双曲线方程及几何性质的应用 课件

合集下载

双曲线的简单性质课件

双曲线的简单性质课件

焦点与准线的关系
焦点到准线的距离相等
双曲线的焦点到任意一条准线的距离相等,这是双曲线的基本性质之一。
焦点和准线共同确定双曲线的形状和大小
通过焦点和准线可以确定双曲线的形状和大小,因为它们决定了双曲线的离心率 和实轴、虚轴的长度。
03
双曲线的离心率
离心率的定义
• 离心率:双曲线的一个重要参数,定义为双曲线的焦点到其顶点的距离与双曲线的实轴长度的比值。
05
双曲线的对称性
双曲线的对称轴
总结词
双曲线的对称轴是垂直平分双曲线两 焦点的直线。
详细描述
双曲线的对称轴是垂直平分双曲线两 焦点的直线,也称为主轴。它与双曲 线的渐近线垂直,并且将双曲线划分 为两个对称的部分。
双曲线的对称中心
总结词
双曲线的对称中心是双曲线与对称轴的交点。
详细描述
双曲线的对称中心是双曲线与对称轴的交点,也称为顶点。它位于双曲线的渐近线上, 并且是双曲线与x轴的交点。
详细描述
双曲线的标准方程是 (x/a)^2 (y/b)^2 = 1,其中a和b分别是双曲线 的实半轴和虚半轴长度。当a=b时, 双曲线为等轴双曲线;当a≠b时,双 曲线为非等轴双曲线。
双曲线的几何性质
总结词
双曲线具有离心率、渐近线、焦点等几何性质。
详细描述
离心率是双曲线的一个重要几何性质,它表示双曲线与坐标轴之间的相对位置关系。渐近线是双曲线上的直线, 它们与坐标轴平行。焦点是双曲线上的点,它们到原点的距离相等。这些性质在解决与双曲线相关的问题中具有 重要的作用。
感谢聆听
离心率决定双曲线的形状
离心率的变化会导致双曲线形状的变化,从而影响双曲线的形状和开口方向。
04

双曲线-完整版PPT课件可编辑全文

双曲线-完整版PPT课件可编辑全文

∴x-32a2+y2=a22.

又 P 点在双曲线上,得ax22-by22=1.

由①,②消去 y,得
(a2+b2)x2-3a3x+2a4-a2b2=0,
即[(a2+b2)x-(2a3-ab2)](x-a)=0.
当 x=a 时,P 与 A 重合,不符合题意,舍去.
当 x=2aa32-+abb2 2时,满足题意的 P 点存在, 需 x=2aa32-+abb2 2>a, 化简得 a2>2b2, 即 3a2>2c2,ac< 26. 又 e>1,∴离心率 e=ac∈1, 26.
考向三 [149] 双曲线的几何性质
(1)(2014·天津高考)已知双曲线ax22-by22=1(a>0,
b>0)的一条渐近线平行于直线 l:y=2x+10,双曲线的一个
焦点在直线 l 上,则双曲线的方程为( )
A.x52-2y02 =1
B.2x02 -y52=1
C.32x52-130y02 =1
二、双曲线的标准方程和几何性质
标准方程 ax22-by22=1(a>0,b>0)
ay22-bx22=1(a>0, b>0)
图形
范围
x≥a或x≤-a
对称轴: 坐标轴
对称性
对称中心: 原点
y≤-a或y≥a 对称轴: 坐标轴 对称中心: 原点
性 顶点 顶点坐标:
顶点坐标:

A1 (-a,0),A2 (a,0) A1 (0,-a,) A2 (0,a)
————————— [1 个对点练] ——————— 过点2,12能作几条与双曲线x42-y2=1 有一个公共点的 直线.
【解】 (1)当斜率不存在时,直线方程为 x=2,显然符 合题意.

