2020-2021学年高一上学期数学期中考试卷 (含答案)

合集下载

潍坊市2020-2021学年高一上学期期中数学试题(解析版)

潍坊市2020-2021学年高一上学期期中数学试题(解析版)
【详解】解: 不等式组 解得 ,所以不等式组的解集是 ,
关于 的不等式 解集包含 ,令 ,
,解得 ,
故选: .
【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.
二、多项选择题:本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错的得0分.
9.下列命题中是假命题的是().
A. , B. ,
C. , D. ,
【答案】ACD
【解析】
【分析】
举反例即可判断选项A、C,解方程 即可判断选项B、D.
(1)求 ;
(2)若 ,求实数 的取值范围.
【答案】(1) ;(2) .
【解析】
【分析】
(1)先求得集合A,再由集合的补集运算和交集运算可求得答案;
(2)分集合C为空集和不是空集两种情况分别建立不等式(组),可求得所求的范围.
【详解】解:( 时,满足 ,即 ,解得 .
【详解】对于A选项,函数 为奇函数,且该函数在定义域上不单调,A选项中的函数不合乎要求;
对于B选项,函数 为奇函数,且该函数在定义域上为减函数,B选项中的函数合乎要求;
对于C选项,当 时, ,则 ,
当 时, ,则 ,
又 ,所以,函数 为奇函数,
当 时,函数 单调递减;当 时,函数 单调递减.
由于函数 在 上连续,所以,函数 在 上为减函数,C选项中的函数合乎要求;
画出函数的图象,如图所示:
对于 :根据函数的图象, 的定义域为 ,值域为 ,故 错误;

2020-2021学年重庆市高一上学期期中数学试题(解析版)

2020-2021学年重庆市高一上学期期中数学试题(解析版)

