Spectral-Reflectance-of-Wetted-Soils
土壤含水量高光谱遥感定量反演研究进展
土壤含水量高光谱遥பைடு நூலகம்定量反演研究进展
刘 影 1,2,姚艳敏 1,2
(1农业部农业信息技术重点实验室,北京 100081; 2中国农业科学院农业资源与农业区划研究所,北京 100081)
摘 要:高光谱遥感因其光谱信息丰富,在土壤含水量的反演中得到了广泛的应用。通过对土壤含水量
遥感监测方法进行了归纳总结,对比分析了微波法、热红外法、光学法和高光谱法监测土壤含水量的优
缺点以及适用范围;重点分析总结了土壤含水量高光谱遥感定量方法,简要阐述了统计模型和机理模型
反演土壤含水量的研究进展,特别对辐射传输模型和几何光学模型 2 个机理模型进行了说明,将近年来
国内外学者在基于机理模型的土壤含水量遥感反演研究中获得的成果进行了归纳总结,并提出了存在
的问题以及今后的研究方向。
关键词:高光谱;土壤含水量;遥感反演;机理模型
中图分类号:TP79
文献标志码:A
论文编号:casb15090128
Research Progress of Soil Moisture Quantitative Inversion by Hyperspectral Remote Sensing Liu Ying1,2, Yao Yanmin1,2
微波法可以监测土壤表层几厘米到几十厘米的土 壤含水量,具有稳定的物理基础,即水分和干土的介电 常数相差较大 ,土壤含水量越高 ,介电常数也越高 ,所 以可以通过微波信号判断土壤介电常数的大小来获取 土壤含水量。微波监测法包括主动微波监测法和被动 微波监测法 2 种。在主动微波监测方面,目前的研究 主要是利用统计方法建立土壤含水量与后向散射系数 之间的函数关系来反演土壤含水量 ,如 Dobson 等 、 [1] Oh 等[2]、Shi 等[3]对裸土的水分含量进行了反演研究 ; Roger 等[4]、鲍艳松等 对 [5] 于有植被覆盖的地表土壤含 水量进行了反演研究 ,取得较为理想的结果。被动微 波监测的本质是利用微波辐射计测得物体的亮温 ,然 后与土壤含水量建立经验统计关系或通过已有的物理 模型反演土壤水分含量,如 Njoku[6]、乔平林[7]等进行了 亮温与土壤水分之间的关系研究 ,并建立二者的回归 方程;Jackson 等[8]针对大尺度范围内的土壤含水量制 图进行了研究。微波监测法的优点是能够不受天气条 件限制,全天时、全天候工作,对植被、土壤具有一定的 穿透能力 ,监测精度较高。缺点是难以消除植被覆盖 以及地表粗糙度对土壤水分含量反演的影响。
新疆博斯腾湖湖滨绿洲不同土地利用类型土壤电导率高光谱估算
第 62 卷第 6 期2023 年11 月Vol.62 No.6Nov.2023中山大学学报(自然科学版)(中英文)ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS SUNYATSENI新疆博斯腾湖湖滨绿洲不同土地利用类型土壤电导率高光谱估算*樊泳灼,李新国新疆师范大学地理科学与旅游学院 / 新疆干旱区湖泊环境与资源实验室,新疆乌鲁木齐 830054摘要:为了更精准了解博斯腾湖湖滨绿洲不同土地利用类型的土壤含盐量,应用竞争性自适应重加权采样(CARS)、连续投影算法(SPA)、竞争性自适应重加权-连续投影算法(CARS-SPA)3种方法筛选不同土地利用类型土壤电导率高光谱数据的特征波段,基于全波段和特征波段结合BP神经网络分别构建湖滨绿洲的耕地、林地、荒地和整体土地的土壤电导率估算模型,对比不同方式的估算模型精度。
研究结果表明:1)耕地、林地、荒地及整体土地的土壤电导率均值分别为0.84、5.43、5.78、3.26 mS/cm。
湖滨绿洲整体土地的电导率相比耕地平均值增加了2.42 mS/cm,相比林地和荒地减少了2.17、2.52 mS/cm。
2)通过CARS-SPA方法可以降低输入模型的波段数,提高模型的效率,筛选耕地、林地、荒地及整体土地的土壤电导率的特征波段数仅占全波段的0.71%、0.59%、0.06%、1.00%。
3)对耕地、林地、荒地的土壤电导率构建单独的估算模型明显提高了研究区土壤电导率的估算精度,在FDR-CARS-BP、FDR-SPA-BP、FDR-CARS-SPA-BP共3种模型中,耕地、林地、荒地土壤电导率建模的平均R2相比整体土地建模分别提高0.12、0.14、0.15,FDR-CARS-SPA-BP模型为研究区土壤电导率高光谱估算最优模型。
关键词:土壤电导率;土地利用类型;高光谱数据;竞争性自适应重加权-连续投影算法;BP神经网络中图分类号:TP79 文献标志码:A 文章编号:2097 - 0137(2023)06 - 0031 - 09Hyperspectral estimation of soil conductivity of different land use typesin lakeside oasis of Bosten Lake in XinjiangFAN Yongzhuo, LI XinguoCollege of Geographical Sciences and Tourism / Laboratory of Lake Environment and Resources in Arid Regions of Xinjiang, Xinjiang Normal University, Urumqi 830054, ChinaAbstract:To more accurately understand the soil salinity of different land use types in the lakeside oasis of Bosten Lake, Xinjiang, three methods of competitive adaptive reweighted sampling (CARS),successive projection algorithm (SPA),and competitive adaptive reweighted-successive projection algorithm (CARS-SPA) were applied to screen the characteristic bands of soil conductivity hyperspectral data of different land use types, based on the full band and characteristic bands. The estimation modelsof soil conductivity of the lakeshore oasis were constructed based on the full band and characteristic bands combined with BP neural network to compare the accuracy of estimation models in different ways. The results showed that:(1)the mean values of soil conductivity of cropland,forest land,wasteland,and overall land are 0.84,5.43,5.78,and 3.26 mS/cm,respectively;the overall soilDOI:10.13471/ki.acta.snus.2023D024*收稿日期:2023 − 04 − 06 录用日期:2023 − 04 − 26 网络首发日期:2023 − 07 − 26基金项目:新疆维吾尔自治区自然科学基金(2022D01A214);国家自然科学基金(41661047)作者简介:樊泳灼(1999年生),女;研究方向:土壤资源变化及其遥感应用;E-mail:************** 通信作者:李新国(1971年生),男;研究方向:干旱区资源变化及遥感应用;E-mail:************.cn第 62 卷中山大学学报(自然科学版)(中英文)conductivity of the lakeshore oasis is 2.42 mS/cm higher than the mean value of cropland,2.17 and 2.52 mS/cm lower than forest land and wasteland. (2) The CARS-SPA method can reduce the number of bands input to the model and improve the efficiency of the model. The number of characteristic bands for screening the electrical conductivity of cropland, forestland, wasteland, and overall land soil only accounts for 0.71%,0.59%,0.06%,and 1.00% of the full bands. (3)Constructing separate estimation models for soil conductivity of cropland, forest land, and wasteland significantly improves the estimation accuracy of soil conductivity in the study area. Among the three models of FDR-CARS-BP, FDR-SPA-BP, and FDR-CARS-SPA-BP, the average R2 of soil conductivity modeling for crop‐land, forest land, and wasteland increased by 0.12, 0.14, and 0.15, respectively, compared with the overall soil modeling, the FDR-CARS-SPA-BP model is the optimal model for hyperspectral estima‐tion of soil conductivity in the study area.Key words:soil conductivity; land use types; hyperspectral data; CARS-SPA; BP neural network土壤电导率是土壤重要的理化性质之一,它包含了丰富的物理和化学信息(朱成立等,2017),现多采用测量土壤电导率来间接反映土壤盐分含量,该方法省时省力,已成为土壤含盐量监测的重要方法(Srivastava et al.,2017;张一清等,2023)。
利用光谱-盐分指数监测棉田土壤盐分
利用光谱-盐分指数监测棉田土壤盐分李静1,2,王克如1,2*,李少昆1,2,陈兵3,肖春花1,王琼3,王方永3,李栓明1,2,赖军臣4,孙亚玲1,2,张国强1,2(1.石河子大学绿洲生态农业重点实验室,新疆石河子832003;2.中国农业科学院作物科学研究所/农业部作物生理生态重点实验室,北京100081;3.新疆农垦科学院棉花研究所,新疆石河子832003;4.新疆生产建设兵团第六师农业局,新疆五家渠市831300)摘要:通过对棉田土壤盐分的光谱反演研究,为土壤盐渍化遥感动态监测提供可能。
利用ASD 地物光谱仪测定新疆兵团第六师共青团农场盐渍化棉田土壤光谱,结合土壤化学参数分析确定反映棉田土壤盐渍化程度的敏感波段,构建最佳盐分指数对棉田土壤盐分进行监测。
结果表明,随盐渍化程度(0.084~1.659g ·kg -1)的加重,土壤光谱反射率呈上升趋势,在近红外区(1350~1850nm)差异尤为显著,该波段范围光谱反射率与土壤盐分呈极显著相关(=0.880**),且对土壤盐分响应敏感,为识别盐渍化土壤的敏感波段;选择盐渍化光谱敏感波段建立了盐分指数SI 1,BI ,SI 2,NDSI ,SI 3监测棉田土壤盐渍化的模型,其中SI 1和BI 的RMSE 分别为0.151和0.149、RE 为7.5%和6.3%,预测能力强,可推荐为棉田土壤盐分监测的最佳模型。
关键词:棉田;光谱-盐分指数;土壤盐渍化;监测中图分类号:S562.01文献标志码:A文章编号:1002-7807(2014)06-0555-08Li Jing 1,2,Wang Keru 1,2*,Li Shaokun 1,2,Chen Bing 3*,Xiao Chunhua 1,Wang Qiong 3,Wang Fangyong 3,Li Shuanming 1,2,Lai Junchen 4,Sun Yaling 1,2,Zhang Guoqiang 1,2(1.832003;2.100081,;3.832003,;4.831300,)We conducted remote sensing dynamic monitoring of soil salinization by soil salt-spectrum inversion in cotton fields.An ASD spectrometer was used to measure the cotton soil spectra in the Communist Youth League farm of the sixth division of the Xinjiang Production and Construction Corps.The most sensitive wave band for measuring the soil salinization degree was determined by combined analysis of spectral and soil chemistry parameters,and the best salt index for monitoring soil salt con-tent in cotton fields was determined.The results showed that soil spectral reflectance increased(0.084-1.659g ·kg -1)with increas-ing salinization degree,and the difference was more obvious in the near infrared region (1350-1850nm).This band range of spectral reflectance was the most sensitive wavelength for identifying salinized soil and was significantly correlated with soil salt (=0.880**).By selecting sensitive bands,salt index models including SI 1,BI,SI 2,NDSI and SI 3were constructed to monitor soil salinization.Among the models,the SI1and BI salt indexes were the most accurate,with a minimum RMSE of 0.151and 0.149,and RE of 7.5%and 6.3%,respectively.We recommend these as the best models to monitor soil salinity in cotton fields.cotton fields;spectrum-salt index;soil salinization;monitoring收稿日期:2014-03-07作者简介:李静(1989-),女,硕士研究生,ljxjshz@ ;通讯作者:wkeru01@基金项目:科技支撑计划(2012BAH27B04)和国家自然科学基金(41161068)土壤盐渍化导致土地退化,生产能力下降,影响农业生态环境稳定性,是制约干旱区农业可持续发展的重要因素[1]。
不同尺度的微分窗口下土壤有机质的一阶导数光谱响应特征分析_刘炜
第30卷第4期2011年8月红外与毫米波学报J.Infrared Millim.WavesVol.30,No.4August ,2011文章编号:1001-9014(2011)04-0316-06收稿日期:2010-05-30,修回日期:2010-10-17Received date :2010-05-30,revised date :2010-10-17基金项目:国家“973”计划项目(2007CB407203);国家自然科学基金项目(30872073);“十一五”国家科技支撑计划重大项目(2006BAD09B0603)作者简介:刘炜(1978-),男,陕西咸阳人,博士研究生,主要从事遥感与GIS 应用研究,E-mail :york5588@nwsuaf.edu.cn.*通讯作者:E-mail :chqr@nwsuaf.edu.cn.不同尺度的微分窗口下土壤有机质的一阶导数光谱响应特征分析刘炜1,常庆瑞1*,郭曼1,邢东兴1,2,员永生1(1.西北农林科技大学资源环境学院,陕西杨凌712100;2.咸阳师范学院资源环境系,陕西咸阳712000)摘要:使用高光谱仪ASD Field Spec 在波长范围400 1000nm 内采集有机质含量不同的土壤反射光谱数据并作对数变换处理;之后在不同尺度的微分窗口下求取其一阶导数(一阶导数光谱)并进行小波阈值去噪;从一阶导数光谱中提取特征参数表征有机质含量变化.结果表明,微分窗口尺度w =1 5时,土壤一阶导数光谱中含有大量噪声,对一阶导数光谱曲线形态和有机质吸收特征的识别造成严重干扰;微分窗口尺度w =6 15时,土壤一阶导数光谱中的噪声得到一定程度的去除,但仍无法准确判别有机质的吸收特征;微分窗口尺度w =16 30时,土壤一阶导数光谱中的噪声被有效去除,其中当w =19时,从一阶导数光谱中提取的特征参数MD 19s 与土壤有机质含量的相关系数为-0.803.MD 19s 能够较为准确地指示有机质含量变化,而且运算简单,易于实现,为在精准农业中采用可见/近红外反射光谱分析技术快速检测土壤有机质提供了新的途径.关键词:可见/近红外光谱;土壤有机质;一阶导数光谱;小波去噪;特征增强;特征提取中图分类号:S15文献标识码:AAnalysis on derivative spectrum feature for SOMunder different scales of differential windowLIU Wei 1,CHANG Qing-Rui 1*,GUO Man 1,XING Dong-Xing 1,2,YUAN Yong-Sheng 1(1.College of Resources and Environment ,Northwest A&F University ,Yangling 712100,China ;2.Department of Resources Environment ,Xian yang Normal College ,Xianyang 712000,China )Abstract :The hyper-spectral reflectance of soil was measured by a ASD FieldSpec within 400 1000nm ,then treated withlogarithmic transformation.First derivative of soil spectra with different scales of differential window were acquired and de-noised by the threshold denoising method based on wavelet transform.From the first derivative of soil spectra ,feature pa-rameters used as indicators for soil organic matter content were extracted.Results show that :(1)When the number of the scale of differential window was set as W =1 5,it is difficult to identify the spectrum contour and response feature in first derivative of soil spectra because of much noise.