运筹学基础-线性规划(应用)

合集下载

运筹学基础及应用共107页文档

运筹学基础及应用共107页文档
约束条件:关于X的线性等式或不等式 目标函数:Z=ƒ(x1 … xn) 为关于X 的线性函数,
求Z极大或极小
2020/4/19
4
1.2 线性规划问题的数学模型
三个组成要素:
1.决策变量:是决策者为实现规划目标采取的 方案、措施,是问题中要确定的未知量。
2.目标函数:指问题要达到的目的要求,表 示为决策变量的函数。
2020/4/19
16
可行解:满足约束条件的解称为可行解,可行解的集 合称为可行域。
最优解:使目标函数达到最大值的可行解。
基:约束方程组的一个满秩子矩阵称为规划问题的一
个基,基中的每一个列向量称为基向量,与基向量对应 的变量称为基变量,其他变量称为非基变量。
基解:在约束方程组中,令所有非基变量为0,可以
j1
x
j
0
( j 1, , n)
标准形式特点:
1. 目标函数为求极大值; 2. 约束条件全为等式;
3. 约束条件右端常数项全为非负;
4. 决策变量取值非负。
2020/4/19
9
一般线性规划问题如何化为标准型:
1. 目标函数求极小值:
n
minz cj xj j1
令: z'z,即化为:
maxz max(z)minz
3.约束条件:指决策变量取值时受到的各种可 用资源的限制,表示为含决策变量的等式或 不等式。
2020/4/19
5
一般线性规划问题的数学模型:
目标函数:m ( m a ) z x 或 c i 1 x 1 n c 2 x 2 c n x n
a11x1 a12x2 a1nxn (或,)b1
约束条件:a21x1a22x2a2nxn( 或,)b2

运 筹 学 课 件

运 筹 学 课 件

12/3 4
z
1 2
x4
x5 42
x3
2 3
x4
1 3
x5
4
新典式
主元化 为1,主 元所在
x2
1 2
x4
6
列的其 余元素
x1
2 3
x4
1 3
x5
4
化为0
观察最后一个典式,所有检验数均为非负, 故其对应的基本可行解为最优解,即
X * 4,6,6,0,0T z* 42
去掉引入变量,得原问题的最优解为:
运筹学课件
目录
运筹学概论 第一章 线性规划基础 第二章 单纯形法 第三章 LP对偶理论 第四章 灵敏度分析 第五章 运输问题 第六章 整数规划 第七章 动态规划 第八章 网络分析
第二章 单纯形法
(SM-Simplex Method)
1947年,美国运筹学家Dantzig提出,原理是 代数迭代。
单纯形法中的单纯形的这个术语,与该方法毫 无关系,它源于求解方法的早期阶段所研究的一 个特殊问题,并延用下来。
CB B1b B1b
z
CB B1N CN X N X B B1NX N
CB B1b B1b
上述方程组的矩阵形式为
10
0 I
CB
B1N B1N
CN
z XB XN
CB B1b B1b
上式的系数增广阵称为对应于基B的单纯形表:
T(B)
CB B1b B1b
0 I
CB
B1N B1N
CN
形式的LP问题,必须解决三个问题: ⑴初始基本可行解的确定; ⑵解的最优性检验; ⑶基本可行解的转移规则。 这里先放一下⑴,研究⑵和⑶,为此,

