4-3常见分布随机变量的数学期望和方差

合集下载

概率分布中的期望与方差计算技巧

概率分布中的期望与方差计算技巧
定性
质量控制:在生产 过程中,方差用于 衡量产品质量的一 致性和稳定性,通 过控制产品质量指 标的方差来提高产
品质量
社会科学研究: 在社会科学研究 中,方差用于分 析调查数据的变 异性和不确定性, 以及比较不同样
本之间的差异
期望与方差在金融领域的应用
风险评估:用于衡量投资组合的风 险和预期收益
资本资产定价模型(CAPM):用 于确定资产的预期收益率,并评估 市场风险
定义:离散概率 分布的方差是各 个可能结果与期 望值的差的平方 的期望值。
计算公式:方差 = Σ (p(x) * (x μ)²),其中p(x) 是概率,μ是期 望值。
举例:假设一个随 机变量X只取两个 值,X=0的概率为 0.5,X=1的概率 为0.5,则方差 = (0.5 * (0 - μ)² + 0.5 * (1 - μ)²)。
添加标题
添加标题
添加标题
添加标题
资产定价:为金融资产(如股票、 债券等)定价,以确定其内在价值
投资组合优化:通过期望和方差等 参数,选择最佳投资组合以最大化 预期收益并最小化风险
感谢您的观看
汇报人:XX
方差的定义
方差是衡量数据点与平均值之间离散程度的统计量。
方差计算公式为:方差 = Σ((数据点 - 平均值)^2) / 数据点个数。
方差的值越小,说明数据点越接近平均值,离散程度越小;方差的值越大,说明数据点离散程度越 大。
方差在概率分布中表示随机变量取值的不确定性程度。
离散概率分布的方差计算
注意事项:可能不是整数
连续概率分布的期望值计算
定义:连续概率分 布的期望值是所有 可能取值的加权平 均值,其中每个取 值的权重为其概率 密度函数在该点的

常用分布的数学期望及方差

常用分布的数学期望及方差

方差的性质
方差具有可加性
对于两个独立的随机变量X和Y,有Var(X+Y) = Var(X) + Var(Y)。
方差具有对称性
对于一个常数a和随机变量X,有Var(aX) = |a|^2 * Var(X)。
方差具有非负性
对于随机变量X,有Var(X) >= 0,其中 Var(X) = 0当且仅当X是一个常数。
05 数学期望与方差的应用
在统计学中的应用
描述性统计
数学期望和方差用于描述一组数据的中心趋势和 离散程度,帮助我们了解数据的基本特征。
参数估计
通过样本数据的数学期望和方差,可以对总体参 数进行估计,如均值和方差的无偏估计。
假设检验
在假设检验中,数学期望和方差用于构建检验统 计量,判断原假设是否成立。
常见分布的数学期望
均匀分布的数学期望为
$E(X) = frac{a+b}{2}$,其中a和b是均匀分布的下限和上 限。
柯西分布的数学期望为
$E(X) = frac{pi}{beta} sinh(frac{1}{beta})$,其中β是柯西 分布的参数。
拉普拉斯分布的数学期望为
$E(X) = frac{beta}{pi} tan(frac{pi}{beta})$,其中β是拉普 拉斯分布的参数。
03
泊松分布
正态分布是一种常见的连续型随机变量 分布,其方差记作σ²。正态分布的方差 描述了随机变量取值的分散程度。
二项分布是一种离散型随机变量分布, 用于描述在n次独立重复的伯努利试验 中成功的次数。其方差记作σ²,且σ² = np(1-p),其中n是试验次数,p是单次 试验成功的概率。
泊松分布是一种离散型随机变量分布, 用于描述在一段时间内随机事件发生的 次数。其方差记作σ²,且σ² = λ,其中 λ是随机事件发生的平均速率。

六个常用分布的数学期望和方差

六个常用分布的数学期望和方差
2
例1.已知 X ~ (3) , Y 2 X 1 , 求E (Y ) , D(Y ) , E[3( X 2 1)] 解:X ~ (3) , 则 E ( X ) 3 , D( X ) 3
E (Y ) E ( 2 X 1) 2 E ( X ) 1 5
D(Y ) D( 2 X 1) 4 D( X ) 12



xf ( x )dx

b
x
1 ba
dx
a

1 ba
x
2
b

ab 2
2 a
E( X )
2

b
x
2
1 ba
dx
b a
3
3
a
3(b a )
a ab b
2 2

a ab b
2
2
3
a 2ab b
2 2
D( X ) E ( X ) [ E ( X )]
即: 若随机变量X~B( n , p ),则
E ( X ) np,D( X ) np(1 p)
三.泊松分布
随机变量
P{ X k }
X ~ ( ) ,其分布律为:
λ e
k λ
,
k 0,1,2, ,
k!
E( X )
k
k 0

e
k

e

k!
(k 1)!