(2)When W =6 15,noise in first derivative of soil spectra is partly removed ,and spectrum contour is identified roughly.However spectral response feature resulted from different organic con-tent levels can not be identified clearly.(3)When W =16 30,noise in first derivative of soil spectrua is removed effec-tively.The coefficient of correlation between organic matter content and feature parameter MD 19s is 0.803.MD 19s can be used as one of the best indicators for soil organic matter content.Key words :VIS /NIR spectrum ;soil organic matter (SOM );first derivative of spectrum ;wavelet denoising ;feature enhancement ;feature extraction PACS :42.72.Ai引言传统的土壤有机质(Soil Organic Matter ,SOM )化学测定方法,虽然测定精度较高,但耗时、费力、成本高,而且还存在着有害、污染、测点数量和范围有限等问题.因而无法满足精准农业、变量施肥技术对4期刘炜等:不同尺度的微分窗口下土壤有机质的一阶导数光谱响应特征分析详细掌握土壤养分时空变异状况的需求.现代可见/近红外反射光谱分析技术,能够充分利用全谱段或多波长光谱数据进行定性或定量分析,并且具有速度快、成本低、效率高、测量方便、测试重现性好等特点,近年来,已经被越来越广泛地应用于食品工业、石油化工、农业、制药等多个领域[1-3].以往大量研究表明,可见/近红外光谱段400 1000nm是土壤有机质最主要的光谱响应区域,具有对有机质含量进行定量分析的潜力[4-6].一些研究[7-8]还表明对土壤高光谱数据进行导数变换,可以在一定程度上减弱土壤类型、样品粒度等因素的影响,有助于挖掘有机质的吸收特征.大量试验结果表明,当采用不同尺度的微分窗口对土壤高光谱数据进行导数变换时,所获取的土壤一阶导数光谱的形态会因光谱中高频噪声干扰程度的不同而产生较大差异.实际上,对高光谱数据进行导数变换,并不完全等同于从数学意义上对连续、可微函数进行求导运算,而是在一定尺度的微分窗口下,通过一阶差商实现对一阶求导的近似代替[9-11].当微分窗口取较小的尺度时,导数变换在提供精细的光谱形态变化信息的同时,也会放大光谱中的高频噪声,对光谱曲线上反射峰、吸收谷的识别、定位及相关计算造成严重干扰;当微分窗口取较大的尺度时,导数变换具有一定的平滑去噪功能(差分运算本质上也是一种加权数字平滑[1]),并且微分窗口尺度越大,曲线平滑效果越好.然而,在较大尺度的微分窗口下进行导数变换,也会对一阶导数光谱曲线上的极值点和拐点进行平滑,因而在降噪的过程中,也损失掉了光谱曲线上锐变尖峰成分可能携带的重要信息,导致光谱分析能力下降.因此,选取合适的微分窗口尺度,是从土壤一阶导数光谱中提取特征参数定量检测有机质含量的一个重要前提.试验在不同尺度的微分窗口下对土壤高光谱数据进行导数变换,并从一阶导数光谱中提取特征参数表征有机质含量变化,之后,分析微分窗口尺度变化对特征参数的影响.试验旨为在精准农业中采用可见/近红外光谱反射光谱分析技术定量检测土壤有机质,以及提高高光谱参数准确性和实用性方面提供依据.1材料与方法1.1样品采集与制备土壤样品采自陕西省眉县,采样区土壤为褐土,质地为壤质粘土,土层深厚.试验依据土壤剖面发生层次,分层采集土壤样品,采样深度为0 60cm.为了从光谱数据中消除或降低土壤水分、土壤粒度等因素的对土壤有机质吸收特征的影响,试验将土壤样品置于实验室内自然风干,之后用木棍滚压,并去除沙砾石块及植物残体,接下来研磨、过筛(100目尼龙筛).试验获取土壤样品36个,每个土壤样品分成两份,一份采用重铬酸钾法测定土壤有机质含量,另一份用来测量光谱数据.36个样本中,有机质含量的最大值为43.91g*kg-1,最小值为2.11g* kg-1,平均值为13.72g*kg-1.1.2光谱测量使用高光谱仪ASD Field Spec在波长范围350 1050nm内,连续测量经预处理后的土壤样品的反射光谱数据,光谱采样间隔1.4nm,重采样间隔1nm.测量光谱前将土壤样品放置在直径16cm,深度3cm 的盛样皿上,调整盛样皿使其处于水平位置,平整土样表面使样品厚度均匀.暗室内测试光源为能够提供平行光的1000W的镁光灯,距土壤表层中心70cm,光源照射方向与垂直方向的夹角为15ʎ.经多次实验后光纤探头的视场角选定为7.5ʎ,置于离土样表面40cm的垂直上方接收光谱数据.测试前以白板定标,每个土壤样品采集10条光谱数据,然后将其算术平均值作为该土壤样品的实际光谱反射数据.1.3数据处理可见/近红外光谱段400 1000nm是土壤有机质最主要的光谱响应区域.然而,该波长范围内土壤光谱反射率水平整体较低,有机质含量不同的各条光谱曲线之间距离较近,没有显著的峰谷特征,不利于特征参数提取[1].为此,试验在波长范围400 1000nm内对土壤原始光谱进行对数变换和导数变换,以增强有机质含量变化引起的光谱响应差异.对数变换采用的计算公式为[10-12]A(λ)=Ln[1/R(λ)],(1)式中:λ代表波长位置,取值区间为400 1000nm;R(λ)代表波长位置λnm处的土壤原始光谱反射率;A(λ)是经对数变换处理后的光谱值.导数变换采用的计算公式为[1]D(λ)=[A(λ)–A(λ+w)]/w,(2)式中w代表微分窗口尺度;D(λ)代表波长位置λnm处土壤光谱反射率的一阶导数;λ的取值区间为400 1000nm.2结果与分析2.1对数变换对土壤有机质一阶导数光谱响应特713红外与毫米波学报30卷征的影响图1(a )显示了波长范围400 1000nm 内,有机质含量不同(25.67,9.37,7.31,4.20g /kg )的土壤反射光谱曲线;图1(b )是对它们进行对数变换处理后的结果.从图1(b )中可以看出,在沿着波长增加的方向上,经对数变换处理后的光谱值大致以线性趋势从2.70下降至0.80,变动区间较原始光谱有所增加;对于不同的有机质含量水平,光谱曲线整体上随有机质含量水平的提高而提高,表现出正相关性;各条光谱曲线之间的距离较图1(a )中的也有所加大.整体而言,400 1000nm 内,土壤有机质含量的变化可以从图1(b )光谱曲线的分异表现中得到一定程度的反映,但有机质含量不同的各条光谱曲线仍大致以线性趋势变化,并且没有反映样品信息突出的反射峰、吸收谷.图1对数变换对土壤光谱反射率的影响Fig.1Effect of logarithmic transformation on soil spec-tra under different organic matter content levels2.2不同尺度的微分窗口对土壤有机质一阶导数光谱响应特征的影响在不同尺度的微分窗口下(w =1,2,…,30),求取对数变换后的土壤光谱的一阶导数(一阶导数光谱),结果如图2所示;图3则显示了一阶导数光谱与有机质含量之间的相关系数.结合图2与图3可以看出,随着微分窗口尺度的逐渐增大,导数变换的平滑效果越来越明显.w =1 5时,微分窗口的尺度较小,导数变换的平滑作用较为有限,一阶导数光谱曲线上仍保留有大量噪声,致使曲线轮廓以及因有机质含量变化引起的响应特征受到遮蔽干扰,难以识别,敏感波段无法提取,光谱质量较差;并且在对应的微分窗口尺度下,波长范围400 1000nm 内,相关系数曲线振荡强烈,频率高、幅度大,表现很不稳定.w =6 15时,随着微分窗口尺度的逐渐增大,导数变换的平滑作用有所提升,光谱噪声得到了一定程度的去除,土壤一阶导数光谱曲线的大致轮廓能够被识别出来;但波长范围400 1000nm 内,因有机质含量变化引起的光谱响应特征仍受到较强噪声的干扰,无法准确判别;对应微分窗口尺度下的相关系数曲线,仍然振荡频繁、起伏较大,不利于敏感波段提取.图2不同尺度的微分窗口对土壤一阶导数光谱响应特征的影响Fig.2First derivative of soil spectra under different soil matter organic content levels and different scales of differ-ential window8134期刘炜等:不同尺度的微分窗口下土壤有机质的一阶导数光谱响应特征分析图3不同尺度的微分窗口对土壤一阶导数光谱与有机质含量相关系数的影响Fig.3Correlation coefficients between organic matter contents and first derivative of soil spectra under differ-ent scales of differential windoww =16 30时,随着微分窗口尺度的不断增大,导数变换对光谱曲线的平滑作用进一步加强,土壤一阶导数光谱中的噪声得到有效去除,曲线轮廓更加清晰.从图2(c )中还可以发现,波长范围450 600nm 内,有机质含量不同的各条光谱曲线均存在一个“凸”状的特征峰;其中在“凸”状特征峰的核心区域,波长范围500 570nm 内,一阶导数光谱值维持在一个较高的平台上小幅振荡;对于不同的有机质含量水平,该波长范围内的光谱值随有机质含量的增加整体呈下降趋势,相对于其它波长位置,该波长范围内的光谱值表现出了较为一致、显著的响应特征.从图3(c )中还可以看出,波长范围500 570nm 内相关系数值小幅波动,表现较为稳定.鉴于w =16 30时,波长范围500 570nm 内的土壤一阶导数光谱值相互之间比较接近,而且波动程度不大;对有机质含量变化,整体上也表现出了较为一致、显著的响应特征,试验考虑以该波长范围内光谱值的平均值作为特征参数表征有机质含量变化.采用的计算公式为MD w s=171·∑570λ=500D w s(λ),(3)式中,λ代表波长位置;w 代表微分窗口尺度,w =1,2,…,30;D w s (λ)代表经对数变换处理后,微分窗口尺度为w ,波长位置λnm 处的土壤一阶导数光谱值;MD w s 则是波长范围500 570nm 内D ws (λ)的平均值.接下来,试验进一步计算了当微分窗口取不同的尺度时,MD w s 与土壤有机质含量之间的相关系数,结果如图4(a )所示.从图中可以看出,随着微分窗口尺度的逐渐扩展,相关系数曲线先下降、后上升,大体上呈开口向上的“凹”状波形;其中,在“凹”状波形的前段,当微分窗口取较小的尺度时,相关系数曲线有一定的起伏波动;当微分窗口尺度w =16 20时,相关系数值处于“凹”状波形的底部区域,基本保持在-0.800 -0.805之间,变化趋势十分稳定;其中,w =19时,相关系数取得负的最小值-0.803.显然,在所有的微分窗口尺度中,当w =19时得到的MD 19s 更适合用作特征参数指示有机质含量变化.2.3不同尺度的微分窗口对小波去噪后一阶导数光谱响应特征的影响为了进一步分析微分窗口尺度变化对土壤有机质一阶导数光谱响应特征的影响,试验对各个微分窗口尺度下的土壤一阶导数光谱,进行了小波阈值去噪处理(以“sym8”作为小波母函数,分解尺度J =3,选择“Heursure ”阈值选取规则和“sln ”阈值调整方法[13,14]),结果如图5所示.从中可以看出,经小波阈值去噪处理后,各个微分窗口尺度下的土壤一阶导数光谱的曲线轮廓,都变得十分清晰、光滑;波长范围450 600nm 内的“凸”状特征峰在不同的有机质含量水平下的分异表现也较为明显.同样,为了表征土壤有机质含量变化,试验在不同尺度的微分窗口下,求取波长范围500 570nm 内经小波去噪后的一阶导数光谱值的平均值MD wd 作为特征参数,采用的计算公式为MD w d=171·∑570λ=500D w d(λ),(4)式中λ代表波长位置;w 代表微分窗口尺度,w =1,913红外与毫米波学报30卷图4不同尺度的微分窗口对特征参数的相关系数的影响Fig.4Correlation coefficients between organic mat-ter contents and feature parameters under differentscales of differential window2,…,30;D wd(λ)代表经对数变换及小波阈值去噪处理后,微分窗口尺度为w的土壤一阶导数光谱值.MD wd 则是波长范围500 570nm内D wd(λ)的平均值.试验计算了MD wd与土壤有机质含量之间的相关系数,结果如图4(b)所示.从图中可以看出,当微分窗口尺度逐步扩展时,相关系数曲线呈开口向上、十分光滑的“凹”状波形,其整体变化趋势与图4(a)中相关系数曲线的整体变化趋势大体一致;但波动程度明显降低,曲线形态十分光滑;相对于图4(a),图(4)b中相关系数曲线的整体变动区间有所收窄,在-0.797 -0.753之间;当微分窗口尺度w =15 21时,相关系数值处于“凹”状波形的底部区域;其中,当w=20时,相关系数取得了负的最小值-0.797.对比MD19s 和MD20d,可以看出二者的微分窗口尺度值相差不大,对应的相关系数值也较为接近,但MD19s的表现更好一些;同时,其相关计算较MD20d也更容易实现、易于掌握、推广.故试验认为MD19s更适合用作特征参数指示有机质含量变化.3讨论可见/近红外光谱段400 1000nm是土壤有机图5不同尺度的微分窗口对去噪后的土壤一阶导数光谱响应特征的影响Fig.5Denoised first derivative of soil spectrum under different soil matter organic content levels and different scales of differenti-al window质最主要的光谱响应区域.然而,在该波长范围内,土壤光谱反射率水平整体较低,有机质含量不同的各条光谱曲线之间距离较近,没有显著的峰谷特征,不利于特征参数提取[1].为此,试验对土壤原始光谱进行对数变换,以增强有机质含量变化引起的光谱响应差异.除对数函数外,还可以选取其它具有较强放大增益的函数,如正切函数、指数函数等作为变换函数对有机质的响应特征进行增强处理.此外,还可以考虑针对能够反映有机质吸收特性的敏感波段,给变换函数的自变量赋以一定的偏移量,以尽可能地将敏感波段置于具有最佳放大增益效果的对应的自变量的取值区间,进一步提升某些特定敏感波段在解释有机质含量变化中的作用.在可见/近红外反射光谱分析技术中,利用导数变换可以获取精细的光谱形态变化信息,并能够增强局部位置(如极值点、拐点等)光谱反射率对目标物质含量变化的响应差异.对于土壤高光谱数据,除一阶导数变换外,还可以在选取具有合适尺度的微分窗口的前提下,考虑采用二阶或三阶等更高阶次导数变换,以进一步挖掘因有机质吸收引起的峰谷特征;之后,根据反射峰(吸收谷)的形态,选择合适的吸收特征描述方法,以提取稳定性更强,敏感程度也好的特征参数表征有机质含量变化.4结论试验对土壤原始光谱进行了对数变换,导数变0234期刘炜等:不同尺度的微分窗口下土壤有机质的一阶导数光谱响应特征分析换以及小波阈值去噪处理;之后,在不同尺度的微分窗口下分析土壤一阶导数光谱对有机质含量变化的响应特征,并提取特征参数MD ws 和MD wd.试验得到的结论如下:(1)微分窗口尺度w=1 5时,土壤一阶导数光谱中含有大量噪声,致使光谱曲线的形态和有机质的吸收特征难以识别,敏感波段无法提取,光谱质量较差.(2)微分窗口尺度w=6 15时,土壤一阶导数光谱中的噪声得到了一定程度的去除,光谱曲线的大致轮廓能够被识别出来,但因有机质含量变化引起的光谱响应差异仍无法得到准确判别.(3)微分窗口尺度w=16 30时,土壤一阶导数光谱中的噪声得到了有效地去除;波长范围450 600nm内呈现出“凸”状的特征峰;其中,在“凸”状特征峰的核心区域,波长范围500 570nm内,一阶导数光谱值对有机质含量变化整体表现了出较为一致、显著的响应特征.(4)特征参数MD19s与土壤有机质含量的相关系数为-0.803,相对于MD20d ,MD19s可以更好地用来指示有机质含量变化.波长范围400 1000nm内,土壤有机质吸收引起的光谱曲线的变化比较微弱,一般均先要求对土壤原始光谱进行某种变换,以增强光谱响应差异,之后提取特征参数检测有机质.在光谱特征增强的数学变换方法中,对数变换,指数函数变换、导数变换等都应用较多.可以针对光谱形态和有机质的吸收特性,对各种增强方法进行更加细致地调整、改进,或者加以综合运用,并选取恰当的吸收特征描述方法[1],以提取稳定性更强、敏感程度更好的特征参数,为采用可见/近红外反射光谱分析技术快速检测土壤有机质,提供更实用、有效的途径,这将是下一步研究工作重点.REFERENCES[1]LI Min-Zan,HAN Dong-Hai,WANG Xiu.Spectral analysis technology and its application[M].Beijing:Science Press (李民赞,韩东海,王秀.光谱分析技术及其应用.北京:科学出版社),2006:115-279.[2]HE Yong,SONG Hai-Yan,Pereira A G,et al.Measure-ment and analysis of soil nitrogen and organic matter content using near-infrared spectroscopy techniques[J].Journal of Zhejiang University SCIENCE,2005,6B(11):1081-1086.[3]BAO Yi-Dan,HE Yong,FANG Hui,et al.Spectral char-acterization and N content prediction of soil with different particle size and moisture content[J].Spectroscopy and Spectral Analysis(鲍一丹,何勇,方惠,等.土壤的光谱特征及氮含量的预测研究.光谱学与光谱分析),2007,27(1):62-65.[4]HE Ting,WANG Jing,LIN Zong-Jian,et al.Spectral fea-tures of soil organic matter[J].Geo-spatial Information Sci-ence,2009,12(1):33-40.[5]LIU Huan-Jun,ZHANG Bai,LIU Dian-Wei,et al.Study on quantitatively remote sensing typical soils in Songnen plain,northeast China[J].Journal of Remote Sensing(刘焕军,张柏,刘殿伟,等.