运筹学基础

运筹学基础

运筹学基础运筹学基础运筹学是一门研究问题的建模、分析和解决方法的学科,它涵盖了数学、统计学、计算机科学和工程等多个领域。

运筹学的目标是通过科学的方法,优化决策和资源利用,以达到最佳的效果。

运筹学的基础包括线性规划、整数规划、非线性规划、动态规划、排队论、网络流和图论等内容。

这些方法可以在许多领域中应用,包括物流、生产、供应链管理、交通运输、金融和资源分配等。

线性规划是运筹学中的一种基础方法。

它适用于求解具有线性目标函数和线性约束条件的问题。

线性规划常常涉及到资源的分配和决策的优化,例如在生产中如何最大化利润或者在供应链中如何最小化运输成本。

整数规划是在线性规划的基础上引入整数变量的一种问题求解方法。

这种方法可以用于求解一些离散决策问题,例如在物流中如何选择配送点和配送路线,以及如何安排生产任务等。

非线性规划是针对目标函数或约束条件中存在非线性项的问题的求解方法。

这种方法用于求解一些复杂的决策问题,例如在金融投资中如何优化投资组合,以及在环境保护中如何最小化排放量等。

动态规划是一种将多阶段决策问题转化为一系列单阶段决策问题的方法。

它适用于一些需考虑时序和状态转移的问题,例如旅行商问题和生产计划问题等。

排队论是研究顾客到达和服务系统间关系的数学方法。

它可以用于分析和优化服务系统的性能指标,例如等待时间和服务效率等。

排队论可以应用于各种排队系统,包括银行、餐厅和交通等。

网络流是研究网络中物质或信息流动的数学方法。

它可以用于解决一些网络中的最优路径或最小费用问题,例如在物流中如何选择最佳配送路径,以及在通信网络中如何优化数据传输等。

图论是研究图结构和图算法的学科。

它可以用于模型建立和问题求解,例如在地图上如何规划最短路径,以及在社交网络中如何分析人际关系等。

总之,运筹学提供了一系列数学方法和工具,用于解决决策和资源分配问题。

这些方法不仅可以优化决策效果,还可以提高经济效益和资源利用效率。

运筹学的应用范围广泛,对提高社会生产力和改善生活质量具有重要意义。

《运筹学》课件 第一章 线性规划

《运筹学》课件 第一章 线性规划

10
解:令
xi=
1, Si被选中
min z= ci xi i 1 10
0, Si没被选中
xi 5
i 1
x1 x8 1 x7 x8 1
称为技术系数
b= (b1,b2, …, bm) 称为资源系数
2、非标准型
标准型
(1)Min Z = CX
Max Z' = -CX
(2)约束条件
• “≤”型约束,加松弛变量;
松弛变量
例如: 9 x1 +4x2≤360
9 x1 +4x2+ x3=360
• “≥”型约束,减松弛变量;
例、将如下问题化为标准型
数据模型与决策 (运筹学)
课程教材:
吴育华,杜纲. 《管理科学基础》,天津大学出版社。
绪论
一、运筹学的产生与发展
运筹学(Operational Research) 直译为“运作研究”。
• 产生于二战时期 • 60年代,在工业、农业、社会等各领域得到广泛应用 • 在我国,50年代中期由钱学森等引入
Min z x1 2x2 3x3
x1 x2 x3 7
s.t
.
x1 x2 x3 3x1 x2 2
x3
2
5
x1, x2 , x3 0
解:令 Min z Max z' (z' z) ,第一个约束加松弛变量x5,
第二个约束减松弛变量x6,得标准型:
Max z' x1 2x2 +3x3
x1 x2 x3 x4 7
s.t .
x1 x2 3x1
x3 x2
x5 2 2x3 5
x1 , , x5 0

运筹学第1章-线性规划

运筹学第1章-线性规划
凸集的数学定义:设K为n维欧氏空间的一个点集,若K中任意两个 点X1和X2连线上的所有点都属于K,即“X =αX1+(1-α) X2 ∈ K(0≤a ≤ 1)”,则称K为凸集。设X(x1,x2,…,xn),X1(u1, u2,...,un),X2(v1,v2,…,vn),如图1一5所示,“X =αX1+(1α) X2 ∈ K(0≤a ≤ 1)”的证明思路如下:
下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。

运筹学知识点总结

运筹学知识点总结

运筹学知识点总结运筹学是一门研究如何有效决策和优化资源分配的学科,它涵盖了数学、统计学和计算机科学等多个学科的知识。

在现代社会,运筹学在各个领域都有广泛的应用,比如物流管理、生产调度、供应链优化等。

本文将介绍一些运筹学的基本概念和应用。

1. 线性规划线性规划是运筹学中最基础也是最常用的数学模型之一。

它的目标是在一组线性约束条件下,最大化或最小化线性目标函数。

线性规划可以用来解决资源分配、生产计划、投资组合等问题。

常见的线性规划算法有单纯形法和内点法。

2. 整数规划整数规划是线性规划的一种扩展形式,其中决策变量被限制为整数。

整数规划在许多实际问题中都有应用,比如货车路径优化、工人调度等。

求解整数规划问题的方法包括分支定界法和割平面法。

3. 图论图论是运筹学中的一个重要分支,它研究图的性质和图算法。

图是由节点和边组成的数学结构,可以用来表示网络、路径、流量等问题。

常见的图论算法有最短路径算法、最小生成树算法和最大流算法。

4. 排队论排队论研究的是随机到达和随机服务的系统中的排队行为。

它在交通规划、电话网络、客户服务等领域有广泛的应用。

常见的排队论模型有M/M/1队列、M/M/c队列和M/G/1队列。

排队论可以用来优化服务水平、减少等待时间等。

5. 动态规划动态规划是一种解决多阶段决策问题的方法,它将问题分解为一系列子问题,并通过递归的方式求解。

动态规划常用于求解最优化问题,比如背包问题、旅行商问题等。

它的核心思想是将问题转化为子问题的最优解,并利用子问题的最优解求解原问题。

6. 模拟优化模拟优化是一种通过模拟实验寻找最优解的方法。

它基于概率统计和随机模拟的原理,通过多次模拟实验来搜索解空间。

模拟优化常用于在实际问题的局部搜索中找到较好的解。

常见的模拟优化算法有遗传算法、蚁群算法和粒子群算法。

7. 供应链管理供应链管理是一种综合运筹学和物流管理的概念,它研究如何优化整个供应链中的流程和资源分配。

供应链管理的目标是降低成本、增加效率并提供更好的顾客服务。

应用运筹学基础:线性规划(4)-对偶与对偶单纯形法

应用运筹学基础:线性规划(4)-对偶与对偶单纯形法

应⽤运筹学基础:线性规划(4)-对偶与对偶单纯形法这⼀节课讲解了线性规划的对偶问题及其性质。

引⼊对偶问题考虑⼀个线性规划问题:$$\begin{matrix}\max\limits_x & 4x_1 + 3x_2 \\ \text{s.t.} & 2x_1 + 3x_2 \le 24 \\ & 5x_1 + 2x_2 \le 26 \\ & x \ge0\end{matrix}$$ 我们可以把这个问题看作⼀个⽣产模型:⼀份产品 A 可以获利 4 单位价格,⽣产⼀份需要 2 单位原料 C 和 5 单位原料 D;⼀份产品 B 可以获利 3 单位价格,⽣产⼀份需要 3 单位原料 C 和 2 单位原料 D。

现有 24 单位原料 C,26 单位原料 D,问如何分配⽣产⽅式才能让获利最⼤。

但假如现在我们不⽣产产品,⽽是要把原料都卖掉。

设 1 单位原料 C 的价格为 $y_1$,1 单位原料 D 的价格为 $y_2$,每种原料制定怎样的价格才合理呢?⾸先,原料的价格应该不低于产出的产品价格(不然还不如⾃⼰⽣产...),所以我们有如下限制:$$2y_1 + 5y_2 \ge 4 \\ 3y_1 + 2y_2 \ge3$$ 当然也不能漫天要价(也要保护消费者利益嘛- -),所以我们制定如下⽬标函数:$$\min_y \quad 24y_1 + 26y_2$$ 合起来就是下⾯这个线性规划问题:$$\begin{matrix} \min\limits_y & 24y_1 + 26y_2 \\ \text{s.t.} & 2y_1 + 5y_2 \ge 4 \\ & 3y_1 + 2y_2 \ge 3 \\ & y \ge 0\end{matrix}$$ 这个问题就是原问题的对偶问题。

