关于x的方程x2+2x+a=0不存在实数根,∴b2﹣4ac=22﹣4×1×a<0,解得:a>1故选B点评:此题主要考查了一元二次方程根的情况与判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根13(2分)(2015•河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是()A B C D考点:概率公式分析:由一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为与点数3相差2的有2种情况,直接利用概率公式求解即可求得答案解答:解:∵一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为点数3相差2的有2种情况,∴掷一次这枚骰子,向上的一面的点数为点数3相差2的概率是:=故选B点评:此题考查了概率公式的应用注意用到的知识点为:概率=所求情况数与总情况数之比14(2分)(2015•河北)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A1<a<2 B﹣2<a<0 C﹣3≤a≤﹣2 D﹣10<a<﹣4考点:两条直线相交或平行问题专题:计算题分析:先求出直线y=﹣x﹣3与y轴的交点,则根据题意得到a<﹣3时,直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,而四个选项中,只有﹣10<a<﹣4满足条件,故选D解答:解:∵直线y=﹣x﹣3与y轴的交点为(0,﹣3),而直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,∴a<﹣3故选D点评:本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同15(2分)(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小其中会随点P的移动而变化的是()A②③B②⑤C①③④D④⑤考点:三角形中位线定理;平行线之间的距离分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化解答:解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确综上所述,会随点P的移动而变化的是②⑤故选B点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键16(2分)(2015•河北)如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A甲、乙都可以B甲、乙都不可以C甲不可以、乙可以D甲可以、乙不可以考点:图形的剪拼分析:根据图形可得甲可以拼一个边长为的正方形,图乙可以拼一个边长为的正方形解答:解:所作图形如图所示,甲乙都可以拼一个与原来面积相等的正方形故选A点评:本题考查了图形的简拼,解答本题的关键是根据题意作出图形二填空题(4个小题,每小题3分,共12分)17(3分)(2015•河北)若|a|=20150,则a=±1考点:绝对值;零指数幂分析:先根据0次幂,得到|a|=1,再根据互为相反数的绝对值相等,即可解答解答:解:∵|a|=20150,∴|a|=1,∴a=±1,故答案为:±1点评:本题考查了绝对值,解决本题的关键是熟记互为相反数的两个数绝对值相等18(3分)(2015•河北)若a=2b≠0,则的值为考点:分式的化简求值专题:计算题分析:把a=2b代入原式计算,约分即可得到结果解答:解:∵a=2b,∴原式==,故答案为:点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键19(3分)(2015•河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°考点:多边形内角与外角分析:首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出∠3、∠1、∠2的度数是多少,进而求出∠3+∠1﹣∠2的度数即可解答:解:正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形的每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°故答案为:24°点评:此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n 边形的内角和=(n﹣2)•180 (n≥3)且n为整数)(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°20(3分)(2015•河北)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=9考点:等腰三角形的性质分析:根据等腰三角形的性质和三角形外角的性质依次可得∠A1AB的度数,∠A2A1C的度数,∠A3A2B的度数,∠A4A3C的度数,…,依此得到规律,再根据三角形外角小于90°即可求解解答:解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1OA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°的度数,∠A4A3C=45,…,∴9°n<90°,解得n<10故答案为:9点评:考查了等腰三角形的性质:等腰三角形的两个底角相等;三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和三解答题(共6个小题,共66分)21(10分)(2015•河北)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值考点:整式的混合运算—化简求值专题:计算题分析:(1)根据题意列出关系式,去括号合并即可得到结果;(2)把x的值代入计算即可求出值解答:解:(1)设所捂的二次三项式为A,根据题意得:A=x2﹣5x+1+3x=x2﹣2x+1;(2)当x=+1时,原式=7+2﹣2﹣2+1=6点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键22(10分)(2015•河北)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等考点:平行四边形的判定;命题与定理分析:(1)命题的题设为“两组对边分别相等的四边形”,结论是“是平行四边形”,根据题设可得已知:在四边形ABCD中,BC=AD,AB=CD,求证:四边形ABCD是平行四边形;(2)连接BD,利用SSS定理证明△ABD≌△CDB可得∠ADB=∠DBC,∠ABD=∠CDB,进而可得AB∥CD,AD∥CB,根据两组对边分别平行的四边形是平行四边形可得四边形ABCD是平行四边形;(3)把命题“两组对边分别相等的四边形是平行四边形”的题设和结论对换可得平行四边形两组对边分别相等解答:解:(1)已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形(2)证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∠ABD=∠CDB,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形;(2)用文字叙述所证命题的逆命题为:平行四边形两组对边分别相等点评:此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形23(10分)(2015•河北)水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出设水面高为y毫米(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?考点:一次函数的应用分析:(1)根据每放入一个大球水面就上升4毫米,即可解答;(2)①根据y=放入大球上面的高度+放入小球上面的高度,即可解答;②根据题意列出不等式,即可解答解答:解:(1)根据题意得:y=4x+210;大(2)①当x大=6时,y=4×6+210=234,∴y=3x小+234;②依题意,得3x小+234≤260,解得:,∵x小为自然数,∴x 小最大为8,即最多能放入8个小球点评:本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式、一元一次不等式24(11分)(2015•河北)某厂生产A,B两种产品,其单价随市场变化而做相应调整营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图A,B产品单价变化统计表第一次第二次第三次A产品单价(元/件) 6 52 65B产品单价(元/件)35 4 3并求得了A产品三次单价的平均数和方差:=59,s A2=[(6﹣59)2+(52﹣59)2+(65﹣59)2]=(1)补全如图中B产品单价变化的折线图B产品第三次的单价比上一次的单价降低了25%(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为65元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值考点:方差;统计表;折线统计图;算术平均数;中位数分析:(1)根据题目提供数据补充折线统计图即可;(2)分别计算平均数及方差即可;(3)首先确定这四次单价的中位数,然后确定第四次调价的范围,根据“A产品这四次单价的中位数是B产品四次单价中位数的2倍少1”列式求m即可解答:解:(1)如图2所示:B产品第三次的单价比上一次的单价降低了=25%,(2)=(35+4+3)=35,==,∵B产品的方差小,∴B产品的单价波动小;(3)第四次调价后,对于A产品,这四次单价的中位数为=;对于B产品,∵m<0,∴第四次单价大于3,∵﹣1>,∴第四次单价小于4,∴×2﹣1=,∴m=25点评:本题考查了方差、条形统计图、算术平均数、中位数的知识,解题的关键是根据方差公式进行有关的运算,难度不大25(11分)(2015•河北)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值考点:二次函数综合题分析:(1)把点B的坐标代入函数解析式,列出关于h的方程,借助于方程可以求得h的值;利用抛物线函数解析式得到该图象的对称轴和顶点坐标;(2)把点C的坐标代入函数解析式得到:y C=﹣h2+1,则由二次函数的最值的求法易得y c的最大值,并可以求得此时抛物线的解析式,根据抛物线的增减性来求y1与y2的大小;(3)根据已知条件“O(0,0),A(﹣5,0),线段OA被l只分为两部分,且这两部分的比是1:4”可以推知把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0)由二次函数图象上点的坐标特征可以求得h的值解答:解:(1)把点B的坐标B(2,1)代入y=﹣(x﹣h)2+1,得1=﹣(2﹣h)2+1解得h=2则该函数解析式为y=﹣(x﹣2)2+1(或y=﹣x2+4x﹣3)故抛物线l的对称轴为x=2,顶点坐标是(2,1);(2)点C的横坐标为0,则y C=﹣h2+1当h=0时,y C=有最大值1,此时,抛物线l为:y=﹣x2+1,对称轴为y轴,开口方向向下,所以,当x≥0时,y随x的增大而减小,所以,x1>x2≥0,y1<y2;(3)∵线段OA被l只分为两部分,且这两部分的比是1:4,且O(0,0),A(﹣5,0),∴把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0)把x=﹣1,y=0代入y=﹣(x﹣h)2+1,得0=﹣(﹣1﹣h)2+1,解得h 1=0,h2=﹣2但是当h=﹣2时,线段OA被抛物线l分为三部分,不合题意,舍去同样,把x=﹣4,y=0代入y=﹣(x﹣h)2+1,得h=﹣5或h=﹣3(舍去)综上所述,h的值是0或﹣5点评:本题考查了二次函数综合题该题涉及到了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,二次函数最值的求法以及点的坐标与图形的性质等知识点,综合性比较强,难度较大解答(3)题时,注意对h的值根据实际意义进行取舍26(14分)(2015•河北)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°)发现:(1)当α=0°,即初始位置时,点P在直线AB上(填“在”或“不在”)求当α是多少时,OQ经过点B(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围探究:当半圆K与矩形ABCD的边相切时,求sinα的值。

