七年级数学上册第3章一元一次方程3.3一元一次方程的解法第3课时解含有分母的一元一次方程教案

合集下载

七年级数学上册 第3章 一元一次方程 3.3 一元一次方程的解法课件上册数学课件

七年级数学上册 第3章 一元一次方程 3.3 一元一次方程的解法课件上册数学课件

第七页,共十二页。
你能归纳出解一元二次方程的一般步骤吗?它的依据
结论 又是什么呢?
去分母
方程两边同乘以各分母的最小公倍数.注意不漏乘,特别 是不含分母的项,分子是代数式要加括号。
(等式的性质2)
去括号 要熟记去括号法则
(分配律)
移项(yí xiànɡ) 移项要变号。 (等式的性质1)
合并(hébìng)同类 项
前面的系数,即 ax=b x=
ab
解方程:(1) 3x-7(x-1)=3-2(x+3)
(2) 4x-3(20-x)=6x-7(x+2)
第二页,共十二页。
探究
解方程:71
(x+14)=
1 4
(x+20)
你有几种不同的解法?
解法(jiě fǎ)一:
去括号(kuòhào),得
1 7
x+2=
41x+5
移项,得
去括号(kuòhào),得×:×6x-1=×1-4x-
1
6x-2=6-4x+1
移项,得:6x×-4x=1×-1×+1 × 6x+4x=6+1+2
合并同类项,得:2x=1 × 10x=9
系数化为1,得:x=
1 2
×
x=
9 10
第十页,共十二页。
2、解下列(xiàliè)方程
(1)2x-61 =
5x+1 8
去分母时,方程两边
各项都乘以原分母的
移项,化简得
9x=36
最小公倍数
方程两边同除以9,得
x=4
检验,写答案。
答:甲、乙还需合做4天可以完成全部工作任务.

数学七上《第3章 一元一次方程》word教案(高效课堂)2022年人教版数学精品(2)

数学七上《第3章 一元一次方程》word教案(高效课堂)2022年人教版数学精品(2)

通渭县七年级数学下册导学案通渭县七年级数学下册导学案通渭县七年级数学下册导学案组长查阅教学反思15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系. [生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). (投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到D CA BD CABDCA B∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习(1)如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.D CAB我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.CE DC A B P3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+(2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.。

第三章《一元一次方程》教学设计(人教版初中数学七年级上册)

第三章《一元一次方程》教学设计(人教版初中数学七年级上册)

新人教版七年级上学期数学第三章一元一次方程教学内容本章主要内容包括:一元一次方程及其相关概念,一元一次方程的解法,利用一元一次方程分析和解决实际问题。

分析实际问题中的数量关系并用一元一次方程表示是始终贯穿这些内容的主线,而且始终渗透着“数学建模”和“化归”的思想方法。

通过丰富实例,从算式到方程建立一元一次方程,展开方程是刻划现实生活的有效数学模型;通过观察、归纳引出不等式的两条性质,为进一步讨论较复杂的一元一次方程的解法准备理论依据;从实际问题出发,运用等式的性质解方程,归纳“移项”、“合并”、“去括号”等法则,逐步展现求解方程的一般步骤;运用方程解决实际问题,通过探究活动,加强数学建模思想,提高学生分析问题和解决问题的能力。

本教案对列方程解决实际问题的内容作了较集中的归类讨论。

教学目标〔知识与技能〕1、理解一元一次方程及有关概念和等式的基本性质;2、熟练掌握一元一次方程的解法(数字系数)并学会运用一元一次方程解决简单的实际问题。

〔过程与方法〕经历解一元一次方程和列一元一次方程解决实际问题的过程,明确解一元一次方程和列一元一次方程的基本步骤,初步树立数学建模思想和体会化归思想的运用。

〔情感、态度与价值观〕在解决实际问题中,体会数学的应用价值,激发学习数学的欲望,提高分析问题和解决问题的能力。

重点难点一元一次方程的解法和运用是重点,列一元一次方程解决实际问题是难点。

课时分配3.1 从算式到方程…………………………………………2课时3.2 解一元一次方程的讨论(一)…………………………3课时3.3 解一元一次方程的讨论(一)…………………………4课时3.4 实际问题与一元一次方程…………………………3课时本章小结………………………………………… 2课时3.1.1一元一次方程[教学目标]理解一元一次方程的概念,会识别一元一次方程;了解方程的解,会验证方程的解;知道怎样列方程解决实际问题,感受方程作为刻画现实世界有效模型的意义。