双曲线及其标准方程完整版课件

双曲线及其标准方程完整版课件
2
2
则双曲线的标准方程为20 − 16 =1.
(2)设双曲线方程为 mx2-ny2=1,
1
= 25 ,
49-72 = 1,
则有
解得
1
28-9 = 1,
= ,
75
2
2
则双曲线的标准方程为25 − 75 =1.
归纳总结
求双曲线的标准方程与求椭圆的标准方程的方法相似,可
以先根据其焦点位置设出标准方程,然后用待定系数法求出a,b
联立两方程解得 x=8(舍负),y=5 3,
所以 P(8,5 3),
kPA=tan∠PAx= 3,所以∠PAx=60°,
所以 P 点在 A 点的北偏东 30°方向.
当堂达标
1.已知两定点F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,则当a=3和5时
,P点的轨迹为(
)
A.双曲线和一条直线
情景导学
双曲线也是具有广泛应用的一种圆锥曲线,如发电厂冷却塔的外形、通过声
音时差测定定位等都要用到双曲线的性质。本节我们将类比椭圆的研究方法研究双
曲线的有关问题。
问题导学
新知探究
如图,在直线
l 上取两个定点
在平面内,取定点
F1 , F 2,以点 F1 为圆心、线段
在以 F 2 为圆心、线段
我们知道,当点
2
2
解析:∵方程1+ + -2=1,∴(m-2)(m+1)<0,
解得-1<m<2,∴m的取值范围是(-1,2).
答案:D
)
4. 一块面积为12公顷的三角形形状的农场.如图所示△PEF,已知
1
tan∠PEF=

3.2.2双曲线的简单几何性质 课件(共24张PPT)

3.2.2双曲线的简单几何性质 课件(共24张PPT)
2
2
=λ(λ≠0).
(5)渐近线为y=±kx的双曲线方程可设为k2x2-y2=λ(λ≠0).
(6)渐近线为ax±by=0的双曲线方程可设为a2x2-b2y2=λ(λ≠0).
跟踪训练 求适合下列条件的双曲线的标准方程:
5
(1)焦点在x轴上,虚轴长为8,离心率为3 ;ห้องสมุดไป่ตู้
跟踪训练
A.
1
4
双曲线x2-my2=1的实轴长是虚轴长的2倍,则m等于
B.
1
2
C.2
D.4
(D)
二、求双曲线方程
例2
根据下列条件,求双曲线方程:
(1)双曲线 x
2
9

y2
1 有共同渐近线,且过点 ( 3, 2 3) ;
16
(2)与双曲线 x
2
16

y2
1 有公共焦点,且过点 (3 2 , 2) .
第三章
3.2
双曲线
3.2.2 双曲线的简单几何性质
学习目标
1.理解双曲线的简单几何性质(范围、对称性、顶点、渐近线、离心率).
2.能用双曲线的简单性质解决一些简单的问题
核心素养:数学运算、数学建模
新知学习
复习引入
定义
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
y
M
M
F2
(2)焦点在 y 轴上的双曲线的标准方程可设为
2
(3)与双曲线
2
2 +
2

2
2
2

=1(a>0,b>0).
2
2
=1 共焦点的双曲线方程可设为

3.2.2双曲线的简单几何性质课件(人教版)

3.2.2双曲线的简单几何性质课件(人教版)
双曲线的简单几何性质
复习回顾
1.双曲线的定义:一般地,把平面内与两个定点F1,F2的
差的绝对值
距离的______________
等于非零常数(小于|F1F2|)的点
双曲线
的轨迹叫做_________
.这两个定点叫做双曲线的
焦点
焦距 .
________,两焦点间的距离叫做双曲线的_______
y P
2.双曲线的标准方程:
x2 y2
2- 2=1(a>0,b>0)
a b
y2 x2
2- 2=1(a>0,b>0)
a b
X
F1
O
F2
新课探究:双曲线的简单几何性质
回顾:我们在学习椭圆的几何性质时,主要从哪
些方面研究了其几何性质?
范围
பைடு நூலகம்
对称性
顶点
离心率
椭圆的几何性质
焦点位置
焦点在x轴上
焦点在y轴上
图形
标准方程
x a或x a , y R
对称性
对称轴:坐标轴
y -a或y a , x R
对称中心:坐标原点
顶点
性质
实轴:A1 A2 ,实轴长:2a;虚轴 B1 B2 ,虚轴长2b
渐近线
离心率
离心率刻画了双曲线的“张口”大小,e越大,开口越大,e越
小,开口越小
练习巩固
例 求双曲线9y2-16x2=144的顶点坐标、焦点坐标、

