高三物理求解平衡问题的九种方法
高三物理专题复习教案[全套]·物理
第一讲 平衡问题一、特别提示[解平衡问题几种常见方法]1、力的合成、分解法:对于三力平衡,一般根据“任意两个力的合力与第三力等大反向”的关系,借助三角函数、相似三角形等手段求解;或将某一个力分解到另外两个力的反方向上,得到这两个分力必与另外两个力等大、反向;对于多个力的平衡,利用先分解再合成的正交分解法。
2、力汇交原理:如果一个物体受三个不平行外力的作用而平衡,这三个力的作用线必在同一平面上,而且必有共点力。
3、正交分解法:将各力分解到x 轴上和y 轴上,运用两坐标轴上的合力等于零的条件)00(∑∑==y x F F 多用于三个以上共点力作用下的物体的平衡。
值得注意的是,对x 、y 方向选择时,尽可能使落在x 、y 轴上的力多;被分解的力尽可能是已知力。
4、矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接恰好构成三角形,则这三个力的合力必为零,利用三角形法求得未知力。
5、对称法:利用物理学中存在的各种对称关系分析问题和处理问题的方法叫做对称法。
在静力学中所研究对象有些具有对称性,模型的对称往往反映出物体或系统受力的对称性。
解题中注意到这一点,会使解题过程简化。
6、正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。
7、相似三角形法:利用力的三角形和线段三角形相似。
二、典型例题1、力学中的平衡:运动状态未发生改变,即0=a 。
表现:静止或匀速直线运动(1)在重力、弹力、摩擦力作用下的平衡例1 质量为m 的物体置于动摩擦因数为μ的水平面上,现对它施加一个拉力,使它做匀速直线运动,问拉力与水平方向成多大夹角时这个力最小?解析 取物体为研究对象,物体受到重力mg ,地面的支持力N ,摩擦力f 及拉力T 四个力作用,如图1-1所示。
由于物体在水平面上滑动,则N f μ=,将f 和N 合成,得到合力F ,由图知F 与f 的夹角:μ==αarcctg Nf arcctg 不管拉力T 方向如何变化,F 与水平方向的夹角α不变,即F 为一个方向不发生改变的变力。
高中物理《力的平衡问题》常用解题方法
《力的平衡》常用解题方法【专题概述】1 处理平衡问题的常用方法2.一般解题步骤(1)选取研究对象:根据题目要求,选取一个平衡体(单个物体或系统,也可以是结点)作为研究对象.(2)画受力示意图:对研究对象进行受力分析,画出受力示意图.(3)正交分解:选取合适的方向建立直角坐标系,将所受各力正交分解.(4)列方程求解:根据平衡条件列出平衡方程,解平衡方程,对结果进行讨论.3.应注意的两个问题(1)物体受三个力平衡时,利用力的分解法或合成法比较简单.(2)解平衡问题建立坐标系时应使尽可能多的力与坐标轴重合,需要分解的力尽可能少.物体受四个以上的力作用时一般要采用正交分解法【典例精讲】方法1 直角三角形法用直角三角法解答平衡问题是常用的数学方法,在直角三角形中可以利用勾股定理、正弦函数、余弦函数等数学知识求解某一个力,若力的合成的平行四边形为菱形,可利用菱形的对角线互相垂直平分的特点进行求解.【典例1】如图所示,石拱桥的正中央有一质量为m 的对称楔形石块,侧面与竖直方向的夹角为α,重力加速度为g ,若接触面间的摩擦力忽略不计,则石块侧面所受弹力的大小为A.2 sin αmgB.2 cos αmgC.21mgtan αD.21mgcot α【答案】 A直角三角形,且∠OCD 为α,则由21mg =F N sin α可得F N =2sin αmg,故A 正确.方法2 相似三角形法物体受到三个共点力的作用而处于平衡状态,画出其中任意两个力的合力与第三个力等值反向的平行四边形中,可能有力三角形与题设图中的几何三角形相似,进而得到力三角形与几何三角形对应边成比例,根据比值便可计算出未知力的大小与方向.【典例2】 如图所示,一个重为G 的小球套在竖直放置的半径为R 的光滑圆环上,一个劲度系数为k ,自然长度为L(L<2R)的轻质弹簧,一端与小球相连,另一端固定在圆环的最高点,求小球处于静止状态时,弹簧与竖直方向的夹角φ.【答案】arccos kR -G kL【解析】对小球B 受力分析如图所示,由几何关系有△AOB ∽△CDB ,【典例3】如图所示,不计重力的轻杆OP 能以O 点为圆心在竖直平面内自由转动,P 端用轻绳PB 挂一重物,而另一根轻绳通过滑轮系住P 端.在力F 的作用下,当杆OP 和竖直方向的夹角α(0<α<π)缓慢增大时,力F 的大小应( )A .恒定不变B .逐渐增大C .逐渐减小D .先增大后减小【答案】B 【解析】由三角形相似得:PQ F =OQ mg ,F =OQ PQmg ,α逐渐增大,即PQ 增大,由上式知F 逐渐增大,B 正确.方法3:正弦定理法三力平衡时,三力合力为零.三个力可构成一个封闭三角形,若由题设条件寻找到角度关系,则可由正弦定理列式求解.【典例4】一盏电灯重力为G,悬于天花板上A点,在电线O处系一细线OB,使电线OA与竖直方向的夹角为β=30°,如图所示.现保持β角不变,缓慢调整OB方向至OB线上拉力最小为止,此时OB与水平方向的夹角α等于多少?最小拉力是多少?G【答案】30°2【解析】对电灯受力分析如图所示,据三力平衡特点可知:OA、OB对O点的作用力T A、T B的合力T与G等大反向,即T=G①【名师点评】相似三角形法和正弦定理法都属于数学解斜三角形法,只是已知条件不同而已.若已知三角形的边关系选用相似三角形法,已知三角形的角关系,选用正弦定理法.【典例5】如图所示,质量为m的小球置于倾角为30°的光滑斜面上,劲度系数为k的轻质弹簧一端系在小球上,另一端固定在墙上的P点,小球静止时,弹簧与竖直方向的夹角为30°,则弹簧的伸长量为()A.k mgB.2k 3mgC.3k 3mgD.k 3mg 【答案】 C物体受三个共面非平行外力作用而平衡时,这三个力必为共点力.【典例6】 如图所示,重为G 的均匀链条挂在等高的两钩上,链条悬挂处与水平方向成θ角,试求:(1) 链条两端的张力大小; (2) 链条最低处的张力大小. 【答案】(1)2sin θG (2)2Gcot θ【解析】(1)整个链条受三个力作用而处于静止,这三个力必为共点力,由对称性可知,链条两端受力必大小相等,受力分析如图甲.由平衡条件得:2F sin θ=G F =2sin θG .(2)在求链条最低处张力时,可将链条一分为二,取一半链条为研究对象.受力分析如图乙所示,由平衡条件得水平方向所受力为F ′=F cos θ=2sin θG cos θ=2Gcot θ. 方法5:图解法【典例7】如图所示,用一根长为l 的细绳一端固定在O 点,另一端悬挂质量为m 的小球A ,为使细绳与竖直方向成30°角且绷紧,小球A 处于静止,对小球施加的最小的力是 ( ).A .mgB .23mg C .21mg D .33mg 【答案】C【典例8】如图所示,小球用细绳系住,绳的另一端固定于O 点.现用水平力F 缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力F N以及绳对小球的拉力F T的变化情况是().A.F N保持不变,F T不断增大B.F N不断增大,F T不断减小C.F N保持不变,F T先增大后减小D.F N不断增大,F T先减小后增大【答案】D【总结提升】1直角三角形分析物体动态平衡问题时,一般物体只受三个力作用,且其中三个力的方向都没有发生变化,并且所构成的三角形是一个直角三角形,此时就可以用直角三角形解平衡了。