2020-2021学年重庆市高一上学期期中数学试题一、单选题1.已知集合{0,1,2}A =,则A 的子集个数为( ) A .6 B .7 C .8 D .16【答案】C【分析】根据子集的个数为2n (n 为集合元素的个数),即可求得答案. 【详解】{0,1,2}A =.根据子集的个数为2,n (n 为集合元素的个数)∴A 的子集个数328=.故选:C .【点睛】本题考查了求集合子集个数问题,解题关键是掌握子集概念,考查了分析能力和计算能力,属于基础题.2.已知()f x 是偶函数,()g x 是奇函数,且2()()(1)f x g x x +=-,则(1)f -=( ) A .2 B .2- C .1 D .1-【答案】A【分析】分别取1x =和1x =-,代入函数根据奇偶性得到答案. 【详解】()f x 是偶函数,()g x 是奇函数,2()()(1)f x g x x +=-,取1x =得到(1)(1)0f g +=,即(1)(1)0f g ---=;取1x =-得到(1)(1)4f g -+-=; 解得(1)2f -= 故选:A【点睛】本题考查了根据函数奇偶性求函数值,意在考查学生对于函数性质的灵活运用. 3.2()4f x ax bx a =+-是偶函数,其定义域为[1,2]a a --,对实数m 满足2()(1)f x m ≤+恒成立,则m 的取值范围是( ) A .(,3][1,)-∞-+∞ B .[3,1]- C .(,1][3,)-∞-⋃+∞ D .[1,3]-【答案】A【分析】根据奇偶性得到0b =,1a =-得到2()4f x x =-+,计算函数的最大值,解不等式得到答案.【详解】2()4f x ax bx a =+-是偶函数,其定义域为[1,2]a a --,则0b =,且()12a a -=--即1a =-,故2()4f x x =-+,()max ()04f x f ==故24(1)m ≤+,解得m 1≥或3m ≤- 故选:A【点睛】本题考查了根据函数奇偶性求参数,函数最值,解不等式,意在考查学生的综合应用能力.4.若,a b ,R c ∈,a b >,则下列不等式成立的是 A .11a b< B .22a b > C .||||a cbc >D .()()2222a c b c +>+【答案】D【分析】结合不等式的性质,利用特殊值法确定. 【详解】当1,1a b ==-排除A ,B 当0c 排除C 故选:D【点睛】本题主要考查了不等式的性质,特殊值法,还考查了特殊与一般的思想,属于基础题.5.已知函数)25fx =+,则()f x 的解析式为( )A .()21f x x =+ B .()()212f x x x =+≥C .()2f x x =D .()()22f x x x =≥【答案】B【分析】利用换元法求函数解析式.【详解】2t =,则2t ≥,所以()()()()2224t 251,2,f t t t t =-+-+=+≥即()21f x x =+()2x ≥.故选:B【点睛】本题考查利用换元法求函数解析式,考查基本分析求解能力,属基础题.6.已知()f x 是定义域为R 的奇函数,当0x >时,()223f x x x =--,则不等式()20f x +<的解集是A .()() 5,22,1--⋃-B .()(),52,1-∞-⋃-C .()(,1)52,--⋃+∞D .(),1()2,5-∞-⋃【答案】B【分析】根据函数奇偶性的性质,求出函数当0x <时,函数的表达式,利用函数的单调性和奇偶性的关系即可解不等式. 【详解】解:若0x <,则0x ->,∵当0x >时,()223f x x x =--,∴()223f x x x -=+-,∵()f x 是定义域为R 的奇函数,∴()223()f x x x f x -=+-=-,即2()23f x x x =--+,0x <.①若20x +<,即2x <-,由()20f x +<得,()()222230x x -+-++<,解得5x <-或1x >-,此时5x <-;②若20x +>,即2x >-,由()20f x +<得,()()222230x x +-+-<,解得31x -<<,此时21x -<<,综上不等式的解为5x <-或21x -<<. 即不等式的解集为()(),52,1-∞-⋃-. 故选:B.【点睛】本题主要考查不等式的解法,利用函数的奇偶性的性质求出函数的解析式是解决本题的关键. 7.若函数()f x =R ,则实数a 的取值范围是( )A .(0,4)B .[0,2)C .[0,4)D .(2,4]【答案】C【分析】等价于不等式210ax ax ++>的解集为R, 结合二次函数的图象分析即得解. 【详解】由题得210ax ax ++>的解集为R, 当0a =时,1>0恒成立,所以0a =.当0a ≠时,240a a a >⎧⎨∆=-<⎩,所以04a <<. 综合得04a ≤<.故选:C【点睛】本题主要考查函数的定义域和二次函数的图象性质,意在考查学生对这些知识的理解掌握水平.8.设函数22,()6,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩是定义在R 上的增函数,则实数a 取值范围( )A .[)2,+∞B .[]0,3C .[]2,3D .[]2,4【答案】D【分析】画出函数22y x x =--的图象,结合图象及题意分析可得所求范围.【详解】画出函数22y x x =--的图象如下图所示,结合图象可得,要使函数()22,,6,,x x x a x ax x a ⎧--≥⎪=⎨-<⎪⎩是在R 上的增函数,需满足22226a a a a ≥⎧⎨--≥-⎩,解得24x ≤≤. 所以实数a 取值范围是[]2,4. 故选D .【点睛】解答本题的关键有两个:(1)画出函数的图象,结合图象求解,增强了解题的直观性和形象性;(2)讨论函数在实数集上的单调性时,除了考虑每个段上的单调性之外,还要考虑在分界点处的函数值的大小关系. 二、多选题9.若0a >,0b >,且2a b +=,则下列不等式恒成立的是( )A 1B .11ab≥ C .222a b +≥ D .112a b+≥【答案】BCD【分析】由条件可得12211112a a b a b a abb b ab ++=≥+==⇒≥⇒≥,结合2222()()a b a b ++,即可得出.【详解】因为0a >,0b >,所以12211112a a b a b a abb b ab ++=≥+≤==⇒≥⇒≥, 所以A 错,BD 对;因为22222()()(0)a b a b a b -+=-≥+,则22222()()2a b a b ++=,化为:222a b +,当且仅当1a b ==时取等号,C 对. 故选:BCD .【点睛】本题考查了不等式的基本性质以及重要不等式的应用,考查了推理能力与计算能力,属于基础题.10.给出下列命题,其中是错误命题的是( )A .若函数()f x 的定义域为[0,2],则函数(2)f x 的定义域为[0,4].B .函数1()f x x=的单调递减区间是(,0)(0,)-∞+∞ C .若定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间(0,)+∞上也是单调增函数,则()f x 在R 上是单调增函数.D .1x 、2x 是()f x 在定义域内的任意两个值,且1x <2x ,若12()()f x f x >,则()f x 减函数.【答案】ABC【分析】对于A ,由于()f x 的定义域为[0,2],则由022x ≤≤可求出(2)f x 的定义域;对于B ,反比例函数的两个单调区间不连续,不能用并集符号连接;对于C ,举反例可判断;对于D ,利用单调性的定义判断即可【详解】解:对于A ,因为()f x 的定义域为[0,2],则函数(2)f x 中的2[0,2]x ∈,[0,1]x ∈,所以(2)f x 的定义域为[0,1],所以A 错误; 对于B ,反比例函数1()f x x=的单调递减区间为(,0)-∞和(0,)+∞,所以B 错误; 对于C ,当定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间(0,)+∞上也是单调增函数,而()f x 在R 上不一定是单调增函数,如下图,显然,(1)(0)f f < 所以C 错误;对于D ,根据函数单调性的定义可得该选项是正确的, 故选:ABC11.若a ,b 为正数,则( )A .2+aba bB .当112a b+=时,2a b +≥C .当11a b a b+=+时,2a b +≥D .当1a b +=时,221113a b a b +≥++【答案】BCD【分析】利用基本不等式,逐一检验即可得解.【详解】解:对A ,因为+a b ≥2aba b≤+,当a b =时取等号,A 错误;对B ,()11111+=2+2=2222b a a b a b a b ⎛⎛⎫⎛⎫++≥+ ⎪ ⎪ ⎝⎭⎝⎭⎝,当a b =时取等号,B 正确;对C ,11=+=a ba b a b ab++,则1ab =,+2a b ≥=,当1a b ==时取等号,C 正确;对D ,()()()2222222211+111+111+b a a b a b a b a b a b a b b a ++⎛⎫+++=+++≥++ ⎪++⎝⎭2222()1a b ab a b =++=+=, 当12a b ==时取等号,即221113a b a b +≥++,D 正确.故选:BCD.【点睛】本题考查了基本不等式的应用,重点考查了运算能力,属中档题.12.已知连续函数f (x )对任意实数x 恒有f (x +y )=f (x )+f (y ),当x >0时,f (x )<0,f (1)=-2,则以下说法中正确的是( ) A .f (0)=0B .f (x )是R 上的奇函数C .f (x )在[-3,3]上的最大值是6D .不等式()232()(3)4f x f x f x -<+的解集为213x x ⎧⎫<<⎨⎬⎩⎭∣ 【答案】ABC【分析】根据函数()f x 对任意实数x 恒有()()()f x y f x f y +=+,令0x y ==,可得(0)0f =,判断奇偶性和单调性,即可判断选项;【详解】解:对于A ,函数()f x 对任意实数x 恒有()()()f x y f x f y +=+, 令0x y ==,可得(0)0f =,A 正确;对于B ,令x y =-,可得(0)()()0f f x f x =+-=,所以()()f x f x =--, 所以()f x 是奇函数;B 正确;对于C ,令x y <,则()()()()()f y f x f y f x f y x -=+-=-, 因为当x >0时,f (x )<0,所以()0f y x -<,即()()0f y f x -<, 所以()f x 在()()0,,,0+∞-∞均递减, 因为()0f x <,所以()f x 在R 上递减;12f ,可得(1)2f -=;令1y =,可得()()12f x f x +=-()24f =-, ()36f =-;()3(3)6f f =--=,()f x ∴在[3-,3]上的最大值是6,C 正确;对于D ,由不等式2(3)2()(3)4f x f x f x -<+的可得2(3)()()(3)4f x f x f x f x <+++, 即2(3)(23)4f x f x x <++,4(2)f =-,2(3)(23)(2)f x f x x f ∴<++-,则2(3)(52)f x f x <-,2352x x ∴>-,解得:23x <或1x >; D 不对;故选:ABC .【点睛】本题主要考查函数求值和性质问题,根据抽象函数条件的应用,赋值法是解决本题的关键. 三、填空题13.函数y _________. 【答案】[]2,5【分析】先求出函数的定义域,再结合复合函数的单调性可求出答案. 【详解】由题意,2450x x -++≥,解得15x -≤≤,故函数y []1,5-.函数y =二次函数245u x x =-++的对称轴为2x =,在[]1,5-上的增区间为[)1,2-,减区间为[]2,5,故函数y []2,5. 故答案为:[]2,5.【点睛】本题考查复合函数的单调性,考查二次函数单调性的应用,考查学生的推理能力,属于基础题.14.奇函数f (x )在(0,)+∞内单调递增且f (1)=0,则不等式()01f x x >-的解集为________. 【答案】{|1x x >或01x <<或1x <-}.【分析】根据题意,由函数()f x 的奇偶性与单调性分析可得当01x <<时,()0f x <,当1x >时,()0f x >,当10x -<<时,()0f x >,当1x <-时,()0f x <,而不等式()01f x x >-等价于1()0x f x >⎧⎨>⎩或1()0x f x <⎧⎨<⎩;分析可得答案.【详解】解:根据题意,()f x 在(0,)+∞内单调递增,且f (1)0=, 则当01x <<时,()0f x <,当1x >时,()0f x >,又由()f x 为奇函数,则当10x -<<时,()0f x >,当1x <-时,()0f x <, 不等式()01f x x >-,等价于1()0x f x >⎧⎨>⎩或1()0x f x <⎧⎨<⎩;解可得:1x >或01x <<或1x <-; 即不等式()01f x x >-的解集为{|1x x >或01x <<或1x <-}. 故答案为:{|1x x >或01x <<或1x <-}. 15.已知函数()f x 的定义域为()0,∞+,则函数1f x y +=__________. 【答案】(-1,1)【分析】先求()1f x +的定义域为()1,-+∞,再求不等式组21340x x x >-⎧⎨--+>⎩的解集可以得到函数的定义域.【详解】由题意210340x x x +>⎧⎨--+>⎩,解得11x -<<,即定义域为()1,1-.【点睛】已知函数()f x 的定义域D ,()g x 的定义域为E ,那么抽象函数()f g x ⎡⎤⎣⎦的定义域为不等式组()x Eg x D ∈⎧⎨∈⎩的解集.16.定义:如果函数()y f x =在区间[],a b 上存在00()x a x b <<,满足0()()()f b f a f x b a-=-,则称0x 是函数()y f x =在区间[],a b 上的一个均值点.已知函数2()1f x x mx =-++在区间[]1,1-上存在均值点,则实数m 的取值范围是________. 【答案】(0,2).【详解】试题分析:由题意设函数2()1f x x mx =-++在区间[1,1]-上的均值点为,则0(1)(1)()1(1)f f f x m --==--,易知函数2()1f x x mx =-++的对称轴为2m x =,①当12m≥即2m ≥时,有0(1)()(1)f m f x m f m -=-<=<=,显然不成立,不合题意;②当12m≤-即2m ≤-时,有0(1)()(1)f m f x m f m =<=<-=-,显然不成立,不合题意;③当112m -<<即22m -<<时,(1)当20m -<<有0(1)()()2m f f x f <≤,即214m m m <≤+,显然不成立;(2)当0m =时, 0()0f x m ==,此时01x =±,与011x -<<矛盾,即0m ≠;(3)当02m <<时,有0(1)()()2mf f x f -<≤,即214m m m -<≤+,解得02m <<,综上所述得实数m 的取值范围为(0,2).【解析】二次函数的性质. 四、解答题17.已知集合{}22|430,|03x A x x x B x x -⎧⎫=-+≤=>⎨⎬+⎩⎭(1)分别求A B ,R R A B ⋃();(2)若集合{|1},C x x a A C C =<<⋂=,求实数a 的取值范围. 【答案】(1)(2,3]A B ⋂=,(,2](3,)R R A B ⋃=-∞⋃+∞(2)3a ≤【分析】(1)化简集合,,A B 根据交集定义,补集定义和并集定义,即可求得答案; (2)由A C C =,所以C A ⊆,讨论C =∅和C ≠∅两种情况,即可得出实数a 的取值范围.【详解】(1)集合{}2|430[1,3]A x x x =-+≤=∴(,1)(3,)RA =-∞⋃+∞,[3,2]RB =-∴(2,3]A B ⋂=,(,2](3,)RR A B ⋃=-∞⋃+∞,(2)A C C =∴ 当C 为空集时,1a ≤∴ 当C 为非空集合时,可得 13a ≤<综上所述:a 的取值范围是3a ≤.【点睛】本题考查了不等式的解法,交集和补集的运算,解题关键是掌握集合的基本概念和不等式的解法,考查了计算能力,属于基础题.18.已知函数()f x 是定义在R 上的偶函数,已知当0x ≤时,()243f x x x =++.(1)求函数()f x 的解析式;(2)画出函数()f x 的图象,并写出函数()f x 的单调递增区间; (3)求()f x 在区间[]1,2-上的值域.【答案】(1)()2243,043,0x x x f x x x x ⎧-+>=⎨++≤⎩; (2)见解析; (3)[]1,3-.【分析】(1)设x >0,则﹣x <0,利用当x≤0时,f (x )=x 2+4x+3,结合函数为偶函数,即可求得函数解析式;(2)根据图象,可得函数的单调递增区间;(3)确定函数在区间[﹣1,2]上的单调性,从而可得函数在区间[﹣1,2]上的值域. 【详解】(1)∵函数()f x 是定义在R 上的偶函数∴对任意的x ∈R 都有()()f x f x -=成立∴当0x >时,0x -<即()()()()224343f x f x x x x x =-=-+-+=-+∴ ()2243,043,0x x x f x x x x ⎧-+>=⎨++≤⎩(2)图象如右图所示函数()f x 的单调递增区间为[]2,0-和[)2,+∞. (写成开区间也可以)(3)由图象,得函数的值域为[]1,3-.【点睛】本题考查函数的解析式,考查函数的单调性与值域,考查数形结合的数学思想,属于中档题.19.若二次函数()f x 满足11,()22f x f x x R ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭,且(0)1,(1)3f f =-=.(1)求()f x 的解析式;(2)若函数()(),()g x f x ax a R =-∈在3,2x ⎛⎤∈-∞ ⎥⎝⎦上递减,3,2⎡⎫+∞⎪⎢⎣⎭上递增,求a 的值及当[1,1]x ∈-时函数()g x 的值域.【答案】(1)2()1f x x x =-+(2)2a =,值域为[1,5]-. 【分析】(1)设二次函数的解析式为2()(),0f x ax bx c a =++≠,由11,()22f x f x x R ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭可得()f x 对称轴为12x =,结合条件,即可求得答案;(2)根据增减性可知32x =为函数()g x 的对称轴,即可得到a 的值,而根据()g x 在[1,1]x ∈-上递减可得出()g x 在[1,1]x ∈-上的值域.【详解】(1)设二次函数的解析式为2()(),0f x ax bx c a =++≠二次函数()f x 满足11,()22f x f x x R ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭∴二次函数()f x 的对称轴为:12x =. ∴122b a -=,可得:=-b a ——① 又(0)1f =,∴(0)1f c ==,可得:1c =.(1)3f -=.即:13a b -+=,可得:2a b -=——②由①②解得: 1,1a b ==-∴()f x 的解析式为2()1f x x x =-+.(2) 函数()(),()g x f x ax a R =-∈()g x 在3,2x ⎛⎤∈-∞ ⎥⎝⎦上递减,3,2⎡⎫+∞⎪⎢⎣⎭上递增. ∴()g x 的对称轴为32x =, 即:1322a +=.解得:2a =. ∴2()31g x x x =-+.()g x 在3,2x ⎛⎤∈-∞ ⎥⎝⎦上递减, ∴()g x 在[1,1]x ∈-上递减,则有:在[1,1]x ∈-上,min ()(1)1g x g ==-.函数()g x 在[1,1]x ∈-上的值域为[1,5]-【点睛】本题考查了待定系数法的运用以及对称轴的形式,根据增减性判断函数的对称轴及在区间上值域问题,解题关键是掌握二次函数的基础知识,考查了分析能力和计算能力,本题属中档题.20.已知函数24()x ax f x x++=为奇函数. (1)若函数()f x 在区间,2m m ⎡⎤⎢⎥⎣⎦(0m >)上为单调函数,求m 的取值范围; (2)若函数()f x 在区间[]1,k 上的最小值为3k ,求k 的值.【答案】(1)4m ≥或02m <≤;(2【分析】(1)函数()f x 为奇函数,可知对定义域内所有x 都满足()()f x f x -=-,结合解析式,可得0ax =恒成立,从而可求出a 的值,进而可求出()f x 的解析式,然后求出函数()f x 的单调区间,结合()f x 在区间,2m m ⎡⎤⎢⎥⎣⎦(0m >)上为单调函数,可求得m 的取值范围;(2)结合函数()f x 的单调性,分12k <≤和2k >两种情况,分别求出()f x 的最小值,令最小值等于3k ,可求出k 的值.【详解】(1)由题意,函数()f x 的定义域为()(),00,-∞+∞,因为函数()f x 为奇函数,所以对定义域内所有x 都满足()()f x f x -=-,即()()2244x a x x ax x x-+-+++=--, 整理可得,对()(),00,x ∈-∞+∞,0ax =恒成立,则0a =, 故244()x f x x x x +==+. 所以()f x 在()0,2上单调递减,在[)2,+∞上单调递增,又函数()f x 在区间,2m m ⎡⎤⎢⎥⎣⎦(0m >)上为单调函数,则2m ≤或22m ≥,解得4m ≥或02m <≤.(2)()f x 在()0,2上单调递减,在[)2,+∞上单调递增,若12k <≤,则()()min 43f x f k k k k ==+=,解得k =12k <≤,只有k =合题意;若2k >,则()()min 42232f x f k ==+=,解得43k =,不满足2k >,舍去.故k 【点睛】本题考查函数的奇偶性,考查函数单调性的应用,考查了函数的最值,利用对勾函数的单调性是解决本题的关键,考查学生的计算求解能力,属于基础题. 21.已知二次函数2()(0)f x ax x a =+≠.(1)当0a <时,若函数y a 的值;(2)当0a >时,求函数()()2||g x f x x x a =---的最小值()h a .【答案】(1)-4;(2)()0,1,a a h a a a a ⎧-<<⎪⎪=⎨⎪-≥⎪⎩ 【分析】(1)当0a <时,函数y 而可求出a 的值; (2)当0a >时,求出()g x 的表达式,分类讨论求出()g x 的最小值()h a 即可.【详解】(1)由题意,()0f x ≥,即()200ax x a +≥<,解得10x a≤≤-,即函数y 定义域为10,a ⎡⎤-⎢⎥⎣⎦, 又当0a <时,函数()2f x ax x =+的对称轴为12x a =-,21111222(4)f a a aa a ⎛⎫= ⎪⎝-=-⎭--,故函数y⎡⎢⎣,函数y1a -=4a =-. (2)由题意,0a >,2()||g x ax x x a =---,即()()22()2,,x a x ax g a a x a x ax -+≥-<⎧⎪=⎨⎪⎩, ①当01a <≤,则10a a≥>, x a ≥时,2min 1111(2)()()()g x g a a a a a a a-+=-==, x a <时,min ()(0)g x g a ==-, 若1a a a -≥-1a ≤≤, 若1a a a -<-,解得0a <<即0a <<min 1()g x a a =-1a ≤≤时,min ()g x a =-. ②当1a >时,1a a <, x a ≥时,33min ())2(g x g a a a a a a ==-+=-,x a <时,min ()(0)g x g a ==-,因为3a a a ->-,所以1a >时,min ()g x a =-.综上,函数()g x 的最小值()0,1,a a h a a a a ⎧-<<⎪⎪=⎨⎪-≥⎪⎩. 【点睛】本题考查函数的定义域与值域,考查二次函数的性质,考查函数的最小值,考查分类讨论的数学思想,考查学生的逻辑推理能力,属于中档题.22.定义在R 上的函数()f x 满足:①对一切x ∈R 恒有()0f x ≠;②对一切,x y R ∈恒有()()()f x y f x f y +=⋅;③当0x >时,()1f x >,且(1)2f =;④若对一切[,1]∈+x a a (其中0a <),不等式()224(2||2)f x a f x +≥-恒成立.(1)求(2),(3)f f 的值;(2)证明:函数()f x 是R 上的递增函数;(3)求实数a 的取值范围.【答案】(1)4,8(2)证明见解析(3)(,-∞ 【分析】1)用赋值法令1,1x y ==求解.(2)利用单调性的定义证明,任取12x x <,由 ()()()f x y f x f y +=⋅,则有()()()2211f x f x x f x =-,再由条件当0x >时,()1f x > 得到结论.(3)先利用()()()f x y f x f y +=⋅将4(2||2)-f x 转化为(2||)f x ,再将()22(2||)+≥f x a f x 恒成立,利用函数()f x 是R 上的递增函数,转化为222||≥+x a x 恒成立求解.【详解】(1)令1,1x y == 所以(2)(1)(1)4f f f =⋅=所以(3)(2)(1)8f f f =⋅=(2)因为()()()f x y f x f y +=⋅任取12x x <因为当0x >时,()1f x >所以()211f x x ->所以()()12f x f x <,所以函数()f x 是R 上的递增函数,(3)因为()4(2||2)2(2||2)[2(2||2)](2||)-=-=+-=f x f f x f x f x又因为()224(2||2)f x a f x +≥-恒成立且函数()f x 是R 上的递增函数,所以222||≥+x a x ,[,1]∈+x a a (其中0a <)恒成立所以222||+≥-a x x 若对一切[,1]∈+x a a (其中0a <),恒成立.当11a ≤-+ ,即2a ≤-时()()2max 143=+=---g x g a a a所以2243≥---a a a ,解得2a ≤-当21a -<≤-时,()max 1g x =解得21a -<≤-当10a -<≤,()()(){}max max ,1=+g x g a g a所以222≥--a a a 且221≥-+a a解得1a -<≤-综上:实数a 的取值范围(,-∞ 【点睛】本题主要考查了抽象函数的求值,单调性及其应用,还考查了分类讨论的思想和运算求解的能力,属于难题.。

