湖北武汉市武昌区2014届高三上学期期末学业质量调研数学理试题(纯word版_含答案)

合集下载

湖北省武汉市2014届高三2月调研测试 数学理试题 Word版含答案

湖北省武汉市2014届高三2月调研测试 数学理试题 Word版含答案

武汉市2014届高三2月调研测试数 学(理科)2014.2.20一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数m (3+i)-(2+i)(m ∈R ,i 为虚数单位)在复平面内对应的点不可能位于A .第一象限B .第二象限C .第三象限D .第四象限2.已知甲组数据的平均数为17,乙组数据的中位数为17,则x ,y 的值分别为 A .2,6 B .2,7 C .3,6 D .3,73.已知e 1,e 2是夹角为60°的两个单位向量,若a =e 1+e 2,b =-4e 1+2e 2,则a 与b 的夹角为A .30°B .60°C .120°D .150° 4.《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加A .47尺B .1629尺C .815尺D .1631尺5.阅读如图所示的程序框图,运行相应的程序.若输入某个正整数n 后,输出的S ∈(31,72),则n 的值为 A .5 B .6 C .7 D .86.若(9x -13x )n (n ∈N *)的展开式的第3项的二项式系数为36,则其展开式中的常数项为A .252B .-252C .84D .-847.设a ,b ∈R ,则“a 1-b 2+b 1-a 2=1”是“a 2+b 2=1”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 8.如图,在长方体ABCD-A 1B 1C 1D 1中,E ,H 分别是棱A 1B 1,D 1C 1上的点(点E 与B 1不重合),且EH ∥A 1D 1,过EH 的平面与棱BB 1,CC 1相交,交点分别为F ,G .设AB =2AA 1=2a .在长方体ABCD-A 1B 1C 1D 1内随机选取一点,记该点取自于几何体A 1ABFE-D 1DCGH 内的概率为P ,当点E ,F 分别在棱A 1B 1,BB 1上运动且满足EF =a 时,则PD 1C 1 B 1A1 ABCDE GF H的最小值为A .1116B .34C .1316D .789.若S 1=⎠⎛121x d x ,S 2=⎠⎛12(ln x +1)d x ,S 3=⎠⎛12x d x ,则S 1,S 2,S 3的大小关系为A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 1<S 3<S 2D .S 3<S 1<S 210.如图,半径为2的半圆有一内接梯形ABCD ,它的下底AB 是⊙O 的直径,上底CD 的端点在圆周上.若双曲线以A ,B 为焦点,且过C ,D 两点,则当梯形ABCD 的周长最大时,双曲线的实轴长为A .3+1B .23+2C .3-1D .23-2二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.已知某几何体的三视图如图所示,则该几何体的表面积为 .12.曲线y =sin xx 在点M (π,0)处的切线与两坐标轴围成的三角形区域为D (包含三角形内部与边界).若点P (x ,y )是区域D 内的任意一点,则x +4y 的最大值为 . 13.如下图①②③④所示,它们都是由小正方形组成的图案.现按同样的排列规则进行排列,记第n 个图形包含的小正方形个数为f (n ),则 (Ⅰ)f (5)= ;(Ⅱ)f (n )= .14.已知函数f (x )=3sin2x +2cos 2x+m 在区间[0,π2]上的最大值为3,则(Ⅰ)m = ;(Ⅱ)对任意a ∈R ,f (x )在[a ,a +20π]上的零点个数为 .(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.) 15.(选修4-1:几何证明选讲)如图,⊙O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E 为⊙O 上一点,AE ⌒=AC ⌒,DE 交AB 于点F .若AB =4,BP =3,则PF = .16.(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线ρ(2cos θ-sin θ)-a =0与曲线⎩⎪⎨⎪⎧x =sin θ+cos θ,y =1+sin2θ.(θ为参数)有两个不同的交点,则实数a 的取值范围为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知sin(A -B )=cos C .(Ⅰ)若a =32,b =10,求c ;(Ⅱ)求a cos C -c cos Ab的取值范围. 18.(本小题满分12分)已知数列{a n }满足a 1>0,a n +1=2-|a n |,n ∈N *. (Ⅰ)若a 1,a 2,a 3成等比数列,求a 1的值;(Ⅱ)是否存在a 1,使数列{a n }为等差数列?若存在,求出所有这样的a 1;若不存在,说明理由.19.(本小题满分12分)如图,在三棱柱ABC-A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(Ⅰ)求直线B 1C 1与平面A 1BC 1所成角的正弦值;(Ⅱ)在线段BC 1上确定一点D ,使得AD ⊥A 1B ,并求BDBC 1的值.20.(本小题满分12分)甲、乙、丙三人进行乒乓球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)用X 表示前4局中乙当裁判的次数,求X 的分布列和数学期望. 21.(本小题满分13分)如图,矩形ABCD 中,|AB |=22,|BC |=2.E ,F ,G ,H 分别是矩形四条边的中点,分别以HF ,EG 所在的直线为x 轴,y 轴建立平面直角坐标系,已知→OR =λ→OF ,→CR ′=λ→CF ,其中0<λ<1.(Ⅰ)求证:直线ER 与GR ′的交点M 在椭圆Γ:x 22+y 2=1上;(Ⅱ)若点N 是直线l :y =x +2上且不在坐标轴上的任意一点,F 1、F 2分别为椭圆Γ的左、右焦点,直线NF 1和NF 2与椭圆Γ的交点分别为P 、Q 和S 、T .是否存在点N ,使得直线OP 、OQ 、OS 、OT 的斜率k OP 、k OQ 、k OS 、k OT 满足k OP +k OQ +k OS +k OT =0?若存在,求出点N 的坐标;若不存在,请说明理由.22.(本小题满分14分)(Ⅰ)已知函数f (x )=e x -1-tx ,∃x 0∈R ,使f (x 0)≤0,求实数t 的取值范围;(Ⅱ)证明:b -a b <ln b a <b -aa ,其中0<a <b ;(Ⅲ)设[x ]表示不超过x 的最大整数,证明:[ln(1+n )]≤[1+12+…+1n ]≤1+[ln n ](n ∈N *).武汉市2014届高三2月调研测试 数学(理科)试题参考答案及评分标准一、选择题1.B 2.D 3.C 4.B 5.B 6.C 7.A 8.D 9.A 10.D 二、填空题11.3π2+ 3 12.4 13.(Ⅰ)41;(Ⅱ)2n 2-2n +1 14.(Ⅰ)0;(Ⅱ)40或41 15.215 16.[0,12) 三、解答题 17.(本小题满分12分)解:(Ⅰ)由sin(A -B )=cos C ,得sin(A -B )=sin(π2-C ).∵△ABC 是锐角三角形,∴A -B =π2-C ,即A -B +C =π2, ① 又A +B +C =π, ② 由②-①,得B =π4.由余弦定理b 2=c 2+a 2-2ca cos B ,得(10)2=c 2+(32)2-2c ×32cos π4, 即c 2-6c +8=0,解得c =2,或c =4.当c =2时,b 2+c 2-a 2=(10)2+22-(32)2=-4<0, ∴b 2+c 2<a 2,此时A 为钝角,与已知矛盾,∴c ≠2.故c =4.……………………………………………………………………………6分 (Ⅱ)由(Ⅰ),知B =π4,∴A +C =3π4,即C =3π4-A .∴a cos C -c cos Ab =sin A cos C -cos A sin C sin B =sin(A -C )22=2sin(2A -3π4). ∵△ABC 是锐角三角形,∴π4<A <π2,∴-π4<2A -3π4<π4,∴-22<sin(2A -3π4)<22,∴-1<a cos C -c cos A b<1.故a cos C -c cos Ab的取值范围为(-1,1).………………………………………12分 18.(本小题满分12分)解:(Ⅰ)∵a 1>0,∴a 2=2-|a 1|=2-a 1,a 3=2-|a 2|=2-|2-a 1|.当0<a 1≤2时,a 3=2-(2-a 1)=a 1,∴a 21=(2-a 1)2,解得a 1=1.当a 1>2时,a 3=2-(a 1-2)=4-a 1,∴a 1(4-a 1)=(2-a 1)2,解得a 1=2-2(舍去)或a 1=2+2.综上可得a 1=1或a 1=2+2. (6)分(Ⅱ)假设这样的等差数列存在,则由2a 2=a 1+a 3,得2(2-a 1)=a 1+(2-|2-a 1|),即|2-a 1|=3a 1-2. 当a 1>2时,a 1-2=3a 1-2,解得a 1=0,与a 1>2矛盾;当0<a 1≤2时,2-a 1=3a 1-2,解得a 1=1,从而a n =1(n ∈N *),此时{a n }是一个等差数列;综上可知,当且仅当a 1=1时,数列{a n }为等差数列.………………………12分19.(本小题满分12分) 解:(Ⅰ)∵AA 1C 1C 为正方形,∴AA 1⊥AC .∵平面ABC ⊥平面AA 1C 1C , ∴AA 1⊥平面ABC ,∴AA 1⊥AC ,AA 1⊥AB .由已知AB =3,BC =5,AC =4,∴AB ⊥AC .如图,以A 为原点建立空间直角坐标系A-xyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),∴→A 1B =(0,3,-4),→A 1C 1=(4,0,0),→B 1C 1=(4,-3,0). 设平面A 1BC 1的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·→A 1B =0,n ·→A 1C 1=0.即⎩⎪⎨⎪⎧3y -4z =0,4x =0.令z =3,则x =0,y =4,∴n =(0,4,3). 设直线B 1C 1与平面A 1BC 1所成的角为θ,则 sin θ=|cos <→B 1C 1,n >|=|→B 1C 1·n ||→B 1C 1||n |=3×45×5=1225.故直线B 1C 1与平面A 1BC 1所成角的正弦值为1225.………………………………6分 (Ⅱ)设D (x ,y ,z )是线段BC 1上一点,且→BD =λ→BC 1(λ∈[0,1]),∴(x ,y -3,z )=λ(4,-3,4),∴x =4λ,y =3-3λ,z =4λ,∴→AD =(4λ,3-3λ,4λ). 又→A 1B =(0,3,-4),由→AD ·→A 1B =0,得3(3-3λ)-4×4λ=0, 即9-25λ=0,解得λ=925∈[0,1]. 故在线段BC 1上存在点D ,使得AD ⊥A 1B .此时BD BC 1=λ=925.…………………………………………………………………12分20.(本小题满分12分) 解:(Ⅰ)记A 1表示事件“第2局结果为甲胜”,A 2表示事件“第3局甲参加比赛时,结果为甲负”, A 表示事件“第4局甲当裁判”. 则A =A 1·A 2.P (A )=P (A 1·A 2)=P (A 1)P (A 2)=14.………………………………………………4分 (Ⅱ)X 的可能取值为0,1,2.记A 3表示事件“第3局乙和丙比赛时,结果为乙胜丙”, B 1表示事件“第1局结果为乙胜丙”,B 2表示事件“第2局乙和甲比赛时,结果为乙胜甲”, B 3表示事件“第3局乙参加比赛时,结果为乙负”.则P (X =0)=P (B 1·B 2·A 3)=P (B 1)P (B 2)P (A 3)=18, P (X =2)=P (B 1-·B 3)=P (B 1-)P (B 3)=14, P (X =1)=1-P (X =0)-P (X =2)=1-18-14=58. ∴X 的分布列为∴E (X )=0×18+1×58+2×14=98.………………………………………………12分21.(本小题满分13分)解:(Ⅰ)由已知,得F (2,0),C (2,1).由→OR =λ→OF ,→CR ′=λ→CF ,得R (2λ,0),R ′(2,1-λ). 又E (0,-1),G (0,1),则直线ER 的方程为y =12λx -1, ① 直线GR ′的方程为y =-λ2x +1. ②由①②,得M (22λ1+λ2,1-λ21+λ2).∵(22λ1+λ2)22+(1-λ21+λ2)2=4λ2+(1-λ2)2(1+λ2)2=(1+λ2)2(1+λ2)2=1,∴直线ER 与GR ′的交点M 在椭圆Γ:x 22+y 2=1上.…………………………5分 (Ⅱ)假设满足条件的点N (x 0,y 0)存在,则直线NF 1的方程为y =k 1(x +1),其中k 1=y 0x 0+1,直线NF 2的方程为y =k 2(x -1),其中k 2=y 0x 0-1.由⎩⎪⎨⎪⎧y =k 1(x +1),x 22+y 2=1.消去y 并化简,得(2k 21+1)x 2+4k 21x +2k 21-2=0. 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-4k 212k 21+1,x 1x 2=2k 21-22k 21+1.∵OP ,OQ 的斜率存在,∴x 1≠0,x 2≠0,∴k 21≠1. ∴k OP +k OQ =y 1x 1+y 2x 2=k 1(x 1+1)x 1+k 1(x 2+1)x 2=2k 1+k 1·x 1+x 2x 1x 2=k 1(2-4k 212k 21-2)=-2k 1k 21-1.同理可得k OS +k OT =-2k 2k 22-1.∴k OP +k OQ +k OS +k OT =-2(k 1k 21-1+k 2k 22-1)=-2·k 1k 22-k 1+k 21k 2-k 2(k 21-1)(k 22-1)=-2(k 1+k 2)(k 1k 2-1)(k 21-1)(k 22-1). ∵k OP +k OQ +k OS +k OT =0,∴-2(k 1+k 2)(k 1k 2-1)(k 21-1)(k 22-1)=0,即(k 1+k 2)(k 1k 2-1)=0. 由点N 不在坐标轴上,知k 1+k 2≠0,∴k 1k 2=1,即y 0x 0+1·y 0x 0-1=1. ③又y 0=x 0+2, ④ 解③④,得x 0=-54,y 0=34.故满足条件的点N 存在,其坐标为(-54,34).………………………………13分22.(本小题满分14分)解:(Ⅰ)若t <0,令x =1t ,则f (1t )=e t 1-1-1<0;若t =0,f (x )=e x -1>0,不合题意; 若t >0,只需f (x )min ≤0.求导数,得f ′(x )=e x -1-t . 令f ′(x )=0,解得x =ln t +1.当x <ln t +1时,f ′(x )<0,∴f (x )在(-∞,ln t +1)上是减函数; 当x >ln t +1时,f ′(x )>0,∴f (x )在(ln t +1,+∞)上是增函数. 故f (x )在x =ln t +1处取得最小值f (ln t +1)=t -t (ln t +1)=-t ln t . ∴-t ln t ≤0,由t >0,得ln t ≥0,∴t ≥1.综上可知,实数t 的取值范围为(-∞,0)∪[1,+∞).…………………………4分(Ⅱ)由(Ⅰ),知f (x )≥f (ln t +1),即e x -1-tx ≥-t ln t .取t =1,e x -1-x ≥0,即x ≤e x -1.当x >0时,ln x ≤x -1,当且仅当x =1时,等号成立, 故当x >0且x ≠1时,有ln x <x -1.令x =b a ,得ln b a <b a -1(0<a <b ),即ln b a <b -a a .令x =a b ,得ln a b <a b -1(0<a <b ),即-ln b a <a -b b ,亦即ln b a >b -a b .综上,得b -a b <ln b a <b -aa .………………………………………………………9分 (Ⅲ)由(Ⅱ),得b -a b <ln b a <b -aa .令a =k ,b =k +1(k ∈N *),得1k +1<ln k +1k <1k .对于ln k +1k <1k ,分别取k =1,2,…,n , 将上述n 个不等式依次相加,得 ln 21+ln 32+…+ln n +1n <1+12+…+1n , ∴ln(1+n )<1+12+…+1n . ①对于1k +1<ln k +1k ,分别取k =1,2,…,n -1,将上述n -1个不等式依次相加,得 12+13+…+1n <ln 21+ln 32+…+ln n n -1,即12+13+…+1n <ln n (n ≥2), ∴1+12+…+1n ≤1+ln n (n ∈N *). ②综合①②,得ln(1+n )<1+12+…+1n ≤1+ln n .易知,当p <q 时,[p ]≤[q ],∴[ln(1+n )]≤[1+12+…+1n ]≤[1+ln n ](n ∈N *).又∵[1+ln n ]=1+[ln n ],∴[ln(1+n )]≤[1+12+ (1)]≤1+[ln n ](n ∈N *).……………………………14分。

2014年高考湖北理科数学试题及答案(word解析版)

