万学海文2015年考研数学必考题型——数学三
2015【考研数三】真题及解析
2015年全国硕士研究生入学统一考试数学(三)试题解析一、选择题:1LI 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)设{x n}是数列,下列命题中不正确的是()(A) 若lim X n = a ,贝U lim x2^ lim X2n+ = a n n^^ n_^ 下(B) 若lim X2n =lim X2^^ =a,贝U lim x^an^^ n_^(C) 若lim X n = a,贝U lim x3^ lim x3n= an_^ T(D) 若lim X3n = lim Xg^^ = a ,贝U limx^ a【答案】(D)【解析】答案为D,本题考查数列极限与子列极限的关系数列X n T a(n T处戶对任意的子列{x n k }均有Xn^ a(k T处),所以A、B、C正n k确;D错(D选项缺少x3n半的敛散性),故选D⑵ 设函数f(X肚(=,址)内连续,其2阶导函数f”(X )的图形如右图所示贝恤线y = f(X )的拐点个数为((A) 0 (B) 1【答案】(C)(C) 2 (D) 3【解析】根据拐点的必要条件,拐点可能是f"(X)不存在的点或L(x) =0的点处产生.所以y = f(X)有三个点可能是拐点,根据拐点的定义,即凹凸性改变的点;二阶导函数「'(X)符号发生改变的点即为拐点.所以从图可知,拐点个数为2, 故选C.⑶ 设D ={(x, y j x2+y2< 2x,x2+ y2兰2y},函数f (x,y )在D 上连续,则JJ f (x,y dxdy =()D(A) 丑2COS0 - 2sin QJ0 f (r cos日,r sin日ydr + J和日J o f (r cos日,r si^dr4(B)丑2si^ 2cos 日『d叫 f (rcos日,rsin日「dr + £d叫f (r co少,rsin日『dr4f (X, y )dy1J 2x _x2(D) 2.tdx;Xf(x,y)dy【答案】(B )【解析】根据图可得,在极坐标系下该二重积分要分成两个积分区域—,0 <r <2sin 日 > D 2 = 4(r,0)— <日 <一,0 <r <2cos9 >4 114 2 I所以故选B.下列级数中发散的是D i 詔(r,8) 0 <e JJ f (X, y)dxdy =『d日 J 。
15年数学三考研真题
15年数学三考研真题15年数学三考研真题是考研数学科目中的一道难题,涵盖了多个数学领域的知识点。
在解答这道题目时,考生需要综合运用数学分析、线性代数、概率统计等多个学科的知识。
下面将从不同的角度来分析这道考题。
首先,我们来看一下这道题目的具体内容。
题目要求考生证明一个函数的连续性和可导性,并根据函数的性质求出其特定值。
这涉及到数学分析中的极限、连续性和可导性的概念。
考生需要运用数学分析的基本原理和定理,结合函数的定义和性质,来进行证明和计算。
其次,我们来分析这道题目所涉及的数学知识点。
首先是极限的概念和性质。
考生需要掌握极限的定义、极限存在的条件以及极限的运算法则。
在解答这道题目时,考生需要运用极限的性质来证明函数的连续性和可导性。
其次是函数的连续性和可导性的概念和判定条件。
连续性是指函数在某一点上的极限等于函数在该点的函数值。
可导性是指函数在某一点上存在导数。
考生需要掌握函数连续性和可导性的定义和判定条件,以及相关的定理和性质。
在解答这道题目时,考生需要根据函数的性质和定义,运用相关的定理和性质,来证明函数的连续性和可导性。
最后是函数的特定值的计算。
在解答这道题目时,考生需要根据函数的性质和定义,以及已知的条件,来计算函数的特定值。
这涉及到数学分析中的函数的极值和最值的求解方法,以及函数的导数和高阶导数的计算方法。
考生需要综合运用这些方法,来求解函数的特定值。
综上所述,15年数学三考研真题是一道综合性较强的数学题目,涵盖了数学分析、线性代数、概率统计等多个学科的知识点。
解答这道题目需要考生综合运用不同学科的知识,结合相关的定理和性质,进行证明和计算。
这道题目的解答过程需要考生有较强的数学思维能力和分析能力,能够灵活运用所学的数学知识解决实际问题。
在备考过程中,考生应该注重对数学基础知识的掌握和理解,加强对数学定理和性质的学习和运用,提高数学分析和推理的能力。
同时,要注重练习和模拟考试,提高解题速度和准确性。
2015年全国硕士研究生入学统一考试数学三真题及详解
D1 (r , ) 0 , 0 r 2sin 4 D2 (r , ) , 0 r 2cos 4 2
所以
D
f ( x, y)dxdy 4 d
0
2sin
0
f (r cos , r sin )rdr 2 d
(8) 设总体 X ~ B m, , X1 , X 2 , 值,则 E X i X (A)
, X n 为来自该总体的简单随机样本, X 为样本均
n i 1
2
(
) (B) m n 1 1 (D) mn 1
m 1 n 1
判别法可得
n
n 1
n!
n
收敛;
(1)n 1 (1)n 1 (1) n 对于选项 C, ,根据莱布尼茨判别法知 收敛, ln n n 1 n 1 ln n n 1 ln n n 1 ln n
经济学金融考研论坛 /
d (e x2 y 3 z xyz) e x2 y 3 z d ( x 2 y 3z ) d ( xyz ) e x2 y 3 z (dx 2dy 3dz ) yzdx xzdy xydz 0
把 x 0 , y 0 , z 0 代入上式,得 dx 2dy 3dz 0 所以 dz (0,0) dx
【解析】原极限 lim
x 0
(10)设函数 f ( x) 连续, ( x)
x2
0
xf (t )dt , 若 (1) 1, (1) 5, 则 f (1) ________ .
考研数学三真题完整版 .doc
2015考研数学(三)真题(完整版)一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项 是符合题目要求的.(1)设{}n x 是数列.下列命题中不正确的是 (A )若lim n →∞x n =a ,则lim n →∞x 2n =lim n →∞x 2n +1= a.(B )若lim n →∞x 2n =lim n →∞x 2n +1= a ,则lim n →∞x n = a.(C )若lim n →∞x n =a ,则lim n →∞x 3n =lim n →∞x 2n +1= a.(D )若lim n →∞x 3n =lim n →∞x 3n +1=a ,则lim n →∞x n = a.(2)设函数f(x)在(-∞,+∞)内连续,其2价导函数f″(x )的图形如右图所示,则曲线y=f(x)的拐点个数为 (A )0. (B )1. (C )2. (D )3.(3)设D ={(x ,y )|x 2+y 2≤2x ,x 2+y 2≤2y },函数f(x ,y)在D 上连续,则(,)Df x y dxdy =⎰⎰(A )40d πθ⎰2cos 204(cos ,sin )f r r rdr d πθπθθθ+⎰⎰2sin 0(cos ,sin ).f r r rdr θθθ⎰(B )40d πθ⎰2sin 204(cos ,sin )f r r rdr d πθπθθθ+⎰⎰2cos 0(cos ,sin ).f r r rdr θθθ⎰(C )102dx⎰211(,).xx f x y dy --⎰(D )102dx⎰22(,).x x xf x y dy -⎰(4)下列级数中发散的是(A )13n n n∞=∑.(B )11ln(1).n n n∞=+∑(C )2(1)1.ln n n n ∞=-+∑(D )1!n n n n ∞=∑. (5)设矩阵A =21111214a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭,b =21d d ⎛⎫⎪⎪ ⎪⎝⎭.若集合Ω={1,2},则线性方程组Ax =b 有无穷多解的充分必要条件为 (A ),.a d ∉Ω∉Ω (B ),.a d ∉Ω∈Ω (C ),.a d ∈Ω∉Ω(D ),.a d ∈Ω∈Ω(6)设二次型123(,,)f x x x 在正交交换x py =下的标准形为2221232.y y y +-,其中123(,,)p e e e =.若132(,,)Q e e e =-,则123(,,)x x x 在正交交换下x Qy =的标准形为(A )2221232.y y y -+ (B )2221232.y y y +- (C )2221232y y y --(D )2221232y y y ++(7)若A ,B 为任意两个随机事件,则 (A )()()().P AB P A P B ≤(B )()()().P AB P A P B ≥(C )()P AB ≤()().2P A P B +(D )()P AB ≥()().2P A P B +(8)设总体X ~B (m ,θ),x 1,x 2…,x n 为来自该总体的简单随机样本,X 为样本均值,则21()n i i E X X =⎡⎤-=⎢⎥⎢⎥⎣⎦∑ (A )()()11m n θθ--(B )()()11m n θθ-- (C )()()1(1)1m n θθ---(D )()1mn θθ-二、填空题:9~14小题,每小题4分,共24分. (9)2ln(cos )limx x x→∞= . (10)设函数()f x 连续,2()().x x xf t dt ϕ=⎰若(1)1ϕ=,(1)ϕ'=5,则()1f = .(11)若函数(),z z x y =由方程23e1x y zxyz +++=确定,则()0,0d z= .(12)设函数()y y x =是微分方程20y y y '''+-=的解,且在0x =处()y x 取得极值3,则()y x = .(13)设3阶矩阵A 的特征值为2,-2,1,B=A 2- A+E ,其中E 为3阶单位矩阵,则行列式B = .(14)设二维随机变量(X ,Y )服从正态分布N (1,0;1,1;0),则P {XY -Y <0}= .三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或验算步骤.(15)(本题满分10分)设函数3()ln(1)sin ,().f x x a x bx x g x kx =+++=若()f x 与()g x 在0x →时是等价无穷小,求,,a b k 的值.(16)(求本题满分10分)计算二重积分()d d ,Dx x y x y +⎰⎰其中222{(,)|2,}.D x y x y y x =+≤≥(17)(本题满分10分) 为了实现利润最大化,厂商需要对某商品确定其定价模型,设Q 为该商品的需求量,p 为价格,MC 为边际成本,η为需求弹性(η>0). (Ⅰ)证明定价模型为:11MCp η=-(Ⅱ)若该商品的成本函数为2()1600,C Q Q =+需求函数为40,Q p =-试由(Ⅰ)中的定价模型确定此商品的价格.(18)(本题满分10分)设函数()f x 在定义域I 上的导数大于零.若对任意的0,x I ∈曲线()y f x =在点00(,())x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且(0)2,f =求()f x 的表达式.(19)(本题满分10分)(Ⅰ)设函数(),()u x v x 可导,利用导数定义证明[()()]()()()():u x v x u x v x u x v x '''=+ (Ⅱ)设函数12(),(),,()n u x u x u x K 可导,12()()()(),n f x u x u x u x =L 写出()f x 的求导公式. (20)(本题满分11分)设矩阵1011,01a A a a ⎛⎫⎪=- ⎪ ⎪⎝⎭且30.A =(Ⅰ)求a 的值;(Ⅱ)若矩阵X 满足22,X XA AX AXA E --+=其中E 为3阶单位矩阵,求X . (21)(本题满分11分)设矩阵02313312A a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭相似于矩阵12000.031B b -⎛⎫ ⎪= ⎪ ⎪⎝⎭(Ⅰ)求,a b 的值;(Ⅱ)求可逆矩阵P ,使1P AP -为对角矩阵.(22)(本题满分11分)设随机变量X 的概率密度为2ln 2,0,()0,0x x f x x -⎧>=⎨≤⎩对X 进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y 为观测次数.(Ⅰ)求Y 的概率分布; (Ⅱ) 求EY .(23)(本题满分11分) 设总体X 的概率密度为1,1,(:)10,x f x θθθ⎧≤≤⎪=-⎨⎪⎩其他, 其中θ为未知参数,12,,,n X X X L 为来自该总体的简单随机样本. (Ⅰ)求θ的矩估计量;(Ⅱ)求θ的最大似然估计量.。