2020-2021学年江苏省徐州一中高一(上)期中数学试卷及答案

2020-2021学年江苏省徐州一中高一(上)期中数学试卷及答案

2020-2021学年江苏省徐州一中高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x|x2﹣3x﹣4<0},B={﹣4,1,3,5},则A∩B=()A.{﹣4,1}B.{1,5}C.{3,5}D.{1,3}2.(5分)已知幂函数f(x)=x a的图象过点(3,27),则f(2)=()A.4B.8C.9D.163.(5分)函数y=的定义域为()A.[﹣1,0)B.(0,+∞)C.[﹣1,0)∪(0,+∞)D.(﹣∞,0)∪(0,+∞)4.(5分)己知函数f(x)=,则f(f(4))的值为()A.﹣B.0C.1D.45.(5分)某中学高一年级的学生积极参加体育锻炼,其中有1056名学生喜欢足球或游泳,660名学生喜欢足球,902名学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数是()A.682B.616C.506D.4626.(5分)函数y=的值域是()A.(﹣∞,+∞)B.(﹣∞,)∪(﹣,+∞)C.(﹣∞,)∪(﹣,+∞)D.(﹣∞,﹣)∪(﹣,+∞)7.(5分)若关于x的不等式x2﹣2x+c2<0的解集为(a,b),则+的最小值为()A.9B.﹣9C.D.﹣8.(5分)已知f(x)是定义在R上的奇函数,对任意两个正数x1,x2,都有<0,且f(2)=0,则满足(x﹣1)f(x)>0的x的取值范围是()A.(﹣∞,﹣2)∪(0,1)∪(2,+∞)B.(﹣2,0)∪(1,2)C.(﹣2,1)∪(2,+∞)D.(﹣∞,﹣2)∪(1,2)二.选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,有选错的得0分,部分选对的得了分。

9.(5分)若a<b<0,则()A.|a|>|b|B.a2>b2C.<D.>10.(5分)下列函数与y=x2﹣2x+3的值域相间的是()A.y=4x(x≥)B.y=+2C.y=D.y=2x﹣11.(5分)已知2a=3.b=log32,则()A.a+b>2B.ab=1C.3b+3﹣b=D.=log91212.(5分)某学习小组在研究函数f(x)=的性质时,得出了如下的结论,其中正确的是()A.函数f(x)的图象关于y轴对称B.函数f(x)的图象关于点(2,0)中心对称C.函数f(x)在(﹣2,0)上是增函数D.函数f(x)在[0,2)上有最大值﹣三、填空题:本题共4小题,每小题5分,共20分。

江苏省扬州中学2020-2021学年高一上学期期中考试数学试题(PDF版含答案)

江苏省扬州中学2020-2021学年高一上学期期中考试数学试题(PDF版含答案)

二、多选题(本大题共 4 小题,每小题 5 分,共 20 分,在每小题给出的选项中,有多项符 合题目要求,全部选对得 5 分,有选错的得 0 分,部分选对得 3 分.)
BD AD CD BCD
三、填空题(本大题共 4 小题,每小题 5 分,多空题,第一空 2 分,第二空 3 分,共 20 分.)
13、 x R,3x2 2x 1 0
(2)函数 f x =0 在0, 2上有解,即方程 x a x 2b 在0, 2上有解;

h
x
{
x
2
x
ax 2 ax
x
(x
a
a)

当a
0 时,则 h x
x2
ax,
x
0,
2
,且
h
x

0,
2
上单调增,∴
h
x
min
h0
0,
h
x
max
h2
4 2a ,则当 0
2b
4
2a
时,原方程有解,则
a
A.
x
1
y
1 4
B.
1 x
1 y
1
C. xy 2
D.
1 xy
1
7.已知函数
f
(x)
x2 ax 5,(x1)
a x
,( x
1)