2014年高考湖北理科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一测试(湖北卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2014年湖北,理1,5分】i 为虚数单位,则21i 1i -⎛⎫⎪+⎝⎭( )(A )1- (B )1 (C )i - (D )i 【答案】A【分析】因为21i 2i 11i 2i --⎛⎫==- ⎪+⎝⎭,故选A . 【点评】本题考查复数的运算,容易题.(2)【2014年湖北,理2,5分】若二项式72a x x ⎛⎫+ ⎪⎝⎭的展开式中31x 的系数是84,则实数a =( )(A )2 (B )54 (C )1 (D )2 【答案】D【分析】因为()77727722xrrr r r r a C x C a x x ---+⎛⎫⋅⋅=⋅⋅⋅ ⎪⎝⎭,令723r -+=-,得2r =,22727284C a -⋅⋅=,解得2a =,故选D .【点评】本题考查二项式定理的通项公式,容易题. (3)【2014年湖北,理3,5分】设U 为全集,A ,B 是集合,则“存在集合C 使得A C ⊆,U B C C ⊆是“A B =∅I ”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件【答案】A【分析】依题意,若A C ⊆,则U U C C C A ⊆,U B C C ⊆,可得A B =∅I ;若A B =∅I ,不能推出U B C C ⊆,故选A .【点评】本题考查集合和集合的关系,充分条件和必要条件判断,容易题. (4)【2014年湖北,理4,5x 3 4 5 6 7 8y 4.0 2.5 -0.5 0.5 -2.0 -3.0得到的回归方程为ˆy=(A )0a >,0b > (B )0a >,0b < (C )0a <,0b > (D )0a <,0b < 【答案】B【分析】依题意,画散点图知,两个变量负相关,所以0b <,0a >,故选B . 【点评】本题考查根据已知样本数判断线性回归方程中的b 和a 的符号,容易题. (5)【2014年湖北,理5,5分】在如图所示的空间直角坐标系O xyz -中,一个四面体的顶点坐标分别是()0,0,2,()2,2,0,()1,2,1,()2,2,2,给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )(A )①和②(B )③和①(C )④和③(D )④和② 【答案】D【分析】在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④和俯视图为②,故选D .【点评】本题考查空间由已知条件,在空间坐标系中作出几何体的形状,再正视图和俯视图,容易题. (6)【2014年湖北,理6,5分】若函数()f x ,()g x 满足()()110f x g x dx -=⎰,则称()f x ,()g x为区间[]1,1- 上的一组正交函数,给出三组函数:①()1sin 2f x x =,()1cos 2g x x =;②()1f x x =+,()1g x x =-;③()f x x =,()2g x x =,其中为区间[]1,1-的正交函数的组数是( )(A )0 (B )1 (C )2 (D )3 【答案】C【分析】对①1111111111sin cos sin cos 02222x x dx x dx x ---⎛⎫⎛⎫⋅=== ⎪ ⎪⎝⎭⎝⎭⎰⎰,则()f x ,()g x 为区间[]1,1-上的正交函数;对②()()()11231111111103x x dx x dx x x ---⎛⎫+-=-=-≠ ⎪⎝⎭⎰⎰,则()f x ,()g x 不为区间[]1,1-上的正交函数;对③134111104x dx x --⎛⎫== ⎪⎝⎭⎰,则()f x ,()g x 为区间[]1,1-上的正交函数,所以满足条件的正交函数有2组,故选C .【点评】新定义题型,本题考查微积分基本定理的运用,容易题.(7)【2014年湖北,理7,5分】由不等式0020x y y x ≤⎧⎪≥⎨⎪--≤⎩确定的平面区域记为1Ω,不等式12x y x y +≤⎧⎨+≥-⎩,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( )(A )18(B )14 (C )34 (D )78【答案】D【分析】依题意,不等式组表示的平面区域如图,由几何公式知,该点落在2Ω内的概率为:11221172218222P ⨯⨯-⨯⨯==⨯⨯,故选D .【点评】本题考查不等式组表示的平面区域,面积型的几何概型,中等题. (8)【2014年湖北,理8,5分】《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 和高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( )(A )227 (B )258 (C )15750 (D )355113【答案】B【分析】设圆锥底面圆的半径为r ,高为h ,依题意,()22L r π=,()22122375r h r h ππ=,所以218375ππ=,即π的近似值为258,故选B .【点评】本题考查《算数书》中π的近似计算,容易题.(9)【2014年湖北,理9,5分】已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( )(A )43 (B )23 (C )3 (D )2【答案】B【分析】设椭圆的短半轴为a ,双曲线的实半轴为1a ()1a a >,半焦距为c ,由椭圆、双曲线的定义得122PF PF a +=,1212PF PF a -=,所以11PF a a =+,21PF a a =-,因为1260F PF ∠=︒,由余弦定理得:()()()()22211114c a a a a a a a a =++--+-,所以222143c a a =+,即22221112222142a a a a a c c c c c ⎛⎫-=+≥+ ⎪⎝⎭,22111148e e e ⎛⎫∴+≤- ⎪⎝⎭,利用基本不等式可得椭圆和双曲线的离心率的倒数之和的最大值为23,故选B . 【点评】本题椭圆、双曲线的定义和性质,余弦定理及用基本不等式求最值,难度中等. (10)【2014年湖北,理10,5分】已知函数()f x 是定义在R 上的奇函数,当0x ≥时,2221()(|||2|3)2f x x a x a a =-+--,若R x ∀∈,(1)()f x f x -≤,则实数a 的取值范围为( )(A )11,66⎡⎤-⎢⎥⎣⎦ (B )66,⎡⎤-⎢⎥⎣⎦ (C )11,33⎡⎤-⎢⎥⎣⎦ (D )33,⎡⎤-⎢⎥⎣⎦【答案】B【分析】依题意,当0x ≥时,()2222223220x a x a f x a a x a x x a ⎧->⎪=-<≤⎨⎪-≤≤⎩,作图可知,()f x 的最小值为2a -,因为函数()f x 为奇函数,所以当0x <时,()f x 的最大值为2a ,因为对任意实数x 都有,()()1f x f x -≤,所以,()22421a a --≤,解得66a -≤≤,故实数a 的取值范围是66,⎡⎤-⎢⎥⎣⎦,故选B . 【点评】本题考查函数的奇函数性质、分段函数、最值及恒成立,难度中等.二、填空题:共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上....答错位置,书写不清,模棱两可均不得分. (一)必考题(11-14题) (11)【2014年湖北,理11,5分】设向量()3,3a =r ,()1,1b =-r ,若()()a b a b λλ+⊥-r r r r ,则实数λ= .【答案】3±【分析】因为()3,3a b λλλ+=+-r r ,()3,3a b λλλ+=++r r ,因为()()a b a b λλ+⊥-r r r r ,所以()()()()33330λλλλ+-+++=,解得3λ±.【点评】本题考查平面向量的坐标运算、数量积,容易题. (12)【2014年湖北,理12,5分】直线1:l y x a =+和2:l y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b += . 【答案】2【分析】依题意,圆心()0,0到两条直线的距离相等,且每段弧的长度都是圆周的14,即22a b =,2cos 452a=︒=,所以221a b ==,故222a b +=. 【点评】本题考查直线和圆相交,点到直线的距离公式,容易题. (13)【2014年湖北,理13,5分】设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为()I a ,按从大到小排成的三位数记为()D a (例如815a =,则()158I a =,()851D a =).阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b = . 【答案】495【分析】当123a =,则321123198123b =-=≠,当198a =,则981198783198b =-=≠;当783a =,则954459b a =-=,终止循环,故输出495b =.【点评】新定义题型,本题考查程序框图,当型循环结构,容易题. (14)【2014年湖北,理14,5分】设()f x 是定义在()0,+∞上的函数,且()0f x >,对任意0a >,0b >,0a >,0b >,若经过点()()af a ,()(),b f x ()()()()b f b a f a ,,,的直线和x 轴的交点为()0,c ,则称c 为a ,b 关于函数()f x的平均数,记为[],f M a b ,例如,当()1f x =())0(1>=x x f 时,可得2f a bM c +==,即(),f M a b 为,a b 的算术平均数.(1)当()f x =________(0x >)时,(),f M a b 为,a b 的几何平均数;(2)当()f x =________(0x >)时,(),f M a b 为,a b 的调和平均数2aba b+;(以上两空各只需写出一个符合要求的函数即可)【答案】(1)x (2)x (或填(1)1k x (2)2k x ,其中12,k k 为正常数均可)【分析】设()()0f x x x =>,则经过点(),a a ,(),b b -的直线方程为y a b a x a b a ---=--,令0y =,所以2abc x a b ==+,所以当()()0f x x x =>,(),f M a b 为,a b 的调和平均数2aba b+.【点评】本题考查两个数的几何平均数和调和平均数,难度中等.(一)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑,如果全选,则按第15题作答结果计分.) (15)【2014年湖北,理15,5分】(选修4-1:几何证明选讲)如图,P 为O e 的两条切线,切点分别为,A B ,过PA 的中点Q 作割线交O e 于,C D 两点,若1QC =,3CD =,则PB = _______. 【答案】4【分析】由切割线定理得()21134QA QC QD =⋅=⨯+=,所以2QA =,4PB PA ==. 【点评】本题考查圆的切线长定理,切割线定理,容易题.(16)【2014年湖北,理16,5分】(选修4-4:坐标系和参数方程)已知曲线1C 的参数方程是3x tty ⎧=⎪⎨=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2ρ=,则1C 和2C 交点的直角坐标为 .【答案】()3,1【分析】由3x t t y ⎧=⎪⎨=⎪⎩,消去t 得()2230,0x y x y =≥≥,由2ρ=得224x y +=,解方程组222243x y x y ⎧+=⎪⎨=⎪⎩,得1C 和2C 的交点坐标为()3,1.【点评】本题考查参数方程,极坐标方程和平面直角坐标方程的转化,曲线的交点,容易题.三、解答题:共6题,共75分.解答应写出文字说明,演算步骤或证明过程. (17)【2014年湖北,理17,11分】某实验室一天的温度(单位:C ︒)随时间t (单位:h )的变化近似满足函数关系;()103cossin,[0,24)1212f t t t t ππ=--∈.(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11C ︒,则在哪段时间实验室需要降温?解:(1)因为31()102(cos sin )102sin()12212123f t t t t ππππ=-+=-+,又024t ≤<,所以7,1sin()131233123t t ππππππ≤+<-≤+≤,当2t =时,sin()1123t ππ+=;当14t =时,sin()1123t ππ+=-,于是()f t 在[0,24)上取得最大值12,取得最小值8,故实验室这一天最高温度为12℃,最低温度为8℃,最大温差为4℃. (2)依题意,当()11f t >时实验室需要降温,由(1)得()102sin()123f t t ππ=-+,故有102sin()11123t ππ-+>,即1sin()1232t ππ+<-,又024t ≤<,因此71161236t ππππ<+<,即1018t <<,在10时至18时实验室需要降温. (18)【2014年湖北,理18,12分】已知等差数列{}n a 满足:12a =,且123,,a a a 成等比数列.(1)求数列{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+?若存在,求n 的最小值;若不存在,说明理由.解:(1)设数列{}n a 的公差为d ,依题意,2,2,24d d ++成等比数列,故有2(2)2(24)d d +=+,化简得240d d -=, 解得0d =或4d =,当0d =时,2n a =;当4d =时,2(1)442n a n n =+-⋅=-,从而得数列{}n a 的通项 公式为2n a =或42n a n =-.(2)当2n a =时,2n S n =,显然260800n n <+,此时不存在正整数n ,使得60800S n >+成立,当42n a n =-时,2[2(42)]22n n n S n +-==,令2260800n n >+,即2304000n n -->,解得40n >或10n <-(舍去),此时存在正整数n ,使得60800n S n >+成立,n 的最小值为41综上,当2n a =时,不存在满足题意的n ;当42n a n =-时,存在满足题意的n ,其最小值为41.(19)【2014年湖北,理19,12分】如图,在棱长为2的正方体1111ABCD A B C D -中,,,,E F M N 分别是棱1111,,,AB AD A B A D 的中点,点,P Q 分别在棱1DD ,1BB 上移动,且 ()02DP BQ λλ==<<.(1)当1λ=时,证明:直线1BC 平面EFPQ ;(2)是否存在λ,使平面EFPQ 和面PQMN 所成的二面角?若存在,求出λ的值;若不存 在,说明理由.解:解法一:(1)如图1,连接1AD ,由1111ABCD A B C D =是正方体,知11//BC AD ,当1λ=时,P 是1DD 的中点,又F 是AD的中点,所以1//FP AD ,所以1//BC FP ,而FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1//BC 平面EFPQ . (2)如图2,连接BD ,因为E ,F 分别是AB ,AD 的中点,所以//EF BD ,且12EF BD =,又,//DP BQ DP BQ =,所以四边形PQBD 是平行四边形,故//PQ BD ,且PQ BD =,从而//EF PQ ,且12EF PQ =,在Rt EBQ ∆和Rt FDP ∆中,因为BQ DP λ==,1BE DF ==,于是21DQ FP λ==+,所以四边形EFPQ 是等腰梯形.同理可证四边形PQMN 是等腰梯形. 分别取,,EF PQ MN 的中点为,,H O G ,连接,OH OG ,则,GO PQ HO PQ ⊥⊥,而GO HO O =I , 故GOH ∠是面EFPQ 和面PQMN 所成的二面角的平面角.若存在λ,使面EFPQ 和面PQMN 所成的二面角为直二面角,则90GOH ∠=o ,连接EM ,FN ,则 由//EF MN ,且EF MN =,知四边形EFNM 是平行四边形,连接GH ,因为H ,G 是EF ,MN 的中点,所以2GH ME ==,在GOH ∆中,22222214,1()2GH OH λλ==+-=+,2222211(2)()(2)2OG λλ=+--=-+,由222OG OH GH +=,得2211(2)422λλ-+++=,解得21λ=±,故存在21λ=±,使面EFPQ 和面PQMN 所成的二面角为直二面角.解法二:以D 为原点,射线1,,DA DC DD 分别为,,x y z 轴的正半轴建立如图3所示的空间直角坐标系D xyz -,由已知得(2,2,0)B ,1(0,2,2)C ,(2,1,0)E ,(1,0,0)F ,(0,0,)P λ,(2,0,2)BC -u u u r ,(1,0,)FP λ-u u u r ,(1,1,0)FE u u u r.(1)当1λ=时,(1,0,1)FP =-u u u r ,因为1(2,0,2)BC =-u u u u r ,所以12BC FP =u u u u r u u u r,即1//BC FP ,而FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1//BC 平面EFPQ .(2)设平面EFPQ 的一个法向量为(,,)n x y z =,则由0FE n FP n ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r,可得00x y x z λ+=⎧⎨-+=⎩,于是可取(,,1)n λλ=-, 同理可得平面MNPQ 的一个法向量为(2,2,1)m λλ=--,若存在λ,使面EFPQ 和面PQMN 所成的二 面角为直二面角,则(2,2,1)(,,1)0m n λλλλ⋅=--⋅-=,即(2)(2)10λλλλ---+=,解得21λ=. 故存在21λ=,使面EFPQ 和面PQMN 所成的二面角为直二面角. (20)【2014年湖北,理20,12分】计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水和库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立. (1)求未来4年中,至多1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系;若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万 元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?解:(1)依题意,110(4080)0.250p P X =<<==,235(80120)0.750p P X =≤≤==,35(120)0.150p P X =>== 由二项分布,在未来4年中至多有1年的年入流量超过120的概率为04134343433991(1)(1)()4()()0.9477101010p C p C p p =-+-=+⨯⨯=.(2)记水电站年总利润为Y (单位:万元)(1)安装1台发电机的情形:由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润5000,()500015000Y E Y ==⨯=.(2)安装2台发电机的情形:依题意,当4080X <<时,一台发电机运行,此时50008004200Y =-=,因此1(4200)(4080)0.2P Y P X p ==<<==;当80X ≥时,两台发电机运行,此时5000210000Y =⨯=,因此(10000)(80)0.8P Y P X p p ==≥=+=;由此得Y 的分布列如下:Y4200 10000 P0.2 0.8 所以,()E Y =(3)安装3台发电机的情形:当4080X <<时,一台发电机运行,此时500016003400Y =-=,因此1(3400)(4080)0.2P Y P X p ==<<==;当80120X ≤≤时,两台发电机运行,此时500028009200Y =⨯-=,因此2(9200)(80120)0.7P Y P X p ==≤≤==;当120X >时,三台发电机运行,5000315000Y =⨯=,因此3(15000)(120)0.1P Y P X p ==>==, 由此得Y Y3400 9200 15000 P0.2 0.7 0.1 所以,综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.(21)【2014年湖北,理21,14分】在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C .(1)求轨迹为C 的方程;(2)设斜率为k 的直线l 过定点()2,1p -,求直线l 和轨迹C 好有一个公共点,两个公共点,三个公共点时k 的相应取值范围.解:(1)设点(,)M x y ,依题意得||||1MF x =+22(1)||1x y x -+=+,化简整理得22(||)y x x =+,年入流量X 40<X<80 40≤X ≤80X>120 发电机最多可运行台数 1 2 3故点M 的轨迹C 的方程为24,00,0x x y x ≥⎧=⎨<⎩.(2)在点M 的轨迹C 中,记212:4,:0(0)C y x C y x ==<,依题意,可设直线l 的方程为1(2)y k x -=+,由方程组21(2)4y k x y x-=+⎧⎨=⎩,可得244(21)0ky y k -++= ①(1)当0k =时,此时1y =,把1y =代入轨迹C 的方程,得14x =,故此时直线:1l y =和轨迹C 恰好有一个公共点1(,1)4(2)当0k ≠时,方程①的判别式为216(21)k k ∆=-+- ②设直线l 和x 轴的交点为0(,0)x ,则由1(2)y k x -=+,令0y =,得021k x k+=-③ (ⅰ)若000x ∆<⎧⎨<⎩由②③解得1k <-,或12k >,即当1(,1)(,)2k ∈-∞-⋃+∞时,直线l 和1C 没有公共点,和2C 有一个公共点,故此时直线l 和轨迹C 恰好有一个公共点. (ⅱ)若000x ∆=⎧⎨<⎩或000x ∆>⎧⎨≥⎩,由②③解得1{1,}2k ∈-,或102k -≤<,即当1{1,}2k ∈-时,直线l 和1C只有一个公共点,和2C 有一个公共点,当1[,0)2k ∈-时,直线l 和1C 有两个公共点,和2C 没有公共点,故当11[,0){1,}22k ∈--U 时,直线l 和轨迹C 恰好有两个公共点.(ⅲ)若000x ∆>⎧⎨<⎩由②③解得112k -<<-,或102k <<,即当11(1,)(0,)22k ∈--⋃时,直线l 和1C 有两个公共点,和2C 有一个公共点,故此时直线l 和轨迹C 恰好有三个公共点. 综合(1)(2)可知,当1(,1)(,){0}2k ∈-∞-⋃+∞⋃时,直线l 和轨迹C 恰好有一个公共点;当11[,0){1,}22k ∈--U 时,直线l 和轨迹C 恰好有两个公共点;当11(1,)(0,)22k ∈--U 时,直线l 和轨迹C 恰好有三个公共点.(22)【2014年湖北,理22,14分】π为圆周率,e =2.71828……为自然对数的底数.(1)求函数xxx f ln )(=的单调区间; (2)求33,3,,,3,e e e e ππππ这6个数中的最大数和最小数;(3)将33,3,,,3,ee e e ππππ这6个数按从小到大的顺序排列,并证明你的结论.解:(1)函数()f x 的定义域为(0,)+∞,因为ln ()x f x x =,所以21ln ()xf x x -'=,当()0f x '>,即0x e <<时,函数()f x 单调递增;当()0f x '<,即x e >时,函数()f x 单调递减.故函数()f x 的单调递增区间为(0,)e , 单调递减区间为(,)e +∞. (2)因为3e π<<,所以ln33ln ,ln ln3e e πππ<<,即ln3ln ,ln ln3e e e πππ<<,于是根据函数ln ,x y x y e ==, x y π=在定义域上单调递增,可得333,3e e e e ππππ<<<<,故这6个数的最大数在3π和3π之中,最小数在3e 和3e 之中.由3e π<<及(1)的结论,得()(3)()f f f e π<<,即ln ln3ln 3eeππ<<. 由ln ln33ππ<,得3ln ln3ππ<,所以33ππ>;由ln3ln 3e e<,得3ln3ln e e <,所以33e e >. 综上,6个数中最大数是3π,最小数是3e.(3)由(2)知,3333,3e e e e πππ<<<<,又由(2)知,ln ln eeππ<,得e e ππ<故只需比较3e 和e π和e π 和3π的大小,由(1)知,当0x e <<时,1()()f x f e e<=,即ln 1x x e<, 在上式中,令2e x π=,又2e e π<,则2ln e e ππ<,从而2ln e ππ-<,即得ln 2eππ>- ①由①得, 2.72ln (2) 2.7(2) 2.7(20.88) 3.02433.1e e e ππ>->⨯->⨯-=>,即ln 3e π>,亦即3ln ln e e π>,所以3e e π<,又由①得,33ln 66ee πππ>->->,即3ln ππ>,所以3e ππ<.综上可得,3333e e e e ππππ<<<<<,即6个数从小到大的顺序为333,,,,,3e e e e ππππ.。