文考研数学必考知识点数学三
万学海文2015年考研数学必考知识点——数学三
考研临近,万学海文集合考研数学名师团队,深入研究2015年数学考试大纲,并结合考研数学的命题趋势及特点,在经过反复锤炼之后,分析总结知识要点,为广大考研学子潜心搜集整理了最新信息和多方面精华资料,进一步对当年的考研数学命题进行预测,帮助学员把握出题重中之重。
希望通过我们总结的以上资料,帮助广大考生在最后的这段关键时间里,梳理好知识体系,准确把握考点,直击命题要害,做好最终的考前冲刺。
2015年考研数学(三)真题及答案详解
2015年全国硕士研究生入学统一考试数学(三)试题解析一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设{}n x 是数列,下列命题中不正确的是 ( ) (A) 若lim →∞=n n x a ,则221lim lim +→∞→∞==n n n n x x a(B) 若221lim lim +→∞→∞==n n n n x x a , 则lim →∞=n n x a(C)若lim →∞=n n x a ,则331lim lim +→∞→∞==n n n n x x a(D) 若331lim lim +→∞→∞==n n n n x x a ,则lim →∞=n n x a【答案】(D)【解析】答案为D, 本题考查数列极限与子列极限的关系.数列()n x a n →→∞⇔对任意的子列{}k n x 均有()k n x a k →→∞,所以A 、B 、C 正确; D 错(D 选项缺少32n x +的敛散性),故选D(2) 设函数()f x 在(),-∞+∞内连续,其2阶导函数()f x ''的图形如右图所示,则曲线()=y f x 的拐点个数为 ( )(A) 0 (B) 1 (C)2 (D) 3 【答案】(C)【解析】根据拐点的必要条件,拐点可能是不存在的点或的点处产生.所以有三个点可能是拐点,根据拐点的定义,即凹凸性改变的点;二阶导函数符号发生改变的点即为拐点.所以从图可知,拐点个数为2,故选C.(3) 设(){}2222,2,2=+≤+≤D x y xy x x y y ,函数(),f x y 在D 上连续,则(),d d Df x y x y =⎰⎰ ( )(A)()()2cos 2sin 4204d cos ,sin d d cos ,sin d f r r r r f r r r r θθθθθθθθπππ+⎰⎰⎰⎰ (B)()()2sin 2cos 420004d cos ,sin d d cos ,sin d f r r r r f r r r r θθθθθθθθπππ+⎰⎰⎰⎰()f x ''()0f x ''=()y f x =()f x ''(C)()1012d ,d xxf x y y ⎰⎰(D) ()102d ,d xxf x y y ⎰【答案】(B)【解析】根据图可得,在极坐标系下该二重积分要分成两个积分区域所以,故选B.(4) 下列级数中发散的是( )(A) 13n n n∞=∑ (B)1)n n ∞=+(C)2(1)1ln n n n ∞=-+∑(D)1!n n n n∞=∑ 【答案】(C)【解析】A 为正项级数,因为,所以根据正项级数的比值判别法收敛;B,根据级数收敛准则,知收敛;C ,,根据莱布尼茨判别法知收敛,发散,所以根据级数收敛定义知,发散;D 为正项级数,因为,所以根据正项级数的比值判别法收敛,所以选C. 1(,)0,02sin 4D r r πθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭2(,),02cos 42D r r ππθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭2sin 2cos 4204(,)(cos ,sin )(cos ,sin )Df x y dxdy d f r r rdr d f r r rdr ππθθπθθθθθθ=+⎰⎰⎰⎰⎰⎰11113lim lim 1333n n n nn n n n +→∞→∞++==<13nn n∞=∑3211)n n+P 11)n n ∞=+111(1)1(1)1ln ln ln n n n n n n n n ∞∞∞===-+-=+∑∑∑1(1)ln n n n ∞=-∑11ln n n ∞=∑1(1)1ln n n n ∞=-+∑11(1)!(1)!1(1)lim lim lim 1!!(1)1nn n n n n n nn n n n n n n n n en ++→∞→∞→∞+++⎛⎫===< ⎪++⎝⎭1!n n n n ∞=∑(5)设矩阵21111214a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,21d d ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭b .若集合}{1,2Ω=,则线性方程组=Ax b 有无穷多解的充分必要条件为 ( )(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C),a d ∈Ω∉Ω(D) ,a d ∈Ω∈Ω 【答案】(D)【解析】2211111111(,)1201111400(1)(2)(1)(2)A b ad a d a d a a d d ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =.故选(D ) (6)设二次型()123,,f x x x 在正交变换=x Py 下的标准形为2221232y y y +-,其中123(,,)=P e e e ,若132(,,)=-Q e e e 则123(,,)f x x x =在正交变换=x Qy 下的标准形为( )(A)2221232y y y -+ (B) 2221232y y y +- (C)2221232y y y --(D) 2221232y y y ++ 【答案】(A)【解析】由x Py =,故222123()2T T T f x Ax y P AP y y y y ===+-. 且200010001TP AP ⎛⎫⎪= ⎪ ⎪-⎝⎭.又因为100001010Q P PC ⎛⎫ ⎪== ⎪ ⎪-⎝⎭故有200()010001T T TQ AQ C P AP C ⎛⎫⎪==- ⎪ ⎪⎝⎭所以222123()2T T T f x Ax y Q AQ y y y y ===-+.选(A )(7) 若,A B 为任意两个随机事件,则: ( )(A)()()()≤P AB P A P B (B)()()()≥P AB P A P B (C)()()()2+≤P A P B P AB (D) ()()()2+≥P A P B P AB【答案】(C)【解析】由于,AB A AB B ⊂⊂,按概率的基本性质,我们有()()P AB P A ≤且()()P AB P B ≤,从而()()()2P A P B P AB +≤≤,选(C) .(8) 设总体()~,,X B m θ12,,,n X X X 为来自该总体的简单随机样本,X 为样本均值,则()21n i i E X X =⎡⎤∑-=⎢⎥⎣⎦( ) (A) ()()11θθ--m n (B)()()11θθ--m n (C)()()()111θθ---m n (D)()1θθ-mn 【答案】(B)【解析】根据样本方差2211()1ni i S X X n ==--∑的性质2()()E S D X =,而()(1)D X m θθ=-,从而221[()](1)()(1)(1)ni i E X X n E S m n θθ=-=-=--∑,选(B) .二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 20ln(cos )lim__________.x x x→= 【答案】 【解析】原极限(10)设函数()f x 连续,2()()d ,x x xf t t ϕ=⎰若(1)1,(1)5,ϕϕ'==则(1)________.f =【答案】【解析】因为连续,所以可导,所以;因为,所以12-2200ln(1cos 1)cos 11limlim 2x x x x x x →→+--===-2()f x ()x ϕ2220()()2()x x f t dt x f x ϕ'=+⎰(1)1ϕ=1(1)()1f t dt ϕ==⎰又因为,所以故(11)若函数(,)z z x y =由方程23e 1x y z xyz +++=确定,则(0,0)d _________.z=【答案】 【解析】当,时带入,得. 对求微分,得把,,代入上式,得所以 (12)设函数()y y x =是微分方程20y y y '''+-=的解,且在0x =处取得极值3,则()________.y x =【答案】【解析】的特征方程为,特征根为,,所以该齐次微分方程的通解为,因为可导,所以为驻点,即,,所以,,故(13)设3阶矩阵A 的特征值为2,2,1-,2,=-+B A A E 其中E 为3阶单位矩阵,则行列式________.=B【答案】21【解析】A 的所有特征值为2,2,1.-B 的所有特征值为3,7,1. 所以||37121B =⨯⨯=.(14)设二维随机变量(,)X Y 服从正态分布(1,0;1,1;0)N ,则(1)5ϕ'=1(1)()2(1)5f t dt f ϕ'=+=⎰(1)2f =1233dx dy --0x =0y =231x y z e xyz +++=0z =231x y z e xyz +++=2323()(23)()x y z x y z d e xyz e d x y z d xyz +++++=+++23(23)x y z e dx dy dz yzdx xzdy xydz ++=+++++0=0x =0y =0z =230dx dy dz ++=(0,0)1233dz dx dy =--2()2x x y x e e -=+20y y y '''+-=220λλ+-=2λ=-1λ=212()xx y x C eC e -=+()y x 0x =(0)3y =(0)0y '=11C =22C =2()2x x y x e e -=+{0}_________.P XY Y -<=【答案】12【解析】由题设知,~(1,1),~(0,1)X N Y N ,而且X Y 、相互独立,从而{0}{(1)0}{10,0}{10,0}P XY Y P X Y P X Y P X Y -<=-<=-><+-<>11111{1}{0}{1}{0}22222P X P Y P X P Y =><+<>=⨯+⨯=.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10 分)设函数3()ln(1)sin ,()f x x a x bx x g x c kx =+++==.若()f x 与()g x 在0x →时是等价无穷小,求,,a b k 的值.【答案】111,,23a b k --=-== 【解析】法一:因为,, 则有,, 可得:,所以,.