0
3 2
2
y- x
3
的距离d. 沿曲线向
右上方拖动点M,视察 xM 与d的大
小关系,你发现了什么?
点M的横坐标越大,d越小,但d始

双曲线及其标准方程课件

双曲线及其标准方程课件

音乐艺术
双曲线在音乐艺术中用于 创作优美的音乐旋律和和 声,特别是在处理音高和 音程时。
交通工程
双曲线在交通工程中用于 设计道路和轨道,特别是 在处理弯道和交叉口时。
04
双曲线的图像绘制
使用数学软件绘制双曲线
使用Ge双曲 线。用户只需在软件中输入双曲线的标准方程,即可自动生 成对应的双曲线图像。
05
双曲线的性质与方程 的关联
双曲线的性质与标准方程的关系
焦点距离
双曲线的标准方程中的系数与焦 点距离有关,决定了双曲线的开
口大小和方向。
渐近线
双曲线的标准方程中的系数决定了 渐近线的斜率和截距,反映了双曲 线的形状和位置。
离心率
双曲线的标准方程中的系数与离心 率有关,离心率决定了双曲线的开 口程度和形状。
推导结果
01
双曲线的标准方程为
$frac{x^2}{a^2}
-
frac{y^2}{b^2} = 1$。
02
其中$a > 0, b > 0$,且满足 $c^2 = a^2 + b^2$。
推导结论
双曲线是一种特殊的二次曲线,其标 准方程反映了双曲线的几何特性。
双曲线的焦点到曲线上任意一点的距 离之差为常数,这个常数等于两焦点 之间的距离的一半。
绘制双曲线
在工具箱中选择“双曲线”工具,然 后在绘图区域单击并拖动鼠标,即可 绘制出双曲线。用户可以根据需要调 整双曲线的参数和位置。
使用手工绘制双曲线
准备工具
准备一张纸、一支笔和一把直尺。
绘制过程
首先在纸上确定双曲线的中心和焦点,然后使用直尺和笔绘制出双曲线的渐近线。接着,使用笔和直尺在纸上绘 制出双曲线的上半部分。最后,使用对称性画出双曲线的下半部分。这种方法虽然比较传统,但对于理解双曲线 的几何意义非常有帮助。

双曲线的简单性质课件ppt课件

双曲线的简单性质课件ppt课件

04 双曲线的标准方程的推导
推导过程
设双曲线上任意一点为$P(x,y)$, 根据双曲线的定义,点$P$到两 个焦点的距离之差为常数,即 $2a$。
利用距离公式和双曲线的定义, 可以得到点$P$到两个焦点的距 离分别为$sqrt{(x+a)^2+y^2}$ 和$sqrt{(x-a)^2+y^2}$。
对称性
01
02
03
对称性
双曲线关于其对称轴对称, 即关于x轴和y轴都对称。
总结词
双曲线关于其对称轴对称, 即关于x轴和y轴都对称。
详细描述
双曲线上的任意一点关于 x轴和y轴的对称点都在双 曲线上。
顶点
顶点
双曲线与对称轴的交点称 为顶点。
总结词
双曲线与对称轴的交点称 为顶点。
详细描述
顶点是双曲线与对称轴的 交点,也是双曲线离准线 最远的点。
比例常数。
性质
双曲线的焦点到任意一点的距离之 差等于常数2a,即|PF1| - |PF2| = 2a。
应用
通过焦点可以计算出双曲线的离心 率和准线方程。
焦距
定义
双曲线的两个焦点之间的距离称 为焦距,记作2c。
性质
焦距与半主轴长a和半次轴长b有 关,关系为c^2 = a^2 + b^2。
应用
通过焦距可以计算出双曲线的离 心率和准线方程。
双曲线的简单性质课件ppt课件
目录
• 双曲线的定义与标准方程 • 双曲线的几何性质 • 双曲线的焦点与焦距 • 双曲线的标准方程的推导 • 双曲线的应用
01 双曲线的定义与标准方程
定义
总结词
双曲线是由两个无限延伸的分支组成的,其形状类似于开口 的抛物线。