湖北省武汉市2014届高三11月调研考试数学理试题Word版含解析

湖北省武汉市2014届高三11月调研考试数学理试题Word版含解析

(考试时间:120分钟,满分150分)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z =-3+i2+i的共轭复数是( )A .2+iB .2-iC .-1+iD .-1-i2.函数f (x )=ln x 的图象与函数g (x )=x 2-4x +4的图象的交点个数为( )A .0B .1C .2D .33.如图所示的方格纸中有定点O,P,Q,E,F,G,H,则→OP+→OQ=()A.→OH B.→OG C.→EO D.→FO4.已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC 内部,则z=-x+y的取值范围是()A.(1-3,2) B.(0,2) C.(3-1,2) D.(0,1+3)5.给定两个命题p,q.若﹁p是q的必要而不充分条件,则p是﹁q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件6.一几何体的三视图如右图所示,则该几何体的体积为()A .200+9πB .200+18πC .140+9πD .140+18π7.某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为( )A .12B .38C .14D .188.直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A .43B .2C .83D .1623【答案】C 【解析】9.椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( ) A .[12,34] B .[38,34] C .[12,1] D .[34,1]10.已知函数f (x )=cos x sin2x ,下列结论中错误的是( )A .y =f (x )的图象关于点(π,0)中心对称B .y =f (x )的图象关于直线x =π2对称C .f (x )的最大值为32 D .f (x )既是奇函数,又是周期函数 【答案】C 【解析】第Ⅱ卷(共100分)二、填空题(本大题共5小题,每小题5分,共25分).11.已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x ﹤0,-tan x ,0≤x <π2.则f (f (π4))= .12.执行如图所示的程序框图,输出的S 值为 .13.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示,则7个剩余分数的方差为.14.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是.(用数字作答)【答案】59015.下表中的数阵为“森德拉姆素数筛”,其特点是每行每列都成等差数列,记第i行第j列的数为a i,j(i,j∈N*),则(Ⅰ)a9,9=;(Ⅱ)表中的数82共出现次.三、解答题(解答应写出必要的文字说明,证明过程或演算步骤.)16.(本小题满分12分)设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a-b+c)=ac.(Ⅰ)求B ; (Ⅱ)若sin A sin C =3-14,求C .cos()cos cos sin sin cos cos sin sin 2sin sin A C A C A C A C A C A C ∴-=+=-+112242=+⨯= 6A C π∴-=或6A C π-=-12C π∴=或4C π=考点:1.余弦定理;2.两角的和差公式.17.(本小题满分12分)已知等比数列{a n}的前n项和S n=2n-a,n∈N*.设公差不为零的等差数列{b n}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比数列.(Ⅰ)求a的值及数列{b n}的通项公式;a n}的前n项和为T n.求使T n>b n的最小正整数n.(Ⅱ)设数列{log218.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)【答案】(Ⅰ)x=15,y=20.E(X)=1.9;(Ⅱ)980【解析】=320×320+320×310+310×320=980.故该顾客结算前的等候时间不超过2.5分钟的概率为980.考点:1.离散型随机变量的分布列与数学期望;2.以及相互独立事件的概率的求法.19.(本小题满分12分)如图,三棱柱ABC-A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (Ⅰ)证明:AB ⊥A 1C ;(Ⅱ)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.∴OA ,OC 1OA 两两相互垂直,以O 为坐标原点,OA 的方向为x 轴正方向,|OA |为单位长度,建立如图所示空间直角坐标系O xyz -,设2AB CB ==20.(本小题满分13分)已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.(Ⅰ)求动点P的轨迹C的方程;(Ⅱ)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求→AD·→EB的最小值.【答案】(Ⅰ)当x≥0时,y2=4x;当x<0时,y=0;(Ⅱ)16.【解析】试题分析:(Ⅰ)要求动点P的轨迹C,设动点P的坐标为(x,y),根据题意列出关系式(x-1)2+y2-|x|=1,化简得y2=2x+2|x|,式中有绝对值,需要根据x讨论为当x≥0时,y2=4x;当x<0时,y=0;(Ⅱ)当且仅当k2=1k2,即k=±1时,→AD·→EB取最小值16.考点:1.曲线的轨迹方程求解;2.直线与圆锥曲线问题.21.(本小题满分14分)已知函数f (x )的导函数为f ′(x ),且对任意x >0,都有f ′(x )>f (x )x .(Ⅰ)判断函数F (x )=f (x )x在(0,+∞)上的单调性;(Ⅱ)设x 1,x 2∈(0,+∞),证明:f (x 1)+f (x 2)<f (x 1+x 2); (Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论.。

「湖北省武汉市武昌区2014届高三元月调考理综试题Word版含答案」

「湖北省武汉市武昌区2014届高三元月调考理综试题Word版含答案」

湖北武昌区2014届高三上学期期末学业质量调研理综试题本试卷共300分,考试用时150分钟。

本卷分为第I卷(选择题)和第II卷(必考题和选考题)两部分。

注意事项:1.答题前,考生务必将自己的学校、班级、姓名、准考证号填写在答题卡指定位置,认真核对与准考证号条形码上的信息是否一致,并将准考证号条形码粘贴在答题卡上的指定位置。

2.第1卷的作答:选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试题卷上无效。

3.第II卷的作答:用黑色墨水的签字笔直接答在答题卡上的每题所对应的答题区域内。

答在试题卷上或答题卡指定区域外无效。

4.选考题的作答:先把所选题目的题号在答题卡指定位置用2B铅笔涂黑。

考生应根据自己选做的题目准确填涂题号,不得多选。

答题答在答题卡对应的答题区域内,答在试题卷、草稿纸上无效。

5.考试结束,监考人员将答题卡收回,考生自己保管好试题卷,评讲时带来。

第I卷(选择题共1 26分)本卷共2 1小题,每小题6分,共126分。

可能用到的相对原子质量:HlB11 C 12N140 1 6 Na 23Mg 24 S32 Cl 35.5Cu 64 Zn 65一、选择题:本大题共13小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.关于高中生物学实验的相关叙述,不正确的是A.噬菌体必须在有活菌生存的培养基中培养增殖是因其缺乏独立的代谢系统ﻩB.盐酸在“低温诱导植物染色体数目变化”实验中具有“解离”的作用ﻩC.鉴定淀粉是否分解成葡萄糖可用碘液替代斐林试剂ﻩD.在提取绿叶中的色素时可用无水乙醇、丙酮等作为色素的提取剂2.下列关于细胞分化、衰老、凋亡和癌变的6种叙述中,正确的有①个体发育过程中细胞的衰老对生物体都是有害的②正常细胞癌变后在体外适宜条件下培养可无限增殖③由造血干细胞分化成红细胞的过程是可逆的④癌细胞容易在体内转移与其细胞膜上糖蛋白等物质减少有关⑤人胚胎发育过程中尾的消失是细胞凋亡的结果⑥原癌基因和抑癌基因的突变是细胞癌变的内因ﻩA.1种ﻩB.2种ﻩC.3种ﻩD.4种3.长跑比赛中,运动员体内多种生理过程发生了改变。

湖北省武汉市2014届高三9月调考数学理试题 Word版含答案

湖北省武汉市2014届高三9月调考数学理试题 Word版含答案

武汉市2014届高三9月调研测试数 学(理科)2013.9.6一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足i z =2+4i ,则在复平面内z 对应的点的坐标是A .(2,4)B .(2,-4)C .(4,-2)D .(4,2) 2.已知全集为R ,集合A ={x |log 2x <1},B ={x |x -1≥0},则A ∩(∁R B )=A .{x |0<x <1}B .{x |0<x <2}C .{x |x <1}D .{x |1<x <2}3.设命题p :函数y =sin2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是A .p 为真B .﹁q 为假C .p ∧q 为假D .p ∨q 为真 4.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是5.执行右边的程序框图,如果输入a =4,那么输出的n 的值为A .2B .3C .4D .56.一个几何体的三视图如图所示,则该几何体的体积是A .64B .72C .80D .1127.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为A .35mB .30mC .25mD .20m8.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0.表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,则m 的取值范围是A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53) 9.已知抛物线y 2=2px (p >0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有相同的焦点F ,点A是两曲线的一个交点,且AF ⊥x 轴,则双曲线的离心率为A .2+2B .5+1C .3+1D .2+1 10.若函数f (x )=x 3+ax 2+bx +c 有极值点x 1,x 2,且f (x 1)=x 1,则关于x 的方程3(f (x ))2+2af (x )+b =0的不同实数根的个数是A .3B .4C .5D .6二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分. 11.若⎠⎛0T x 2d x =9,则常数T 的值为 .12.已知△ABC 是边长为1的等边三角形,P 为边BC 上一点,满足→PC =2→BP ,则→AB ·→AP = . 13.将序号分别为1,2,3,4,5的5张电影票全部分给4人,每人至少1张.如果分给同一人的2张电影票连号,那么不同的分法种数是 . 14.设θ为第二象限角,若tan(θ+π4)=12,则sin θ+cos θ= .15.已知数列{a n }的各项均为正整数,S n 为其前n 项和,对于n =1,2,3,…,有a n +1=⎩⎪⎨⎪⎧3a n+5,a n 为奇数,a n 2k ,其中k 是使a n +1为奇数的正整数,a n 为偶数.(Ⅰ)当a 3=5时,a 1的最小值为 ;(Ⅱ)当a 1=1时,S 1+S 2+…+S 10= .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知2cos(B -C )+1=4cos B cos C . (Ⅰ)求A ;(Ⅱ)若a =27,△ABC 的面积为23,求b +c .17.(本小题满分12分)如图,直三棱柱ABC-A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (Ⅰ)证明:BC 1∥平面A 1CD ;(Ⅱ)求二面角D -A 1C -E 的正弦值.18.(本小题满分12分)设公差不为0的等差数列{a n }的首项为1,且a 2,a 5,a 14构成等比数列. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n=1-12n ,n ∈N *,求{b n }的前n 项和T n .19.(本小题满分12分)现有A ,B 两球队进行友谊比赛,设A 队在每局比赛中获胜的概率都是23. (Ⅰ)若比赛6局,求A 队至多获胜4局的概率;(Ⅱ)若采用“五局三胜”制,求比赛局数ξ的分布列和数学期望.20.(本小题满分13分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,过右焦点F 的直线l 与C 相交于A 、B 两点,当l 的斜率为1时,坐标原点O 到l 的距离为22.(Ⅰ)求a ,b 的值;(Ⅱ)C 上是否存在点P ,使得当l 绕F 转到某一位置时,有→OP =→OA +→OB 成立?若存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由. 21.(本小题满分14分)已知函数f (x )=2-xx -1+a ln(x -1)(a ∈R ).(Ⅰ)若f (x )在[2,+∞)上是增函数,求实数a 的取值范围;(Ⅱ)当a =2时,求证:1-1x -1<2ln(x -1)<2x -4(x >2);(Ⅲ)求证:14+16+…+12n <ln n <1+12+…+1n -1(n ∈N *,且n ≥2).武汉市2014届高三9月调研测试 数学(理科)试题参考答案及评分标准一、选择题1.C 2.A 3.C 4.A 5.B 6.B 7.D 8.C 9.D 10.A 二、填空题11.3 12.56 13.96 14.-105 15.(Ⅰ)5;(Ⅱ)230 三、解答题 16.(本小题满分12分) 解:(Ⅰ)由2cos(B -C )+1=4cos B cos C ,得2(cos B cos C +sin B sin C )+1=4cos B cos C ,即2(cos B cos C -sin B sin C )=1,亦即2cos(B +C )=1,∴cos(B +C )=12.∵0<B +C <π,∴B +C =π3.∵A +B +C =π,∴A =2π3.………………………………………………………6分 (Ⅱ)由(Ⅰ),得A =2π3.由S △ABC =23,得12bc sin 2π3=23,∴bc =8. ① 由余弦定理a 2=b 2+c 2-2bc cos A ,得(27)2=b 2+c 2-2bc cos 2π3,即b 2+c 2+bc =28,∴(b +c )2-bc =28. ② 将①代入②,得(b +c )2-8=28,∴b +c =6.………………………………………………………………………12分17.(本小题满分12分) 解:(Ⅰ)如图,连结AC 1交A 1C 于点F ,则F 为AC 1的中点.又D 是AB 的中点,连结DF ,则BC 1∥DF . ∵BC 1⊄平面A 1CD ,DF ⊂平面A 1CD ,∴BC 1∥平面A 1CD .………………………………………………………………4分 (Ⅱ)由AC =CB =22AB ,得AC ⊥BC .以C 为坐标原点,→CA 的方向为x 轴的正方向,建立如图所示的空间直角坐标系C-xyz .设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2),∴→CD =(1,1,0),→CE =(0,2,1),→CA 1=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎪⎨⎪⎧n ·→CD =0,n ·→CA 1=0.即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1+2z 1=0.可取n =(1,-1,-1).同理,设m 是平面A 1CE 的法向量,则 ⎩⎪⎨⎪⎧m ·→CE =0,m ·→CA 1=0.可取m =(2,1,-2).从而cos <n ,m >=n ·m |n ||m |=33,∴sin <n ,m >=63.故二面角D -A 1C -E 的正弦值为63.……………………………………………12分18.(本小题满分12分) 解:(Ⅰ)设等差数列{a n }的公差为d (d ≠0),则∵a 2,a 5,a 14构成等比数列, ∴a 25=a 2a 14,即(1+4d )2=(1+d )(1+13d ), 解得d =0(舍去),或d =2.∴a n =1+(n -1)×2=2n -1.……………………………………………………4分 (Ⅱ)由已知b 1a 1+b 2a 2+…+b n a n=1-12n ,n ∈N *,当n =1时,b 1a 1=12;当n ≥2时,b n a n =1-12n -(1-12n -1)=12n .∴b n a n=12n ,n ∈N *.由(Ⅰ),知a n =2n -1,n ∈N *, ∴b n =2n -12n ,n ∈N *. 又T n =12+322+523+…+2n -12n , 12T n =122+323+…+2n -32n +2n -12n +1. 两式相减,得12T n =12+(222+223+…+22n )-2n -12n +1=32-12n -1-2n -12n +1,∴T n =3-2n +32n .…………………………………………………………………12分19.(本小题满分12分) 解:(Ⅰ)记“比赛6局,A 队至多获胜4局”为事件A ,则P (A )=1-[C 56(23)5(1-23)+C 66(23)6]=1-256729=473729.故A 队至多获胜4局的概率为473729.………………………………………………4分 (Ⅱ)由题意可知,ξ的可能取值为3,4,5.P (ξ=3)=(23)3+(13)3=927=13,P (ξ=4)=C 23(23)2×13×23+C 23(13)2×23×13=1027, P (ξ=5)=C 24(23)2(13)2=827. ∴ξ的分布列为:ξ 3 4 5 P131027827∴E (ξ)=3×13+4×1027+5×827=10727.…………………………………………12分20.(本小题满分13分) 解:(Ⅰ)设F (c ,0),当l 的斜率为1时,其方程为x -y -c =0,∴O 到l 的距离为|0-0-c |2=c2,由已知,得c 2=22,∴c =1. 由e =c a =33,得a =3,b =a 2-c 2=2. (4)分(Ⅱ)假设C 上存在点P ,使得当l 绕F 转到某一位置时,有→OP =→OA +→OB 成立,设A (x 1,y 1),B (x 2,y 2),则P (x 1+x 2,y 1+y 2). 由(Ⅰ),知C 的方程为x 23+y 22=1.由题意知,l 的斜率一定不为0,故不妨设l :x =ty +1. 由⎩⎪⎨⎪⎧x =ty +1,x 23+y 22=1.消去x 并化简整理,得(2t 2+3)y 2+4ty -4=0.由韦达定理,得y 1+y 2=-4t2t 2+3,∴x 1+x 2=ty 1+1+ty 2+1=t (y 1+y 2)+2=-4t 22t 2+3+2=62t 2+3,∴P (62t 2+3,-4t2t 2+3).∵点P 在C 上,∴(62t 2+3)23+(-4t2t 2+3)22=1, 化简整理,得4t 4+4t 2-3=0,即(2t 2+3)(2t 2-1)=0,解得t 2=12. 当t =22时,P (32,-22),l 的方程为2x -y -2=0; 当t =-22时,P (32,22),l 的方程为2x +y -2=0.故C 上存在点P (32,±22),使→OP =→OA +→OB 成立,此时l 的方程为2x ±y -2=0.…………………………………………………………………………………13分21.(本小题满分14分)解:(Ⅰ)由已知,得f (x )=-1+1x -1+a ln(x -1),求导数,得f ′(x )=-1(x -1)2+ax -1. ∵f (x )在[2,+∞)上是增函数,∴f ′(x )≥0在[2,+∞)上恒成立,即a ≥1x -1在[2,+∞)上恒成立,∴a ≥(1x -1)max.∵x ≥2,∴0<1x -1≤1,∴a ≥1.故实数a 的取值范围为[1,+∞).………………………………………………4分 (Ⅱ)当a =2时,由(Ⅰ)知,f (x )在[2,+∞)上是增函数,∴当x >2时,f (x )>f (2),即-1+1x -1+2ln(x -1)>0,∴2ln(x -1)>1-1x -1.令g (x )=2x -4-2ln(x -1),则g ′(x )=2-2x -1=2(x -2)x -1.∵x >2,∴g ′(x )>0,∴g (x )在(2,+∞)上是增函数,∴g (x )>g (2)=0,即2x -4-2ln(x -1)>0, ∴2x -4>2ln(x -1).综上可得,1-1x -1<2ln(x -1)<2x -4(x >2).………………………………9分(Ⅲ)由(Ⅱ),得1-1x -1<2ln(x -1)<2x -4(x >2),令x -1=k +1k ,则1k +1<2ln k +1k <2·1k ,k =1,2,…,n -1.将上述n -1个不等式依次相加,得 12+13+…+1n <2(ln 21+ln 32+…+ln n n -1)<2(1+12+…+1n -1), ∴12+13+…+1n <2ln n <2(1+12+…+1n -1),∴14+16+…+12n <ln n <1+12+…+1n -1(n ∈N *,且n ≥2).………………14分。