2015年河北省中考数学试卷与答案解析

2015年河北省中考数学试卷与答案解析

2015年河北省中考数学试卷参考答案与试题解析一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分每小题的四个选项中只有一个是正确的)1.(3分)(2015?河北)计算:3﹣2×(﹣1)=()A.5B.1C.﹣1 D.6考点:有理数的混合运算.分析:先算乘法,再算减法,由此顺序计算即可.解答:解:原式=3﹣(﹣2)=3+2=5.故选:A.点评:此题考查有理数的混合运算,掌握运算顺序与符号的判定是解决问题的关键.2.(3分)(2015?河北)下列说法正确的是()A.1的相反数是﹣ 1 B.1的倒数是﹣ 1C.1的立方根是±1 D.﹣1是无理数考点:立方根;相反数;倒数;无理数.分析:根据相反数、倒数、立方根,即可解答.解答:解:A、1的相反数是﹣1,正确;B、1的倒数是1,故错误;C、1的立方根是1,故错误;D、﹣1是有理数,故错误;故选:A.点评:本题考查了相反数、倒数、立方根,解决本题的关键是熟记相反数、倒数、立方根的定义.3.(3分)(2015?河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.考点:剪纸问题.分析:对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.解答:解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C .点评:此题主要考查了剪纸问题;学生的动手能力及空间想象能力是非常重要的,做题时,要注意培养.4.(3分)(2015?河北)下列运算正确的是()A .()﹣1=﹣B .6×107=6000000 C .(2a )2=2a2D .a 3?a 2=a5考点:幂的乘方与积的乘方;科学记数法—原数;同底数幂的乘法;负整数指数幂.分析:A :根据负整数指数幂的运算方法判断即可.B :科学记数法a ×10n表示的数“还原”成通常表示的数,就是把a 的小数点向右移动n位所得到的数,据此判断即可.C :根据积的乘方的运算方法判断即可.D :根据同底数幂的乘法法则判断即可.解答:解:∵=2,∴选项A 不正确;∵6×107=60000000,∴选项B 不正确;∵(2a )2=4a 2,∴选项C 不正确;∵a 3?a 2=a 5,∴选项D 正确.故选:D .点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n(n 是正整数).(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a ≠0,p 为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(4)此题还考查了科学计数法﹣原数,要熟练掌握,解答此题的关键是要明确:科学记数法a ×10n表示的数“还原”成通常表示的数,就是把a 的小数点向右移动n 位所得到的数.若科学记数法表示较小的数a ×10﹣n,还原为原来的数,需要把a 的小数点向左移动n 位得到原数.5.(3分)(2015?河北)如图所示的三视图所对应的几何体是()A.B.C.D.考点:由三视图判断几何体.分析:对所给四个几何体,分别从主视图和俯视图进行判断.解答:解:从主视图可判断A错误;从俯视图可判断C、D错误.故选B.点评:本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.6.(3分)(2015?河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE考点:三角形的外接圆与外心.分析:利用外心的定义,外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,进而判断得出即可.解答:解:如图所示:只有△ACF的三个顶点不都在圆上,故外心不是点O的是△ACF.故选:B.点评:此题主要考查了三角形外心的定义,正确把握外心的定义是解题关键.7.(3分)(2015?河北)在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④考点:估算无理数的大小;实数与数轴.分析:根据数的平方,即可解答.解答:解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴,∴的点落在段③,故选:C.点评:本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.8.(3分)(2015?河北)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°考点:平行线的性质;垂线.分析:如图,作辅助线;首先运用平行线的性质求出∠DGC的度数,借助三角形外角的性质求出∠ACD即可解决问题.解答:解:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选C.点评:该题主要考查了垂线的定义、平行线的性质、三角形的外角性质等几何知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用平行线的性质、三角形的外角性质等几何知识点来分析、判断、解答.9.(3分)(2015?河北)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A .B.C.D.考点:方向角.分析:根据方向角的定义,即可解答.解答:解:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D符合.故选:D.点评:本题考查了方向角,解决本题的关键是熟记方向角的定义.10.(3分)(2015?河北)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()A.B.C.D.考点:反比例函数的应用;反比例函数的图象.分析:设y=(k≠0),根据当x=2时,y=20,求出k,即可得出y与x的函数图象.解答:解:设y=(k≠0),∵当x=2时,y=20,∴k=40,∴y=,则y与x的函数图象大致是C,故选:C.点评:此题考查了反比例函数的应用,关键是根据题意设出解析式,根据函数的解析式得出函数的图象.11.(2分)(2015?河北)利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×2考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:利用加减消元法解方程组,要消去x,可以将①×(﹣5)+②×2.故选 D点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.(2分)(2015?河北)若关于x的方程x 2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥1考点:根的判别式.分析:根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.解答:解:∵关于x的方程x2+2x+a=0不存在实数根,∴b2﹣4ac=22﹣4×1×a<0,解得:a>1.故选B.点评:此题主要考查了一元二次方程根的情况与判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.13.(2分)(2015?河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是()A.B.C.D.考点:概率公式.分析:由一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为与点数3相差2的有2种情况,直接利用概率公式求解即可求得答案.解答:解:∵一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为点数3相差2的有2种情况,∴掷一次这枚骰子,向上的一面的点数为点数3相差2的概率是:=.故选B.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.14.(2分)(2015?河北)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣4考点:两条直线相交或平行问题.专题:计算题.分析:先求出直线y=﹣x﹣3与y轴的交点,则根据题意得到a<﹣3时,直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,而四个选项中,只有﹣10<a<﹣4满足条件,故选D.解答:解:∵直线y=﹣x﹣3与y轴的交点为(0,﹣3),而直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,∴a<﹣3.故选D.点评:本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.15.(2分)(2015?河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤考点:三角形中位线定理;平行线之间的距离.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.解答:解:∵点A ,B 为定点,点M ,N 分别为PA ,PB 的中点,∴MN 是△PAB 的中位线,∴MN=AB ,即线段MN 的长度不变,故①错误;PA 、PB 的长度随点P 的移动而变化,所以,△PAB 的周长会随点P 的移动而变化,故②正确;∵MN 的长度不变,点P 到MN 的距离等于l 与AB 的距离的一半,∴△PMN 的面积不变,故③错误;直线MN ,AB 之间的距离不随点P 的移动而变化,故④错误;∠APB 的大小点P 的移动而变化,故⑤正确.综上所述,会随点P 的移动而变化的是②⑤.故选B .点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.16.(2分)(2015?河北)如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A .甲、乙都可以B .甲、乙都不可以C .甲不可以、乙可以D .甲可以、乙不可以考点:图形的剪拼.分析:根据图形可得甲可以拼一个边长为的正方形,图乙可以拼一个边长为的正方形.解答:解:所作图形如图所示,甲乙都可以拼一个与原来面积相等的正方形.故选A .点评:本题考查了图形的简拼,解答本题的关键是根据题意作出图形.二.填空题(4个小题,每小题3分,共12分)17.(3分)(2015?河北)若|a|=20150,则a=±1.考点:绝对值;零指数幂.分析:先根据0次幂,得到|a|=1,再根据互为相反数的绝对值相等,即可解答.解答:解:∵|a|=20150,∴|a|=1,∴a=±1,故答案为:±1.点评:本题考查了绝对值,解决本题的关键是熟记互为相反数的两个数绝对值相等.18.(3分)(2015?河北)若a=2b≠0,则的值为.考点:分式的化简求值.专题:计算题.分析:把a=2b代入原式计算,约分即可得到结果.解答:解:∵a=2b,∴原式==,故答案为:点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(3分)(2015?河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.考点:多边形内角与外角.分析:首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出∠3、∠1、∠2的度数是多少,进而求出∠3+∠1﹣∠2的度数即可.解答:解:正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形的每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°.