高考力学平衡问题的解题方法
高考力学平衡问题的解题方法高考中力学平衡问题一向是许多学生头疼的难题,因为它需要考生掌握一定的物理知识和解题技巧。
而在高考中,力学平衡问题是必考的内容之一,掌握解题方法至关重要。
下面将从题目分析和解题步骤两个方面来谈谈高考力学平衡问题的解题方法。
一、题目分析在解答力学平衡问题时,首先要对题目进行仔细的分析,明确题目给出的物体、受力和受力点的位置,以及要求求解的未知量。
以下是解题时需要考虑的几个方面:1. 物体的描述:要仔细阅读和理解题目中对物体的描述,包括形状、大小、重量等。
同时要画出物体的示意图,以便更好地理解和分析题目。
2. 受力的方向和大小:要明确物体所受的各个力的方向和大小,包括重力、支持力、摩擦力等。
有时需要根据题目描述和物体的特性自行推导出受力情况。
3. 受力点的位置:要确定物体所受的各个力的作用点的位置,有时还需要考虑这些受力点对于整个物体的作用点。
4. 求解未知量:要清楚题目要求求解的未知量是什么,如平衡条件、支持力、摩擦力等。
通过对题目进行充分的分析,可以更清晰地认识到问题的关键点,有利于更有效地解题。
二、解题步骤在对题目进行了充分的分析之后,可以根据问题的特点采取相应的解题方法。
下面将介绍几种常见的高考力学平衡问题的解题步骤和技巧。
1. 利用平衡条件进行分析在力学平衡问题中,物体处于静止状态,即受力平衡。
这时可以利用平衡条件对物体的受力情况进行分析。
平衡条件一般包括力的合成条件和力的平衡条件。
力的合成条件指的是,在物体上作用的各个力可以合成为一个合力,这个合力的大小和方向与原来的各个力所合成的结果一样。
通过合力的作用点、大小和方向可以分析物体的受力情况。
力的平衡条件指的是合力为零,或者说合外力为零,此时物体处于力的平衡状态。
根据力的平衡条件可以列出各个方向上的受力方程式,从而解出未知量。
对于悬挂在绳子上的物体,可以利用力的平衡条件列方程解出绳子的张力和物体的重力等。
2. 计算支持力和摩擦力在力学平衡问题中,常常需要计算物体所受的支持力和摩擦力。
高中物理力学平衡题解题方法
高中物理力学平衡题解题方法力学是物理学的一个重要分支,它研究物体在受力作用下的运动和静止情况。
在高中物理学习中,力学是一个基础而又重要的模块。
平衡题是力学中的一种常见类型,解题方法的熟练程度对学生理解和掌握力学的知识具有重要影响。
一、定义和原理首先,我们需要了解平衡的概念。
平衡是指物体处于力的作用下保持不动或匀速直线运动的状态。
根据牛顿第一定律,物体在平衡状态下受力和为零。
这意味着,物体所受的合力为零,无论是作用在物体上的重力、摩擦力还是其他外力。
在解答平衡题时,我们需要应用力的平衡原理。
该原理可以总结为“合力为零”,也就是说,在平衡状态下,物体所受的合力等于零。
这是因为物体受到的外力与物体对外施加的反作用力相等且反向,使得合力为零。
二、解题步骤在解决平衡题时,我们可以按照以下步骤进行操作:1. 确定平衡点:物体在平衡状态下处于一个稳定的位置,这个位置被称为平衡点。
我们需要找到物体的平衡点,并确定合力方向。
2. 绘制力的示意图:根据题目给出的条件,绘制物体所受外力的示意图。
可以使用箭头来表示力的大小和方向,以便我们更好地理解题目。
3. 分解力:大多数平衡题可以通过将力分解成垂直和水平两个分力来进行求解。
这样可以减少问题的复杂性,使得求解更加简单和直观。
4. 建立方程:根据力的平衡原理,我们可以根据物体所受的力的大小和方向建立方程。
方程的基本形式可以表示为∑F=0,其中∑F表示物体所受的合力。
5. 求解未知量:根据建立的方程,我们可以解出未知量,从而得到我们想要的答案。
三、实例说明为了更好地理解解题方法,我们来看一个具体的例子。
假设有一个物体放置在水平面上,其质量为10千克。
物体受到重力和水平摩擦力的作用,重力大小为100牛顿,水平摩擦力的大小为60牛顿。
我们需要计算物体所受的垂直力的大小。
首先,我们绘制物体受力示意图,标出重力和水平摩擦力的方向。
然后,我们将重力分解为垂直和水平方向上的分力,记为Fv和Fh。
高考力学平衡问题的解题方法
高考力学平衡问题的解题方法力学平衡问题是高考力学中比较常见的考点之一,也是比较基础的力学问题。
在解决这类问题时,我们需要运用平衡条件和受力分析的知识。
下面就让我们来看一看,解决力学平衡问题的常用方法和技巧吧。
一、受力分析受力分析是解决力学平衡问题的重要方法之一。
在解题时,我们需要先画出物体受到的力(包括重力、支持力、摩擦力等),然后逐个分析这些力对物体的影响。
例如,对于一个悬挂在细绳上的物体,我们可以画出如下受力图:在这张图中,P代表物体的重力,T代表细绳的张力。
根据牛顿第二定律,得出物体的平衡条件:P = T这就是我们常说的“绳子拉力与物体重力相等”的结论。
二、平衡条件平衡条件是解决力学平衡问题的基础。
在求解问题时,我们需要根据平衡条件来列方程、解方程,最终得出物体的状态。
常用的平衡条件包括力的平衡条件和力矩的平衡条件。
其中,力的平衡条件是指物体受到的所有力的合力等于零。
力矩的平衡条件则是指物体受到的所有力对于某个固定点的合力矩等于零。
对于力的平衡条件,我们可以列出如下公式:ΣF = 0其中,ΣF代表物体受到的所有力的合力,等于零说明受力平衡。
例如,对于如下图示的问题:x - 4cos30° = 0y + 4sin30° - 4 = 0其中,x和y分别代表M点的受力。
解出这个方程组,就可以得到M点的受力状态。
三、注意事项1. 画出受力图:在解决力学平衡问题时,一定要根据题目要求画出正确的受力图。
这样才能更加清晰地分析受力情况,便于列式求解。
2. 选择合适的坐标系:当我们采用力矩平衡条件进行求解时,需要选择合适的坐标系。
通常情况下,我们会选择某个固定点或某个受力点作为坐标系原点。
选择合适的坐标系可以简化计算,提高求解效率。
3. 仔细分析题目:在解决力学平衡问题时,需要仔细分析题目中给出的条件,根据这些条件选择正确的解题方法。
此外,要注意题目的难易程度以及所需要的知识点,有针对性地备考。
高考力学平衡问题的解题方法
高考力学平衡问题的解题方法
高考力学平衡问题是力学知识的重点和难点之一,解题方法也是备考关键。
以下是一
些解题方法的建议。
1.画出力的示意图
平衡问题是一个力的平衡,因此必须明确物体上的每个力的方向和大小。
在解题时,
画出物体上各个力的示意图,并用箭头表示各个力的方向和大小。
通过这种方式,可以清
楚地了解各个力之间的作用关系。
2.应用牛顿第一定律
平衡问题中,物体处于静止状态或匀速直线运动,因此可以应用牛顿第一定律,即物
体静止或匀速直线运动的条件是合力为零。
这样,即可列出各个力的合力方程,通过求解
可以得到未知量。
4.解题思路
解题时,应先确定物体所受的力和方向,然后再应用物体在平衡状态下的条件解题。
在确定各个力及其方向后,应根据题目的要求选择适当的物理量解题。
5.应用平衡条件
平衡条件是物体在平衡状态下所满足的条件,主要有三个方面:合力为零、力矩为零、重心在支撑物上。
应根据题目要求选择合适的平衡条件解题。
6.解题技巧
解题时要有耐心,按照一定的思路和步骤去做,不要急于求解。
同样重要的是要注意
单位的转换和计算的精度,以及注意各个物理量之间的关系。