对偶问题对于⼀个线性规划问题(称为原问题,primal,记为 P) $$\begin{matrix} \max\limits_x & c^Tx \\ \text{s.t.} & Ax \le b \\ & x \ge 0\end{matrix}$$ 我们定义它的对偶问题(dual,记为 D)为 $$\begin{matrix} \min\limits_x & b^Ty \\ \text{s.t.} & A^Ty \ge c \\ & y \ge 0\end{matrix}$$ 这⾥的对偶变量 $y$,可以看作是对原问题的每个限制,都⽤⼀个变量来表⽰。

运筹学基础(中文版第10版)哈姆迪塔哈课后习题答案解析

运筹学基础(中文版第10版)哈姆迪塔哈课后习题答案解析

运筹学基础(中文版第10版)哈姆迪塔哈课后习题答案解析第一章线性规划模型1.1 线性规划的基本概念1.请解释线性规划模型的基本要素以及线性规划模型的一般形式。

答:- 线性规划模型的基本要素包括决策变量、目标函数、约束条件。

- 线性规划模型的一般形式如下:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙSubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 01.2 线性规划模型的几何解释1.请说明线性规划模型的几何解释。

答:线性规划模型在几何上可以表示为一个多维空间中的凸多面体(可行域),目标函数为该多面体上的一条直线,通过不同的目标函数系数向量c,可以得到相应的最优解点。

通过多面体的边界和顶点,可以确定最优解点的位置。

如果可行域是无限大的,则最优解点可以在其中的任何位置。

1.3 线性规划模型求解方法1.简要说明线性规划模型的两种求解方法。

答:线性规划模型可以通过以下两种方法进行求解: - 图形法:根据可行域的几何特征,通过图形方法确定最优解点的位置。

- 单纯形法:通过迭代计算,逐步靠近最优解点。

单纯形法是一种高效的求解线性规划问题的方法。

第二章单变量线性规划2.1 单变量线性规划模型1.请给出单变量线性规划模型的一般形式。

答:Max/Min Z = cxSubject to:ax ≤ bx ≥ 02.2 图形解法及其应用1.请解释图形解法在单变量线性规划中的应用。

答:图形解法可以直观地帮助我们确定单变量线性规划模型的最优解。

通过绘制目标函数和约束条件的图像,可以确定最优解点的位置。

对于单变量线性规划模型,图形解法特别简单,只需要绘制一条直线和一条水平线,求解它们的交点即可得到最优解点的位置。

运筹学--第2节(线性规划-标准型)

运筹学--第2节(线性规划-标准型)
一、问题的提出 二、线性规划数学模型的一般形式 三、线性规划数学模型的标准形式
分析和表述问题
目 例1 美佳公司计划制造I,II两种家电产品。已知各制造标一件时
分别占用的设备A、B的台时、调试时间及A、B设备和调试工
序每天可用于这两种家电的能力、各售出一件时的获利:情况如 表 的I利—润l所为示最。大问。该公司应制造A、B两种家电各多少件,利使获取
minZ= 2x11 + x12+3x13+2x21 +2x22 +4x23 +3x31 +4x32 +2x33
x11 +x12+x13 50 x21+x22+x23 30 x31+x32+x33 10
x11 +x21+x31 = 40 x12 +x22+x32 = 15 x13 +x23+x33 = 35
假设:利润——Z
家电I的数量——x1
家电II的数量——x2
分析和表述问题
例1 美佳公司计划制造I,II两种家电产品。已知各制造一件时 分别占用的设备A、B的台时、调试时间及A、B设备和调试工 序每天可用于这两种家电的能力、各售出一件时的获利情况如 表I—l所示。问该公司每天应制造I、II两种家电各多少件,使 获取的利润为最大。
x1 , x2 , x4 , … , x7 0
练习
补充作业、运输问题
从仓库到工厂运送单位原材料的成本,工厂对原
材料的需求量,仓库目前库存分别如表所示,求成本 最低的运输方案。
工厂 仓库
1 2 3 需求
1 2 3 库存
213
50
224

运筹学基础及应用第2章-线性规划的对偶问题(胡运权版)教程文件

运筹学基础及应用第2章-线性规划的对偶问题(胡运权版)教程文件

2 x 1 2 x 2 12
s
.t
x 4
1
x
1
2
x2 16
8
4
x2
12
x 1 , x 2 0
反过来问:若厂长决定不生 产甲和乙型产品,决定出租 机器用于接受外加工,只收 加工费,那么4种机器的机 时如何定价才是最佳决策?
1.对偶问题的提出
在市场竞争的时代,厂长的最佳决策显然应符合两条:
对偶问题的基本性质minmax的某个约束条件的右端项常数bi第i种资源的拥有量增加一个单位时所引起目标函数最优值z的改变量称为第i种资源的影子价格其值等于d问题中对偶变量y影子价格的经济意义1影子价格是一种边际价格在其它条件不变的情况下单位资源数量的变化所引起的目标函数最优值的变化
运筹学基础及应用
Operations Research
1 . min Z 2 x 1 2 x 2 4 x 3
2x1 3x 2 5x 3 2
3
x
1
x 2 7x 3 3
x1 4x 2 6x 3 5
x 1 , x 2 , x 3 0
2 . min Z 3 x 1 2 x 2 3 x 3 4 x 4
x1 2x 2 3x 3 4x 4 3
4
0
0
4
16
12
2
3
minω
max z
对偶性是线性规划问题的最重要的内容之一。每一个线性规划( LP ) 必然有与之相伴而生的另一个线性规划问题,即任何一个求 maxZ 的LP都 有一个求 minZ 的LP。其中的一个问题叫“原问题”,记为“P”,另一个 称为“对偶问题”,记为“D”。
2.原问题与对偶问题
2. 原问题与对偶问题的对应关系