xf ( x )dx




x
1 2

e
dx (令 t
t
2
x

方差

方差
X服从泊松分布,即X~ π(λ),则 E(X)= λ,D(X)= λ
X服从均匀分布,即X~U(a,b),则E(X)=(a+b)/2, D(X)=(b-a)^2/12
X服从指数分布,即X~e(λ), E(X)= λ^(-1),D(X)= λ^(-2)
X服从二项分布,即X~B(n,p),则E(x)=np, D(X)=np(1-p)
则D(X+Y)=D(X)+D(Y)。此性质可以推广到有限多个相互独立的随机变量之和的情况.
(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。
编辑本段常见随机变量的期望和方差
设随机变量X。
X服从(0—1)分布,则E(X)=p D(X)=p(1-p)
恒有P{|X-EX|>=ε}<=DX/ε^2 或P{|X-EX|<ε}>=1-DX/ε^2
切比雪夫不等式说明,DX越小,则 P{|X-EX|>=ε}
越小,P{|X-EX|<ε}越大, 也就是说,随机变量X取值基本上集中在EX附近,这进一步说明了方差的意义。
同时当EX和DX已知时,切比雪夫不等式给出了概率P{|X-EX|>=ε}的一个上界,该上界并不涉及随机变量X的具体概率分布,而只与其方差DX和ε有关,因此,切比雪夫不等式在理论和实际中都有相当广泛的应用。需要指出的是,虽然切比雪夫不等式应用广泛,但在一个具体问题中,由它给出的概率上界通常比较保守。
由此可见,研究随机变量与其均值的偏离程度是十分必要的.那么,用怎样的量去度量这个偏离程度呢?容易看到E(|X-E(X)|)能度量随机变量与其均值E(X)的偏离程度. 但由于上式带有绝对值,运算不方便,通常用量

常见分布的期望与方差的计算知识分享

常见分布的期望与方差的计算知识分享
= np(1 − p)
3. 泊松分布
设 X ~ π(λ ), 且分布律为
P{ X = k} = λk e−λ , k = 0,1,2,", λ > 0.
k!
∑ ∑ 则有 E( X ) = ∞ k ⋅ λk e−λ = e−λ ∞ λk−1 ⋅ λ
k=0 k!
k=1 (k − 1)!
= λe−λ ⋅ eλ = λ
= np[ p + (1 − p)]n−1 = np
E( X 2 ) = E[ X ( X − 1) + X ] = E[ X ( X − 1)] + E( X )
∑ = n k(k − 1)⎜⎛ k ⎞⎟ pk (1 − p)n−k + np
k=0
⎝n⎠
∑ = n k(k − 1)n!pk (1 − p)n−k + np
(法二) X 的分布律为
P{ X = k} = ⎜⎛ n ⎞⎟ pk (1 − p)n−k ,(k = 0,1,2,", n),
⎝k⎠
∑ ∑ 则有 E( X ) = n k ⋅ P{ X = k} = n k⎜⎛ n ⎞⎟ pk (1 − p)n−k
k=0
k=0 ⎝ k ⎠
∑n
=
kn! pk (1 − p)n−k
E( X 2 ) = E[ X ( X − 1) + X ]
= E[ X ( X − 1)] + E( X )
∑ = +∞ k(k − 1) ⋅ λk e−λ + λ
k=0
k!
∑+∞
= λ2e−λ ⋅
λk − 2
+ λ = λ2e−λeλ + λ = λ2 + λ .

常见分布期望和方差推导

常见分布期望和方差推导

) ( ) (1) (1) 2 (1) 1 0.6826
P{| X | 3 } P{ 3 X 3 }
2 (3) 1 0.9974 因此,对于正态随机变量来说,它的值落在区间 内几乎是肯定的。
( n 1)! np p k 1q n 1( k 1) ( k 1)! ( n 1 ( k 1))! 返回主目录 k 1

n
第十三章 随机变量的数字特征
EX np

k 1
n k 0
n
k 1 k 1 n 1 ( k 1) Cn q np 1 p

i 0
n 1
§3
几种期望与方差
i i n 1 i Cn p q 1
np ( p q) n 1 np
EX
2

k
n
n
2
C p q
k n k
nk
n! p k p k 1 q n k ( k 1)! ( n k )! k 1

n! k pk qnk k!( n k )! k 0

t2 tde 2

e
dt 2
返回主目录
第十三章 随机变量的数字特征
P{| X | } P{ X }
(
§3
几种期望与方差
P{| X | 2 } P{ 2 X 2 }
2 ( 2) 1 0.9544


n
n ( n 1) p 2 ( p q) n 2 np n 2 p 2 np 2 np
DX EX 2 ( EX ) 2 n 2 p 2 n p 2 np n 2 p 2 np (1 p ) npq