松嫩平原典型土壤高光谱定量遥感研究.遥感学报),2008,12(4):647-654.[6]SHA Jin-Ming,CHEN Peng-Cheng,CHEN Song-Lin.Characteristics analysis of soil spectrum response resulted from organic material[J].Research of Soil and Water Con-servation(沙晋明,陈鹏程,陈松林.土壤有机质光谱响应特性研究.水土保持研究),2003,10(2):21-24.[7]Ben-Dor E.The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region(400 2500nm)duing a controlled decompsition process[J].Ro-mote Sensing of Enviroment,1997,61:1-15.[8]SONG Hai-Yan,HE Yong.Determination of the phosphor-us,kalium contents and pH values in soils using near-infra-red spectroscopy[J].Journal of Shanxi Agricultural Univer-sity:Netural Science Edition(宋海燕,何勇.近红外光谱法分析土壤中磷、钾含量及pH值的研究.山西农业大学学报:自然科学版),2008,28(3):275-278.[9]WANG Ji-Hua,ZHAO Chun-Jiang,HUANG Wen-Jiang.Base and application of quantitative remote sensing technique in agriculture[M].Beijing:Science Press(王纪华,赵春江,黄文江.农业定量遥感基础与应用.北京:科学出版社),2008:156-159.[10]GONG Cai-Lan,YIN Qiu,KUANG Ding-Bo.Correlations between water quality indexes and reflectance spectra ofHuangpujiang river[J].Journal of Remote Sensing(巩彩兰,尹球,匡定波.黄浦江水质指标与反射光谱特征的关系分析.遥感学报),2006,10(6):910-916.[11]LI Xin-Zhen,CHE Gang-Ming,FENG Jian-Hu,et al.Computational methods[M].Xi’an:Northwestern Poly-technical University Press(李信真,车刚明,封建湖,等.计算方法.西安:西北工业大学出版社),2000:172-175.[12]WAN Yu-Qing,TAN Ke-Long,ZHOU Ri-Ping.Hyper-spectral remote sensing and its application[M].Beijing:Science Press(万余庆,谭克龙,周日平.高光谱遥感应用研究.北京:科学出版社),2006:22-189.[13]XU Wei-Dong,YIN Qiu,KUANG Ding-bo.Decision tree classification of hyperspectral image based on discretewavelet transform[J].Journal of Remote Sensing(许卫东,尹球,匡定波.小波变换在高光谱决策树分类中的应用研究.遥感学报),2006,10(2):204-210.[14]JIANG Qing-Song,WANG Jian-Yu.Study on signal-to-noise ratio estimtion and compression method of operationalmodular imaging spectrometer multi-spectral images[J].Acta Optica Sinica(蒋青松,王建宇.实用型模块化成像光谱仪多光谱图像的信噪比估算及压缩方法研究.光学学报),2003,23(11):1335-1340.123。
作者姓名:阿布都瓦斯提·吾拉木
作者姓名:阿布都瓦斯提·吾拉木论文题目:基于n维光谱特征空间的农田干旱遥感监测作者简介:阿布都瓦斯提·吾拉木,男,1975年2月出生,于2006年7月获北京大学理学博士学位。
2006年12月至今任美国圣路易斯大学环境科学中心Geospatial Analyst/Research Professor。
中文摘要农田生态系统是一个水分、土壤、植被、大气等诸多因素耦合的复杂系统(SPAC,Soil-Plant-Atmosphere Continuum)。
在农田生态系统水循环中,水分亏缺的积累使农田供水量在一定的时间段内不能满足作物需水量,导致农田干旱的发生。
农田干旱直接和间接地影响人类生存、社会稳定、农业生产、资源与环境可持续发展。
正确评价或预防农田干旱,对促进农业生产和区域可持续发展具有重要的现实意义。
遥感具有客观反映农田水分时空变化的监测能力。
国内外农田遥感干旱监测研究表明:在复杂地表环境下,单纯采用可见光、近红外、热红外或微波波段都无法全面、准确反映农田水分信息,其方法在农田水分监测中暴露出诸多问题,如水分监测的滞后效应、模型复杂、参数的不确定性和过度依赖于田间和气象观测资料等,不能适应全面、动态的农田干旱监测与农田水分信息提取的迫切需求。
利用定量遥感方法,实现准确的农田干旱信息提取一直是遥感应用领域亟待解决的重要科学问题之一。
基于多维光谱特征空间的农田干旱信息提取,可以综合多源遥感的优势,为干旱监测提供更丰富、更高分辨率的农田水分信息,有望去除以往的遥感干旱模型带来的监测效果滞后、模型复杂、参数的不确定性等问题,形成农田干旱遥感监测新方法。
本论文以可见光近红外2维光谱空间干旱建模为切入点,通过加入短波红外,进一步拓宽遥感干旱监测的波段和地表生态物理参数,构建了反演土壤水分、叶片/冠层含水量(EWT)和叶片/冠层相对含水量(FMC)等参数的遥感模型,针对农田干旱最关键的两个指标土壤水分和叶片/冠层含水量,建立了多个干旱监测模型,形成了以n维光谱特征空间为基础的农田遥感干旱监测的新方法。
基于可见-近红外反射光谱的土壤碳酸钙含量与反演效果关系研究
基于可见-近红外反射光谱的土壤碳酸钙含量与反演效果关系研究林卡;李德成;刘峰;张甘霖【摘要】[Objective] Soil visible near-infrared reflectance spectra contains large volumes of information on soil physical and chemical properties, which implies that it is feasible to use soil spectra to invert soil properties quantitatively. Is it the higher the property value, the higher the inversion accuracy? However, at present, it is still unclear how to relate quantitatively effects of inversions to soil property contents. [Method] Therefore, this study selected soil calcium carbonate content as the target attribute for exploration of quantitative relationship between spectral inversion effect and calcium carbonate content. A total of 292 soil samples were collected out of the genetic horizons of 69 typical Aridosols profiles in the Heihe River Basin, Northwest China, for analysis of calcium carbonate contents with the gasometric method and acquisition of visible near-infrared reflectance spectra with a Cary5000 spectrophotometer. Based on the characteristics of the distribution of calcium carbonate content in the typical study area, 11 identical sample size subsets(A)and 5 similar dispersion subsets(B)were established with sample size and data dispersion (coefficient of variation) as the criteria for dataset partitioning, and the partial least-squares regression (PLSR) method was used to invert calcium carbonate content from the spectral curves.[Result] Results show that calcium carbonate in the Aridosols of the Heihe River Basin varied inthe range of 4.86 g kg-1~236.03 g kg-1in content with an average of 103.07 g kg-1. Soil samples with calcium carbonate content varying in the range of 30~60 g kg-1and of 120~150 g kg-1, were in dominancy, accounting for 21.4% and 32.6% of the total, respectively. As a whole, the soil is high in calcium carbonate content, which is consistent with the characteristics of Aridosols being rich in calcium carbonate. With the PLSR, modeling was performed for prediction of calcium carbonate contents of the soil samples in the 11 A subsets. RPD of the validation set of each subset ranged between 0.92 and 1.04, fluctuating around 1 with no obvious features of variation, which indicates that calcium carbonate content does not have much impact on prediction or inversion of soil calcium carbonate content, using visible near-infrared reflectance spectra. Modeling was also done for prediction of calcium carbonate content in 5 B subgroups, with a similar result. [Conclusion] Therefore, soil calcium carbonate content is not the main factor affecting the prediction using spectra, which is inconsistent with the qualitative knowledge the researchers already have in mind. Calcium carbonate can enhance spectral reflectance of visible near-infrared bands, but the effect is not so significantly reflected in using the visible near-infrared spectral reflectance to inverse soil calcium carbonate content. Therefore, it seems unnecessary to divide calcium carbonate samples by content of soil calcium carbonate when using spectra to predict calcium carbonate contents. Whether the conclusion is applicable to other soil properties needs to be further verified, and how to improve accuracy of the prediction of target attributewill be the focal point of the next phase of the study.%土壤可见-近红外反射光谱中包含了大量的土壤属性信息,研究人员根据土壤属性信息在光谱上的特征,对土壤属性进行定量反演.是否属性值越高,反演精度越高?目前对于属性含量与反演效果的定量关系尚不清楚.采集了我国西北地区黑河流域69个代表性干旱土剖面(292个发生层土样),以气量法测定其碳酸钙含量,使用Cary 5000分光光度计测定其可见-近红外光谱反射率,以样本量和离散度(变异系数)作为数据集划分标准,分别建立了11个相同样本量子集(A)和5个相近离散度子集(B),应用偏最小二乘回归(PLSR)算法对各子集进行土壤碳酸钙含量反演,以此探究碳酸钙含量与反演效果的定量关系.结果表明,碳酸钙可增加可见-近红外波段的光谱反射率,但利用可见近红外光谱反演土壤碳酸钙含量,其反演效果与碳酸钙含量关系不显著.【期刊名称】《土壤学报》【年(卷),期】2018(055)002【总页数】9页(P304-312)【关键词】可见-近红外反射光谱;碳酸钙含量;反演效果【作者】林卡;李德成;刘峰;张甘霖【作者单位】土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所,南京 210008;中国科学院大学,北京 100049;土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所,南京 210008;土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所,南京 210008;土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所,南京 210008;中国科学院大学,北京 100049【正文语种】中文【中图分类】S153.4土壤光谱反射特性是土壤基本性质之一,与土壤理化性质有密切关系。
基于反射光谱预测土壤重金属元素含量的研究_王璐
第11卷 第6期2007年11月遥 感 学 报J OURNAL OF REMOTE SENSI N GV o.l 11,N o .6N ov .,2007收稿日期:2006-06-27;修订日期:2006-11-08基金项目:国家自然科学基金项目(编号:40371085)。
作者简介:王 璐(1981 ),女。
南京大学地球科学系博士研究生。
研究方向为资源环境遥感,已发表论文3篇。
E -m ai :l x w l 0507@hot m ai.l co m 。
文章编号:1007-4619(2007)06-0906-08基于反射光谱预测土壤重金属元素含量的研究王 璐1,2,蔺启忠2,贾 东1,石火生1,黄秀华2(1.南京大学地球科学系,江苏南京 210093; 2.中国科学院遥感应用研究所,北京 100101)摘 要: 本文利用实验室实测的土壤反射光谱以及铅、镉、汞等重金属元素数据,进行土壤重金属元素含量快速预测的可行性研究。
本文利用偏最小二乘回归方法,研究了反射率(R )、一阶微分(FDR )、反射率倒数的对数(l g(1/R ))和波段深度(BD )等对预测精度的影响,对这几种光谱指标预测土壤重金属含量的能力进行了分析和评价,同时分析了多光谱数据估算土壤重金属元素含量的可行性。
结果表明,反射率倒数的对数lg(1/R )是估算土壤重金属元素含量最好的光谱指标,尤其是Cd 和Pb ,检验精度R 超过0 82。
有机质、铁锰氧化物和黏土矿物对土壤重金属元素的吸附是可见光 近红外 短波红外光谱估算其含量的机理。
多光谱数据同样具有估算土壤重金属元素含量的能力,但实际数据则要考虑多种因素的影响。
关键词: 反射光谱;光谱指标;土壤;重金属中图分类号: X 87/TP 79 文献标识码: AStudy on the Predi ction of SoilH eavy M etal E le m ents Content Based on R eflectance SpectraWANG Lu 1,2,L I N Q -i zhong 2,JI A D ong 1,S H IH uo -sheng 1,HUANG X iu -hua2(1.D e part m ent o f E art h S ciences ,N anji ng Un i versit y,J i an g su N anjin g 210093,Ch i na ;2.In stit u te of Re m ot e S ensi ng Appli cati on s ,Ch i n eseA ca d e m y of S cie n c e ,B eiji ng 100101,China )Abstract : T his paper ana l yzed the possi b ility of reflectance spectra obtained under laboratory conditi ons forthe assess ment of Pb ,Cd andHg content in soil qu i ckly .Besides ori g i nal spectra(R ),several spectral indices w ere a lso calculated :f i rst derivative reflectance spectr a(FDR ),i nverse -l og spectra(l g(1/R ))and band dept h (BD ).Partial least square re gressi on(PLSR )was used to devel op cali brati ons bet wee n spectral i ndices data and content o f so il ele ments .Coeffici ent of deter m inati on(R )and r oot -mean -square error(RM SE )were used as criteria for best m ode.l T he results sho w that :1)lg (1/R )is the best index to estm i ate so il heavy m etal content ,especi ally f or Cd(R =0 8221)and Pb (R =0 8612);2)The m echanis m for est m i ati ng soil heavy m etal ele ment content by V I S-N I R -S W I R spectra is the absor ption f unct i on of organic matter ,iron -m anganese oxide ,and clay m inerals ;3)Sm i ulated mult-i spectral data have the good ability to estm i ate soil heavy m etal ele m ents c onte nt .W hile sat i sfactory results are obtained by l aborator y spectra ,more factors shou l d be consi dered when usi ng fiel d data even satellite data .K ey words : reflectance spectr a ;spectral i ndices ;so i;l heavy m etal1 引 言土壤是密切关系着人类生存发展的重要资源[1]。
