2018年初三数学中考复习 概率初步 专项复习练习 含答案

合集下载

2018届中考数学复习《统计与概率的应用》专题训练及答案

2018届中考数学复习《统计与概率的应用》专题训练及答案

2018届初三数学中考复习统计与概率的应用专题复习训练题1.秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理90≤x≤100 c请根据上述统计图表,解答下列问题:(1)在表中,a=__0.1__,b=__0.3__,c=__18__;(2)补全频数分布直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩;(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?解:(2)补图略(3)平均成绩是81分(4)800×(0.3+0.2)=400,即“优秀”等次的学生约有400人2. 甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为__12__; (2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.解:(2)画树状图:乙 ∴乙获胜的概率为123.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,根据以上信息,解答下列问题:(1)家庭用水量在4.0<x≤6.5范围内的家庭有__13__户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是__30__%;(2)本次调查的家庭数为__50__户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是__18__%;(3)家庭用水量的中位数落在__C__组.(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.解:(4)估计该月用水量不超过9.0吨的家庭数为200×4+13+1550=128(户)4.网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”“中评”“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并绘制出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了__150__个评价;②请将图1补充完整;③图2中“差评”所占的百分比是__13.3%__;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.解:(1)②“好评”一共有150×60%=90(个),补图略.(2)列表:由表可知,一共有95种,∴两人中至少有一个给“好评”的概率是595.某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.国画类 b 0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布直方图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?解:(1)14÷0.28=50,a=18÷50=0.36(2)b=50×0.20=10,补图略(3)1500×0.28=420(人),估计该校最喜爱围棋的学生大约有420人6.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500 mL)、红茶(500 mL)和可乐(600 mL),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”“绿”“乐”“茶”“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.解:(1)15(2)画树状图(略),由树状图可知共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为2257.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A ,B ,C 中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D ,E ,F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是__13__; (2)若甲、乙均可在本层移动.①用树状图或列表法求出黑色方块所构拼图是轴对称图形的概率; ②黑色方块所构拼图是中心对称图形的概率是__29__.解:(2)①由树状图可知,黑色方块所构拼图是轴对称图形的概率P =39=138.为了了解某学校九年级学生每周平均课外阅读时间的情况,随机抽查了该学校九年级m 名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:①求m 值;②求扇形统计图中阅读时间为5小时的扇形圆心角的度数;③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.解:(1)①∵m=15÷14=60 ②560×360°=30° ③第三小组的频数为60-10-15-10-5=20,补图略(2)众数为 3小时,中位数为3小时,平均数为2.75小时9. 某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元.(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.解:(1)P (得到优惠)=612=12 (2)转盘1能得到的优惠为112×(0.3×300+0.2×300×2+0.1×300×3)=25(元),转盘2能得到的优惠为40×24=20(元),∴选择转盘1更合算10. 研究问题: 一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?解:(1)红球占40%,黄球占60%(2)设总球数为x 个,由题意得8x =450,解得x =100,100×40%=40(个),即盒中红球有40个11. 某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图以上 严重污染 2(1)统计表中m =__20__,n =__8__.扇形统计图中,空气质量等级为“良”的天数占__55__%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.解:(2)估计该市城区全年空气质量等级为“优”和“良”的天数共365×(25%+55%)=292(天),补图略(3)建议不要燃放烟花爆竹12. 在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m)绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图①中a的值为__25__;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65 m 的运动员能否进入复赛.解:(2)x=1.61;众数是1.65;中位数是1.60(3)能;∵共有20个人,中位数是第10,11个数的平均数.∴根据中位数可以判断出能否进入前9名;∵1.65 m>1.60 m,∴能进入复赛。

2018-2019学年下学期初三中考冲刺数学《概率》专题总复习附答案

2018-2019学年下学期初三中考冲刺数学《概率》专题总复习附答案

2018-2019学年下学期初三中考冲刺数学《概率》专题总复习一、单选题1.如果小强将镖随意投中如图所示的正方形木板,那么镖落在阴影部分的概率为()A. B. C. D.2.有A,B两只不透明口袋,每只口袋里装有两只相同的球,A袋中的两只球上分别写了“细”“致”的字样,B袋中的两只球上分别写了“信”“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A. B. C. D.3.甲工厂生产的5件产品中有4件正品,1件次品;乙工厂生产的5件产品中有3件正品,2件次品。

从这两个工厂生产的产品各任取1件,2件都是次品的概率为()A. B. C. D.4.下列事件是随机事件的是()A. 火车开到月球上B. 抛出的石子会下落C. 明天临海会下雨D. 早晨的太阳从东方升起5.口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A. 随机摸出1个球,是白球B. 随机摸出1个球,是红球C. 随机摸出1个球,是红球或黄球D. 随机摸出2个球,都是黄球6. 一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是()A. B. C. D.7.下列事件是随机事件的是()A. 购买一张福利彩票,中奖B. 在一个标准大气压下,加热到100℃,水沸腾C. 有一名运动员奔跑的速度是80米/秒D. 在一个仅装着白球和黑球的袋中摸球,摸出红球8.一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于5的概率是( )A. B. C. D.9.有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图),从中任意摸出一张是数字3的概率是()A. B. C. D.10.下列事件是确定事件的是()A. 任意打开一本200页的数学书,恰好是第50页B. 打开电视机,任选一个频道,正在播放足球赛C. 在空旷的操场上向上抛出的篮球一定会下落D. 阴天一定会下雨11.在下列事件中,是必然事件的是()A. 买一张电影票,座位号一定是偶数B. 随时打开电视机,正在播新闻C. 通常情况下,抛出的篮球会下落D. 阴天就一定会下雨12.物理某一实验的电路图如图所示,其中K1,K2,K3为电路开关,L1,L2为能正常发光的灯泡.任意闭合开关K1,K2,K3中的两个,那么能让两盏灯泡同时发光的概率为()A. B. C. D.13.从3,4,5中任意抽取2两个数字组成一个两位数,则这个数恰好是奇数的概率为()A. B. C. D.14.1.小玲与小丽两人各掷一个正方体骰子,规定两人掷的点数和为偶数,则小玲胜;点数和为奇数,则小丽胜,下列说法正确的是()A. 此规则有利于小玲B. 此规则有利于小丽C. 此规则对两人是公平的D. 无法判断15.有五张正面分别写有数字﹣3,﹣2,1,2,3的卡片,它们的背面完全相同,现将这五张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a的值,然后再从剩余的四张卡片中随机抽取一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率是()A. B. C. D.16.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字大于4的概率是A. B. C. D.17.下面事件是必然事件的有()①如果a、b∈R,那么a·b=b·a;②某人买彩票中奖;③3+5>10A. ①B. ②C. ③D. ①②18.下面说法正确的是().A. 一个袋子里有100个同样质地的球,小华摸了8次球,每次都只摸到黑球,这说明袋子里面只有黑球B. 某事件发生的概率为0.5,也就是说,在两次重复的试验中必有一次发生C. 随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为D. 某校九年级有400名学生,一定有2名学生同一天过生日二、填空题19.下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果. 随着实验次数的增加,“钉尖向上”的频率总在一常数附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是________20. 在一个不透明的盒子中装有2个红球和若干个白球,若再放进4个红球(盒子中所有球除颜色外其它完全相同),摇匀后,从中摸出一个球,摸到红球的概率恰好是,那么此盒子中原有白球的个数是________.21.学校开展合唱社团活动,九年级(1)班有10名女生和若干名男生(包括小明)报名参加,现从中各选一名女生和一名男生参加合唱团,小明估算了一下,自己被选中的概率为,则共有________名男生报名.22.某校九年1班共有45位学生,其中男生有25人,现从中任选一位学生,选中女生的概率是________23.把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀,从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是________.24.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出1个球,这个球是黄球的概率为 ________.25.一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为________三、解答题26.有一箱子装有张分别标示、、的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出张牌,组成一个二位数,取出第张牌的号码为十位数,第张牌的号码为个位数,若先后取出张牌组成二位数的每一种结果发生的机会都相同,用列表或树状表示组成二位数的可能情况,并求组成的二位数为的倍数的概率.27.教室里有3名学生,试说明这3名学生是男生或女生的各种可能性情况,哪种情况的可能性最大?28.甲、乙玩转盘游戏时,把质地相同的两个转盘A、B平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜。