高考力学平衡问题的解题方法需要灵活掌握,并且要善于理解题目,运用合适的解题
方法。
只有不断练习和总结,才能在高考中应对各种难度的平衡问题。
高考力学平衡问题的解题方法
高考力学平衡问题的解题方法力学平衡问题是高考物理中的重要内容,几乎每年都会涉及到。
解决力学平衡问题主要有两种方法:合力法和力矩法。
第一种方法是合力法。
合力法是通过合成所有力的作用得到合力,再判断合力是否为零来判断物体是否处于平衡状态。
这种方法适用于力的作用方向比较简单,力的大小也知道的情况。
将所有作用在物体上的力画出来,依次命名为F1、F2...Fn。
然后,将这些力按照作用方向用箭头表示出来,然后将这些力按照大小相加。
如果合力为零,说明物体处于平衡状态,如果合力不为零,说明物体不处于平衡状态。
有一个物体受到F1=10N的力向左,F2=20N的力向右,F3=15N的力向上,F4=30N的力向下的作用。
我们可以将这些力用如图1所示表示出来。
然后,按照方向将这些力相加,10N向左的力和20N向右的力相互抵消,15N向上的力和30N向下的力相互抵消,最终得到的合力为零。
说明物体处于平衡状态。
另一种方法是力矩法。
力矩法是通过判断物体在平衡状态下力矩是否为零来判断物体是否处于平衡状态。
力矩是指力对物体产生的旋转效果,是力与力臂的乘积。
将所有作用在物体上的力画出来,同样按照方向用箭头表示出来。
然后,根据力的大小和方向,求出每个力对应的力臂长度,并将其表示出来。
力臂是力线垂直于物体的距离。
然后,计算每个力对应的力矩。
力矩的计算公式是力矩=力的大小*力臂的长度。
根据右手定则,力矩的方向可以确定。
将所有的力矩相加,如果合力矩为零,说明物体处于平衡状态,如果合力矩不为零,说明物体不处于平衡状态。
需要注意的是,力和力臂的单位要一致。
解决高考力学平衡问题主要有两种方法:合力法和力矩法。
根据具体情况选择合适的方法解题即可。
高三物理求解平衡问题的九种方法
求解平衡问题的九种方法一、力的合成法物体在三个共点力的作用下处于平衡状态,如此任意两个力的合力一定与第三个力大小相等,方向相反;“力的合成法〞是解决三力平衡问题的根本方法.例1如图1甲所示,重物的质量为m ,轻细绳AO 与BO 的A 端、B 端固定,平衡时AO 水平,B0与水平面的夹角为θ,AO 拉力1F 和BO 拉力2F 的大小是 () A 、1F mg = B.1cot F mg θ= C.2sin F mg θ= D.2sin mgF θ=解析 根据三力平衡特点,任意两个力的合力与第三个力等大反向,可作出图1所示矢量图,由三角形知识可得1cot F mg θ=,2sin mgF θ=.所以正确选项为BD二、正交分解法物体受到三个或三个以上力的作用时,常用正交分解法列平衡方程求解:0x F =合,0y F =合.为方便计算,建立坐标系时以尽可能多的力落在坐标轴上为原如此.例2 如图2甲所示,不计滑轮摩擦,A B 、两物体均处于静止状态.现加一水平力F 作用在B 上使B 缓慢右移,试分析B 所受力F 的变化情况.解析 对物体B 受力分析如图2所示,建立如图直角坐标系,在x 轴上有cos 0f A x F F F F θ=--=合①在y 轴上有sin 0N A B y F F F G θ=+-=合②又f N F F μ=③联立①②③得(cos sin )A B F F G θμθμ=-+. 可见,随着θ不断减小,水平力F 将不断增大. 三、整体法与隔离法整体法是把两个或两个以上物体组成的系统作为一个整体来研究的分析方法;当只涉与研究系统而不涉与系统内部某些物体的受力和运动时,一般可采用整体法.隔离法是将所确定的研究对象从周围物体(连接体)系统中隔离出来进展分析的方法,其目的是便于进一步对该物体进展受力分析,得出与之关联的力.为了研究系统(连接体)内某个物体的受力和运动情况时,通常可采用隔离法.一般情况下,整体法和隔离法是结合在一起使用的.例3有一直角支架AOB ,AO 水平放置,外表粗糙,OB 竖直向下,外表光滑,AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略,不何伸长的细绳相连,并在某一位置平衡,如下列图,现将P 环向左移一小段距离,两环再将达到平衡,那么将移动后的平衡状态和原来的平衡状态比拟,AO 杆对P 环的支持力N F 和细绳拉力T F 的变化情况是:〔 〕 A 、N F 不变、T F 变大 B 、N F 不变、T F 变小 C 、N F 变大、T F 变大D 、N F 变大、T F 变小解析采取先“整体〞后“隔离〞的方法.以P 、Q 、绳为整体研究对象,受重力、AO 给的向上弹力、OB 给的水平向左弹力.由整体处于平衡状态知AO 给P 向右静摩擦力与OB 给的水平向左弹力大小相等;AO 给的竖直向上弹力与整体重力大小相等.当P 环左移一段距离后,整体重力不变,AO 给的竖直向上弹力也不变.再以Q 环为隔离研究对象,受力如图3乙所示,Q 环所受重力G 、OB 给Q 弹力F 、绳的拉力T F 处于平衡,P 环向左移动一小段距离的同时T F 移至'T F 位置,仍能平衡,即T F 竖直分量与G 大小相等,T F 应变小,所以正确答案为B 选项. 四、三角形法对受三力作用而平衡的物体,将力矢量图平移使三力组成一个首尾依次相接的封闭力三角形,进而处理物体平衡问题的方法叫三角形法;力三角形法在处理动态平衡问题时方便、直观,容易判断.如图4甲,细绳AO 、BO 等长且共同悬一物,A 点固定不动,在手持B 点沿圆弧向C 点缓慢移动过程中,绳BO 的张力将 () A 、不断变大 B 、不断变小 C 、先变大再变小 D 、先变小再变大解析 选0点为研究对象,受F 、A F 、B F 三力作用而平衡,此三力构成一封闭的动态三角形如图4乙.容易看出,当B F 与A F 垂直即090αβ+=时,B F 取最小值,所以D 选项正确. 五、相似三角形法物体受到三个共点力的作用而处于平衡状态,画出其中任意两个力的合力与第三个力等值反向的平行四边形中,可能有力三角形与题设图申的几何三角形相似,进而力三角形与几何三角形对应成比例,根据比值便河计算出末知力的大小与方向.例5 固定在水平面上的光滑半球半径为R ,球心0的正上方C 处固定一个小定滑轮,细线一端拴一小球置于半球面上A 点,另一端绕过定滑轮,如图5所示,现将小球缓慢地从A 点拉向B 点,如此此过程中小球对半球的压力大小N F 、细线的拉力大小T F 的变化情况是 ()A 、N F 不变、T F 不变 B.N F 不变、T F 变大 C ,N F 不变、T F 变小 D.N F 变大、T F 变小解析 小球受力如图5乙所示,根据平衡条件知,小球所受支持力'N F 和细线拉力T F 的合力F 跟重力是一对平衡力,即F G =.根据几何关系知,力三角形'N FAF 与几何三角形COA 相似.设滑轮到半球顶点B 的距离为h,线长AC 为L ,如此有'N T F F G RR hL==+,由于小球从A 点移向B 点的过程中,G R h 、、均不变,L 减小,故'N F 大小不变,T F 减小.所以正确答案为C 选项.六、正弦定理法正弦定理:在同一个三角形中,三角形的边长与所对角的正弦比值相等;在图6中有sin sin sin AB BC CAC A B ==同样,在力的三角形中也满足上述关系,即力的大小与所对角的正弦比值相等.