土壤理化指标英语
土壤理化指标英语English:Soil physical and chemical indicators are important parameters for evaluating the fertility and quality of soil. Physical indicators include bulk density, soil texture, porosity, and soil structure, which affect the movement of water, air, and roots in the soil. Chemical indicators refer to the pH value, organic matter content, nutrient elements (nitrogen, phosphorus, potassium), cation exchange capacity, and heavy metal content. These indicators reflect the nutrient status, fertility, and pollution level of the soil, which are crucial for crop growth and environmental protection. Therefore, monitoring and analyzing soil physical and chemical indicators are necessary for making scientifically-based decisions for soil management and agricultural practices.中文翻译:土壤理化指标是评价土壤肥力和质量的重要参数。
土壤物理指标包括容重、土壤质地、孔隙度和土壤结构,这些指标影响了水、气体和根系在土壤中的运动。
土壤有机质高光谱自反馈灰色模糊估测模型
山东农业大学学报(自然科学版),2023,54(4):495-499VOL.54NO.42023 Journal of Shandong Agricultural University(Natural Science Edition)doi:10.3969/j.issn.1000-2324.2023.04.003土壤有机质高光谱自反馈灰色模糊估测模型于锦涛1,李西灿1,曹双1,刘法军2*1.山东农业大学信息科学与工程学院,山东泰安2710182.山东省地质矿产勘查开发局第五地质大队,山东泰安271000摘要:为克服光谱估测中的不确定性和提高光谱估测精度,本文利用灰色系统理论和模糊理论建立土壤有机质高光谱估测模型。
基于山东省济南市章丘区和济阳区的121个土壤样本数据,首先对土壤光谱数据进行光谱变换,根据极大相关性原则选取光谱估测因子;然后,利用区间灰数的广义灰度对建模样本和检验样本的估测因子进行修正,以提高相关性。
最后,利用模糊识别理论建立土壤有机质高光谱自反馈模糊估测模型,并通过调整模糊分类数进行模型优化。
结果表明,利用区间灰数的广义灰度可有效提高土壤有机质含量与估测因子的相关性,所建估测模型精度和检验精度均显著提高,其中20个检验样本的决定系数为R2=0.9408,平均相对误差为6.9717%。
研究表明本文所建立的土壤有机质高光谱自反馈灰色模糊估测模型是可行有效的。
关键词:土壤有机质;高光谱遥感;估测模型中图法分类号:TP79;S151.9文献标识码:A文章编号:1000-2324(2023)04-0495-05Self-feedback Grey Fuzzy Estimation Model of Soil Organic Matter Using Hyper-spectral DataYU Jin-tao1,LI Xi-can1,CAO Shuang1,LIU Fa-jun2*1.School of Information Science and Engineering/Shandong Agricultural University,Tai’an271018,China2.The Fifth Geological Brigade of Shandong Geological and Mineral Resources Exploration and Development Bureau, Tai’an271000,ChinaAbstract:To overcome the uncertainty in spectral estimation and improve the accuracy of spectral estimation,a hyper-spectral estimation model of soil organic matter is established in this paper by using grey system theory and fuzzy theory.Based on121soil samples from Zhangqiu and Jiyang districts of Jinan City,Shandong Province,the spectral data are firstly transformed and the spectral estimation factors are selected according to the principle of great correlation;then,the estimation factors of the modeling samples and the test samples are corrected by using the generalized greyness of the interval grey number to improve the correlation.Finally,the fuzzy estimation model with self-feedback of soil organic matter based on hyper-spectral is established by using the fuzzy recognition theory,and the model is optimized by adjusting the fuzzy classification number.The results show that the correlation between soil organic matter content and estimation factors can be effectively improved by using the generalized greyness of interval grey number,and the accuracy of the built estimation model and the test accuracy are significantly improved,among which the determination coefficient of20test samples is R2=0.9408,and the average relative error is6.9717%.The study indicates that the grey fuzzy estimation model with self-feedback of soil organic matter using hyper-spectral data developed in this paper is feasible and effective. Keywords:Soil organic matter;Hyper-spectral remote sensing;stimation model土壤有机质是评定土壤肥力的一个重要指标,快速获取土壤有机质含量对发展精准农业具有现实意义[1]。
红外光谱在土壤学中的应用
土 壤(Soils), 2008, 40 (6): 872~877红外光谱在土壤学中的应用①邓 晶, 杜昌文*, 周健民, 王火焰, 陈小琴(土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所),南京 210008)摘 要:红外光谱技术在土壤学中已得到较广泛的应用,它能够综合地反映土壤体系的物质组成及其相互作用,为研究土壤中物质循环及其作用过程提供了新的手段。
本文回顾了近年来红外光谱技术在土壤学中的应用,包括透射光谱在土壤定性分析中的应用,并重点介绍红外反射光谱与化学计量学相结合的光谱建模技术发展情况及其在土壤定量分析中的应用。
同时本文探讨了基于光声效应的红外光声光谱技术,红外光声光谱非常适合用于土壤这种复杂、非透明体系的研究,能够克服传统透射和反射光谱中存在的缺陷,测定快速方便,并具有较高的灵敏度和测量精确度,具有很大的应用潜力。
关键词:土壤学;红外光谱;光声光谱;化学计量学中图分类号: S132红外光谱分析是通过测量分子对红外光吸收从而得到分子结构信息的一种检测方法,当照射分子的红外辐射频率与分子振动频率相同时,分子从基态振动能级跃迁到激发态的振动能级,产生红外吸收[1]。
土壤是一种有机物和无机物共存的复合体,不同的土壤因其组成的不同而具有不同的红外吸收。
从最早的腐殖质成分分析到近年的遥感、农田养分研究,人们不断追求新技术、新思维在实践中的应用。
近20年,红外光谱分析技术与化学计量学的结合为土壤学的研究提供了新的手段。
在早期的研究工作中,红外光谱主要用作土壤组分的定性分析,主要使用透射光谱。
随着反射光谱技术的进步,镜面反射、漫反射(diffused reflectance)和衰变全反射(attenuated total reflectance)逐渐得到广泛的应用。
同时,随着分析仪器精密度的大幅度提高,配合先进的波谱解析和数据处理方法,红外光谱已经能够用于土壤的定量分析,并且取得较好的结果。
土壤剖面水分仪原理
土壤剖面水分仪原理Soil moisture profile instruments use the principle of time domain reflectometry (TDR) to measure the water content in the soil. 土壤剖面水分仪利用时域反射技术(TDR)原理来测量土壤中的水分含量。
This technique involves sending an electromagnetic pulse down a probe inserted into the soil, and measuring the time it takes for the pulse to be reflected back. 这项技术涉及将电磁脉冲发送到插入土壤中的探针中,并测量脉冲反射回来所需的时间。
By analyzing the time it takes for the signal to return, the instrument can calculate the dielectric constant of the soil, which is then used to determine the volumetric water content. 通过分析信号返回所需的时间,仪器可以计算土壤的介电常数,然后用来确定体积水含量。
One of the main advantages of using a soil moisture profile instrument is the ability to measure water content at different depths within the soil. 土壤剖面水分仪的主要优点之一是可以测量土壤不同深度的水含量。
This is particularly useful for understanding how water is distributed within the soil profile, and can be crucial for making decisions related to irrigation and water management. 这对于了解水在土壤剖面内的分布方式特别有用,并且对于进行与灌溉和水管理相关的决策至关重要。
基于可见光与近红外遥感反射率关系的藻华水体识别模式
基于可见光与近红外遥感反射率关系的藻华水体识别模式论文第50卷第22期 2005年11月基于可见光与近红外遥感反射率关系的藻华水体识别模式李炎商少凌张彩云马晓鑫黄立伟吴景瑜曾银东(近海海洋环境科学国家重点实验室厦门大学, 厦门361005. E-mail:*************.cn)摘要极轨气象卫星AVHRR红光波段(波段1, 波长580~680 nm)和近红外波段(波段2, 波长720~1100 nm)的水体遥感反射率关系函数R rs(2)?1 =α0R rs(1)?1+g?1(1?α0)中, 参数α0 =(b b(1)/b b(2))(a(2)/a(1))对叶绿素浓度敏感且相对独立于浊度, 以1.6 < α0 < 5.6和0.01< R rs(2)/g < 0.2为判据, 可以实现叶绿素浓度为64~256 μg/L的近海藻华水体识别. 在2003年6月闽江口藻华水体的AVHRR 遥感信息识别基础上, 进行了该识别模式与传统的单波段模式, 以及与比值法、NDVI法、差值法等双波段模式的比较, 建议将该识别模式发展为近海藻华水体遥感的普适模式.关键词遥感海洋光学藻华算法河口近海藻华的监测方法, 已经从简单的目测报告逐渐发展到具有统一实施细则以及判断和评价标准的规范化监测, 但规范化监测方法确立前几十年的藻华频数快速增长期, 却留下了一段重要的数据空白. 具有20余年积累的极轨气象卫星AVHRR遥感数据, 是发掘这段数据空白期藻华事件记录的首选信息源. 近十年来,各国海洋遥感界一直关注着AVHRR 红光波段(波段1, 波长580~680 nm)和近红外波段(波段2, 波长720~1100 nm)的藻华水体信息提取办法[1~10], 但一直未形成规范化的遥感监测方法. 本文从近海藻华水体的AVHRR遥感识别模式的物理基础出发, 整理和分析前人的研究思路, 探讨如何建立规范化的普适模式. 模式评估的数据基础, 主要根据本实验室2003年6月在台湾海峡西岸闽江口藻华海域的观测结果.1藻华水体的遥感反射率光谱曲线文献所报道的藻华水体光谱反射率曲线, 尽管存在藻种差别的影响, 均在主要由颗粒散射所形成的反射光谱背景上, 集中表现出下列两个特征吸收峰和一个特征反射峰[7,9,11~12]:(1) 440 nm附近的吸收峰, 藻华水体叶绿素a浓度与440 nm吸收系数呈正相关关系.(2) 670 nm附近的吸收峰, 藻华水体叶绿素a浓度与670 nm吸收系数呈正相关关系.(3) 680~740 nm区间的反射峰, 藻华水体叶绿素a浓度与位于683 nm附近的反射峰高度呈正相关关系[11,12], 也与680~740 nm 区间的反射峰位置红移呈正相关关系[13,14].2003年5~6月福建省闽江口海域发生严重的甲藻类(Gymnodinium mikimotoi和Prorocentrum tries-tinum)赤潮. 图1为2003年6月2日10:00~15:40闽江口119°52′~119°54′E和26°16′~26°19′N海区不同叶绿素a浓度水体的水面上遥感反射率光谱曲线, 符合上述两个特征吸收峰和一个可红移的特征反射峰等藻华水体光谱特征.2红光波段和近红外波段的水体遥感反射率关系函数AVHRR波段1和波段2分别接受670 nm附近的藻华水体吸收峰和680~740 nm藻华水体反射峰的长波侧信号(图1), 但同时也接受悬浮泥沙、云和太阳耀光信号的影响. AVHRR波段1与波段2信号的二维直方图上, 可以区分出弧状分布的含沙水体点群、线状分布的云点群或太阳耀光点群, 以及位于两点群之间的藻华水体点群[4,15]. 2003年6月3日闽江口赤潮发生期间的AVHRR的波段1与波段2遥感记录D(1)和D(2)的二维直方图上(图2(c)), 均反映了Gower[4]和Li等[15]所注意的这种点群分异.遥感反射率R rs是吸收系数a和后向散射系数b b 的函数, 引用常用的一阶b b/(a+b b)模式[16], AVHRR 的波段1和波段2遥感反射率R rs(1)和R rs(2), 分别是对应波段吸收系数a(1)和a(2), 以及后向散射系数b b(1)和b b(2)的函数,第50卷第22期 2005年11月论文图1 2003年6月2日10:00~15:40闽江口119°52′~119°54′E 和26°16′~26°19′N 海区不同叶绿素a 浓度水体的水面上遥感反射率光谱曲线(GER-1500便携式光谱仪测量)图中标出A VHRR 波段1和波段2的波长覆盖范围图2 2003年6月3日闽江口赤潮期间的A VHRR 遥感数据(a) 波段1遥感记录D (1), 方框表示2003年6月2日10:00~15:40测量区; (b)波段2遥感记录D (2), 方框表示2003年6月2日10:00~15:40测量区; (c) D (1)~D (2)二维直方图R rs (1) = g [b b (1)/(a (1)+b b (1))];R rs (2) = g [b b (2)/(a (2)+b b (2))]. (1) 参数g 为高浑浊水体所能达到的水面上遥感反射率最大值, 其值为f /Q 和t 2/n 2的乘积[17]. 其中, f /Q 在一类水体取0.0949[16], 在高散射系数的近岸水体采用0.084[18], 均值为0.0895, 取t 2/n 2 0.54[17], 参数g 则为0.0483.鉴于波段2吸收系数a (2)很接近纯水吸收系数 a w (2), R rs (2)/g 值可以近似地表达波段2的后向散射系数b b (2)(图3).论文第50卷第22期 2005年11月R rs (2)/g = b b (2)/(a (2)+b b (2)) = 1/(a (2)/b b (2)+1)≈ 1/(a w (2)/b b (2) +1). (2)反映R rs (1)和R rs (2)之间联系的方程组, 可参考Li[19]由(1)式导出,R rs (2)?1 = α0R rs (1)?1+ g ?1 (1?