人教版七年级数学上册第三章《3.3利用去括号解一元一次方程》教案设计

人教版七年级数学上册第三章《3.3利用去括号解一元一次方程》教案设计

人教版七年级数学上册第三章《3.3利用去括号解一元一次方程》教案设计3.3解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.掌握用一元一次方程解决实际问题的方法,会用分配律去括号解含括号的一元一次方程;(重点)2.经历应用方程解决实际问题的过程,发展分析问题、解决问题的能力,进一步体会方程模型的作用.(难点)一、情境导入复习提问:1.解一元一次方程时,最终结果一般是化为哪种形式?2.我们学了哪几种一元一次方程的解法?3.移项,合并同类项,系数化为1,要注意什么?4.一艘船从甲码头到乙码头顺水行驶用了2小时,从乙码头返回甲码头逆水行驶用了2.5小时,水流速度是3千米/时,求船在静水中的速度.(1)题目中的等量关系是______________.(2)根据题意可列方程为______________.你能解这个方程吗?二、合作探究探究点一:利用去括号解一元一次方程【类型一】用去括号的方法解方程解下列方程:(1)4x-3(5-x)=6;(2)5(x+8)-5=6(2x-7).解析:先去括号,再移项,合并同类项,系数化为1即可求得答案.解:(1)去括号得4x-15+3x=6,移项合并同类项得7x=21,系数化为1得x=3;(2)去括号得5x+40-5=12x-42,移项、合并得-7x=-77,系数化为1得x=11.方法总结:解一元一次方程的步骤是去括号、移项、合并同类项、系数化为1.在具体解方程时,不论进行到哪一步,只要得出方程的解,下面的步骤就不用再进行了.【类型二】根据已知方程的解求字母系数的值已知关于x的方程3a-x=x2+3的解为2,求代数式(-a)2-2a+1的值.解析:此题可将x=2代入方程,得出关于a的一元一次方程,解方程即可求出a的值,再把a的值代入所求代数式计算即可.解:∵x=2是方程3a-x=x2+3的解,∴3a-2=1+3,解得a=2,∴原式=a2-2a+1=22-2×2+1=1.方法总结:此题考查方程解的意义及代数式的求值.将未知数x的值代入方程,求出a 的值,然后将a的值代入整式即可解决此类问题.探究点二:应用方程思想求值当x为何值时,代数式2(x2-1)-x2的值比代数式x2+3x-2的值大6.解析:先列出方程,然后根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解.解:依题意得2(x2-1)-x2-(x2+3x-2)=6,去括号得2x2-2-x2-x2-3x+2=6,移项、合并得-3x=6,系数化为1得x=-2.方法总结:先按要求列出方程,然后按照去括号,移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.探究点三:去括号解方程的应用题今年5月,在中国东莞举办了苏迪曼杯羽毛球团体赛.在17日的决赛中,中国队战胜日本队夺得了冠军.某羽毛球协会组织一些会员到现场观看了该场比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?解析:设每张300元的门票买了x张,则每张400元的门票买了(8-x)张,根据题意建立方程,求出方程的解就可以得出结论.解:设每张300元的门票买了x张,则每张400元的门票买了(8-x)张,由题意得300x+400×(8-x)=2700,解得x=5,∴买400元每张的门票张数为:8-5=3(张).答:每张300元的门票买了5张,每张400元的门票买了3张.方法总结:解题的关键是熟练掌握列方程解应用题的一般步骤:①根据题意找出等量关系;②列出方程;③解方程;④作答.三、板书设计解一元一次方程——去括号:1.去括号的顺序:先去小括号,再去中括号,最后去大括号.简单地说,由内向外去括号,也可以由外向内去括号.2.去括号的规律:(1)将括号外的因数连同它前面的符号看成一个整体,利用分配律将它与括号内的项相乘,即a(b+c)=ab+ac;(2)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.本节课的教学先让学生回顾上一节所学的知识,复习巩固方程的解法,让学生进一步明白解方程的步骤是逐渐发展的,后面的步骤是在前面步骤的基础上发展而成.然后通过一个实际问题,列出一个有括号的方程,大胆放手让学生去探索、猜想各种方法,去尝试各种解题的途径,启发学生探索新的解题方法.3.3解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程教学目标:1.会解带有括号的方程.2.提高学生分析应用题、找相等关系的能力.教学重点:如何审题、解题,且达到对一个题目举一反三的程度,学会从不同的角度分析问题的能力.教学难点:分析数量关系、列方程.教学过程:一、提出问题当方程的形式较为复杂时,解方程的步骤也相信更多些,那么如何解带有括号的方程呢?