概率计算中的期望与方差计算

概率计算中的期望与方差计算

概率计算中的期望与方差计算概率论是数学中的一个重要分支,其中期望值和方差是计算概率分布特征的核心概念。

在概率计算中,期望值和方差的计算可以帮助我们了解随机事件的平均趋势和离散程度。

本文将介绍期望值和方差的概念、计算方法以及其在概率计算中的应用。

1. 期望值的定义与计算方法期望值是一组数据中各数值与其概率加权平均的结果。

它可以理解为随机变量的平均取值。

设随机变量X有n个取值x1, x2, ... , xn,并且对应的概率为p1, p2, ... , pn,则期望值的计算公式为:E(X) = x1 * p1 + x2 * p2 + ... + xn * pn其中E(X)表示X的期望值。

通过计算,可以得到随机变量X的平均取值。

2. 方差的定义与计算方法方差是一组数据中各数值与其期望值的差的平方与其概率加权平均的结果。

它可以理解为随机变量取值与其平均取值的离散程度。

方差的计算公式为:Var(X) = (x1 - E(X))^2 * p1 + (x2 - E(X))^2 * p2 + ... + (xn - E(X))^2 * pn其中Var(X)表示X的方差。

通过计算,可以得到随机变量X的离散程度大小。

3. 期望值与方差的应用举例在实际应用中,期望值和方差有着广泛的应用。

以下是一些常见的应用举例:3.1 投掷硬币假设投掷一枚公平的硬币,正面朝上的概率为p,反面朝上的概率为1-p。

则硬币的期望值为E(X) = p * 1 + (1-p) * 0 = p,方差为Var(X)= (1-p)^2 * p + p^2 * (1-p) = p(1-p)。

通过计算可以知道,硬币投掷的平均结果为正面与反面的概率加权平均,且平均偏离程度由p(1-p)表示。

3.2 随机抽样在随机抽样中,假设有n个样本,每个样本的概率为p,被抽中的概率为1-p。

则样本的期望值为E(X) = p,方差为Var(X) = p(1-p)/n。

通过计算可以得到,样本的平均结果由单个样本的概率加权平均,且偏离程度与样本数量n成反比。

概率论与数理统计第四章

概率论与数理统计第四章

)
(
)
(
)
,
(
Y
D
X
Dபைடு நூலகம்
Y
X
Cov
xy
=
r
=4[E(WV)]2-4E(W2)×E(V2)≤0
01
得到[E(WV)]2≤E(W2)×E(V2). →(8)式得到证明.
02
设W=X-E(X),V=Y-E(Y),那么
03
其判别式
由(9)式知, |ρ xy|=1 等价于 [E(WV)]2=E(W2)E(V2). 即 g(t)= E[tW-V)2] =t2E(W2)-2tE(WV)+E(V2) =0 (10) 由于 E[X-E(X)]=E(x)-E(X) =0, E[Y-E(Y)]=E(Y)-E(Y) =0.故 E(tW-V)=tE(W)-E(V)=tE[X-E(X)]-E[Y-E(Y)]=0 所以 D(tW-V)=E{[tW-V-E(tW-V)]2}=E[(tW-V)2]=0 (11) 由于数学期望为0,方差也为0,即(11)式成立的充分必要条件是 P{tW-V=0}=1
随机变量X的数学期望是随机变量的平均数.它是将随机变量 x及它所取的数和相应频率的乘积和.
=
(1)
)
2
3
(
)
(
-
=
ò
µ
µ
-
dx
x
x
E
j
x
可见均匀分布的数学期望为区间的中值.
例2 计算在区间[a,b]上服从均匀分布的随机变量 的数学期望
泊松分布的数学期望和方差都等于参数λ.
其他
02
f(x)=
01
(4-6)
03
(4)指数分布

数学期望与方差的性质

数学期望与方差的性质

i 1,2,,n
n
n
所以 E(X)= E( Xi )= np D( X ) D( Xi ) np(1 p)
i1
i1
例 一台设备由三部件构成,在设备运转中各部件需要调整的 概率相应为0.10 ,0.20和0.30。假设每台部件的状态是相互独立 的。以 X 表示同时需要调整的部件数,试求 X 的数学期望。
解一 利用公式求E(X ).
先求分布律
X0 1 2 3 P 0.504 0.398 0.092 0.006
E( X ) xk pk 0.6
k
解二 利用性质求E(X )

Xi
1 0
如第i个需调整 如第i个不需调整 i=1,2,3
Xi 0 P 1 P( Ai)
1 P( Ai)
则 X= X1+X2+X3 EX i P( Ai) EX= EX1+EX2+EX3 =0.6
数学期望与方差的性质非常重要,既 可以利用它们简化计算,又可以得到许多 重要结论.
例已知随机变量 X 服从参数为的泊松分布, 简化计
算 且E[(X 1)(X 2)] 1,
则 _ .
本题要求熟悉泊松分布的有关特征,并会利用数学期望的性质
E (X 1)( X 2) E( X 2 3X 2)
解二 利用性质求E(X ), D (X ).
重要方法
若 X表示n重贝努里试验中的“成功” 次数
引入随机变量 X 1 , X 2 , , X n