α0);α0 = (b b (1)/b b (2))(a (2)/a (1)). (3)在R rs (1)~R rs (2)坐标系中, (3)式所定义的α0等值线表现为一弧线族, 弧线族具有共同的端点R rs(1) =R rs(2) =g ,以及R rs (1)≈R rs (2)≈0的交会区(图3).图3 AVHRR 波段1和波段2 R rs (1)~R rs (2)坐标系中的α0等值线族(实线)和R rs (2)/g 等值线族(虚线)粗虚线内为1.6< α0< 5.2和0.01< R rs (2)/g < 0.2的藻华水体识别窗[见(14)式]3 藻华水体遥感识别的α0值和R rs (2)/g 值判据(3)式所定义的α0可以由纯水、悬浮泥沙、叶绿素a 和黄色物质对AVHRR 的波段1和波段2后向散射系数的贡献b bw (1), b bs (1), b bc (1), b bw (2), b bs (2), b bc (2), 以及对吸收系数的贡献a w (1), a s (1), a c (1), a y (1), a w (2), a s (2), a c (2), a y (2)所构成. 对于基本满足b bc (1) + b bs (1) >> b bw (1), b bc (2) + b bs (2) >> b bw (2)和a w (2) + a s (2) + a y (2) >> a c (2)的藻华水体, α0可以近似表示为α0 = (b b (1)/b b (2))(a (2)/a (1))= [(b bw (1)+ b bs (1) + b bc (1))/(b bw (2)+ b bs (2) + b bc (2))]ˇ[(a w (2)+ a s (2) + a c (2) + a y (2))/(a w (1)+ a s (1) + a c (1) + a y (1))]≈ [(b bc (1) + b bs (1))/(b bc (2) + b bs (2) )]ˇ[(a w (2) + a s (2) + a y (2))/(a w (1)+ a s (1) + a c (1) + a y (1))]. (4)由于藻类和非藻类颗粒的散射均符合Mie 散射规律, 后向散射系数b bc 和b bs 均随波长按幂指数率减小, 简单地将藻类和非藻类颗粒后向散射系数之和b bc + b bs表达为波长400 nm 时的后向散射系数X 和散射曲线形态参数Y 的函数[18],b bc (1) + b bs (1) = X (400/λ1)Y ;b bc (2) + b bs (2)= X (400/λ2)Y . (5)由于非藻类物质的吸收系数a s 和a y 均随波长按指数率减小, 简单地将吸收系数之和a s + a y 的生物-光学模式表达为波长400 nm 时的吸收系数G 和和吸收曲线形态参数S 的函数[17],a s (1) + a y (1) = G exp[?S (λ1?400)];a s (2) + a y (2) = G exp[?S (λ2?400)]; (6)并引用表述藻类颗粒叶绿素a 浓度C 及其波段1吸收系数a c (1)的生物-光学模式[16], a c (1) = AC 1?B , (7) 则α0可以由下式估计,α0 ≈ (λ2/λ1)Y {a w (2) + G exp[-S (λ2-400)]}/{a w (1)+ G exp[?S (λ1?400)] +AC 1?B }. (8) 取,Y = 1; (据Tassan [20])a w (1) ≈ a w (630 nm) = 0.292 m ?1; (据Pope 和Fry [21]) a w (2) ≈ a w (900 nm) = 6.67 m ?1; (据Palmer 和Williams [22]) S = 0.012; (据曹文熙等[23])G = 2 m ?1 A = 0.023; B = 0.08.(9)则α0为叶绿素a 浓度C 的函数(表1), α0 ≈ 9.64/(0.419+0.023C0.992). (10)由(3)和(10)式, 红光波段遥感反射率与近红外波段遥感反射率的关系也是叶绿素a 浓度C 的函数,R rs (2)?1 = [9.64/(0.419+0.023C 0.992)]R rs (1)?1+ [1?9.64/(0.419+0.023C 0.992)]g ?1. (11)(11)式表明水体的叶绿素a 浓度与α0值负相关. 叶绿素a 浓度越高, α0越小, R rs (1)~R rs (2)关系函数弧线的曲率越小, 越接近直线R rs (1) = R rs (2). 反之, 叶绿素表1 不同叶绿素a 浓度条件下的α0计算值(G = 2 m ?1 , A = 0.023, B = 0.08)叶绿素a 浓度C /μg ·L ?10 1 2 4 8 16 32 64 128 256 α023.0 21.8 20.7 18.9 16.1 12.4 8.5 5.2 3.0 1.6第50卷第22期 2005年11月论文a 浓度越低, α0越大, R rs (1)~R rs (2) 关系函数弧线的曲率越大, 越接近对应叶绿素a 浓度C = 0的含沙水体, α0值为23的弧线,R rs (2)?1 = 23R rs (1)?1 ? 22 g ?1. (12)由(2)和(9)式, 波段2的后向散射系数可表达为R rs (2)/g 的正相关函数,b b (2) ≈ a w (2)/{[1/(R rs (2)/g )]?1}= 6.67(R rs (2)/g )/[1?(R rs (2)/g )]. (13) 事实上, 藻类颗粒的聚集引起叶绿素a 浓度C 增高(α0减小), 同时, 也引起波段2后向散射系数b b (2)增大(R rs (2)/g 值增加). 如果将藻华水体的叶绿素浓度范围设为64 μg/L < C < 256 μg/L, 根据(10)式, 藻华水体的α0值判据将在5.2~1.6范围内变动. 假定悬浮颗粒以藻类颗粒占优势, 并具有一类水体文献中常用的叶绿素a 浓度与b b (2)值的关系[20], 相应的b b (2)在0.08~0.2 m ?1范围内变动1), 藻华水体的R rs (2)/g 值判据在0.01~0.03间变动. 考虑到藻类颗粒出现在近表层的藻华水体近红外反射信号呈数量级增加[13], 藻华水体对应的R rs (2)/g 值将增大. 因此识别藻华水体的α0值和R rs (2)/g 值判据可选为(图3): 1.6 < α0 < 5.2;0.01 < R rs (2)/g < 0.2. (14)4 A VHRR 遥感数据的藻华水体识别步骤4.1 确定校准点R rs (1) ≈R rs (2)≈ 0调入AVHRR 的波段1与波段2遥感记录D (1), D (2), 构造其二维直方图(图2). 选择由洁净到浑浊的含沙水体子区, 在D (1)~D (2)二维直方图上根据含沙水体点群所构成的弧线, 以及云点群或太阳耀光点群所构成直线的下交点, 或取比洁净水遥感记录值最小值小一个记录单位的记录值, 分别确定为R rs (1) = 0和R rs (2) = 0所对应的遥感记录D 0(1)和D 0(2). 4.2 确定校准点R rs (1) = R rs (2) = g在D (1)~D (2)二维直方图上根据含沙水体弧线点群和云或太阳耀光直线点群的上交点, 分别确定R rs (1) = g 和R rs (2) = g 所对应的遥感记录值D g (1)和D g (2).另一个方法是选取含沙水体子区数据, 按最小二乘法获(D (1) ? D 0(1))?1与(D (2) ? D 0(2))?1的线性回归系数a 和b , 估算R rs (1) = g 和R rs (2) = g 所对应的遥感记录值D g (1)和D g (2),(D (2) ? D 0(2)) –1 = a [C 21(D (1) ? D 0(1) )]–1+ b ;D g (1) = (1 ? a )/b /C 21+D 0(1);D g (2) = (1 ? a )/b +D 0(2). (15)其中C 21是遥感反射率换算的比例因子, 一般由D (1)~D (2)二维直方图上的云点阵或太阳耀光点阵斜率给定[4]. 4.3 藻华水体识别及其图像显示逐点计算归一化遥感反射率R rs (1)/g 和R rs (2)/g 值,R rs (1)/g = (D (1) ? D 0(1))/(D g (1) ? D 0(1));R rs (2)/g = (D (2) ? D 0(2))/(D g (2) ? D 0(2)). (16) 逐点计算α0值,α0 = ((R rs (2)/g )?1 ? 1)/((R rs (1)/g )?1 ? 1); (17) 接着显示遥感图像中符合(14)式所列藻华水体α0 和R rs (2)/g 值经验判据的藻华水体像元.图4(a)为2003年6月3日闽江口赤潮发生期间的D (1)~D (2)二维直方图,并标出选定的两个校准点和叠加在二维直方图上的藻华水体识别窗. 图4(b)在D (2)底图上显示的藻华水体识别图像. 2003年6月2日现场观测的闽江口赤潮发生区, 正落于遥感识别到的闽江口藻华发生区的A 区内.5 藻华水体遥感识别模式的比较 5.1 与单波段模式的比较藻华水体的680~740 nm 反射峰红移, 加上740 nm 以上近红外波段藻华颗粒散射引起反射, 足以产生在清洁水背景中可被识别的AVHRR 波段2高反射率信号. 选择合适的AVHRR 波段2遥感反射率阈值, 可以将具有较高反射率的藻华水体与周边清水分开. Prangsma 和Roozekrans [24], Gower [5], Stumpf 等[2]和Kahru 等[6]利用AVHRR 波段2相对较高反射率信息, 成功地进行了近海清水区藻华水体的遥感识别及其时间序列分析. 根据R rs (2) 等值线族定义的单波段模式的分类窗, 在R rs (1) ~R rs (2)二维直方图上呈水平条带, 将藻华水体点群定义在R rs (2)大于某个经验阈值的区间, 显然只能将高散射特性藻华水体从低浊水体区分出来, 而无法区分具有高散射特性藻华水体与浑浊水体, 也无法区分低散射特性藻华水体与低浊水体(图5).5.2 与比值法和NDVI 法的比较比值法及其相关的NDVI 法均为双波段识别的1) 参照Tassan [20], b b (2) = 0.005(0.12C 0.63)(a c (550nm)/ac (2)), 取a c (550nm)/a c (2) = 10, 对应64 μg/L < C < 256 μg/L 区间, 有0.08 m ?1 < b b (2) < 0.2 m ?1论文第50卷第22期 2005年11月图42003年6月3日闽江口及毗邻水域的: (a) D (1)~D (2)二维直方图、选定的低交点(小网格框的左上角)和高交点(小网格框的右下角)、叠加在二维直方图上的藻华水体识别模板(红色虚框); (b)D (2) 图像上显示的藻华水体分布区 (A 区: 2003年6月2日现场观测的闽江口藻华发生区; B 区: 浙江南部海域疑似藻华区; C 区: 闽江口潮间带和潮下带的疑似藻华区)图5AVHRR 波段1和波段2的 R rs (1)~R rs (2)二维直方图上的(14)式藻华水体识别窗(虚线框: 1.6 < α0 < 5.2和0.01 < R rs (2)/g < 0.2)和单波段模式分类窗(浅蓝色条带: 0.01< R rs (2)/g < 0.2). 红色圆点为2003年6月2日闽江口藻华水体的现场测量结果流模式. Stumpf 等[1]认为, 水体的AVHRR 波段2和波段1遥感反射率比值(R rs (2)/R rs (1))与藻华密度正相关. 在R rs (1)~R rs (2)二维直方图上, 比值法分类窗根据R rs (2) /R rs (1)等值线族定义, 表现为以坐标原点为中心的辐射状条带, 其中云或太阳耀光点群的R rs (2)/R rs (1) =1, 水体点群R rs (2)/R rs (1)≤1, 藻华水体点群分布介于两者之间, R rs (2) /R rs (1)为0.3~0.7(图6). 赵冬至等[10]利用现场同步观测数据验证浓度2~17 μg/L 区间的叶绿素a 与R rs (2)/R rs (1)具有精度为±4 μg/L 的线性相关关系. 对于低浊水体, 比值法的R rs (2)/R rs (1)等值线族判据接近(14)式的α0等值线族判据, 藻华水体识别效果相近. 但在高浊水体, 比值法的R rs (2)/R rs (1)等值线族判据明显偏离(14)式的α0等值线族判据, 难以区分高叶绿素a 水体点群与高含沙水体点群, 影响了比值法在高浊水体中的藻华水体识别能力.比值R rs (2)/R rs (1)可换算为常用的NDVI 值, NDVI = (R rs (2) ? R rs (1))/(R rs (2) + R rs (1))= (R rs (2)/R rs (1) ? 1)/(R rs (2)/R rs (1)+1) (18) NDVI 等值线族在R rs (1) ~R rs (2)二维直方图上同样呈辐射状分布(图6). 在低浊水体, NDVI 也具有与藻华密度的正相关联系[11,12]. 但在高浊水体, NDVI 等值线族判据同样偏离了α0等值线族判据, 影响了NDVI 法在高浊水体中的藻华水体识别能力.显然, 只有增加了与(14)式相同的附加R rs (2)/g 判据0.01 < R rs (2)/g < 0.2, 比值法或NDVI 法的藻华水体识别窗口方才接近(14)式的窗口.第50卷第22期 2005年11月论文图6AVHRR 波段1和波段2的R rs (1)~R rs (2)二维直方图上的(14)式藻华水体识别窗(虚线框: 1.6 < α0 < 5.2和0.01 < R rs (2)/g < 0.2)和比值法(浅蓝色条带: 0.3 < R rs (2)/R rs (1) < 0.7)或NDVI 法(浅蓝色条带: 0.18 < NDVI < 0.54) 分类窗. 红色圆点为2003年6月2日藻华期闽江口水体测量结果5.3 与差值法的比较Gower [4] 根据加拿大西海岸藻华遥感图像的分析提出, 当R rs (2) 小于某个经验阈值时, 水体AVHRR 波段1与波段2遥感反射率的差R rs (1)R rs (2)与藻华密度正相关. 在R rs (1)~R rs (2)二维直方图上, 差值法的分类窗为R rs (2) 经验阈值与R rs (1) ? R rs (2) 等值线族联合定义的四边形, 其中云或太阳耀光点群的R rs (1)R rs(2)=0, 水体点群的R rs(1)R rs(2)≥ 0, 藻华水体的点群分布介于两者之间(图7). Gower [4]的差值法尽力突出波段1悬浮颗粒散射背景反射峰的正影响而忽略藻华水体670 nm 附近吸收峰的负影响, 尽管设置了R rs(2)经验阈值限制高浊水体的误识别, 但该方法仍很难将藻华水体与悬浮泥沙颗粒占优势的低浊水体区分开. 可能是这个原因, 差值法较少得到应用. 有意思的是, Gower [4]在提出差值法的论文中, 仍同时进行了比值法分析, 并未作出明确取舍. 实际上如果联用差值法和比值法, 将藻华水体定义为R rs (1)与R rs (2)的比值和差值在一定R rs (2)/g 范围内的并集, 与(14)式所识别的藻华水体点群已经相当接近(图7).6 结论通过藻华水体的近红外波段与红光波段遥感识别识别模式物理机理的研究, 提出了基于遥感反射图7AVHRR 波段1和波段2的R rs (1)~R rs (2)二维直方图与(14)式表达的藻华水体识别窗(虚线框: 1.6 < α0 < 5.2和0.01 < R rs (2)/g < 0.2)、比值法分类窗(浅蓝色条带: 0.3 < R rs (2)/R rs (1) < 0.7)和差值法分类窗(浅棕色条带: 0.002 < R rs (1) ? R rs (2) < 0.012和0.01 < R rs (2)/g < 0.2). 红色圆点为2003年6月2日藻华期闽江口水体测量结果率关系函数R rs (2)?1 = α0 R rs (1)-1+ g ?1 (1?α0)的双波段模式, 主要结论包括:(ⅰ) AVHRR 波段1和波段2的藻华水体识别窗为1.6 < α0 < 5.2和0.01 < R rs (2)/g < 0.2;(ⅱ) 提出确定校准点R rs (1) ≈ R rs (2) ≈ 0和R rs (1) = R rs (2) = g , 在AVHRR 波段1和波段2遥感图像上实现藻华水体识别窗信息提取的步骤;(ⅲ) 以1.6 < α0 < 5.2和0.01 < R rs (2)/g < 0.2定义的藻华水体识别窗比现有的单波段模式和双波段模式(括比值法、NDVI 法、差值法等)准确稳定, 可发展成为藻华水体遥感识别的规范化模式.致谢多年来与国内外同行在海洋遥感监测和二类水体遥感研讨会上的交流, 对上述模式的形成帮助很大, 作者借此对研讨会组织者和参加者表示感谢. 本项研究受国家自然科学基金项目(批准号: 40176039)和国家高技术研究发展计划项目(批准号: 2001AA630601, 2002AA639540)资助.参考文献1 Stumpf R P, Tyler M A. Satellite detection of bloom and pigmentdistributions in estuaries. Remote Sensing of Environment, 1988, 24: 358~4042 Stumpf R P, Megan L F. Use of AVHRR imagery to examinelong-tem trends in water clarity in coastal estuaries: example in论文第50卷第22期 2005年11月Florida Bay. In: Kahru M, Brown C W, eds. Monitoring Algal Bloom: New Techniques for Detecting Large-scale Environmental Change. Spring-Velag and Landes Bioscience, 1997. 3~233 Stumpf R P, Culver M E, Tester P A, et al. Monitoring Kareniabrevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data. Harmful Algae, 2003, 2: 147~1604 Gower J F R. Red tide monitoring using AVHRR HRPTimageryfrom a local Receiver. Remote Sensing of Environment, 1994, 48:309~3185 Gower J F R. Bright plankton blooms on the west coast of NorthAmerica observed with AVHRR imagery. In: Kahru M, Brown C W, eds. Monitoring Algal Bloom: New Techniques for Detecting Large-scale Environmental Change. Spring-Velag and Landes Bioscience, 1997. 25~416 Kahru M. Using satellites to monitor large-scale environmentalchange: a case study of cyanobacteria blooms in the Baltic Sea. In: Kahru M, Brown C W, eds. Monitoring Algal Bloom: New Tech-niques for Detecting Large-scale Environmental Change. Spring- Velag and Landes Bioscience, 1997. 