例6 不可伸长的轻细绳AO 、BO 的结点为0,在0点悬吊电灯L ,OA 绳处于水平,电灯L 静止,如图图7甲所示,保持0点位置不变,改变OA 的长度使A 点逐渐上升至C 点,在此过程中绳OA 的拉力大小如何变化?解析 取0点为研究对象,0点受灯的拉力F(大小等于电灯重力G)、OA 绳的拉力1T 、OB 绳的拉力2T ,如图7乙所示.因为三力平衡,所以1T 、2T 的合力'G 与G 等大反向.由正弦定理得1sin sin T G θα=,即1sin sin G T θα=,由图知θ不变,α由小变大, α增大到090后再减小,所以据1T 式知1T 先变小后变大,当090α=时,1T 有最小值. 七,拉密原理法拉密原理:如果在三个共点力作用下物体处于平衡状态,那么各力的大小分别与另外两个力所夹角的正弦成正比.在图8所示情况下,原理表达式为312123sin sin sin F F F θθθ==例7 如图9甲所示装置,两根细绳拉住一个小球,保持两绳之间夹角θ不变;假设把整个装置顺时针缓慢转动090,如此在转动过程中,CA 绳拉力1T F 大小的变化情况是,CB 绳拉力2T F 大小的变化情况是 .解析 在整个装置缓慢转动的过程中,可以认为小球在每一位置都是平衡的.小球受到三个力的作用,如图9乙所示,根据拉密原理有12sin sin sin T T F F G βαθ==,由于θ不变,α由090逐渐变为0180,sin α会逐渐变小直到为零,所以2T F 逐渐变小直到为零;由于β由钝角变为锐角,sin β先变大后变小,所以1T F 先变大后变小. 八、对称法研究对象所受力假设具有对称性,如此求解时可把较复杂的运算转化为较简单的运算,或者将复杂的图形转化为直观而简单的图形.所以在分析问题时,首先应明确物体受力是否具有对称性.例8 如图10甲所示,重为G 的均匀链条挂在等高的两钩上,链条悬挂处与水平方向成θ角,试求;(1)链条两端的张力大小. (2)链条最低处的张力大小.解析 (1)在求链条两端的张力时,可把链条当做一个质点处理.两边受力具有对称性使两端点的张力F 大小相等,受力分析如图10乙所示.取链条整体为质点研究对象.由平衡条件得竖直方向2Fsin =G θ,所以端点张力为GF=2sin θ(2)在求链条最低点张力时,可将链条一分为二,取一半研究,受力分析如图10丙所示,由平衡条件得水平方向所受力为'cos cos cot 2sin 2G G F F θθθθ===即为所求.九、力矩平衡法力矩平衡:物体在力矩作用下处于静止或匀速转动状态时,所受力矩达到平衡·力矩平衡条件:一般规定逆时针方向的力矩为正设为1M ,顺时针方向的力矩为负设为2M ,如此力矩平衡条件为120M M +=.例9 如图1l,AC 为竖直墙面,AB 为均匀横梁其重力为G ,处于水平位置;BC 为支撑横梁的轻杆,它与竖直方向的夹角为α,A B C 、、三处均用铰链连接,如此轻杆BC 所承受的力为多大?解析 以轻杆BC 为研究对象,由三力汇交原理可知,横梁AB 对它的作用力一定沿着轻杆BC.再以横梁AB 为研究对象,受力分析如图11所示,由力矩平衡可得cos 2AB GN AB α=,所以有2cos G N α=由牛顿第三定律可得,轻杆BC 所承受的力为'2cos G N N α==。
高考力学平衡问题的解题方法9篇
高考力学平衡问题的解题方法9篇第1篇示例:高考力学平衡问题是高考物理中的一个重要知识点,也是考生们备战高考物理的重点内容之一。
在解题过程中,许多考生常常会遇到困难和疑惑。
本文将从基本概念入手,系统地介绍高考力学平衡问题的解题方法,帮助考生更好地掌握该知识点。
要解决高考力学平衡问题,就要对平衡的概念有一个清晰的认识。
在物理学中,平衡指的是物体在受到外力作用后,其加速度为零,即物体处于静止状态或匀速直线运动状态。
平衡分为静力平衡和动力平衡。
静力平衡指物体受到多个力的作用后,力的合成为零;动力平衡指物体在匀速直线运动时,受到的合外力为零。
在解题过程中要根据具体情况进行分析,选择合适的平衡条件。
解决高考力学平衡问题还需要掌握一些解题技巧。
首先要善于画图,通过图示清晰地表达问题,有助于理清思路。
其次要合理选择坐标系和参照系,简化问题、减小计算难度。
再次要善于拆分分析,将复杂问题分解成若干小问题,逐个解决,最后再将结果合成整体答案。
最后要注重实际问题的分析和应用,加强思维能力和解题能力。
解决高考力学平衡问题需要多加练习,不断总结和提高。
通过大量真题练习,熟悉题目的出题规律和考点,拓宽解题思路和方法。
同时有针对性地进行专项训练,提高解决特定类型问题的能力。
并且要不断总结和反思解题过程中的不足,加以改进,逐步提高解题水平。
在高考力学平衡问题的解题过程中,要善用平衡条件,运用解题技巧,多进行练习,并不断总结提高。
只有通过不懈的努力,才能够在高考物理中取得优异的成绩。
希望本文的介绍和方法对高考物理备考的考生们有所帮助,祝愿大家都能够取得理想的成绩,实现自己的高考梦想。
第2篇示例:高考力学平衡问题是高中物理中的重要内容,也是考生们备战高考物理的重点。
在解题过程中,许多学生常常感到困惑和不知所措。
本文将为大家介绍一种解题方法,希望能对大家有所帮助。
我们需要了解什么是力学平衡问题。
力学平衡是指物体在受力作用下保持静止或匀速直线运动的状态。
高考力学平衡问题的解题方法
高考力学平衡问题的解题方法力学平衡是高考中力学的基础知识,也是相对简单的考点之一,但仍然有一定的难度和技巧。
下面介绍几种解题方法:1、图像法解题图像法是最直观的方法之一,可以根据题目所给图形,画出受力图或自由体图(简称“FBD”)。
图中必须画出物体所受的所有受力以及定义正方向(x、y轴)。
例如,在平面上一个质量为$m$的物体在水平方向上受到一力$F$,在竖直方向上受到反向的弹力$N$,此时如何求物体所受的加速度$a$?首先根据“受力平衡”的原理,发现物体的重力$mg$和竖直方向上的弹力$N$互相抵消,因此物体有加速度的唯一原因是水平方向上的力$F$。
根据勾股定理,可知:$F = ma$2、分力法解题分力法是把力按各个方向分解,随后利用矢量分量求和,得到总力的方法。
假设物体所受的总力$F_{total}$,通过分解力$F_{x}$和$F_{y}$,得到$F_{total}=\sqrt{F_{x}^{2}+F_{y}^{2}}$。
例如,一个平衡杆上有两个重物,杆的长度为$L$,重物质量分别为$m_{1}$和$m_{2}$。
针对平衡杆求解维持平衡时各个物体所在相对位置的问题,我们可以首先利用分力法,求出重物之间的距离$d$。
通过相似三角形可以得到,$\frac{d}{L}=\frac{m_{1}}{m_{2}}$。
因此可知,$d=\frac{Lm_{1}}{m_{1}+m_{2}}$。
3、条件式解题利用平衡问题中的条件式(或等式),探讨哪些参数起作用,考虑如果参数更改哪些元素会更改。
例如,一个质量为$m$的物体放在倾斜角度为$\theta$ 的斜面上,存在质量相同的摩擦力$f$。
求在斜面上物体的加速度$a$?通过受力分析,可以得到受力合力$F_{gx}=mg\sin\theta$,平衡力$F_{nx}=mg\cos\theta$,以及摩擦力$f$。
因为要求加速度$a$,所以需要知道水平方向上的合力$F_{x}$。
高考力学平衡问题的解题方法
高考力学平衡问题的解题方法高考力学平衡问题是力学中的一个重要内容,也是高考物理试题中常见的考点。
力学平衡问题涉及力的平衡、力的分解、力的合成、杠杆原理等内容。