故答案为:24°.点评:此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n 边形的内角和=(n﹣2)?180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.20.(3分)(2015?河北)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=9.考点:等腰三角形的性质.分析:根据等腰三角形的性质和三角形外角的性质依次可得∠A1AB的度数,∠A2A1C的度数,∠A3A2B的度数,∠A4A3C的度数,…,依此得到规律,再根据三角形外角小于90°即可求解.解答:解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1OA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°的度数,∠A4A3C=45,…,∴9°n<90°,解得n<10.故答案为:9.点评:考查了等腰三角形的性质:等腰三角形的两个底角相等;三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和.三.解答题(共6个小题,共66分)21.(10分)(2015?河北)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.考点:整式的混合运算—化简求值.专题:计算题.分析:(1)根据题意列出关系式,去括号合并即可得到结果;(2)把x的值代入计算即可求出值.解答:解:(1)设所捂的二次三项式为A,根据题意得:A=x2﹣5x+1+3x=x2﹣2x+1;(2)当x=+1时,原式=7+2﹣2﹣2+1=6.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.(10分)(2015?河北)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等.考点:平行四边形的判定;命题与定理.分析:(1)命题的题设为“两组对边分别相等的四边形”,结论是“是平行四边形”,根据题设可得已知:在四边形ABCD中,BC=AD,AB=CD,求证:四边形ABCD是平行四边形;(2)连接BD,利用SSS定理证明△ABD≌△CDB可得∠ADB=∠DBC,∠ABD=∠CDB,进而可得AB∥CD,AD∥CB,根据两组对边分别平行的四边形是平行四边形可得四边形ABCD是平行四边形;(3)把命题“两组对边分别相等的四边形是平行四边形”的题设和结论对换可得平行四边形两组对边分别相等.解答:解:(1)已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(2)证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∠ABD=∠CDB,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形;(2)用文字叙述所证命题的逆命题为:平行四边形两组对边分别相等.点评:此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.23.(10分)(2015?河北)水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?考点:一次函数的应用.分析:(1)根据每放入一个大球水面就上升4毫米,即可解答;(2)①根据y=放入大球上面的高度+放入小球上面的高度,即可解答;②根据题意列出不等式,即可解答.解答:解:(1)根据题意得:y=4x大+210;(2)①当x大=6时,y=4×6+210=234,∴y=3x小+234;②依题意,得3x小+234≤260,解得:,∵x小为自然数,∴x小最大为8,即最多能放入8个小球.点评:本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式、一元一次不等式.24.(11分)(2015?河北)某厂生产A ,B 两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A ,B 产品单价变化统计表第一次第二次第三次A 产品单价(元/件) 6 5.2 6.5 B 产品单价(元/件)3.543并求得了A 产品三次单价的平均数和方差:=5.9,s A 2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1)补全如图中B 产品单价变化的折线图.B 产品第三次的单价比上一次的单价降低了25%(2)求B 产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调m%(m >0),使得A 产品这四次单价的中位数是B 产品四次单价中位数的2倍少1,求m 的值.考点:方差;统计表;折线统计图;算术平均数;中位数.分析:(1)根据题目提供数据补充折线统计图即可;(2)分别计算平均数及方差即可;(3)首先确定这四次单价的中位数,然后确定第四次调价的范围,根据“A 产品这四次单价的中位数是B 产品四次单价中位数的2倍少1”列式求m 即可.解答:解:(1)如图2所示:B 产品第三次的单价比上一次的单价降低了=25%,(2)=(3.5+4+3)=3.5,==,∵B产品的方差小,∴B产品的单价波动小;(3)第四次调价后,对于A产品,这四次单价的中位数为=;对于B产品,∵m<0,∴第四次单价大于3,∵﹣1>,∴第四次单价小于4,∴×2﹣1=,∴m=25.点评:本题考查了方差、条形统计图、算术平均数、中位数的知识,解题的关键是根据方差公式进行有关的运算,难度不大.25.(11分)(2015?河北)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.考点:二次函数综合题.分析:(1)把点B的坐标代入函数解析式,列出关于h的方程,借助于方程可以求得h的值;利用抛物线函数解析式得到该图象的对称轴和顶点坐标;(2)把点C的坐标代入函数解析式得到:y C=﹣h2+1,则由二次函数的最值的求法易得y c的最大值,并可以求得此时抛物线的解析式,根据抛物线的增减性来求y1与y2的大小;(3)根据已知条件“O(0,0),A(﹣5,0),线段OA被l只分为两部分,且这两部分的比是1:4”可以推知把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0).由二次函数图象上点的坐标特征可以求得h的值.解答:解:(1)把点B的坐标B(2,1)代入y=﹣(x﹣h)2+1,得1=﹣(2﹣h)2+1.解得h=2.则该函数解析式为y=﹣(x﹣2)2+1(或y=﹣x2+4x﹣3).故抛物线l的对称轴为x=2,顶点坐标是(2,1);(2)点C的横坐标为0,则y C=﹣h2+1.当h=0时,y C=有最大值1,此时,抛物线l为:y=﹣x2+1,对称轴为y轴,开口方向向下,所以,当x≥0时,y随x的增大而减小,所以,x1>x2≥0,y1<y2;(3)∵线段OA被l只分为两部分,且这两部分的比是1:4,且O(0,0),A(﹣5,0),∴把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0).把x=﹣1,y=0代入y=﹣(x﹣h)2+1,得0=﹣(﹣1﹣h)2+1,解得h1=0,h2=﹣2.但是当h=﹣2时,线段OA被抛物线l分为三部分,不合题意,舍去.同样,把x=﹣4,y=0代入y=﹣(x﹣h)2+1,得h=﹣5或h=﹣3(舍去).综上所述,h的值是0或﹣5.点评:本题考查了二次函数综合题.该题涉及到了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,二次函数最值的求法以及点的坐标与图形的性质等知识点,综合性比较强,难度较大.解答(3)题时,注意对h的值根据实际意义进行取舍.26.(14分)(2015?河北)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P在直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x 的代数式表示BN的长,并求x的取值范围.探究:当半圆K与矩形ABCD的边相切时,求sinα的值.考点:圆的综合题.分析:(1)在,当OQ过点B时,在R t△OAB中,AO=AB,得到∠DOQ=∠ABO=45°,求得α=60°﹣45°=15°;(2)如图2,连接AP,由OA+AP≥OP,当OP过点A,即α=60°时,等号成立,于是有AP≥OP﹣OA=2﹣1=1,当α=60°时,P、A之间的距离最小,即可求得结果(3)如图2,设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,过点R作RE⊥KQ于点E,在R t△OPH中,PH=AB=1,OP=2,得到∠POH=30°,求得α=60°﹣30°=30°,由于AD∥BC,得到∠RPO=∠POH=30°,求出∠RKQ=2×30°=60°,于是得到结果;拓展:如图5,由∠OAN=∠MBN=90°,∠ANO=∠BNM,得到△AON∽△BMN求出BN=,如图4,当点Q落在BC上时,x取最大值,作QF⊥AD于点F,BQ=AF=﹣AO=2﹣1,求出x的取值范围是0<x≤﹣1;探究:半圆K与矩形ABCD的边相切,分三种情况;①如图5,半圆K与BC相切于点T,设直线KT与AD,OQ的初始位置所在的直线分别交于点S,O′,于是得到∠KSO=∠KTB=90°,作KG⊥OO′于G,在R t△OSK中,求出OS==2,在R t△OSO′中,SO′=OS?tan60°=2,KO′=2﹣在R t△KGO′中,∠O′=30°,求得KG=KO′=﹣,在R t△OGK中,求得结果;②当半圆K与AD相切于T,如图6,同理可得sinα的值③当半圆K与CD切线时,点Q与点D重合,且为切点,得到α=60°于是结论可求.解答:解:发现:(1)在,当OQ过点B时,在R t△OAB中,AO=AB,∴∠DOQ=∠ABO=45°,∴α=60°﹣45°=15°;(2)如图2,连接AP,∵OA+AP≥OP,当OP过点A,即α=60°时,等号成立,∴AP≥OP﹣OA=2﹣1=1,∴当α=60°时,P、A之间的距离最小,∴PA的最小值=1;(3)如图2,设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,过点R作RE⊥KQ于点E,在R t△OPH中,PH=AB=1,OP=2,∴∠POH=30°,∴α=60°﹣30°=30°,∵AD∥BC,∴∠RPO=∠POH=30°,∴∠RKQ=2×30°=60°,∴S扇形KRQ==,在R t△RKE中,RE=RK?sin60°=,∴S△PRK=?RE=,∴S阴影=+;拓展:如图5,∵∠OAN=∠MBN=90°,∠ANO=∠BNM,∴△AON∽△BMN,∴,即,∴BN=,如图4,当点Q落在BC上时,x取最大值,作QF⊥AD于点F,BQ=AF=﹣AO=2﹣1,∴x的取值范围是0<x≤﹣1;探究:半圆K与矩形ABCD的边相切,分三种情况;①如图5,半圆K与BC相切于点T,设直线KT与AD,OQ的初始位置所在的直线分别交于点S,O′,则∠KSO=∠KTB=90°,作KG⊥OO′于G,在R t△OSK中,OS==2,在R t△OSO′中,SO′=OS?tan60°=2,KO′=2﹣,在R t△KGO′中,∠O′=30°,∴KG=KO′=﹣,∴在R t△OGK中,sinα===,②当半圆K与AD相切于T,如图6,同理可得sinα====;③当半圆K与CD切线时,点Q与点D重合,且为切点,∴α=60°,∴sinα=sin60,综上所述sinα的值为:或或.点评:本题考查了矩形的性质,直线与圆的位置关系,勾股定理,锐角三角函数,根据题意正确的画出图形是解题的关键.。