2018届人教版中考数学复习《统计与概率的应用》专题训练含答案

2018届人教版中考数学复习《统计与概率的应用》专题训练含答案

2018届初三数学中考复习 统计与概率的应用 专题复习训练题1.秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,请根据上述统计图表,解答下列问题:(1)在表中,a =__0.1__,b =__0.3__,c =__18__;(2)补全频数分布直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩;(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?解:(2)补图略 (3)平均成绩是81分 (4)800×(0.3+0.2)=400,即“优秀”等次的学生约有400人2. 甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为__12__; (2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.解:(2)画树状图:∴乙获胜的概率为123.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,根据以上信息,解答下列问题:(1)家庭用水量在4.0<x≤6.5范围内的家庭有__13__户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是__30__%;(2)本次调查的家庭数为__50__户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是__18__%;(3)家庭用水量的中位数落在__C__组.(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.解:(4)估计该月用水量不超过9.0吨的家庭数为200×4+13+1550=128(户)4.网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”“中评”“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并绘制出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了__150__个评价;②请将图1补充完整;③图2中“差评”所占的百分比是__13.3%__;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.解:(1)②“好评”一共有150×60%=90(个),补图略.(2)列表:由表可知,一共有95种,∴两人中至少有一个给“好评”的概率是595.某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.最喜爱的传统文化项目类型频数分布表国画类 b 0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a 的值;(2)补全频数分布直方图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人? 解:(1)14÷0.28=50,a =18÷50=0.36 (2)b =50×0.20=10,补图略(3)1500×0.28=420(人),估计该校最喜爱围棋的学生大约有420人6.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500 mL )、红茶(500 mL )和可乐(600 mL ),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”“绿”“乐”“茶”“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.解:(1)15(2)画树状图(略),由树状图可知共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为2257.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A ,B ,C 中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D ,E ,F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是__13__;(2)若甲、乙均可在本层移动.①用树状图或列表法求出黑色方块所构拼图是轴对称图形的概率; ②黑色方块所构拼图是中心对称图形的概率是__29__.解:(2)①由树状图可知,黑色方块所构拼图是轴对称图形的概率P =39=138.为了了解某学校九年级学生每周平均课外阅读时间的情况,随机抽查了该学校九年级m 名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:①求m 值;②求扇形统计图中阅读时间为5小时的扇形圆心角的度数;③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.解:(1)①∵m=15÷14=60 ②560×360°=30° ③第三小组的频数为60-10-15-10-5=20,补图略(2)众数为 3小时,中位数为3小时,平均数为2.75小时9. 某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元.(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.解:(1)P (得到优惠)=612=12 (2)转盘1能得到的优惠为112×(0.3×300+0.2×300×2+0.1×300×3)=25(元),转盘2能得到的优惠为40×24=20(元),∴选择转盘1更合算10. 研究问题: 一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?解:(1)红球占40%,黄球占60%(2)设总球数为x 个,由题意得8x =450,解得x =100,100×40%=40(个),即盒中红球有40个11. 某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请以上 严重污染 2(1)统计表中m =__20__,n =__8__.扇形统计图中,空气质量等级为“良”的天数占__55__%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.解:(2)估计该市城区全年空气质量等级为“优”和“良”的天数共365×(25%+55%)=292(天),补图略(3)建议不要燃放烟花爆竹12. 在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m)绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图①中a的值为__25__;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65 m的运动员能否进入复赛.解:(2)x=1.61;众数是1.65;中位数是1.60(3)能;∵共有20个人,中位数是第10,11个数的平均数.∴根据中位数可以判断出能否进入前9名;∵1.65 m>1.60 m,∴能进入复赛。

中考数学总复习《概率初步》专项提升练习题(附答案)

中考数学总复习《概率初步》专项提升练习题(附答案)

中考数学总复习《概率初步》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列事件中,是必然事件的是( )A.明天太阳从东方升起B.打开电视机,正在播放体育新闻C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路灯,遇到红灯2.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则( )A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件3.在不透明的袋子装有9个白球和一个红球,它们除颜色外其余都相同,从袋中随意摸出一个球,则下列说法中正确的是( )A.“摸出的球是白球”是必然事件B.“摸出的球是红球”是不可能事件C.摸出的球是白球的可能性不大D.摸出的球有可能是红球4.某同学午觉醒来发现钟表停了,他打开收音机想听电台整点报时,则他等待的时间不超过15分钟的概率是( )A.12B.13C.14D.155.如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是( )A. B. C. D.6.从-2,-1,2这三个数中任取两个不同的数相乘,积为正数的概率是( ) A.23 B.12 C.13 D.147.小杰想用6个除颜色外均相同的球设计一个游戏,下面是他设计的4个游戏方案.不成功的是( )A.摸到黄球的概率为12,红球的概率为12B.摸到黄、红、白球的概率都为13C.摸到黄球的概率为12,红球的概率为13,白球的概率为16D.摸到黄球的概率为23,摸到红球、白球的概率都是138.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )实验次数100200 300 500 800 1000 2000频率 0.365 0.328 0.330 0.334 0.336 0.332 0.333 A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率9.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷一枚质地均匀的正六面体骰子,向上一面的点数是4C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃D.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上10.同时抛掷A、B两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x、y,并以此确定点P(x,y),那么点P落在抛物线y=-x2+3x上的概率为( )A.118B.112C.19D.16二、填空题11.抛掷一枚质地均匀的硬币,落地后正面朝上的概率是 .12.在分别写有-1,0,1,2的四张卡片中随机抽取一张,所抽取的数字平方后等于1的概率为________.13.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是________.14.游戏是否公平是指双方获胜的可能性是否相同,只有当双方获胜的可能性 (等可能事件发生的概率相同)时,游戏才公平,否则游戏不公平.15.一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球个.16.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).投篮次数(n) 50 100 150 200 250 300 500投中次数(m) 28 60 78 104 123 152 251投中频率(m/n)0.56 0.60 0.52 0.52 0.49 0.51 0.50三、解答题17.一个袋中装有2个红球,3个白球,和5个黄球,每个球除了顔色外都相同,从中任意摸出一个球,分别求出摸到红球,白球,黄球的概率。

最新-2018年中考复习十八概率专题训练数学(附答案) 精品

最新-2018年中考复习十八概率专题训练数学(附答案) 精品

2018年中考数学第一轮复习专题训练(十八)(概率)一、填空题:(每题3分,共36分)1、数102030 中的0 出现的频数为_____。

2、在一个装有 2 个红球,2 个白球的袋子里任意摸出一个球,摸出红球的可能性为__。

3、不可能发生是指事件发生的机会为_____。

4、“明天会下雨”,这个事件是_____事件。

(填“确定”或“不确定”)5、写出一个必然事件:_______________。

6、10把钥匙中有 3 把能打开门,今任取出一把,能打开门的概率为_____。

7、抛掷两枚骰子,则P(出现 2 个6)=_____。

8、小射手为练习射击,共射击60次,其中36次击中靶子,试估计小射手依次击中靶子的概率为_____。

9、小红随意在如图所示的地板上踢键子,则键子恰落在黑色方砖上的概率为_____。

10、足球场上,往往用抛硬币的方式来决定哪方先发球,请问这种做法公平吗?_____11、小明有两件上衣,三条长裤,则他有几种不同的穿法_____。

12、小红、小张,在一起做游戏,需要确定的游戏的先后顺序,他们约定用“剪子,包袱,锤子”的方式确定,小红取胜的概率是_____。

二、选择题:(每题4 分,共24 分)1、下列事件是必然发生的是()A、明天是星期一B、十五的月亮象细钩C、早上太阳从东方升起D、上街遇上朋友2、有五只灯泡,其中两只是次品,从中任取一只恰为合格品的概率为()A、20%B、40%C、50%D、60%3、抛掷一枚普遍的硬币三次,则下列等式成立的是()A、P(正正正)=P(反反反)B、P(正正正)=20%C、P(两正一反)=P(正正反)D、P(两反一正)=50%4、一个口袋里有1个红球,2个白球,3个黑球,从中取出一个球,该球是黑色的。