湖北省武昌区2014届高三1月调考理综试卷扫描版答案

湖北省武昌区2014届高三1月调考理综试卷扫描版答案

武昌区2014届高三年级元月调研考试理科综合试卷评分标准一、选择题:本大题共13小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

二、选择题:本大题共8小题,每小题6分,在每小题给出的四个选项中,有的只有一项符合题目要求,有的有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有22.(1)(2)AC (2分)(3)2122))((21))((21t D m M t D m M mgx ∆+-∆+= (3分) 23.(1)D (1分);E (1分) (5)图线如图 (1分) (6)4.5 (2分) 9000(.0) (2分);21000(.0) (2分)24.(14分)(1)取沿杆向上为正方向,由图象可知:在0~2 s 内:m/s 151011=-=t v v a (方向沿杆向上) ....................(2分) 在2~5 s 内:m/s 102122-=-=t v v a (“-”表示方向沿杆向下)...........(2分) (2)有风力时的上升过程,由受力分析和牛顿第二定律有:1sin )sin cos (cos ma mg F mg F =-+-θθθμθ ........................①(3分) 停风后的上升阶段,有:2sin cos ma mg mg =--θθμ ......................................②(3分) 由②解得: μ = 0.5 ...........................................(2分) 代入①得: F = 50 N .........................................(2分)25.(18分)(1)(1)由Rv m qBv 200=得m qBa v =0..................................(3分) (2)这些粒子中,从O 沿+y 轴方向射入磁场的粒子,从O 到C 耗时最长由0v s t =得 qBm v a t ππ==0max ...................................(4分) (3)这些粒子经过①区域偏转后方向都变成与 +x 轴平行;1K Ω 4 61081214接着匀速直线进入②区域,经过②区域偏转又都通过C 点;从C 点进入③区域,经过③区域偏转,离开③区域时,所有粒子都变成与-y 轴平行(即垂直进入电场)........(2分) 对于从x = 2a 进入电场的粒子,在-x 方向的分运动有: 21212t mEq a ⨯⨯= 解得 Eq am t 41=............(2分) 则该粒子运动到y 轴上的坐标为Emaq Ba a t v a y 4101--=--=....(2分) 对于从x = 3a 进入电场的粒子,在-x 方向的分运动有: 22213t mEq a ⨯⨯= 解得 Eqam t 62=........(2分) 则该粒子运动到y 轴上的坐标为Em aq Baa t v a y 6202--=--=...............(2分) 这群粒子运动到y 轴上的区间为Emaq Ba a y Em aq Ba a 46--≤≤--...........(1分) 26.(15分)(1)Mg 2B 2O 5·H 2O +2NaOH === 2NaBO 2+2Mg(OH)2↓(2分)(2)2Na ++4BO 2-+2CO 2+11H 2O === Na 2B 4O 7·10H 2O↓+2HCO 3-(2分)(3)c (Na +) = c (CO 32-) + c (HCO 3-) + c (H 2CO 3) (2分)(4)利用强酸制备弱酸H 3BO 3 (1分)(5)①淀粉溶液(1分) 溶液由蓝色恰好变为无色(1分)②79.2%(2分)(6)NaBO 3·H 2O (1分)解题过程 (3分) 解:T 3时 n (Na)=molg ×g /23℅230.20= 0.2 mol (1分) 则30.80 g 样品中,依n (Na)∶ n (B)∶n (H)∶n (O)=l ∶1∶n ∶7可得0.2 mol × 23 g/mol + 0.2 mol × 11 g/mol + 0.2n × 1g/mol + 7 × 0.2 mol × 16 g/mol = 30.80 g 解得n = 8故原晶体为NaBO 3·4H 2O (1分)设T 3时晶体的化学式为NaBO 3·m H 2O则由T 3时晶体中钠元素的质量分数可得m1848112323+++ × 100% = 23%解得m = 1所以T 3时晶体的化学式为NaBO 3·H 2O (1分) 27.(14分)(1)加热(2分) (2)①1.33或34(2分,若书写单位且正确得2分,单位错误不得分) ②C 、D (2分) (3)①B 、D (2分)②CH 3OCH 3-12e -+16OH -=== 2CO 32-+11H 2O (2分) ③C (2分) (4)CH 3OCH 3(g)+3O 2(g) === 2CO 2(g)+3H 2O(l) ΔH =-1454.98 kJ/mol (2分) 28.(14分)(1)减少副产物乙醚生成(1分)(2)b 中长直玻璃管内有一段液柱上升(1分)过度冷却,产品1 , 2-二溴乙烷在装置d 中凝固(1分) 防止倒吸(1分) (3)吸收乙烯气体中含有的CO 2、SO 2等酸性气体(2分)(4)①浓硫酸将部分乙醇氧化 ②发生副反应生成乙醚 ③乙醇挥发④乙烯流速过快,未完全发生加成反应(2分)(5)乙醚(2分) D (2分)(6)液封Br 2及1 , 2-二溴乙烷(2分) 29.(11分)(1)排除原有气体对实验结果的干扰(1分) CO 2浓度逐渐降低(1分) C 3(1分) (2)将NaHCO 3溶液换成等量的1%NaOH 溶液,其他条件同该装置(2分)至少再设置两组NaHCO 3溶液浓度不同的该装置,其他条件同该装置(2分) (3)植物光合作用速率达到最大时的最小光照强度(光饱和点)(2分)光照强度大于或等于c 时的真正(或总、实际)光合作用速率(2分)30.(10分)(1)胰岛素(1分) 葡萄糖载体(1分)ATP (1分) 胰岛素受体(的数目)(1分)(2)核糖体、内质网、高尔基体(2分) 胰高血糖素(肾上腺素)(1分) (3)Ⅰ型(1分) 自身免疫(1分) Ⅱ型(1分)31.(8分)(1)黑色(1分) 白色(1分) C a C d ×C a C d (1分) (2)(均为)白色(1分)(3)C a >C c >C b >C d (2分) (4)10(1分) 3(1分) 32.(10分)甲状腺分泌甲状腺激素(2分)(2)①促甲状腺激素释放激素(2分) ②甲状腺(1分) ③等量且适宜浓度的促甲状腺激素溶液(1分)(3)下降(1分) 下降(1分 上升(1分) 下降(1分) 33.【物理——选修3-3】(15分) (1)ACD (6分) (2)(i )设起始状态气缸内气体压强为p 1,当活塞缓慢拉至气缸顶端,设气缸内气体压强为p 2由玻意耳定律得: LS p lS p 21= ………………………………………(2分)在起始状态对活塞由受力平衡得:S p mg S p 01+= …………………(1分) 对活塞由受力平衡得:S p mg S p F 02+=+ ………………………………(1分)解得 F = 110N …………………………………………(1分) (ii )由盖-吕萨克定律得:T LS T lS '=…………………………………………(2分) 其中:K 300=T K )273(t T '+='解得 t '≈ 60.3℃ ……………………………………………………………(2分)34.【物理——选修3-4】(15分) (1)ABD (6分) (2)(i )作出光路图,光线在AC 面上的入射角为60°,折射角为30°,则折射率330sin 60sin 00==n ……………………………………………(3分)(ii )作出光束经BC 面反射后的光路图,因为发生全反射的临界角为2131sin >=C ,即C >30°,所以光线在在F 点发生全反射,在E 、H 点不能发生全反射。

2014届湖北省武昌区高三元月调研考试理科数学试题(含答案详解)扫描版

2014届湖北省武昌区高三元月调研考试理科数学试题(含答案详解)扫描版

武昌区2014届高三年级元月调研考试 理科数学试题参考答案及评分细则一、选择题:1.C 2.B 3.B 4.A 5.D 6.D 7.A 8.C 9.B 10.B 二、填空题:11.480 12.2517(或0.68) 13.1(,1)2- 14.(Ⅰ)16;(Ⅱ)()211++n n 15.(Ⅰ)120;(Ⅱ)80 三、解答题: 16.(本小题满分12分)解:21cos 2B B =-,所以 2cos 2sin B B B =.因为 0B <<π, 所以 sin 0B >,从而 tan B =所以π3B =.…………………………………………………………………(6分) (Ⅱ)因为 4A π=,π3B =,根据正弦定理得 sin sin AC BC B A =,所以sin sin BC BAC A⋅==因为512C A B π=π--=,所以 5sin sin sin()12464C πππ==+=.所以△ABC 的面积13sin 22S AC BC C +=⋅=.……… ………………(12分) 17.(本小题满分12分)解:(Ⅰ) 因为11=a ,且521,,a a a 依次成等比数列,所以5122a a a ⋅=,即()()d d 41112+⋅=+,所以022=-d d ,解得2=d (0=d 不合要求,舍去). 所以()12121-=-+=n n a n .因为121-=+n n b b ,所以112(1).n n b b +-=-所以{}1n b -是首项为=-11b 2,公比为2的等比数列. 所以11222.n n n b --=⋅=xyz所以2 1.nn b =+ ……………………………………………………………(6分) (Ⅱ)22211.(21)(21)2121n n a a n n n n +==-⋅-+-+∴1211)121121()5131()3111(+-=+--++-+-=n n n S n 于是1111122(1)11.21212121(21)(21)nn n n nn n S b n n n ---=--+=-=++++++ 所以,当1,2n =时,22nn =,n S =11nb -; 当3n ≥时,22nn <,n S <11nb -.………………………………………(12分) 18.(本小题满分12分) 解:(Ⅰ)方法一:A A ⋅+=⋅)(110)(=+⋅=⋅=BE AB BC AE BC ,AE C A ⊥∴1;AF DC D A AF C A ⋅+=⋅)(110)(=+⋅=⋅=,AF C A ⊥∴1.⊥∴C A 1平面AEF . …………………………(6分)方法二:⊥BC 平面11A ABB ,⊂AE 平面11A ABB ,∴AE BC ⊥.又∵B A AE 1⊥,∴⊥AE 平面BC A 1. ∵⊂C A 1平面BC A 1,∴C A AE 1⊥.同理可证C A AF 1⊥. ∵A AF AE = ,∴⊥C A 1平面AEF . …………………………………(6分)(Ⅱ)如图,以为AB 为x 轴,AD 为y 轴,1AA 为z 轴,建立空间直角坐标系, 因为4=AB ,3=AD ,51=AA ,得到下列坐标:)0,0,0(A ,)0,0,4(B ,)0,3,4(C ,)0,3,0(D ,)5,0,0(1A ,)5,0,4(1B ,)5,3,4(1C )5,3,0(1D .由(Ⅰ)知,)5,3,4(1-=A 是平面AEF 的一个法向量. 设平面BD B D 11的法向量为()0,,y x =,则011=⋅D B .)0,3,4(11-=D B ,034=+-∴y x .令3=x ,4=y ,则()0,4,3=a . ∴25212)5(34043)5(03443||||,cos 22222211=-++⨯++-⨯+⨯+⨯=⋅>=<C A a AC a . ∴25337)25212(1sin 2=-=θ. ∴平面AEF 和平面BD B D 11所成的角的正弦值为25437.………………(12分) 19.(本小题满分12分) 解:(Ⅰ)数学合格的概率约为4032841005++=.物理合格的概率约为4029631004++=.…………………………………………(4分)(Ⅱ)(ⅰ)随机变量X 的所有取值为9,4.5,3,-1.5.()5343549=⨯==X P ; ()20343515.4=⨯==X P ; ()5141543=⨯==X P ; ()20141515.1=⨯=-=X P . 所以,随机变量X 的分布列为:X9 5.4 3 5.1- P35 320 15 120 6.6201)5.1(5132035.4539=⨯-+⨯+⨯+⨯=EX .…………………………(9分)(ⅱ)抽查5位同学物理分数,合格n 人,则不合格有5n -人,总学分为56)5(5-=--n n n 个. 依题意,得14)5(5≥--n n ,解得619≥n .所以4n =或5n =.设“抽查5位同学物理分数所获得的学分不少于14分”为事件A ,则445531381()C ()()444128P A =⨯+=.……………………………………(12分) 20.(本题满分13分) 解:(Ⅰ)设)0,(c F ,则22=a c ,知c a 2=. 过点F 且与x 轴垂直的直线方程为c x =,代入椭圆方程,有1)(2222=+-b y a c ,解得b y 22±=.于是22=b ,解得1=b .又222b c a =-,从而1,2==c a .所以椭圆C 的方程为1222=+y x . …………………………………………(4分)(Ⅱ)设),(11y x A ,),(22y x B .由题意可设直线AB 的方程为2y kx =+.由⎪⎩⎪⎨⎧=++=,12,222y x kx y 消去y 并整理,得()2221860k x kx +++=. 由0)12(24)8(22>+-=∆k k ,得232>k . 由韦达定理,得126,128221221+=+-=+k x x k k x x . 点O 到直线AB 的距离为212k d +=,AB =, 22221221)12()32(84)(||21+-=-+==∴∆k k x x x x d AB S AOB. 设223t k =-,由232>k ,知0t >. 于是8168)4(82++=+=∆tt t t S AOB .由816≥+t t ,得22≤∆AOB S .当且仅当274,2t k ==时等号成立. 所以△B O A 面积的最大值为22.…………………………………………(8分)(Ⅲ)假设存在直线l 交椭圆于P ,Q 两点,且F 为△PQN 的垂心. 设),(11y x P ,),,(22y x Q 因为)1,0(N ,)0,1(F ,所以1-=NF k . 由PQ NF ⊥,知1=PQ k .设直线l 的方程为m x y +=,由⎩⎨⎧=++=,22,22y x m x y 得0224322=-++m mx x . 由0>∆,得32<m ,且3421mx x -=+,322221-=m x x .由题意,有0=⋅FQ NP .因为),1(),1,(2211y x FQ y x NP -=-=,所以0)1()1(1221=-+-y y x x ,即0)1)(()1(1221=-+++-m x m x x x , 所以0)1)((222121=-+-++m m m x x x x .于是0)1(34322222=-+---⨯m m m m m .解得34-=m 或1=m . 经检验,当1=m 时,△PQN 不存在,故舍去1=m . 当34-=m 时,所求直线l 存在,且直线l 的方程为34-=x y .……………(13分) 21.(本题满分14分)解:(Ⅰ)()f x 的定义域为()+∞-,a ,ax a x a x x f +-+-=-+='111)(. 由0)(='x f ,得a a x ->-=1. 当a x a -<<-1时,()0/>x f;当a x ->1时,()0/<x f .所以,)(x f 在a x -=1处取得最大值.由题意知()011=+-=-a a f ,所以1=a .…………………………………(4分) (Ⅱ)(1)当0≥k 时,由012ln )1(<-=f ,知0≥k 不合题意. (2)当0<k 时,设()()22)1ln(kx x x kx x f x g --+=-=.则1)122(2111)(+++-=+-+='x k kx x kx x x g . 令0)(='x g ,得01=x ,12112122->--=+-=kk k x .①当21-≤k 时,02122≤+-=kk x ,0)(>'x g 在),0(+∞∈x 上恒成立,因此)(x g 在),0[+∞上单调递增,从而总有0)0()(=≥g x g , 即2)(kx x f ≥在),0[+∞上恒成立.②当021<<-k 时,02122>+-=k k x ,对于)212,0(kk x +-∈,0)(<'x g , 因此)(x g 在)212,0(kk +-上单调递减.因此,当取)212,0(0kk x +-∈时,0)0()(0=<g x g ,即200)(kx x f ≥不成立.故021<<-k 不合题意.综上,k 的最大值为21-. ……………………………………………………(8分)(Ⅲ)由(Ⅱ)得:221)1ln(x x x -≥-+对任意的[0,+)x ∈∞恒成立.即221)1ln(x x x ≤+-对任意的[0,+)x ∈∞恒成立.取122-=i x (),,3,2,1n i =,则2)12(2)1122ln(122-≤+---i i i , 即2)12(2)]12ln()12[ln(122-≤--+--i i i i . 当1=n 时,23ln 2<-,不等式成立;当2≥n 时,)12ln(122)]12ln()12ln(122[11+--=-++--∑∑==n i i i i ni ni . 因为121321)12)(32(2)12(22---=--<-i i i i i ,所以)121321(3ln 2)12ln(12221---+-<+--∑∑==i i n i ni ni 212113ln 2<--+-=n . 综上,()212ln 1221<+--∑=n i ni . ………………………………………(14分)。