2015河北数学中考试卷+答案

2015河北数学中考试卷+答案

2015年河北省初中毕业生升学文化课考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共42分)一、选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:3-2×(-1)=( )A.5B.1C.-1D.62.下列说法正确的是( )A.1的相反数是-1B.1的倒数是-1C.1的立方根是±1D.-1是无理数3.一张菱形纸片按图1、图2依次对折后,再按图3打出一个圆形小孔,则展开铺平后的图案是( )4.下列运算正确的是( )A.(12)-1=-12B.6×107=6 000 000C.(2a)2=2a2D.a3·a2=a55.图中的三视图所对应的几何体是( )6.如图,AC,BE是☉O的直径,弦AD与BE交于点F,下列三角形中,外心不是··点O的是( )A.△ABEB.△ACFC.△ABDD.△ADE7.在数轴上标注了四段范围,如图,则表示√8的点落在( )A.段①B.段②C.段③D.段④8.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°9.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上.符合条件的示意图是( )10.一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是( )11.利用加减消元法解方程组{2x+5x=-10,①5x-3x=6,②下列做法正确的是( )A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×212.若关于x的方程x2+2x+a=0不存在...实数根,则a的取值范围是( )A.a<1B.a>1C.a≤1D.a≥113.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( )A.12B.13C.15D.1614.如图,直线l:y=-23x-3与直线y=a(a为常数)的交点在第四象限,则a可能在( ) A.1<a<2 B.-2<a<0 C.-3≤a≤-2 D.-10<a<-415.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是( )A.②③B.②⑤C.①③④D.④⑤16.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )A.甲、乙都可以B.甲、乙都不可以C.甲不可以,乙可以D.甲可以,乙不可以第Ⅱ卷(非选择题,共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.若|a|=2 0150,则a= .的值为.18.若a=2b≠0,则x2-x2x2-ab19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1-∠2=°.20.如图,∠BOC=9°,点A在OB上,且OA=1.按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n= .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分10分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:-3x=x2-5x+1.(1)求所捂的二次三项式;(2)若x=√6+1,求所捂二次三项式的值.22.(本小题满分10分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;证明:(3)用文字叙述所证命题的逆命题为.23.(本小题满分10分)水平放置的容器内原有210毫米高的水,如图.将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小.①求y与x小的函数关系式(不必写出x小的范围);②限定水面高不超过260毫米,最多能放入几个小球?24.(本小题满分11分)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线图:A,B产品单价变化统计表第一次第二次第三次A产品单价(元/件)6 5.2 6.5B产品单价(元/件)3.5 4 3并求得了A产品三次单价的平均数和方差:x A=5.9;x A2=13[(6-5.9)2+(5.2-5.9)2+(6.5-5.9)2]=43150.(1)补全图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了%;(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为 6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.25.(本小题满分11分)如图,已知点O(0,0),A(-5,0),B(2,1),抛物线l:y=-(x-h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y C,求y C的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分...,且这两部分的比是1∶4时,求h的值.26.(本小题满分14分)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).图1发现(1)当α=0°,即初始位置时,点P 直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B;(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小,并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求α及S阴影.图2拓展如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.图3探究当半圆K与矩形ABCD的边相切时,求sin α的值.备用图答案全解全析:一、选择题1.A 原式=3-(-2)=3+2=5,故选A.2.A 根据在一个数的前面加上负号就是这个数的相反数,知1的相反数是-1,故选A.3.C 可以动手操作,也可根据对折的顺序及菱形的对称性来判断.选C.)-1=2,本选项错误;4.D A.(12B.6×107=60 000 000,本选项错误;C.(2a)2=4a2,本选项错误;D.a3·a2=a3+2=a5,本选项正确,故选D.5.B 根据主视图排除选项A,C,D,故选B.6.B 外心即为三角形外接圆的圆心,∵△ACF的顶点F不在圆O上,∴圆O不是△ACF的外接圆,∴点O不是△ACF的外心,故选B.7.C ∵2.82=7.84,2.92=8.41,∴√2.82<√8<√2.92,故选C.8.C 延长AC交直线EF于点G,∵AB∥EF,∴∠BAC=∠CGD=50°,∵∠ACD是△CDG的外角,∴∠ACD=∠CGD+∠CDG=50°+90°=140°,故选C.9.D 本题考查方向角的简单识别,选D.10.C 由题意设y=x(k>0,x>0),因为当x=2时,y=20,所以k=40,故选C.x11.D 解二元一次方程组时,在消去一个未知数之前应先计算方程组的各个方程中这个未知数的系数的最小公倍数,然后进行消元,选项D正确.12.B 由题意知Δ=4-4a<0,∴a>1,故选B.13.B ∵任意抛掷一枚质地均匀的正方体骰子一次,向上一面的点数有6种情况,与点数3相差2的点数为1或5,∴任意抛掷一枚质地均匀的正方体骰子一次,向上一面的点数与点数3相差2的概率为26=13.故选B.14.D 直线y=-23x-3与y 轴的交点坐标为(0,-3),若直线y=a 与直线y=-23x-3的交点在第四象限,则a<-3,故选D.15.B ∵点M,N 分别为PA,PB 的中点,∴无论点P 怎样移动,总有MN=12AB,直线l 与直线MN 的距离及直线MN,AB 之间的距离不变,所以选项①③④中的值不变.随着点P 的移动,点P 与点A,B 的距离及∠APB 的大小发生变化,故选B.16.A 将甲纸片拼成如图1所示的正方形,其面积与原来矩形的面积相等,将乙纸片拼成如图2所示的正方形,其面积与原来矩形的面积相等,故选A.图1 图2 二、填空题 17.答案 ±1解析 ∵|a|=2 0150=1,∴a=±1. 18.答案 32解析 ∵a=2b≠0,∴原式=(x +x )(x -x )x (x -x )=x +x x =2x +x 2x =32.19.答案 24解析 正三角形、正方形、正五边形、正六边形的每个内角的度数分别为60°、90°、108°、120°,由题图可知∠3=90°-60°=30°,∠1=120°-108°=12°,∠2=108°-90°=18°,所以∠3+∠1-∠2=30°+12°-18°=24°. 20.答案 9解析 由题意可知:AO=A 1A,A 1A=A 2A 1,……, 则∠AOA 1=∠OA 1A,∠A 1AA 2=∠A 1A 2A,……,∵∠BOC=9°,∴∠A 1AB=2×9°=18°,∠A 2A 1C=27°,∠A 3A 2B=36°,∠A 4A 3C=45°,……, ∴9°(n+1)=90°,解得n=9.三、解答题21.解析 (1)设所捂的二次三项式为A,则A=x 2-5x+1+3x(2分) =x 2-2x+1.(4分)(2)若x=√6+1,则A=(x-1)2(6分)=(√6+1-1)2(7分) =6.(10分)22.解析 (1)CD.(1分) 平行.(2分)(2)证明:连结BD.(3分)在△ABD 和△CDB 中, ∵AB=CD,AD=CB,BD=DB, ∴△ABD≌△CDB.(5分)∴∠1=∠2,∠3=∠4, ∴AB∥CD,AD∥CB.(7分)∴四边形ABCD 是平行四边形.(8分) (3)平行四边形的对边相等.(10分) 23.解析 (1)y=4x 大+210.(3分) (2)①当x 大=6时,y=4×6+210=234.∴y=3x 小+234;(7分) ②依题意,得3x 小+234≤260, 解得x 小≤823,(9分)∵x 小为自然数,∴x 小最大为8,即最多能放入8个小球.(10分)评析 一次函数的应用问题大多数以生活情境为背景命题,解答此类试题,应在弄懂题意的前提下,建立函数模型,然后结合函数性质以及方程(组),不等式知识作答. 24.解析 (1)如图所示.(2分)25.(4分)(2)x B =13(3.5+4+3)=3.5,x B 2=(3.5-3.5)2+(4-3.5)2+(3-3.5)23=16.(7分) ∵16<43150, ∴B 产品的单价波动小.(8分) (3)第四次调价后,对于A 产品,这四次单价的中位数为6+6.52=254;(9分)对于B 产品,∵m>0, ∴第四次单价大于3. 又∵3.5+42×2-1=132>254, ∴第四次单价小于4.∴3(1+x %)+3.52×2-1=254,(10分) ∴m=25.(11分)25.解析 (1)把x=2,y=1代入y=-(x-h)2+1,得h=2.∴解析式为y=-(x-2)2+1(或y=-x 2+4x-3).(2分) 对称轴为直线x=2,顶点为B(2,1).(4分)(2)点C 的横坐标为0,则y C =-h 2+1, ∴当h=0时,y C 有最大值,为1.(5分)此时,l 为y=-x 2+1,对称轴为y 轴,当x≥0时,y 随着x 的增大而减小, ∴x 1>x 2≥0时,y 1<y 2.(7分)(3)把线段OA 分成1∶4两部分的点为(-1,0)或(-4,0).把x=-1,y=0代入y=-(x-h)2+1,得h=0或h=-2. 但h=-2时,线段OA 被分为三部分,不合题意,舍去.同样,把x=-4,y=0代入y=-(x-h)2+1,得h=-5或h=-3(舍去). ∴h 的值为0或-5.(11分) 26.解析 发现 (1)在.(1分)当OQ 过点B 时,在Rt△OAB 中,AO=AB,得∠DOQ=∠ABO=45°, ∴α=60°-45°=15°.(3分)(2)如图1,连结AP,有OA+AP≥OP,当OP 过点A,即α=60°时等号成立. ∴AP≥OP -OA=2-1=1.∴当α=60°时,P,A 间的距离最小.(5分) PA 的最小值为1.(6分)图1(3)如图1,设半圆K 与PC 交点为R,连结RK,过点P 作PH⊥AD 于点H,过点R 作RE⊥KQ 于点E.在Rt△OPH 中,PH=AB=1,OP=2,∴∠POH=30°, ∴α=60°-30°=30°.(7分) 由AD∥BC 知,∠RPQ=∠POH=30°. ∴∠RKQ=2×30°=60°. ∴S 扇形RKQ =60π(12)2360=π24.在Rt△RKE 中,RE=RK·sin 60°=√34, ∴S △RKP =12PK·RE=√316.∴S阴影=π24+√316.(8分) 拓展 如图3,∠OAN=∠MBN=90°,∠ANO=∠BNM, ∴△AON∽△BMN, ∴xx xx =xxxx ,即1-xx xx =1x ,∴BN=xx +1.(10分)如图2,当点Q 落在BC 上时,x 取最大值,作QF⊥AD 于点F.图2BQ=AF=√xx 2-Q x 2-AO=√32-12-1=2√2-1.∴x 的取值范围是0<x≤2√2-1.(11分)[注:如果考生答“x≤2√2-1或x<2√2-1”均不扣分] 探究 半圆与矩形相切,分三种情况:①如图3,半圆K 与BC 切于点T,设直线KT 与AD 和OQ 的初始位置所在直线分别交于点S,O',则∠KSO=∠KTB=90°,作KG⊥OO'于点G.11图3 Rt△OSK 中,OS=√xx 2-S x 2=√(52)2-(32)2=2. Rt△OSO'中,SO'=OS·tan 60°=2√3,KO'=2√3-32.Rt△KGO'中,∠O'=30°,∴KG=12KO'=√3-34.∴Rt△OGK 中,sin α=xx xx =√3-3452=4√3-310.②半圆K 与AD 切于点T,如图4,图4 同理可得sin α=xx xx =12O'K 52=12(O'T -KT)52=√(52)2-(12)2×√3-125=6√2-110.③当半圆K 与CD 相切时,点Q 与点D 重合,且为切点. ∴α=60°,∴sin α=sin 60°=√32.综上所述,sin α的值为4√3-310或6√2-110或√32.(14分)。