法二: 由已知可得得由分母,得分子,求得233ln(1)()23x x x x o x +=-++33sin ()3!x x x o x =-+23333000(1)()()()ln(1)sin 231lim lim lim ()x x x a aa xb x x o x f x x a x bx x g x kx kx→→→++-+++++===100213a ab ak⎧⎪+=⎪⎪-=⎨⎪⎪=⎪⎩11213a b k ⎧⎪=-⎪⎪=-⎨⎪⎪=-⎪⎩300sin )1ln(lim )()(lim1kxxbx x a x x g x f x x +++==→→203cos sin 11lim kxx bx x b x ax ++++=→03lim 20=→kx x )cos sin 11(lim 0x bx x b xax ++++→0)1(lim 0=+=→a xc ;于是由分母,得分子,求得; 进一步,b 值代入原式,求得 (16)(本题满分10 分) 计算二重积分()d d Dx x y x y +⎰⎰,其中222{(,)2,}.D x y x y y x =+≤≥ 【答案】245π-【解析】)()(lim10x g x f x →=23cos sin 111lim kx x bx x b x x +++-=→)(x kx xx bx x x b x x +++++=→13cos )1(sin )1(lim223cos )1(sin )1(limkx xx bx x x b x x ++++=→kxxx bx x bx x x b x x b x b x 6sin )1(cos cos )1(cos )1(sin 1lim0+-++++++=→06lim 0=→kx x ]sin )1(cos cos )1(2sin 1[lim 0x x bx x bx x x b x b x +-++++→0)cos 21(lim 0=+=→x b x 21-=b )()(lim 10x g x f x →=kxx x x x x x x x x 6sin )1(21cos 21cos )1(sin 211lim 0++-+--=→k xx x x x x x x x x x x x x x 6cos )1(21sin 21sin )1(21sin 21cos 21sin )1(cos cos 21lim 0++++++-++--=→k621-=.31-=k 2()DDx x y dxdy x dxdy +=⎰⎰⎰⎰21202xdx x dy =⎰12202)x x dx =⎰(17)(本题满分10分)为了实现利润的最大化,厂商需要对某商品确定其定价模型,设Q 为该商品的需求量,P 为价格,MC 为边际成本,η为需求弹性(0)η>.(I) 证明定价模型为11MCP η=-; (II) 若该商品的成本函数为2()1600C Q Q =+,需求函数为40Q P =-,试由(I )中的定价模型确定此商品的价格.【答案】(I)略(II) .【解析】(I)由于利润函数,两边对求导,得. 当且仅当时,利润最大,又由于,所以,故当时,利润最大. (II)由于,则代入(I)中的定价模型,得,从而解得.(18)(本题满分10 分)设函数()f x 在定义域I 上的导数大于零,若对任意的0x I ∈,曲线()y f x =在点00(,())x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且(0)2f =,求()f x 表达式.【答案】()84f x x=-12240022222sin 2cos 55x t xt tdt π=--⎰⎰22242002222sin 2sin .5545u t tdt udu πππ==-=-=-⎰⎰30P =()()()()L Q R Q C Q PQ C Q =-=-Q ()dL dP dP P Q C Q P Q MC dQ dQ dQ'=+-=+-0dL dQ =()L Q P dQ Q dP η=-⋅1dP PdQ Q η=-⋅11MCP η=-()22(40)MC C Q Q P '===-40P dQ PQ dP Pη=-⋅=-2(40)401P P P P-=--30P =【解析】曲线的切线方程为,切线与轴的交点为故面积为:. 故满足的方程为,此为可分离变量的微分方程,解得,又由于,带入可得,从而 (19)(本题满分 10分)(I )设函数(),()u x v x 可导,利用导数定义证明[()()]()()()();u x v x u x v x u x v x '''=+ (II )设函数12(),(),,()n u x u x u x 可导,12()()()()n f x u x u x u x =,写出()f x 的求导公式.【答案】【解析】(I )(II )由题意得(20) (本题满分 11分)设矩阵101101a a a ⎛⎫⎪- ⎪ ⎪⎝⎭A =,且3=A O .(I) 求a 的值;()()()000y f x f x x x '-=-x ()()000,0f x x f x ⎛⎫- ⎪ ⎪'⎝⎭()()200142f x S f x =='()f x ()()28f x f x '=()8f x x C -=+()0=2f 4C =-()84f x x=-12()[()()()]n f x u x u x u x ''=121212()()()()()()()()()n n n u x u x u x u x u x u x u x u x u x '''=+++0()()()()[()()]limh u x h v x h u x v x u x v x h→++-'=0()()()()()()()()limh u x h v x h u x h v x u x h v x u x v x h→++-+++-=00()()()()lim ()lim ()h h v x h v x u x h u x u x h v x h h→→+-+-=++()()()()u x v x u x v x ''=+12()[()()()]n f x u x u x u x ''=121212()()()()()()()()()n n n u x u x u x u x u x u x u x u x u x '''=+++(II)若矩阵X 满足22--+=X XA AX AXA E ,其中E 为3阶单位矩阵,求X .【答案】3120,111211a X -⎛⎫ ⎪==- ⎪ ⎪-⎝⎭【解析】(I)323100100111100011a A O A a a a a a a a a=⇒=⇒-=--==⇒=-(II)由题意知()()()()()()()()()222211122212X XA AX AXA E X E A AX E A E E A X E A E X E A E A E A E A X E A A ------+=⇒---=⎡⎤⇒--=⇒=--=--⎣⎦⇒=--2011111112E A A -⎛⎫⎪--=- ⎪ ⎪--⎝⎭,011100111010111010011100112001112001----⎛⎫⎛⎫ ⎪ ⎪-→- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭MM M M M M 111010111010011100011100021011001211------⎛⎫⎛⎫ ⎪ ⎪→--→-- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭M M M M M M 110201100312010111010111001211001211---⎛⎫⎛⎫ ⎪ ⎪→-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭M M M M M M 312111211X -⎛⎫ ⎪∴=- ⎪ ⎪-⎝⎭(21) (本题满分11 分)设矩阵02313312a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A 相似于矩阵12000031b -⎛⎫⎪⎪ ⎪⎝⎭B =.(I) 求,a b 的值;(II )求可逆矩阵P ,使1-P AP 为对角矩阵.【答案】2314,5,101011a b P --⎛⎫ ⎪===- ⎪ ⎪⎝⎭【解析】(1) ~()()311A B tr A tr B a b ⇒=⇒+=++0231201330012031--=⇒--=-A B ba 14235-=-=⎧⎧∴⇒⎨⎨-==⎩⎩a b a a b b 023100123133010123123001123---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪∴=--=+--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭A E C()123112*********---⎛⎫⎛⎫ ⎪ ⎪=--=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭CC 的特征值1230,4λλλ===0λ=时(0)0-=E C x 的基础解系为12(2,1,0);(3,0,1)ξξ==-T T 5λ=时(4)0-=E C x 的基础解系为3(1,1,1)ξ=--TA 的特征值1:1,1,5λλ=+A C令123231(,,)101011ξξξ--⎛⎫⎪==- ⎪ ⎪⎝⎭P ,1115-⎛⎫⎪∴= ⎪ ⎪⎝⎭P AP(22) (本题满分11 分)设随机变量X 的概率密度为()2ln 2,00,0x x f x x -⎧>⎪=⎨≤⎪⎩,对X 进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y 为观测次数(I)求Y 的概率分布; (II)求()E Y .【答案】(I)12221171188n n n P Y n C p p p n ---==-=-{}()()()(),23,,n =;(II)16E Y =().【解析】(I) 记p 为观测值大于3的概率,则313228()ln x p P X dx +∞-=>==⎰,从而12221171188n n n P Y n C p p p n ---==-=-{}()()()(),23,,n =为Y 的概率分布;(II) 法一:分解法:将随机变量Y 分解成=Y M N +两个过程,其中M 表示从1到()n n k <次试验观测值大于3首次发生,N 表示从1n +次到第k 试验观测值大于3首次发生.则M Ge n p ~(,),NGe k n p -(,)(注:Ge 表示几何分布)所以1122168E Y E M N E M E N p p p =+=+=+===()()()(). 法二:直接计算22212221777711288888n n n n n n n E Y n P Y n n n n n ∞∞∞---====⋅==⋅-=⋅--+∑∑∑(){}()()()()[()()()]记212111()()n n S x n n xx ∞-==⋅--<<∑,则2113222211n n n n n n S x n n xn xx x ∞∞∞--==='''=⋅-=⋅==-∑∑∑()()()()(), 12213222111()()()()()n n n n xS x n n xx n n x xS x x ∞∞--===⋅-=⋅-==-∑∑, 2222313222111()()()()()nn n n x S x n n x xn n xx S x x ∞∞-===⋅-=⋅-==-∑∑, 所以212332422211()()()()()x x S x S x S x S x x x-+=-+==--, 从而7168E Y S ==()(). (23) (本题满分11 分)设总体X 的概率密度为,1,(,),x f x θθθ⎧≤≤⎪=-⎨⎪⎩110其他,其中θ为未知参数,12n X ,X ,,X 为来自该总体的简单随机样本.(I)求θ的矩估计量; (II)求θ的最大似然估计量. 【答案】(I)1121ni i X X X n θ==-=∑,;(II)12n X X X θ=min{,,,}.【解析】(I)11112()(;)E X xf x dx x dx θθθθ+∞-∞+==⋅=-⎰⎰, 令()E X X =,即12X θ+=,解得1121ni i X X X n θ==-=∑,为θ的矩估计量;(II)似然函数11110,()(;),n ni i i x L f x θθθθ=⎧⎛⎫≤≤⎪ ⎪==-⎨⎝⎭⎪⎩∏其他, 当1i x θ≤≤时,11111()()nni L θθθ===--∏,则1ln ()ln()L n θθ=--.从而1ln ()d L nd θθθ=-,关于θ单调增加,所以12n X X X θ=min{,,,}为θ的最大似然估计量.。
2015年数学_三_试题+详版答案
1
x
(C) 2 dx
f x, ydy
0
1 1 x2
1
2 x x2
(D) 2 dx
f x, y dy
0
x
【答案】(B)
【解析】根据图可得,在极坐标系下该二重积分要分成两个积分区域
D1
(r, )
0
4
,0
r
2
sin
D2
(r, )
4
2
,0
r
2
cos
所以
f (x, y)dxdy
所以 f xT Ax yT (QT AQ) y 2 y12 y22 y32 。选(A)
【王老师点评】本题考查二次型在正交变换(可逆变换)下的标准型,也可以认为是考查矩阵乘 法。
(7) 若 A, B 为任意两个随机事件,则: ( )
(A) P AB P A P B
(B) P AB P A P B
2015 年全国硕士研究生入学统一考试数学(三)试题及解析
2015 年全国硕士研究生入学统一考试数学(三)试题
一、选择题:1 8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符合题目要
求的,请将所选项前的字母填在答.题.纸.指定位置上.