2014年高考真题——理科数学(湖北卷)解析版(选择、填空题)纯Word版含解析

2014年高考真题——理科数学(湖北卷)解析版(选择、填空题)纯Word版含解析

2014年湖北卷理科A 卷一、选择题(本大题共10小题,每小题5分,共50分)1. i 为虚数单位,211i i -⎛⎫= ⎪+⎝⎭( )A .-1B .1C .-iD .i【解析】()()2221121121i i i i i i ---⎛⎫===- ⎪+⎝⎭+. 【答案】A .2. 若二项式72a x x ⎛⎫+ ⎪⎝⎭的展开式中31x 的系数是84,则实数a =( )A .2 BC .1 D【解析】72a x x ⎛⎫+ ⎪⎝⎭的通项是()777217722kk k k k kk k a T C x a C x x ---+⎛⎫==⋅⋅⋅ ⎪⎝⎭, 令7-2k =-3得:k =5 ∴31x的系数是2527284a C ⋅⋅=,即a 5=1,∴a =1. 【答案】C .3. 设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆U C ð” 是“A ∩B =∅” 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【解析】若存在集合C 使得A ⊆C ,B ⊆U C ð,则A ∩B =∅,否则有x ∈A ∩B , 由A ⊆C ,得x ∈C ,由B ⊆U C ð,得x ∈U C ð,即x C ∉,矛盾;若A ∩B =∅,则取C =A ,有A ⊆C ,B ⊆U C ð,故“存在集合C 使得A ⊆C ,B ⊆U C ð” 是“A ∩B =∅” 的充要条件。

【答案】C .4.得到的回归方程为y =bx+a ,则( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0 【解析】画出散点图知a >0,b <0 【答案】B .5. 在如图所示的空间直角坐标系O -xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号为①、②、③、④的四个图,则该四面体的正视图和府视图分别为( )A .①和②B .③和①C .④和③D .④和②【解析】设A (0,0,2),B (2,2,0),C (1,2,1),D (2,2,2), 作出四面体ABCD ,四面体ABCD 的府视图是⊿OBC 1,即图② 正视图是Rt ⊿AEF 和AG ,即图④. 【答案】D .6. 若函数f (x ),g (x )满足()()110f x g x dx -=⎰,则称f (x ),g (x )为区间[-1,1] 上的一组正交函数,给出三组函数:①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1;③f (x )=x ,g (x )=x 2.其中为区间[-1,1]的正交函数的组数是( )A .0B .1C .2D .3【解析】对于①,()()()11111111022f xg x dx sin xdx cos x ---==-=⎰⎰;对于②,()()()11123111141033f x g x dx x dx x x ---⎛⎫=-=-=-≠ ⎪⎝⎭⎰⎰;对于③,113411104x dx x--==⎰; 【答案】C .7. 由不等式0020x y y x ⎧⎪⎨⎪--⎩≤≥≤确定的平面区域记为Ω1,不等式12x y x y +⎧⎨+-⎩≤≥,确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )A .18B .14C .34D .78【解析】如右图,区域Ω1为⊿AOC 及其内部,面积为12×2×2=2;区域Ω2为直线x +y =1与直线x +y =-2之间的部分,Ω1与Ω2的公共部分是四边形AOBD ,面积为2-12×1×12=74,故所求概率为p =78.【答案】D .8. 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一. 该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈. 它实际上是将圆锥体积公式中的圆周率π近似取为3. 那么近似公式2275V L h ≈. 相当于将圆锥体积公式中的π近似取为( )A .227 B .258 C .15750 D .355113【解析】∵2221133212L V r h h L h ππππ⎛⎫=== ⎪⎝⎭,∴由2275V L h ≈得: 22217512L h L h π≈,即258π≈. 【答案】B . 9. 已知F 1、F 2是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( )ABC .3D .2 【解析】设椭圆和双曲线的方程分别为2222111x y a b +=、2222221x y a b -=,|PF 1|=m ,|PF 2|=n .则m +n =2a 1,|m -n |=2a 2,在中由余弦定理,(2c )2=m 2+n 2-2mncos 60°=m 2+n 2-mn∴4c 2=(m +n )2-3mn =2143a mn -,且4c 2=(m -n )2+mn =224a mn +,消去m 、n 得:2221234a a c +=,即2212134e e +=由柯西不等式得:22222121211111613e e e e ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎢⎥++⋅+=⎢⎥ ⎪ ⎪ ⎪ ⎢⎥⎝⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦≤可计算得当e 1=3e 2=3时,等号成立。

湖北武汉市武昌区2014届高三上学期期末学业质量调研数学理试题(WORD精校版)

湖北武汉市武昌区2014届高三上学期期末学业质量调研数学理试题(WORD精校版)

湖北武昌区2014届高三上学期期末学业质量调研数学(理)试题 2014.1本试题卷共4页,共21题。

满分150分,考试用时120分钟。

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设m ∈R ,222(1)m m m i +-+-是纯虚数,其中i 是虚数单位,则m= A .1 B .一1 C .一2 D .2 2.已知全集为R ,集合A=协I 岫≤1),集合B={xlx2-.4x 一5<o ),则(驰)n 船 A .(0,2] B .(一1,0] (2,5)C .[2,5)D .(一l ,0) [2,5) 3.某程序框图如图所示,执行该程序,若输入的p 为24,则输出的乃,S 的值分别为 A .n=4,S=30 B .n=5,S=30 C .n=4,S=45 D .n=5,S=454. 函数()2sin()(0,)22f x x ππωϕωϕ-=+><<的部分图象 如图所示,则,ωϕ的值分别是 A .2,3π- B .2,6π-C .4,6π-D .4,3π 5.已知指数函数()y f x =、对数函数()y g x =和幂函数()y h x =的图象都经过点P (1,22),如果123123()()()4,f x g x h x x x x ===++=那么]A .76B .66C .54D .326.已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是7.过双曲线M :2221y x b-=的左顶点A 作斜率为l 的直线l ,若l 与双曲线m 的两条渐近线分别相交于B 、C ,且|AB|=|BC|,则双曲线M 的离心率是ABC.3D.28.给出以下结论: ①在四边形ABCD 中,若,AC AB AD ABCD =+ 则是平行四边形; ②在三角形ABC 中,若a=5,b=8,C=60°,则20;BC CA ⋅=③已知正方形ABCD 的边长为l,则||AB BC AC ++=④已知5,28,3(),,,AB a b BC a b CD a b A B C =+=+=-则三点共线.其中正确结论的个数为 A .1 B .2 C .3 D .49.物体A 以速度v=3f 2+l (t 的单位:s ,v 的单位:m /s )在一直线上运动,在此直线上与物体A 出发的同时,物体j5}在物体A 的正前方5 m 处以速度v=l0t (t 的单位:s ,v 的单位:m /s )的速度与A 同向运动,当两物体相遇时,相遇地与物体A 的出发地的距离是 A .1 20 m B .1 30 m C .140 m D 。

湖北省武汉市部分学校2014届高三11月调考数学理试题

湖北省武汉市部分学校2014届高三11月调考数学理试题

武汉市2014届高三11月调研测试数 学(理科)2013.11.15一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数z =-3+i2+i的共轭复数是A .2+iB .2-iC .-1+iD .-1-i 2.函数f (x )=ln x 的图象与函数g (x )=x 2-4x +4的图象的交点个数为A .0B .1C .2D .33.如图所示的方格纸中有定点O ,P ,Q ,E ,F ,G ,H ,则→OP +→OQ =A .→OHB .→OGC .→EOD .→FO4.已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是 A .(1-3,2) B .(0,2) C .(3-1,2) D .(0,1+3) 5.给定两个命题p ,q .若﹁p 是q 的必要而不充分条件,则p 是﹁q 的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 6.一几何体的三视图如右图所示,则该几何体的体积为A .200+9πB .200+18πC .140+9πD .140+18π7.某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为A .12B .38C .14D .188.直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于A .43B .2C .83D .16239.椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是A .[12,34]B .[38,34]C .[12,1]D .[34,1]10.已知函数f (x )=cos x sin2x ,下列结论中错误的是A .y =f (x )的图象关于点(π,0)中心对称B .y =f (x )的图象关于直线x =π2对称C .f (x )的最大值为32D .f (x )既是奇函数,又是周期函数二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答.题卡对应题号......的位置上.答错位置,书写不清,模棱两可均不得分. 11.已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x ﹤0,-tan x ,0≤x <π2.则f (f (π4))= . 12.执行如图所示的程序框图,输出的S 值为 .13.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则7个剩余分数的方差为 .14.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是 .(用数字作答)15.下表中的数阵为“森德拉姆素数筛”,其特点是每行每列都成等差数列,记第i 行第j 列的数为a i ,j (i ,j ∈N *),则 (Ⅰ)a 9,9= ;(Ⅱ)表中的数82共出现 次.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c )(a -b +c )=ac . (Ⅰ)求B ; (Ⅱ)若sin A sin C =3-14,求C .17.(本小题满分12分)已知等比数列{a n }的前n 项和S n =2n -a ,n ∈N *.设公差不为零的等差数列{b n }满足:b 1=a 1+2,且b 2+5,b 4+5,b 8+5成等比数列.(Ⅰ)求a 的值及数列{b n }的通项公式; (Ⅱ)设数列{log 2a n }的前n 项和为T n .求使T n >b n 的最小正整数n .某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)19.(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明:AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.已知平面内一动点P 到点F (1,0)的距离与点P 到y 轴的距离的差等于1. (Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)过点F 作两条斜率存在且互相垂直的直线l 1,l 2,设l 1与轨迹C 相交于点A ,B ,l 2与轨迹C 相交于点D ,E ,求→AD ·→EB 的最小值.21.(本小题满分14分)已知函数f (x )的导函数为f ′(x ),且对任意x >0,都有f ′(x )>f (x )x. (Ⅰ)判断函数F (x )=f (x )x 在(0,+∞)上的单调性;(Ⅱ)设x 1,x 2∈(0,+∞),证明:f (x 1)+f (x 2)<f (x 1+x 2);(Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论.武汉市2014届高三11月调研测试 数学(理科)试题参考答案及评分标准一、选择题1.D 2.C 3.D 4.A 5.A 6.A 7.B 8.C 9.B 10.C 二、填空题11.-2 12.1321 13.367 14.590 15.(Ⅰ)82;(Ⅱ)5三、解答题16.(本小题满分12分)解:(Ⅰ)因为(a +b +c )(a -b +c )=ac ,所以a 2+c 2-b 2=-ac .由余弦定理得cos B =a 2+c 2-b 22ac =-12,因此B =120°.……………………………………………………………………6分 (Ⅱ)由(Ⅰ)知A +C =60°,所以cos(A -C )=cos A cos C +sin A sin C =cos A cos C -sin A sin C +2sin A sin C=cos(A +C )+2sin A sin C =12+2×3-14=32, 故A -C =30°或A -C =-30°,因此C =15°或C =45°.…………………………………………………………12分17.(本小题满分12分)解:(Ⅰ)当n =1时,a 1=S 1=2-a ;当n ≥2时,a n =S n -S n -1=2n -1.∵{a n }为等比数列, ∴2-a =1,解得a =1. ∴a n =2n -1.设数列{b n }的公差为d ,∵b 2+5,b 4+5,b 8+5成等比数列, ∴(b 4+5)2=(b 2+5)(b 8+5),又b 1=3,∴(8+3d )2=(8+d )(8+7d ), 解得d =0(舍去),或d =8.∴b n =8n -5.………………………………………………………………………7分 (Ⅱ)由a n =2n -1,得log2a n =2(n -1),∴{log2a n }是以0为首项,2为公差的等差数列,∴T n =n (0+2n -2)2=n (n -1).由b n =8n -5,T n >b n ,得n (n -1)>8n -5,即n 2-9n +5>0, ∵n ∈N *,∴n ≥9.故所求n 的最小正整数为9.……………………………………………………12分18.(本小题满分12分)解:(Ⅰ)由已知,得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得 P (X =1)=15100=320,P (X =1.5)=30100=310,P (X =2)=25100=14,P (X =2.5)=20100=15,P (X =3)=10100=110.X 的分布列为X 的数学期望为E (X )=1×320+1.5×310+2×14+2.5×15+3×110=1.9.…………………………6分(Ⅱ)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,X i (i =1,2)为该顾客前面第i 位顾客的结算时间,则P (A )=P (X 1=1且X 2=1)+P (X 1=1且X 2=1.5)+P (X 1=1.5且X 2=1). 由于各顾客的结算相互独立,且X 1,X 2的分布列都与X 的分布列相同,所以 P (A )=P (X 1=1)×P (X 2=1)+P (X 1=1)×P (X 2=1.5)+P (X 1=1.5)×P (X 2=1)=320×320+320×310+310×320=980. 故该顾客结算前的等候时间不超过2.5分钟的概率为980.……………………12分 19.(本小题满分12分)解:(Ⅰ)如图,取AB 的中点O ,连结OC ,OA 1,A 1B .∵CA =CB ,∴OC ⊥AB . ∵AB =AA 1,∠BAA 1=60°,∴△AA 1B 为等边三角形,∴OA 1⊥AB . ∵OC ∩OA 1=O ,∴AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,∴AB ⊥A 1C .………………………………………………………………………5分 (Ⅱ)由(Ⅰ)知,OC ⊥AB ,OA 1⊥AB .又∵平面ABC ⊥平面AA1B 1B ,交线为AB , ∴OC ⊥平面AA 1B 1B ,∴OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,→OA 的方向为x 轴的正方向,|→OA |为单位长,建立如图所示的空间直角坐标系O-xyz .由题设知A (1,0,0),A 1(0,3,0),C (0,0,3),B (-1,0,0). 则→BC =(1,0,3),→BB 1=→AA 1=(-1,3,0),→A 1C =(0,-3,3). 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则⎩⎪⎨⎪⎧n ·→BC =0,n ·→BB 1=0.即⎩⎨⎧x +3z =0,-x +3y =0.可取n =(3,1,-1).∴cos <n ,→A 1C >=n ·→A 1C |n ||→A 1C |=-105.∴直线A 1C 与平面BB 1C 1C 所成角的正弦值为105.…………………………12分 20.(本小题满分13分)解:(Ⅰ)设动点P 的坐标为(x ,y ),由题意有(x -1)2+y 2-|x |=1, 化简,得y 2=2x +2|x |.当x ≥0时,y 2=4x ;当x <0时,y =0.∴动点P 的轨迹C 的方程为y 2=4x (x ≥0)和y =0(x <0).………………5分 (Ⅱ)由题意知,直线l 1的斜率存在且不为0,设为k ,则l 1的方程为y =k (x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x .得k 2x 2-(2k 2+4)x +k 2=0. 设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,于是 x 1+x 2=2+4k 2,x 1x 2=1.∵l 1⊥l 2,∴l 2的斜率为-1k.设D (x 3,y 3),E (x 4,y 4),则同理可得x 3+x 4=2+4k 2,x 3x 4=1.故→AD ·→EB =(→AF +→FD )·(→EF +→FB )=→AF ·→EF +→AF ·→FB +→FD ·→EF +→FD ·→FB=|→AF ||→FB |+|→FD ||→EF | =(x 1+1)(x 2+1)+(x 3+1)(x 4+1) =x 1x 2+(x 1+x 2)+1+x 3x 4+(x 3+x 4)+1 =1+(2+4k 2)+1+1+(2+4k 2)+1=8+4(k 2+1k2)≥8+4×2k 2·1k2=16.当且仅当k 2=1k2,即k =±1时,→AD ·→EB 取最小值16.………………………13分21.(本小题满分14分)解:(Ⅰ)对F (x )求导数,得F ′(x )=xf ′(x )-f (x )x 2. ∵f ′(x )>f (x )x,x >0,∴xf ′(x )>f (x ),即xf ′(x )-f (x )>0, ∴F ′(x )>0.故F (x )=f (x )x 在(0,+∞)上是增函数.……………………………………………4分(Ⅱ)∵x 1>0,x 2>0,∴0<x 1<x 1+x 2.由(Ⅰ),知F (x )=f (x )x在(0,+∞)上是增函数,∴F (x 1)<F (x 1+x 2),即f (x 1)x 1<f (x 1+x 2)x 1+x 2.∵x 1>0,∴f (x 1)<x 1x 1+x 2f (x 1+x 2).同理可得f (x 2)<x 2x 1+x 2f (x 1+x 2).以上两式相加,得f (x 1)+f (x 2)<f (x 1+x 2).………………………………………8分 (Ⅲ)(Ⅱ)中结论的推广形式为:设x 1,x 2,…,x n ∈(0,+∞),其中n ≥2,则f (x 1)+f (x 2)+…+f (x n )<f (x 1+x 2+…+x n ).∵x 1>0,x 2>0,…,x n >0, ∴0<x 1<x 1+x 2+…+x n .由(Ⅰ),知F (x )=f (x )x 在(0,+∞)上是增函数,∴F (x 1)<F (x 1+x 2+…+x n ),即f (x 1)x 1<f (x 1+x 2+…+x n )x 1+x 2+…+x n .∵x 1>0, ∴f (x 1)<x 1x 1+x 2+…+x n f (x 1+x 2+…+x n ).同理可得 f (x 2)<x 2x 1+x 2+…+x n f (x 1+x 2+…+x n ),f (x 3)<x 3x 1+x 2+…+x n f (x 1+x 2+…+x n ),…… f (x n )<x nx 1+x 2+…+x n f (x 1+x 2+…+x n ).以上n 个不等式相加,得f (x 1)+f (x 2)+…+f (x n )<f (x 1+x 2+…+x n ).………14分。