2015年河北省中考数学试卷-答案

2015年河北省中考数学试卷-答案

河北省2015年初中毕业生升学文化课考试数学答案解析第Ⅰ卷一、选择题1.【答案】A【解析】32(1)3(2)325-⨯-=--=+=,故选A .【考点】有理数的运算2.【答案】A【解析】1的相反数是1-,1的倒数是1,1的立方根是1,1-是有理数,故选A .【考点】相反数、倒数、立方根及无理数的概念3.【答案】C【解析】将菱形按图依次对折后,在菱形的钝角处有两个对称的圆孔,故选C .【考点】图形的折叠4.【答案】D 【解析】111()2122-==,761060000000⨯=,()2224=a a ,325∙=a a a ,故选D . 【考点】幂的运算5.【答案】B【解析】从正面看到的是几何体的主视图,由主视图可推断只有B 符合,故选B .【考点】几何体的三视图6v 【答案】B【解析】△ABE ,△ABD ,△ADE 的顶点都在O 上,其外心都是点O ,而△ACF 的顶点F 不在O 上,所以△ACF 的外心不是点O ,故选B .【考点】三角形的外心7.【答案】C2 1.414 2.828=⨯=C .【考点】数轴与无理数的估算8.【答案】C【解析】如图,过点C 作∥CH AB ,∵∥AB EF ,∴∥CH EF ,∴ 50∠=∠=︒HCA CAB ,180∠+∠=︒HCD CDE ,∵ ⊥CD EF ,∴90∠=︒CDE ,2∴90∠=︒HCD ,。