下面,我们将针对高考力学平衡问题的解题方法进行详细介绍,希望能帮助大家更好地掌握这一知识点。
1. 力的平衡力的平衡是指物体在受到多个力的作用时,物体整体处于静止状态或匀速直线运动的状态。
在力的平衡问题中,我们需要通过受力分析来确定物体所受的各个力,然后利用力的平衡条件进行计算。
力的平衡条件是:合力为零,合力矩为零。
在力的平衡问题中,我们通常采用受力分析法和力的平衡条件一起进行求解。
2. 受力分析法受力分析法是解决力学平衡问题的关键步骤之一。
通过受力分析,我们可以清晰地了解物体所受的各个力,包括重力、支持力、摩擦力等。
在进行受力分析时,需要注意以下几点:(1)明确物体所受的力:首先要明确物体所受的各个力,包括外力和内力。
外力主要包括重力、支持力、摩擦力等;内力主要包括弹力、拉力等。
在力的平衡问题中,通常只考虑外力的作用。
(2)确定坐标系:确定一个适当的坐标系,通常选择与力的方向垂直的坐标轴。
在平衡问题中,常常需要考虑力的水平方向和垂直方向的分量,因此需要选取合适的坐标系。
(3)受力图的画法:在受力分析时,可以画出物体所受的各个力的受力图,清晰地表示出各个力的方向和大小。
这有助于我们更好地理解问题,并进行后续的计算。
4. 力的分解与合成在解决力学平衡问题时,我们常常需要对力进行分解和合成。
力的分解是将一个力分解为若干个分力的重要方法,力的合成是将若干个力合成为一个合力的重要方法。
通过分解和合成,我们可以更好地解决问题,求解所需的未知力或未知物体的受力情况。
5. 杠杆原理杠杆原理是力学平衡问题中常用的解题方法。
在杠杆原理中,我们需要利用力的力矩等式来解决平衡问题。
力的力矩等式表示:力的力矩的和等于零。
在应用杠杆原理解题时,我们需要根据物体所受的各个力和力臂的关系,建立方程组进行求解,找到物体的平衡位置和受力情况。
高考力学平衡问题的解题方法
高考力学平衡问题的解题方法高考力学平衡问题一直以来都是考生们比较头疼的一道题型,因为它涉及到力的平衡、物体的静力学等知识点。
在解这类问题时,考生需要掌握一定的方法和技巧,才能更好地解答题目。
下面我们就来谈谈关于高考力学平衡问题的解题方法。
解高考力学平衡问题需要理解力的平衡概念。
力的平衡是指物体上的合外力为零,即物体保持静止或匀速直线运动的状态。
在解题时,我们需要根据力的平衡条件建立方程,然后求解未知量。
掌握好力的平衡概念对于解题至关重要。
解题时需要分析力的作用点和作用线。
力的作用点是指力的作用位置,而力的作用线则是指力的作用线路。
在解题时,我们需要根据力的作用点和作用线来确定合外力的方向和大小,从而建立方程求解未知量。
解题时需要注意物体的平衡条件。
物体只有在合外力为零的情况下才能保持平衡。
在解题时,我们需要根据物体的平衡条件来建立方程,从而解题。
解题时要学会化繁为简。
在解高考力学平衡问题时,有些题目可能比较复杂,但我们可以通过化繁为简的方法来解题。
可以将物体的合外力分解成水平方向和垂直方向的分力,然后分别分析每个方向上的平衡条件,最后求解未知量。
这样可以简化题目,并且更容易理解和解答。
解题时要善用公式和定理。
在解高考力学平衡问题时,我们可以善用公式和定理来辅助解题。
根据牛顿第二定律可以得到合外力的方程,根据力矩的概念可以得到力矩平衡条件的方程等。
通过善用公式和定理,我们可以更快地解题,并且提高解题的准确性。
解高考力学平衡问题需要掌握力的平衡概念、分析力的作用点和作用线、注意物体的平衡条件、化繁为简、注意力矩的概念和善用公式和定理等方法和技巧。
只有掌握了这些方法和技巧,我们才能更好地解答高考力学平衡问题。
希望以上方法和技巧对大家在高考中解答力学平衡问题有所帮助。
高中物理物体平衡的解法
高中物理物体平衡的解法平衡状态:物体保持匀速直线运动或静止的状态,是加速度等于零的状态。
共点力作用下物体的平衡条件:物体所受的合外力为零,即∑F=0或∑=0,∑=0平衡条件的推论:1、物体在多个共点力作用下处于平衡状态,则其中的一个力与其余的力的合力等大反向。
2、物体在同一平面内的三个不平行的力作用下,处于平衡状态,这三个力必为共点力。
或作用线的延长线或反向延长线必交于同一点。
3、物体在三个共点力作用下处于平衡状态时,这三个力的有向线段必构成闭合三角形。
一、合成法或分解法例1、如图所示,将一根不能伸长的柔软轻绳的两端分别系于A、B两点上,用动滑轮将一物体悬挂在绳子上,当物体达到平衡时,两段绳子间的夹角为,绳子张力为F1;将绳子B端移至C点,待整个系统达到平衡时,两段绳子间的夹角为,绳子张力为F2;将绳子B端移至D点,待整个系统达到平衡时,两段绳子间的夹角为,绳子张力为F3。
已知A、C、D三点在同一水平直线上,不计绳与滑轮间的摩擦,则()A、==B、=<C、F1 = F2 = F3D、F1 = F2< F3解析:设绳的总长为L,A、C的间距为d,A、D的间距为,A、O的间距为L 1,则:在B点时,,所以;同理,当在C点时有,在D点有。
从图中可以看出>d,所以有=<;又因是动滑轮,绳子张力处处相等,合力一定时两绳的夹角越大,张力也越大,所以F1 = F2< F3综上所述,选项B、D正确总结:(1)当物体只受三个力作用而处于平衡时,此三力必共面共点,将其中的任意两个力合成,合力必定与第三个力大小相等,方向相反;将其中某一个力(一般为已知力)沿另外两个力的反方向进行分解,两个分力的大小与另两个力的大小相等。
在利用力的平行四边形定则解答物体的平衡问题时,若所作平行四边形中包含有直角三角形,一般用三角函数知识求解,也可用正弦定理和余弦定理求解(高考不作要求);若平行四边形为菱形,可作另一条对角线为辅助线,由于菱形的两条对角线相互垂直平分,可将菱形转化为一般直角三角形;若观察分析发现所作力的三角形与几何三角形相似,则可利用“相似三角形对应边成比例”的性质求解。
高考力学平衡问题的解题方法
高考力学平衡问题的解题方法高考力学平衡问题是物理学中常见的问题之一,在考试中常常会出现。
平衡问题是指物体处于不动或匀速直线运动的状态。
在平衡问题中,我们需要考虑平衡力、受力分析、平衡条件等多个方面。
下面将介绍高考力学平衡问题的解题方法。
受力分析首先,在解决平衡问题时,我们需要进行受力分析。
受力分析是指对物体所受的各种力进行全面分析,从而找出物体的平衡状态。
受力分析包括摆图法和自由体图法。
摆图法是指将物体画为简化的示意图,并在图中标出力的方向,将所有力综合画在一起,并确定其方向和作用点。
在摆图法中,我们一般需要进行三个步骤:1. 画出物体示意图2. 将作用在物体上的各个力画在图中3. 进行力的合成,并确定合力的作用点和方向自由体图法是指将物体从整体中隔离出来,而将所有与其相邻的物体和连接器官都抽象成力,从而分析物体所受到的所有受力。
自由体图法也包括三个步骤:2. 在示意图上画出自由体图,并标出相互作用的力3. 进行力的求和,并根据平衡条件来判断受力的情况力的平衡条件力的平衡条件是指物体受到的各个力所产生的合力为零,从而保证物体处于平衡状态。
力的平衡条件包括以下几个方面:1. 作用于物体的力合成为零3. 物体受到的所有力的矢量和为零4. 在相互作用力作用的平面内,各个力的和为零以上平衡条件适用于平面内物体的平衡状态。
对于三维空间的平衡问题,我们还需要考虑轴心定理和力矩平衡条件。
轴心定理是指对于物体在平衡状态下,对任意一个轴心,沿该轴心的力矩之和为零。