R
上的增函数,则 a
的取值范围是(

A. 3a 0
B. 3a 2
C. a 2
D. a 0
8.设平行于 x 轴的直线 l 分别与函数 y 2x 和 y 2x1 的图象相交于点 A,B,若在函数
2
由(1)知集合 A

2020-2021学年福建省厦门外国语学校高一上学期期中数学试卷 及答案解析

2020-2021学年福建省厦门外国语学校高一上学期期中数学试卷 及答案解析

2020-2021学年福建省厦门外国语学校高一上学期期中数学试卷一、选择题(本大题共9小题,共45.0分)1. 已知集合A ={x|x 2−3x <0},B ={x|y =√1−x},则A ∩B =( )A. [0,3)B. (1,3)C. (0,1]D. (0,1)2. 下列函数中在定义域上既是奇函数又是增函数的为( )A. y =x +1B. y =−x 2C. y =−1xD. y =x 33. 已知函数f(x)={log 2x,x >03x ,x ≤0,则f(f(14))的值是( ) A. −19 B. −9 C. 19 D. 94. 命题“∀x ∈[1,2],2x 2−a ≥0”为真命题的一个充分不必要条件是( )A. a ≤1B. a ≤2C. a ≤3D. a ≤45. 设a =0.991.01,b =1.010.99,c =log 1.010.99,则( )A. c <b <aB. c <a <bC. a <b <cD. a <c <b6. 若函数y =f(x)和y =g(x)的图象如图1、图2所示,则不等式f(x)g(x)≥0的解集是( )A. (−1,1]∪(2,3]B. (−1,1)∪(2,3)C. (2,3]∪(4,+∞)D. (−1,1]∪(2,3]∪(4,+∞) 7. 已知函数f(x)=ln 1+x 1−x +x ,且f(a)+f(a +1)>0,则a 的取值范围为( )A. (−1,−12)B. (−12,0)C. (−12,1)D. (−12,+∞) 8. 已知函数f(x)={x e x +1(x ≥0)x 2+2x +1(x <0),若函数y =f(f(x)−a)−1有三个零点,则实数a 的取值范围是( )A. (1,1+1e )∪(2,3]B. (1,1+1e )∪(2,3]∪{3+1e }C. (1,1+1e )∪[2,3)∪{3+1e }D. (1,1+2e )∪(2,3] 9. 已知函数f(x)=a x−1+1(a >0,a ≠1)的图象恒过点A ,下列函数图象不经过点A( )A. y =√1−x +2B. y =|x −2|+1C. y =x −13+1D. y =2x−1二、不定项选择题(本大题共3小题,共15.0分)10. 已知函数f(1−x)的定义域为(0,1),则( ) A. 函数f(x)的定义域为(0,1)B. 函数f(x)的定义域为(−1,0)C. 函数f(1−x 2)的定义域为(−1,0)∪(0,1)D. 函数f(1−x 2)的定义域为(0,1)11. 若a ,b ,c 为实数,下列说法正确的是( )A. 若a >b ,则ac 2>bc 2B. 若a <b <0,则a 2>ab >b 2C. “关于x 的不等式ax 2+bx +c ≥0恒成立”的充要条件是“a >0,b 2−4ac ≤0”D. “a <1”是“关于x 的方程x 2+x +a =0有两个异号的实根”的必要不充分条件12. 已知函数f(x)={2−x −1(x ≤0)x 2(x >0).若函数y =f(x)−x −a 恰有两个零点,则实数a 的取值范围为( )A. (−∞,−14)B. (−∞,−14]C. (−14,+∞)D. [−14,+∞)E.三、填空题(本大题共4小题,共20.0分)13. 已知函数f(x)=x 2+(m +2)x +3是偶函数,则m = ______ .14. 函数f(x)=ln x+1x−1的值域为______15. 已知x >0,y >0,且2x +1y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是______.16. 若log a 23<1则实数a 的取值范围是________.四、解答题(本大题共6小题,共72.0分)17. (1)求值:2lg5+23lg8+lg5⋅lg20+lg 22;(2)已知x+x−1=4,求x32+x−32.18.已知全集U=R,集合A={x|x<1},B={x|a≤x≤a+3}.(1)若a=−1,求A∩B,A∪B;(2)若B⊆∁U A,求实数a的取值范围.−ax2,其中a∈R.19.已知函数f(x)=xx+2(1)若a=1时,求函数f(x)的零点;(2)当a>0时,求证:函数f(x)在(0,+∞)内有且仅有一个零点.20.为了保护环境,某工厂在政府部门的鼓励下进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本y(单位:万元)与处理量x(单位:t)之间的函数关系可近似表示为y=x2−40x+1600,x∈[30,50].已知每处理1t的二氧化碳可获得价值20万元的某种化工产品.(1)判断该技术改进能否获利.如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?21.已知函数f(x)=x−3x+2(1)求f(2)的值;(2)求函数f(x)的定义域和值域.22.设函数f(x)=x−1,x∈R且x≠−1,就m的取值情况,讨论关于x的方程f(x)−x=m在[0,1]上x+1的解的个数.-------- 答案与解析 --------1.答案:C解析:可求出集合A ,B ,然后进行交集的运算即可.考查描述法、区间的定义,一元二次不等式的解法,以及交集的运算.解:A ={x|0<x <3},B ={x|x ≤1};∴A ∩B =(0,1].故选:C .2.答案:D解析:本题考查函数的奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性. 根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.解:A.y =x +1的图象不关于原点对称,不是奇函数,∴该选项错误;B .y =−x 2是偶函数;∴该选项错误;C .y =−1x为反比例函数,在其定义域上为奇函数,但不是增函数,不符合题意; D .y =x 3为幂函数,在其定义域上为奇函数,且是增函数,符合题意;故选D . 3.答案:C解析:解:∵函数f(x)={log 2x,x >03x ,x ≤0, ∴f(14)=log 214=−2,f(f(14))=f(−2)=3−2=19.故选:C .由已知得f(14)=log 214=−2,从而f(f(14))=f(−2),由此能求出结果.本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.4.答案:A解析:解:由2x2−a≥0,得a≤2x2,函数y=2x2在[1,2]上的最小值为2.若对∀x∈[1,2],2x2−a≥0成立,则a≤2.∴由a≤1,得a≤2成立,反之不成立,则a≤1是“∀x∈[1,2],2x2−a≥0”为真命题的一个充分不必要条件;a≤2是“∀x∈[1,2],2x2−a≥0”为真命题的一个充分必要条件;a≤3与a≤4是“∀x∈[1,2],2x2−a≥0”为真命题的不充分条件.故选:A.求出对∀x∈[1,2],2x2−a≥0恒成立的a的取值范围,然后结合充分必要条件的判定逐一分析四个选项得答案.本题考查充分必要条件的判定方法,考查恒成立问题的求解方法,是基础题.5.答案:B解析:本题考查了指数函数与对数函数的单调性,考查比较大小,考查了推理能力与计算能力,属于基础题.利用指数函数与对数函数的单调性即可得出.解:∵a=0.991.01∈(0,1),b=1.010.99>1,c=log1.010.99<0,则c<a<b,故选:B.6.答案:D解析:本题主要考查函数图象和不等式的解集的问题,已知函数的图象及单调性为平台,考查了其他不等式的解法,是一道综合题.先根据函数的图象,观察可得f(x),g(x)与0的关系,再根据不等式的解集需要满足f(x)g(x)≥0,且g(x)≠0,得到答案.解:由y=f(x)图象知x∈(−∞,1)∪(3,+∞)时f(x)>0,x∈(1,3)时f(x)<0;由y =g(x)图象知x ∈(−∞,−1)∪(2,4)时,g(x)<0,x ∈(−1,2)∪(4,+∞)时,g(x)>0. 故x ∈(−1,1]时f(x)≥0,且g(x)>0,x ∈(4,+∞)时f(x)>0,g(x)>0,x ∈(2,3]时f(x)≤0且g(x)<0,因此不等式f(x)g(x)≥0的解集为(−1,1]∪(2,3]∪(4,+∞).故选:D . 7.答案:B解析:解:根据题意,函数f(x)=ln 1+x 1−x +x ,有1+x 1−x >0,解可得−1<x <1,即函数f(x)的定义域为(−1,1),有f(−x)=ln 1−x 1+x +(−x)=−(1+x 1−x +x)=−f(x),则函数f(x)为奇函数,分析易得,f(x)=ln 1+x 1−x +x 在(−1,1)上为增函数,f(a)+f(a +1)>0⇒f(a)>−f(a +1)⇒f(a)>f(−a −1),则有{a >−a −1−1<a <1−1<a +1<1,解可得−12<a <0,即a 的取值范围为(−12,0);故选:B .根据题意,求出函数的定义域,进而分析可得f(x)为奇函数且在(−1,1)上为增函数,据此可得原不等式等价于{a >−a −1−1<a <1−1<a +1<1,解可得a 的取值范围,即可得答案.本题考查函数的奇偶性与单调性的综合应用,关键是得到关于a 的不等式,属于基础题. 8.答案:B解析:解:当x <0时,由f(x)−1=0得x 2+2x +1=1,得x =−2或x =0(舍);当x ≥0时,由f(x)−1=0得x e x +1=1,得x =0,当x ≥0时,f(x)=x e x +1,f′(x )=1−xe x ,当x >1时,f′(x )<0,f(x)单调递减;当0≤x <1时,f′(x )>0,f(x)单调递增;此时f(x)最大值为f(1)=1e +1,由y =f(f(x)−a)−1=0得f(x)−a =0或f(x)−a =−2,即f(x)=a ,f(x)=a −2,作出函数f(x)的图象如图:当1<a −2<1+1e 时,即a ∈(3,3+1e )时,y =f(f(x)−a)−1有4个零点,当a −2=1+1e 时,即a =3+1e 时,y =f(f(x)−a)−1有三个零点,当a −2>1+1e 时,即a >3+1e 时,y =f(f(x)−a)−1有2个零点当a =1+1e 时,则y =f(f(x)−a)−1有2个零点,当0<a −2≤1时,即2<a ≤3时,y =f(f(x)−a)−1有三个零点,当1<a <1+1e 时,则y =f(f(x)−a)−1有3个零点,其余情况显然不符合题意,综上a 的取值范围是:(1,1+1e )∪(2,3]∪{3+1e }.故选:B .先求出f(x)的零点,作出函数f(x)的图象,利用数形结合进行求解即可.本题主要考查函数与方程的应用,求出函数的零点,利用数形结合以及分类讨论是解决本题的关键.属于难题. 9.答案:D解析:本题考查了指数函数的性质,恒过定点的求法,属于基础题.根据指数函数的性质求出A的坐标,将A的坐标带入考查各选项即可.解:函数f(x)=a x−1+1(a>0,a≠1)的图象恒过点A,即x−1=0,可得x=1,那么f(1)=2,∴函数f(x)恒过点A(1,2),把x=1,y=2带入各选项,经考查各选项,只有D没有经过A点.故选D.10.答案:AC解析:解析:由函数f(1−x)的定义域为(0,1),即0<x<1,得到0<1−x<1,则函数f(x)的定义域为(0,1),由0<1−x2<1,解得−1<x<0或0<x<1,函数f(1−x2)的定义域为(−1,0)∪(0,1).故选A、C.11.答案:BD解析:【试题解析】本题考查了命题真假的判断问题,也考查了简易逻辑推理的应用问题,是基础题.根据不等式的基本性质,可以判断选项A、B是否正确;通过举反例可以判断选项C错误;求出命题成立的充要条件,判断选项D正确.解:对于A:若a>b,则ac2>bc2,在c=0时不成立,所以A错误;对于B:根据不等式的性质,若a<b<0,则−a>−b>0,所以−a2<−ab,−ab<−b2,所以a2>ab,ab>b2,即a2>ab>b2,选项B正确;对于C:a=b=0,c=0时,不等式ax2+bx+c≥0也恒成立,所以选项C错误;对于D:方程x2+x+a=0有两个异号的实根的充要条件是a<0,所以a<1是“关于x的方程x2+x+a=0有两个异号的实根”的必要不充分条件,D正确.故选:BD.12.答案:E解析:解:作出函数f(x)={2−x −1(x ≤0)x 2(x >0)的图象, 函数y =f(x)−x −a 恰有两个零点即为y =f(x)的图象和直线y =x +a 有两个交点,当直线y =x +a 与y =x 2(x >0)相切,可得x 2−x −a =0有两个相等实根,可得△=1+4a =0,即a =−14,由图象可得当a >−14时,y =f(x)的图象和直线y =x +a 有两个交点,故选:C .由题意,函数g(x)=f(x)−x −a 恰有两个零点可化为函数f(x)与函数y =x +a 有两个不同的交点,从而作图求解.本题考查了函数的图象的应用及数形结合的思想应用,以及直线和曲线相切的条件,属于中档题. 13.答案:−2解析:解:由于函数f(x)=x 2+(m +2)x +3是偶函数,则f(−x)=f(x),即(−x)2+(m +2)(−x)+3=x 2+(m +2)x +3,则有2(m +2)x =0,则有m =−2.故答案为:−2.由于函数f(x)=x 2+(m +2)x +3是偶函数,则f(−x)=f(x),即(−x)2+(m +2)(−x)+3=x 2+(m +2)x +3,化简即可得到m .本题考查函数的奇偶性及运用,考查定义法解题,属于基础题.14.答案:(−∞,0)∪(0,+∞)解析:解:由x+1x−1>0,解得x <−1或x >1,令t =x+1x−1=1+2x−1,则0<t <1或t >1. 故函数y =lnt 的值域为(−∞,0)∪(0,+∞),故答案为(−∞,0)∪(0,+∞).先求出函数的定义域,然后确定出t =x+1x−1的值域,最后借助对数函数的单调性求该函数的值域. 本题考查复合型函数的值域求法,属于中档题目. 15.答案:(−4,2)解析:本题考查不等式恒成立以及利用基本不等式求最值,属于基础题.利用基本不等式得到x +2y ⩾8,若x +2y >m 2+2m 恒成立,则8>m 2+2m ,即可求出答案. 解:x >0,y >0,且2x +1y =1,则x +2y =(x +2y )(2x +1y )=4+4y x +x y ⩾4+2√4y x ·x y =8, 当且仅当4y x =x y ,即x =4,y =2时,等号成立,若x +2y >m 2+2m 恒成立,则8>m 2+2m ,解得−4<m <2.故答案为(−4,2) .16.答案:(0,23)∪(1,+∞)解析:本题主要考查对数函数图像与性质的应用,属于中档题.解:由题意得,∴log a 23<log a a ,log a 23<1则实数a 的取值范围是(0,23)∪(1,+∞), 故答案为(0,23)∪(1,+∞). 17.答案:解:(1)2lg5+23lg8+lg5lg20+lg 22=lg25+lg823+(lg10−lg2)(lg10+lg2)+lg 22=lg25+lg4+1−lg 22+lg 22=lg100+1=2+1=3;(2)由已知(x12+x−12)2=x+2+x−1=6,又x12+x−12>0,所以x12+x−12=√6,所以x32+x−32=(x12+x−12)(x−1+x−1)=3√6.解析:本题考查指数和对数运算.属于基础题.(1)利用对数运算法则求解即可,注意lg2+lg5=1的使用;(2)由已知求出x12+x−12,然后利用立方和公式求解即可.18.答案:解:(1)若a=−1,B=[−1,2],A∩B=[−1,1),A∪B=(−∞,2];(2)∁U A={x|x≥1},∵a<a+3,∴B≠⌀∵B⊆∁U A,∴a≥1.∴实数a的取值范围为[1,+∞).解析:(1)由a=−1,得B=[−1,2],从而A∩B=[−1,1),A∪B=(−∞,2];(2)先求∁U A={x|x≥1},再由B⊆∁U A,借助数轴可得结果.本题考查了集合间的基本运算及集合的包含关系应用,集合关系中的参数问题,属基础题.−x2,19.答案:解:(1)当a=1时,函数f(x)=xx+2−x2=0,可得可得x=0,或x2+2x−1=0,令xx+2解得x=0,或x=−1−√2,或x=−1+√2.综上可得,当a=1时,函数f(x)的零点为x=0,或x=−1−√2,或x=−1+√2(2)证明:∵当a>0时,x>0,由函数f(x)=0得:ax2+2ax−1=0,记g(x)=ax2+2ax−1,则g(x)的图象是开口朝上的抛物线,由g(0)=−1<0得:函数g(x)在(0,+∞)内有且仅有一个零点.∴函数f(x)在(0,+∞)上有唯一零点解析:(1)当a=1时,函数f(x)=xx+2−x2,令xx+2−x2=0,可得函数f(x)的零点.(2)当a>0时,若x>0,由函数f(x)=0得:ax2+2ax−1=0,进而可证得f(x)在(0,+∞)上有唯一零点.本题主要考查函数的零点与方程的根的关系,转化思想,二次函数的图象和性质,属于中档题.20.答案:解:(1)当x∈[30,50]时,设该工厂获利S万元,则S=20x−(x2−40x+1600)=−(x−30)2−700,所以当x∈[30,50]时,S max=−700<0,因此该工厂不会获利,国家至少需要补贴700万元,该工厂才不会亏损.(2)由题易知,二氧化碳的平均处理成本P(x)=yx =x+1600x−40,x∈[30,50],当x∈[30,50]时,P(x)=x+1600x −40≥2√x⋅1600x−40=40,当且仅当x=1600x,即x=40时等号成立,故P(x)的最小值为P(40)=40,所以当处理量为40t时,每吨的平均处理成本最少.解析:本题考查函数模型问题,属于中档题列出函数表达式,求最值21.答案:解:(1)f(2)=2−32+2=−14;(2)要使f(x)有意义,则x≠−2,∴f(x)的定义域为{x|x≠−2};f(x)=x−3x+2=1−5x+2,5x+2≠0,∴f(x)≠1,∴f(x)的值域为{f(x)|f(x)≠1}.解析:本题考查已知函数求值的方法,函数定义域、值域的概念及求法,分离常数法的运用,属于一般题.(1)直接代入即可求得f(2);(2)容易看出f(x)需满足x≠−2,这样便可得出f(x)的定义域;分离常数得到f(x)=1−5x+2,显然得出f(x)≠1,即得出f(x)的值域.22.答案:解:由题意,知m=f(x)−x=x−1x+1−x=1−2x+1−x=2−2x+1−(x+1),设t=x+1,x∈[0,1],所以m=2−2t−t,t∈[1,2].设ℎ(t)=−(2t+t),因为ℎ(t)在[1,√2)上单调递增,在(√2,2]上单调递减,所以函数y=f(x)−x在[0,√2−1)上单调递增,在(√2−1,1]上单调递减.f(0)−0=−1,f(√2−1)−(√2−1)=2−2√2,f(1)−1=−1. ①当m<−1或m>2−2√2时,关于x的方程f(x)−x=m在[0,1]上无解; ②当m=2−2√2时,关于x的方程f(x)−x=m在[0,1]上有一个解; ③当−1≤m<2−2√2时,关于x的方程f(x)−x=m在[0,1]上有两个解.解析:本题考查了函数与方程以及函数的单调性,是难题.由题意,知m=f(x)−x=x−1x+1−x=1−2x+1−x=2−2x+1−(x+1),设t=x+1,x∈[0,1],所以m=2−2t −t,t∈[1,2].设ℎ(t)=−(2t+t),根据ℎ(t)的单调性和m的取值范围确定方程f(x)−x=m在[0,1]上的解的个数.。

高一上学期期中考试数学试卷含答案(共5套)

高一上学期期中考试数学试卷含答案(共5套)