第三章3.2.2第1课时双曲线的简单几何性质PPT课件(人教版)

第三章3.2.2第1课时双曲线的简单几何性质PPT课件(人教版)

4.双曲线x2-y2=1的顶点到其渐近线的距离等于
A.12
√B.
2 2
C.1
D. 2
解析 双曲线x2-y2=1的渐近线方程为x±y=0,顶点坐标为(1,0) 2.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5.已知双曲线 C:ax22-by22=1(a>0,b>0)的离心率为 25,则双曲线 C 的渐近线方
∴b=2,∴-m1 =b2=4, ∴m=-41,故选 C.
12345
3.中心在原点,焦点在x轴上,且一个焦点在直线3x-4y+12=0上的等轴双曲
线的方程是
√A.x2-y2=8
B.x2-y2=4
C.y2-x2=8
D.y2-x2=4
解析 令y=0,得x=-4, ∴等轴双曲线的一个焦点为(-4,0), ∴c=4,a2=b2=21c2=21×16=8,故选 A.
实轴长2a=6,虚轴长2b=4,
离心率 e=ac= 313, 渐近线方程为 y=±bax=±23x.
延伸探究 求双曲线nx2-my2=mn(m>0,n>0)的实半轴长、虚半轴长、焦点坐标、离心 率、顶点坐标和渐近线方程.
解 把方程 nx2-my2=mn(m>0,n>0)化为标准方程为xm2-yn2=1(m>0,n>0), 由此可知,实半轴长 a= m,
所以双曲线的离心率为 1+ 2.
3 随堂演练
PART THREE
1.(多选)已知双曲线方程为x2-8y2=32,则
√A.实轴长为 8 2
√B.虚轴长为 4
C.焦距为 6
√D.离心率为3 4 2
解析 双曲线方程 x2-8y2=32 化为标准方程为3x22 -y42=1, 可得 a=4 2,b=2,c=6,

双曲线的基本知识点PPT

双曲线的基本知识点PPT

按方程形式分类
双曲线方程的对称性 双曲线的标准方程是(x-a)²/b² - (y-b)²/a² = 1,其具有中心对称性,即点 (a, b)为中心。 双曲线的焦距与实轴长度的关系 在双曲线中,焦距c与实轴长度2a有固定的数学关系:c² = a² + b²,此 式被称为双曲线的基本性质之一。
T 双曲线关于其轴和中心点均具有对称性,这是由其定义决定的。 双曲线的渐近线性质 双曲线的渐近线是一条直线,该直线与双曲线交于两个无穷远点,这是双 曲线的重要特性之一。
05 双曲线的实际应用
双曲线的实际应用:物理中的应 用
双曲线的几何特性 双曲线是二次曲线的一种,其 双曲线的几何特性 双曲线是二次曲线的一种,其几何特性包括焦点在两个固定点,且所有到两 焦点距离之和为定长的点的集合。 双曲线的方程式 双曲线的标准方程是(x^2)/a^2 - (y^2)/b^2 = 1,其中a, b > 0, a^2 + b^2 = c^2 双曲线在物理中的应用 双曲线广泛应用于物理学中,如电磁场理论、光学、量子力学等,例如,双 曲线的焦散线就是光学中的一条重要概念。 双曲线与实际问题的联系 双曲线的许多性质,如离心率、焦点等,可以用于解决实际问题,如测量物 体的距离、角度等。
双曲线的图形特征:焦点和准线
双曲线定义 双曲线是平面内到两个定点的距离之差的绝对值等于常数的点的轨迹。 焦点性质 双曲线的两个焦点位于实轴两端,距离实轴相等。 准线特征 双曲线有两条互相垂直的准线,分别交坐标轴于原点和渐近线点。
04 双曲线的性质解析
双曲线的性质解析:主要性质
双曲线的焦点特性 双曲线有两焦点位于其对称轴上,距离中心等距。 双曲线的对称性 双曲线具有旋转对称性和平移对称性。 双曲线的渐近线 双曲线有两个渐近线,分别代表双曲线在x轴和y轴上的极限状态。 实数双曲线的面积 实数双曲线的面积是πab/4。