(1)设xn 是数列,下列命题中不正确的是
【王老师点评】本题关键: AB A, AB B P( AB) P( A), P( AB) P(B)
(8) 设总体 X ~ B m, , X1, X 2 ,, X n 为来自该总体的简单随机样本, X 为样本均
4
2015 年全国硕士研究生入学统一考试数学(三)试题及解析
值,则 E in1
f x, ydxdy
2015数三真题答案
2015年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1.设{k x }是数列,下列命题中不正确的是() (A)若lim k k x a →∞=,则221lim lim k k k k x x a +→∞→∞==.(B)若221lim lim k k k k x x a +→∞→∞==,则lim k k x a →∞=(C) 若lim k k x a →∞=,则321lim lim k k k k x x a +→∞→∞==(D)若331lim lim k k k k x x a +→∞→∞==,则lim k k x a →∞=2.设函数()f x 在(,)-∞+∞连续,其二阶导函数()f x ''的图形如右图所示,则曲线()y f x =的拐点个数为()(A )0 (B)1 (C)2 (D)33.设{}2222(,)2,2D x y x y x x y y =+≤+≤,函数(,)f x y D 上连续, 则(,)Df x y dxdy⎰⎰=()2cos 2sin 4200042sin 2cos 42000410110()(cos ,sin )(cos ,sin )()(cos ,sin )(cos ,sin )()2(,)()2(,)xXA d f r r rdr d f r r rdrB d f r r rdr d f r r rdrC dx f x y dyD dx f x y dyππθθπππθθπθθθθθθθθθθθθ++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰4.下列级数中发散的是()(A )13n n n ∞=∑(B)1)n n ∞=+ (C)2(1)1ln n n n ∞=-+∑(D)1!n n n n ∞=∑ 5.设矩阵22111112,,14A a b d a d ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭若集合(1,2)Ω=,则线性方程组Ax b =有无穷多解的充分必要条件为()(),A a d ∉Ω∉Ω (),B a d ∉Ω∈Ω (),C a d ∈Ω∉Ω (),D a d ∈Ω∈Ω6.设二次型1,23(,)f x x x 在正交变换x py =下的标准形为2221232y y y +-,其中123(,,)p e e e =,若132(,,),Q e e e =-则123(,,)x x x 在正交变换x Qy =下的标准形为()(A )2221232y y y -+ (B)2221232y y y +- (C)2221232y y y -- (D)2221232y y y ++ 7.设A,B 为任意两个随机事件,则()(A )()()()P AB P A P B ≤ (B)()()()P AB P A P B ≥(C) ()()()2P A P B P AB +≤ (D)()()()2P A P B P AB +≥8.设总体(,)XB m θ,12,,n x x x 为来自该总体的简单随机样本,X 为样本均值,则21()n i i E x X =⎡⎤-=⎢⎥⎣⎦∑() (A )(1)(1)m n θθ-- (B) (1)(1)m n θθ-- (C) (1)(1)(1)m n θθ--- (D) (1)mn θθ-二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. 92ln(cos )limx x x →∞= 。
考研数学三历年真题及解析
3n1 n
lim n 1 1 1 ,所以根据正项级数的比值 n 3n 3
3n
n
判别法 n1 3n 收敛;B 为正项级数,因为
1 n
ln(1
1) n
1
3
n2
,根据 P 级数收敛准则,知
1 ln(1 1 ) 收敛;C, (1)n 1 (1)n
1
,根据莱布尼茨判别法知
n1 n
n
n
1 1 e
,所以根据正项级数
nn
n!
的比值判别法 n1 nn 收敛,所以选 C.
1
(5)设矩阵
A
1
1
1 2 4
1
a a2
,
b
1
d
d
2
.若集合
1, 2 ,则线性方程组 Ax b 有无穷
多解的充分必要条件为 ( )
(A) a , d
(B) a , d
(C) a , d
x0
x
b(1
x) sin x bx(1 3kx(2 1 x)
x)
cos
x
lim
x0
x
b(1
x)
sin x bx(1 3kx 2
x)
cos
x
lim 1 b sin x b(1 x) cos x b(1 x) cos x bx cos x bx(1 x) sin x
x0
6kx
由分母 lim 6kx 0 ,得分子 x0
行列式 B ________ . 【答案】 21 【解析】 A 的所有特征值为 2, 2,1. B 的所有特征值为 3, 7,1.
所以 | B | 3 7 1 21.
(14)设二维随机变量 ( X ,Y ) 服从正态分布 N (1, 0;1,1; 0) ,则
2015年考研数学三真题与答案详细讲解
2015年全国硕士研究生入学统一考试数学(三)试题解析一、选择题:1:8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设{}n x 是数列,下列命题中不正确的是 ( ) (A) 若lim →∞=n n x a ,则 221lim lim +→∞→∞==n n n n x x a(B) 若221lim lim +→∞→∞==n n n n x x a , 则lim →∞=n n x a(C) 若lim →∞=n n x a ,则 331lim lim +→∞→∞==n n n n x x a(D) 若331lim lim +→∞→∞==n n n n x x a ,则lim →∞=n n x a【答案】(D)【解析】答案为D, 本题考查数列极限与子列极限的关系.数列()n x a n →→∞⇔对任意的子列{}k n x 均有()k n x a k →→∞,所以A 、B 、C 正确; D 错(D 选项缺少32n x +的敛散性),故选D(2) 设函数()f x 在(),-∞+∞连续,其2阶导函数()f x ''的图形如右图所示,则曲线()=y f x 的拐点个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3 【答案】(C)【解析】根据拐点的必要条件,拐点可能是()f x ''不存在的点或()0f x ''=的点处产生.所以()y f x =有三个点可能是拐点,根据拐点的定义,即凹凸性改变的点;二阶导函数()f x ''符号发生改变的点即为拐点.所以从图可知,拐点个数为2,故选C.(3) 设 (){}2222,2,2=+≤+≤D x y xy x x y y ,函数(),f x y 在D 上连续,则( )【答案】(B)【解析】根据图可得,在极坐标系下该二重积分要分成两个积分区域所以故选B.(4) 下列级数中发散的是( )(A)(B)(D) 【答案】(C)【解析】ABCD为正项C.(5)穷多解的充分必要条件为( )【答案】(D)故选(D)(6) 设二次型( )【答案】(A)选(A ) (7) ,则: ( )【答案】(C)(C) .(8)值,( )【答案】(B)(B) .二、填空题:小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.(10)(11)(12)3,则(13)设3E为3阶单位矩阵,则【答案】(14)【答案】指定位置上.解答应写出文字三、解答题:15~23小题,共94分.请将解答写在答题纸...说明、证明过程或演算步骤.(15)(本题满分10 分).【答案】【解析】法一:则有,法二:由已知可得得c;求进一步,b值代入原式(16)(本题满分10 分)【答案】(17)(本题满分10分)MC(I)(II)试由(I )中的定价模型确定此商品的价格.【答案】(I)略【解析】(I). (II)(I)中的定价模(18)(本题满分10 分)4,表达式.此为可分离变量的微分方程,(19)(本题满分10分)(I(II求导公式.【解析】(I(II)由题意得(20) (本题满分11分)(I)(II)3【解析】(II)由题意知(21) (本题满分11 分)(I)(II.【解析】A(22) (本题满分11 分),直到第2个大于3(I)(II)【答案】;【解析】(I)3(II) 法一:分解法:,.注:Ge表示几何分布)法二:直接计算(23) (本题满分11 分).(I) (II).【答案】;【解析】(I);(II).文档容由金程考研网整理发布。
2015考研数学(三)真题解析:求函数的极限
2015考研数学(三)真题解析:求函数的极限函数极限是研究生入学考试的一个高频考点,无论是大题还是小题,都有可能出现。
2015年数三试题考察函数极限时,小题第1题以选择题的形式考察(分值4分),考察极限的敛散性的判定,小题第9题以填空题的形式考察(分值4分),考察利用等价无穷小求极限,解答题15题通过求解函数极限确定未知参数(分值为10分),考察利用泰勒公式求极限,总分18分,占12%。
老师提醒考生,在复习时,一定要熟练掌握求函数的极限。
一、回顾知识点求函数极限的常规方法有以下几种:利用等价无穷小求极限;利用洛必达法则求极限;利用泰勒公式;利用单调有界存在准则求极限;利用夾逼存在准则求极限;利用中值定理求极限二、真题解析(1)设是数列.下列命题中不正确的是{}n x (A )若x n =a ,则x 2n =x 2n +1= a. lim n →∞lim n →∞lim n →∞(B )若x 2n =x 2n +1= a ,则x n = a. lim n →∞lim n →∞lim n →∞(C )若x n =a ,则x 3n =x 2n +1= a. lim n →∞lim n →∞lim n →∞(D )若x 3n =x 3n +1=a ,则x n = a. lim n →∞lim n →∞lim n →∞【解析】选择(D )方法:举反例:,, 131,31133+-=+=+n a x n a x n n 231223++=+n a x n 显然,但。
a x a x x n n n n n n 2lim ,lim lim 23133===+∞→+∞→∞→a x n n ≠∞→lim 本题主要考察数列收敛的条件,属于基础题型。
(9)= .2ln(cos )lim x x x →∞【解析】 211cos lim )]1(cos 1ln[lim )ln(cos lim 202020-=-=-+=→→→x x x x x x x x x 本题主要考察利用等价无穷小求极限,必须掌握常见的等价无穷小量,属于基础题型。
2015年考研数学三真题详解