这个事件是()A、不确定事件B、必然事件C、不可能事件D、以上都不对5、在“石头、剪子、布”的游戏中,当你出“石头”时,对手与你打平的概率为()A、12B、13C、23D、146、从A、B、C、D四人中用抽筌的方式,选取二人打扫卫生,那么能选中A、B的概率为()A、14B、112C、12D、16三、解答题:(每题9 分,共54 分)1、一布袋中放有红、黄、白三种颜色的球各一,它们除颜色处其他都一个样,小明从中摸出一个球后放回摇匀,再摸出一个球,请你利用树状图分析可能出现的情况。

中考数学总复习《概率》专项练习题-附带参考答案

中考数学总复习《概率》专项练习题-附带参考答案

中考数学总复习《概率》专项练习题-附带参考答案一、选择题:(本题共8小题,共40分.)1.下列说法不正确的是()A.“抛掷一枚硬币,硬币落地时正面朝上”是随机事件B.“任意打开数学教科书八年级下册,正好是第50页”是不可能事件C.“把4个球放入三个抽屉中,其中必有一个抽屉中至少有2个球”是必然事件D.“在一个不透明的袋子中,有5个除颜色外完全一样的小球,其中2个红球,3个白球,从中任意摸出1个小球,正好是红球”是随机事件2.一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是()A.13B.12C.34D.233.小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏()A.对小明有利B.对小亮有利C.游戏公平D.无法确定对谁有利4.某校幵展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,恰好选中两名男学生的概率是()A.13B.49C.23D.295.有一个可以自由转动且质地均匀的转盘,被分成6 个大小相同的扇形.在转盘的适当地方涂上灰色,未涂色部分为白色.为了使转动的转盘停止时,指针指向灰色的概率为23,则下列各图中涂色方案正确的是()A. B. C.D.6.北京冬奥会志愿者参加花样滑冰、短道速滑、冰球、冰壶4个项目的培训.如果小周和小丽每人随机选择参加其中一个项目培训,则他们恰好选到同一个项目进行培训的概率是()A.116B.14C.18D.167.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是().A.B.C.D.8.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是()A.12B.25C.35D.718二、填空题:(本题共5小题,共15分.)9.有数据1,2,3,5,8,13,21,34,从这些数据中取一个数据,得到偶数的概率为______.10.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为.(结果要求保留两位小数)11.有四张看上去无差别的卡片,正面分别写有“兴城首山”、“龙回头”、“觉华岛”、“葫芦山庄”四个景区的名称,将它们背面朝上,从中随机一张卡片正面写有“葫芦山庄”的概率是.12.某同学家长应邀安参加孩子就读中学的开放日活动,他打算上午随机听一节孩子所在1班的课,下表是他拿到的当天上午1班的课表,如果每一节课被听的机会均等,那么他听数学课的概率是.13.若关于x的方程230x x m-+=有两个不相等的实数根,且3m≥-,则从满足条件的所有整数m中随机选取一个,恰好是负数的概率是____________.三、解答题:(本题共4题,共45分.)14.某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=12.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.先拿又拿15.从2021年起,江苏省高考采用“3+1+2”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在化学、生物、思想政治、地理4科中任选2科.(1)若小丽在“1”中选择了历史,在“2”中已选择了地理,则她选择生物的概率是;(2)若小明在“1”中选择了物理,用画树状图的方法求他在“2”中选化学、生物的概率.16.从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为;(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的面数字恰好相同的概率.17.在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)可能的结果;(2)若m,n都是方程x2-5x+6=0的解时,则小明获胜;若m,n都不是方程x2-5x+6=0的解时,则小利获胜,问他们两人谁获胜的概率大?参考答案:1.B2.A3.C4.A5.C6.B7.B8.B9.3810.0.9911.12. 13.1214.(1)∵P (一次拿到8元球)=12∴8元球的个数为4×12=2(个),按照从小到大的顺序排列为7,8,8,9 ∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下: 原来4个球的价格按照从小到大的顺序排列为7,8,8,9∴原来4个球价格的中位数为882=8(元),所剩的3个球价格为8,8,9 ∴所剩的3个球价格的中位数为8元∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个∴乙组两次都拿到8元球的概率为12. 15.(1)在“2”中已选择了地理,从剩下的化学、生物,思想品德三科中选一科,因此选择生物的概率为13; 41故答案为:13; (2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中选中“化学”“生物”的有2种∴P (化学生物)=212=16. 16.(1)四张牌为:2,3,3,6,从中抽取一张,共有四种等可能结果,抽到牌面数字是3的有两种 ∴21342P ==(抽到); (2)解:列表如下: 第二次第一次2 3 3 6 2 ()2,3 ()2,3 ()2,63 ()3,2 ()3,3 ()3,63 ()3,2 ()3,3 ()3,66 ()6,2 ()6,3 ()6,3由上表可知,共有12种等可能的结果,其中牌面数字恰好相同的结果有2种 ∴21126P ==牌面相同. 17.解:(1)树状图如图所示:(2)∵m ,n 都是方程x 2﹣5x+6=0的解∴m =2,n =3,或m =3,n =2由树状图得:共有12个等可能的结果,m,n都是方程x2﹣5x+6=0的解的结果有(2,3)(3,2)(2,2)(3,3)共四种m,n都不是方程x2﹣5x+6=0的解的结果有2个小明获胜的概率为41123=,小利获胜的概率为21126=∴小明获胜的概率大.。

(最新整理)概率初步精选练习题(含答案)

(最新整理)概率初步精选练习题(含答案)

概率初步精选练习题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(概率初步精选练习题(含答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为概率初步精选练习题(含答案)的全部内容。

概率初步练习题一、选择题1、“任意买一张电影票,座位号是2的倍数”,此事件是( )A 。

不可能事件 B.不确定事件 C.必然事件 D.以上都不是2、任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是 ( ) A 。

B 。

C 。

213132D 。

613、一个袋中装有2个红球,3个蓝球和5个白球,它们除颜色外完全相同,现在从中任意摸出一个球,则(摸到红球)等于 ( )A 。

B 。

C 。

P 213251D 。

1014、如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为,在乙种地板上最终停留在黑色区域的概率为,则 ( )1P 2P A. B. C. D.以上都有可能21P P >21P P <21P P =5、100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的是5的倍数编号的球的概率是 ( )A. B. C 。

D 。

以上都不对 2011001951二、填空题6、必然事件发生的概率是________,即P (必然事件)= _______;不可能事件发生的概率是_______,即P (不可能事件)=_______;若是不确定事件,则______ ______。