X
i
1 0
如第i次试验成功
如第i次试验失败 i=1,2,…,n
则 X= X1+X2+…+Xn X1, X 2 ,, Xn 相互独立

随机变量的数学期望与方差

随机变量的数学期望与方差

随机变量的数学期望与方差随机变量在概率论中具有重要地位,它描述了随机事件的变化规律,数学期望和方差是衡量随机变量分布的重要指标。

一、数学期望数学期望是对随机变量取值的平均值的度量,记作E(X),其中X为随机变量。

数学期望可以理解为长期重复试验中,随机变量取值的平均结果。

对于离散型随机变量,数学期望的计算公式为:E(X) = ∑(x * P(X=x))其中x为随机变量的取值,P(X=x)为该取值发生的概率。

对于连续型随机变量,数学期望的计算公式为:E(X) = ∫(x * f(x))dx其中f(x)为随机变量的概率密度函数。

二、方差方差是随机变量取值分散程度的度量,记作Var(X)或σ^2,其中X为随机变量。

方差描述的是随机变量取值与其数学期望之间的偏离情况。

对于离散型随机变量,方差的计算公式为:Var(X) = ∑((x - E(X))^2 * P(X=x))其中x为随机变量的取值,E(X)为该随机变量的数学期望。

对于连续型随机变量,方差的计算公式为:Var(X) = ∫((x - E(X))^2 * f(x))dx其中f(x)为随机变量的概率密度函数。

三、应用举例为了更好理解数学期望与方差的作用和计算方法,下面以骰子为例进行说明。

假设我们有一个六面骰子,其取值范围为1到6,每个面出现的概率相等。

我们可以定义骰子的随机变量X表示投掷后骰子的结果。

1. 计算数学期望:E(X) = (1 * 1/6) + (2 * 1/6) + (3 * 1/6) + (4 * 1/6) + (5 * 1/6) + (6 * 1/6) = 3.5所以,这个六面骰子的数学期望为3.5,即在长期重复的投掷中,平均每次的点数是3.5。

2. 计算方差:Var(X) = ((1-3.5)^2 * 1/6) + ((2-3.5)^2 * 1/6) + ((3-3.5)^2 * 1/6) + ((4-3.5)^2 * 1/6) + ((5-3.5)^2 * 1/6) + ((6-3.5)^2 * 1/6) ≈ 2.92所以,这个六面骰子的方差为2.92,即在长期重复的投掷中,每次投掷结果与平均值3.5偏离的程度。

概率论中的常见分布和期望与方差——概率论知识要点

概率论中的常见分布和期望与方差——概率论知识要点

概率论中的常见分布和期望与方差——概率论知识要点概率论是数学中的一个重要分支,研究随机现象的规律性。

在概率论中,常见的分布函数和概率密度函数描述了随机变量的分布规律,而期望和方差则是描述随机变量的中心位置和离散程度的重要指标。

本文将介绍概率论中的常见分布以及期望和方差的概念和计算方法。

一、离散型分布在概率论中,离散型分布描述了随机变量取有限个或可列个数值的概率分布。

以下是几个常见的离散型分布:1. 伯努利分布伯努利分布是最简单的离散型分布,描述了只有两个可能结果的随机试验,比如抛硬币的结果。

设随机变量X表示试验的结果,取值为1或0,表示成功或失败的情况。

伯努利分布的概率质量函数为:P(X=k) = p^k * (1-p)^(1-k),其中k=0或1,p为成功的概率。

2. 二项分布二项分布描述了一系列独立的伯努利试验中成功的次数。

设随机变量X表示成功的次数,取值范围为0到n,n为试验的次数,p为每次试验成功的概率。

二项分布的概率质量函数为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k),其中C(n,k)为组合数。