双曲线的定义及标准方程课件

双曲线的定义及标准方程课件

双曲线的性质及应用
双曲线拥有许多重要的性质和应用。在工程、物理学和金融等领域,双曲线的概念经常被应用于解决实际问题。 让我们深入研究双曲线的性质和应用。
结论及要点
通过本课件的学习,我们回顾了双曲线的定义、标准方程、图像特征以及其 性质和应用。掌握这些知识,可以帮助我们更好地理解曲线的性质和实际应 用。谢谢大家!
双曲线的图像特征
双曲线具有许多独特的图像特征。它的形状、对称性以及与其他曲线的关系使其在几何学和应用数学中具有广 泛的应用价值。
ห้องสมุดไป่ตู้
双曲线的焦点与准线
双曲线的焦点和准线是双曲线的重要属性。它们不仅确定了双曲线的形状, 还对我们理解双曲线的性质和应用起到关键作用。
双曲线的渐近线
双曲线的渐近线是一条特殊的直线,与双曲线的曲线趋势密切相关。了解双 曲线的渐近线有助于我们对双曲线的图像和性质有更深入的理解。
双曲线的定义及标准方程 ppt课件
欢迎来到本次精彩的课程介绍!我们将一起探讨双曲线的定义、标准方程以 及其图像特征。准备好了吗?让我们开始吧!
双曲线的定义
双曲线是数学中一种重要的曲线形式。它由离心率小于1的点构成,并具有特定的几何性质。让我们深入了解 双曲线的定义和性质。
双曲线的标准方程
双曲线可以使用标准方程来表示。这种方程的形式简洁,方便我们对双曲线 进行分析和计算。让我们掌握双曲线的标准方程。

双曲线ppt课件

双曲线ppt课件

题型二 双曲线的标准方程
【例2】已知双曲线的渐近线方程为2x±3y=0.
(1)若双曲线经过P( 6 ,2),求双曲线方程; (2)若双曲线的焦距是2 13 ,求双曲线方程; (3)若双曲线顶点间的距离是6,求双曲线方程.
思维启迪 用定义法或待定系数法求方程.

方法一
由双曲线的渐近线方程y=±
2 3
解得ba
23或ba
3 9. 2
故所求双曲线方程为 x2 y2 1或 y2 4x2 1.
94
9 81
探究提高 待定系数法是求曲线方程最常用的方
法之一.
(1)与双曲线
x2 a2
y2 b2
1有共同渐近线的双曲
线方程可表示为
x2 a2
y2 b2
t(t 0).
(2)若双曲线的渐近线方程是y=±
2
,2),∴
(3 2)2 a2
4 b2
1.
又∵a2+b2=(2 5)2,∴a2=12,b2=8.
故所求双曲线的方程为 x2 y2 1. 12 8
题型三 双曲线的性质 【例3】中心在原点,焦点在x轴上的一椭圆与一
双曲线有共同的焦点F1,F2,且|F1F2|=2 13 , 椭圆的长半轴与双曲线实半轴之差为4,离心率 之比为3∶7. (1)求这两曲线方程; (2)若P为这两曲线的一个交点,求cos∠F1PF2 的值.
5.若m>0,点
P
m,
5 2
在双曲线
x2 y2 1 上,则 45 13
点P到该双曲线左焦点的距离为 2 .
解析
P
m,
5 2
在双曲线 x2 y2 1上,且m>0, 45
代入双曲线方程解得m=3,双曲线左焦点F1(-3,0),

双曲线的性质课件(PPT 15页)