运筹学涉及的数学知识

运筹学涉及的数学知识

运筹学涉及的数学知识
摘要:
一、引言
二、运筹学简介
三、线性规划
四、整数规划
五、动态规划
六、网络优化
七、总结
正文:
运筹学是一门运用数学和统计学方法对实际问题进行建模、优化和求解的学科。

它广泛应用于生产调度、交通运输、资源分配等领域。

本文将简要介绍运筹学涉及的数学知识。

首先,线性规划是运筹学的基础知识。

线性规划研究在一定约束条件下线性目标函数的最优化问题。

它可以用矩阵表示,并使用单纯形法等数学方法求解。

其次,整数规划是线性规划的特殊情况,要求部分或全部变量取整数值。

整数规划在运输、调度和选址等问题中具有重要意义。

常用的求解方法有分枝定界法、割平面法等。

动态规划是另一种重要的优化方法。

它将问题分解成相互联系的子问题,通过求解子问题并将结果存储起来,以避免重复计算,从而提高效率。

动态规
划广泛应用于最短路径、背包问题等领域。

网络优化是运筹学的另一个重要分支,研究在网络结构中的最优化问题。

这类问题可以描述为带权的有向图,通过求解最短路径、最大流等问题,可以有效地改善网络的性能。

总之,运筹学涉及的数学知识包括线性规划、整数规划、动态规划和网络优化等。

运筹学的基础

运筹学的基础

运筹学的基础一、概述运筹学是一门应用数学学科,旨在解决实际问题中的优化、决策和规划等问题。

它涉及多个学科领域,如数学、统计学、计算机科学和工程等。

本文将从以下几个方面介绍运筹学的基础知识。

二、线性规划线性规划是运筹学中最基础也是最常用的方法之一。

它的主要思想是在给定约束条件下,寻找使目标函数最大或最小的变量值。

线性规划问题可以用下列标准形式表示:max c^Txs.t. Ax ≤ bx ≥ 0其中,c和x分别表示目标函数系数和变量向量,A和b分别表示约束条件系数矩阵和常向量。

三、整数规划整数规划是线性规划的扩展,它要求变量取整数值。

这种限制使得整数规划问题更难求解。

通常采用分支定界法或割平面法等算法来求解整数规划问题。

四、网络流问题网络流问题也是运筹学中重要的问题之一。

它涉及到图论中的最大流和最小割等概念,在实际应用中有着广泛的应用。

网络流问题可以用下列标准形式表示:max fs.t. 0 ≤ f ≤ c∑f(i,j) - ∑f(j,i) = 0 (i ≠ s,t)其中,f表示流量,c表示容量,s和t分别表示源点和汇点。

五、排队论排队论是运筹学中另一个重要的问题。

它研究的是在一定条件下,如何通过优化系统结构、调整服务策略等方式来提高服务效率和降低成本。

排队论采用概率模型来描述系统行为,并通过数学方法来优化系统性能。

六、决策分析决策分析是运筹学中最终的目标之一。

它涉及到多种方法和工具,如决策树、贝叶斯网络、模拟等。

决策分析旨在帮助决策者做出最优决策,并同时考虑风险和不确定性因素。

七、结语运筹学的基础知识包括线性规划、整数规划、网络流问题、排队论和决策分析等内容。

这些方法和工具在实际应用中有着广泛的应用,并且不断发展和完善。

掌握这些基础知识对于从事运筹学研究和应用的人员来说是非常重要的。

线性规划和最优解

线性规划和最优解

线性规划和最优解线性规划是一种在数学和运筹学领域常见的问题求解方法,可以应用于各种现实生活中的决策问题。

它是通过一系列线性等式和不等式来建模,并在满足特定约束条件下求解使目标函数取得最优值的变量值。

线性规划的最优解能够帮助我们做出高效的决策,下面将详细介绍线性规划的原理和求解方法。

一、线性规划的基本概念线性规划中,我们首先需要明确问题的目标,并将其表示为一个线性函数,也被称为目标函数。

目标函数可以是最大化或最小化的,具体取决于问题的需求。

其次,我们需要确定一组变量,这些变量的取值将会对目标函数产生影响。

接下来,我们还需要列举出一系列约束条件,这些约束条件通常来自于问题的实际情况,例如资源限制、技术要求等。

最后,我们需要确定这些变量的取值范围,这也是约束条件的一部分。

二、线性规划的数学建模在线性规划中,我们可以通过以下步骤进行数学建模:1. 确定目标函数:根据问题的要求,我们可以定义一个线性函数作为目标函数。

例如,如果我们要最大化某个产品的利润,那么利润就可以是目标函数。

2. 列举约束条件:根据问题的实际情况,我们需要列举出一系列约束条件。

这些约束条件可以是线性等式或不等式,并且通常包含了变量的取值范围。

3. 确定变量的取值范围:根据问题的实际情况,我们需要确定变量的取值范围。

例如,如果某个变量代表一个产品的产量,那么它的取值范围可能是非负数。

4. 构建数学模型:根据目标函数、约束条件和变量的取值范围,我们可以构建一个数学模型,将问题转化为线性规划模型。

三、线性规划的最优解求解方法线性规划的最优解可以通过以下方法求解:1. 图形法:对于只有两个变量的简单线性规划问题,我们可以通过绘制变量的可行域图形,并计算目标函数在图形上的最优解点来求解问题。