轴心定理适用于圆柱体、球体等对称物体的平衡问题。
力矩平衡条件是指物体所受到的合力的力矩等于零,即力矩的综合为零。
力矩平衡条件适用于因受力点的位置而导致的平衡问题。
解题技巧在解决平衡问题时,我们需要掌握一些解题技巧:1. 画图清晰明了2. 全面认真地分析物体所受的各个力3. 应用平衡条件得出未知量4. 确保答案的正确性5. 要对结论进行合理的解释总之,在高考力学平衡问题中,我们需要全面分析受力情况,并应用相应的平衡条件来求解未知量,从而得出正确的答案。
高中物理力的平衡问题解题技巧
高中物理力的平衡问题解题技巧在高中物理学习中,力的平衡问题是一个非常重要的考点。
解决力的平衡问题需要掌握一些技巧和方法,下面将以具体题目为例,详细介绍解题的思路和方法。
题目:一个物体在水平桌面上,受到一个斜向上的力F1和一个斜向下的力F2作用,如何确定物体是否处于平衡状态?解题思路:1. 分解力F1和F2:首先,我们需要将斜向上的力F1和斜向下的力F2分解成水平方向和垂直方向的分力。
假设物体的质量为m,斜向上的力F1与水平方向的夹角为θ1,斜向下的力F2与水平方向的夹角为θ2。
则F1在水平方向上的分力为F1x = F1*cosθ1,F1在垂直方向上的分力为F1y = F1*sinθ1;F2在水平方向上的分力为F2x = F2*cosθ2,F2在垂直方向上的分力为F2y = F2*sinθ2。
2. 求出水平方向和垂直方向上的合力:将物体处于平衡状态时,水平方向上的合力为零,即F1x + F2x = 0;垂直方向上的合力也为零,即F1y + F2y = 0。
3. 求解未知量:根据上述两个方程,我们可以求解出未知量。
例如,如果题目给出了F1和F2的数值以及它们与水平方向的夹角,我们可以通过解方程组来求解出F1x、F1y、F2x和F2y的数值。
4. 判断平衡状态:最后,我们需要判断物体是否处于平衡状态。
如果F1x +F2x = 0且F1y + F2y = 0,那么物体就处于平衡状态。
如果不满足这两个条件,则物体不处于平衡状态。
通过以上的解题思路,我们可以解决这类力的平衡问题。
下面以一个具体的例子来说明。
例题:一个质量为2kg的物体在水平桌面上,受到一个斜向上的力F1 = 10N和一个斜向下的力F2 = 8N作用,F1与水平方向的夹角为30°,F2与水平方向的夹角为45°。
判断物体是否处于平衡状态。
解答:1. 分解力F1和F2:F1在水平方向上的分力为F1x = 10*cos30° ≈ 8.66N,F1在垂直方向上的分力为F1y = 10*sin30° ≈ 5N;F2在水平方向上的分力为F2x =8*cos45° ≈ 5.66N,F2在垂直方向上的分力为F2y = 8*sin45° ≈ 5.66N。
高中物理常见题型解法归纳:力的平衡问题求解的方法
高中物理常见题型解法归纳:力的平衡问题求解的方法物理中力的平衡问题是高中物理中常见的题型之一。
正确解决这类问题需要掌握一些基本的求解方法。
本文将归纳总结力的平衡问题的求解方法。
单个物体力的平衡问题在解决单个物体力的平衡问题时,可以使用以下方法:1. 分解力法:将已知的力按照水平和垂直方向分解,通过对沿着一条直线的合力和沿垂直方向的合力进行分析,求解未知力的大小和方向。
分解力法:将已知的力按照水平和垂直方向分解,通过对沿着一条直线的合力和沿垂直方向的合力进行分析,求解未知力的大小和方向。
2. 受力分析法:将物体受到的所有力进行分析,并应用牛顿第二定律,即力的合力等于质量乘以加速度,来求解未知力。
受力分析法:将物体受到的所有力进行分析,并应用牛顿第二定律,即力的合力等于质量乘以加速度,来求解未知力。
多个物体力的平衡问题在解决多个物体力的平衡问题时,可以使用以下方法:1. 受力分析法:首先进行各个物体的受力分析,然后利用牛顿第二定律和力的平衡条件,即各个物体力的合力为零来求解未知力。
受力分析法:首先进行各个物体的受力分析,然后利用牛顿第二定律和力的平衡条件,即各个物体力的合力为零来求解未知力。
2. 力杆平衡法:根据力杆平衡条件,即力的合力和力的合力矩均为零,来求解未知力。
力杆平衡法:根据力杆平衡条件,即力的合力和力的合力矩均为零,来求解未知力。
3. 平行四边形法则:对于平行四边形稳定的情况,可以利用平行四边形法则,即力的平行四边形法则,来求解未知力。
平行四边形法则:对于平行四边形稳定的情况,可以利用平行四边形法则,即力的平行四边形法则,来求解未知力。
以上是高中物理中常见的力的平衡问题求解方法,通过掌握这些方法,我们可以更好地解决各种力的平衡问题。
物体平衡的几种常见解法经典
物体的平衡典型例题选讲1、 二力平衡:处于二力平衡的物体所受的两个力大小相等,方向相反,力的作用线在同一直线上。
2、 三力平衡:A 、三力平衡时,任意两个力的合力F 都与第三个力等大反向,作用在同一直线上;B 、三力平衡时,这三个力必在同一平面上,且三个力的作用线或作用线的延长线必交于一点;C 、三力平衡时,表示三个力的矢量恰好构成一个首尾相连的闭合三角形。
3、三力交汇原理:一个物体如果受三个力作用而平衡,若其中两个力交于一点,则第三个力也必过这一点。
4、多力平衡:任意一个力与其余各力的合力等值反向;这些力的矢量可构成一个首尾相连的闭合多边形。
5、物体平衡的条件:物体所受的合力为0,即F 合 = 0 ,如果物体在*一方向上处于平衡状态,则该方向上的合力为0。
力的平衡常用方法: 一、力的合成法:1、如图1甲所示,重物的质量为m ,轻细绳AO 与BO 的A 端、B 端固定,平衡时AO 水平,B0与水平面的夹角为θ,AO 拉力1F 和BO 拉力2F 的大小是 ()A 、1F mg = B.1cot F mg θ= C.2sin F mg θ= D.2sin mg F θ=二、正交分解法:1、如图,两竖直固定杆间相距4m ,轻绳系于两杆上的A 、B 两点,A 、B 间的绳长为5m .重G =80N 的物体p 用重力不计的光滑挂钩挂在绳上而静止,求绳中拉力T .2、如图所示,小球质量为m ,两根轻绳BO 、CO 系好后,将绳固定在竖直墙上,在小球上加一个与水平方向夹角为的力F ,使小球平衡时,两绳均伸直且夹角为,则力F 的大小应满足什么条件? 三、相似三角形法:1、如图7,半径为R 的光滑半球的正上方,离球面顶端距离为h 的O 点,用一根长为L 的细线悬挂质量为m 的小球,小球靠在半球面上.试求小球对球面压力的大小.2、一轻杆BO ,其O 端用光滑铰链铰于固定竖直杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图6所示.现将细绳缓慢往左拉,使杆BO 与杆AO 间的夹角θ逐渐减小,则在此过程中,拉力F 及杆BO 所受压力FN 的大小变化情况是( )PA BOabA .FN 先减小,后增大B .FN 始终不变C .F 先减小,后增大D .F 逐渐不变 四、矢量三角形法:1、如图1所示,光滑半球形容器固定在水平面上,O 为球心,一质量为m 的小滑块,在水平力F 的作用下静止于P 点。
盘点高考一轮复习物理平衡问题三种矢量解法
盘点高考一轮复习物理平衡问题三种矢量解法物理力学的解法重要的确实是矢量法。
以下是物理平稳问题三种矢量解法,期望对考生有关心。
1.合成法
所谓合成法,是依照力的平行四边形定则,先把研究对象所受的某两个力合成,然后依照平稳条件分析求解.合成法是解决共点力平稳问题的常用方法,此方法简捷明了,专门直观.