2015年全国硕士研究生入学统一考试数学(三)试题解析一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设{}n x 是数列,下列命题中不正确的是 ( ) (A) 若lim →∞=n n x a ,则 221lim lim +→∞→∞==n n n n x x a(B) 若221lim lim +→∞→∞==n n n n x x a , 则lim →∞=n n x a(C) 若lim →∞=n n x a ,则 331lim lim +→∞→∞==n n n n x x a(D) 若331lim lim +→∞→∞==n n n n x x a ,则lim →∞=n n x a【答案】(D)【解析】答案为D, 本题考查数列极限与子列极限的关系.数列()n x a n →→∞⇔对任意的子列{}k n x 均有()k n x a k →→∞,所以A 、B 、C 正确; D 错(D 选项缺少32n x +的敛散性),故选D(2) 设函数()f x 在(),-∞+∞内连续,其2阶导函数()f x ''的图形如右图所示,则曲线()=y f x 的拐点个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3 【答案】(C)【解析】根据拐点的必要条件,拐点可能是不存在的点或的点处产生.所以有三个点可能是拐点,根据拐点的定义,即凹凸性改变的点;二阶导函数符号发生改变的点即为拐点.所以从图可知,拐点个数为2,故选C.(3) 设 (){}2222,2,2=+≤+≤D x y xy x x y y ,函数(),f x y 在D 上连续,则(),d d Df x y x y =⎰⎰ ( )(A)()()2cos 2sin 4204d cos ,sin d d cos ,sin d f r r r r f r r r r θθθθθθθθπππ+⎰⎰⎰⎰()f x ''()0f x ''=()y f x =()f x ''(B)()()2sin 2cos 420004d cos ,sin d d cos ,sin d f r r r r f r r r r θθθθθθθθπππ+⎰⎰⎰⎰(C) ()1012d ,d xxf x y y ⎰⎰(D) ()102d ,d xxf x y y ⎰【答案】(B)【解析】根据图可得,在极坐标系下该二重积分要分成两个积分区域所以,故选B.(4) 下列级数中发散的是( )(A) 13n n n∞=∑ (B)1)n n ∞=+∑(C) 2(1)1ln n n n ∞=-+∑ (D)1!n n n n ∞=∑【答案】(C)【解析】A 为正项级数,因为,所以根据正项级数的比值判别法收敛;B,根据级数收敛准则,知收敛;C ,,根据莱布尼茨判别法知收敛,发散,所以根据级数收敛定义知,发散;D 为正项级数,因为,所以根据正项级数1(,)0,02sin 4D r r πθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭2(,),02cos 42D r r ππθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭2sin 2cos 4204(,)(cos ,sin )(cos ,sin )Df x y dxdy d f r r rdr d f r r rdr ππθθπθθθθθθ=+⎰⎰⎰⎰⎰⎰11113lim lim 1333n n n n n n n n +→∞→∞++==<13n n n∞=∑3211)n n+P 11)n n ∞=+111(1)1(1)1ln ln ln n n n n n n n n∞∞∞===-+-=+∑∑∑1(1)ln nn n ∞=-∑11ln n n ∞=∑1(1)1ln n n n ∞=-+∑11(1)!(1)!1(1)lim lim lim 1!!(1)1nn n n n n n n n n n n n n n n n e n++→∞→∞→∞+++⎛⎫===< ⎪++⎝⎭的比值判别法收敛,所以选C. (5)设矩阵21111214a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,21d d ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭b .若集合}{1,2Ω=,则线性方程组=Ax b 有无穷多解的充分必要条件为 ( )(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ω (D) ,a d ∈Ω∈Ω 【答案】(D)【解析】2211111111(,)1201111400(1)(2)(1)(2)A b ad a d a d a a d d ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =.故选(D ) (6) 设二次型()123,,f x x x 在正交变换=x Py 下的标准形为2221232y y y +-,其中123(,,)=P e e e ,若132(,,)=-Q e e e 则123(,,)f x x x =在正交变换=x Qy 下的标准形为( )(A)2221232y y y -+ (B) 2221232y y y +- (C) 2221232y y y -- (D) 2221232y y y ++ 【答案】(A)【解析】由x Py =,故222123()2T T T f x Ax y P AP y y y y ===+-. 且200010001TP AP ⎛⎫⎪= ⎪ ⎪-⎝⎭.又因为100001010Q P PC ⎛⎫ ⎪== ⎪ ⎪-⎝⎭故有200()010001T T TQ AQ C P AP C ⎛⎫⎪==- ⎪ ⎪⎝⎭1!n n n n ∞=∑所以222123()2T T T f x Ax y Q AQ y y y y ===-+.选(A ) (7) 若,A B 为任意两个随机事件,则: ( ) (A)()()()≤P AB P A P B (B)()()()≥P AB P A P B (C) ()()()2+≤P A P B P AB (D) ()()()2+≥P A P B P AB【答案】(C)【解析】由于,AB A AB B ⊂⊂,按概率的基本性质,我们有()()P AB P A ≤且()()P AB P B ≤,从而()()()2P A P B P AB +≤≤,选(C) .(8) 设总体()~,,X B m θ12,,,n X X X 为来自该总体的简单随机样本, X 为样本均值,则()21ni i E X X =⎡⎤∑-=⎢⎥⎣⎦( ) (A) ()()11θθ--m n (B)()()11θθ--m n (C)()()()111θθ---m n (D)()1θθ-mn 【答案】(B)【解析】根据样本方差2211()1ni i S X X n ==--∑的性质2()()E S D X =,而()(1)D X m θθ=-,从而221[()](1)()(1)(1)ni i E X X n E S m n θθ=-=-=--∑,选(B) .二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 20ln(cos )lim__________.x x x→= 【答案】 【解析】原极限 (10)设函数()f x 连续,2()()d ,x x xf t t ϕ=⎰若(1)1,(1)5,ϕϕ'==则(1)________.f =【答案】【解析】因为连续,所以可导,所以;12-2200ln(1cos 1)cos 11limlim 2x x x x x x →→+--===-2()f x ()x ϕ2220()()2()x x f t dt x f x ϕ'=+⎰因为,所以又因为,所以故(11)若函数(,)z z x y =由方程23e1x y zxyz +++=确定,则(0,0)d _________.z=【答案】 【解析】当,时带入,得.对求微分,得把,,代入上式,得 所以 (12)设函数()y y x =是微分方程20y y y '''+-=的解,且在0x =处取得极值3,则()________.y x =【答案】【解析】的特征方程为,特征根为,,所以该齐次微分方程的通解为,因为可导,所以为驻点,即,,所以,,故(13)设3阶矩阵A 的特征值为2,2,1-,2,=-+B A A E 其中E 为3阶单位矩阵,则行列式________.=B【答案】 21【解析】A 的所有特征值为2,2,1.-B 的所有特征值为3,7,1. 所以||37121B =⨯⨯=.(1)1ϕ=1(1)()1f t dt ϕ==⎰(1)5ϕ'=1(1)()2(1)5f t dt f ϕ'=+=⎰(1)2f =1233dx dy --0x =0y =231x y ze xyz +++=0z =231x y zexyz +++=2323()(23)()x y z x y z d e xyz e d x y z d xyz +++++=+++23(23)x y z e dx dy dz yzdx xzdy xydz ++=+++++0=0x =0y =0z =230dx dy dz ++=(0,0)1233dz dx dy =--2()2xx y x ee -=+20y y y '''+-=220λλ+-=2λ=-1λ=212()xx y x C eC e -=+()y x 0x =(0)3y =(0)0y '=11C =22C =2()2x x y x e e -=+(14)设二维随机变量(,)X Y 服从正态分布(1,0;1,1;0)N ,则{0}_________.P XY Y -<=【答案】12【解析】由题设知,~(1,1),~(0,1)X N Y N ,而且X Y 、相互独立,从而{0}{(1)0}{10,0}{10,0}P XY Y P X Y P X Y P X Y -<=-<=-><+-<>11111{1}{0}{1}{0}22222P X P Y P X P Y =><+<>=⨯+⨯=. 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10 分)设函数3()ln(1)sin ,()f x x a x bx x g x c kx =+++==.若()f x 与()g x 在0x →时是等价无穷小,求,,a b k 的值.【答案】 111,,23a b k --=-==【解析】法一:因为,, 则有,, 可得:,所以,.法二: 由已知可得得233ln(1)()23x x x x o x +=-++33sin ()3!x x x o x =-+23333000(1)()()()ln(1)sin 231lim lim lim ()x x x a aa xb x x o x f x x a x bx x g x kx kx→→→++-+++++===100213a ab ak⎧⎪+=⎪⎪-=⎨⎪⎪=⎪⎩11213a b k ⎧⎪=-⎪⎪=-⎨⎪⎪=-⎪⎩300sin )1ln(lim )()(lim1kx xbx x a x x g x f x x +++==→→203cos sin 11limkx x bx x b x ax ++++=→由分母,得分子,求得c ;于是由分母,得分子,求得; 进一步,b 值代入原式,求得(16)(本题满分10 分) 计算二重积分()d d Dx x y x y +⎰⎰,其中222{(,)2,}.D x y x y y x =+≤≥ 【答案】245π-【解析】03lim 2=→kx x )cos sin 11(lim 0x bx x b xax ++++→0)1(lim 0=+=→a x )()(lim10x g x f x →=23cos sin 111lim kxx bx x b x x +++-=→)(x kx xx bx x x b x x +++++=→13cos )1(sin )1(lim223cos )1(sin )1(limkx xx bx x x b x x ++++=→kxxx bx x bx x x b x x b x b x 6sin )1(cos cos )1(cos )1(sin 1lim0+-++++++=→06lim 0=→kx x ]sin )1(cos cos )1(2sin 1[lim 0x x bx x bx x x b x b x +-++++→0)cos 21(lim 0=+=→x b x 21-=b )()(lim 10x g x f x →=kxx x x x x x x x x 6sin )1(21cos 21cos )1(sin 211lim0++-+--=→k xx x x x x x x x x x x x x x 6cos )1(21sin 21sin )1(21sin 21cos 21sin )1(cos cos 21lim 0++++++-++--=→k621-=.31-=k 2()DDx x y dxdy x dxdy +=⎰⎰⎰⎰21202xdx dy =⎰(17)(本题满分10分)为了实现利润的最大化,厂商需要对某商品确定其定价模型,设Q 为该商品的需求量,P 为价格,MC 为边际成本,η为需求弹性(0)η>.