43~617 黄韦艮, 毛显谋, 张鸿翔, 等. 赤潮卫星遥感监测与实时预报.海洋预报, 1998, 15:111~1158 Huang W G, Lou X L. A method for detecting red tides usingAVHRR Imagery. In: IEEE International Geoscience and Remote Sensing Symposium, JUL 09-13, 2001, IGARSS 2001: Scanning the Present and Resolving the Future, 2001, Vols 1-7, Proceedings: 2805~28079 赵冬至. AVHRR在赤潮海表浮游植物细胞数探测中的应用. 海洋环境科学, 2003, 22(1): 10~14;10 赵冬至, 张丰收, 赵玲, 等. 近岸海域叶绿素和赤潮的AVHRR波段比值探测方法研究. 海洋环境科学, 2003, 22(4): 9~1211 Gower J F R. Observation of in situ fluorescence of chlorophyll inSeanich Inlet. Boundary-layer Meteorology, 1980,18:235~24512 Gower J F R, Borstad G A. Use of in vivo fluorescence line at 685nm for remote sensing surveys of surface chlorophyll a, in Oceanography from Space, Gower J F R ed. Plenum, New York, 1981. 329~33813 Richardson L L. Remote sensing of algal bloom dynamics: Newresearch fused remote sensing of aquatic ecosystems with algal accessory pigment analysis. BioScience, 1996, 46(7): 492~50114 疏小舟, 尹球, 匡定波. 内陆水体藻类叶绿素浓度与反射光谱特征的关系. 遥感学报, 2000, 4(1): 41~4515 李炎, 李京. 基于海面-遥感器光谱反射率斜率传递现象的悬浮泥沙遥感算法. 科学通报, 1999, 44(17): 1892~189716 Gordon H R, Brown O B, Evans R H, et al. A semianalytic radi-ance model of ocean color. Journal of Geophysical Research, 1988, 93, 10909~1092417 Carder K L, Chen F R, Lee Z P, et al. Semianalytic moder-ate-resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-deple- tion temperatures. Journal of Geophysical Research, 1999, 104(C3): 5403~542118 Lee Z P, Carder K L, Mobley C D, et al. Hyperspactral remotesensing for shallow waters: 2. Deriving bottom depths and water properties by optimization. Applied Optics, 1999, 38(18): 3831~384319 Li Y. Atmospheric correction of SeaWiFS imagery for turbidcoastal and inland waters: comment. Applied Optics, 2003, 42 (6): 893~89520 Tassan S. Local algorithms using SeaWiFS data for the retrieval ofphytoplankton, pigments, suspended sediment, and yellow sub-stance in coastal waters. Applied Optics, 1994, 33(12): 2369~2378 21 Pope R, Fry E. Absorption spectrum (380-700nm) of pure water: II.Integrating cavity measurements. Applied Optics, 1997, 36(33): 8710~872222 Palmer K F, Williams D. Optical properties of water in the nearinfrared. Journal of the Optical Society of America, ,1974, 64: 1107~111023 曹文熙, 杨跃忠, 许晓强, 等. 珠江口悬浮颗粒物的吸收光谱及其区域模式. 科学通报, 2003, 48(17): 1876~188224 Prangsma G J, Roozekrans J N. Using AVHRR HRPT imagery inassessing water quality parameters, International Journal of Re-mote Sensing, 1989, 10(4-5): 811~818(2005-04-05收稿, 2005-08-29收修改稿)。
土壤全波段模型和反演研究
土壤全波段模型和反演研究## Article: Soil Full-Spectrum Model and Inversion Research.1. Introduction.Soil is a complex and dynamic system that plays a vital role in the Earth's ecosystem. It provides nutrients for plants, regulates water flow, and helps to decompose organic matter. In recent years, there has been a growing interest in developing models that can accurately represent the properties of soil. These models can be used to study soil processes, predict soil behavior, and manage soil resources.2. Soil Full-Spectrum Model.A soil full-spectrum model is a mathematical representation of the soil system that takes into account all of the relevant physical, chemical, and biologicalprocesses. These models are typically complex and require a large amount of data to calibrate. However, they can provide a comprehensive understanding of soil behavior and can be used to simulate a wide range of soil processes.One of the most common soil full-spectrum models is the Soil and Water Assessment Tool (SWAT). SWAT is a physically based model that simulates the movement of water, sediment, nutrients, and pesticides through a watershed. SWAT has been used to study a wide range of soil and water management issues, including erosion, water quality, and climate change.3. Soil Inversion.Soil inversion is the process of estimating the properties of soil from measurements of its reflectance spectrum. This can be done using a variety of techniques, including linear regression, nonlinear regression, and machine learning. Soil inversion is a powerful tool that can be used to map soil properties over large areas and to study soil processes.One of the most common soil inversion techniques is partial least squares regression (PLSR). PLSR is a linear regression technique that can be used to identify the relationships between a set of independent variables (e.g., reflectance spectra) and a set of dependent variables (e.g., soil properties). PLSR has been used to invert a wide range of soil properties, including soil organic matter, soil moisture, and soil texture.4. Applications of Soil Full-Spectrum Models and Inversion.Soil full-spectrum models and inversion have a wide range of applications in soil science and environmental management. These applications include:Soil mapping: Soil full-spectrum models can be used to generate detailed maps of soil properties over large areas. These maps can be used to identify areas of soil degradation, plan land use, and manage soil resources.Water quality modeling: Soil full-spectrum models can be used to simulate the movement of water and nutrients through the soil profile. These models can be used to predict the impact of land use changes on water quality and to develop strategies to reduce water pollution.Climate change research: Soil full-spectrum models can be used to simulate the effects of climate change on soil processes. These models can be used to predict how climate change will affect soil erosion, water quality, and carbon sequestration.5. Conclusion.Soil full-spectrum models and inversion are powerful tools that can be used to study soil processes, predictsoil behavior, and manage soil resources. These models are becoming increasingly sophisticated and are playing an increasingly important role in soil science and environmental management.## 中文回答:1. 导言。
太赫兹光谱技术用于干旱胁迫下大豆冠层含水量检测研究
太赫兹光谱技术用于干旱胁迫下大豆冠层含水量检测研究赵旭婷;张淑娟;李斌;李银坤【摘要】近年来水资源短缺问题日益严重,部分地区由于农业灌溉用水不足导致庄稼减产农民利益受损.大豆是一种需水量较大的农作物,一旦水分亏缺将直接影响大豆植株的形态和生长发育,从而造成大豆品质降低和产量减少.大豆叶片的水分状况可真实地反映植株水分受土壤水分亏缺的影响程度,因此,大豆冠层叶片水分含量的快速获取成为一种需要.太赫兹辐射在水中的强烈衰减使其成为一种非常灵敏的非接触式探针,可以快速、无损地检测叶片含水量.因此基于太赫兹光谱这一新技术进行大豆冠层叶片含水量的检测研究,用于实时监测田间大豆的健康状况.实验选用中黄13号大豆进行栽培,为尽可能模拟田间不同程度的干旱胁迫状况,将开花期大豆进行5个不同梯度:正常供水、轻度干旱胁迫、中度干旱胁迫、重度干旱胁迫、严重干旱胁迫(分别占田间最大持水量的80%,65%,50%,35%,20%)的水分灌溉,每个梯度设置3个重复.利用人工称重法与便携式土壤水分速测仪结合将土壤含水量调控到各水分梯度要求.然后,将实验大豆植株运回实验室并利用透射式太赫兹时域光谱仪进行样本扫描,每个梯度采集18片冠层叶片,共90个样本,以2:1的比例分为校正集和预测集.在获取各样本时域光谱数据后,根据Dorney和Duvillaret提出的模型进行了光学参数的提取,得到各样本的吸收系数谱以及折射率谱.定性分析了太赫兹时域光谱、吸收系数、折射率随水分胁迫程度不同的变化情况.实验发现:随着水分胁迫程度的降低,时域光谱的峰值呈不断衰减趋势,且均低于空白参考峰值,同时有明显的时间延迟.吸收系数值随干旱胁迫程度的加剧逐渐降低;折射率值同样随干旱胁迫程度的加剧逐渐降低.并利用偏最小二乘(PLS)和多元线性回归(MLR)方法定量研究了时域光谱、吸收系数、折射率光谱数据与叶片含水率的相关关系.结果表明,太赫兹波对大豆叶片水分差异十分敏感,基于时域光谱最大值和最小值的MLR预测精度最高,预测集相关性(rp)达-0.9393,均方根误差(RMSEP)为0.0495.研究表明太赫兹光谱技术应用于大豆冠层叶片含水量观测具有良好的可行性,为开展大豆冠层含水量信息快速获取,实现科学节水管理与灌溉决策提供了新的检测手段和实验依据.【期刊名称】《光谱学与光谱分析》【年(卷),期】2018(038)008【总页数】5页(P2350-2354)【关键词】大豆叶片;含水量;太赫兹时域光谱;吸收系数;折射率;回归模型【作者】赵旭婷;张淑娟;李斌;李银坤【作者单位】山西农业大学工学院 ,山西太谷 030801;北京农业信息技术研究中心 ,北京 100097;农业部农业遥感机理与定量遥感重点实验室 ,北京 100097;山西农业大学工学院 ,山西太谷 030801;北京农业信息技术研究中心 ,北京 100097;农业部农业遥感机理与定量遥感重点实验室 ,北京 100097;数字植物北京市重点实验室 ,北京 100097;北京农业智能装备技术研究中心 ,北京 100097【正文语种】中文【中图分类】O657.3引言大豆是一种粮油饲兼用作物,植物蛋白含量丰富,市场需求量巨大,据国家粮油信息中心统计,2016/2017年度我国大豆的年消耗量达9 810万吨。
基于红光和近红外反射光谱特征参数反演草地地上生物量
基于红光和近红外反射光谱特征参数反演草地地上生物量罗媛;谢堂民;龙显静;冯树林;陈功【摘要】From June to October 2013,the mixed pasture (Pennisetum clandestinum and Trifolium repens ) was selected to estimate the aboveground biomass through building the estimating model by measuring the cano-py spectral reflectance of the pasture and analyzing the relationship between biomass and reflectance of special wavelengths,red edge parameter and vegetation indices.Results showed that there were significant relationships between spectral reflectance in red band and pasture aboveground biomass.Reflectance at red valley could be significantly decreased and reflectance at 850.0 nm could be significantly increased by increased biomass from June 1 1 to October 12.Reflectance of red band and vegetation index RVI as well as vegetation index NDVI could be used for estimating pasture fresh forage and dry matter yield,but the most suitable vegetative indices varied with the season and forage yield.RVI was better used in June and NDVI was better in October.%2013年6~10月测定东非狼尾草+白三叶混播草地冠层反射光谱和地上生物量;分析红光波段和近红外波段反射光谱特征参数与牧草鲜重及干物质之间的相关关系;构建并检验基于红光单波段和植被指数(NDVI 、RVI 、DVI )反演草地地上生物量回归模型。
被动微波反演裸露区土壤水分综述
被动微波反演裸露区土壤水分综述韩念龙,陈圣波,汪自军,包书新,宋金红吉林大学地球探测科学与技术学院,长春 130026 摘要:被动微波具有全天候、穿透性以及不受云的影响等特征,使其在反演土壤水分时具有很大的优势。
通过研究发现,被动微波遥感是反演土壤水分的各种技术中最有效的方法之一。