∴140∠=︒ACD ,故选C .【考点】平行线的性质9.【答案】D【解析】由题意知,R 位于岛P 南偏东30︒即PR 与南北方向的夹角为30︒;R 位于岛Q 南偏西45︒方向,即QR 与南北方向的夹角为45︒,故选D .【考点】方位角10.【答案】C 【解析】设=k y x,当2=x 时,20=y ,∴40=k ,∴双曲线图象过点()1,40,故选C . 【考点】反比例函数的图象11.【答案】D【解析】∵要消去x ,可将52⨯-⨯①②或可将(5)2⨯-+⨯①②;要消去y ,可以35⨯+⨯①②,故选D .【考点】在加减消元法解二元一次方程组12.【答案】B【解析】∵关于x 的方程20++=x x a 不存在实数根,∴2240-<a ,解得1>a ,故选B .【考点】一元二次方程的根的判别式13.【答案】B【解析】将正方体骰子抛掷一次,向上一面的点数有1,2,3,4,5,6,六种可能,其中点数与3相差2的是1和5两种,所以点数与3相差2的概率是2163=,故选B . 【考点】概率的计算14.【答案】D 【解析】直线233=--y x 与直线=y a 的交点坐标为39(,)22--a a ,∵交点在第四象限,∴39022-->a 且0<a ,解得3<-a ,∴a 可能在104-<<-a ,故选D .【考点】一次函数图象的交点坐标与不等式15.【答案】B【解析】点,M N 分别为,PA PB 的中点,点A ,点B 是定点,∴12=MN AB ,即MN 的长不变;随着点P 的移动,PA PB 的长也发生变化,∴△PAB 的周长发生变化;直线l 和MN 之间的距离保持不变,∴△PMN 的面积不变;直线,MN AB 之间的距离也不变;∠APB 的大小随着点P 的运动会变化,故选B .【考点】动点及角形中位线的有关计算16.【答案】A【解析】甲、乙两矩形的面积分别为2和5,要拼成面积相等的正方形,则拼成的两正方形的边长分别为甲沿虚线剪开后是四个全等的等腰直角三角形,,乙沿虚线剪开后得到四个全等的直角三角形和一个边长为1的正方形,其中直角三角形的两直角边分别为1和2A .【考点】矩形的性质及图形的拼接第Ⅱ卷二、填空题17.【答案】1±【解析】∵020151=,∴1=a ,∴1=±a .【考点】零指数幂和绝对值18.【答案】32【解析】∵20=≠a b ,∴()()()2222322+-+++=+==--a b a b a b a b b b a ab a a b a b . 【考点】分式的化简求值19.【答案】24【解析】∵正三角形、正方形、正五边形、正六边形的每个内角分别为60,90,108,120︒︒︒︒,∴112∠=︒,218∠=︒,330∠=︒,∴31 2 30121824∠+∠-∠=︒+︒-︒=︒.【考点】正多边形的内角20.【答案】9【解析】∵9∠=︒BOC ,∴画一条线段后外角129∠=⨯︒A AB ,画两条线段后外角12 3 9∠=⨯︒CA A ,画三条线段后外角3249∠=⨯︒A A B ,……,画n 条线段后外角的度数为()19+⨯︒n ,当()1990+⨯︒=︒n ,9=n ,即得到第9条线段后,就不能画出符合条件的线段了.【考点】三角形的外角及规律探索三、解答题21.【答案】解:(1)设所捂的二次三项式为A ,则2513 =-++x x A x221=-+x x .(2)若1=x ,则()21=-A x)211=-6=.【考点】整式的运算及化简求值22.【答案】(1)CD平行(2)证明:连接BD .在 △ABD 和 △CDB 中,∵ =AB CD , =AD CB , =BD DB ,∴ △≌△ABD CDB ,∴12∠=∠,34∠=∠,∴∥AB CD ,∥AD CB ,∴四边形 ABCD 是平行四边形.(3)平行四边形的对边相等.【考点】平行四边形判定方法的验证23.【答案】解:(1)4210=+大y x .(2)①当6=大x 时, 46210234=⨯+=y ,∴3234=+小y x .②依题意得3234260+≤小x ,解得283≤小x , ∵小x 为自然数, ∴小x 最大为8,即最多能放入8个小球.【考点】一次函数及一元一次不等式的实际应用24.【答案】解:(1)如图所示.(2)()3.5435133.++==B x , ()()()22223.5 3.54 3.53 3.5136-+-+-==Bs . ∵1436150<,∴B 产品的单价波动小. (3)第四次调价后, 对于A 产品,这四次单价的中位数为6 6.52524+=; 对于B 产品,∵0>m ,∴第四次单价大于3. 又∵3.54132521224+⨯-=>, ∴第四次单价小于4.∴()31 3.5252124++⨯-=m %, ∴25=m .25.【答案】解:(1)把 2=x , 1=y 代人()21=--+y x h 得2=h ,∴抛物线l 的解析式为()221=--+y x (或2+43=--y x x ),对称轴2=x ,顶点()2,1B .(2)点C 的横坐标为0,则2+1=-c y h ,当0=h 时,c y 有最大值为1.此时,l 为1=-+y x ,对称轴为y 轴,当0≥x 时,y 随着x 的增大而减小,∴当120>≥x x 时,12<y y .(3)把OA 分1:4两部分的点为()1,0-或()4,0-. 把 1=-x , 0=y 代人()21=--+y x h 得 0=h 或 2=-h . 当2=-h 时,OA 被分为三部分,不合题意,舍去. 同理,把4=-x ,0=y 代人()2 1=--+y x h 得5=-h 或 3()=-舍去h .∴h 的值为0或5-.【考点】二次函数的图象与性质26.【答案】发现 (1)在当OQ 过点B 时,在△Rt OAB 中,=AO AB ,得45∠=∠=︒COQ ABO ,∴604515=︒-︒=︒a .(2)如图1,连接AP ,有+≥OA AP OP ,当OP 过点A ,即60=a 时等号成立,∴0211≥-=-=AP P OA ,当60=a 时,,P A 间的距离最小, PA 的最小值为1.(3)如图1,设半圆K 与PC 交点为R ,连接RK ,过点P 作⊥PH AD 于点H ,过点R 作⊥RE KQ 于点E 。

年河北省中考数学试题(解析版)

年河北省中考数学试题(解析版)