二、分析问题1.出示课本P93问题1:引导学生探究、思考:(1)题目中涉及哪几个量?这几个量之间有什么关系?(2)以列表形式反映题意:(3)用未知数表示其中一个未知量,找出相等关系列方程,可以列出几个不同的方程?(4)小结:有两种设未知数的方法,列出两种不同的方程,以月平均用电量为未知数,则以总用电量为相等关系列方程;以上半年或下半年的总用电量为未知数,则以月平均用电量为相等关系列方程.(5)解列出的方程,并解答.2.合作探究:课本P94例1.3.合作探究:课本P94例2:(1)提供信息:顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度(2)设未知数,找相等关系,解答问题.4.课本P95练习,学生独立完成.三、课堂小结1.解含有括号的一元一次方程的方法.2.本节课中在用一元一次方程解决实际问题的一点收获.四、巩固练习1.解方程:3x-2[3(x-1)-2(x+2)]=3(18-x)2.杭州西湖建成后,某班40名同学去划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?3.学校团委组织65名团员为学校建花坛搬砖,七年级同学每人搬六块,其他年级同学每人搬8块,总共搬了400块,问七年级同学有多少人参加了搬砖?4.学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺以前跑了多少时间?五、布置作业课本P98习题3.3第1、2、6、7、8题.第2课时利用去分母解一元一次方程1.掌握含有以常数为分母的一元一次方程的解法;(重点)2.加深学生对一元一次方程概念的理解,并总结出解一元一次方程的步骤.(难点)一、情境导入1.等式的基本性质2是怎样叙述的呢?2.求下列几组数的最小公倍数:(1)2,3;(2)2,4,5.3.通过上几节课的探讨,总结一下解一元一次方程的一般步骤是什么?4.如果未知数的系数是分数时,怎样来解这种类型的方程呢?那么这一节课我们来共同解决这样的问题.二、合作探究探究点一:用去分母解一元一次方程 【类型一】 用去分母解方程(1)x -x -25=2x -53-3;(2)x -32-x +13=16. 解析:(1)先方程两边同时乘以分母的最小公倍数15去分母,方程变为15x -3(x -2)=5(2x -5)-45,再去括号,移项、合并同类项、化系数为1解方程.(2)先方程两边同时乘以分母的最小公倍数6去分母,方程变为3(x -3)-2(x +1)=6,再去括号,移项、合并同类项、化系数为1解方程.解:(1)x -x -25=2x -53-3,去分母得15x -3(x -2)=5(2x -5)-45, 去括号得15x -3x +6=10x -25-45, 移项得15x -3x -10x =-25-45-6, 合并同类项得2x =-76,把x 的系数化为1得x =-38. (2)x -32-x +13=16去分母得3(x -3)-2(x +1)=6, 去括号得3x -9-2x -2=6, 移项得3x -2x =1+9+2, 合并同类项得x =12.方法总结:解方程应注意以下两点:①去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.②去括号,移项时要注意符号的变化.【类型二】 两个方程解相同,求字母的值已知方程1-2x 6+x +13=1-2x -14与关于x 的方程x +6x -a 3=a6-3x 的解相同,求a 的值.解析:求出第一个方程的解,把求出的x 的值代入第二个方程,求出所得关于a 的方程的解即可.解:1-2x 6+x +13=1-2x -142(1-2x )+4(x +1)=12-3(2x -1)2-4x +4x +4=12-6x +3 6x =9,x =32.把x =32代入x +6x -a 3=a 6-3x ,得32+9-a 3=a 6-92, 9+18-2a =a -27, -3a =-54, a =18.方法总结:此类问题的思路是根据某数是方程的解,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程求解.探究点二:应用方程思想求值(1)当k 取何值时,代数式k +13的值比3k +12的值小1? (2)当k 取何值时,代数式k +13与3k +12的值互为相反数?解析:根据题意列出方程,然后解方程即可. 解:(1)根据题意可得3k +12-k +13=1,去分母得3(3k +1)-2(k +1)=6,去括号得9k +3-2k -2=6, 移项得9k -2k =6+2-3, 合并得7k =5, 系数化为1得k =57;(2)根据题意可得k +13+3k +12=0,去分母得2(k +1)+3(3k +1)=0, 去括号得2k +2+9k +3=0, 移项得2k +9k =-3-2, 合并得11k =-5, 系数化为1得k =-511.