3. 泊松分布泊松分布描述了在一定时间或空间内随机事件发生的次数。

设随机变量X表示事件发生的次数,取值范围为0到无穷大。

泊松分布的概率质量函数为:P(X=k) = (λ^k * e^(-λ)) / k!,其中λ为事件发生的平均次数。

二、连续型分布在概率论中,连续型分布描述了随机变量在某个区间内取值的概率分布。

以下是几个常见的连续型分布:1. 均匀分布均匀分布描述了随机变量在某个区间内取值的概率相等的情况。

设随机变量X 在[a, b]区间内取值,均匀分布的概率密度函数为:f(x) = 1 / (b-a),其中a≤x≤b。

2. 正态分布正态分布是概率论中最重要的分布之一,也被称为高斯分布。

正态分布的概率密度函数为:f(x) = (1 / √(2πσ^2)) * e^(-(x-μ)^2 / (2σ^2)),其中μ为均值,σ为标准差。

432统计学考试大纲

432统计学考试大纲

432统计学考试大纲一、考试的基本要求要求考生比较系统地掌握概率论与数理统计的基本原理和基本方法,具有一定创新意识和较强的分析问题、解决问题的能力。

并要求考生具有一定的计算能力、逻辑推理能力和综合运用所学的知识分析问题和解决实际问题的能力。

二、考试方式和考试时间闭卷考试;总分150分;考试时间为3小时。

三、考试内容概率论基础知识,统计学基础知识,常见统计学模型及其应用。

四、试题类型:主要包括计算题、证明题、论述题等类型。

五、考试内容及要求第一部分概率论部分熟练掌握:概率论的基础知识1、概率论的基础概念:随机试验、样本空间、随机事件、古典概型、条件概率、独立性;2、随机变量及其分布:常见的离散型随机变量、连续型随机变量、随机变量的函数;3、多元随机变量及其分布:二维随机变量、边缘分布、条件分布、相互独立的随机变量、两个随机变量的函数;4、随机变量的数字特征:数学期望、方差、协方差、相关系数;第二部分计算机仿真部分熟练掌握:计算机仿真的原理及算法设计。

1、常见类型的随机数的产生(均匀分布、正态分布等);2、方法古典概率类型的计算机模拟、随机事件的仿真;第三部分统计学基础知识熟练掌握:统计学的基础知识。

1、大数定律;2、中心极限定理;3、样本几抽样分布;第四部分常见统计学应用模型熟练掌握:统计学常见的模型及其应用1、总体参数的点估计(矩估计极大似然估计)、总体参数的区间估计(一个总体、两个总体)、样本量的确定;2、分布拟合检验:单个分布的卡方拟合检验、分布族的卡方拟合检验、偏度峰度检验,夏皮罗-威尔克检验、秩和检验;3、参数假设检验:两类错误、一个总体、两个总体、单侧、双侧;4、分类数据与卡方检验:拟合优度检验、独立性检验;5、方差分析:单因素方差分析、双因素方差分析;6、回归分析:一元线性回归、多元线性回归;7、时间序列分析;六、参考书目(仅供参考)[1] 贾俊平、何晓群、金勇进. 《统计学》(第7版). 中国人民大学出版社.[2] 盛骤,谢式千,潘承毅编.《概率论与数理统计》浙江大学. 高等教育出版社.[3] 茆诗松,吕晓玲. 《数理统计学》(第2版). 中国人民大学出版社.[4] 《数学分析》,华东师范大学数学分析教研室编,高等教育出版社.[5] 《高等代数》,北京大学代数教研室编,高等教育出版社.。

概率计算中的期望与方差计算

概率计算中的期望与方差计算

概率计算中的期望与方差计算概率计算是数学中的一个重要分支,广泛应用于各个领域,包括金融、统计学、物理学等。

在概率计算中,期望与方差是两个基本的概念和工具,用于描述随机变量的特征和分布。

本文将详细介绍期望与方差的计算方法及其应用。

一、期望的计算期望是随机变量的平均值,它可以理解为对随机变量进行大量重复实验后的平均结果。

期望的计算公式如下:E(X) = Σ[x * P(x)]其中,E(X)表示随机变量X的期望,x表示随机变量可能取到的值,P(x)表示该值发生的概率。

以掷骰子为例,假设骰子是均匀的,即各个面出现的概率相等。

骰子的期望可以通过以下计算得出:E(X) = 1 * 1/6 + 2 * 1/6 + 3 * 1/6 + 4 * 1/6 + 5 * 1/6 + 6 * 1/6 = 3.5这意味着在长期的掷骰子实验中,每次掷出的点数的平均值接近于3.5。

二、方差的计算方差衡量的是随机变量离其期望的平均偏离程度,用于描述随机变量的分散程度。

方差的计算公式如下:Var(X) = Σ[(x - E(X))^2 * P(x)]其中,Var(X)表示随机变量X的方差,x表示随机变量可能取到的值,E(X)表示随机变量X的期望,P(x)表示该值发生的概率。

继续以掷骰子为例,我们计算骰子的方差:Var(X) = [(1-3.5)^2 * 1/6] + [(2-3.5)^2 * 1/6] + [(3-3.5)^2 * 1/6] + [(4-3.5)^2 * 1/6] + [(5-3.5)^2 * 1/6] + [(6-3.5)^2 * 1/6] = 2.92从结果可以看出,骰子的结果相对稳定,方差较小。