2014届高三数学试题(理科)

2014届高三数学试题(理科)

2014届高三数学试题(理科)出卷人: 班别: 姓名: 学号: 分数: 一、选择题:本大题共8小题,每小题5分,满分40分.1.集合{|lg 0}M x x =>,2{|9}N x x =≤,则MN =( )A .(1,3)B .[1,3)C .(1,3]D .[1,3]2. 已知复数(1)z i i =+ (为虚数单位),则复数z 在复平面上所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3. 设抛物线的顶点在原点,准线方程为-2,x =则抛物线的方程是( ) A.28y x = B. 28y x =- C. 24y x =- D. 24y x =4.如图是某简单组合体的三视图,则该组合体的体积为( ) A. 363(2)π+ B. 363(2)π+C. 1083πD. 108(32)π+(1,1)a =-,(3,)b m =,//()a a b +,则m =( )A . 2B .2-C .3-D .3ξ服从正态分布(3,4)N ,若(23)(2)P a P a ξξ<-=>+,则a =( )A . 3B .53 C .5 D .737.在△ABC 中,已知b =4 ,c =2 ,∠A=120°,则a = ( )A .2B .6C .2 或6D .278.函数,),(D x x f y ∈=若存在常数C ,对任意的,1D x ∈存在唯一的D x ∈2使得,)()(21C x f x f =则称函数)(x f 在D 上的几何平均数为C .已知],2,1[,)(3∈=x x x f 则函数3)(x x f =在[1,2]上的几何平均数为( )A .2B .2C .4D .22二.填空题:本大题共7小题,每小题5分,满分30分.(一)必做题:第9、10、11、12、13题为必做题,每道试题考生都必须作答.9.在等差数列{}n a 中,有67812a a a ++=,则此数列的前13项之和为 . 10.62()x x-展开式中,常数项是 . 11.执行如图的程序框图,那么输出S 的值是 .A B C 、、,A ={直线},B ={平面},C A B =. 若,,a A b B c C ∈∈∈,给出下列四个命题:①//////a b a c c b ⎧⇒⎨⎩ ②//a b a c c b ⊥⎧⇒⎨⊥⎩ ③//a b a cc b ⎧⇒⊥⎨⊥⎩④//a ba c c b⊥⎧⇒⊥⎨⎩ 其中所有正确命题的序号是 .13.设变量x ,y 满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数32z x y =-的最小值为 .(二)选做题:第14、15题为选做题,考生只能选做一题. 14.(坐标系与参数方程选做题)若直线的极坐标方程为cos()324πρθ-=,曲线C :1ρ=上的点到直线的距离为d ,则d 的最大值为 .15.(几何证明选讲选做题) 如图圆O 的直径6AB =,P 是AB 的延长线上一点,过点P 作圆O 的切线,切点为C ,连接AC ,若30CPA ∠=︒,则PC = . 三、解答题: 本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分) 已知()sin()1f x A x ωϕ=++ ,(x R ∈,其中0,0,02A πωϕ>><<)的周期为π,且图像上一个最低点为2(,1)3M π- (1)求()f x 的解析式; (2)当[0,]12x π∈时,求()f x 的值域. 17.(本小题满分13分) 在某校高三学生的数学校本课程选课过程中,规定每位同学只能选一个科目。

2014年湖北省部分高中高三数学(理科)12月调考试卷及答案

2014年湖北省部分高中高三数学(理科)12月调考试卷及答案

2014-2015学年度湖北省部分高中12月调考高三数学试卷(理科)第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、集合1{|(),1},{|2xA x y xB x y ==>-==,则A B =( )A .{|02}x x <<B .{|0x x <<C .{|0x x <≤D .{|0x x ≤≤2、复数221z i i=++,其中i 是虚数单丝,则复数z 的模为( )A .2B C .2 3、已知,sin cos 22a ππθθθ-<<+=,其中01a <<,则tan θ可能是( ) A .2- B .12-C .2或12-D .-1或13- 4、等比数列{}n a 的前n 项和为330,6,nn S a S xdx ==⎰,则公比q 为( )A .1B .12-C .1或12-D .-1或125、函数()f x 是R 上的偶函数,且()(1)1f x f x ++=,当[]1,2x ∈时,()2f x x =-, 则()2005.5f -=( )A .0.5B .1C .1.5D . 1.5-6、等差数列{}n a 中,120032004200320040,0,0,n a a a a a S >+>⋅<为数列{}n a 的前n 项和,若0n S >,则n 的最大值为( )A .2003B .400C .4006D .4007 7、一空间几何体的三视图如图所示,则该几何体的体积为( ) A .10 B .20 C .30 D .408、从1,2,3,,20这20个数中任取2个不同的数,则这两个数之和为3,的倍数的概率为( ) A .3295 B .338C .119D .571909、设,x y 满足约束条件13400x y a a x y ⎧+≤⎪⎪≥⎨⎪≥⎪⎩,若231x y z x ++=-的最小值为32,则a 的值为( )A .-1B .1C .-2D .210、设曲线(1)xy ax e =-在点00(,)A x y 处的切线为1l ,曲线(1)xy x e -=-在点01(,)B x y 处的切线为2l ,若存在03[0,]2x ∈,使得12l l ⊥,则实数a 的取值范围是( ) A .(],1-∞ B .1,2⎡⎫+∞⎪⎢⎣⎭C .3(1,)2D .3[1,]2第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。

2014年高考(湖北卷)(理)试卷及答案(纯word版)

2014年高考(湖北卷)(理)试卷及答案(纯word版)