双曲线的性质课件(PPT 15页)

y
B2
A1 F1 O
F2 A2
x
B1
y C3C2 C1
O
x
焦点在x轴上的双曲线图像
y 渐进线方程: b x a
Y x2 y2 1 a2 b2
B2
F1
A1
A2 F2 X B1
离心率对双曲线形状的影响
焦点在y轴上的双曲线图

Y
y2 a2
x2 b2
1
F2
A2
B1
O
B2
X
A1
F1
焦点在y轴上的双曲线的几何性质
2、对称性:关于x轴,y轴,
原点对称。 3、顶点 A1(-a,0),A2(a,0)
F1 A1 O
A2 F2
x
4、轴:实轴 A1A2 虚轴 B1B2
B1
|A1A2|=2ca,|B1B2|=2b 5、离心率:e= a
根据以上几何性质能够
根据以上几何性质能否
较准确地画出椭圆的图形? 较准确地画出双曲线的图形呢?
双曲线标准方程:y 2 x 2 1 双曲线性质: a 2 b2
Y
1、范围:y≥a或y≤-a
F2
2、对称性:关于x轴,y轴,原点对称。
A2
3、顶点 A1(0,-a),A2(0,a)
4、轴:实轴 A1A2 ; 虚轴 B1B2 B1
5、渐近线方程: y a x
o
b
6、离心率:e=c/a
A1
F2
B2 X
Y
F1
B2
F’1 A1 o
B1
X
A2 F’2
F2
证明:(1)设已知双曲线的方程是:
x2 a2
y2 b2
1

《二讲双曲线》课件

《二讲双曲线》课件

添加 标题
双曲线的图像:双曲线有两个分支,在平 面坐标系中呈现出“马蹄形”的形状。
添加 标题
参数方程与图像的关系:通过参数方程可 以绘制出双曲线的图像,而通过图像也可 以读取出双曲线的参数方程。
添加 标题
参数方程的应用:双曲线的参数方程在物理学、 工程学等领域有着广泛的应用,例如在研究天体 运动、电磁波传播等问题时常常会用到双曲线的 参数方程。
预习内容建议:回 顾双曲线的定义、 性质和图像
所需准备材料:笔 记本、笔、教材等
预习时间安排:建 议提前一周开始预 习
感谢观看
汇报人:PPT
图像特征:与双曲 线渐行渐远
双曲线的离心率
离心率的定义:离心率是双曲线的一个重要几何性质,它表示双曲线与焦点的距离与双曲线实 轴长度的比值。
离心率的取值范围:离心率的取值范围是大于1,表示双曲线与焦点的距离大于双曲线实轴长度。
离心率与双曲线形状的关系:离心率越大,双曲线的开口越宽,形状越扁平;离心率越小,双 曲线的开口越窄,形状越接近于椭圆。
双曲线的性质
双曲线是平面上的两条曲线,它们在两个不同的方向上弯曲。 双曲线的两个焦点位于其对称轴上,并且离原点的距离相等。 双曲线的渐近线是与双曲线无限接近的直线,它们与双曲线在同一直线上。 双曲线的离心率大于1,这是双曲线与椭圆和圆的区别之一。
双曲线的几何性质
双曲线的对称性
定义:双曲线关 于原点对称
双曲线的渐近线:双曲线与坐标轴的交点为渐近线,其斜率为b/a。
双曲线的离心率:离心率e是描述双曲线离散程度的参数,其值为c/a, 其中c为焦点到原点的距离。
双曲线的焦点位置:对于中心在原点的双曲线,其焦点位置为x轴正负 方向上,距离原点为c的点。

《双曲线方程》课件

《双曲线方程》课件

直接代入法: 将已知条件 代入方程求 解
消元法:通 过消去一个 未知数求解
换元法:通 过引入新的 未知数求解
待定系数法: 通过设定未 知数的系数 求解
数值方法: 通过数值计 算求解
图解法:通 过画图求解
确定双曲线方程的形式,如 x^2/a^2 - y^2/b^2 = 1
确定双曲线的焦点位置,如 (c,0)
双曲线方程的离 心率:e = c/a
双曲线方程与 椭圆方程的联 系:都是二次 曲线方程,具 有相似的几何
性质
双曲线方程与 抛物线方程的 联系:都是二 次曲线方程, 但几何性质不