三、期望与方差的应用期望和方差作为概率计算的基本工具,应用广泛。

以下是一些常见的应用场景:1. 金融领域:在金融建模中,期望和方差被广泛应用于资产收益的预测和风险评估。

投资者可以通过计算期望和方差来评估投资组合的预期收益和风险。

数学期望和方差公式

数学期望和方差公式

数学期望和方差公式数学期望和方差是概率论和统计学中重要的概念,在许多领域中有广泛的应用。

它们是度量随机变量分布的指标,可以帮助我们了解随机现象的平均值和离散程度。

本文将详细介绍数学期望和方差的定义、性质以及计算公式。

一、数学期望数学期望,也称为均值或平均值,是衡量随机变量平均值的指标。

对于离散型随机变量X,它的数学期望E(X)的定义如下:E(X) = Σx * P(X = x)其中,x代表随机变量X可能取到的值,P(X = x)表示随机变量取到x的概率。

对于连续型随机变量X,它的数学期望E(X)的定义如下:E(X) = ∫x * f(x) dx其中,f(x)表示X的概率密度函数。

数学期望具有以下性质:1. 线性性质:对于任意实数a和b,以及任意两个随机变量X和Y,有E(aX + bY) = aE(X) + bE(Y)。

2. 递推性质:对于离散型随机变量X,可以通过递推公式E(X) = Σx * P(X = x)来计算。

3. 位置不变性:对于随机变量X和常数c,有E(X + c) = E(X) + c。

数学期望的计算公式可以帮助我们求解随机变量的平均值,进而了解随机现象的集中程度。

二、方差方差是衡量随机变量取值的离散程度的指标,它表示随机变量与其均值之间的差异程度。

对于离散型随机变量X,其方差Var(X)的定义如下:Var(X) = Σ(x - E(X))^2 * P(X = x)对于连续型随机变量X,其方差Var(X)的定义如下:Var(X) = ∫(x - E(X))^2 * f(x) dx方差具有以下性质:1. 线性性质:对于任意实数a和b,以及任意随机变量X和Y,有Var(aX + bY) = a^2 * Var(X) + b^2 * Var(Y)。

2. 位置不变性:对于随机变量X和常数c,有Var(X + c) = Var(X)。

3. 零偏性:Var(X) >= 0,当且仅当X是一个常数时,等号成立。

概率分布的期望与方差

概率分布的期望与方差

概率分布的期望与方差在概率论与统计学中,期望与方差是概率分布的两个重要的统计度量。

期望代表了随机变量的平均值,方差则衡量了其离散程度。

本文将详细探讨概率分布的期望与方差以及其在实际应用中的意义。

一、期望的定义与计算方法期望是对随机变量的平均值的度量。

对于离散随机变量X,其期望E(X)的计算方法为:E(X) = Σ( xi * P(xi) ),其中xi代表随机变量X的取值,P(xi)代表X取值为xi的概率。

也可以用数学期望符号表示为:E(X) = Σ( xi ) * P(xi),即随机变量取值乘以对应的概率之后的总和。

以掷骰子为例,假设一枚骰子的取值范围为{1, 2, 3, 4, 5, 6},每个值出现的概率都为1/6。

根据期望的计算公式,可以得到期望E(X) = (1*1/6) + (2*1/6) + (3*1/6) + (4*1/6) + (5*1/6) + (6*1/6) = 3.5。

因此,掷骰子的期望值为3.5。

二、方差的定义与计算方法方差是对随机变量离散程度的度量。

对于离散随机变量X,其方差Var(X)的计算方法为:Var(X) = Σ( (xi-E(X))^2 * P(xi) ),其中xi代表随机变量X的取值,E(X)代表X的期望。

也可以用数学符号表示为:Var(X) = Σ( xi^2 ) * P(xi) - (E(X))^2。

仍以掷骰子为例,已知掷骰子的期望值E(X)为3.5。

根据方差的计算公式,可以得到方差Var(X) = (1-3.5)^2 * 1/6 + (2-3.5)^2 * 1/6 + (3-3.5)^2 * 1/6 + (4-3.5)^2 * 1/6 + (5-3.5)^2 * 1/6 + (6-3.5)^2 * 1/6 = 35/12 ≈ 2.917。

因此,掷骰子的方差为2.917。

三、期望与方差的意义与应用期望和方差是概率分布的重要度量指标,对于理解和分析随机变量的分布特征十分关键。

第三章 随机变量的数字特征

第三章 随机变量的数字特征

E(Y) = ∑yj P{Y = yj } = ∑yj p. j = ∑∑yj pij
j j j i
i
i
i
j
2.(X,Y)为二维连续型随机变量 2.(X,Y
E( X ) = ∫
E (Y ) = ∫
+∞ −∞
x f X ( x)dx = ∫
+∞ −∞
+∞
−∞