2.分解法
所谓分解法,是依照力的作用成效,把研究对象所受的某一个力分解成两个分力,然后依照平稳条件分析求解.分解法是解决共点力平稳问题的常用方法.运用此方法要对力的作用成效有着清晰的认识,按照力的实际成效进行分解.
3.正交分解法
正交分解法,是把力沿两个相互垂直的坐标轴(x轴和y轴)进行分解,再在这两个坐标轴上求合力的方法.由物体的平稳条件可知,Fx = 0,Fy= 0.
(1)正交分解法是解决共点力平稳问题的常用方法,专门是当物体受力较多且不在同一直线上时,应用该法能够起到事半功倍的成效.
(2)正交分解法是一种纯粹的物理方法,建立坐标轴时能够不考虑力的实际作用成效.这也是此法与分解法的不同.分解的最终目的是为了合成(求某一方向的合力或总的合力).
(3)坐标系的建立技巧.应当本着需要分解的力尽量少的原则来建立坐
标系,比如斜面上的平稳问题,一样沿平行斜面和垂直斜面建立直角坐标系,如此斜面的支持力和摩擦力就落在坐标轴上,只需分解重力即可.因此,具体问题要具体分析,坐标系的选取不是一成不变的,要依据题目的具体情形和设问灵活选取.
物理平稳问题三种矢量解法的内容确实是这些,查字典物理网预祝考生能够考上理想的大学。
2021年高考第一轮复习备考专题差不多新奇出炉了,专题包含高考各科第一轮复习要点、复习方法、复习打算、复习试题,大伙儿来一起看看吧~。
2021年高三物理物体平衡问题的求解方法
物体平衡问题的求解方法物体处于静止或匀速运动状态;称之为平衡状态。
平衡状态下的物体是是物理中重要的模型;解平衡问题的基础是对物体进行受力分析。
物体的平衡在物理学中有着广泛的应用;在高考中;直接出现或间接出现的概率非常大。
本文结合近年来的高考试题探讨物体平衡问题的求解策略。
1.整体法和隔离法对于连接体的平衡问题;在不涉及物体间相互作用的内力时;应道德考虑整体法;其次再考虑隔离法。
有时一道题目的求解要整体法、隔离法交叉运用。
[例1] 有一个直角支架AOB ;AO 水平放置;表面粗糙;OB 竖直向下;表面光滑;AO 上套有小环P ;OB 上套有小环P ;两环质量均为m ;两环间由一根质量可忽略、不可伸长的细绳相连;并在某一位置平衡;如图1。
现将P 环向左移一小段距离;两环再次达到平衡;那么将移动后的平衡状态和原来的平衡状态比较;AO杆对P 环的支持力N 和细绳上的拉力T 的变化情况是( )A .N 不变;T 变大B .N 不变;T 变小C .N 变大;T 变大D .N 变大;T 变小解析 用整体法分析;支持力mg N 2=不变。
再隔离Q 环;设PQ 与OB 夹角为θ;则不mg T =θcos ;θ角变小;cos θ变大;从上式看出T 将变小。
故本题正确选项为B 。
2.正交分解法物体受到3个或3个以上的力作用时;常用正交分解法列平衡方程;形式为0=合x F ;0=合y F 。
为简化解题步骤;坐标系的建立应达到尽量少分解力的要求。
[例2] 如图2所示;重物的质量为m ;轻细绳AO 与BO 的A 端、B 端是固定的;平衡时AO 是水平的;BO 与水平面夹角为θ;AO 的拉力F 1和BO 的拉力F 2的大小是( )A .θcos 1mg F =B .θcot 1mg F =C .θsin 2mg F =D .θsin /2mg F =解析 选O 点为研究对象;O 点受3个力的作用。
沿水平方向和竖直方向建立xOy 坐标系;如图3所示。
处理平衡问题的八种方法(学生用)
处理平衡问题的八种方法一、合成、分解法利用力的合成与分解解决三力平衡的问题。
具体求解时有两种思路:一是将某力沿另两个力的反方向进行分解,将三力转化为四力,构成两对平衡力;二是某二力进行合成,将三力转化为二力,构成一对平衡力。
[典例1] 如图所示,石拱桥的正中央有一质量为 m 的对称楔形石块,侧面与竖直方向的夹角为 α,重力加速度为 g 。
若接触面间的摩擦力忽略不计,则石块侧面所受弹力的大小为A.mg 2sin αB.mg 2cos αC.12mg tan α D.12mg cot α 二、正交分解法物体受到三个或三个以上力的作用时,常用正交分解法列平衡方程求解:F x 合=0,F y 合=0。
为方便计算,建立坐标系时以使尽可能多的力落在坐标轴上为原则。
[典例2] 如图2所示,用与水平成θ角的推力F 作用在物块上,随着θ逐渐减小直到水平的过程中,物块始终沿水平面做匀速直线运动。
关于物块受到的外力,下列判断正确的是A .推力F 先增大后减小B .推力F 一直减小C .物块受到的摩擦力先减小后增大D .物块受到的摩擦力一直不变三、整体法和隔离法选择研究对象是解决物理问题的首要环节。
若一个系统中涉及两个或者两个以上物体的平衡问题,在选取研究对象时,要灵活运用整体法和隔离法。
对于多物体问题,如果不求物体间的相互作用力,我们优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;很多情况下,通常采用整体法和隔离法相结合的方法。
[典例3] 在机械设计中常用到下面的力学原理,如图3所示,只要使连杆AB 与滑块m 所在平面间的夹角θ大于某个值,那么,无论连杆AB 对滑块施加多大的作用力,都不可能使之滑动,且连杆AB 对滑块施加的作用力越大,滑块就越稳定,工程力学上称为“自锁”现象(设滑块与所在平面间的动摩擦因数为μ),为使滑块能“自锁”应满足的条件是( )A .μ≥tan θB .μ≥cot θC .μ≥sin θD .μ≥cos θ四、图解法在共点力的平衡中,有些题目中常有“缓慢”一词,则物体处于动态平衡状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求解平衡问题的九种方法
一、力的合成法
物体在三个共点力的作用下处于平衡状态,则任意两个力的合力一定与第三个力大小相等,方向相反;“力的合成法”是解决三力平衡问题的基本方法.
例1如图1甲所示,重物的质量为m ,轻细绳AO 与BO 的A 端、B 端固定,平衡时AO 水平,B0与水平面的夹角为θ,AO 拉力1F 和BO 拉力2F 的大小是 ( )
A 、1F mg = B. 1cot F mg θ= C. 2sin F mg θ= D. 2sin mg
F θ
=
解析 根据三力平衡特点,任意两个力的合力与第三个力等大反向,可作出图1所示矢量图,由三角形知识可得
1cot F mg θ=,2sin mg
F θ
=
. 所以正确选项为BD
二、正交分解法
物体受到三个或三个以上力的作用时,常用正交分解法列平衡方程求解:
0x F =合,0y F =合.为方便计算,建立坐标系时以尽可能多的力落在坐标轴上为原则.
例2 如图2甲所示,不计滑轮摩擦,A B 、两物体均处于静止状态.现加一水平力F 作用在B 上使B 缓慢右移,试分析B 所受力F 的变化情况.