2. 单纯形法:单纯形法是一种常用的求解线性规划问题的算法。

它通过逐步迭代改进解向量,从而逼近最优解。

这个方法通常适用于复杂的线性规划问题,可以在较短的时间内得到比较好的结果。

运筹学知识点

运筹学知识点

运筹学知识点运筹学是一门应用广泛的学科,旨在通过科学的方法和技术来解决各种决策和优化问题。

它综合运用数学、统计学、计算机科学等多学科知识,为管理和决策提供有力的支持。

下面让我们来了解一些运筹学的重要知识点。

一、线性规划线性规划是运筹学中最基本也是最重要的内容之一。

它研究的是在一组线性约束条件下,如何找到目标函数的最优解。

例如,一家工厂生产两种产品 A 和 B,生产单位 A 产品需要消耗 2 单位的原材料和 1 单位的劳动力,生产单位 B 产品需要消耗 3 单位的原材料和 2 单位的劳动力。

工厂现有 100 单位的原材料和 80 单位的劳动力,A 产品的单位利润是 5 元,B 产品的单位利润是 8 元。

那么,如何安排生产才能使工厂的利润最大化?解决这个问题,首先要建立线性规划模型。

设生产 A 产品 x 件,生产 B 产品 y 件,目标函数就是利润最大化:Z = 5x + 8y。

约束条件包括原材料限制:2x +3y ≤ 100;劳动力限制:x +2y ≤ 80;以及非负限制:x ≥ 0,y ≥ 0。

通过求解这个线性规划模型,可以得到最优的生产方案,即生产多少 A 产品和多少 B 产品能够使利润达到最大值。

二、整数规划整数规划是在线性规划的基础上,要求决策变量必须取整数的规划问题。

比如,一个项目需要选择一些地点建设仓库,每个地点的建设成本和运营效益不同。

由于仓库的数量必须是整数,这就构成了一个整数规划问题。

整数规划的求解比线性规划更加复杂,常用的方法有分支定界法、割平面法等。

三、动态规划动态规划是解决多阶段决策过程最优化的一种方法。

以资源分配问题为例,假设一家公司有一定数量的资金要在多个项目中进行分配,每个项目在不同的投资水平下有不同的收益。

要在有限的资金条件下,使总收益最大。

这个问题就可以用动态规划来解决。

动态规划的核心思想是将一个复杂的多阶段决策问题分解为一系列相互关联的子问题,通过求解子问题的最优解来逐步得到原问题的最优解。

运筹学第二章第7节—线性规划问题的应用

运筹学第二章第7节—线性规划问题的应用

所需售货员人数 28 15 24 25 19 31 28
换一种思路:休息人数 目标函数:总休息人数 变量:每天安排休息的人数 约束条件:每天商场需求的人数(上班人数) 变量跟约束条件的关系: 每天的上班人数=后五天的休息人数。
解:设 xi ( i = 1,2,…,7)表示星期一至日开始休 息的人数,这样我们建立如下的数学模型。 目标函数:MinZ=x1 + x2 + x3 + x4 + x5 + x6+ x7 约束条件:s.t. x1 + x2 + x3 + x4 + x5 ≥ 28 x2 + x3 + x4 + x5 + x6 ≥ 15 x3 + x4 + x5 + x6 + x7 ≥ 24 x4 + x5 + x6 + x7 + x1 ≥ 25 x5 + x6 + x7 + x1 + x2 ≥ 19 x6 + x7 + x1 + x2 + x3 ≥ 31 x7 + x1 + x2 + x3 + x4 ≥ 28 x1,x2,x3,x4,x5,x6,x7 ≥ 0
1,2,3
1、目标函数:最大利润
利润=商品价格-商品成本(资源成本) 资源成本=原料成本+设备使用成本 2、变量:产品生产的件数 相关条件:两个过程,每个过程所涉及设备 3、约束条件: (1)资源约束(明) (2)过程中的约束:下游过程的产量=上游 过程的产量(产品必须经过两个过程)
目标函数为计算利润最大化,利润的计算公式:: 利润 = [(销售单价 - 原料单价)* 产品件数] 之和 -(每台时的设备费用*设备实际使用的总 台时数)之和。 这样得到目标函数: MaxZ=(1.25-0.25)(x111+x112)+(20.35)x221+(2.80-0.5)x312 – 0.05(5x111+10x211)-0.03(7x112+9x212+12x312)0.06(6x121+8x221)-0.11(4x122+11x322)0.05(7x123)