概括了主要的被动微波传感器并从被动微波遥感的原理出发,针对被动微波遥感裸露区地表随机粗糙面的模型以及土壤水分反演算法作了简要介绍。
关键词:被动微波遥感;裸露区;土壤水分;模型与算法中图分类号:T P 75 文献标识码:A作者简介:韩念龙(1983—),男,海南三亚人,硕士研究生,主要从事遥感与地理信息系统研究,E-mail:nlhan06@ht 。
Review of the Bare Field Soil Moisture Retrievalfrom Passive MicrowaveHAN Nian -long ,CHEN Sheng -bo ,WANG Zi -jun ,BAO Shu -xin ,SONG Jin -ho ngColle ge of GeoExp loration S cience and T echnology ,Jilin Univ er sity ,Changchun 130026,ChinaAbstract :Passive micr ow av e have great advantag e in retr ieval soil moisture because o f the characteristics of all-w eather,penetrability and no t affected by the cloud.T hr ough study peo ple found that passive microw ave is one of the mo st effectiv e m ethods in r etrieval so il moisture in various technologies.T his paper summarizes the major passiv e m icrow ave sensors and the principle of passive remote sensing ,and introduces the bar e field randomly r oug h surface passive microw ave mo del and so il moisture alg orithm.Key words :passive microw ave RS;bare field;soil m oisture;m odel and algo rithm0 引 言土壤湿度作为最重要的地表特征参数之一,是影响全球气候和环境的重要因素。
TM影像反射率对干旱区土壤含水量的响应特征
TM影像反射率对干旱区土壤含水量的响应特征1. 前言干旱区由于缺乏降水的影响,所以土壤水分含量较低,而土壤水分含量直接影响着作物的生长发育及土地利用效率,因此开展对干旱区土壤水分含量进行监测和评估,是能够对节约用水进行增效的重要措施。
遥感技术由于具备高时空分辨率,能够克服传统实地测量的劣势,所以在干旱区土壤水分的监测及评估方面具有广泛应用前景。
2. 研究内容研究表明,TM影像反射率能够反映土壤水分的含量,因此我们本次研究使用TM影像反射率数据,探究其对干旱区土壤水分含量的响应特征。
3. 实验设计我们选取了中国西北干旱区内蒙古某地的50个样本点,每个样本点的土壤含水量分别测得10次,并进行平均。
我们分别使用2003年和2004年不同月份的TM影像对样本点进行遥感监测,并计算出反射率数据。
我们通过对50个样本点的土壤含水量数据和相应的TM影像反射率分别进行相关分析,探究TM影像反射率与土壤水分含量之间的关系,并从多个方面来分析它们之间的响应特征。
4. 结果分析4.1 相关分析在2003年的监测结果中,土壤含水量和TM影像反射率的相关系数为-0.82,P值小于0.001,表明其相关性极强;在2004年的监测结果中,土壤含水量和TM 影像反射率的相关系数为-0.78,P值小于0.001,表明其相关性较强。
4.2 响应特征通过分析我们发现,土壤含水量和TM影像反射率呈负相关。
当土壤含水量增加时,其反射率降低;当土壤含水量减少时,其反射率增加。
这是由于,当土壤中含水量高时,土壤粒子间的距离较远,散射反射比较明显,而且土壤中水的吸收也比较大,因此土壤的反射率变小;反之,土壤含水量低时,土壤中没有太多的散射反射和水的吸收,所以土壤的反射率变大。
此外,我们发现当监测时间长时,TM影像反射率更能够反映土壤水分含量的变化。
在2003年监测中,5月份的TM反射率与土壤含量的相关系数最高,为-0.75,P值小于0.001,而在6月份,相关系数下降到-0.60,P值小于0.001;在2004年监测中,5月份的相关系数最高,为-0.72,P值小于0.001,而在6月份,相关系数下降到-0.51,P值小于0.001。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Spectral Reflectance of Wetted SoilsWilliam PhilpotSchool of Civil & Environmental EngineeringCornell UniversityIthaca, NYIntroductionSoils darken when wet with little apparent color change. This commonly observed phenomenon is an obvious and dominant characteristic of the reflectance of soils. Several explanations for the darkening have been suggested based on at least two, very distinct theoretical hyppotheses. Ångström (1925) attributed the reduction to total internal reflection within the film of water coating soil particles. In effect, the multiple interactions of light with the soil that result from repeated reflections increase the probability of absorption and, thus decrease the total light reflected. A number of authors have expanded on this idea, modifying Ångström's formula to account for light that is not totally internally reflected (Lekner and Dorf, 1988) and incorporating the effect of spectral absorption by the water itself (Bach and Mauser, 1994), a necessity when considering spectral reflectance through the short wave infrared (SWIR).An alternative explanation was put forward by Twomey et al. (1986) who point out that, since the relative index of refraction between water and soil is considerably less than that between air and soil, forward light is much more likely with wetted soil. As with the case of internal reflection, this increases the interaction of light with soil and results in increased probability of absorption by the soil. As with the internal reflectance model, this could account for the decrease in reflectance, but it would still be necessary to extend the model to account for absorption by water in order to account for spectral variations, especially those in the short wave infrared.Both Ångström (1925) and Twomey et al. (1986) were primarily concerned with the overall darkening effect. It was consideration of the spectral detail of the reflectance that forced the specific consideration of absorption by water to explain the spectral variability observed in the reflectance. In particular, Bach and Mauser (1994) describe a spectral (400-2500 nm) extension of Ångström's model that appears to closely match observed spectral variations in their measurements soil reflectance. Bedidi et al. (1992) consider only the visible range, but consider color change and review the effects of reflectance and transmittance at the soil surface (with and without water) as well as absorption both by the soil and by the water, emphasizing the effect of the relative refractive index on the spectral reflectance.It seems clear that the darkening of wetted soil could be attributed to multiple mechanisms. What is not clear is which of those mechanisms is the most appropriate or important. Indeed, both fundamental explanations could well be important significant. Another uncertainty is how and when absorption by water becomes important and exactly how that enters into the process. There are still other issues that have not been clearly addressed. For example, the absorption spectrum of pure water is known, but pore water contains dissolved material and the water itself is partially bound to the soil. Both factors may alter the effective absorption by water.This paper does not attempt to answer these questions; rather it is an attempt to illustrate the process and elucidate the major issues via a very simple conceptual model.ObservationsFirst consider a series of reflectance measurements of a soil sample in which the water content varies (Figure 1). These observations were reported by Lobell and Asner (2002) in an experiment specifically designed to observe the spectral variations in reflectance with water content. Each of four samples of distinctly different soil types was passed through a 2-mm sieve to remove extraneous material and homogenize the sample. The sample was then oven-dried at 70°C for 2 weeks. After measuring the reflectance of the oven-dried sample (the top, dark blue spectrum in Figure 1), deionized water was applied to the soil with a pipette until the soil was deemed near saturation. At each stage the water content of each sample was determined by weight and expressed on a volumetric basis: the volumetric water content (vwc). Spectral measurements were then collected repeatedly until the soil mass returned to its initial value (the gray spectrum just below the oven-dried spectrum). The reader is referred to the original paper (Lobell and Asner, 2002) for further details of the procedure.Asner, 2002). Water content based on mass measurements and is expressed interms of relative volume.Note that, in the visible (400-700 nm), the shape of the curve does not change greatly, corresponding to the perception that wet soil is darker, but essentially the same color as dry soil. In fact, there are spectral changes in the visible, but they are relatively subtle (Bedidi et al., 1992). The gross change in amplitude is largely true through the near infrared as well. In the short wave infrared, however, there are significant changes in the reflectance spectra that are directly associated with the increased water content. There are the fairly obvious water absorption features centered at 1450, 1900 and 2800 nm that become increasingly dominant as the water content increases, and there are soil absorption features near 1400, 1900 and 2200 nm that are either masked by the water absorption or minimized by the presence of water. It is apparent that, if field spectra or remotely sensed spectra of soils are to be used to evaluate soil properties, it will be necessary to account for the spectral effects resulting from the presence of water in the soil.A simple modelTo begin, let us assume that there is a portion of the reflected light behaves as if it is due to a first surface interaction (i.e, Fresnel reflection) from the water film coating the soil particles (path A inFigure 2). The remaining portion of incident light is transmitted through the water surface and is subject to reflection from the soil particles and absorption by the water (path B in Figure 2).If the fraction of the surface area from which light is reflected directly from the water film is denoted by f w , then a preliminary expression for reflectance would be:(1)w da w w w s R f f e ρρ=+− (1) where: ρw = Fresnel reflectance from the water surface ρs = reflectance from soil particles a w = absorption coefficient for liquid water (1/cm) d = average optical path of light through the pore dater (cm)Specifically, Eq. (1) states that water affects reflectance either by surface reflection or by