方法总结:先按要求列出方程,然后按照去分母,去括号,移项,合并同类项,最后把未知数的系数化为1得到原方程的解.探究点三:列一元一次方程解应用题某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)解析:(1)先设该单位参加旅游的职工有x人,利用人数不变,车的辆数相差1,可列出一元一次方程求解;(2)可根据租用两种汽车时,利用假设一种车的数量,进而得出另一种车的数量求出即可.解:(1)设该单位参加旅游的职工有x人,由题意得方程:x40-x+4050=1,解得x=360.答:该单位参加旅游的职工有360人;(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.三、板书设计解含有分母的一元一次方程(1)去分母;(2)去括号;(3)移项,合并同类项;(4)系数化为1.本节课采用的教学方法是讲练结合,通过一个简单的实例让学生明白去分母是解一元一次方程的重要步骤,通过去分母可以把系数是分数的方程转化为系数是整数的方程,进而使方程的计算更加简便.在解方程中去分母时,发现学生还存以下问题:①部分学生不会找各分母的最小公倍数,这点要适当指导;②用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项;③当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易弄错符号.3.3 解一元一次方程(二)——去括号与去分母第2课时利用去分母解一元一次方程教学目标:1.能够熟练地解含有分数系数的方程.2.进一步提高列一元一次方程解决实际问题的能力.教学重点:1.分析实际问题的方法.2.去分母时符号的处理.教学难点:分析实际问题中的数量关系、列方程.教学过程:一、创设情境,提出问题出示课本P95问题2:(1)小组合作探究,列出方程.(2)x+x+x+x=33的解法有几种方法?每种解法的依据是什么?解法1:将方程左边通分得:x=33,即x=33,x=33×,x=.解法2:将方程两边都乘42去掉分母,得:28x+21x+6x+42x=1386,x=.(3)比较两种解法.二、合作探究解方程:-2=-.(1)如何去分母?依据是什么?(2)方程两边都乘10的过程中有哪些注意事项?(3)交流解题过程,指出问题,并强调注意事项.(4)解一元一次方程的一般步骤:去分母—去括号—移项—合并同类项—系数化1.课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天,”就因校长叫他听一个电话而离开教室.调皮的小刘说:“让我试一试”,上去添了“两人合作需几天完成?”有同学反对:“这太简单了!”但也引起了大家的兴趣,于是各自试了起来……请同学们尝试着尽可能多地补全此题,并与同学们一起交流各自的做法.举一反三:(1)为庆祝校运会开幕,七年级(1)班学生接受了制作校旗的任务.原计划一半同学参加制作,每天制作40面.而实际上,在完成了三分之一以后,全班同学一起参加制作,结果比原计划提前一天半完成任务.假设每人的制作效率相同,问共制作小旗多少面?(2)小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,便随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站.已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?(3)将上述两题加以比较,有否相通之处?可否一题多解?并探究设未知数的技巧性.三、课堂练习1.完成课本P97例3,解下列方程:(1)-1=2+;(2)3x+=3-.交流解题过程,强化注意事项.四、综合应用,巩固提高1.完成课本P98练习.2.解方程:(1)-=2;(2)-y+5=-.(3)=+1;(4){[x(+3)+5]+7}=1.4.一部稿件,甲打字员单独打20小时可以完成,甲、乙两打字员合打,12小时可以完成.现由两人合打7小时,余下部分由乙完成,还需多少小时?5.碧空万里,一群大雁在飞翔,迎面又飞来一只小灰雁,它对群雁说:“你们好,百只雁!你们百雁齐飞,好气派!可怜我是孤雁独飞.”群雁中一只领头的老雁说:“不对!小朋友,我们远远不足100只.将我们这一群加倍,再加上半群,又加上四分之一群,最后还得请你也凑上,那才一共是100只呢,请问这群大雁有多少只?6.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾处理厂处理.已知甲厂每时可处理垃圾55吨,所需费用550元;乙厂每时可处理垃圾45吨,所需费用495元.甲、乙两厂的工作时间均不超过10时,请你设计一个问题,并请你的好朋友解答.五、课时小结可通过以下问题引导学生小结:1.去分母解一元一次方程时要注意什么?2.去分母解一元一次方程时,在方程两边同时乘以各分母最小公倍数的目的是什么?11。