高一年级第一学期期中考试数学试卷考试时间120分钟,满分150分。

卷Ⅰ(选择题共60分)一.选择题(共12小题,每小题5 分,计60分。

在每小题给出的四个选项中,只有1个选项符合题意)1.已知集合A={x|x2-2x-3<0},集合B={x|2x+1>1},则C B A= ()A. B. C. D.2.若a=log20.5,b=20.5,c=0.52,则a,b,c三个数的大小关系是()A. B. C. D.3.函数y=的图象是()A. B. C. D.4.幂函数在时是减函数,则实数m的值为A. 2或B.C. 2D. 或15.若函数y=f(x)的定义域是(0,4],则函数g(x)=f(x)+f(x2)的定义域是()A. B. C. D.6.在下列区间中,函数的零点所在的区间为()A. B. C. D.7.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,,则当x<0时,f(x)表达式是()A. B. C. D.8.函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是()A. B. C. D.9.已知函数f(x)=|lg x|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是()A. B. C. D.10.若函数f(x)=,且满足对任意的实数x1≠x2都有>0成立,则实数a的取值范围是()A. B. C. D.11.若在区间上递减,则a的取值范围为()A. B. C. D.12.已知函数f(x)=则函数g(x)=f[f(x)]-1的零点个数为()A. 1B. 3C. 4D. 6卷Ⅱ(非选择题共90分)二、填空题(本大题共4小题,共20分)13.方程的一根在内,另一根在内,则实数m的取值范围是______.14.若函数的图象与x轴有公共点,则m的取值范围是______ .15.当x∈(1,3)时,不等式x2+mx+4<0恒成立,则m的取值范围是______ .16.已知函数的定义域为D,当x∈D时,f(x)≤m恒成立,则实数m的取值范围是______三、解答题(本大题共6小题,共70分,其中17题10分,18-22题12分)17.计算下列各式的值:(1)(2).18.已知集合A={x|m-1≤x≤2m+3},函数f(x)=lg(-x2+2x+8)的定义域为B.(1)当m=2时,求A∪B、(∁R A)∩B;(2)若A∩B=A,求实数m的取值范围.19.已知函数,且.(1)求的定义域;(2)判断的奇偶性并予以证明;(3)当时,求使的的解集.20.已知定义域为R的函数是奇函数.(1)求b的值;(2)判断函数f(x)的单调性,并用定义证明;(3)当时,f(kx2)+f(2x-1)>0恒成立,求实数k的取值范围.21.“绿水青山就是金山银山”,随着我国经济的快速发展,国家加大了对环境污染的治理力度,某环保部门对其辖区内的一工厂的废气排放进行了监察,发现该厂产生的废气经过过滤排放后,过滤过程中废气的污染物数量千克/升与时间小时间的关系为,如果在前个小时消除了的污染物,(1)小时后还剩百分之几的污染物(2)污染物减少需要花多少时间(精确到小时)参考数据:22.设函数是增函数,对于任意x,都有.求;证明奇函数;解不等式.第一学期期中考试高一年级数学试卷答案1.【答案】A解:因为A={x|x2-2x-3<0}={x|-1<x<3},B={x|2x+1>1}={x|x>-1},则C B A=[3,+∞) ,故选A.2.【答案】C解:a=log20.5<0,b=20.5>1,0<c=0.52<1,则a<c<b,则选:C.3.【答案】B解:函数y=是奇函数,排除A,C;当x=时,y=ln<0,对应点在第四象限,排除D.故选B.4.【答案】B解:由于幂函数在(0,+∞)时是减函数,故有,解得m =-1,故选B.5.【答案】A解:∵函数f(x)的定义域为(0,4],∴由,得,即0<x≤2,则函数g(x)的定义域为(0,2],故选:A.6.【答案】C解:∵函数f(x)=e x+4x-3在R上连续,且f(0)=e0-3=-2<0,f()=+2-3=-1=-e0>0,∴f(0)f()<0,∴函数f(x)=e x+4x-3的零点所在的区间为(0,).故选C.7.【答案】D解:设x<0,则-x>0,∵当x≥0时,,∴f(-x)=-x(1+)=-x(1-),∵函数y=f(x)是定义在R上的奇函数,∴f(x)=-f(-x),∴f(x)=x(1-),故选D.8.【答案】D解:∵函数f(x)为奇函数,若f(1)=-1,则f(-1)=-f(1)=1,又∵函数f(x)在(-∞,+∞)上单调递减,-1≤f(x-2)≤1,∴f(1)≤f(x-2)≤f(-1),∴-1≤x-2≤1,解得:1≤x≤3,所以x的取值范围是[1,3].故选D.9.【答案】C解:因为f(a)=f(b),所以|lg a|=|lg b|,所以a=b(舍去),或,所以a+2b=又0<a<b,所以0<a<1<b,令,由“对勾”函数的性质知函数f(a)在a∈(0,1)上为减函数,所以f(a)>f(1)=1+=3,即a+2b的取值范围是(3,+∞).故选C.10.【答案】D解:∵对任意的实数x1≠x2都有>0成立,∴函数f(x)=在R上单调递增,∴,解得a∈[4,8),故选D.11.【答案】A解:令u=x2-2ax+1+a,则f(u)=lg u,配方得u=x2-2ax+1+a=(x-a)2 -a2+a+1,故对称轴为x=a,如图所示:由图象可知,当对称轴a≥1时,u=x2-2ax+1+a在区间(-∞,1]上单调递减,又真数x2-2ax+1+a>0,二次函数u=x2-2ax+1+a在(-∞,1]上单调递减,故只需当x=1时,若x2-2ax+1+a>0,则x∈(-∞,1]时,真数x2-2ax+1+a>0,代入x=1解得a<2,所以a的取值范围是[1,2)故选:A.由题意,在区间(-∞,1]上,a的取值需令真数x2-2ax+1+a>0,且函数u=x2-2ax+1+a在区间(-∞,1]上应单调递减,这样复合函数才能单调递减.本题考查复合函数的单调性,考查学生分析解决问题的能力,复合函数单调性遵从同增异减的原则.12.【答案】C解:令f(x)=1,当时,,解得x1=-,x2=1,当时,,解得x3=5,综上f(x)=1解得x1=-,x2=1,x3=5,令g(x)=f[f(x)]-1=0,作出f(x)图象如图所示:由图象可得当f(x)=-无解,f(x)=1有3个解,f(x)=5有1个解,综上所述函数g(x)=f[f(x)]-1的零点个数为4,故选C.13.【答案】(1,2)解:设f(x)=x2-2mx+m2-1,则f(x)=0的一个零点在(0,1)内,另一零点在(2,3)内.∴,即,解得1<m<2.故答案为(1,2).14.【答案】[-1,0)解:作出函数的图象如下图所示,由图象可知0<g(x)≤1,则m<g(x)+m≤1+m,即m<f(x)≤1+m,要使函数的图象与x轴有公共点,则,解得-1≤m<0.故答15.案为[-1,0).【答案】.解:∵解:利用函数f(x)=x2+mx+4的图象,∵x∈(1,3)时,不等式x2+mx+4<0恒成立,∴,即,解得m-5.∴m的取值范围是.故答案为:..利用一元二次函数图象分析不等式在定区间上恒成立的条件,再求解即可.本题考查不等式在定区间上的恒成立问题.利用一元二次函数图象分析求解是解决此类问题的常用方法.16.【答案】[5,+∞)解:函数的定义域为:x≤2,当x∈D时,f(x)≤m恒成立,令t=≥0,可得2x=4-t2,所以f(t)=5-t2-t,是开口向下的二次函数,t≥0,f(t)≤5,当x∈D时,f(x)≤m恒成立,则实数m的取值范围是:m≥5.故答案为:[5,+∞).求出函数的定义域,利用换元法结合函数的性质,求解实数m的取值范围.本题考查函数的最值的求法,换元法的应用,函数恒成立体积的应用,是基本知识的考查.17.【答案】解:(1)原式===;-----------(5分)(2)原式===log39-9=2-9=-7.----(10分)18.【答案】解:(1)根据题意,当m=2时,A={x|1≤x≤7},B={x|-2<x<4},----(1分)则A∪B={x|-2<x≤7},----(3分)又∁R A={x|x<1或x>7},则(∁R A)∩B={x|-2<x<1};----(5分)(2)根据题意,若A∩B=A,则A⊆B,分2种情况讨论:①当A=∅时,有m-1>2m+3,解可得m<-4,----(7分)②当A≠∅时,若有A⊆B,必有,解可得-1<m<,----(11分)综上可得:m的取值范围是:(-∞,-4)∪(-1,).----(12分)19.【答案】解:(1),若要式子有意义,则,即,所以定义域为. ----(4分)(2)f(x)的定义域为,且所以f(x)是奇函数. ----(8分)(3)又f(x)>0,即,有.当时,上述不等式,解得. ----(12分)20.【答案】解:(1)因为f(x)是定义在R上的奇函数,所以f(0)=0,即,则b=1,经检验,当b=1时,是奇函数,所以b=1;----(3分)(2),f(x)在R上是减函数,证明如下:在R上任取,,且,则,因为在R上单调递增,且,则,又因为,所以,即,所以f(x)在R上是减函数; ----(7分)(3)因为,所以,而f(x)是奇函数,则,又f(x)在R上是减函数,所以,即在上恒成立,令,,,,因为,则k<-1.所以k的取值范围为. ----(12分)21.【答案】解:(1)由已知,∴,当时,,故小时后还剩的污染物. ----(5分)(2)由已知,即两边取自然对数得:,∴,∴污染物减少需要花32小时. ----(12分)22.【答案】解:(1)由题设,令x=y=0,恒等式可变为f(0+0)=f(0)+f(0),解得f(0)=0;----(3分)(2)证明:令y=-x,则由f(x+y)=f(x)+f(y)得f(0)=0=f(x)+f(-x),即f(-x)=-f(x),故f(x)是奇函数;----(7分)(3)∵,,即,又由已知f(x+y)=f(x)+f(y)得:f(x+x)=2f(x),∴f(x2-3x)>f(2x),由函数f(x)是增函数,不等式转化为x2-3x>2x,即x2-5x>0,∴不等式的解集{x|x<0或x>5}.----(12分)2019-2020学年第一学期期中考试高一数学试题说明:本试卷分为第I 卷和第Ⅱ卷两部分,共三个大题,22个小题。

沭阳县2020-2021学年高一上学期期中考试 数学试题(含答案)

沭阳县2020-2021学年高一上学期期中考试 数学试题(含答案)

沭阳县2020-2021学年高一上学期期中考试数学试题一、选择题:(每小题5分,共40分.) 1.若集合{|11}{|02}M x x N x x =-<<=<,,则MN =( ).A .{|12}x x -<<B .{|01}x x <C .{|01}x x <<D .{|10}x x -<<2.命题“2110x x ∀>+,”的否定为( ).A .2110xx ∃+<, B .2110xx ∃+<, C .2110x x ∀>+<, D .2110x x ∃>+<,3.已知210()310x x f x ax x ⎧-=⎨+<⎩,,,,若((2))4f f =,则实数a 的值为( ).A .1-B .0C .1D .2 4.下列各图中,可表示函数图象的是( ).A .B .C .D .5.“0a ≠”是“0ab ≠”的( ).A .必要条件B .充分条件C .充要条件D .既不充分又不必要条件 6.下列命题正确的是( ). A .函数1y x x=+的最小值是2 B .若a b ∈R ,且0ab >,则2b a a b+C .2233y x x =+++ 的最小值是2D .函数423y x x=--(0x >)的最小值为243-7.若关于x 的不等式0ax b -<的解集为(1)+∞,,则关于x 的不等式01ax bx +>-的解集为( ). A .(1)+∞,B .(1)-+∞,C . (11)-,D .(1)-∞-, 8.物体在常温下的温度变化可以用牛顿冷却定律来描述:设物体的初始温度是0T ,经过一定时间t (单位:分)后的温度是T ,则0()e kt a a T T T T --=-⋅,其中a T 称为环境温度,k 为比例系数.现有一杯90℃的热水,放在26℃的房间中,10分钟后变为42℃的温水,那么这杯水从42℃降温到34℃时需要的时间为( ).O1 2 3A .8分钟B .6分钟C . 5分钟D .3分钟二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求,全部选对得5分,部分选对得3分,有选错的得0分. 9.已知集合{}2|0A x x x =-=,集合B 中有两个元素,且满足{}012AB =,,,则集合B 可以是( ).A .{0,1}B .{0,2}C .{0,3}D .{1,2}10.小王同学想用一段长为l 的细铁丝围成一个面积为s 的矩形边框,则下列四组数对中,可作为数对(,)s l 的有( ).A .(1,4)B .(6,8)C .(7,12)D . (3,1)11.若函数()f x 同时满足:①对于定义域上的任意x ,恒有()()0f x f x +-=;②对于定义域上任意12x x ,,当12x x ≠时,恒有()()12120f x f x x x ->-,则称函数()f x 为“YM 函数”.下列函数中的“YM 函数”有( ).A .()3f x x =B .()f x x =C .()22,0,0x x f x x x ⎧≥⎪=⎨-<⎪⎩ D .()1f x x =-12.下列关于函数1||()1||x f x x -=+,下列说法正确的是( ). A .()f x 为偶函数 B . ()f x 的值域为(]11-,C .()f x 在(0)+∞,上单调递减D .不等式()0f x <的解集为(10)(01)-,,三、填空题:本题共4小题,每小题5分,共20分. 13.若1log 38x=-,则x 的值为 ▲ . 14.函数1()+1f x x x=+的定义域为 ▲ .15.已知非空集合A ,若对于任意x A ∈,都有4A x∈,则称集合A 具有“反射性” .则在集合{}1248,,,的所有子集中,具有“反射性”的集合个数为 ▲ . 16.李老师在黑板上写下一个等式19+1=()(),请同学们在两个括号内分别填写两个正数,使得等号成立,哪个同学所填的两个数之和最小,则该同学获得“优胜奖”.小明同学要想确保获得“优胜奖”,他应该在前一个括号内填上数字 ▲ .四、解答题:本大题共6小题,共计70分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.17.(本题满分10分)在①A B U =,②A B ⊆,③A B =∅这三个条件中任选一个,补充在下面问题中, 并求出所有满足条件的集合B .问题:已知全集{}1123U =-,,,,{}2|230A x x x =--=,非空集合B 是U 的真子集,且________. 注:如果选择多个条件分别解答,按第一个解答计分. 18.(本题满分12分)(1)计算:1ln 343e 0.125log 8-+-;(2)已知17(0)a a a -+=>,求22112211a a a a--++++的值.19.(本题满分12分)设全集U =R ,集合1{|0}5x A x x -=-,非空集合{|212}B x x a =+,其中a ∈R .(1)若“x A ∈”是“x B ∈”的必要条件,求a 的取值范围; (2)若命题“x B ∃∈,x A ∈R ”是真命题,求a 的取值范围.20.(本题满分12分)已知偶函数()f x 定义域为R ,当0x 时,2()1x f x x +=+. (1)求函数()f x 的表达式;(2)用函数单调性的定义证明:函数()f x 在区间[)0+∞,单调递减,并解不等式(1)(2)f x f -.21.(本题满分12分)某县经济开发区一电子厂生产一种学习机,该厂拟在2020年举行促销活动,经调查测算,该学习机的年销售量(即该厂的年产量)x 万台与年促销费用m 万元(0m ≥)满足41tx m =-+ (t 为常数),如果不搞促销活动,则该学习机的年销售量只能是2万台.已知2020年生产该学习机的固定投入为8万元.每生产1万台该产品需要再投入16万元,厂家将每台学习机的销售价格定为每台产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用)(1)将2020年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?22.(本题满分12分)已知函数2()4f x x ax =-.(1)当1a =时,求函数()f x 的值域; (2)解关于x 的不等式2()+30f x a >;(3)若对于任意的[)2+x ∈∞,,()21f x x >-均成立,求a 的取值范围.参考答案一、选择题:每小题5分,共40分. 1.若集合{|11}{|02}M x x N x x =-<<=<,,则MN =( B ).A .{|12}x x -<<B .{|01}x x <C .{|01}x x <<D .{|10}x x -<<2.命题“2110x x ∀>+,”的否定为( D ).A .2110xx ∃+<, B .2110xx ∃+<, C .2110x x ∀>+<, D .2110x x ∃>+<,3.已知210()310x x f x ax x ⎧-=⎨+<⎩,,,,若((2))4f f =,则实数a 的值为( A ).A .1-B .0C .1D .2 4.下列各图中,可表示函数图象的是( C ).A .B .C .D .5.“0a ≠”是“0ab ≠”的( A ).A .必要条件B .充分条件C .充要条件D .既不充分又不必要条件 6.下列命题正确的是( B ). A .函数1y x x=+的最小值是2 B .若a b ∈R ,且0ab >,则2b a a b+C .22323y x x =+++D .函数423y x x=--(0x >)的最小值为243-7.若关于x 的不等式0ax b -<的解集为(1)+∞,,则关于x 的不等式01ax bx +>-的解集为( C ). A .(1)+∞,B .(1)-+∞,C . (11)-,D .(1)-∞-, 8.物体在常温下的温度变化可以用牛顿冷却定律来描述:设物体的初始温度是0T ,经过一定时间t (单位:分)后的温度是T ,则0()e kt a a T T T T --=-⋅,其中a T 称为环境温度,k 为比例系数。