A )<(<A P 7、一副扑克牌去掉大王、小王后随意抽取一张,抽到方块的概率是______,抽到3的概率是______。

2018 初三数学中考总复习 概率 专题复习练习 含答案

2018 初三数学中考总复习  概率  专题复习练习 含答案

2018 初三数学中考总复习 概率 专题复习练习1. 一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是( C )A.12B.23C.25D.352. 一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( C )A.16B.13C.12D.233.下列事件中,是必然事件的是( B )A .两条线段可以组成一个三角形B .400人中有两个人的生日在同一天C .早上的太阳从西方升起D .打开电视机,它正在播放动画片4.李湘同学想给数学老师送张生日贺卡,但她只知道老师的生日在6月,那么她一次猜中老师生日的概率是( C )A.128B.129C.130D.1315.如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在丙区域内的概率是( D )A .1 B.12 C.13 D.146.一个盒子装有除颜色外其他均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( C )A.25B.23C.35D.3107.从2,3,4,5中任意选两个数,记作a 和b ,那么点(a ,b)在函数y =12x图象上的概率是( D )A.12B.13C.14D.168.有5张看上去无差别的卡片,上面分别写着0,π,2,19,1.333.随机抽取1张,则取出的数是无理数的概率是__25__. 9.同时掷两枚均匀的硬币,则两枚都出现反面朝上的概率是__14__. 10.一个不透明的口袋里装有若干个除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球__20__个.11.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字之和可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.解:(1)略(2)∵共6种情况,两个数字之和能被3整除的情况数有2种,∴两个数字之和能被3整除的概率为26,即P(两个数字之和能被3整除)=1312.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1,2,3,4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.解:(1)列表得:(2)由列表可知,所有可能出现的结果一共有16种,这些结果出现的可能性相同,其中两次所得数字之和为8,6,5的结果有8种,所以抽奖一次中奖的概率为:P =816=12.答:抽奖一次能中奖的概率为1213.某班毕业联欢会设计了即兴表演节目摸球游戏,游戏采用一个不透明的盒子,里面装有五个分别标有数字1,2,3,4,5的乒乓球,这些球除数字外,其他完全相同,游戏规则是参加联欢会的50名同学,每人将盒子乒乓球摇匀后闭上眼睛从中随机一次摸出两个球(每位同学必须且只能摸一次).若两球上的数字之和是偶数就给大家即兴表演一个节目;否则,下个同学接着做摸球游戏,依次进行.(1)用列表法或画树状图法求参加联欢会同学表演即兴节目的概率;(2)估计本次联欢会上有多少个同学表演即兴节目.解:(1)列表略,共有20种可能结果,其中两数和为偶数的共有8种,将参加联欢会的某位同学即兴表演节目记为事件A ,∴P(A)=P(两数和为偶数)=820=25(2)∵50×25=20(人),∴估计有20名同学即兴表演节目14.某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲、乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其他都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少.(如表)(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;(2)如果一个顾客当天在本店购物满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.解:(1)共有6种情况,摇出一红一白的情况共有4种,摇出一红一白的概率=46=23 (2)∵两红的概率P =16,两白的概率P =16,一红一白的概率P =23,∴甲品牌化妆品获礼金券的平均收益是:16×6+23×12+16×6=10(元).乙品牌化妆品获礼金券的平均收益是:16×12+23×6+16×12=8(元), ∴选择甲品牌化妆品15. 某中学学生运动会刚刚闭幕.下面是未制作完的三个年级运动会志愿者的统计图.请你根据图中所给信息解答下列问题:(1)请你求出九年级有多少名运动会志愿者,并将两幅统计图补充完整;(2)要求从七年级、九年级志愿者中各推荐一名队长候选人,八年级志愿者中推荐两名队长候选人,四名候选人中选出两人任队长,用列表法或树形图,求出两名队长都是八年级志愿者的概率是多少?解:(1)设九年级有x 名志愿者,由题意得x =(18+30+x)×20%,解得x =12.九年级有12名志愿者,七年级占30%,图略 (2)共有12种等可能的结果,其中两人都是八年级志愿者的情况有两种,所以P(两名队长都是八年级志愿者)=212=1616. A ,B 两组卡片共5张,A 中三张分别写有数字2,4,6,B 中两张分别写有3,5,它们除数字外没有任何区别.(1)随机地从A 中抽取一张,求抽到数字为2的概率;(2)随机地分别从A 、B 中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?解:(1)P =13(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P =46=23,乙获胜的情况有2种,P =26=13,所以,这样的游戏规则对甲乙双方不公平。

中考数学复习《概率》专题训练--附带参考答案

中考数学复习《概率》专题训练--附带参考答案

中考数学复习《概率》专题训练--附带参考答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列事件是必然事件的是()A.任意两个正方形都相似B.三点确定一个圆C.抛掷一枚骰子,朝上面的点数小于6 D.相等的圆心角所对的弧相等2.一个透明的袋子里装有3个白球,2个黄球和1个红球,这些球除颜色不同外其它完全相同则从袋子中随机摸出一个球是白球的概率是()A.12B.13C.14D.163.按小王、小李、小马三位同学的顺序从一个不透明的盒子中随机抽取一张标注“主持人”和两张空白的纸条,确定一位同学主持班级“交通安全教有”主题班会.下列说法中正确的是()A.小王的可能性最大B.小李的可能性最大C.小马的可能性最大D.三人的可能性一样大4.某学校在八年级开设了数学史、诗词赏析、陶艺三门课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一门课程的概率是()A.12B.13C.16D.195.班长邀请A,B,C,D四位同学参加圆桌会议.如图所示,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是()A.14B.13C.12D.236.在一个不透明的盒子里,装有5个黑球和若干个白球,这些球除颜色外都相同,将其摇匀后从中随机摸出一个球,记下颜色后再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,请估计盒子中白球的个数是()A.10个B.15个C.20个D.25个7.小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为()A.12B.14C.13D.188.某小组做“用频率估计概率”的实验时,给出的某一结果出现的频率分布折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球D.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃二、填空题9.从√2,0,π,3.14,17中随机抽取一个数,抽到有理数的概率是.10.甲、乙、丙三个人相互传一个球,由甲开始发球,并作为第一次传球,则经过两次传球后,球回到甲手中的概率是。

2018年中考数学总复习《概率》专题复习练习及答案解析

2018年中考数学总复习《概率》专题复习练习及答案解析

2018年中考数学专题复习卷: 概率一、选择题1.下列事件中,必然事件是()A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数【答案】D【解析】:A.∵抛掷1个均匀的骰子,出现6点向上是随机事件,故错误,A不符合题意;B.∵只有两条平行线被第三条直线所截,同位角才相等;故错误,B不符合题意;C.∵一年有365或者366人,∴如果一年正好是366天,则366人中每个人的生日可能都不相同,故错误,C不符合题意;D.∵一个数的绝对值不是正数就是0,故正确,D符合题意;故答案为:D.【分析】A.根据随机事件和必然事件的定义来判断对错;B. 根据平行线性质来判断对错;C. 根据必然事件或随机事件定义来判断对错;D.根据绝对值性质来判断对错.2.下列语句描述的事件中,是随机事件的为()A. 水能载舟,亦能覆舟B. 只手遮天,偷天换日C. 瓜熟蒂落,水到渠成D. 心想事成,万事如意【答案】D【解析】:A、水能载舟,亦能覆舟,是必然事件,故不符合题意;B、只手遮天,偷天换日,是不可能事件,故不符合题意;C、瓜熟蒂落,水到渠成,是必然事件,故不符合题意;D、心想事成,万事如意,是随机事件,故符合题意.故答案为:D.【分析】所谓随机事件,就是可能发生,也可能不会发生的事件,根据概念即可一一判断。

3.下列说法正确的是()A. 了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B. 甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定C. 三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是 D. “任意画一个三角形,其内角和是”这一事件是不可能事件【答案】D【解析】:A、了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,不符合题意;B、甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则乙的成绩比甲稳定,不符合题意;C、三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是,不符合题意;D、“任意画一个三角形,其内角和是360°”这一事件是不可能事件,符合题意.故答案为:D.【分析】根据全面调查及抽样调查适用的条件;根据方差越大数据的波动越大;根据中心对称图形,轴对称图形的概念,三角形的内角和;一一判断即可。