双曲线方程与 圆方程的联系: 都是二次曲线 方程,但几何
性质不同
双曲线方程与 直线方程的联 系:直线与双 曲线的交点问 题,需要运用 双曲线方程进
确定双曲线的焦点位 置
确定双曲线的顶点位 置
确定双曲线的渐近线 方程
确定双曲线的离心率
确定双曲线的标准方 程
确定双曲线的渐近线 方程
标准双曲线方程:x^2/a^2 - y^2/b^2 = 1 焦点在x轴上的双曲线方程:x^2/a^2 - y^2/b^2 = -1 焦点在y轴上的双曲线方程:x^2/a^2 - y^2/b^2 = 1 焦点在原点的双曲线方程:x^2/a^2 - y^2/b^2 = -1
确定双曲线的渐近线方程,如 y = ±b/a * x
利用双曲线的性质,如离心率、 渐近线等,求解双曲线方程
双曲线的定义: 平面内到两个 定点的距离之 差的绝对值等 于常数的点的
轨迹
双曲线的性质: 对称性、周期Байду номын сангаас性、渐近线等
双曲线的方程: x^2/a^2-
y^2/b^2=1 或y^2/a^2x^2/b^2=1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[思路点拨] 设直线l的方程为y=2x+m,由题意建立
关于m的等式,求出m即可.
[精解详析] 设直线 l 的方程为 y=2x+m,
y=2x+m, 由x32-y22=1,
得 10x2+12mx+3(m2+2)=0.(*)
设直线 l 与双曲线交于 A(x1,y1),B(x2,y2)两点, 由根与系数的关系,
[一点通] (1)弦长公式
斜率为 k(k≠0)的直线 l 与双曲线相交于 A(x1,y1),B(x2,y2), 则|AB|= 1+k2|x1-x2|
= 1+k2 x1+x22-4x1x2

1+k12|y1-y2|=
1+k12 y1+y22-4y1y2.
(2) 与 弦 中 点 有 关 的 问 题 主 要 用 点 差 法 , 根 与 系 数 的 关 系 解
若 4-k2=0,即 k=±2 时,方程(*)为一次方程,只有一解. 若 4-k2≠0 时,Δ=4k2+8(4-k2)=4(8-k2). 当 Δ>0 即-2 2<k<2 2时,方程(*)有两个不同的解. 当 Δ=0 即 k=±2 2时,方程(*)有一解. 当 Δ<0 即 k<-2 2或 k>2 2时,方程 (*)无解. 综合以上得:当-2 2<k<2 2时,直线与双曲线有两个公共 点;当 k=±2 或 k=±2 2时,直线与双曲线有一个公共点;当 k< -2 2或 k>2 2时,直线与双曲线没有公共点.
由此得 x1=152x2.因为 x1,x2 是方程(1-a2)x2+2a2x-2a2=0 的两根,且 1-a2≠0,
所以1172x2=-12-a2a2,152x22=-12-a2a2.消去 x2,得
-1-2a2a2=26809.由 a>0,解得 a=1173.
[例 2] 斜率为 2 的直线 l 在双曲线x32-y22=1 上截得的弦长 为 6,求 l 的方程.
∵x1·x2=-72<0, ∴A,B 两点分别位于双曲线的左、右两支上. ∵x1+x2=-2,x1·x2=-72, ∴|AB|= 1+12|x1-x2| = 2· x1+x22-4x1x2 = 2· -22-4-72=6.
[例 3] 已知直线 l:x+y=1 与双曲线 C:xa22-y2=1(a>0). (1)若 a=12,求 l 与 C 相交所得的弦长; (2)若 l 与 C 有两个不同的交点,求双曲线 C 的离心率 e 的取值范围.
4.已知双曲线3x2-y2=3,直线l过其右焦点F2,且倾 斜
角为45°,与双曲线交于A,B两点,试问A,B两 点是否位于双曲线的同一支上?并求弦AB的长. 解:∵直线l过点F2且倾斜角为45°, ∴直线l的方程为y=x-2. 代入双曲线方程,得2x2+4x-7=0. 设A(x1,y1),B(x2,y2).
①-②得
(x1+x2)(x1-x2)-4(y1 ∴x1+x2=16,y1+y2=2. ∴xy11- -yx22=4xy11++xy22=2. ∴直线 AB 的斜率为 2. ∴直线 AB 的方程为 y-1=2(x-8), 即 2x-y-15=0.
决.另外,要注意灵活转化,如垂直、相等等问题也可以转化成中
点、弦长等问题解决.
3.过点P(8,1)的直线与双曲线x2-4y2=4相交于A,B两
点,且P是线段AB的中点,求直线AB的方程.
解:设 A,B 的坐标分别为(x1,y1),(x2,y2),
则 x12-4y12=4,