七年级数学上册(湘教版)第3章 一元一次方程 教案

七年级数学上册(湘教版)第3章 一元一次方程 教案

第3章 一元一次方程 3.1 建立一元一次方程模型1.通过探究,了解方程及一元一次方程的概念并能识别、了解什么是方程的解并会检验. 2.能根据实际问题中的数量关系,设未知数,列出一元一次方程.阅读教材P 83~84,完成下列问题.(一)知识探究1.方程的概念:我们把含有未知数的等式叫做方程.2.只含有一个未知数,且未知数的次数(即指数)是 1 的整式方程,叫一元一次方程.任意写出一个以y 为未知数的一元一次方程:__答案不唯一,如y +1=2__.3.能使方程左、右两边相等的未知数的值叫做方程的解. (二)自学反馈1.如图是一个长方体形的电视机包装盒,它的底面宽为1.5米,长为1.8米,且包装盒的表面积为8.5平方米,设这个电视机包装盒的高为x ,则可以得到方程:__2(1.5×1.8+1.5x +1.8x)=8.5.2.小英把10元钱递给营业员买钢笔和铅笔,下面是小英和营业员的对话,你能根据他们的对话的内容算出铅笔是多少元一支吗?小英:买4支铅笔和一支钢笔;营业员:一支钢笔比一支铅笔多4元,应找你2元.解:设一支铅笔x 元,则一支钢笔要(x +4)元,依题意可得方程:4x +x +4=10-2____.3.已知方程:y -1=1y ,12x +6=0,x 2-3x +2=0,x -2y =1,x =3其中一元一次方程的个数是(B )A .1 个B .2 个C .3个D .4 个4.检验下列括号里数是不是它们前面的方程的解. x =10-4x (x =1,x =2).解:把x =1代入原方程得,左边=1,右边=6,左边≠右边,所以x =1不是方程x =10-4x 的解. 把x =2代入原方程得,左边=2,右边=2,左边=右边,所以x =2是方程x =10-4x 的解.活动1 小组讨论例1 判断下列式子是不是方程,是打“√”,不是打“×”. (1)5x +3y -6x =7 (√) (2)4x -7 (×) (3)5x>3 (×) (4)6x 2+x -2=0 (√) (5)1+2=3 (×) (6)-5x-m =11 (√)例2 已知2x m +1+3=7是关于x 的一元一次方程,则m =0. 例3 检验下列x 的值是不是方程2.5x +318=1 068的解. (1)x =300; (2)x =330.解:(1)把x =300代入原方程得, 左边=2.5×300+318=1 068. 左边=右边.所以x =300是方程2.5x +318=1 068的解. (2)把x =330代入原方程得,左边=2.5×330+318=1143. 左边≠右边.所以x =330不是方程2.5x +318=1 068的解. 活动2 跟踪训练1.下列四个式子中,是一元一次方程的是(B ) A .2x -6 B .x -1=0 C .2x +y =5D .12x +3=1 2.若x =2是关于x 的方程2x +3m -1=0的解,则m 的值为(B ) A .-0.5 B .-1 C .0 D .13.下列方程中,解为x =4的方程是(C ) A .7x =3x -4 B .3+x =-1 C .x -5=3-xD .x2=8 4.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元.若设x 个月后他能捐出100元,则下列方程中能正确计算出x 的是(A )A .10x +20=100B .10x -20=100C .20-10x =100D .20x +10=100活动3 课堂小结本课时主要学习了哪些知识与方法?有何收获和感悟?还有哪些疑惑?3.2 等式的性质1.通过探究,了解什么是等式,等式与方程的区别和联系.2.掌握等式的两条性质,并能运用这两条性质对等式进行变形.(重难点) 3.经历探究,培养观察、分析、归纳的数学思维和能力.阅读教材P 87~88,完成下列问题.(一)知识探究1.探究:观察下图中左右两个天平,你能发现什么规律?从左往右看,是在平衡的天平的两边都加上同样的量,结果天平还是平衡; 从右往左看,是在平衡的天平的两边都减去同样的量,结果天平还是平衡.等式性质1:等式两边都加上(或减去)同一个数(或式子),所得结果仍是等式.2.探究:观察下图中左右两个天平,你能发现什么规律?从左往右看,是在平衡的天平的两边都乘以同一个量,结果天平还是平衡; 从右往左看,是在平衡的天平的两边都除以同一个量,结果天平还是平衡.