2018 初三数学中考复习 统计与概率 专题复习训练题及答案

2018 初三数学中考复习  统计与概率 专题复习训练题及答案

2018 初三数学中考复习统计与概率专题复习训练题1.下列说法正确的是( C )A.为了审核书稿中的错别字,选择抽样调查B.为了了解春节联欢晚会的收视率,选择全面调查C.“射击运动员射击一次,命中靶心”是随机事件D.“经过由交通信号灯的路口,遇到红灯”是必然事件2.某市七天的空气质量指数分别是:28,45,28,45,28,30,53,这组数据的众数是( A )A.28 B.30 C.45 D.533.(2016·临沂)某老师为了了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是( B )A.4 B.3 C.2 D.14.某小学校足球队22名队员年龄情况如下:则这个队队员年龄的众数和中位数分别是( B ) A .11,10 B .11,11 C .10,9 D.10,115.在一个不透明的盒子里有2个红球和n 个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是15,则n 的值为( C )A .3B .5C .8D .106.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( C )A.12B.14C.16D.1127.某学校小组5名同学的身高(单位:cm)分别为:147,151,152,156,159,则这组数据的中位数是 __152__.8.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图①和图②是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是__6_000__.9.一次数学考试中,九年(1)班和(2)班的学生数和平均分如表所示,则这两班平均成绩为__82.6__分.10.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”,“2”,“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为__49__.11.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?解:(1)由题意可得,甲组的平均成绩是91+80+783=83(分),乙组的平均成绩是81+74+853=80(分),丙组的平均成绩是79+83+903=84(分),从高分到低分小组的排名顺序是:丙>甲>乙 (2)由题意可得,甲组的平均成绩是91×40%+80×30%+78×30%40%+30%+30%=83.8(分),乙组的平均成绩是81×40%+74×30%+85×30%40%+30%+30%=80.1(分),丙组的平均成绩是79×40%+83×30%+90×30%40%+30%+30%=83.5(分),由上可得,甲组的成绩最高12.甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知甲射击成绩的方差s 2甲=712,平均成绩x 甲=8.5.(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少? (2)求乙射击的平均成绩和方差,并据此比较甲乙的射击“水平”.解:(1)∵由图可知,乙射击的总次数是12次,不少于9环的有7次,∴乙射击成绩不少于9环的概率=712(2)x 乙=2×7+3×8+6×9+1×1012=8.5(环),s 2乙=112[(7-8.5)2×2+(8-8.5)2×3+(9-8.5)2×6+(10-8.5)2]=912=34,∵x 甲=x 乙,s 2甲<s 2乙,∴甲的射击成绩更稳定13.某校有学生2 000名,为了了解学生在篮球、足球、排球和乒乓球这四项球类运动中最喜爱的一项球类运动情况,对学生开展了随机调查,并将结果绘制成如下的统计图.请根据以上信息,完成下列问题: (1)本次调查的样本容量是__400__; (2)某位同学被抽中的概率是__15__;(3)据此估计全校最喜爱篮球运动的学生人数约有__800__名; (4)将条形统计图补充完整. 解:(1)400 (2)15 (3)800(4)乒乓球的人数:400×30%=120(人).补图略14.教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮). (1)将4个开关都闭合时,教室里所有灯都亮起的概率是__0__;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.解:(1)因为控制第二排灯的开关已坏(闭合开关时灯也不亮),所以将4个开关都闭合时,教室里所有灯都亮起的概率是0(2)用1,2,3,4分别表示第一排、第二排、第三排和第四排灯,画树状图为:共有12种等可能的结果数,其中恰好关掉第一排与第三排灯的结果数为2,所以恰好关掉第一排与第三排灯的概率=212=1 6。

天津市河西区普通中学2018届初三数学中考复习 统计与概率 专题练习题 答案版

天津市河西区普通中学2018届初三数学中考复习 统计与概率 专题练习题 答案版

天津市河西区普通中学2018届初三数学中考复习 统计与概率 专题练习题1.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( A )A .至少有1个球是黑球B .至少有1个球是白球C .至少有2个球是黑球D .至少有2个球是白球2.下列说法正确的是( B )A .为了检测一批电池使用时间的长短,应该采用全面调查的方法B .方差反映了一组数据的波动大小,方差越大,波动越大C .打开电视正在播放新闻节目是必然事件D .为了了解某县初中学生的身体情况,从八年级学生中随机抽取50名学生作为总体的一个样本3.如图,随机闭合开关S 1,S 2,S 3中的两个,则能让灯泡⊗发光的概率是( C )A.12B.13C.23D.144.从2,3,4,5中任意选两个数,记作a 和b ,那么点(a ,b)在函数y =12x图象上的概率是( D )A.12B.13C.14D.165.若一组数据1,2,3,4,x 的平均数与中位数相同,则实数x 的值不可能是( C )A .0B .2.5C .3D .56.一组数据2,3,6,8,11的平均数是__6__.7.小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为__随机__事件.(填“必然”或“不可能”或“随机”)8.某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__90__分.9.甲乙两人8次射击的成绩如图所示(单位:环),根据图中的信息判断,这8次射击中成绩比较稳定的是__甲__.(填“甲”或“乙”)10.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a ,则使关于x 的不等式组⎩⎪⎨⎪⎧4x≥3(x +1),2x -x -12<a 有解的概率为__49__. 11.某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如表所示.成绩,谁将被录取?解:甲的平均成绩为:(87×6+90×4)÷10=88.2(分),乙的平均成绩为:(91×6+82×4)÷10=87.4(分),因为甲的平均分数较高,所以甲将被录取12. 某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.解:(1)69÷23%=300(人),∴本次共调查300人(2)∵喜欢娱乐节目的人数占总人数的20%,∴20%×300=60(人),∵喜欢动画节目的人数为90人,∴90÷300×100%=30%,补全如图,∵360°×12%=43.2°,∴新闻节目在扇形统计图中所占圆心角的度数为43.2°(3)2000×23%=460(人),∴估计该校有460人喜爱电视剧节目13.甲乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲乙两人抽得的两个数字之积,如果积为奇数则甲胜,如果积为偶数则乙胜.(1)用列表或画树状图的方法,列出甲乙两人抽得的数字之积所有可能出现的情况;(2)请判断该游戏对甲乙双方是否公平?并说明理由.解:(1)列表如下:;(2,1);(2,2);(2,3);(3,1);(3,2);(3,3),则甲乙两人抽得的数字之积所有可能出现的情况有1,2,3,2,4,6,3,6,9,共9种(2)该游戏对甲乙双方不公平,理由为:其中积为奇数的情况有4种,积为偶数有5种,∴P(甲)<P(乙),则该游戏对甲乙双方不公平14.4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x 件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x 的值大约是多少?解:(1)∵4件同型号的产品中,有1件不合格品,∴P(不合格品)=14(2)共有12种情况,抽到的都是合格品的情况有6种,P(抽到的都是合格品)=612=12 (3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,∴抽到合格品的概率等于0.95,∴x +3x +4=0.95,解得x =16。

2018版中考数学:7.2-概率(含答案)

2018版中考数学:7.2-概率(含答案)