+∞
−∞
x f ( x, y )dxdy
+∞
解 由 面 公 : 上 的 式
E[ XY)] = ∫ =∫
1
+∞ +∞
y
−∞ −∞
∫ xyf (x, y)dxdy
5
X
+∞ +∞
−∞ −∞
∫ xyf
+∞ 5
x 1
(x) fY ( y)dxdy
= ∫ dx ∫ xy ⋅ 2x ⋅ e−( y−5)dy
0 1
= ∫ 2x2dx ∫ ye−( y−5)dy
该式可以直接按照离散型随机变量的数学期望的定义 证明,也可以按照数学期望的性质证明(见后)。 4. 泊松分布 已知随机变量 X ~ P (λ )
P{ X = k} =
λk
k!
e− λ
k = 0,1, 2,⋯ , λ > 0
X的 学 望 数 期 为 ∞ ∞ λk e−λ λk−1 −λ E( X ) = ∑k = λe ∑ = λe−λeλ = λ k! k =0 k =1 (k −1)! 即 E( X ) = λ
5. 超几何分布 若随机变量
X ∼ H (n, M , N ), 其概率分布为
k n CM CN−kM − n CN

(完整版)随机变量的数学期望与方差

(完整版)随机变量的数学期望与方差

第9讲 随机变量的数学期望与方差教学目的:1.掌握随机变量的数学期望及方差的定义。

2.熟练能计算随机变量的数学期望与方差。

教学重点:1.随机变量的数学期望2.随机变量函数的数学期望3.数学期望的性质4.方差的定义5.方差的性质教学难点:数学期望与方差的统计意义。

教学学时:2学时。

教学过程:第三章 随机变量的数字特征§3.1 数学期望在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X 的概率分布,那么X 的全部概率特征也就知道了。

然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。

因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。

1.离散随机变量的数学期望我们来看一个问题:某车间对工人的生产情况进行考察。

车工小张每天生产的废品数X 是一个随机变量,如何定义X 取值的平均值呢?若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品,21天每天出三件废品。

这样可以得到这100天中每天的平均废品数为27.1100213100172100301100320=⨯+⨯+⨯+⨯ 这个数能作为X 取值的平均值吗?可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是1.27。

对于一个随机变量X ,若它全部可能取的值是Λ,,21x x , 相应的概率为 Λ,,21P P ,则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。

但是,如果试验次数很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近∑∞=1k k k p x由此引入离散随机变量数学期望的定义。

定义1 设X 是离散随机变量,它的概率函数是Λ ,2 ,1,)()(====k P x X P x p K K k如果 ∑∞=1||k k k p x 收敛,定义X 的数学期望为∑∞==1)(k k k p x X E也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。

常见分布的数学期望和方差

常见分布的数学期望和方差

分布
k!

k 0,1,2,
pq
npq
学 期
均匀 分布
f (x)
1 b
a
,
a
x
b
0 , else
望 与
指数 分布
f
(
x)
e x
0,
,
x0 else
( 0)
ab 2 1
(b a)2 12 1
2
方 差
正态 分布
f (x)
1
e ,
(
x) 2 2
2
x
2
( 0)
2
例1
设X
~
N
(
1
,
2 1
E( X i ) p , D( X i ) p(1 p) ,
而 X= X1+X2+…+Xn , Xi 相互独立,
n
n
所以 E( X ) E( X i ) E( X i ) np .
i 1
i 1
n
n
D( X ) D( X i ) D( X i ) np(1 p) .
i 1
i 1
所以 D( X ) np(np p 1) (np)2 np(1 p) .
4
下面利用期望和方差的性质重新求二项分布的
数学期望和方差.
设 X ~ B ( n, p ),X表示n重伯努利试验中的成功次数.

1 X i 0
如第i次试验成功 如第i次试验失败
i=1,2,…,n

Xi
P
10
p 1 p
与 2X 的关系是则( ).
A.有相同的分布
B.数学期望相等
C.方差相等

常见分布的数学期望与方差

常见分布的数学期望与方差

If X
P ( ), then
D(X )
二、常见的连续型随机变量的数学期望与方差
1.均匀分布的方差
分布密度
1 f (x) b a 0 a x b 其 它
E(X )
3 b a 2
1 2
(a b)
2
方差
E(X
2
)

b a
x
2
b a
2
dx
”;此后十年间,航空事业获得较快发展。
筹办航空事宜

三、从驿传到邮政 1.邮政
(1)初办邮政: 1896年成立“大清邮政局”,此后又设
邮传部 邮传正式脱离海关。

(2)进一步发展:1913年,北洋政府宣布裁撤全部驿站; 1920年,中国首次参加 万国邮联大会 。
2.电讯 (1)开端:1877年,福建巡抚在 办电报的开端。 (2)特点:进程曲折,发展缓慢,直到20世纪30年代情况才发生变 化。 3.交通通讯变化的影响
2

1

2
常见分布及其期望和方差列表
分布名称 数学期望E(X) 方差D(X)
p np
0-1分布
二项分布 泊松分布
pq
npq

a b 2

(b a ) 12
2
均匀分布
正态分布 指数分布

1

2
1


2
历史ⅱ岳麓版第13课交通与通讯 的变化资料
精品课件欢迎使用
[自读教材· 填要点] 一、铁路,更多的铁路 1.地位
铁路是
交通运输 建设的重点,便于国计民生,成为国民经济
发展的动脉。 2.出现 1881年,中国自建的第一条铁路——唐山 路建成通车。 1888年,宫廷专用铁路落成。 至胥各庄铁 开平