运筹学线性规划案例

运筹学线性规划案例

运筹学线性规划案例线性规划是运筹学中的一个重要分支,它主要研究如何利用数学模型来解决最优化问题。

在实际应用中,线性规划可以帮助企业做出最佳的决策,使资源得到最大化利用。

本文将通过一个实际案例来介绍线性规划的应用,以便读者更好地理解和掌握这一方法。

假设某公司生产两种产品A和B,它们分别需要机器加工和人工装配。

公司拥有的机器和人工资源分别为每周80小时和60人天。

产品A每单位需要机器加工2小时,人工装配3人天;产品B每单位需要机器加工3小时,人工装配2人天。

每单位产品A的利润为2000元,产品B的利润为3000元。

现在的问题是,如何安排生产计划,才能使得利润最大化呢?首先,我们可以将该问题建立成数学模型。

假设x1和x2分别表示生产产品A 和B的单位数,则该问题可以表示为:Max Z=2000x1+3000x2。

约束条件为:2x1+3x2≤80。

3x1+2x2≤60。

x1≥0,x2≥0。

接下来,我们可以通过线性规划的方法来求解最优解。

在这里,我们不妨使用单纯形法来进行求解。

首先,我们将约束条件转化成标准形式,得到:2x1+3x2+s1=80。

3x1+2x2+s2=60。

x1≥0,x2≥0。

然后,我们构造初始单纯形表,并进行单纯形法的迭代计算。

最终得到最优解为x1=20,x2=10,此时利润最大为80000元。

通过这个简单的案例,我们可以看到线性规划在实际中的应用。

通过建立数学模型和运用线性规划方法,我们可以很好地解决类似的最优化问题,使得资源得到最大化利用,从而帮助企业做出更加科学合理的决策。

总之,线性规划作为运筹学中的重要方法,具有广泛的应用前景。

通过不断地学习和实践,我们可以更好地掌握线性规划的原理和方法,为实际问题的解决提供更加科学的支持。

希望本文的案例能够帮助读者更好地理解线性规划的应用,从而在实际工作中能够更好地运用这一方法,取得更好的效果。

运筹学解题方法技巧归纳

运筹学解题方法技巧归纳

运筹学解题方法技巧归纳运筹学是一门研究如何进行有效决策和优化问题求解的学科。

在运筹学中,有许多解题方法和技巧,可以帮助我们更好地解决各种实际问题。

本文将对运筹学解题方法技巧进行归纳总结。

1. 线性规划:线性规划是解决线性目标函数和线性约束条件下的最优化问题的方法。

线性规划常用的求解方法有单纯形法和内点法。

在使用单纯形法求解时,我们需要将问题转化为标准形式,并通过迭代的方式逐步逼近最优解。

内点法是一种更加高效的求解方法,它通过迭代算法在可行域的内部寻找最优解。

2. 整数规划:整数规划是在线性规划的基础上,将决策变量的取值限制为整数的一种扩展。

整数规划的求解方法有分支定界法和割平面法。

分支定界法通过不断分割问题的可行域,并对每个子问题进行求解,从而逐步逼近最优解。

割平面法则通过添加一系列割平面约束来缩小可行域,并最终找到最优解。

3. 动态规划:动态规划是一种用于求解具有特定结构的最优化问题的方法。

它适用于那些可以通过子问题的最优解来构造整个问题最优解的情况。

动态规划的求解过程包括问题建模、状态定义、状态转移方程的确定和最优解的推导。

通过动态规划,我们可以高效地解决一些需要考虑历史决策和未来影响的问题。

4. 排队论:排队论是研究顾客到达和排队等待的现象以及如何有效组织排队系统的数学方法。

排队论可以用于优化客户服务水平和资源利用率等问题。

常用的排队论模型有M/M/1队列模型、M/M/c队列模型和M/G/1队列模型等。

在解决排队论问题时,我们需要确定顾客到达的规律、服务的规律以及排队系统的性能指标,从而确定最优的排队策略。

5. 调度问题:调度问题是指在给定约束条件下,合理安排任务的顺序和时间,从而使得整个系统达到某个性能指标的最优化问题。

常用的调度问题模型有单机调度、流水线调度和车间调度等。

解决调度问题时,我们需要考虑任务之间的先后关系、任务执行时间和资源约束等因素,通过建立相应的数学模型,找到最优的调度方案。

运筹学中的线性规划和整数规划

运筹学中的线性规划和整数规划

运筹学中的线性规划和整数规划运筹学是一门涉及决策分析、优化、模型构建和仿真等知识领域的学科,应用广泛,如供应链管理、交通规划、制造业生产、金融投资等方面。

其中,线性规划和整数规划是运筹学中最为基础和重要的优化技术,被广泛应用于各个领域。

一、线性规划线性规划是一种在一组线性约束条件下,求解线性目标函数极值问题的数学方法。

在生产、运输、选址等问题中,线性规划都有着重要的应用。

其数学模型可以表示为:$\max c^Tx$$s.t. Ax \leq b,x\geq 0$其中$c$为目标函数的向量,$x$为决策变量向量,$A$为约束矩阵,$b$为约束向量,$c^Tx$表示目标函数的值,$\leq$表示小于等于。

如果目标函数和约束都是线性的,则可以通过线性规划的求解方法来确定决策变量的最优值。

线性规划的求解方法一般分为单纯形法和内点法两种方法。

单纯性法是线性规划中最为常用的方法,通过对角线交替调整,逐步从可行解中寻找最优解,收敛速度较快,但是存在不稳定的情况。

内点法是近年来发展起来的用于求解大规模线性规划问题的数值方法,其核心思想是迭代求解一系列线性方程组,每次保持解在可行域内部,直到找到最优解为止。

这种方法对大规模问题求解能力强,使用较多。

二、整数规划整数规划是线性规划的升级版,它要求决策变量必须取整数值。

整数规划在很多实际问题中都有着重要的应用,比如很多生产过程中需要将生产数量取整数,物流路径问题需要选取整数条路径等。

与线性规划不同的是,整数规划是NP难问题,没有一种有效的算法能够完全解决所有的整数规划问题。

因此,通常需要采用分支定界、割平面等方法来求解。

分支定界是一种常用的整数规划求解方法。

它通过将整数规划问题分为多个子问题,依次求解这些子问题并优化当前最优解,以逐步逼近最优解。

割平面法则是在分支定界方法的基础上加入约束条件,使得求解过程更加严格化,最终得到更好的结果。

总的来说,运筹学中线性规划和整数规划是不可或缺的优化工具,我们可以通过理论和实践加深对它们的理解。

运筹学基础及应用难吗

运筹学基础及应用难吗

运筹学基础及应用难吗运筹学是一门交叉学科,结合了数学、统计学和信息技术等多个领域的知识,用于解决有关决策和优化问题的学科,包括问题建模、模型求解、决策分析等内容。