山东省东营市胜利一中2020-2021学年高一上学期期中考试数学试卷Word版含答案

山东省东营市胜利一中2020-2021学年高一上学期期中考试数学试卷Word版含答案

胜利一中2021~2021学年度高一上学期期中考试数 学 试 题一、选择题:此题共8小题,每题5分,共40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1. 全集为R ,集合{}2,1,0,1,2A =--,102x B x x ⎧⎫+=<⎨⎬-⎩⎭,那么()R AC B 的元素个数为A. 2B. 1C. 4D. 32. 命题“对任意x ∈R ,都有20x x ->〞的否认为A. 对任意x ∈R ,都有20x x -≤ B. 存在x ∈R ,使得20x x -≤ C. 存在x ∈R ,使得20x x -> D. 不存在x ∈R ,使得20x x -≤ 3.设1c >,1a c c =+-,1b c c =--,那么有A .a b <B .a b >C .a b =D .a 、b 的关系与c 的值有关 4.假设不等式13x <<的必要不充分条件是22m x m -<<+,那么实数m 的取值范围是A .[]1,2B .[]1,3C .()1,2-D .()1,35.3()4f x ax bx =+-,其中,a b 为常数,假设(2)2f -=,那么(2)f = A . 2- B . 4-C .6-D .10-6.某同学解关于x 的不等式2730x ax a -+<〔0a >〕时,得到x 的取值区间为()2,3-,假设这个区间的端点有一个是错误的,那么正确的x 的取值范围应是A .()2,1--B .1,32⎛⎫⎪⎝⎭C .()1,3D .()2,37.方程2(2)50x m x m +-+-=的一根在区间(2,3)内,另一根在区间(3,4)内,那么m 的取值范围是A .(5,4)--B .13,23⎛⎫-- ⎪⎝⎭C .13,43⎛⎫-- ⎪⎝⎭D .(5,2)--8.设函数11,(,2)()1(2),[2,)2x x f x f x x ⎧--∈-∞⎪=⎨-∈+∞⎪⎩,那么函数()()1F x xf x =-的零点的个数为A .4B .5C .6D .7二、选择题:此题共4小题,每题5分,共20分.在每题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,局部选对的得3分.9. 以下命题中正确的选项是A .()10y x x x =+<的最大值是2- B .2232x y x +=+的最小值是2C .()4230y x x x=-->的最大值是243- D .4(1)1y x x x =+>-最小值是5 10.设集合()(){}()(){}30,410M x x a x N x x x =--==--=,那么以下说法不正确的选项是A .假设M N ⋃有4个元素,那么M N ≠∅B .假设M N ≠∅,那么M N ⋃有4个元素C .假设{}1,3,4MN =,那么MN ≠∅D .假设M N ≠∅,那么{}1,3,4MN =11. 给出如下命题,以下说法正确的选项是A .1a >“”是11a<“”的必要不充分条件; B .2x >“且3y >”是5x y +>“”的充分不必要条件; C .a b <“”是22ac bc <“”的充分不必要条件; D .2m <“”是3m <“”的充分不必要条件. 12.函数2()xf x x a=+的图像可能是 A . B .C .D .三、填空题:此题共4小题,每题5分,共20分.13.假设2()(1)3f x a x ax =-++是偶函数,那么(3)f =________. 14.正数x ,y 满足22x y +=,那么18y x+的最小值为________.15.函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,假设()f x 的最小值为(1)f ,那么实数a 的取值范围是____. 16.要使不等式2(6)930x a x a +-+->,1a ≤恒成立,那么x 的取值范围为__________. 四、解答题:此题共6小题,共70分.解容许写出文字说明、证明过程或演算步骤. 17.〔10分〕〔1〕设全集为R ,集合A ={x |3≤x <6},B ={x |2<x <9},C ={x |a <x <a +1}.①求(C U B )∪A ; ②假设C ⊆B ,求实数a 取值构成的集合. 〔2〕假设{}|4A x x a =-<,{}2450B x x x =-->,假设A B R =,求实数a 的取值范围.18.〔12分〕函数()y f x =是定义在R 上的奇函数,且当0x ≥时,2()2.f x x x =+〔1〕求函数()f x 的解析式;〔2〕指出函数()f x 在R 上的单调性〔不需要证明〕;〔3〕假设对任意实数2,()()0m f m f m t +->恒成立,求实数t 的取值范围.19.〔12分〕〔1〕求函数2y x =+〔2〕假设函数y =R ,求实数k 的取值范围.20.〔12分〕小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定本钱为3万元,每生产x 万件,需另投入流动本钱为W (x )万元.在年产量缺乏8万件时,W (x )=13x 2+x (万元);在年产量不小于8万件时,W (x )=6x +100x -38(万元).每件产品售价为5元.通过市场分析,小王生产的商品当年能全部售完.(1)写出年利润L (x )(万元)关于年产量x (万件)的函数解析式.(注:年利润=年销售收入-固定本钱-流动本钱)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?21.〔12分〕设函数2()(2)3(0)f x ax b x a =+-+≠,(1)假设3,b a =--求不等式()42f x x <-+的解集;〔2〕假设(1)4,1f b =>-,求11a ab ++的最小值. 22.〔12分〕函数()2()340f x ax x a =-+>.〔1〕假设()y f x =在区间[]0,2上的最小值为52,求a 的值; 〔2〕假设存在实数m ,n 使得()y f x =在区间[],m n 上单调且值域为[],m n ,求a 的取值范围.。

2020-2021学年山东省济南一中高一(上)期中数学试卷及答案

2020-2021学年山东省济南一中高一(上)期中数学试卷及答案

2020-2021学年山东省济南一中高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={﹣1,0,1,2,3},N={x|﹣1≤x<3},则M∩N=()A.{0,1,2}B.{﹣1,0,1}C.M D.{﹣1,0,1,2} 2.(5分)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件3.(5分)下列各组函数中,表示同一函数的是()A.f(x)=1,g(x)=x0B.f(x)=x﹣1,C.f(x)=x,D.f(x)=|x|,4.(5分)设a=30.5,b=0.53,c=log30.5,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.a>c>b5.(5分)已知函数f(x)=(m2﹣m﹣1)是幂函数,且x∈(0,+∞)时,f(x)是递减的,则m的值为()A.﹣1B.2C.﹣1或2D.36.(5分)已知a>1,函数y=a x﹣1与y=log a(﹣x)的图象可能是()A.B.C.D.7.(5分)已知函数上是增函数,则实数a的取值范围是()A.B.C.[1,+∞)D.[1,2]8.(5分)定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞),(x1≠x2),有,且f(2)=0,则不等式xf(x)<0的解集是()A.(﹣2,2)B.(﹣2,0)∪(2,+∞)C.(﹣∞,﹣2)∪(0,2)D.(﹣∞,﹣2)∪(2,+∞)二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.(5分)下列不等式成立的是()A.若a<b<0,则a2>b2B.若ab=4,则a+b≥4C.若a>b,则ac2>bc2D.若a>b>0,m>0,则10.(5分)下列叙述正确的是()A.已知函数f(x)=,则f(6)=8B.命题“对任意的x>1,有x2>1”的否定为“存在x≤1,有x2≤1”C.已知正实数a,b满足a+b=4,则的最小值为D.已知x2﹣5ax+b>0的解集为{x|x>4或x<1},则a+b=511.(5分)关于函数f(x)=,下列结论正确的是()A.f(x)的图象过原点B.f(x)是奇函数C.f(x)在区间(1,+∞)上单调递减D.f(x)是定义域上的增函数12.(5分)德国著名数学家狄利克雷在数学领域成就显著,狄利克雷函数就以其名命名,其解析式为D(x)=,关于函数D(x)有以下四个命题,其中真命题是()A.∀x∈R,D(D(x))=1B.∃x,y∈R,D(x+y)=D(x)+D(y)C.函数D(x)是偶函数D.函数D(x)是奇函数三、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知函数f(+1)=x﹣2,则f(x)的解析式是.14.(5分)已知函数y=a x﹣2+2(a>0且a≠1)恒过定点(m,n),则m+n=15.(5分)不等式(a﹣2)x2+2(a﹣2)x﹣4<0对一切x∈R恒成立,则实数a的取值范围是.16.(5分)定义区间[x1,x2]的长度为x2﹣x1,若函数y=|log2x|的定义域为[a,b],值域为[0,3],则区间[a,b]的长度最大值为.四、解答题:本题共6小题,共70分。