A.4 1 C.22§7.2概率一、选择题1.(改编题)抛掷一枚均匀的硬币,前 2 次都正面朝上,第 3 次正面朝上的概率()1A .大于21C .小于21B .等于2D .不能确定解析 根据概率的意义解答.∵硬币由正面朝上和朝下两种情况,并且是等可能,1∴第 3 次正面朝上的概率是2.答案 B2.(改编题)掷一枚质地均匀的硬币 10 次,下列事件可能性最大的是( )A .10 次都是正面朝上B .10 次都是反面朝上C .5 次正面朝上,5 次反面朝上D .1 次正面朝上,9 次反面朝上解析 硬币质地均匀,故出现正面朝上和反面朝上的可能性是相同的,故抛掷 10 次,各出现 5 次的可能性最大.故选 C.答案 C3.(原创题)在“直通春晚”总决赛中,选手金池、许艺娜、阿普萨萨、木江子组合要经过抽签进行终极 PK ,工作人员准备了 4 个签,签上分别写有 A 1,B 1,A 2,B 2 的字样.规定:抽到 A 1 和 B 1,A 2 和 B 2 的选手分两组进行终极 PK.许艺娜第一个抽签,抽到了 A 1,金池第二个抽签,则金池能和许艺娜进行 PK的概率是 ( )11解析金池第二个抽签,共 3 种等可能的结果,其中金池能抽到 B 1 的可能的A.31C.22答案2,1结果是1种,则P(金池能和许艺娜进行PK)=3.故选B.答案B4.(改编题)某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为() 11解析设这三辆车分别是A,B,C,列表可知共有9种等可能的结果,其中31小王与小菲同车的结果为3种,所以P(小王与小菲同车)=9=3.小菲小王A B CA B C AABACAABBBCBACBCCC答案A二、填空题5.(原创题)小明在书店一次购买了五本书:莫言的《丰乳肥臀》和《红高粱家族》,杨红樱的《淘气包马小跳》乔布斯的《活着就为改变世界》钱钟书的《围城》.小华来和小明借书,小明就从这五本新书中随机拿了一本给小华,则恰好是莫言的作品的概率是________.解析随机拿一本共5种等可能的结果,其中是莫言的作品的有2种结果,2∴P(恰好是莫言的作品)=5.56.(原创题)在一次对药用胶囊抽查中,随机抽取某胶囊厂20袋胶囊,测得各袋的胶囊的铬含量分别为(单位:mg/k g):42,45,53,55,65,93,0.5,1.5,33,20,15,6,25,1.3,1.6,5,20,12,1.2,28.按照国家标准铬含量不得超过2mg/kg,那么任买这个胶囊厂的一袋胶囊,铬含量符合规定的概率为________.51解析这次抽查中,铬含量符合规定的频率是20=4,由于这次抽查是随机抽取的胶囊,则抽查的结果接近实际情况,所以任意买这个胶囊厂的一袋胶囊,1铬含量符合规定的概率是4.答案14三、解答题7.(改编题)电脑中的信号都是以二进制数的形式给出的.二进制数是由0和1组成,电子元件的“开”、“关”分别表示“1”和“0”.一组电子元件的“开”“关”状态就表示相应的二进制数.例如:“开”“开”“开”“关”表示“1110”.如图,电脑芯片的某段电路上分布着一组电子元件A,B,C,D,且这四个元件的状态始终呈现为两开两关.(1)请用二进制数表示这组元件所有开关状态;(2)求A,B两个元件“开”“关”状态不同的概率.解(1)所有可能出现的结果如下:A111B111C111D111结果110010101001001101010110总共有6种结果,每种结果出现的可能性相同;(2)所有的结果中,满足A,B两个元件“开”“关”状态不同的结果有4种,2所以A,B两个元件“开”“关”状态不同的概率是3.。

2018年九年级数学中考统计与概率专题复习

2018年九年级数学中考统计与概率专题复习

2018 年 九年级数学中考 统计与概率专题复习一、选择题 :1.学校为认识七年级学生参加课外兴趣小组的状况,随机检查了40 名学生,将结果绘制成了以下图的统计图,则七年级学生参加绘画兴趣小组的频次是()A .B .C .D .2. 自来水企业检查了若干用户的月用水量x ( 单位:吨 ) ,按月用水量将用户分红 ,,,, 五组进行统计,ABCDE并制作了以下图的扇形统计图 . 已知除 B 组之外,参加检查的用户共 64 户,则全部参加检查的用户中月用水量在 6 吨以下的共有 ()A .18 户B .20 户C .22 户D .24 户3.已知 a,b,c,d,e 的均匀分是 m,则 a+5,b+12,c+22,d+9,e+2 的均匀分是 ()A . m-1B . m+3C . m+1 0D . m+124.如图是交警在一个路口统计的某个时段来往车辆的车速(单位: 千米 / 时)状况. 则这些车的车速的众数、中位数分别是()A . 8, 6B . 8, 5C . 52, 53D . 52,525. 已知 5 名学生的体重分别是 41、 50、 53、 49、 67(单位: kg ),则这组数据的极差是()A . 8B . 9C . 26D . 416. 以下说法正确的选项是()A .“翻开电视机,正在播《民生当面》”是必定事件B. “一个不透明的袋中装有6 个红球,从中摸出 1 个球是红球”是随机事件C.“概率为 0.0001 的事件”是不行能事件D.“在操场上向上抛出的篮球必定会着落”是确立事件7.九年级一班和二班每班选 8 名同学进行投篮竞赛, 每名同学投篮 10 次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6 个的最多”乙说:“二班同学投中次数最多与最少的相差6 个.”上边两名同学的谈论能反应出的统计量是()A .均匀数和众数B .众数和极差C .众数和方差D .中位数和极差8.在 2016 年我县中小学经典朗读竞赛中,10 个参赛单位成绩统计以下图, 关于这 10 个参赛单位的成绩,以下说法中错误的选项是()A .众数是 90B .均匀数是 90C .中位数是 90D .极差是 159.小明统计了他家今年 5 月份打电话的次数及通话时间,并列出了频数散布表:则通话时间不超出15min 的频次为()A .B .C .D .10. 桌面上放有 6 张卡片(卡片除正面的颜色不一样外,其他均同样) ,此中卡片正面的颜色3 张是绿色, 2 张是红色, 1 张是黑色.现将这6 张卡片洗匀后正面向下放在桌面上,从中随机抽取一张,抽出的卡片正面颜色是绿色的概率是A.1B.1C.1D.1 2 3 4 6二、填空题 :11.若数据 1、﹣ 2、 3、x 的均匀数为2,则 x=.12.2016 年 6 月尾,九年级学生马上毕业,好朋友甲、乙、丙三人决定站成一排合影纪念,则甲、乙二人相邻的概率是.13.布袋内装有大小、形状同样的3 个红球和 1 个白球,从布袋中一次摸出两个球,那么两个都摸到红球的概率是.14.甲、乙两地5 月下旬的日均匀气温统计如表(单位:℃):甲地气温24 30 28 24 22 26 27 26 29 24乙地气温24 26 25 26 24 27 28 26 28 26则甲、乙两地这10 天日均匀气温的方差大小关系为:S 甲2S 乙2.(填“>”、“<”或“ =”)15. 如图,圆形转盘中,A,B,C三个扇形地区的圆心角分别为150°, 120°和 90°.转动圆盘后,指针停止在任何地点的可能性都同样(若指针停在分界限上,则从头转动圆盘),则转动圆盘一次,指针停在B区域的概率是.BCA16. 某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击竞赛.在选拔赛中,每人射击10 次,他们 10 次成绩的均匀数及方差以下表所示.请你依据表中数据选一人参加竞赛,最适合的人选是.三、解答题 :17.某地域在一次九年级数学质量检测试题中,有一道分值为8 分的解答题,全部考生的得分只有四种,即:0 分, 3 分, 5 分, 8 分,老师为认识此题学生得分状况,从全区4500 名考生试卷中随机抽取一部分,剖析、整理此题学生得分状况并绘制了以下两幅不完好的统计图:请依据以上信息解答以下问题:(1)本次检查从全区抽取了份学生试卷;扇形统计图中a=,b=;(2)补全条形统计图;(3)该地域此次九年级数学质量检测中,请预计全区考生这道8 分解答题的均匀得分是多少?得8 分的有多少名考生?18.为认识某地域七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜欢状况,从该地域随机抽取部分七年级学生作为样本,采纳问卷检查的方法采集数据(参加问卷检查的每名同学只好选择此中一类节目),并检查获得的数据用下边的表和扇形图来表示(表、图都没制作达成)依据表、图供给的信息,解决以下问题:(1)计算出表中 a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地域七年级学生共有 47500 人,试预计该地域七年级学生中喜欢“新闻”类电视节目的学生有多少人?19. 为进一步增强和改良学校体育工作,确实提升学生体质健康水平,决定推动“一校一球队、一级一专项、一人一技术”活动计划,某校决定对学生感兴趣的球类项目(A:足球, B:篮球, C:排球, D:羽毛球, E:乒乓球)进行问卷检查,学生可依据自己的爱好选修一门,李老师对某班全班同学的选课状况进行统计后,制成了两幅不完好的统计图(如图)(1)将统计图增补完好;(2)求出该班学生人数;(3)若该校共用学生 3500 名,请预计有多少人选修足球?(4)该班班委 5 人中, 1 人选修篮球, 3 人选修足球, 1 人选修排球,李老师要从这 5 人中任选 2 人认识他们对体育选修课的见解,请你用列表或画树状图的方法,求选出的 2 人恰巧 1 人选修篮球, 1 人选修足球的概率.20.一袋中装有形状大小都同样的四个小球,每个小球上各标有一个数字,分别是1,4, 7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;而后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定获得全部可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于 4 且小于 7 的概率.第5页共7页参照答案9. D.11.答案为: 6.12.答案为.13.答案为: 0.5 .14.答案为:>.15.答案为:16.答案为:丁;17.解:( 1)24÷ 10%=240份, 240﹣ 24﹣108﹣ 48=60 份,60÷ 240=25%, 48÷ 240=20%,抽取了240 份学生试卷;扇形统计图中a=25,b=20;(2)如图:(3) 0× 10%+3× 25%+5× 45%+8× 20%=4.6 分, 4500× 20%=900名.答:这道8 分解答题的均匀得分是 4.6 分;得 8 分的有 900 名考生.18.解:( 1)162, 135;( 2) 108°;( 3)3800.19.解:( 1)检查的家长总数为: 360÷ 60%=600人,很赞成的人数: 600× 20%=120人,不赞成的人数:600﹣ 120﹣ 360﹣ 40=80 人;(2)“赞成”态度的家长的概率是60%;(3)表示家长“无所谓”的圆心角的度数为:24°.20.解:( 1)画树状图:共有 16 种等可能的结果数,它们是: 11, 41,71, 81,14, 44, 74, 84, 17, 47, 77, 87, 18, 48, 78,88;(2)算术平方根大于 4 且小于 7 的结果数为6,因此算术平方根大于 4 且小于 7 的概率 = =.。