x22-4y22=4.

双曲线方程及几何性质的应用
[例1] 已知直线y=kx-1与双曲线4x2-y2=1.当k为何 值时,直线与双曲线:
(1)有两个公共点;(2)有一个公共点;(3)没有公共点? [思路点拨] 讨论直线与双曲线的位置关系问题,可以 将问题转化为讨论直线与双曲线的方程组成方程组的解的 个数问题.
[精解详析] 由y4= x2- kxy-2=1,1, 消去 y 得(4-k2)x2+2kx-2 =0.(*)
1.若直线y=kx-1与双曲线x2-y2=1有且只有一个交点, 则k的值为________.
解析:由yx=2-kyx2-=11,, 得(1-k2)x2+2kx-2=0. 当 1-k2=0 时,即 k=±1 时, 方程变为±2x-2=0,则 x=±1. 此时直线与双曲线渐近线平行,有且只有一个交点.
当 1-k2≠0 时,Δ=4k2+8(1-k2)=0, 解得 k=± 2. 此时直线与双曲线相切,有且只有一个公共点. 综上所述,k=±1,± 2. 答案:±1, ± 2
2.直线 l:x+y=1 与双曲线 C:ax22-y2=1(a>0)相交于两个不同 点 A,B,与 y 轴交于点 P,且 PA=152 PB,求 a 的值. 解:将 y=-x+1 代入xa22-y2=1(a>0),得 (1-a2)x2+2a2x-2a2=0. 设 A(x1,y1),B(x2,y2),易得 P(0,1). 因为 PA=152 PB,所以(x1,y1-1)=152(x2,y2-1).
(2)当 b2-a2k2≠0,即 k≠±ba时, Δ=(-2a2mk)2-4(b2-a2k2)(-a2m2-a2b2). Δ>0⇒直线与双曲线有两个公共点,此时称直线与双曲 线相交; Δ=0⇒直线与双曲线有一个公共点,此时称直线与双曲 线相切; Δ<0⇒直线与双曲线没有公共点,此时称直线与双曲线 相离.
得 x1+x2=-65m,x1x2=130(m2+2). ∴|AB|2=(x1-x2)2+(y1-y2)2=5(x1-x2)2 =5[(x1+x2)2-4x1x2]=5[3265m2-4×130(m2+2)]. ∵|AB|= 6,∴356m2-6(m2+2)=6. ∴m2=15,m=± 15. 由(*)式得 Δ=24m2-240, 把 m=± 15代入上式,得 Δ>0, ∴m 的值为± 15, ∴所求 l 的方程为 y=2x± 15.
[一点通] 一般地,设直线 l:y=kx+m(m≠0),①
双曲线 C:xa22-by22=1(a>0,b>0).

把①代入②得
(b2-a2k2)x2-2a2mkx-a2m2-a2b2=0.
(1)当 b2-a2k2=0,即 k=±ba时,直线 l 与双曲线的渐近
线平行,直线与双曲线 C 相交于一点.
相关文档
最新文档