(I) 证明定价模型为11MCP η=-; (II) 若该商品的成本函数为2()1600C Q Q =+,需求函数为40Q P =-,试由(I )中的定价模型确定此商品的价格.【答案】(I)略(II) .【解析】(I)由于利润函数,两边对求导,得. 当且仅当时,利润最大,又由于,所以, 故当时,利润最大. (II)由于,则代入(I)中的定价模型,得,从而解得.(18)(本题满分10 分)设函数()f x 在定义域I 上的导数大于零,若对任意的0x I ∈,曲线()y f x =在点00(,())x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且(0)2f =,求()f x 表达式.12202)x x dx =⎰12240022222sin 2cos 55x t xt tdt π=--⎰⎰22242002222sin 2sin .5545u t tdt udu πππ==-=-=-⎰⎰30P =()()()()L Q R Q C Q PQ C Q =-=-Q ()dL dP dP P Q C Q P Q MC dQ dQ dQ'=+-=+-0dL dQ =()L Q P dQ Q dPη=-⋅1dP PdQ Q η=-⋅11MCP η=-()22(40)MC C Q Q P '===-40P dQ P Q dP Pη=-⋅=-2(40)401P P P P-=--30P =【答案】()84f x x=- 【解析】曲线的切线方程为,切线与轴的交点为故面积为:. 故满足的方程为,此为可分离变量的微分方程,解得,又由于,带入可得,从而 (19)(本题满分 10分)(I )设函数(),()u x v x 可导,利用导数定义证明[()()]()()()();u x v x u x v x u x v x '''=+ (II )设函数12(),(),,()n u x u x u x 可导,12()()()()n f x u x u x u x =,写出()f x 的求导公式.【答案】【解析】(I )(II )由题意得(20) (本题满分 11分)()()()000y f x f x x x '-=-x ()()000,0f x x f x ⎛⎫- ⎪ ⎪'⎝⎭()()200142f x S f x =='()f x ()()28f x f x '=()8f x x C -=+()0=2f 4C =-()84f x x=-12()[()()()]n f x u x u x u x ''=121212()()()()()()()()()n n n u x u x u x u x u x u x u x u x u x '''=+++0()()()()[()()]limh u x h v x h u x v x u x v x h→++-'=0()()()()()()()()limh u x h v x h u x h v x u x h v x u x v x h→++-+++-=00()()()()lim ()lim ()h h v x h v x u x h u x u x h v x h h→→+-+-=++()()()()u x v x u x v x ''=+12()[()()()]n f x u x u x u x ''=121212()()()()()()()()()n n n u x u x u x u x u x u x u x u x u x '''=+++设矩阵101101a a a ⎛⎫ ⎪- ⎪ ⎪⎝⎭A =,且3=A O .(I) 求a 的值;(II)若矩阵X 满足22--+=X XA AX AXA E ,其中E 为3阶单位矩阵,求X .【答案】3120,111211a X -⎛⎫ ⎪==- ⎪ ⎪-⎝⎭【解析】(I)323100100111100011a A O A a a a a a aaa=⇒=⇒-=--==⇒=-(II)由题意知()()()()()()()()()222211122212X XA AX AXA E X E A AX E A E E A X E A E X E A E A E AE A X E A A ------+=⇒---=⎡⎤⇒--=⇒=--=--⎣⎦⇒=--2011111112E A A -⎛⎫ ⎪--=- ⎪ ⎪--⎝⎭,011100111010111010011100112001112001----⎛⎫⎛⎫ ⎪ ⎪-→- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭MM M M M M 111010111010011100011100021011001211------⎛⎫⎛⎫ ⎪ ⎪→--→-- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭M M M M M M 110201100312010111010111001211001211---⎛⎫⎛⎫ ⎪ ⎪→-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭M M M M M M 312111211X -⎛⎫ ⎪∴=- ⎪ ⎪-⎝⎭(21) (本题满分11 分)设矩阵02313312a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A 相似于矩阵12000031b -⎛⎫⎪⎪ ⎪⎝⎭B =.11(I) 求,a b 的值;(II )求可逆矩阵P ,使1-P AP 为对角矩阵.【答案】2314,5,101011a b P --⎛⎫ ⎪===- ⎪ ⎪⎝⎭【解析】(1) ~()()311A B tr A tr B a b ⇒=⇒+=++23120133001231--=⇒--=-A B b a14235-=-=⎧⎧∴⇒⎨⎨-==⎩⎩a b a a b b 023100123133010123123001123---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪∴=--=+--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭A E C()123112*********---⎛⎫⎛⎫ ⎪ ⎪=--=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭CC 的特征值1230,4λλλ===0λ=时(0)0-=E C x 的基础解系为12(2,1,0);(3,0,1)ξξ==-T T 5λ=时(4)0-=E C x 的基础解系为3(1,1,1)ξ=--TA 的特征值1:1,1,5λλ=+A C令123231(,,)101011ξξξ--⎛⎫⎪==- ⎪ ⎪⎝⎭P ,1115-⎛⎫⎪∴= ⎪ ⎪⎝⎭P AP(22) (本题满分11 分)设随机变量X 的概率密度为()2ln 2,00,0xx f x x -⎧>⎪=⎨≤⎪⎩,对X 进行独立重复的观测,直到12第2个大于3的观测值出现时停止,记Y 为观测次数(I)求Y 的概率分布; (II)求()E Y .【答案】(I)12221171188n n n P Y n C p p p n ---==-=-{}()()()(),23,,n = ;(II)16E Y =().【解析】(I) 记p 为观测值大于3的概率,则313228()ln x p P X dx +∞-=>==⎰,从而12221171188n n n P Y n C p p p n ---==-=-{}()()()(),23,,n = 为Y 的概率分布;(II) 法一:分解法:将随机变量Y 分解成=Y M N +两个过程,其中M 表示从1到()n n k <次试验观测值大于3首次发生,N 表示从1n +次到第k 试验观测值大于3首次发生.则M Ge n p ~(,),NGe k n p -(,)(注:Ge 表示几何分布)所以11221618E Y E M N E M E N p p p =+=+=+===()()()(). 法二:直接计算22212221777711288888n n n n n n n E Y n P Y n n n n n ∞∞∞---====⋅==⋅-=⋅--+∑∑∑(){}()()()()[()()()]记212111()()n n S x n n xx ∞-==⋅--<<∑,则2113222211n n n n n n S x n n xn xx x ∞∞∞--==='''=⋅-=⋅==-∑∑∑()()()()(),12213222111()()()()()n n n n xS x n n xx n n x xS x x ∞∞--===⋅-=⋅-==-∑∑, 2222313222111()()()()()nn n n x S x n n x xn n xx S x x ∞∞-===⋅-=⋅-==-∑∑, 所以212332422211()()()()()x x S x S x S x S x x x-+=-+==--,从而7168E Y S ==()().13(23) (本题满分11 分)设总体X 的概率密度为,1,(,),x f x θθθ⎧≤≤⎪=-⎨⎪⎩110其他,其中θ为未知参数,12n X ,X ,,X 为来自该总体的简单随机样本.(I)求θ的矩估计量; (II)求θ的最大似然估计量. 【答案】(I)1121ni i X X X n θ==-=∑,;(II)12n X X X θ=min{,,,}.【解析】(I)11112()(;)E X xf x dx x dx θθθθ+∞-∞+==⋅=-⎰⎰, 令()E X X =,即12X θ+=,解得1121ni i X X X n θ==-=∑,为θ的矩估计量 ;(II)似然函数11110,()(;),n ni i i x L f x θθθθ=⎧⎛⎫≤≤⎪ ⎪==-⎨⎝⎭⎪⎩∏其他, 当1i x θ≤≤时,11111()()nni L θθθ===--∏,则1ln ()ln()L n θθ=--. 从而1ln ()d L nd θθθ=-,关于θ单调增加,所以12n X X X θ=min{,,,}为θ的最大似然估计量.。
2015年考研数学三真题与解析