湖北省教育考试院 保留版权 数学(理工类) 第1页(共16页)绝密★启用前2014年普通高等学校招生全国统一考试(湖北卷)数 学(理工类)本试题卷共6页,22题,其中第15、16题为选考题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用统一提供的2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 为虚数单位,21i ()1i-=+A .1-B .1C .i -D .i1.A [解析] ⎝ ⎛⎭⎪⎫1-i 1+i 2=-2i 2i =-1.故选A.2.若二项式7(2)a x x +的展开式中31x 的系数是84,则实数a =A .2BC .1D2.C [解析] 展开式中含1x 3的项是T 6=C 57(2x )2⎝⎛⎭⎫a x 5=C 5722a 5x -3,故含1x3的项的系数是C 5722a 5=84,解得a =1.故选C.3.设U 为全集.A ,B 是集合,则“存在集合C 使得A C ⊆,⊆B ∁U C ”是“A B =∅”的A .充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件【答案】C[解析] 若存在集合C使得A⊆C,B⊆∁U C,则可以推出A∩B=∅;若A ∩B=∅,由维思图可知,一定存在C=A,满足A⊆C,B⊆∁U C,故“存在集合C使得A ⊆C,B⊆∁U C”是“A∩B=∅”的充要条件.故选C.4.根据如下样本数据得到的回归方程为ˆy bx a=+,则A.0b<a>,0b>B.0a>,0C.0a<,0b<b>D.0a<,04.B[解析]观察图象可知,回归直线y=bx+a的斜率b<0,截距a>0.故a>0,b<0.故选B.5.在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为数学(理工类)第2页(共6页)数学(理工类) 第3页(共6页)A .①和②B .③和①C .④和③D .④和②5.D [解析] 由三视图及空间直角坐标系可知,该几何体的正视图显然是一个直角三角形且内有一条虚线(一锐角顶点与其所对直角边中点的连线),故正视图是④;俯视图是一个钝角三角形,故俯视图是②. 故选D.6.若函数()f x , ()g x 满足11()()d 0f x g x x -=⎰,则称()f x , ()g x 为区间[1,1]-上的一组正交函数. 给出三组函数:①11()sin ,()cos 22f x x g x x ==;②()1,()1f x x g x x =+=-;③2(),()f x x g x x ==.其中为区间[1,1]-上的正交函数的组数是 A .0 B .1C .2D .36.C [解析] 由题意,要满足f(x),g(x)是区间[-1,1]上的正交函数,即需满足⎠⎛-11f(x)g(x)d x =0.①⎠⎛-11f(x)g(x)d x =⎠⎛-11sin 12x cos 12x d x =12⎠⎛-11sin x d x =⎝⎛⎭⎫-12cos x 1-1=0,故第①组是区间[-1,1]上的正交函数; ②⎠⎛-11f(x)g(x)d x =⎠⎛-11(x +1)(x -1)d x =⎝⎛⎭⎫x 33-x 1-1=-43≠0,故第②组不是区间[-1,1]上的正交函数;③⎠⎛-11f(x)g(x)d x =⎠⎛-11x ²x 2d x =x 441-1=0,故第③组是区间[-1,1]上的正交函数.综上,是区间[-1,1]上的正交函数的组数是2. 故选C .7.由不等式组0,0,20x y y x ≤⎧⎪≥⎨⎪--≤⎩确定的平面区域记为1Ω,不等式组1,2x y x y +≤⎧⎨+≥-⎩确定的平面区图③ 图①图④图②第5题图数学(理工类) 第4页(共6页)域记为2Ω. 在1Ω中随机取一点,则该点恰好在2Ω内的概率为A .18B .14C .34D .787.D [解析] 作出Ω1,Ω2表示的平面区域如图所示,S Ω1=S △AOB =12³2³2=2,S △BCE =12³1³12=14,则S 四边形AOEC =S Ω1-S △BCE =2-14=74.故由几何概型得,所求的概率P =S 四边形AOEC S Ω1=742=78.故选D.数学(理工类) 第5页(共6页)8.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也. 又以高乘之,三十六成一. 该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈. 它实际上是将圆锥体积公式中的圆周率π近似取为3. 那么,近似公式2275V L h ≈相当于将圆锥体积公式中的π近似取为 A .227 B .258 C .15750D .355113 8.B [解析] 设圆锥的底面圆半径为r ,底面积为S ,则L =2πr ,由题意得136L 2h ≈13Sh ,代入S =πr 2化简得π≈3;类比推理,若V =275L 2h ,则π≈258.故选B.9.已知12F F ,是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且12π=3F PF ∠,则椭圆和双曲线的离心率的倒数之和的最大值为A.B. C. 3 D. 2 9.A [解析] 设|PF 1|=r 1,|PF 2|=r 2,r 1>r 2,椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,椭圆、双曲线的离心率分别为e 1,e 2.则由椭圆、双曲线的定义,得r 1+r 2=2a 1,r 1-r 2=2a 2,平方得4a 21=r 21+r 22+2r 1r 2,4a 22=r 21-2r 1r 2+r 22.又由余弦定理得4c 2=r 21+r 22-r 1r 2,消去r 1r 2,得a 21+3a 22=4c 2,即1e 21+3e 22=4.所以由柯西不等式得⎝⎛⎭⎫1e 1+1e 22=⎝ ⎛⎭⎪⎫1e 1+13³3e 22≤⎝⎛⎭⎫1e 21+3e 22⎝⎛⎭⎫1+13=163.所以1e 1+1e 2≤433.故选A.10.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,2221()(|||2|3)2f x x a x a a =-+--.若x ∀∈R ,(1)()f x f x -≤,则实数a 的取值范围为A .11[,]66-B .[C .11[,]33- D .[ 10.B [解析] 因为当x ≥0时,f (x )=12()||x -a 2+||x -2a 2-3a 2,所以当0≤x ≤a 2时,f (x )=12()a 2-x +2a 2-x -3a 2=-x ;当a 2<x <2a 2时,f (x )=12()x -a 2+2a 2-x -3a 2=-a 2;当x ≥2a 2时,f (x )=12()x -a 2+x -2a 2-3a 2=x -3a 2.数学(理工类) 第6页(共6页)综上,f (x )=⎩⎪⎨⎪⎧-x ,0≤x ≤a 2,-a 2,a 2<x <2a 2,x -3a 2,x ≥2a 2.因此,根据奇函数的图象关于原点对称作出函数f (x )在R 上的大致图象如下,观察图象可知,要使∀x ∈R ,f (x -1)≤f (x ),则需满足2a 2-(-4a 2)≤1,解得-66≤a ≤66.故选B. 二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分. 请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.设向量(3,3)=a ,(1,1)=-b . 若()()λλ+⊥-a b a b ,则实数λ= .11.±3 [解析] 因为a +λb =(3+λ,3-λ),a -λb =(3-λ,3+λ),又(a +λb )⊥(a -λb ),所以(a +λb )·(a -λb )=(3+λ)(3-λ)+(3-λ)(3+λ)=0,解得λ=±3.12.直线1:l y x a =+和2:l y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b += . 12.2 [解析] 依题意得,圆心O 到两直线l 1:y =x +a ,l 2:y=x +b 的距离相等,且每段弧长等于圆周的14,即|a |2=|b |2=1³sin 45°,得 |a |=|b |=1.故a 2+b 2=2.13.设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为()I a ,按从大到小排成的三位数记为()D a (例如815a =,则()158I a =,()851D a =). 阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b = . 13.495 [解析] 取a 1=815⇒b 1=851-158=693≠815⇒a 2=693;第13题图数学(理工类) 第7页(共6页)由a 2=693⇒b 2=963-369=594≠693⇒a 3=594; 由a 3=594⇒b 3=954-459=495≠594⇒a 4=495; 由a 4=495⇒b 4=954-459=495=a 4⇒b =495.14. 设()f x 是定义在(0,)+∞上的函数,且()0f x >. 对任意0a >,0b >,若经过点(,())a f a ,(,())b f b -的直线与x 轴的交点为(,0)c ,则称c 为,a b 关于函数()f x 的平均数,记为(,)f M a b . 例如,当()1(0)f x x =>时,可得(,)2f a bM a b c +==,即(,)f M a b 为,a b 的算术平均数.(Ⅰ)当()f x = (0)x >时,(,)f M a b 为,a b 的几何平均数; (Ⅱ)当()f x = (0)x >时,(,)f M a b 为,a b 的调和平均数2aba b+. (以上两空各只需写出一个符合要求的函数即可)14.(1)x (2)x (或填(1)k 1x ;(2)k 2x ,其中k 1,k 2为正常数)[解析] 设A (a ,f (a )),B (b ,-f (b )),C (c ,0),则此三点共线:(1)依题意,c =ab ,则0-f (a )c -a =0+f (b )c -b,即0-f (a )ab -a =0+f (b )ab -b.因为a >0,b >0,所以化简得 f (a )a =f (b )b,故可以选择f (x )=x (x >0);(2)依题意,c =2aba +b,则0-f (a )2ab a +b -a =0+f (b )2ab a +b-b ,因为a >0,b >0,所以化简得 f (a )a =f (b )b ,故可以选择f (x )=x (x >0). (二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑. 如果全选,则按第15题作答结果计分.) 15.(选修4-1:几何证明选讲)如图,P 为O 外一点,过P 点作O 的两条切线,切点分别为A ,B . 过PA 的中点Q作割线交O 于C ,D 两点. 若1QC =,3CD =,则PB = .数学(理工类) 第8页(共6页)15.4 [解析] 由切线长定理得QA 2=QC ·QD =1³(1+3)=4,解得QA =2.故PB =P A =2QA =4. 16.(选修4-4:坐标系与参数方程)已知曲线1C的参数方程是x y ⎧=⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴 为极轴建立极坐标系,曲线2C 的极坐标方程是2ρ=. 则1C 与2C 交点的直角坐标 为 . 16.()3,1 [解析] 由⎩⎪⎨⎪⎧x =t ,y =3t 3,消去t 得y =33x (x ≥0),即曲线C 1的普通方程是y =33x (x ≥0);由ρ=2,得ρ2=4,得x 2+y 2=4,即曲线C 2的直角坐标方程是x 2+y 2=4.联立⎩⎪⎨⎪⎧y =33x (x ≥0),x 2+y 2=4,解得⎩⎨⎧x =3,y =1.故曲线C 1与C 2的交点坐标为()3,1.三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分11分)某实验室一天的温度(单位:℃)随时间t (单位:h )的变化近似满足函数关系:ππ()10sin 1212f t t t =-,[0,24)t ∈. (Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温? 【解析】(Ⅰ)因为π1πππ()10sin )=102sin()12212123f t t t t =-+-+, 又024t ≤<,所以πππ7π31233t ≤+<,ππ1sin()1123t -≤+≤. 第15题图数学(理工类) 第9页(共6页)当2t =时,ππsin()1123t +=;当14t =时,ππsin()1123t +=-. 于是()f t 在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.(Ⅱ)依题意,当()11f t >时实验室需要降温.由(Ⅰ)得 ππ()102sin()123f t t =-+,故有ππ102sin()123t -+>11, 即ππ1sin()<1232t +-. 又024t ≤<,因此7πππ11π61236t <+<,即1018t <<. 在10时至18时实验室需要降温.【解析】(Ⅰ)设数列{}n a 的公差为d ,依题意,2,2d +,24d +成等比数列,故有2(2)2(24)d d +=+,化简得240d d -=,解得0d =或d =4. 当0d =时,2n a =;当d =4时,2(1)442n a n n =+-⋅=-,从而得数列{}n a 的通项公式为2n a =或42n a n =-.(Ⅱ)当2n a =时,2n S n =. 显然260800n n <+,此时不存在正整数n ,使得60800n S n >+成立. 当42n a n =-时,2[2(42)]22n n n S n +-==.令2260800n n >+,即2304000n n -->, 解得40n >或10n <-(舍去),此时存在正整数n ,使得60800n S n >+成立,n 的最小值为41. 综上,当2n a =时,不存在满足题意的n ;当42n a n =-时,存在满足题意的n ,其最小值为41. 18.(本小题满分12分)已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列.数学(理工类) 第10页(共6页)(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得n S 60800n >+?若存在,求n 的最小值;若不存在,说明理由.【解析】(Ⅰ)设数列{}n a 的公差为d ,依题意,2,2d +,24d +成等比数列,故有2(2)2(24)d d +=+,化简得240d d -=,解得0d =或d =4. 当0d =时,2n a =;当d =4时,2(1)442n a n n =+-⋅=-,从而得数列{}n a 的通项公式为2n a =或42n a n =-.(Ⅱ)当2n a =时,2n S n =. 显然260800n n <+,此时不存在正整数n ,使得60800n S n >+成立. 当42n a n =-时,2[2(42)]22n n n S n +-==.令2260800n n >+,即2304000n n -->, 解得40n >或10n <-(舍去),此时存在正整数n ,使得60800n S n >+成立,n 的最小值为41. 综上,当2n a =时,不存在满足题意的n ;当42n a n =-时,存在满足题意的n ,其最小值为41. 19.(本小题满分12分)如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F ,M ,N 分别是棱AB ,AD , 11A B ,11A D 的中点,点P ,Q 分别在棱1DD ,1BB 上移动,且(02)DP BQ λλ==<<.(Ⅰ)当1λ=时,证明:直线1BC ∥平面EFPQ ;(Ⅱ)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.数学(理工类) 第11页(共6页)几何方法:(Ⅰ)证明:如图1,连接1AD ,由1111ABCD A B C D -是正方体,知BC 1∥AD 1. 当1λ=时,P 是1DD 的中点,又F 是AD 的中点,所以FP ∥AD 1.所以BC 1∥FP .而FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1BC ∥平面EFPQ .(Ⅱ)如图2,连接BD .因为E ,F 分别是AB ,AD 的中点,所以EF ∥BD ,且12EF BD =.又DP BQ =,DP ∥BQ , 所以四边形PQBD 是平行四边形,故PQ ∥BD ,且PQ =BD , 从而EF ∥PQ ,且12EF PQ =. 在R t △EBQ 和R t △FDP 中,因为BQ DP λ==,1BE DF ==,于是EQ FP =EFPQ 是等腰梯形. 同理可证四边形PQMN 是等腰梯形.分别取EF ,PQ ,MN 的中点为H ,O ,G ,连接OH ,OG ,第19题图第19题解答图2EC 1D 1 B 1 A 1BACD PQ FMN第19题解答图1EC 1D 1 B 1 A 1 BA CDPQFMN第19题解答图3G O H数学(理工类) 第12页(共6页)则GO PQ ⊥,HO PQ ⊥,而GO HO O =,故GOH ∠是面EFPQ 与面PQMN 所成的二面角的平面角.若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则90GOH ∠=. 连接EM ,FN ,则由EF ∥MN ,且EF MN =,知四边形EFNM 是平行四边形. 连接GH ,因为H ,G 是EF ,MN 的中点,所以2GH ME ==. 在△GOH 中,24GH =,2222112OH λλ=+-=+,222211(2)(2)2OG λλ=+--=-+, 由222OG OH GH +=,得2211(2)422λλ-+++=,解得1λ=±,故存在1λ=±,使面EFPQ 与面PQMN 所成的二面角为直二面角. 向量方法:以D 为原点,射线DA ,DC ,1DD 分别为x ,y ,z 轴的正半轴建立如图3所示的空间直角坐标系D -xyz . 由已知得(2,2,0)B ,1(0,2,2)C ,(2,1,0)E ,(1,0,0)F ,(0,0,)P λ.1(2,0,2)BC =-,(1,0,)FP λ=-,(1,1,0)FE =.(Ⅰ)证明:当1λ=时, (1,0,1)FP =-,因为1(2,0,2)BC =-,所以12BC FP =,即BC 1∥FP .而FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1BC ∥平面EFPQ .(Ⅱ)设平面EFPQ 的一个法向量为(,,)x y z =n ,则由0,0,FE FP ⎧⋅=⎪⎨⋅=⎪⎩n n 可得0,0.x y x z λ+=⎧⎨-+=⎩ 于是可取(,,1)λλ=-n .同理可得平面MNPQ 的一个法向量为(2,2,1)λλ=--m .若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角, 则(2,2,1)(,,1)0λλλλ⋅=--⋅-=m n ,即(2)(2)10λλλλ---+=,解得1λ=±.故存在1λ=,使面EFPQ 与面PQMN 所成的二面角为直二面角.数学(理工类) 第13页(共6页)20.(本小题满分12分)计划在某水库建一座至多安装3台发电机的水电站. 过去50年的水文资料显示,水库年.入流量...X (年入流量:一年内上游来水与库区降水之和. 单位:亿立方米)都在40以上. 其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年. 将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(Ⅰ)求未来4年中,至多..有1年的年入流量超过120的概率; (Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元. 欲使水电站年总利润的均值达到最大,应安装发电机多少台?【解析】(Ⅰ)依题意,110(4080)0.250p P X =<<==,235(80120)0.750p P X =≤≤==, 35(120)0.150p P X =>==.由二项分布,在未来4年中至多有1年的年入流量超过120的概率为04134343433991C (1)C (1)()4()()0.9477101010p p p p =-+-=+⨯⨯=.(Ⅱ)记水电站年总利润为Y (单位:万元).(1)安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润5000Y =,()500015000E Y =⨯=.(2)安装2台发电机的情形.依题意,当4080X <<时,一台发电机运行,此时50008004200Y =-=,因此1(4200)(4080)0.2P Y P X p ==<<==;当80X ≥时,两台发电机运行,此时5000210000Y =⨯=,因此23(10000)(80)0.8P Y P X p p ==≥=+=;由此得Y 的分布列如下(3)安装3台发电机的情形.依题意,当4080X <<时,一台发电机运行,此时500016003400Y =-=,数学(理工类) 第14页(共6页)因此1(3400)(4080)0.2P Y P X p ==<<==;当80120X ≤≤时,两台发电机运行,此时500028009200Y =⨯-=,因此(9200)(80120)P Y P X ==≤≤=2p 0.7=;当120X >时,三台发电机运行,此时5000315000Y =⨯=,因此3(15000)(120)0.1P Y P X p ==>==,由此得Y 的分布列如下综上,欲使水电站年总利润的均值达到最大,应安装发电机2台. 21.(本小题满分14分)在平面直角坐标系xOy 中,点M 到点(1,0)F 的距离比它到y 轴的距离多1.记点M 的 轨迹为C .(Ⅰ)求轨迹C 的方程;(Ⅱ)设斜率为k 的直线l 过定点(2,1)P -. 求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.【解析】(Ⅰ)设点(,)M x y ,依题意得||||1MF x =+||1x =+,化简整理得22(||)y x x =+.故点M 的轨迹C 的方程为24,0,0,0.x x y x ≥⎧=⎨<⎩(Ⅱ)在点M 的轨迹C 中,记1:C 24y x =,2:C 0(0)y x =<.依题意,可设直线l 的方程为1(2).y k x -=+由方程组21(2),4,y k x y x -=+⎧⎨=⎩ 可得244(21)0.ky y k -++= ①(1)当0k =时,此时 1.y = 把1y =代入轨迹C 的方程,得14x =. 故此时直线:1l y =与轨迹C 恰好有一个公共点1(,1)4.(2)当0k ≠时,方程①的判别式为216(21)k k ∆=-+-. ②设直线l 与x 轴的交点为0(,0)x ,则 由1(2)y k x -=+,令0y =,得021k x k+=-. ③数学(理工类) 第15页(共6页)(ⅰ)若00,0,x ∆<⎧⎨<⎩ 由②③解得1k <-,或12k >.即当1(,1)(,)2k ∈-∞-+∞时,直线l 与1C 没有公共点,与2C 有一个公共点, 故此时直线l 与轨迹C 恰好有一个公共点.(ⅱ)若00,0,x ∆=⎧⎨<⎩ 或00,0,x ∆>⎧⎨≥⎩ 由②③解得1{1,}2k ∈-,或102k -≤<.即当1{1,}2k ∈-时,直线l 与1C 只有一个公共点,与2C 有一个公共点.当1[,0)2k ∈-时,直线l 与1C 有两个公共点,与2C 没有公共点.故当11[,0){1,}22k ∈--时,直线l 与轨迹C 恰好有两个公共点.(ⅲ)若00,0,x ∆>⎧⎨<⎩ 由②③解得112k -<<-,或102k <<.即当11(1,)(0,)22k ∈--时,直线l 与1C 有两个公共点,与2C 有一个公共点, 故此时直线l 与轨迹C 恰好有三个公共点.综合(1)(2)可知,当1(,1)(,){0}2k ∈-∞-+∞时,直线l 与轨迹C 恰好有一个公共点;当11[,0){1,}22k ∈--时,直线l 与轨迹C 恰好有两个公共点;当11(1,)(0,)22k ∈--时,直线l 与轨迹C 恰好有三个公共点. 22.(本小题满分14分)π为圆周率,e 2.71828=为自然对数的底数.(Ⅰ)求函数ln ()xf x x=的单调区间; (Ⅱ)求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数;(Ⅲ)将3e ,e 3,πe ,e π,π3,3π这6个数按从小到大的顺序排列,并证明你的结论. 【解析】(Ⅰ)函数()f x 的定义域为()∞0,+.因为ln ()x f x x =,所以21ln ()xf x x -'=. 当()0f x '>,即0e x <<时,函数()f x 单调递增; 当()0f x '<,即e x >时,函数()f x 单调递减.数学(理工类) 第16页(共6页)故函数()f x 的单调递增区间为(0,e),单调递减区间为(e,)+∞. (Ⅱ)因为e 3π<<,所以eln 3eln π<,πln e πln 3<,即e e ln 3ln π<,ππln e ln 3<.于是根据函数ln y x =,e x y =,πx y =在定义域上单调递增,可得 e e 33ππ<<,3ππe e 3<<.故这6个数的最大数在3π与π3之中,最小数在e 3与3e 之中. 由e 3π<<及(Ⅰ)的结论,得(π)(3)(e)f f f <<,即ln πln3lneπ3e<<. 由ln πln3π3<,得3πln πln 3<,所以π33π>; 由ln 3ln e3e<,得e 3ln 3ln e <,所以e 33e <. 综上,6个数中的最大数是π3,最小数是e 3.(Ⅲ)由(Ⅱ)知,e e 3π3ππ3<<<,e 33e <.又由(Ⅱ)知,ln πlneπe<,得e ππe <. 故只需比较3e 与e π和πe 与3π的大小.由(Ⅰ)知,当0e x <<时,1()(e)e f x f <=,即ln 1e x x <.在上式中,令2e πx =,又2e e π<,则2e eln ππ<,从而e 2ln ππ-<,即得eln π2π>-. ① 由①得,e 2.72eln πe(2) 2.7(2) 2.7(20.88) 3.0243π 3.1>->⨯->⨯-=>,即eln π3>,亦即e 3ln πln e >,所以3e e π<. 又由①得,3e3ln π66e ππ>->->,即3ln ππ>,所以π3e π<. 综上可得,e 3e π3π3e πe π3<<<<<,即6个数从小到大的顺序为e 3,3e ,e π,πe ,3π,π3.。