2018年中考数学《概率》同步提分训练含答案解析

2018年中考数学《概率》同步提分训练含答案解析

2018年中考数学提分训练: 概率一、选择题1.从一副扑克牌中随机抽出一张牌,得到梅花或者K的概率是()A. B. C. D.2.一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是()A. B. C. D.3.某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A. 0B.C.D. 14.如图,有以下3个条件:①AC=AB;②AB∥CD;③∠1=∠2.从这三个条件中任选2个作为条件,另1个作为结论,则结论正确的概率是( )A. 0B.C.D. 15.从-2,3,-4,6,5中任意选两个数,记做a和b,那么点(a,b)在函数y= 的图象上的概率是()A. B. C. D.6.一个不透明的袋子里装有质地、大小都相同的3个红球和1个绿球;随机从中摸出一球,不再放回,充分搅均后再随机摸出一球。

则两次都摸到红球的概率是()A. B. C. D.7.四张分别画有平行四边形、等腰直角三角形、正五边形、圆的卡片,它们的背面都相同,现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是( )A. B. C. D.8.已知下列命题:①对顶角相等;②若a>b>0,则<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为()A. B. C. D.9.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为()A. B. C. D.10.在一个不透明的袋子里装有2个红球1个黄球,这3个小球除颜色不同外,其它都相同,贝贝同学摸出一个球后放回口袋再摸一个;莹莹同学一次摸2个球,两人分别记录下小球的颜色,关于两人摸到1个红球1个黄球和2个红球的概率的描述中,正确的是()A. B.C. D.11.10名学生的身高如下(单位:cm)159,169,163,170,166,165,156,172,165,162,从中任选一名学生,其身高超过165cm的概率是()A. 0.5B. 0.4C. 0.2D. 0.112.桌面上有A,B两球,若要将B球射向桌面任意一边的黑点,则B球一次反弹后击中A球的概率是()A. B. C. D.二、填空题13.某同学遇到一道不会做的选择题,在四个选项中有且只有一个是正确的,则他选对的概率是________.14.有7只型号相同的杯子,其中一等品4只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是________15.一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率________.16.清明节妈妈买了5只鲜肉粽、3只豆沙粽和2只蛋黄肉粽,粽子除了内部馅料不同外其它均相同.小王从中随机拿出1只,正好拿到鲜肉粽的概率是________17.小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢,”小红赢的概率是________,据此判断该游戏________(填“公平”或“不公平”)。

2018届人教版数学中考专项训练(二)概率初步(含答案)

2018届人教版数学中考专项训练(二)概率初步(含答案)
事件A
必然事件
随机事件
m的值
________
________
(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于 ,求m的值.
16.(2016·菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).
(2)如果摸出的这两个小球上数字之和为9的概率是 ,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.
参考答案与解析
1.D2.B3.C4.A5.A6.C7.C
8.B解析:∵AB=15,BC=12,AC=9,∴AB2=BC2+AC2,∴△ABC为直角三角形,∴△ABC的内切圆半径为 =3,∴S△ABC= AC·BC= ×12×9=54,S圆=9π,∴小鸟落在花圃上的概率为 = .
9. 10. 11.1512. 13. 14.
15.解:(1)42或3
(2)根据题意得 = ,解得m=2,所以m的值为2.
16.解:(1) 解析:第一道肯定能对,第二道对的概率为 ,所以锐锐通关的概率为 ;
(2) 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为 ,第二道题对的概率为 ,所以锐锐能通关的概率为 × = ;
(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为 ,乙获胜的概率为 .∵ > ,∴甲获胜的概率大,游戏不公平.
2
3
5
2
22
32

2018年中考数学真题专题分类汇编:概率初步

2018年中考数学真题专题分类汇编:概率初步

2018年中考数学真题专题分类汇编:概率初步
一.选择题(共20小题)
1.(2018?达州)下列说法正确的是()
A.“打开电视机,正在播放《达州新闻》”是必然事件
B.天气预报“明天降水概率50%,是指明天有一半的时间会下雨”
C.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2=0.3,S2=0.4,则甲的成绩更稳定
D.数据6,6,7,7,8的中位数与众数均为7
【分析】直接利用随机事件以及众数、中位数的定义以及方差的定义分别分析得出答案.
【解答】解:A、打开电视机,正在播放《达州新闻》”是随机事件,故此选项错误;
B、天气预报“明天降水概率50%,是指明天有50%下雨的可能,故此选项错误;
C、甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2=0.3,S2=0.4,则甲的成绩更稳定,正确;
D、数据6,6,7,7,8的中位数为7,众数为:6和7,故此选项错误;
故选:C.
2.(2018?长沙)下列说法正确的是()
A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上
B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件
D.“a是实数,|a|≥0”
是不可能事件
【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.
【解答】解:A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;
B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;。