运筹学基础及应用的难易程度因人而异,但总体上可以说是具有一定难度。

从基础来看,学习运筹学需要具备一定的数学基础,包括线性代数、概率论和数理统计等知识。

此外,对于一些高级领域,如整数规划、动态规划和随机规划等,还需要了解相关的数学理论和方法。

因此,对于没有接受过较为系统的数学培训或数学基础较差的人来说,运筹学基础会稍显困难。

另外,运筹学应用的难度也存在一定的挑战。

运筹学的应用场景广泛,涉及到生产调度、物流配送、资源分配、网络优化等方面,这些问题往往具有高复杂性和多变性。

在实际应用中,对问题的建模和求解往往需要综合考虑多个因素,如约束条件、目标函数、可行解空间等等,需要具备较强的逻辑思维和抽象能力。

另外一个挑战是运筹学应用中的数据处理和计算技术。

现代的数据规模庞大,传统的解析方法和算法已经无法处理了。

因此,运筹学的应用也需要掌握一些高级的数学建模技巧和计算方法,如整数规划的分支定界算法、混合整数规划的启发式算法等等。

此外,对于一些复杂的实际问题,还需要掌握一些高级的计算工具和软件,如线性规划软件和求解器等。

然而,虽然运筹学的基础和应用难度较高,但它也具有广泛的应用前景和重要的实际意义。

运筹学的方法和工具可以帮助企业和组织做出更合理、更科学的决策,优化资源和流程,降低成本,提高效率。

在现代社会中,各个行业都面临着日益复杂的经济环境和管理挑战,因此对于运筹学人才的需求也越来越高。

总结来说,运筹学基础及应用在某些程度上是具有一定难度的。

它需要具备一定的数学基础和计算能力,同时还需要具备较强的逻辑思维和抽象能力。

然而,对于有兴趣和热情的人来说,通过系统学习和实践,往往能够掌握运筹学的核心理论和方法,并在实际应用中取得良好的效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用计算机软件求解线性规划问题关于线性规划问题的求解,有许多好的专业软件和商务软件,通过计算机可十分方便地完成求解过程。

其中简便易行的求解软件是Excel,下面介绍其使用方法。

(1)建立Excel工作表。

用一组单元格表示变量,作为可变单元格(空);用几组单元格分别表示各约束条件和目标函数的系数;用一些单元格输入公式表示各组系数和变量的关系。

(2)打开工具栏中的“规划求解”对话框,指定存有目标函数的单元格为目标单元格,指定表示变量的单元格为可变单元格,建立约束条件。

(3)在规划求解对话框中按下“求解”按钮,即可求出最优解和最优值。

推出规划求解对话框。

利用EXCEL求线性规划的步骤1、激活“工具栏”中的“规划求解”利用EXCEL 求线性规划的步骤2、根据线性规划模型建立计算模板maxZ=3x 1+5x 2x1≤ 82x2≤ 123x 1+4 x 2≤ 36x 1、x 2≥0利用EXCEL 求线性规划的步骤3、定义决策变量及目标函数、约束条件注:sumproduct表示对应乘积之和调用函数sumproduct 定义实际值利用EXCEL求线性规划的步骤4、利用“工具栏”之“规划求解”求解利用EXCEL求线性规划的步骤利用EXCEL求线性规划的步骤最优解为:x1=4,x2=6 maxZ=42【练习】由下表数据,列出使总利润最大的生产计划模型,并求利润最大的生产方案kg/件材料A 材料B 材料C 利润产品甲52412元/件产品乙2328元/件资源量150kg 100kg 80kgmaxZ= 12 x 1+8x 25x 1+2x 2≤ 1502x 1+3x 2≤1004x 1+2x 2≤80x 1,x 2≥0令产品甲的产量为x 1,产品甲的产量为x 2,得如下线性规划模型§1.6 线性规划的应用举例一、原材料合理利用例1.某工厂要做100套钢架,每套用长为2.9 m,2.1 m,1.5 m 的圆钢各一根。

已知原料每根长7.4 m ,问:应如何下料,可使所用原料最省?解:设x i 表示第i 种方案的原材料根数。

目标函数:Min z=0x 1+0.1x 2+0.2x 3+0.3x 4+0.8x 5+0.9x 6+1.1x 7+1.4x 8约束条件:s.t. x 1+ 2x 2+ x 4+ x 6=1002x 3+ 2x 4+ x 5+ x 6+3x 7 =1003x 1+x 2+ 2x 3+ 3x 5+ x 6+4x 8 =100 x 1,x 2,x 3,x 4,x 5,x 6,x 7,x 8≥ 0结果不唯一,其中一解为:ⅠⅡⅢⅣⅤⅥⅦⅧ30100500000线长(m )方案1方案2方案3方案4方案5方案6方案7方案82.9120101002.1002211301.531203104合计7.47.37.27.16.66.56.36剩余零头00.10.20.30.80.9 1.1 1.4二、生产计划安排的问题某公司正准备利用它下设的三个工厂(记为1、2、3),生产一种新产品。

据调查,三个工厂都能生产该产品,该产品分为大、中、小三个型号,其单位净收益分别为420元,360元,300元。

而工厂1、2和3每天拥有的生产能力分别为750、900和450件(不管何种型号或各种型号的组合),工厂1、2和3每天可以为该产品提供13000、12000和5000平方米加工过程的存储空间,每单位的大、中、小型的产品所需要的存储空间分别为20、15和12平方米。