等式性质2:等式两边都乘(或除以)同一个数(或式)(除数或除式不能为0),所得结果仍是等式. (二)自学反馈1.把方程12x =1变形为x =2,其依据是(B )A .等式性质1B .等式性质2C .分式的基本性质D .不等式的性质1 2.下列说法中,正确的个数是(C )①若mx =my ,则mx -my =0;②若mx =my ,则x =y ;③若mx =my ,则mx +my =2my ;④若x =y ,则mx =my.A .1个B .2个C .3个D .4个3.(1)若2x -a =3,则2x =3+a ,这是根据等式性质1,在等式两边同时加上a . (2)若-2x =4,则x =-2,这是根据等式性质2,在等式两边同时除以2.活动1 小组讨论例1 填空,并说明理由.(1)如果a +2=b +7,那么a =____________; (2)如果3x =9y ,那么 x =____________; (3)如果12a =13b ,那么3a =____________.解:(1)因为a +2=b +7 ,由等式性质1可知, 等式两边都减去2,得a + 2 - 2=b + 7 -2, 即 a =b + 5 .(2)因为3x =9y ,由等式性质2可知,等式两边都除以3,得 3x 3=9y 3, 即x =3y.(3)因为12a =13b ,由等式性质2可知,等式两边都乘6,得 12a ×6=13b ×6, 即3a =2b .例2 判断下列等式变形是否正确,并说明理由. (1)如果a -3=2b -5,那么a =2b -8; (2)如果2x -14=4x -25,那么10x -5=16x -8.解:(1)错误.由等式性质1可知,等式两边都加上3,得 a -3+3=2b -5+3,即a =2b -2. (2)正确.由等式性质2可知,等式两边都乘20,得 2x -14×20=4x -25×20, 即5(2x -1)=4(4x -2). 去括号,得10x -5=16x -8.活动2 跟踪训练1.下列变形不正确的是(D ) A .若x -1=3,则x =4B .若3x -1=x +3,则2x -1=3C .若2=x ,则x =2D .若5x -4x =8,则5x +8=4x2.如果a =b ,那么下列等式一定成立的是(B ) A .a -c =c -b B .ac +b =bc +a C .a c =b cD .a b=1 3.如图,天平中的物体a 、b 、c 使天平处于平衡状态,则物体a 与物体c 的重量关系是(B )A .2a =3cB .4a =9cC .a =2cD .a =c4.已知x 、y 都是整数,利用等式性质,将下列各小题中的等式进行变形,然后填空.(1)如果x +y =0,那么x =-y ,这就是说,如果两个数的和为0,那么这两个数互为相反数. (2)如果x =-y ,那么x +y =0,这就是说,如果两个数互为相反数,那么这两个数的和为0. (3)如果xy =1,那么x =1y ,这就是说,如果两个数的积为1,那么这两个数互为倒数.(4)如果x =1y ,那么xy =1,这就是说,如果两个数互为倒数,那么这两个数的积为1.活动3 课堂小结本课时主要学习了哪些知识与方法?有何收获和感悟?还有哪些疑惑?3.3 一元一次方程的解法 第1课时 移项、合并同类项1.通过探究,领会移项的实质就是等式的变形,记得移项一定要变号. 2.能依据等式性质1,运用移项法则解一元一次方程.(重难点)阅读教材P 90~91,完成下列问题. (一)知识探究1.利用等式的性质1,观察下列变形过程: (1)方程5x -2=8两边都加上2, 得5x -2+2=8+2,即5x =8+2.(2)方程4x =3x +50两边都减去3x , 得4x -3x =3x +50-3x ,即4x -3x =50.归纳:把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项.必须牢记,移项要变号. 2.解方程:4x -5=2x +3. 解:移项,得4x -2x =3+5, 合并同类项,得2x =8, 两边都除以2,得x =4.检验:把x =4代入原方程左、右两边, 左边=4×4-5=11, 右边=2×4+3=11, 左边=右边,因此,x =4是原方程的解.归纳:利用移项解一元一次方程的一般步骤:移项→合并同类项→系数化为1. (二)自学反馈1.