人教版九年级数学中考概率专项练习及参考答案

人教版九年级数学中考概率专项练习及参考答案

人教版九年级数学中考概率专项练习夯实基础1.(2018·黑龙江齐齐哈尔)下列成语中,表示不可能事件的是()A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地A.2.(2018·湖南衡阳)已知抛一枚均匀硬币正面朝上的概率为12,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次有50次正面朝上D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故选项A错误;连续抛一枚均匀硬币10次都可能正面朝上,是一个随机事件,有可能发生,故选项B正确;因为已知抛一枚均匀硬币正面朝上的概率为12,所以大量反复抛一枚均匀硬币,平均100次出现正面朝上50次,故选项C正确;通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的,概率均为12,故选项D正确.故选A.3.(2018·广东广州)甲袋中装有2个相同的小球,分别写有数字1和2,乙袋中装有2个相同的小球,分别写有数字1和2,从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A.12B.13C.14D.164种等可能的结果:(1,1),(1,2),(2,1),(2,2),所以取出的两个小球上都写有数字2的概率是14,故答案为C.4.(2017·北京)下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1 000时,“钉尖向上”的概率一定是0.620.其中合理的是( ) A.① B.②C.①②D.①③5.(2018·浙江金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( ) A.16 B.14C.13D.712黄色扇形的圆心角度数为90°,占周角的14,∴黄色扇形面积占圆面积的14,∴指针停止后落在黄色区域的概率是14,故选B .6.(2018·山东聊城)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是 ( )A.12B.13C.23D.16:由树状图可知,所有可能出现的站法共有6种,其中小亮恰好站在中间的情况有2种,故小亮恰好站在中间的概率是26=13.7.(2018·湖北武汉)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A.14B.12C.34D.56,由表可知,共有16种等可能结果,其中两次抽取的卡片上数字之积为偶数的有12种结果,所以P (两次抽取的卡片上数字之积为偶数)=1216=34.故选C .8.(2018·四川内江)有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形又是中心对称图形的概率是 . ①⑤两个,故从中任取一张既是轴对称图形又是中心对称图形的概率是25.9.(2018·山东聊城)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到绿灯的概率是 . 解析遇到绿灯的概率是4230+3+42=1425.10.(2018·江苏盐城)端午节是我国传统佳节,小峰同学带了4个粽子(除粽馅不同外,其他均相同),其中有两个肉馅粽子、一个红枣粽子和一个豆沙粽子,准备从中任意拿出两个送给他的好朋友小悦. (1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果; (2)请你计算小悦拿到的两个粽子都是肉馅的概率. 画树状图如下,或列表:(2)从树状图或列表可以得出共有12种等可能的结果,其中小悦拿到的两个粽子都是肉馅的情况有2种结果,所以小悦拿到的两个粽子都是肉馅的概率为212=16.提升能力11.(2018·湖南益阳)2018年5月18日,益阳新建西流湾大桥竣工通车.如图,从沅江A 地到资阳B 地有两条路线可走,从资阳B 地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A 地出发经过资阳B 地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是 .A 到资阳B 的两条路分别记为M 和N ,从资阳B 到益阳火车站的三条路分别记会龙山大桥为C ,西流湾大桥为D ,龙洲大桥为E ,画树状图如下:共有6条路可走,其中经过西流湾大桥D 的路线有两种,∴P=26=13.12.(2017·四川成都)已知☉O 的两条直径AC ,BD 互相垂直,分别以AB ,BC ,CD ,DA 为直径向外作半圆得到如图所示的图形.现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P 1,针尖落在☉O 内的概率为P 2,则P1P 2= .O 的半径为1,则S ☉O =π,AO=1,AD=√2.所以S阴影=4[12π·(√22)2-(14π-12)]=2, 又因为该图形的总面积为2+π. 所以P 1=22+π,P 2=π2+π,所以P 1P 2=2π.13.(2018·山东烟台)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷,某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图.请结合图中所给的信息解答下列问题:(1)这次活动共调查了 人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为 ;(2)将条形统计图补充完整,观察此图,支付方式的“众数”是“ ”;(3)在一次购物中,小明和小亮都想从“微信”“支付宝”“银行卡”三种方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.81°(2)微信;补全条形统计图如图所示:(3)方法1:设使用“微信”支付为a ,使用“支付宝”支付为b ,使用“银行卡”支付为c ,画树状图如下:共有9种情况,符合条件的有3种,即(a ,a ),(b ,b ),(c ,c ), 故两人恰好选择同一种支付方式的概率为39=13.方法2:设使用“微信”支付为a ,使用“支付宝”支付为b ,使用“银行卡”支付为c ,列表如下:共有9种情况,符合条件的有3种,即(a ,a ),(b ,b ),(c ,c ),故两人恰好选择同一种支付方式的概率为39=13.创新拓展14.(2017·安徽名校模拟卷)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了 名学生; (2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A 类和D 类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.(2)C类女生有20×25%-2=3(人),D类男生有20×(1-15%-25%-50%)-1=1(人),补充完整条形统计图如图所示:(3)列表如下:A类中的两名男生分别记为A1和A2.共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一名男生和一名女生的概率为36=12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年初三数学中考复习概率初步专项复习练习
1. 下列事件中的不可能事件是()
A.通常加热到100℃时,水沸腾
B.抛掷2枚正方体骰子,都是6点朝上
C.经过有交通信号灯的路口,遇到红灯
D.任意画一个三角形,其内角和为360°
2.下列事件中,必然事件是()
A.抛掷一枚骰子,出现6点向上
B.两条直线被第三条直线所截,同位角相等
C.362人中至少有2个人的生日相同
D.实数的绝对值是非负数
3.下列事件中是确定事件的是( )
A.篮球运动员身高都在2米以上B.弟弟的体重一定比哥哥轻
C.今年教师节一定是晴天D.吸烟有害身体健康
4. 转动下列各转盘,指针指向红色区域的可能性最大的是( )
5.下列说法正确的是()
A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球
B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨
C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖
D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上6. 小明练习射击,共射击60次,其中有38次击中靶子,由此可估计,小明射击一次击中靶子的频率约是( )
A.38% B.60% C.63% D.无法确定
7.在抛掷一枚硬币的实验中,某小组做了1000次实验,最后出现正面的频率
为49.6%,此时出现正面的频数为( )
A .496
B .500
C .516
D .不能确定
8. 在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )
A .频率就是概率
B .频率与试验次数无关
C .概率是随机的,与频率无关
D .随着试验次数的增加,频率一般会越来越接近概率
9. 在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…,如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( )
A .①②③
B .①②
C .①③
D .②③ 10. 下列说法中,正确的是( ) A .不可能事件发生的概率为0 B .随机事件发生的概率为1
2 C .概率很小的事件不可能发生
D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次
11. 某十字路口的红绿灯时间设置为:红灯60秒,绿灯40秒,黄灯4秒.小明放学回家经过该路口时,遇到 的可能性最大.
12.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色外其他都相同,从中任意摸出一个球,则摸出 球的可能性最大,摸出 球的可能性最小.
13. 某中学有500名学生参加会考,考试成绩在60分~70分之间的共有120人,则任意抽取一名考生的成绩在这个分数段的概率为 .
9.如表记录了一名球员在罚球线上投篮的结果,那么,这名球员投篮一次,投中的概率约为 (精确到0.1).
个,黑球5个.若再放入m 个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于4
5,则m 的值为 .
15.一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中.不断重复这一过程,共摸出100次球,发现有71次摸到红球.请你估计口袋中红球的数量为 个.
16.如图所示的圆面图案是用相同半径的圆与圆弧构成的.若向圆面投掷飞镖,则飞镖落在黑色区域的概率为 .
17. 一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球.将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球 个.
参考答案:
1---10 DDDDD CADBA 11. 红灯 12. 蓝 黄 13. 0.24 0.5 14. 3 15. 7 16. 13 17. 20。

相关文档
最新文档