【解析】湖北版01期2014届高三名校数学理试题分省分项汇编专题06数列Word版含解析

【解析】湖北版01期2014届高三名校数学理试题分省分项汇编专题06数列Word版含解析

一.基础题组1.【湖北孝感高中2014届高三年级九月调研考试数学(理)】已知函数()f x 是R 上的单调增函数且为奇函数,数列{}n a 是等差数列,30a >,则()()()135f a f a f a ++的值( ) A .恒为正数 B .恒为负数C .恒为0D .可以为正数也可以为负数2.【2013届高中毕业生四月调研理科数学测试题】已知数列{}n a 的前n 项和为n S ,1a =满足12(2)n n nS a n S ++=≥.则=n S ( ) A. 20102011- B. 20112012- C. 20122013- D. 20132014- 【答案】D 【解析】二.能力题组1.【2013年湖北七市(州)高三年级联合考试理科数学】如下图,一单位正方体形积木,平放于桌面上,并且在其上方放置若干个小正方体形积木摆成塔形,其中上面正方体中下底面的四个顶点是下面相邻正方体中上底面各边的中点,如果所有正方体暴露在外面部分的面积之和超过8.8,则正方体的个数至少是 ( )A .6B .7C .8D . 1022212912[1(()(())]2222n S -=++++219111[1()()]2222n -=++++11()921212n -=⋅-19[1()]2n =->8.8 所以245,6n n >≥. 考点:等比数列前n 项和公式2.【湖北省黄冈市黄冈中学2013届高三下学期6月适应性考试数学理试题(B 卷)】甲、乙两人用农药治虫,由于计算错误,在A 、B 两个喷雾器中分别配制成12%和6%的药水各10千克,实际要求两个喷雾器中的农药的浓度是一样的,现在只有两个容量为1千克的药瓶,他们从A 、B 两个喷雾器中分别取1千克的药水,将A 中取得的倒入B 中,B 中取得的倒入A 中,这样操作进行了n 次后,A 喷雾器中药水的浓度为%n a ,B 喷雾器中药水的浓度为%n b . (1)证明:n n a b +是一个常数; (2)求n a 与1n a -的关系式; (3)求n a 的表达式.(2)第n 次操作后,A 中10千克的药水中农药的重量具有关系式:119110n n n a b a --⨯+⨯=由(1)知1118n n b a --=-,代入化简得14955n n a a -=+ ① …………………………8分3.【2013届高中毕业生四月调研理科数学测试题】已知数列{}n a 是公比大于1的等比数列,对任意的n N *∈有1123n a a a a +=+++⋅⋅⋅.15122n n a a -+++. (1)求数列{}n a 的通项公式; (2)设数列{}n b 满足3132331(log log log log )n n b a a a t n=++⋅⋅⋅++,n N *∈,若{}n b 为等差数列,求实数t 的值及数列{}n b 的通项公式.解得11412a q ⎧=-⎪⎪⎨⎪=⎪⎩(舍去)或113a q =⎧⎨=⎩,∴13n n a -=.三.拔高题组1.【2013年湖北七市(州)高三年级联合考试理科数学】数列{a n}是公比为21的等比数列,且1-a 2是a 1与1+a 3的等比中项,前n 项和为S n ;数列{b n }是等差数列,b 1=8,其前n 项和T n 满足T n =n λ·b n+1(λ为常数,且λ≠1). (I)求数列{a n }的通项公式及λ的值;(Ⅱ)比较11T +21T +31T +…+n T 1与21S n 的大小.n n S T T T 2111121<+++ .2.【湖北省教学合作2014届高三10月联考数学试题理科数学】已知函数()ln 1f x x x =-+,(0,)x ∈+∞,3()g x x ax =-.(1)求()f x 的最大值;(2)若对1(0,)x ∀∈+∞,总存在2[1,2]x ∈使得12()()f x g x ≤成立,求a 的取值范围; (3)证明不等式:12()()()1nnn n ennn e +++<-. 【答案】(1)0;(2)4a ≤;(3)证明过程详见解析. 【解析】试题分析:本题主要考查导数的应用、不等式、数列等基础知识,考查思维能力、创新意识,考查分类讨论思想、转化思想.第一问,是导数的应用,利用导数判断函数的单调区间求函数最值;第二问,虽然是恒成立问题,但经过分析可以转化成求max ()f x 和max ()g x ,通过讨论确定每段区间上函数的单调性和最值;第三问,先通过观察凑出所要证明的表达式的形式,再利用等比数列的前n 项和公式求和,最后通过放缩法得到结论.考点:1.利用导数求最值;2.恒成立问题;3.等比数列的前n项和公式;4.放缩法.。

湖北版01期 2014届高三名校数学理试题分省分项汇编 专题14 推理与证明、新定义 含解析

湖北版01期 2014届高三名校数学理试题分省分项汇编 专题14 推理与证明、新定义 含解析

一.基础题组1.【湖北稳派教育2014届高三10月联合调研考试数学理科试题】在整数集Z 中,被5整除所得余数为k 的所有整数组成一个“类",记为}Z |5{][∈+=n k n k ,4,3,2,1,0=k ,给出如下三个结论:①]4[2014∈; ②]2[2∈-;③]4[]3[]2[]1[]0[Z =;、④“整数a 、b 属于同一“类”的充要条件是“]0[∈-b a ”. 其中,正确结论的个数是( )A 。

0 B. 1 C. 2 D. 32。

【湖北省武汉市2013届高中毕业生四月调研理科数学测试题】已知数列{}na 的前n 项和为nS ,123a=,满足12(2)n n na n S ++=≥.则=n S ( ) A.20102011-B. 20112012- C 。

20122013-D.20132014- 【答案】D3。

【湖北孝感高中2014届高三年级九月调研考试数学(理)】定义方程()'()f x f x =的实数根0x 叫做函数()f x 的“新驻点",若函数()()1g x x x =-3,()ln(1),()1x h x x x x ϕ==+=-的“新驻点”分别为,,αβγ,则,,αβγ的大小关系为( )A .αβγ>>B .βαγ>>C .γαβ>>D .βγα>>()002x x ψ'<⇒<<,所以在区间(],0-∞上()()01x ψψ≤=- ;在区间(]0,2 上,()()()5201x ψψψ-=<≤=-;因此在区间(],2-∞ 上函数()x ψ 没有零点.在区间()2,+∞ 上是增函数且()()310,4150ψψ=-<=> ,所以3γ>。

综上γαβ>> .考点:导数的运算及应用,函数零点的范围判断.4。

【湖北荆州中学高三年级第一次质量检测数学试卷理科数学】定义:若存在常数k ,使得对定义域D 内的任意两个1212,()x x xx ≠,均有1212|()()|||f x f x k x x -≤- 成立,则称函数()f x 在定义域D 上满足利普希茨条件.若函数()(1)f x x x =≥满足利普希茨条件,则常数k 的最小值为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北武昌区2014届高三上学期期末学业质量调研数学(理)试题本试题卷共4页,共21题。

满分150分,考试用时120分钟。

一、选择题:本大题共10小题,每小题5分,共50分.1.设m ∈R ,222(1)m m m i +-+-是纯虚数,其中i 是虚数单位,则m= A .1 B .一1 C .一2 D .2 2.已知全集为R ,集合A=协I 岫≤1),集合B={xlx2-.4x 一5<o ),则(驰)n 船 A .(0,2] B .(一1,0] (2,5)C .[2,5)D .(一l ,0) [2,5) 3.某程序框图如图所示,执行该程序,若输入的p 为24,则输出的乃,S 的值分别为 A .n=4,S=30 B .n=5,S=30 C .n=4,S=45 D .n=5,S=454. 函数()2sin()(0,)22f x x ππωϕωϕ-=+><<的部分图象 如图所示,则,ωϕ的值分别是 A .2,3π- B .2,6π-C .4,6π-D .4,3π5.已知指数函数()y f x =、对数函数()y g x =和幂函数()y h x =的图象都经过点P (1,22),如果123123()()()4,f x g x h x x x x ===++=那么A .76B .66C .54D .326.已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是7.过双曲线M :2221y x b-=的左顶点A 作斜率为l 的直线l ,若l 与双曲线m 的两条渐近线分别相交于B 、C ,且|AB|=|BC|,则双曲线M 的离心率是ABC.3D.28.给出以下结论: ①在四边形ABCD 中,若,AC AB AD ABCD =+则是平行四边形;②在三角形ABC 中,若a=5,b=8,C=60°,则20;BC CA ⋅=③已知正方形ABCD 的边长为l,则||AB BC AC ++=④已知5,28,3(),,,AB a b BC a b CD a b A B C =+=+=-则三点共线.其中正确结论的个数为 A .1 B .2 C .3 D .49.物体A 以速度v=3f 2+l (t 的单位:s ,v 的单位:m /s )在一直线上运动,在此直线上与物体A 出发的同时,物体j5}在物体A 的正前方5 m 处以速度v=l0t (t 的单位:s ,v 的单位:m /s )的速度与A 同向运动,当两物体相遇时,相遇地与物体A 的出发地的距离是 A .1 20 m B .1 30 m C .140 m D 。

1 50 m 10.已知函数|1|,0,(),,,()()(),2ln ,.nx x e f x a b c f a f b f c a b c x x e <≤⎧===++⎨->⎩若互不相等且则的取值范围为A .(1+e ,1+e+e 2)B .(上+2e ,2+e2)C .(2+e 2) D .(12e e+) 二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.某校从高一年级学生中随机抽取部分学生,将他 们的模块测试成绩分为6组:[40,50),[50,60), [60,70),[70,80),[80,90),[90,100]加以统计,得 到如图所示的频率分布直方图,已知高一年级共 有学生600名,据此估计,该模块测试成绩不少 于60分的学生人数为 .12.在区间(0,1)内随机地取出两个数,则两数之和小于65的概率是 . 13.设20,,250,20.x y z kx y x y y --≤⎧⎪=-+-≥⎨⎪-≤⎩其中实数x,y 满足若当且仅当x=3,y=1时,z 取得最大值,则k 的取值范围为 .14.如图,在圆内画1条线段,将圆分成两部分;画2条相交线段,将圆分割成4部分;画3条线段,将圆最多分割成7部分;画4条线段,将圆最多分割成.11部分,那么, (I )在圆内画5条线段,将圆最多分割成 部分; (Ⅱ)在圆内画n 条线段,将圆最多分割成 部分。

15.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/100 kg )与上市时间£(单位:天)的数据如下表:根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q 与上市时间z 的变化关系.Q=at+b, Q=at 2+bt+c, Q=a ·b t ,Q=a ·log a t .利用你选取的函数,求得:(I )西红柿种植成本最低时的上市天数是 ; (Ⅱ)最低种植成本是 (元/100 kg ).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分1 2分)在△ABC21cos2.B B =-(I )求角B 的值; (Ⅱ)若BC=2,A=4π,求△ABC 的面积.17.(本小题满分12分)在公差不为零的等差数列{n a }中,已知a 1=l ,.且a 1,a 2,a 5依次成等比数列.数列{n b }满足121 3.n n n b b b +=-=且.(Ⅱ)设数列{12n n a a +⋅}的前n 项和为S n ,试比较S n 与1一1nb 的大小.18.(本小题满分12分)如图,在长方体A BCD —A 1B 1C 1D 1中,点E ,F 分别在BB 1,DD 1上,且AE ⊥AB ,A F ⊥A 1D . (I )求证:A 1C ⊥平面A EF ;(Ⅱ)若AB=4,AD=3,AA 1=5,求平面A EF 和平面D 1B 1BD 所成的角的正弦值.19.(本小题满分12分)某市高中结业考试数学和物理两科,其考试合格指标划分为:分数大于或等于85为合格,小于85为不合格.现随机抽取这两科各100位学生成绩,结果统计如下:(I )试分别估计数学和物理合格的概率;(Ⅱ)抽取—位同学数学成绩,若成燃可得4个学分,若是不合格则扣除0.5个学分;抽取二位同学物理成绩,若成绩合格可得5个学分,若不合格则扣除1个学分.在(I )的前提下,(i )记X 为抽查1位同学数学成绩和抽查1位同学物理成绩所得的总学分,求随机变量X 的分布列和数学期望;(ii )求抽查5位同学物理成绩所得的总学分不少于14个的概率.20.(本小题满分13分)已知椭圆2232:1(0)x y C a b a b +=>>的右焦点为F ,离心率为2,过点F 且与石轴垂直的直线被椭O 为坐标原点.(I )求椭圆C 的方程;(Ⅱ)设经过点M (0,2)作直线A B 交椭圆C 于A 、B 两点,求△AOB 面积的最大值;(Ⅲ)设椭圆的上顶点为N ,是否存在直线l 交椭圆于P ,Q 两点,使点F 为△PQN 的垂心?若存在,求出直线l 的方程;若不存在,请说明理由. 21.(本小题满分14分)已知函数()ln()f x x a x =+-的最大值为0,其中a>0. (I )求a 的值;(Ⅱ)若对任意的2[0,),()x f x kx ∈+∞≥有成立,求实数k 的最大值; (Ⅲ)证明理科数学试题参考答案及评分细则一、选择题:1.C 2.B 3.B 4.A 5.D 6.D 7.A 8.C 9.B 10.B 二、填空题:11.480 12.2517(或0.68) 13.1(,1)2- 14.(Ⅰ)16;(Ⅱ)()211++n n 15.(Ⅰ)120;(Ⅱ)80 三、解答题:16.△ABC 的面积1sin 2S AC BC C =⋅=.……… ………………(12分) 17.2 1.n n b =+ ……………………………………………………………(6分)3n ≥时,22n n <,n S <11nb -.………………………………………(12分) 18.平面AEF 和平面BD B D 11所成的角的正弦值为25437.………………(12分) 19.(本小题满分12分) 解:(Ⅰ)数学合格的概率约为4032841005++=.物理合格的概率约为4029631004++=.…………………………………………(4分) (Ⅱ),随机变量X 的分布列为:X9 5.4 3 5.1- P35 320 15 120 6.6201)5.1(5132035.4539=⨯-+⨯+⨯+⨯=EX .…………………………(9分)(ⅱ)抽查5位同学物理分数,合格n 人,则不合格有5n -人,总学分为56)5(5-=--n n n 个. 依题意,得14)5(5≥--n n ,解得619≥n . 所以4n =或5n =.设“抽查5位同学物理分数所获得的学分不少于14分”为事件A , 则445531381()C ()()444128P A =⨯+=.……………………………………(12分) 20.(1) 1222=+y x . (2)126,128221221+=+-=+k x x k k x x .8168)4(82++=+=∆tt t tS AOB .△B O A 面积的最大值为22(Ⅲ)假设存在直线l 交椭圆于P ,Q 两点,且F 为△PQN 的垂心. 设),(11y x P ,),,(22y x Q 因为)1,0(N ,)0,1(F ,所以1-=NF k . 由PQ NF ⊥,知1=PQ k .设直线l 的方程为m x y +=,由⎩⎨⎧=++=,22,22y x m x y 得0224322=-++m mx x . 由0>∆,得32<m ,且3421m x x -=+,322221-=m x x .由题意,有0=⋅FQ NP .因为),1(),1,(2211y x FQ y x NP -=-=,所以0)1()1(1221=-+-y y x x ,即0)1)(()1(1221=-+++-m x m x x x , 所以0)1)((222121=-+-++m m m x x x x .于是0)1(34322222=-+---⨯m m m m m . 解得34-=m 或1=m . 经检验,当1=m 时,△PQN 不存在,故舍去1=m . 当34-=m 时,所求直线l 存在,且直线l 的方程为34-=x y .……………(13分) 21.(本题满分14分)解:(Ⅰ)()f x 的定义域为()+∞-,a ,ax a x a x x f +-+-=-+='111)(. 由0)(='x f ,得a a x ->-=1. 当a x a -<<-1时,()0/>x f;当a x ->1时,()0/<x f .所以,)(x f 在a x -=1处取得最大值.由题意知()011=+-=-a a f ,所以1=a .…………………………………(4分) (Ⅱ)(1)当0≥k 时,由012ln )1(<-=f ,知0≥k 不合题意.(2)当0<k 时,设()()22)1ln(kx x x kx x f x g --+=-=.则1)122(2111)(+++-=+-+='x k kx x kx x x g .令0)(='x g ,得01=x ,12112122->--=+-=kk k x . ①当21-≤k 时,02122≤+-=kk x ,0)(>'x g 在),0(+∞∈x 上恒成立, 因此)(x g 在),0[+∞上单调递增,从而总有0)0()(=≥g x g , 即2)(kx x f ≥在),0[+∞上恒成立.②当021<<-k 时,02122>+-=k k x ,对于)212,0(kk x +-∈,0)(<'x g , 因此)(x g 在)212,0(kk +-上单调递减. 因此,当取)212,0(0kk x +-∈时,0)0()(0=<g x g , 即200)(kx x f ≥不成立.故021<<-k 不合题意.综上,k 的最大值为21-. ……………………………………………………(8分)(Ⅲ)由(Ⅱ)得:221)1ln(x x x -≥-+对任意的[0,+)x ∈∞恒成立.即221)1ln(x x x ≤+-对任意的[0,+)x ∈∞恒成立.取122-=i x (),,3,2,1n i =,则2)12(2)1122ln(122-≤+---i i i , 即2)12(2)]12ln()12[ln(122-≤--+--i i i i . 当1=n 时,23ln 2<-,不等式成立;当2≥n 时,)12ln(122)]12ln()12ln(122[11+--=-++--∑∑==n i i i i ni ni .因为121321)12)(32(2)12(22---=--<-i i i i i , 所以)121321(3ln 2)12ln(12221---+-<+--∑∑==i i n i ni ni 212113ln 2<--+-=n . 综上,()212ln 1221<+--∑=n i ni . ………………………………………(14分)。

相关文档
最新文档