方程3x -7=x +3,移项得(A )A .3x -x =7+3B .3x +x =7+3C .3x -x =-7+3D .3x +x =-7+3 2.方程6x =3+5x 的解是(B ) A .x =2 B .x =3 C .x =-2 D .x =-3活动1 小组讨论 例 解下列方程: (1)4x +3=2x -7 ; (2)-x -1=3-12x.解:(1)移项,得4x -2x =-7-3, 合并同类项,得2x =-10, 两边都除以2,得x =-5.检验:把x =-5分别代入原方程的左、右两边, 左边=4×(-5)+3=-17, 右边=2×(-5)-7=-17, 左边=右边.所以 x =-5 是原方程的解. (2)移项,得-x +12x =3+1.合并同类项,得-12x =4.两边都乘-2,得x =-8.检验:把x =-8分别代入原方程的左、右两边, 左边=(-8)-1=7, 右边=3-12×(-8)=7,左边=右边.所以x =-8 是原方程的解. 活动2 跟踪训练1.方程3x -1=8的解是(A )A .x =3B .x =4C .x =5D .x =62.若x =4是关于x 的方程x2-a =4的解,则a 的值为(D )A .-6B .2C .16D .-23.代数式1-2a 与a -2的值相等,则a 等于(B ) A .0 B .1 C .2 D .3 4.解下列方程: (1)7u -3=5u -4; 解:u =-12.(2)2.4y +2y +2.4=6.8. 解:y =1.活动3 课堂小结本课时主要学习了哪些知识与方法?有何收获和感悟?还有哪些疑惑?1.通过探究,学习并了解“去括号法则”是解方程的重要步骤. 2.能准确而熟练地运用“去括号法则”解带有括号的方程.(重难点)阅读教材P 92~93,完成下列问题.解方程“去括号”这一变形是运用了什么根据?去括号要注意什么? (一)知识探究要去括号,就要根据去括号法则及乘法分配律,特别是当括号前是“-”号时,去括号时,各项都要变号,若括号前有数字,则要乘遍括号内所有项,不能漏乘并注意符号.(二)自学反馈 1.解方程:(1)2(x -2)=-(x +3); (2)2(x -4)+2x =7-(x -1); (3)-3(x -2)+1=4x -(2x -1). 解:(1)x =13.(2)x =165.(3)x =65.2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?解:初一有60人参加了搬砖.去括号不能漏乘并注意符号.活动1 小组讨论例 解方程:3(2x -1)=3x +1. 解:去括号,得 6x -3=3x +1, 移项,得6x -3x =1+3, 合并同类项,得3x =4, 两边都除以3,得x =43.因此,原方程的解是x =43.活动2 跟踪训练 1.解方程:(1)5(x +2)=2(5x -1);解:x =125.(2)4x +3=2(x -1)+1;解:x =-2.(3)(x +1)-2(x -1)=1-3x ;解:x =-1.(4)2(x -1)-(x +2)=3(4-x). 解:x =4.2.学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺以前跑了多少时间?解:小刚在冲刺以前跑了1分钟. 活动3 课堂小结1.通过这节课,你在用一元一次方程解决实际问题方面又获得了哪些收获? 2.去括号解一元一次方程要注意什么?1.通过探究,掌握并运用等式性质2正确去分母解一元一次方程.(重难点) 2.了解一元一次方程解法的一般步骤.(重难点)阅读教材P 93~95,完成下列问题.(一)知识探究1.去分母的关键在于:方程两边同时乘以各分母的最小公倍数. 2.去分母的根据是等式的性质2,去分母时两边同乘各分母的最小公倍数,通常要将分子、分母看成一个整体,用括号括起来,去分母时不要漏乘每一项.3.含有分母的方程的解法的一般步骤为:①去分母,②去括号,③移项,④合并同类项,⑤系数化为1.(二)自学反馈1.解方程:3x +x -12=x +14-2x -13.解:两边都乘以12,去分母,得12×3x +6(x -1)=3(x +1)-4(2x -1).去括号,得36x +6x -6=3x +3-8x +4. 移项,得36x +6x -3x +8x =3+4+6. 合并同类项,得47x =13. 