常见分布的数学期望和方差

常见分布的数学期望和方差

e x , x 0
f (x) 0, x0
E( X )
xf ( x)dx
x ex dx
0
x de x
0
xex
0
exdx
0
1
ex
0
1
.
14
2. 指数分布 X ~ E() .
E( X )
1
,D( X )
1
2
E( X 2 ) x 2 f ( x) dx x 2 ex dx
一、常见离散型分布的数学期望和方差
1. 0-1分布 X 0 1
P 1 p p
E( X ) 0(1 p) 1 p p . E( X 2 ) 02 (1 p) 12 p p , D( X ) E( X 2 ) [E( X )]2 p p2 p(1 p) .
E( X ) p D( X ) p(1 p)
2
方 差
正态 分布
f (x)
1
e , ( x )2 2 2
x
2
( 0)
2
例1
设X
~
N
(
1
,
2 1
)
,Y
~
N
(2ຫໍສະໝຸດ ,2 2)
,且X ,Y
相互
独立,则 E( XY )
, D( XY )
.
解 E( XY ) 12 ,
D( XY ) E[( XY )2 ] [E( XY )]2
[D( X ) (EX )2 ][D(Y ) (EY )2 ] (12 )2
D. D(2 X 1) 4np(1 p)
解选
例2 设(D随).机变量X ,Y 相互独立且分布相同,则 X Y
与 2X 的关系是则( ).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄色乒乓球和 30 只白色乒乓球,乙
袋中有 45 只黄色乒乓球和 5 只白色乒乓球,现从两袋中各取 一只乒乓球, 记 X 为两只乒乓球中白球的个数, 求 EX ,DX .
解 设 X 1 表示从甲袋中所取一个乒乓球中白球的个数, X 2 表示从乙袋中所取一个乒乓球中白球的个数, 则 X X1 X 2 , 又由题意知 X 1 与 X 2 相互独立,且 X1 ~ B(1, 0.3) ,
EX
p
DX
p(1 p)
二项分布
X ~ B(n, p)
np
np(1 p )
泊松分布
X ~ P ( )
P{ X k}
k
几何分布
X ~ G ( p)
k! k 0,1, 2,
e

1 p
ab 2

1 p p2
均匀分布
X ~ U [a, b]
P{X k} (1 p)k 1 p k 1, 2,
1 , a x b, f ( x) b a 其它. 0,
(b a ) 2 12
指数分布
X ~ E ( )
e x , x 0, f ( x) x 0. 0,
1
1
正态分布
X ~ N ( , )
2
f ( x)
1 e 2
X 2 ~ B(1, 0.1) ,则有 EX EX1 EX 2 0.3 0.1 0.4 , DX DX1 DX 2 0.3 0.7 0.1 0.9 0.3 .
•4
例 3.4 设随机变量 X 与 Y 独立, 且 X ~ N (1, 2) , Y ~ N (0,1). 试求 Z 2 X Y 3 的密度函数 f Z ( z) .
解 由于 Z 为独立正态随机变量 X 与 Y 的非零线性组合, 由第三章结论 7.3 ⑴和第二章结论 4.1 正态分布的性质知,
Z 服从正态分布.又因为 EX 1, EY 0, DX 2, DY 1 ,
所以
EZ 2 EX EY 3 2 1 0 3 5 ,
DZ 22 DX DY 4 2 1 9 ,
故 Z ~ N (5,9) ,因此 Z 的密度函数为
f Z ( z)
1 2 3
e
( z 5)2 29
1 e 3 2
( z 5)2 18
, z .
•5

x 2
2 2
2

2
•2
例 3.1 设随机变量 X ~ U [0 , 6] , Y ~ E (0.5) ,计算
EX EY
DX DY

1 1 06 (6 0)2 2, DY 2 4 , 解 EX 3, DX 3 , EY 0.5 0.5 2 12 EX DX 3 3 所以 6. EY DY 2 4
例 3.2 设随机变量 X ~ P(1) ,求 P{X E( X 2 )} .
解 因为 X ~ P(1) ,所以 EX 1, DX 1,因此
E( X 2 ) DX ( EX )2 2 ,

2 1 1 P{ X E ( X 2 )} P{ X 2} e 1 . 2! 2e
§3 常见分布随机变量的数学期望和方差
(结论证明部分主要自学) 计算工具:高等数学中的积分计算和幂级数求和
要求:熟记其结论
•1
分 布 0-1分布
X ~ B(1, p)
分布律或概率密度
P{X k} pk (1 p)1k k 0,1
k k P{X k} Cn p (1 p)nk k 0,1,, n
相关文档
最新文档