解析 对物体B 受力分析如图2所示,建立如图直角坐标系,在x 轴上有
cos 0f A x F F F F θ=--=合 ①
在y 轴上有
sin 0N A B y F F F G θ=+-=合 ②
又f N F F μ=③
联立①②③得(cos sin )A B F F G θμθμ=-+. 可见,随着θ不断减小,水平力F 将不断增大. 三、整体法与隔离法
整体法是把两个或两个以上物体组成的系统作为一个整体来研究的分析方法;当只涉及研究系统而不涉及系统内部某些物体的受力和运动时,一般可采用整体法.
隔离法是将所确定的研究对象从周围物体(连接体)系统中隔离出来进行分析的方法,其目的是便于进一步对该物体进行受力分析,得出与之关联的力.为了研究系统(连接体)内某个物体的受力和运动情况时,通常可采用隔离法.一般情况下,整体法和隔离法是结合在一起使用的.
例3有一直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略,不何伸长的细绳相连,并在某一位置平衡,如图所示,现将P 环向左移一小段距离,两环再将达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N F 和细绳拉力T F 的变化情况是:( )
A 、N F 不变、T F 变大
B 、N F 不变、T F 变小
C 、N F 变大、T F 变大
D 、N F 变大、T F 变小
解析 采取先“整体”后“隔离”的方法.以P 、Q 、绳为整体研究对象,受重力、AO 给的向上弹力、OB 给的水平向左弹力.由整体处于平衡状态知AO 给P 向右静摩擦力与OB 给
的水平向左弹力大小相等;AO 给的竖直向上弹力与整体重力大小相等.当P 环左移一段距离后,整体重力不变,AO 给的竖直向上弹力也不变.再以Q 环为隔离研究对象,受力如图3乙所示,Q 环所受重力G 、OB 给Q 弹力F 、绳的拉力T F 处于平衡,P 环向左移动一小段距离的同时T F 移至'T F 位置,仍能平衡,即T F 竖直分量与G 大小相等,T F 应变小,所以正确答案为B 选项. 四、三角形法
对受三力作用而平衡的物体,将力矢量图平移使三力组成一个首尾依次相接的封闭力三角形,进而处理物体平衡问题的方法叫三角形法;力三角形法在处理动态平衡问题时方便、直观,容易判断.
如图4甲,细绳AO 、BO 等长且共同悬一物,A 点固定不动,在手持B 点沿圆弧向C 点缓慢移动过程中,绳BO 的张力将 ( )
A 、不断变大
B 、不断变小
C 、先变大再变小
D 、先变小再变大
解析 选0点为研究对象,受F 、A F 、B F 三力作用而平衡,此
三力构成一封闭的动态三角形如图4乙.容易看出,当B F 与A F 垂直即0
90αβ+=时,B F 取最小值,所以D 选项正确. 五、相似三角形法
物体受到三个共点力的作用而处于平衡状态,画出其中任意两个力的合力与第三个力等值反向的平行四边形中,可能有力三角形与题设图申的几何三角形相似,进而力三角形与几何三角形对应成比例,根据比值便河计算出末知力的大小与方向.
例5 固定在水平面上的光滑半球半径为R ,球心0的正上方C 处固定一个小定滑轮,细线一端拴一小球置于半球面上A 点,另一端绕过定滑轮,如图5所示,现将小球缓慢地从A 点拉向B 点,则此过程中小球对半球的压力大小N F 、细线的拉力大小T F 的变化情况是 ( )
A 、N F 不变、T F 不变 B. N F 不变、T F 变大
C ,N F 不变、T F 变小 D. N F 变大、T F 变小
解析 小球受力如图5乙所示,根据平衡条件知,小球所受
支持力'
N F 和细线拉力T F 的合力F 跟重力是一对平衡力,即F G =.根据几何关系知,力三角形'N FAF 与几何三角形
COA 相似.设滑轮到半球顶点B 的距离为h,线长AC 为L ,则有
'N T F F G R R h
L
=
=+,由于小球从A 点移向B 点的过程中,
G R h 、、均不变,L 减小,故'N F 大小不变,T F 减小.所以正确答案为C 选项.
六、正弦定理法
正弦定理:在同一个三角形中,三角形的边长与所对角的正弦比值相
等;在图6中有sin sin sin AB BC CA
C A B == 同样,在力的三角形中也满足上述关系,即力的大小与所对角的正弦比值相等.
例6 不可伸长的轻细绳AO 、BO 的结点为0,在0点悬吊电灯L ,OA 绳处于水平,电灯L 静止,如图图7甲所示,保持0点位置不变,改变OA 的长度使A 点逐渐上升至C 点,在此过程中绳OA 的拉力大小如何变化?
解析 取0点为研究对象,0点受灯的拉力F(大小等于电灯重力G)、OA 绳的拉力1T 、OB 绳的拉力2T ,如图7乙所示.因为三力平衡,所以1T 、2T 的合力'G 与
G 等大反向.由正弦定理得
1sin sin T G θ
α
=
,即1sin sin G T θα
=
,
由图知θ不变,α由小变大, α增大到0
90后再减小,所以据1T 式知1T 先变小后变大,当0
90α=时,1T 有最小值. 七,拉密原理法
拉密原理:如果在三个共点力作用下物体处于平衡状态,那么各力的大小分别与另外两个力所夹角的正弦成正比.在图8所示情况下,原理表达式为3121
2
3
sin sin sin F F F θθθ=
=
例7 如图9甲所示装置,两根细绳拉住一个小球,保持两绳之间夹角θ不变;若把整个装置顺时针缓慢转动0
90,则在转动过程中,CA 绳拉力1T F 大小的变化情况是 ,CB 绳拉力2T F 大小的变化情况是 .
解析 在整个装置缓慢转动的过程中,可以认为小球在每一位置都是平衡的.小球受到三个力的作用,如图9乙所示,根据拉密原理有
12sin sin sin T T F F G β
α
θ
=
=
,由于θ不变, α由0
90逐
渐变为0
180,sin α会逐渐变小直到为零,所以2T F 逐渐变
小直到为零;由于β由钝角变为锐角,sin β先变大后变小,所以1T F 先变大后变小. 八、对称法
研究对象所受力若具有对称性,则求解时可把较复杂的运算转化为较简单的运算,或者将复杂的图形转化为直观而简单的图形.所以在分析问题时,首先应明确物体受力是否具有对称性.
例8 如图10甲所示,重为G 的均匀链条挂在等高的两钩上,链条悬挂处与水平方向成θ角,试求;(1)链条两端的张力大小.
(2)链条最低处的张力大小.
解析 (1)在求链条两端的张力时,可把链条当做一个质点处理.两边受力具有对称性使两端点的张力F 大小相等,受力分析如图10乙所示.取链条整体为质点研究对象.
由平衡条件得竖直方向2Fsin =G θ,所以端点张力为G
F=
2sin θ
(2)在求链条最低点张力时,可将链条一分为二,取一半研究,受力分析如图10丙所示,由平衡条件得水平方向所受力为
'cos cos cot 2sin 2
G G F F θθθθ
==
=
即为所求.
九、力矩平衡法
力矩平衡:物体在力矩作用下处于静止或匀速转动状态时,所受力矩达到平衡·力矩平衡条件:一般规定逆时针方向的力矩为正设为1M ,顺时针方向的力矩为负设为2M ,则力矩平衡条件为
120M M +=.
例9 如图1l,AC 为竖直墙面,AB 为均匀横梁其重力为G ,处于水平位置;BC 为支撑横梁的轻杆,它与竖直方向的夹角为α,A B C 、、三处均用铰链连接,则轻杆BC 所承受的力为多大?解析 以轻杆BC 为研究对象,由三力汇交原理可知,横梁AB 对它的作用力一定沿着轻杆BC.再以横梁AB 为研究对象,受力分析如图11所示,由力矩平衡可得cos 2AB G N AB α=,所以有2cos G N α
=
由牛顿第三定律可得,轻杆BC 所承受的力为'2cos G
N N α
==。