2015年考研数学三真题与解析一、选择题 1—8小题.每小题4分,共32分. 1.设{}n x 是数列,则下列命题中不正确的是( )(A )若lim n n x a →∞=,则221lim lim n n n n x x a -→∞→∞==(B )若221lim lim n n n n x x a -→∞→∞==,则lim n n x a →∞=(C )若lim n n x a →∞=,则331lim lim n n n n x x a -→∞→∞== (D) 若331lim lim n n n n x x a -→∞→∞==,则lim n n x a →∞=【详解】选择(D )2.设函数()f x 在(,)-∞+∞上连续,其二阶导数()f x ''的图形如右图所示,则曲线()y f x =在(,)-∞+∞的拐点个数为(A )0 (B )1 (C )2 (D )3【详解】对于连续函数的曲线而言,拐点处的二阶导数等于零或者不存在.从图上可以看出有两个二阶导数等于零的点,以及一个二阶导数不存在的点0x =.但对于这三个点,左边的二阶导数等于零的点的两侧二阶导数都是正的,所以对应的点不是拐点.而另外两个点的两侧二阶导数是异号的,对应的点才是拐点,所以应该选(C )3.设{}222222(,)|,D x y x y x x y y =+≤+≤,函数(,)f x y 在D 上连续,则(,)Df x y dxdy =⎰⎰(A )224204cos sin (cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθπθθθθθθ+⎰⎰⎰⎰(B )224204sin cos (cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθπθθθθθθ+⎰⎰⎰⎰(C)112(,)xdxf x y dy ⎰⎰(D)12(,)xdx f x y dy ⎰【详解】应该选(B ) 4.下列级数发散的是( )(A )13n n n ∞=∑ (B)111)n n ∞=+ (C )211()ln n n n ∞=-+∑(D )1!n n n n ∞=∑ 【详解】应该选(C )5.设矩阵2211111214,A a b d a d ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,若集合{}12,Ω=,则线性方程组Ax b =有无穷多解的充分必要条件是(A ),a d ∉Ω∉Ω (B ),a d ∉Ω∈Ω (C ),a d ∈Ω∉Ω (D ),a d ∈Ω∈Ω 【详解】对线性方程组的增广矩阵进行初等行变换:22221111111111111201110111140311001212(,)()()()()B A b ad a d a d a d a d a a d d ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪==→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭方程组无穷解的充分必要条件是3()(,)r A r A b =<,也就是120120()(),()()a a d d --=--=同时成立,当然应该选(D ).6.设二次型123(,,)f x x x 在正交变换x Py =下的标准形为2221232y y y +-,其中()123,,P e e e =,若()132,,Q e e e =-,则123(,,)f x x x 在x Qy =下的标准形为(A )2221232y y y -+ (B )2221232y y y +- (C )2221232y y y -- (D ) 2221232y y y ++ 【详解】()()132123100100001001010010,,,,Q e e e e e e P ⎛⎫⎛⎫ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,100001010T T Q P ⎛⎫⎪=- ⎪ ⎪⎝⎭ 211T T T T f x Ax y PAPy y y⎛⎫⎪=== ⎪ ⎪-⎝⎭所以100100100210020010010011001101001001010101T T Q AQ P AP ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪⎪ ⎪=-=-=- ⎪ ⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭故选择(A ).7.若,A B 为任意两个随机事件,则( )(A )()()()P AB P A P B ≤ (B )()()()P AB P A P B ≥(C )2()()()P A P B P AB +≤(D )2()()()P A P B P AB +≥【详解】.()(),()(),P A P AB P B P AB ≥≥所以2()()()P A P B P AB +≤故选择(C ).8.设总体12~(.),,,,n X B m X X X θ为来自总休的简单随机样本,X 为样本均值,则()21ni i E X X =⎡⎤-=⎢⎥⎢⎥⎣⎦∑ (A )11()()m n θθ-- (B )11()()m n θθ-- (C )111()()()m n θθ--- (D )1()mn θθ- 【详解】~(.),X B m θ所以1(),()()E X m D X m θθθ==-.设2S =()2111n ii X Xn =--∑,则2S 一定是总体方差的无偏估计,所以21()()E S m θθ=-,从而()21111()()()()ni i E X X n D X m n θθ=⎡⎤-=-=--⎢⎥⎢⎥⎣⎦∑ 故应该选择(B ).二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.20ln(cos )limx x x→= 【详解】200122ln(cos )tan limlim x x x x x x →→-==-.10.设函数()f x 连续,20()()x x xf t dt ϕ=⎰,若1115(),()ϕϕ'==,则1()f = . 【详解】22()()()x x x xf t dt x f t dt ϕ==⎰⎰,22202()()()x x f t dt x f x ϕ'=+⎰所以1101121512()(),()()()()f t dt f t dt f f ϕϕ'==+=⇒=⎰⎰11.若函数(,)z z x y =由方程231x y z e xyz +++=确定,则00(,)|dz = . 【详解】当00,x y ==时,,0z =设231(,,)x y z F x y z e xyz ++=+-,则23232323,,,x y z x y z x y z x y z F e yz F e xz F e xy ++++++=+=+=+在点000(,,)处,1233,y x z z F F z z x F y F ∂∂=-=-=-=-∂∂,所以001233(,)|dz dx dy =--12.设函数()y y x =是微分方程20y y y '''+-=的解,且在0x =处()y x 取极值3,则()y x = .【详解】20y y y '''+-=的通解为212x xy C e C e -=+,由条件0x =处()y x 取极值3可知1221212312220,,()x x C C C C y x e e C C -+=⎧⇒===+⎨-=⎩ 13.设三阶矩阵A 的特征值为221,,-,2B A A E =-+,其中E 为三阶单位矩阵,则行列式B = .【详解】矩阵B 的三个特征值分别为371,,,所以21.B =14.设二维随机变量(,)X Y 服从正态分布10110(,;,;)N ,则{}0P XY Y -<= . 【详解】由于相关系数等于零,所以X ,Y 都服从正态分布,1101~(,),~(,)X N Y N ,且相互独立. 则101~(,)X N -.{}{}{}{}1111101001001022222(),,P XY Y P Y X P Y X P Y X -<=-<=<->+>-<=⨯+⨯= 三、解答题15.(本题满分10分)设函数1()ln()sin f x x a x bx x =+++,3()g x kx =在0x →时为等价无穷小,求常数,,a b k 的取值.【详解】当0x →时,把函数1()ln()sin f x x a x bx x =+++展开到三阶的马克劳林公式,得233332331236123()(())(())()()()()x x f x x a x o x bx x x o x a aa xb x x o x =+-+++-+=++-+++ 由于当0x →时,(),()f x g x 是等价无穷小,则有10023a ab a k ⎧⎪+=⎪⎪-+=⎨⎪⎪=⎪⎩,解得,11123,,.a b k =-=-=- 16.(本题满分10分) 计算二重积分()dxdy Dx x y -⎰⎰,其中{}2222(,)|,D x y xy y x =+≤≥【详解】由对称性可知0dxdy Dxy =⎰⎰,22()dxdy dxdy dxdy dxdy DDDDx x y xxy x -=-=⎰⎰⎰⎰⎰⎰⎰⎰2112220011402224402202221124225522545)()(sin cos )(sin )sin x dx x dy x x dxx x dx t tdt tdt udu ππππ===-=-=-=-=-⎰⎰⎰⎰⎰⎰⎰ 17.(本题满分10分)为了实现利润最大休,厂商需要对某商品确定其定价模型,设Q 为该商品的需求量,P 为价格,MC 为边际成本,η为需求随意性0()η>.(1)证明定价模型为11MCp η=-; (2)若该商品的成本函数为21600()C Q Q =-,需求函数40Q p =-,试由(1)中的定价模型确定此的价格.【详解】(1)总收益为R PQ =.收益对价格的弹性为:111dRER R dR dQ P dQdP Q P EP R P dP Q dP Q dPη⎛⎫===+=+=- ⎪⎝⎭ 收益对需求的弹性为:111(),dRER E PQ dP dQ P Q R EQ EQ P dQ Qη⎛⎫===+=- ⎪⎝⎭ 又11,ER Q dR Q dR EQ R dQ PQ dQ η===- 而边际成本为:11dRP MC dQ η⎛⎫=-= ⎪⎝⎭,所以11.MC P η=- (2)2140,()P PMC Q Q Pη==--=-由11240()()P P η-=-,得30.P =18.(本题满分10分)设函数)(x f y =在定义域I 上的导数大于零,若对任意的0x I ∈,曲线)(x f y =在点00(,())x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且02()f =,求()f x 的表达式. 【详解】)(x f y =在点00(,())x f x 处的切线方程为000()()()y f x x x f x '=-+ 令0y =,得000()()f x x x f x =-'曲线)(x f y =在点00(,())x f x 处的切线与直线0x x =及x 轴所围成区域的面积为00000142()()(()()f x S f x x x f x =--='整理,得218y y '=,解方程,得118C x y =-,由于02()f =,得12C = 所求曲线方程为84.y x=- 19.