2015年河北省中考数学试卷一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分每小题的四个选项中只有一个是正确的)1.(3分)(2015•河北)计算:3﹣2×(﹣1)=()A.5 B.1 C.﹣1 D.62.(3分)(2015•河北)下列说法正确的是()A.1的相反数是﹣1 B.1的倒数是﹣1C.1的立方根是±1 D.﹣1是无理数3.(3分)(2015•河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()ABCD4.(3分)(2015•河北)下列运算正确的是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2D.a3•a2=a55.(3分)(2015•河北)如图所示的三视图所对应的几何体是()A.B.C.D.6.(3分)(2015•河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE7.(3分)(2015•河北)在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④8.(3分)(2015•河北)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°9.(3分)(2015•河北)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.10.(3分)(2015•河北)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()ABCD11.(2分)(2015•河北)利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×212.(2分)(2015•河北)若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1D.a≥113.(2分)(2015•河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是()A.B.C.D.14.(2分)(2015•河北)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2B.﹣2<a<0C.﹣3≤a≤﹣2 D.﹣10<a<﹣415.(2分)(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为P A,PB的中点,对下列各值:①线段MN的长;②△P AB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤16.(2分)(2015•河北)如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以二.填空题(4个小题,每小题3分,共12分)17.(3分)(2015•河北)若|a|=20150,则a=.18.(3分)(2015•河北)若a=2b≠0,则的值为.19.(3分)(2015•河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.20.(3分)(2015•河北)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=.三.解答题(共6个小题,共66分)21.(10分)(2015•河北)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.22.(10分)(2015•河北)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为.23.(10分)(2015•河北)水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?24.(11分)(2015•河北)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表并求得了A产品三次单价的平均数和方差:=5.9,s A2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了%(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.25.(11分)(2015•河北)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.26.(14分)(2015•河北)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.探究:当半圆K与矩形ABCD的边相切时,求sinα的值.参考答案与试题解析一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分每小题的四个选项中只有一个是正确的)1.(3分)(2015•河北)计算:3﹣2×(﹣1)=()A.5 B.1 C.﹣1 D.6考点:有理数的混合运算.分析:先算乘法,再算减法,由此顺序计算即可.解答:解:原式=3﹣(﹣2)=3+2=5.故选:A.点评:此题考查有理数的混合运算,掌握运算顺序与符号的判定是解决问题的关键.2.(3分)(2015•河北)下列说法正确的是()A.1的相反数是﹣1 B.1的倒数是﹣1C.1的立方根是±1 D.﹣1是无理数考点:立方根;相反数;倒数;无理数.分析:根据相反数、倒数、立方根,即可解答.解答:解:A、1的相反数是﹣1,正确;B、1的倒数是1,故错误;C、1的立方根是1,故错误;D、﹣1是有理数,故错误;故选:A.点评:本题考查了相反数、倒数、立方根,解决本题的关键是熟记相反数、倒数、立方根的定义.3.(3分)(2015•河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.考点:剪纸问题.分析:对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.解答:解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.点评:此题主要考查了剪纸问题;学生的动手能力及空间想象能力是非常重要的,做题时,要注意培养.4.(3分)(2015•河北)下列运算正确的是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2 D.a3•a2=a5考点:幂的乘方与积的乘方;科学记数法—原数;同底数幂的乘法;负整数指数幂.分析:A:根据负整数指数幂的运算方法判断即可.B:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数,据此判断即可.C:根据积的乘方的运算方法判断即可.D:根据同底数幂的乘法法则判断即可.解答:解:∵=2,∴选项A不正确;∵6×107=60000000,∴选项B不正确;∵(2a)2=4a2,∴选项C不正确;∵a3•a2=a5,∴选项D正确.故选:D.点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(4)此题还考查了科学计数法﹣原数,要熟练掌握,解答此题的关键是要明确:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10﹣n,还原为原来的数,需要把a的小数点向左移动n位得到原数.5.(3分)(2015•河北)如图所示的三视图所对应的几何体是()A.B.C.D.考点:由三视图判断几何体.分析:对所给四个几何体,分别从主视图和俯视图进行判断.解答:解:从主视图可判断A错误;从俯视图可判断C、D错误.故选B.点评:本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.6.(3分)(2015•河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE考点:三角形的外接圆与外心.分析:利用外心的定义,外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,进而判断得出即可.解答:解:如图所示:只有△ACF的三个顶点不都在圆上,故外心不是点O的是△ACF.故选:B.点评:此题主要考查了三角形外心的定义,正确把握外心的定义是解题关键.7.(3分)(2015•河北)在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④考点:估算无理数的大小;实数与数轴.分析:根据数的平方,即可解答.解答:解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴,∴的点落在段③,故选:C.点评:本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.8.(3分)(2015•河北)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°考点:平行线的性质;垂线.分析:如图,作辅助线;首先运用平行线的性质求出∠DGC的度数,借助三角形外角的性质求出∠ACD即可解决问题.解答:解:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选C.点评:该题主要考查了垂线的定义、平行线的性质、三角形的外角性质等几何知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用平行线的性质、三角形的外角性质等几何知识点来分析、判断、解答.9.(3分)(2015•河北)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.考点:方向角.分析:根据方向角的定义,即可解答.解答:解:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D符合.故选:D.点评:本题考查了方向角,解决本题的关键是熟记方向角的定义.10.(3分)(2015•河北)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()A.B.C.D.考点:反比例函数的应用;反比例函数的图象.分析:设y=(k≠0),根据当x=2时,y=20,求出k,即可得出y与x的函数图象.解答:解:设y=(k≠0),∵当x=2时,y=20,∴k=40,∴y=,则y与x的函数图象大致是C,故选:C.点评:此题考查了反比例函数的应用,关键是根据题意设出解析式,根据函数的解析式得出函数的图象.11.(2分)(2015•河北)利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×2考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:利用加减消元法解方程组,要消去x,可以将①×(﹣5)+②×2.故选D点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.(2分)(2015•河北)若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥1考点:根的判别式.分析:根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.解答:解:∵关于x的方程x2+2x+a=0不存在实数根,∴b2﹣4ac=22﹣4×1×a<0,解得:a>1.故选B.点评:此题主要考查了一元二次方程根的情况与判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.(2分)(2015•河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是()A.B.C.D.考点:概率公式.分析:由一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为与点数3相差2的有2种情况,直接利用概率公式求解即可求得答案.解答:解:∵一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为点数3相差2的有2种情况,∴掷一次这枚骰子,向上的一面的点数为点数3相差2的概率是:=.故选B.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.14.(2分)(2015•河北)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣4考点:两条直线相交或平行问题.专题:计算题.分析:先求出直线y=﹣x﹣3与y轴的交点,则根据题意得到a<﹣3时,直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,而四个选项中,只有﹣10<a<﹣4满足条件,故选D.解答:解:∵直线y=﹣x﹣3与y轴的交点为(0,﹣3),而直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,∴a<﹣3.点评:本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.15.(2分)(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为P A,PB的中点,对下列各值:①线段MN的长;②△P AB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤考点:三角形中位线定理;平行线之间的距离.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.解答:解:∵点A,B为定点,点M,N分别为P A,PB的中点,∴MN是△P AB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;P A、PB的长度随点P的移动而变化,所以,△P AB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.16.(2分)(2015•河北)如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以考点:图形的剪拼.分析:根据图形可得甲可以拼一个边长为的正方形,图乙可以拼一个边长为的正方形.解答:解:所作图形如图所示,甲乙都可以拼一个与原来面积相等的正方形.故选A.点评:本题考查了图形的简拼,解答本题的关键是根据题意作出图形.二.填空题(4个小题,每小题3分,共12分)17.(3分)(2015•河北)若|a|=20150,则a=±1.考点:绝对值;零指数幂.分析:先根据0次幂,得到|a|=1,再根据互为相反数的绝对值相等,即可解答.解答:解:∵|a|=20150,∴|a|=1,∴a=±1,故答案为:±1.点评:本题考查了绝对值,解决本题的关键是熟记互为相反数的两个数绝对值相等.18.(3分)(2015•河北)若a=2b≠0,则的值为.考点:分式的化简求值.专题:计算题.分析:把a=2b代入原式计算,约分即可得到结果.解答:解:∵a=2b,∴原式==,故答案为:点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(3分)(2015•河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.考点:多边形内角与外角.分析:首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出∠3、∠1、∠2的度数是多少,进而求出∠3+∠1﹣∠2的度数即可.解答:解:正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形的每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°.故答案为:24°.点评:此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n边形的内角和=(n﹣2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.20.(3分)(2015•河北)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=9.考点:等腰三角形的性质.分析:根据等腰三角形的性质和三角形外角的性质依次可得∠A1AB的度数,∠A2A1C的度数,∠A3A2B的度数,∠A4A3C 的度数,…,依此得到规律,再根据三角形外角小于90°即可求解.解答:解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1OA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°的度数,∠A4A3C=45,…,∴9°n<90°,解得n<10.故答案为:9.点评:考查了等腰三角形的性质:等腰三角形的两个底角相等;三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和.三.解答题(共6个小题,共66分)21.(10分)(2015•河北)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.考点:整式的混合运算—化简求值.专题:计算题.分析:(1)根据题意列出关系式,去括号合并即可得到结果;(2)把x的值代入计算即可求出值.解答:解:(1)设所捂的二次三项式为A,根据题意得:A=x2﹣5x+1+3x=x2﹣2x+1;(2)当x=+1时,原式=7+2﹣2﹣2+1=6.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.(10分)(2015•河北)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等.考点:平行四边形的判定;命题与定理.分析:(1)命题的题设为“两组对边分别相等的四边形”,结论是“是平行四边形”,根据题设可得已知:在四边形ABCD中,BC=AD,AB=CD,求证:四边形ABCD是平行四边形;(2)连接BD,利用SSS定理证明△ABD≌△CDB可得∠ADB=∠DBC,∠ABD=∠CDB,进而可得AB∥CD,AD∥CB,根据两组对边分别平行的四边形是平行四边形可得四边形ABCD是平行四边形;(3)把命题“两组对边分别相等的四边形是平行四边形”的题设和结论对换可得平行四边形两组对边分别相等.解答:解:(1)已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(2)证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∠ABD=∠CDB,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形;(2)用文字叙述所证命题的逆命题为:平行四边形两组对边分别相等.点评:此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.23.(10分)(2015•河北)水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?考点:一次函数的应用.分析:(1)根据每放入一个大球水面就上升4毫米,即可解答;(2)①根据y=放入大球上面的高度+放入小球上面的高度,即可解答;②根据题意列出不等式,即可解答.解答:解:(1)根据题意得:y=4x大+210;(2)①当x大=6时,y=4×6+210=234,∴y=3x小+234;②依题意,得3x小+234≤260,解得:,∵x小为自然数,∴x小最大为8,即最多能放入8个小球.点评:本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式、一元一次不等式.24.(11分)(2015•河北)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表第一次第二次第三次A产品单价(元/件)6 5.2 6.5B产品单价(元/件)3.5 4 3并求得了A产品三次单价的平均数和方差:=5.9,s A2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了25%(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.考点:方差;统计表;折线统计图;算术平均数;中位数.分析:(1)根据题目提供数据补充折线统计图即可;(2)分别计算平均数及方差即可;(3)首先确定这四次单价的中位数,然后确定第四次调价的范围,根据“A产品这四次单价的中位数是B产品四次单价中位数的2倍少1”列式求m即可.解答:解:(1)如图2所示:B产品第三次的单价比上一次的单价降低了=25%,(2)=(3.5+4+3)=3.5,==,∵B产品的方差小,∴B产品的单价波动小;(3)第四次调价后,对于A产品,这四次单价的中位数为=;对于B产品,∵m<0,∴第四次单价大于3,∵﹣1>,∴第四次单价小于4,∴×2﹣1=,∴m=25.点评:本题考查了方差、条形统计图、算术平均数、中位数的知识,解题的关键是根据方差公式进行有关的运算,难度不大.25.(11分)(2015•河北)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.考点:二次函数综合题.分析:(1)把点B的坐标代入函数解析式,列出关于h的方程,借助于方程可以求得h的值;利用抛物线函数解析式得到该图象的对称轴和顶点坐标;(2)把点C的坐标代入函数解析式得到:y C=﹣h2+1,则由二次函数的最值的求法易得y c的最大值,并可以求得此时抛物线的解析式,根据抛物线的增减性来求y1与y2的大小;(3)根据已知条件“O(0,0),A(﹣5,0),线段OA被l只分为两部分,且这两部分的比是1:4”可以推知把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0).由二次函数图象上点的坐标特征可以求得h的值.解答:解:(1)把点B的坐标B(2,1)代入y=﹣(x﹣h)2+1,得1=﹣(2﹣h)2+1.解得h=2.则该函数解析式为y=﹣(x﹣2)2+1(或y=﹣x2+4x﹣3).故抛物线l的对称轴为x=2,顶点坐标是(2,1);(2)点C的横坐标为0,则y C=﹣h2+1.当h=0时,y C=有最大值1,此时,抛物线l为:y=﹣x2+1,对称轴为y轴,开口方向向下,所以,当x≥0时,y随x的增大而减小,所以,x1>x2≥0,y1<y2;(3)∵线段OA被l只分为两部分,且这两部分的比是1:4,且O(0,0),A(﹣5,0),∴把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0).把x=﹣1,y=0代入y=﹣(x﹣h)2+1,得0=﹣(﹣1﹣h)2+1,解得h1=0,h2=﹣2.但是当h=﹣2时,线段OA被抛物线l分为三部分,不合题意,舍去.同样,把x=﹣4,y=0代入y=﹣(x﹣h)2+1,得h=﹣5或h=﹣3(舍去).综上所述,h的值是0或﹣5.点评:本题考查了二次函数综合题.该题涉及到了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,二次函数最值的求法以及点的坐标与图形的性质等知识点,综合性比较强,难度较大.解答(3)题时,注意对h 的值根据实际意义进行取舍.26.(14分)(2015•河北)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:。