来自销售部门的数据表明:每天估计可销售大、中、小型的产品分别为600、600和750件。

管理层希望知道每个工厂能生产的各种型号的产品数量,使得公司利润达到最大化。

解:设工厂1生产大、中、小型产品的数量分别为件;工厂2生产大、中、小型产品的数量分别为件;工厂3生产大、中、小型产品的数量分别为件;总的利润为z ,则生产能力的约束存储空间的约束销售能力的约束123 x x x ,,456 x x x ,,789 x x x ,,147258369420(+ + )360(+ + )300(+ + )z x x x x x x x x x =++123456789+ + 750 + 900 450x x x x x x x x x ≤⎧⎪+≤⎨⎪++≤⎩12345678920+ 15+ 12 130002015 +12 12000 2015125000x x x x x x x x x ≤⎧⎪+≤⎨⎪++≤⎩147258369+ + 600 + 600750x x x x x x x x x ≥⎧⎪+≥⎨⎪++≥⎩该问题的数学模型为147258369max 420(+ + )360(+ + )300(+ + )z x x x x x x x x x =++123456 + + 750 + 900 ..x x x x x x s t ≤+≤789123456 45020+ 15+ 12 13000 2015 +12 x x x x x x x x x ++≤≤+7891472 120002015125000 + + 600 x x x x x x x ≤++≤≥58369123456789 + + 600750,,,,,, , , 0x x x x x x x x x x x x x x ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪≥⎪⎪++≥⎪≥⎪⎩对该线性规划问题进行求解得:总的利润为693000元()()()()()()()1246783593504001507501002000x x x x x x x x x ⎧=⎪=⎪⎪=⎪⎪=⎨⎪=⎪⎪=⎪⎪===⎩件件件件件件件另例、生产计划的问题【例】永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A 、B 两道工序加工。

设有两种规格的设备A 1、A 2能完成A 工序;有三种规格的设备B 1、B 2、B 3能完成B 工序。

Ⅰ可在A 、B 的任何规格的设备上加工;Ⅱ可在任意规格的A 设备上加工,但对B 工序,只能在B 1设备上加工;Ⅲ只能在A 2与B 2设备上加工;数据如右上表。

问:为使该厂获得最大利润,应如何制定产品加工方案?【解】如图所示设变量产品单件工时设备 Ⅰ Ⅱ Ⅲ 设备的 有效台时 设备加工费用(元/h ) A 1 5 10 6000 0.05 A 2 7 9 12 10000 0.03B 1 6 8 4000 0.06 B 2 4 11 7000 0.11B 3 7 4000 0.05 原料(元/件) 0.25 0.35 0.50 售价(元/件) 1.252.00 2.80 设备产品ⅠⅡⅢA1x11x12A2x21x22x23B1x31x32B2x41x43B3x51利润= [(销售单价-原料单价)* 产品件数]之和-(每台时的设备费用*设备实际使用的总台时数)之和。

()()()⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≥=-=-+=++-+≤≤+≤+≤++≤+⨯-+⨯-+⨯-++⨯-+⨯-⨯-++⨯-++⨯-=0,,0004000770001144000861000012976000105705.0)114(11.0)86(06.0)1297(03.0)105(05.0)5.08.2()()35.02()()25.025.1(51114323322212514131211151434132312322211211514341323123222112112322122111x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Maxz 三、营养配方问题为了满足营养需求,要求每一个儿童的热量摄入量应当在300-500卡之间,但是从脂肪中摄入的热量不能超过30%;每个儿童至少要摄入60毫克的维生素C以及10克的纤维素。

为了保证三明治可口,希望每个儿童至少吃掉2片面包,1汤匙花生黄油,1汤匙果酱,以及一杯饮品(牛奶或酸果蔓果汁)。

应如何对食品进行选择,在满足营养需求的前提下使成本最小?解:设每个儿童吃x 1片面包,x 2汤匙花生黄油,x 3汤匙果酱,x 4个苹果,x 5杯牛奶,x 6杯酸果蔓果汁,总的成本为z ,则有对该线性规划问题进行求解得x 1=2, x 2=1, x 3=1, x 4=2/3, x 5=1,总成本为265/3美分。

,()⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≥+++++≤++≥+≥≥≥≥+++≥+++≤+++++≤+++++=0,,,,,110120907010080%3060801511121010346080264500110120907010080300402035856min 6543216543215216532164316543654321654321x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x z四、工作人员排程联邦航空公司(Union Airway)正准备增加其中心机场的往来航班,因此需要雇佣更多的客户服务代理商,但是不知道到底要雇佣多少数量的代理商。

管理层意识到在向公司的客户提供令人满意的服务水平的同时必须进行成本控制,因此,必须寻找成本与收益之间的平衡。

于是,要求管理科学小组研究如何规划人员才能以最小的成本提供令人满意的服务。

分析研究新的航班时间表,以确定一天之中不同时段为客户提供满意服务水平必须在岗位上的代理商数目。

规定要求每一代理商工作8小时为一班。

各航班时间安排如下解:设x j 表示在航班j 开始时工作的代理商数(j=1,2,…,5 ),z 表示需要的总的成本,则对上述模型进行求解得:在航班1、2、3、4、5开始工作的代理商数分别是48人、31人、39人、43人和15人,需要的总代理成本为$30,610。

1234511212123min 170160175180195 48 7965 .z x x x x x x x x x x x x x s t =++++≥+≥+≥++2334344 8764 7382 x x x x x x x ≥+≥+≥+≥45512345 43 5215,,,,0x x x x x x x x ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪≥⎪+≥⎪⎪≥⎪≥⎪⎩且为整数五、投资问题例.某部门现有资金200万元,今后五年内考虑给以下的项目投资。

已知:项目A :从第一年到第五年每年年初都可投资,当年末能收回本利110%;项目B :从第一年到第四年每年年初都可投资,次年末能收回本利125%,但规定每年最大投资额不能超过30万元;项目C :需在第三年年初投资,第五年末能收回本利140%,但规定最大投资额不能超过80万元;项目D :需在第二年年初投资,第五年末能收回本利155%,但规定最大投资额不能超过100万元;据测定每万元每次投资的风险指数如右表:问:a )应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利金额为最大?b )应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利在330万元的基础上使得其投资总的风险系数为最小?项目风险指数(次/万元)A 1B 3C 4D 5.5解:1)确定决策变量:连续投资问题设x ij ( i = 1~5,j = 1~4)表示第i 年初投资于A(j=1)、B(j=2)、C(j=3)、D(j=4)项目的金额。

相关文档
最新文档