2020-2021学年度北京市第八中学高一上学期期中考试数学试卷【含解析】

2020-2021学年度北京市第八中学高一上学期期中考试数学试卷【含解析】

2020-2021学年度北京市第八中学高一上学期期中考试数学试卷【含解析】一、单选题1.已知集合{}{}0,1,2,3,4,0,1,2U M ==,则UM =( )A .{}0,1,2B .{}0,1,2,3,4C .{}1,2D .{}3,4【答案】D【分析】直接根据补集概念进行运算即可得解. 【详解】因为集合{}{}0,1,2,3,4,0,1,2U M ==, 所以UM ={3,4}.故选:D 2.若()11xf x x-=+,则()0f =( ) A .1 B .12C .0D .1-【答案】A【分析】直接代入函数解析式计算可得; 【详解】解:因为()11x f x x -=+,所以()100110f -==+ 故选:A【点睛】本题考查函数值的计算,属于基础题. 3.若1x y >>,则下列四个数中最小的数是( )A .2x y+ B .2xyx y+ C x D .1112x y ⎛⎫+ ⎪⎝⎭【答案】D【分析】根据1x y >>可以推出2x y +、2xy x y +x 1,1112x y ⎛⎫+ ⎪⎝⎭1<,故可得答案.【详解】因为1x y >>,所以11122x y ++>=,2xy x y +2211111y x=>=++1x >,1112x y ⎛⎫+ ⎪⎝⎭111()1211<+=, 所以四个数中最小的数是1112x y ⎛⎫+ ⎪⎝⎭. 故选:D【点睛】关键点点睛:利用不等式的性质找中间量1进行比较是解题关键. 4.命题“2R,||0x x x ∀∈+≥”的否定是( ) A .2R,||0x x x ∀∈+<B .2R,||0x x x ∀∈+≤C .2000R,0x x x ∃∈+<D .2000R,0x x x ∃∈+≥【答案】C【分析】根据全称命题的否定是特称命题即可得出. 【详解】根据全称命题的否定是特称命题,则命题“2R,||0x x x ∀∈+≥”的否定是“2000R,0x x x ∃∈+<”.故选:C.5.函数()()2212f x x a x =+-+在区间(],4-∞上递减,则a 的取值范围是( )A .[)3,-+∞B .(],3-∞-C .(],5-∞D .[)3,+∞ 【答案】B【分析】根据二次函数的单调性列式可得结果.【详解】因为函数()()2212f x x a x =+-+在区间(],4-∞上递减,所以(1)4a --≥,即3a ≤-. 故选:B【点睛】关键点点睛:掌握二次函数的单调性是解题关键.6.已知a ,b 为实数,则“a +b >4”是“a ,b 中至少有一个大于2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】A【分析】根据充分条件和必要条件的定义进行判断即可.【详解】“a+b >4”可得“a ,b 中至少有一个大于2”,反之若a=3,b=1,则a +b >4不成立.∴“a+b >4”是“a ,b 中至少有一个大于2”的充分不必要条件. 故选:A .【点睛】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.7.下列从集合M 到集合N 的对应关系中,其中y 是x 的函数的是( ) A .M ={x |x ∈Z },N ={y |y ∈Z },对应关系f :x →y ,其中2xy =B .M ={x |x >0,x ∈R },N ={y |y ∈R },对应关系f :x →y ,其中y =±2xC .M ={x |x ∈R },N ={y |y ∈R },对应关系f :x →y ,其中y =x 2D .M ={x |x ∈R },N ={y |y ∈R },对应关系f :x →y ,其中2y x= 【答案】C【分析】根据函数的定义作出判断即可.【详解】A .M 中的一些元素,在N 中没有元素对应,比如,x =3时,32y N =∉,∴y 不是x 的函数;B .M 中的任意元素x ,在N 中有两个元素±2x 与之对应,不满足对应的唯一性,∴y 不是x 的函数;C .满足在M 中的任意元素x ,在集合N 中都有唯一元素x 2与之对应,∴y 是x 的函数;D .M 中的元素0,通过2y x=在N 中没有元素对应,∴y 不是x 的函数. 故选:C .【点睛】本题主要考查了函数关系的判断,属于中档题.8.设x ∈R ,定义符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则函数()f x =sgn x x 的图象大致是( )A .B .C .D .【答案】C【解析】函数f(x)=|x|sgnx=,00,0,0x xxx x>⎧⎪=⎨⎪<⎩=x,故函数f(x)=|x|sgnx的图象为y=x所在的直线,故答案为C.9.设函数f(x)=()()212,1315,1x a x xa x x⎧--+≥⎪⎨+-<⎪⎩在R上是增函数,则a的取值范围是()A.(-13,3]B.( -13,2) C.(-13,2]D.[2,3]【答案】C【分析】利用分段函数是增函数,两段函数都递增列出不等式组,求解即可.【详解】函数2(1)2,1()(31)5,1x a x xf xa x x⎧--+=⎨+-<⎩在R上是增函数,可得:112310315112 aaa a-⎧⎪⎪+>⎨⎪+--++⎪⎩,解得12 3a-<故实数a的取值范围是1(3-,2].故选:C.【点睛】本题考查分段函数的单调性、二次函数的单调性,注意各段函数单调性的应用,属于易错题.10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油【答案】D【详解】解:对于A,由图象可知当速度大于40km/h时,乙车的燃油效率大于5km/L,∴当速度大于40km/h时,消耗1升汽油,乙车的行驶距离大于5km,故A错误;对于B,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B错误;对于C,由图象可知当速度为80km/h时,甲车的燃油效率为10km/L,即甲车行驶10km时,耗油1升,故行驶1小时,路程为80km,燃油为8升,故C 错误;对于D,由图象可知当速度小于80km/h时,丙车的燃油效率大于乙车的燃油效率,∴用丙车比用乙车更省油,故D正确故选D.【解析】1、数学建模能力;2、阅读能力及化归思想.二、填空题11.函数23()2x xf xx-=-的定义域为_________.【答案】[0,2)(2,3]【分析】由23020x xx⎧-≥⎨-≠⎩解得结果即可得解.【详解】要使函数23 ()x x f x-=只需23020x xx⎧-≥⎨-≠⎩,解得03x≤≤且2x≠,所以函数()f x的定义域为[0,2)(2,3].故答案为:[0,2)(2,3].【点睛】方法点睛:已知函数解析式,求函数定义域的方法:1、有分式时:分母不为0;2、有根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于0;3、有指数时:当指数为0时,底数一定不能为0;4、有根号与分式结合时,根号开偶次方在分母上时:根号下大于0;5、有指数函数形式时:底数和指数都含有x,指数底数大于0且不等于1;6、有对数函数形式时,自变量只出现在真数上时,只需满足真数上所有式子大于0,自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1.12.设函数f(x)满足f(x-1)=4x-4,则f(x)=______.【答案】4x【分析】变形f(x-1)得出f(x-1)=4(x-1),从而得出f(x)=4x.【详解】由题意得,f(x-1)=4x-4=4(x-1),∴f(x)=4x.故答案为:4x.【点睛】本题考查了换元法求函数解析式的方法,属于基础题.13.给出下列三个函数:①222x xyx-=-;②321x xyx+=+;③2y x=其中与函数()f x x=相同的函数的序号是_________.【答案】②【分析】依次判断函数的定义域、解析式是否与已知函数的定义域、解析式都相同,找出相同函数【详解】222x xy x -=-的定义域为()(),22-∞⋃+∞,,与()f x x =定义域不同,321x x y x x +==+与()f x x =定义域、解析式均相同,2y x x ==,与()f x x =解析式不同, 故选②【点睛】判断两个函数是否为相同函数,只要比较两个函数的定义域,对应关系是否都相同,如果都相同就是相同函数14.已知()f x 为R 上的奇函数,0x >时,()31f x x x=+,则(1)(0)f f -+=_____. 【答案】2-【分析】由奇函数的性质可得(0)0f =,(1)(1)f f -=-,再由已知的解析式求出(1)f 即可【详解】解:因为()f x 为R 上的奇函数,所以(0)0f =,(1)(1)f f -=-,因为当0x >时,()31f x x x=+,所以(1)112f =+=, 所以(1)(0)202f f -+=-+=-, 故答案为:2- 15.已知函数11()(0,0)f x a x a x =->>,若()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域为1,22⎡⎤⎢⎥⎣⎦,则a =________.【答案】25. 【分析】根据函数11()(0,0)f x a x a x =->>在1,22⎡⎤⎢⎥⎣⎦上单调递增,求出函数的最值,列方程组可解得结果.【详解】由题意知函数11()(0,0)f x a x a x =->>在1,22⎡⎤⎢⎥⎣⎦上单调递增, ∴1122(2)2f f ⎧⎛⎫=⎪ ⎪⎝⎭⎨⎪=⎩,即11221122a a ⎧-=⎪⎪⎨⎪-=⎪⎩,解得25a =.故答案为:25. 【点睛】本题考查了由函数解析式得单调性,根据单调性求最值,属于基础题. 16.若关于x 的不等式20ax x b ++>的解集是()1,2-,则a b +=______.【答案】1【分析】根据一元二次不等式的解集得出对应方程的两个根,再由根与系数的关系求出a ,b 即可.【详解】关于x 的不等式ax 2+x+b >0的解集是(-1,2), ∴-1,2是方程ax 2+x+b=0的两个根, ∴-1+2=-1a ,-1×2=b a, 解得a=-1,b=2; ∴a+b=-1+2=1. 故答案为:1.【点睛】本题考查了一元二次不等式对应方程的关系,解题的关键是根据不等式的解集得出不等式相应方程的根,再由根与系数的关系求参数的值.17.已知0,0x y >>,且8x y +=,则(1)(1)x y +⋅+的最大值为_____. 【答案】25【分析】将8x y +=化为(1)(1)10x y +++=后,根据基本不等式可求得结果. 【详解】因为0,0x y >>,且8x y +=,所以(1)(1)10x y +++=2(1)(1)x y ≥++(1)(1)25x y ++≤, 当且仅当4x y ==时,等号成立. 所以(1)(1)x y +⋅+的最大值为25. 故答案为:25【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.18.二次方程222320mx x m ---=的一个根大于1,另一个根小于1,则m 的取值范围是_________. 【答案】0m >或4m -< 【详解】令y=2mx 2﹣2x ﹣3m ﹣2 当m >0时,由题意:x=1时,y <0,∴2m ﹣2﹣3m ﹣2<0, ∴m >﹣4, ∴m >0,当m <0时,x=1时,y >0, ∴2m ﹣2﹣3m ﹣2>0, ∴m <﹣4,综上所述,二次方程2mx 2﹣2x ﹣3m ﹣2=0的一个根大于1,另一个根小于1时,m <﹣4或 m >0.故答案为0m >或4m -<19.已知函数()22121x kx x f x x x ,,⎧-+≤=⎨>⎩,若存在a ,b R ∈,且ab ,使得()()f a f b =成立,则实数k 的取值范围是____________. 【答案】()()-,23,∞⋃+∞【分析】由题意,可知函数()f x 在定义域内不是单调函数,结合二次函数的图象与性质及分段函数的单调性,即可得到结论.【详解】由题意可得函数()f x 在定义域内不是单调函数, 由函数()22,1f x x x =>为增函数,且1x =时,222x =,则1x ≤时,12k<或12k -+>,解得2k <或3k >, 即实数k 的取值范围是(,2)(3,)-∞⋃+∞.【点睛】本题主要考查了分段函数的解析式及其应用,其中根据题意得出分段函数不是单调函数,再利用二次函数的图象与性质求解是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.三、解答题 20.已知函数()((1,1))1||xf x x x =∈--,有下列结论: ①(1,1)x ∀∈-,等式()()0f x f x 恒成立;②[)0,m ∀∈+∞,方程|()|f x m =有两个不等的实根; ③12,,(11)x x ∀∈-,若12x x ≠,则一定有12()()f x f x ≠;④存在无数多个实数k ,使得函数()()g x f x kx =-在(1,1)-上有三个零点 则其中正确结论的序号为? 【答案】①③④【分析】根据()f x 与()f x -的解析式代入运算可知①正确;取0m =可知②错误;分析函数()f x 的单调性可知③正确,由(0)0g =,当1k >时,()g x 在(0,1)和(1,0)-内都必有一个零点,可知④正确. 【详解】对于①,(1,1)x ∀∈-,()()01||1||1||1||x x x x f x f x x x x x ,①正确;对于②,当0m =时,|()|0f x =,即||01||xx =-只有一个实根0,错误; 对于③,任取1201x x ≤<<,则12()()f x f x -=12121||1||x x x x ---121211x x x x =---122112(1)(1)(1)(1)x x x x x x ---=--1212(1)(1)x x x x -=--, 因为1201x x ≤<<,所以120x x -<,12(1)(1)0x x -->,所以12()()f x f x <,所以()f x 在[0,1)上为增函数,又由①知,()f x 为奇函数, 所以()f x 在(1,1)-上为增函数,所以③正确; 对于④,1()()1||1||x g x kx x k x x =-=---,因为(0)0g =,所以0恒是()g x 的一个零点,当1k >,01x <<时,101k x -=-必有一个解, 当1,10k x >-<<时,11k x-+0=也必有一解, 所以④正确,综上所述:正确结论的序号为①③④.【点睛】关键点点睛:对于③,判断出函数的单调性是解题关键;对于④,分01x <<和(1,0)-两种情况判断零点是解题关键.21.已知全集U =R ,集合{}29A x x =<<,{}28B x x =≥.(1)求AB ;()U B A ⋂.(2)已知集合{}2C x a x a =<<+,若C B ⊆,求实数a 的取值范围. 【答案】(1)AB {|229}x x =≤<,()U B A ⋂={|22x x ≤-或9}x ≥(2)222≤--a 或22a ≥【分析】(1)根据交集和补集的概念运算可得解; (2)根据子集关系列式可解得结果.【详解】(1){}28B x x =≥{|22x x =≤-或22}x ≥,{|2UA x x =≤或9}x ≥,所以AB {|229}x x =≤<, ()U B A ⋂={|22x x ≤-或9}x ≥.(2)因为C B ⊆,所以222a +≤-或22a ≥,即222≤--a 或22a ≥. 【点睛】关键点点睛:熟练掌握集合的交集、补集和子集的概念是解题关键. 22.已知函数223y x x =--(1)画出函数223y x x =--,](1,4x ∈-的图象(2)讨论当k 为何范围时,方程2230x x k ---=在](1,4x ∈-上的解集为空集、单元素集、双元素集.【答案】(1)答案见解析(2)答案见解析 【分析】(1)根据解析式作出图象即可;(2)依题意转化为函数223y x x =--,](1,4x ∈-的图象与直线y k =的交点个数进行求解,根据(1)中的图象可得结果.【详解】(1)函数223y x x =--,](1,4x ∈-的图象为:(2)依题意转化为函数223y x x =--,](1,4x ∈-的图象与直线y k =的交点个数进行求解,根据(1)中的图象可得:当4k <-或5k >时,方程2230x x k ---=在](1,4x ∈-上的解集为空集; 当4k =-或05k ≤≤时,方程2230x x k ---=在](1,4x ∈-上的解集为单元素集; 当40k -<<时,方程2230x x k ---=在](1,4x ∈-上的解集为双元素集. 【点睛】关键点点睛:第二问转化为函数223y x x =--,](1,4x ∈-的图象与直线y k =的交点个数进行求解是解题关键.23.已知函数21()x f x x+=.(1)判断()f x 的奇偶性并证明.(2)当(1,)x ∈+∞时,判断()f x 的单调性并证明.(3)在(2)的条件下,若实数m 满足(3)(52)f m f m >-,求m 的取值范围. 【答案】(1)奇函数,证明见解析;(2) 函数()f x 是(1,)+∞上的单调增函数,证明见解析;(3)(1,2).【分析】(1)根据函数奇偶性的定义判断并证明即可; (2)根据函数单调性的定义判断并证明即可;(3)在(2)的条件下,根据函数单调性的性质可得3521m m >->,解不等式即可求出m 的取值范围.【详解】(1) 函数()f x 是奇函数. 证:函数()f x 的定义域为(,0)(0,)-∞+∞,因为22()11()()x x f x f x x x-++-==-=--,所以函数()f x 是奇函数;(2) 函数()f x 是(1,)+∞上的单调增函数. 证:任取12(1,)x x ∈+∞,且12x x >,则2222121221211212121212121211()()()()x x x x x x x x x x x x x x f x f x x x x x x x +++------=-==121212()(1)x x x x x x --=,因为121x x >>,所以120x x ->,1210x x ->,120x x >, 所以12())0(f x f x ->,即12()()f x f x >, 所以函数()f x 是(1,)+∞上的单调增函数.(3)由(2)知函数()f x 是(1,)+∞上的单调增函数,所以3521m m >->,解得12m <<,所以m 的取值范围为(1,2).【点睛】思路点睛:解函数不等式的理论依据是函数单调性的定义,具体步骤是: (1)将函数不等式转化成12()()f x f x >的形式; (2)考查函数()f x 的单调性;(3)根据据函数()f x 在给定区间上的单调性去掉法则“f ”,转化为形如“12x x >”或“12x x <”的常规不等式,从而得解.24.已知函数()()2134f x mx m x =+--,m R ∈.(1)当1m =时,求()f x 在区间[]22-,上的最大值和最小值. (2)解关于x 的不等式()1f x >-.(3)当0m <时,若存在()01,x ∈+∞,使得()0f x >,求实数m 取值范围. 【答案】(1)最小值为5-,最大值为4;(2)答案见解析;(3)1m <-或109m -<<. 【分析】(1)根据二次函数的单调性可求得结果; (2)化为(1)(3)0mx x +->后,先对m 分类讨论,再对1m-与3分类讨论可得结果; (3)转化为()f x 在(1,)+∞上的最大值大于0,根据二次函数的知识求出最大值,再解关于m 的不等式可得结果.【详解】(1)当1m =时,()224f x x x =--在[2,1)-上递减,在(1,2]上递增,所以()f x 的最小值为(1)1245f =--=-,最大值为(2)4444f -=+-=. (2)()1f x >-可化为2(13)30mx m x +-->,即(1)(3)0mx x +->, 当0m >时,不等式化为1()(3)0x x m +->,解得1x m<-或3x >; 当0m =时,不等式化为30x ->,解得3x >;当0m <时,不等式化为1()(3)0x x m +-<, 当13m -<,即13m <-时,解得13x m -<<;当13m -=,即13m =-时,不等式无解;当13m->,即103m -<<时,解得13x m <<-.综上所述:当0m >时,不等式的解集为{|x 1x m<-或3x >}; 当0m =时,不等式的解集为{|x 3x >};当103m -<<时,不等式的解集为{|x 13x m <<-};当13m =-时,不等式的解集为空集;当13m <-时,不等式的解集为{|x 13x m -<<}.(3)当0m <时,若存在()01,x ∈+∞,使得()0f x >,则()f x 在(1,)+∞上的最大值大于0,因为()()2134f x mx m x =+--的图象的开口向下,对称轴13131222m m m --=-+>, 所以max()f x 13()2m f m -=-22(13)13(13)()442m m m m m m --=⋅+-⋅--2(13)44m m-=--, 所以2(13)404m m--->,即2(13)16m m ->-,即291010m m ++>,解得1m <-或109m -<<. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两部分,第一卷为1-8题,共40分,第二卷为9-20题,共110分。