2015年河北省中考数学试题与答案(清晰扫描版)

2015年河北省中考数学试题与答案(清晰扫描版)

2015年河北省初中毕业生升学文化课考试数学试卷本试卷分卷I和卷II两部分;卷I为选择题,卷II为非选择题. 本试卷总分120分,考试时间120分钟.卷I (选择题,共42分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上.考试结束,监考人员将试卷和答题卡一井收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.—、选择题(本大題共16个小題,1〜10小题,每小题3分;11〜16小题,每小题2分,共42分.在每小题给出的四个选项中.只有一项是符合题目要求的)1. 计算:3-2x(-l) =A. 5C・-12. 下列说法正确的是A・1的相反数是一1C・1的立方根是±13. 一张菱形纸片按图1-1.图1・2依次对折后,再按图1・3打出一个圆B. 1D. 6B.】的倒数是-】D. -1是无理数形小孔,则展开铺平后的图案是D.段④8・如图 5. AB//EF, CDJLEF. ZB4C=50h 贝ljZJCD=B. 130° D. 150°4. F 列运算正确的是丄<2 B ・ 6xlO 7 =60X)000C. (2a)2 = 2a 26.如图3, AC. BE 是00的直径,弦4D 与BE 交于点F,下列三角形中,外心不是点O 的是A. ZBEB. ^ACFC. MBDD. ^ADE7.在数轴上标注了四段范IS,如图4,则表示迓的点落在26 V\2.72.8"图4A.段①B.段②C.段③ A. 120° C. 140°5.出 左視图B图3图59. 己知:岛F位于岛0的正西方,由岛几0分别测得船R位于南偏东30•和南偏西45•方向10. 一台印刷机每年可印刷的书本数量丿(万册)与它的使屋时(53x(年)成反比例关系,11. 利用加减消元法解方程组+ = -10,咚,下列做法正确的是[5x-3y = 6 ②A. 要消去y,可以将①x5 +②x2B. 要消去x,可以将①x3 +②x(-5)C. 要消去〃可以将①x5 +②x3D. 耍消去炊可以将①x(-5) +②x212.若关于x 的方程x 2+2x + a = 0不存在实数根,则a 的取值范围是• • •A. a<\B. a>\13.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是A.丄B.- 2 3C. \D.丄 5 6 B. 914.如图6,直线/: y = -^x-3与宜线y^a (a 为常数)的交点 在第四象限.则a 可能在A. \<a<2 B ・一2GV0 D- -10VaV-4 ・15・如图7,点儿0为定点.定直线/〃/i 乩P 是/上一动点. 点M N 分别为必.的中点. 对于下列各值 ①线段MV 的长: ②2AB 的周长; ③△PMV 的面积; ④直线MM ABZ 间的距离;图7⑤厶PB 的大小• 其中会随点P 的移动而变化的是 A.②③ C.①®® D.④⑤ 16.图8是甲.乙两张不同的矩形纸片, 着虚线剪开后,各自要拼一个与原来面积相等的正 方形.则A.甲.乙都可以B.甲、乙都不可以C.曰不可以.乙可以D.甲可以.乙不可以将它们分别沿 ►U-1 ->乙 图82015年河北省初中毕业生升学文化课考试数学试卷卷II (非选择题,共78分)注意事项:1・答卷II 前,将密封线左侧的项目填写清楚.2.答卷I 】时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.题号二三2122232425261得分二、填空题(本大题共4个小题.每小题3分,共12分.把答案 写在题中横线上)17. 若|a| = 2015°,则18.•若4 = %工0,则与芒的值为 a _ab19. 平面上,将边长相等的正三角形、正方形、正五边形.正六边形的一边审合并會在一起,如图9,则Z3 + Z1-Z2 = ____________20. 如图10, Z5OC=9°,点4在OB 匕且OA^\.按下列要求画图:以/为圆心,1为半径向右画弧交OC 于点皿.得第1条线段AAxx 再以川为圆心,1为半径向右画弧交03于点力2,得第2条线段A,A 2i 再以力2为圆心,1为半径向右画弧交OC 于点冷,得第3条线段局禺;这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则 ___________得分评卷人总分22.(本小题满分10分)三、解答题(本大题共6个小题■共66分.解答应写出文字说明、证明过程或演算步骤): (1)求所捋的二次三项式;(2)若x = V6+l,求所捂二次三项式的值.21.(本小题满分10分)得分评卷人嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的.她先用尺规作出了如图11的四边形ABCD.并写出了如下不完整的己知和求证.(1) 在方框中填空.以补全已知和求证:(2) 按嘉淇的想法写岀证明;证明:(3) ______________________________________________________________________ 用文字叙述所证命题的逆命题为_______________________________________________________22.(本小题满分10分)水平放置的容器内原有210亳米髙的水,如图12・将若干个球逐一放入该容器中,每 放入一个大球水面就上升4亳米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y 毫米.(1) 只放入大球,且个数为x 大,求y 与心的函数关系式仟必写出x 大的范围); (2) 仅放入6个大球后,开始放入小球,且小球个数为©、•① 求y 与x 小的函数关系式(不必写出林的范围); ② 限定水面高不超过260毫米,最多能放入几个小球?图12得分评卷人23.(本小题满分10分)24.(本小題满分11分)得分评卷人某厂生产A, B 两种产品.其单价随市场变化而做相应调整.营销人员根据前三次单价 变化的情况.绘制了如下统计表及不完整的折线图^X A =5.9; |[(6-5・9F + (5.2-5.9)2+ (6.5-5.9)2] =昔(1)补全图13中B 产品单价变化的折线图.B 产品第三次的单价比上一次的单价降低了 ________ %;(2) 求B 产品三次单价的方差,并比较哪种产品的单价波动小:(3) 该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调使得A 产品这四次单价的中位数是B 产品四次单价中位数 的2倍少1,求加的值.第一次 第二次 第三次A 产品单价 (元/件) 6 5.2 6.5 B 产品険价 (元/件) 3.543A. B 产品单价变化统计表并求得了 A 产品三次单价的平均数和方差:田1325.(本小题满分11分)如图14,已知点0(0, 0),/(-5, 0),B(2, 1),抛物线/:J«-(X-A)2+1 (A为常数)与p轴的交点为C.(1)/经过点8,求它的解析式,并写出此时/的对称轴及顶点坐标;(2)设点C的纵坐标为%,求%的最大值,此时/上有两点(心,沖,(勺,儿),其中x,>x2^0,比较儿与儿的大小;(3)当线段Q4被/只分为两部分,且这两部分的比是1 :4时,求的值.• • •平面上,矩形ABCD 与直径为QP 的半圆K 如图15・1 摆放,分别延长D4和0P 交于点0,且ZDO0=6O°, OQ=OD=3, 0P=2, 0A =AB = l ・让线段 OD 及矩形 ABCD 位置固定,将线段O0连带着半圆K 一起绕着点0按逆时 针方向开始旋转,设旋转角为a(0oMa=60。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档