(本题满分10分)(1)设函数(),()u x v x 都可导,利用导数定义证明(()())()()()()u x v x u x v x u x v x '''=+; (2)设函数12(),(),,()n u x u x u x 都可导,12()()()()n f x u x u x u x =,写出()f x 的求导公式.【详解】(1)证明:设)()(x v x u y =)()()()(x v x u x x v x x u y -++=∆∆∆()()()()()()()()u x x v x x u x v x x u x v x x u x v x =+∆+∆-+∆++∆-v x u x x uv ∆∆∆)()(++=xux u x x v x u x y ∆∆∆∆∆∆∆)()(++= 由导数的定义和可导与连续的关系00'limlim[()()]'()()()'()x x y u uy v x x u x u x v x u x v x x x x∆→∆→∆∆∆==+∆+=+∆∆∆(2)12()()()()n f x u x u x u x =1121212()()()()()()()()()()()n n nf x u x u x u x u x u x u x u x u x u x u x ''''=+++ 20.(本题满分11分)设矩阵101101a A a a ⎛⎫⎪=- ⎪ ⎪⎝⎭,且30A =.(1)求a 的值;(2)若矩阵X 满足22X XA AX AXA E ---=,其中E 为三阶单位矩阵,求X .【详解】(1)先计算A的行列式:2310011111011a a a A a a a aa-=-=-=, 由于30,A =所以0A =,可得0a =,010101010A ⎛⎫⎪=- ⎪ ⎪⎝⎭(2)由条件22X XA AX AXA E ---=,可知2()()E A X E A E --=所以1212121()()(()())()X E A E A E A E A E A A ----=--=--=--由于010101010A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,2101000101A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,2011111112E A A -⎛⎫⎪--=- ⎪ ⎪--⎝⎭, 112121011312111111112211()()()X E A E A E A A ------⎛⎫⎛⎫⎪ ⎪=--=--=-=- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭21.(本题满分11分)设矩阵02313312A a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭相似于矩阵12000031B b -⎛⎫⎪= ⎪⎪⎝⎭.(1)求,a b 的值;(2)求可逆矩阵P ,使1P AP -为对角矩阵.【详解】(1)因为两个矩阵相似,所以有trA trB =,A B =.也就是324235a b a a b b +=+=⎧⎧⇒⎨⎨-==⎩⎩. (2)由212050150031()()E B λλλλλλ--=-=--=--,得A ,B 的特征值都为12315,λλλ===解方程组0()E A x -=,得矩阵A 的属于特征值121λλ==的线性无关的特征向量为12231001.ξξ-⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭;解方程组50()E A x -=得矩阵A 的属于特征值35λ=的线性无关的特征向量为3111ξ-⎛⎫⎪= ⎪ ⎪⎝⎭令()123231101011,,P ξξξ--⎛⎫ ⎪== ⎪ ⎪⎝⎭,则1100010005.P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭22.(本题满分11分)设随机变量X 的概率密度为22000ln ,(),x x f x x -⎧>=⎨≤⎩对X 进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y 为次数.求Y 的分布函数;(1) 求Y 的概率分布; (2) 求数学期望.EY 【详解】(1)X 进行独立重复的观测,得到观测值大于3的概率为313228()ln x P X dx +∞->==⎰显然Y 的可能取值为234,,,且2211117171234888648()(),,,,k k kP Y k C k k ---⎛⎫⎛⎫==⨯⨯=-= ⎪ ⎪⎝⎭⎝⎭(2)设22322221111()()(),()n nn n n n x S x n n xx x x x x ∞∞∞-===''''⎛⎫⎛⎫''=-====< ⎪ ⎪--⎝⎭⎝⎭∑∑∑2221717116648648()()()k k n E Y kP Y k k k S -∞∞==⎛⎫⎛⎫===-== ⎪⎪⎝⎭⎝⎭∑∑ 23.(本题满分11分)设总体X 的概率密度为1110,(;),x f x θθθ⎧≤≤⎪=-⎨⎪⎩其他其中θ为未知参数,12,,,n X X X 是来自总体的简单样本.(1)求参数θ的矩估计量;(2)求参数θ的最大似然估计量. 【详解】(1)总体的数学期望为111112()()E X xdx θθθ==+-⎰ 令()E X X =,解得参数θ的矩估计量:21ˆX θ=-. (2)似然函数为12121110,,,,()(,,,;),n nn x x x L x x x θθθ⎧≤≤⎪-=⎨⎪⎩其他显然()L θ是关于θ的单调递增函数,为了使似然函数达到最大,只要使θ尽可能大就可以,所以参数θ的最大似然估计量为12ˆmin(,,,).n x x x θ=。
2015考研数学三真题和答案解析
2014年考研数学三真题一、选择题(18小题,每小题4分,共32分。
下列媒体给出的四个选项中,只有一个选项是符合题目要求的。
)(1)设且≠0,则当充分大时有(A)(B)(C)(D)【答案】A。
【解析】【方法1】直接法:由且≠0,则当充分大时有【方法2】排除法:若取显然,且(B)和(D)都不正确;取显然,且(C)不正确综上所述,本题正确答案是(A)【考点】高等数学—函数、极限、连续—极限的概念与性质(2)下列曲线中有渐近线的是(A)(B)(C)(D)【答案】C。
【解析】【方法1】由于所以曲线有斜渐近线,故应选(C)解法2考虑曲线与直线纵坐标之差在 时的极限则直线是曲线的一条斜渐近线,故应选(C)综上所述,本题正确答案是(C)【考点】高等数学—一元函数微分学—曲线的凹凸、拐点及渐近线(3)设当0时,若是比高阶的无穷小,则下列选项中错误的是(A)0(B)(C)0(D)【答案】D。
【解析】【方法1】当0时,知,的泰勒公式为又0则00【方法2】显然,0,000由上式可知,,否则等式右端极限为 ,则左端极限也为 ,与题设矛盾。
000故0综上所述,本题正确答案是(D)。
【考点】高等数学—函数、极限、连续—无穷小量及其阶的比较(4)设函数具有二阶导数, 0,则在区间[0,1]上(A)当0时,(B)当0时,(C)当0时,(D)当0时,【答案】D。
【解析】【方法1】由于00则直线0过点00和(),当0时,曲线在区间[0,1]上是凹的,曲线应位于过两个端点00和的弦0的下方,即【方法2】令0,则0,,当0时,0。
则曲线在区间0上是凹的,又00,从而,当0时,0,即【方法3】令0,则0,=当0时,单调增,,从而,当0时,0,即综上所述,本题正确答案是D。
【考点】高等数学—一元函数微分学—函数不等式证明(5)行列式0(A)(B) (C)(D)【答案】B。
【解析】灵活使用拉普拉斯公式0 000000000==综上所述,本题正确答案是(B)【考点】线性代数—行列式—数字型行列式的计算(6)设均为三维向量,则对任意常数,向量组线性无关是向量组线性无关的(A)必要非充分条件(B)充分非必要条件(C)充分必要条件(D)既非充分又非必要条件【答案】A。
2015考研数学三真题
2015考研数学三真题(正文)2015考研数学三真题一、选择题1. 设函数f(x) = x^2 + bx + c,其中b,c为常数,且对任意实数x满足f(x)f(x + 1) ≤ 0,那么f(x) = 0的一个实根的取值范围是()A. (0, ∞)B. (–∞, 0)C. (–∞, 1] ∪ (0, ∞)D. [0, 1]E. [–1, 0]分析:根据题意,只需找到一个实根即可。
对于f(x)从负数到正数的变化过程,如果存在f(x)≤0的区间,那么一定包含一个实根。
根据选项分析,只有选项C满足题意。
答案:C2. 若小于正整数n的正整数中,有k个的约数个数为偶数,n的约数个数是奇数,那么k的值为()A. 0B. 1C. 2D. n - 1E. n分析:根据题目描述,小于n的正整数中k个的约数个数是偶数,即k个数都是完全平方数。
若n的约数个数是奇数,根据数论中完全平方数的特性可知,n本身也是一个完全平方数。
因此,k的值为n - 1。
答案:D二、填空题3. 设数列an满足an = 2an-1 - 1,其中a1 = 4,则a5 = ______。
分析:根据数列的递推关系可得,a2 = 7,a3 = 13,a4 = 25,a5 = 49。
答案:494. 设A = {1, 2, 3, 4, 5, 6, 7},则A的不同划分数为______。
分析:根据集合的划分原理可得,A的不同划分数为Bell数B(7) = 877。
答案:877三、解答题5. 已知复数z满足|z + 1| = |z - 1|,求z的所有可能值。
解析:根据复数的绝对值定义,|z + 1| = |z - 1|等价于对应实部和虚部的平方和相等。
设z = x + yi,其中x,y为实数,则可得到方程组:(x + 1)^2 + y^2 = (x - 1)^2 + y^2解得x = 0,即z为纯虚数。
因此,z的所有可能值为z = yi,其中y 为实数。
答案:z = yi,其中y为实数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万学海文2015年考研数学必考题型——数学三
考研临近,万学海文集合考研数学名师团队,深入研究2015年数学考试大纲及修订内容,并结合考研数学的命题趋势及特点,在经过反复锤炼之后,分析总结知识要点,为广大考研学子潜心搜集整理了最新信息和多方面精华资料,进一步对当年的考研数学命题进行预测,帮助学员把握出题重中之重。
目
大纲章节知识点题型重要度等级
高等数学第一章函数、极
限、连续
等价无穷小代换、洛必达法则、
泰勒展开式
求函数的极限★★★★★函数连续的概念、函数间断点的
类型
判断函数连续性与间断点的类型★★★
第二章一元函数
微分学
导数的定义、可导与连续之间的
关系
按定义求一点处的导数,可导与
连续的关系
★★★★函数的单调性、函数的极值讨论函数的单调性、极值★★★★
闭区间上连续函数的性质、罗尔
定理、拉格朗日中值定理、柯西
中值定理和泰勒定理
微分中值定理及其应用★★★★★
第三章一元函数
积分学
积分上限的函数及其导数变限积分求导问题★★★★★
定积分的应用用定积分计算几何量★★★★
第四章多元函数
微积分学
隐函数、偏导数、全微分的存在
性以及它们之间的因果关系
函数在一点处极限的存在性,连
续性,偏导数的存在性,全微分
存在性与偏导数的连续性的讨论
与它们之间的因果关系
★★★二重积分的概念、性质及计算二重积分的计算及应用★★★★★
希望通过我们总结的以上资料,帮助广大考生在最后的这段关键时间里,梳理好知识体系,准确把握考点,直击命题要害,做好最终的考前冲刺。