全卷共计150分。

考试时间为120分钟。

本卷须知:答第一卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

每题选出答案后,用铅笔把答题卡上对应的答案涂黑,如需改动,用橡皮擦干净后,再涂其它答案,不能答在试题卷上。

考试结束,监考人员将本试卷和答题卡一并收回。

第一卷〔本卷共40分〕一.选择题:〔本大题共8题,每题5分,共40分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕 1.假设{}{}0,1,2,3,|3,A B x x a a A ===∈,那么A B ⋂=( )A.{}1,2B.{}0,1C.{}0,3D.{}32.函数2-=x y 在区间]2,21[上的最大值是 〔 〕A 、41B 、1-C 、4D 、4-3.设12log 3a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,那么〔 〕A 、a b c << B.c b a << C 、c a b << D.b a c <<4.假设0<a ,那么函数1)1(--=xa y 的图象必过点 〔 〕A 、〔0,1〕 B.〔0,0〕 C.()0,1- D.()1,1- 5.假设()()12f x f x +=,那么()f x 等于〔 〕A 、 2x B. 2xC. 2x +D.2log x6.y =f (x)是定义在R 上的奇函数,当0x >时,()2f x x =-,那么不等式1()2f x <的解集是〔 〕A. 502x x ⎧⎫<<⎨⎬⎭⎩B. 302x x ⎧⎫-<≤⎨⎬⎭⎩C. 350,022x x x ⎧⎫-<<≤<⎨⎬⎭⎩或 D. 35,022x x x ⎧⎫<-≤<⎨⎬⎭⎩或 7. 某商场在国庆促销期间规定,商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠,例如,购买标价为400元的商品,那么消费金额为320元,获得的优惠额为:400×0.2+30=110(元).假设顾客购买一件标价为1000元的商品,那么所能得到的优惠额为〔 〕A 、130元 B.330元 C.360元 D.800元8.设方程 xx lg 2=-的两个根为21,x x ,那么〔 〕A. 021<x x B .121=x x C .121>x x D. 1021<<x x 第二卷〔本卷共计110分〕【二】填空题:〔本大题共6小题,每题5分,共30分〕9.函数y =10.函数21,0(),0x x f x x x +≥⎧=⎨<⎩,那么[(2)]f f -的值为 . 11.假设函数()()()3122+-+-=x k x k x f 是偶函数,那么f(x)的递减区间是 。

12.对于函数()f x ,定义域为D, 假设存在0x D ∈使00()f x x =, 那么称00(,)x x 为()f x 的图象上的不动点. 由此,函数95()3x f x x -=+的图象上不动点的坐标为 . 13.假设()f n 为()2*1n n N +∈的各位数字之和,如2141197,19717+=++=,那么(14)17f =;记1()()f n f n =,21()(())f n f f n =,…,1()(())k k f n f f n +=,*k N ∈,那么2011(8)f = 。

14.函数xx f )21()(=的图象与函数g 〔x 〕的图象关于直线x y =对称,令|),|1()(x g x h -=那么关于函数)(x h 有以下命题 〔 〕①)(x h 的图象关于原点对称; ②)(x h 为偶函数;③)(x h 的最小值为0; ④)(x h 在〔0,1〕上为减函数.其中正确命题的序号为【三】解答题:〔本大题共6小题,共80分,解答应写出文字说明,证明过程,或演算步骤〕15.〔本小题12分〕集合A {|x =12x x <->或},函数2()9g x x =-域为集合B .(Ⅰ)求A B ⋂和A B ⋃; (Ⅱ)假设{}A C p x x C ⊆<+=,04|,求实数p 的取值范围.16.(本小题总分值12分)〔1〕计算:--121445.00)2()49()53(e -++-;〔2〕25100a b==,求11a b +的值。

17.(本小题总分值14分) 〔Ⅰ〕2()31xf x k =+- 是奇函数,求常数k 的值。

;()2函数()()f x x x m x R =-∈且()40f =。

()1求实数m 的取值。

()2作出函数()f x 的图象并写出函数()f x 的单调区间。

18.(本小题总分值14分)函数()f x 的定义域{}|0D x x =≠,且满足对任意12,.x x D ∈有:()()()1212f x x f x f x ⋅=+()1求()1f ,()1f -的值。

()2判断()f x 的奇偶性并证明()3如果()41f =,()()31263f x f x ++-≤,且()f x 在()0,+∞上是增函数,求x 的取值范围。

19.〔本小题总分值14分〕函数()2log ,f t t t ⎤=∈⎦. 〔1〕求()f t 的值域G ;〔2〕假设对于G 内的所有实数x ,不等式22221x mx m m -+-+≤恒成立,求实数m 的取值范围. 20.(本小题总分值14分)函数()x b b ax x f 22242-+-=,()()21a x x g ---=,()R b a ∈, 〔Ⅰ〕当0=b 时,假设()x f 在[)+∞,2上单调递增,求a 的取值范围; 〔Ⅱ〕求满足以下条件的所有实数对()b a ,:当a 是整数时,存在0x ,使得()0x f 是()x f 的最大值,()0x g 是()x g 的最小值;高一数学答题题卷一.选择题:〔本大题共8题,每题5分,共40分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕答案第二卷〔本卷共计110分〕【二】填空题:〔本大题共6小题,每题5分,共30分〕9.______________10。

______________11。

______________12.______________13。

______________14。

______________【三】解答题:〔本大题共6小题,共80分,解答应写出文字说明,证明过程,或演算步骤〕15.〔本小题12分〕16.〔本小题12分〕17.〔本小题14分〕18.〔本小题14分〕19.〔本小题14分〕20.〔本小题14分〕高一数学参考答案一.选择题:〔本大题共8题,每题5分,共40分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕【二】填空题:〔本大题共6小题,每题5分,共30分〕9.[)2,x ∈+∞ 10。

5 11.()0.+∞ 12。

()()1,1,5,5 13. 11 14。

②③15.解:(Ⅰ)依题意,得{}2|90B x x =-≥ 得 33≤≤-x|{x B =∴33≤≤-x } -------2分 ∴A∩B=|{x 13-<≤-x 或}32≤<x , A ∪B=R ------6分 (Ⅱ)由04<+p x 得4p x -< 而A C ⊆ 14-≤-∴p-----12分得4P ≥ ∴实数p 的取值范围是{}|4P P ≥ -----12分 16.解:(1) 原式=2 +1-1+ 32+e- 2 =e+32; -----------6分(2) 由,a =2lg 2, b =5lg 2,∴ 1a + 1b= 21〔lg2 + lg5〕 =21-------12分17.解:1.定义域:x ≠ 0 假设 f (x)为奇函数,那么22()()03131x xk k -+++=--∴11133131xx x x x k -=--=--2.图像如图;-----3分 (4)21-=∴k -----3分 (1)4m =----2分 增区间:()(),2,4,-∞+∞ 减区间:()2,4-------3分18.解:()1令12 1.x x ==有()()()1111f f f ⋅=+解得:()10f = 令12 1.x x ==-有()()()1111f f f -⋅-=-+-解得:()10f -=----3分()2()f x 为偶函数,证明如下:令121,,x x x =-=有()()()1f x f f x -=-+,∴()()f x f x -=即()f x 为偶函数。

-6分()3()41f =,()()64343f f ∴==由()()31263f x f x ++-≤得:()()()312664f x f x f ++-≤()f x 为偶函数,又()f x 在()0,+∞上是增函数()()312664x x ∴+-≤且310,260x x +≠-≠解得:753x -≤≤且1,33x x ≠-≠ ∴x 的取值范围为{|x 753x -≤≤且1,33x x ≠-≠}----14分19.解:(Ⅰ)∵f(t)=log2t 在t ∈[2,8]上是单调递增的,∴log22≤log2t ≤log28.即21≤f(t)≤3.∴f(t)的值域G为[,321].-------4 分(Ⅱ)由题知-x2+2mx -m2+2m ≤1在x ∈[321,]上恒成立2x ⇔-2mx+m2-2m+1≥0在x ∈[,321]上恒成立.-----6分令g(x)=x2-2mx+m2-2m+1,x ∈[,321].只需gmin(x)≥0即可.而g(x)=(x -m)2-2m+1,x ∈[,321]. (1)当m ≤21时,gmin(x)=g(21)=41-3m+m2+1≥0.∴4m2-12m+5≥0.解得m ≥25或m ≤21.∴m ≤.21 ------8(2)当21<m <3时,gmin(x)=g(m)= -2m+1≥0.解得m ≤.21这与21<m<3矛盾.----10(3)当m ≥3时,gmin(x)=g(3)=10+m2-8m ≥0.解得m ≥4+6或m ≤4-6.而m ≥3,∴m ≥4+6.----12分综上,实数m 的取值范围是(-∞,21)∪[4+6,+∞].---14分20.解:〔Ⅰ〕当0=b 时,()x ax x f 42-=, 假设0=a ,()x x f 4-=,那么()x f 在[)+∞,2上单调递减,不符题意。

相关文档
最新文档