absorption. By implication, the effect of internal scattering within the water (volume reflectance) is negligible. In the absence of water (f w = d = 0), the reflectance is that of dry soil, R = ρs . In the absence of pore water (d=0), the reflectance is simply an additive combination of soil and water surface reflectance,R = f w ρw + (1-f w )ρs , and in the absence of surface water (f w = 0), the reflectance is that of surface soil reflectance modified by absorption by the subsurface water, w da s R e ρ=.For the present, the reflectance of the water surface is approximated using the Fresnel reflectance for light incident normally to a facet surface:2211w a w w w a w n n n n n n ρ⎛⎞⎛⎞−−≈≈⎜⎟⎜⎟++⎝⎠⎝⎠(2)where n w is the index of refraction of the water and n a is the index of refraction of air. The spectral index of refraction for water is taken from Segelstein (1981) and resulting spectral reflectance factor shown in Figure 3. The surface reflectance is low with very little spectral variation, so the overall effect will be to darken the wetted object but to introduce little spectral change.The spectral absorption coefficient of water, a w , shown in Figure 3, is a composite of measurements reported by Pope and Fry (1997) for the near ultraviolet and visible portion of the spectrum, and thosereported by Kou et al. (1993) from the red through the short wave infrared. (Note: a compendium of water absorption measurements can be found at /spectra/water/abs/).An exampleTo illustrate the way Eq. (1) controls the spectrum, we begin with the oven dried spectrum and adjust the parameters f w and d to match the blue curve in Figure 1 (vwc = 0.102). Since the water surfacereflectance will only alter the amplitude and that will be the major overall effect, we begin by ignoring the pore water content (i.e., d = 0), and adjust the parameter f w to reduce the reflectance down to, but not below, the reflectance of the target spectrum. In this particular example, f w =0.22, and the fit isrepresented by the dashed line in Figure 4. Next d , the parameter representing the effective optical path length through the pore water is adjusted to match the absorption features which is achieved withd =93 μm and illustrated by the dotted line in Figure 4 [It is encouraging that the order of magnitude of the optical path is reasonable, but it is only a model parameter.]The overall fit is remarkably good, with the modeled curve following the overall shape of the observed reflectance. There are some notable deviations: the modeled reflectance is too high in the visible, and is too low at water absorption peaks. One possible explanation is that absorption by the pore water is not the same as absorption by pure water. For example, the difference between the observed and predicted reflectance is suggestive of absorption by dissolved organic material. Absorption by dissolved organic material (also called yellow matter, cdom, or gelbstoff) is described by a model suggested by Bricaud et al. (1981):()()()exp 0.014dom dom o o a a λλλλ⎡⎤=−−⎣⎦ (3)where: a dom = absorption coefficient for dissolved organic material (1//cm)λ = wavelengthλo = reference wavelength (440 nm) The absorption curve for dissolved organic matter (DOM) is shown in Figure 5.Figure 4: Illustration of how Eq. (1) alters the bare soil reflectance to account for the addition of surface and pore water.approximations of water absorption features centered at 1450, 1940 and2800 nm,The fact that the overall fit of the modeled absorption curve is good except for the prominent water absorption bands suggests that absorption at these locations has been altered. Bach and Mauser (1994) also noted a similar disparity in their model of soil reflectance spectra, and suggested that the differences could be explained by a wavelength-independent, amplitude dependence of the absorption coefficient. They attributed the diminution in absorption to water being chemically bound to the soil particles. Such a global effect does not appear to be the case in the Lobell and Asner (2002) data; the mismatch appears to be restricted to the prominent, narrow water absorption bands. Thus, for these data we also assume that the pore water is partially bound to the soil, limiting the effective absorption; however we assume that the effect is limited to specific bands. Since different vibrational modes are responsible for each of these features, it follows that each one would be modeled separately. As a first attempt, these absorptionbands are mode with a Gaussian distribution centered at the three major absorption bands, 1450, 1940 and 2800 nm. The fitting functions are illustrated in Figure 5.These adjustments alter the effective absorption of the pore water and result in a new version of Eq. (1):()()1exp w w w s w dom dom a a b b c c R f f d a c a c a c a c a ρρ⎡⎤=+−++++⎣⎦ (4) where: c dom = concentration coefficient for DOM c a = coefficient for absorption reduction at 1450 nmc b = coefficient for absorption reduction at 1900 nm c c = coefficient for absorption reduction at 2800 nmoverestimate of reflectance in the region near 1800 nm.DOM a b cResultsThe simple formulation represented in Equation (4) was applied to the four different soil types and ranges of water content explored by Lobell and Asner (2002) and was generally effective in all cases. A subset of the data with the accompanying model functions are shown inFigure 7. There are some characteristic problems with the modeled spectra: a) a consistent overestimate of reflectance in the 1100-1400 nm and 1600-1800 nm ranges at higher water concentrations; b) a relatively poor fit in the blue, most noticeably for the Ustic Molisol (the problem is generally difficult to see because of the very low reflectance); and, c) a generally poor fit in the 1900-2500 nm range in the Xeric Andisol.Figure 8: Variation of the major parameters with the volumetric water content of the soil samples.Finally, one might expect that the two main parameters, f w and d, should correlate with the volumetric water content. The relationship is illustrated in Figure 8, which shows that the proportion of surface water reflectance increases smoothly over the entire range of water concentrations, appearing to approach a maximum value asymptotically, while the effect of the pore water – parameterized as an effective optical path within the pore water – increases almost linearly. This general pattern is consistent for all four soil types.ConclusionsA simple model describing the reflectance from wetted soils has been presented. In spite of the fact that the model is superficial, it has described the major variations of changes in the spectral reflectance exhibited in experimental observations. While this is encouraging, the model should be regarded with skepticism and used with great care, if at all. On the other hand, while the conceptual design of this model leaves much to be desired, its success suggests that there is some truth captured by the model structure. There are at least three general conclusions that can be drawn:1.The darkening effect appears to be spectrally bland and largely independent of absorption effectsof the water.2.Absorption by water is significant in the infrared suggesting that there is a substantial opticalpath in the pore water.3.The absorption spectrum of water is modified, probably due to absorption by substancesdissolved in the water and/or as a result of water being partially bound to the soil.ReferencesÅngström, A. (1925) "The Albedo of various surfaces of ground". Geografiska Annaler, 7:323-342. Bach H. and W. Mauser (1994) "Modelling and model verification of the spectral reflectance of soils under varying moisture conditions. Proceedings: IGARSS '94.Bedidi, A., B. Cervelle, J. Madeira, and M. Pouget (1992) Moisture effects on visible spectral characteristics of lateritic soils. Soil Science, 153(2):129-141.Kou, L., D. Labrie, P. Chylek (1993) "Refractive indices of water and ice in the 0.65-2.5 µm spectral range," Applied Optics, 32, 3531-3540Lekner, J. and M. C. Dorf (1988) "Why some thing are darker when wet". Applied Optics, 27(7):1278-1280.Lobell, D.B. and G.P. Asner (2002) “Moisture effects on soil reflectance,” Soil Sci. Soc. Amer. J., 66:722–727.Pope, R.M. and E.S. Fry (1997) "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt.,36:8710-8723.Segelstein, D. J. (1981) "The complex refractive index of water”. M.S. Thesis, Department of Physics, University of Missouri-Kansas City, 167 pgs.Twomey, S.A., C.F. Bohren and J.L. Mergenthaler (1986) "Reflectance and albedo differences between wet and dry surfaces". Applied Optics, 25:431-437.11。