系数化为1,得x =1347.2.解方程:x -14+1=2-x +36.解:x =95.去分母时不要漏乘每一项,去分母后分子是多项式的要用括号括起来.活动1 小组讨论例 解方程:3x -12-2-x5=x.解:去分母,得5(3x -1)-2(2-x)=10x.去括号,得15x -5-4+2x =10x. 移项,合并同类项,得7x =9. 方程两边都除以7,得x =97.因此,原方程的解是x =97.活动2 跟踪训练 1.解方程:(1)5x -14=3x +12-2-x 3;解:x =-17.(2)2x +13-x +26=1;解:x =2.(3)3x -2x -12=2-x -25.解:x =1922.2.k 取何值时,代数式k +13的值比3k +12的值小1?解:k +13=3k +12-1,k =57.活动3 课堂小结1.去分母解一元一次方程时要注意什么?2.去分母解一元一次方程时,在方程两边同时乘以各分母最小公倍数的目的是什么?3.4 一元一次方程模型的应用 第1课时 和、差、倍、分问题1.掌握建立一元一次方程模型解应用题的方法步骤,能列方程解决简单的和、差、倍、分问题.(重难点) 2.通过列方程解应用题,培养分析问题,解决实际问题的能力.3.通过列方程解应用题,体会代数方法的优越性,理解列方程解决问题是数学联系实际的重要方面.阅读教材P 98~99,完成下列问题.(一)知识探究1.和、差、倍、分问题寻找相等关系时:抓住关键词列方程,常见的关键词有多、少、和、差、不足、剩余以及倍,增长率等.2.运用一元一次方程模型解决实际问题的步骤为:实际问题――→分析等量关系,设未知数建立方程模型―→解方程―→检验解的合理性.(二)自学反馈1.已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数.解:12.2.在甲处劳动的有27人,在乙处劳动的有19人,现调20人去支援,使甲处人数为乙处人数的两倍,应调往甲、乙两处各多少人?解:17人,3人.活动1 小组讨论例 某房间里有四条腿的椅子和三条腿的凳子共16个, 如果椅子腿数与凳子腿数的和为60条,有几张椅子和几条凳子?分析 本问题中涉及的等量关系有: 椅子数+凳子数=16,椅子腿数+凳子腿数=60.解:设有x 张椅子,则有(16-x)条凳子. 根据题意,得4x + 3(16-x)=60 . 去括号,得 4x +48-3x =60 . 移项,合并同类项,得 x =12 . 凳子数为16-12=4(条). 答:有12张椅子,4条凳子.活动2 跟踪训练1.甲车队有15辆汽车,乙车队有28辆汽车,现调来10辆汽车分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车?解:分配到甲车队4辆车,分配到乙车队6辆车. 2.自去年3月西双版纳州启动农村义务教育学生营养改善计划以来,某校根据上级要求配备了一批营养早餐.某天早上七年级(1)班分到牛奶、面包共7件,每件牛奶24元,每件面包16元,共需144元.求这天早上该班分到多少件牛奶,多少件面包?解:该班分配到牛奶4件,面包3件.3.3月12日是植树节,初三年级170名学生去参加义务植树活动.如果男生平均一天能挖树坑3个,女生一天能种树7棵,正好使每个树坑种上一棵树,问该年级的男女各有多少人?解:该年级男生119人,女生51人.活动3 课堂小结谈谈这节课你有什么收获?第2课时 销售问题和本息问题1.学会列一元一次方程解决销售问题和储蓄问题.(重难点)2.培养运用代数方法解决实际问题的能力,掌握解题技巧和能力.(重难点)3.充分感受到用代数方法解应用题的优越性,从而提高学习数学的趣味性,培养正确思考,认真分析的良好习惯.阅读教材P 99~100,完成下列问题. (一)知识探究1.利润=售价-进价,售价=标价×折数10,利润率=利润÷成本×100%.2.利息=本金×利率×期数;本息和=本金+利息.(二)自学反馈1.某商店若将某商品按标价的八折出售,则此时该商品的利润率是10%,已知该商品的进价是1 000元,求该商品的标价.解:设该商品的标价是x 元,依题意,得 0.8x -1 000=1 000×10%.解得x =1 375.答:该商品的标价是1 375元.2.小明的爸爸为他存了一个三年期的教育储蓄,开始存入5 000元,三年后得到本息和5 405元,则这个三年期的教育储蓄的年利率为多少?解:设这个三年期的教育储蓄的年利率为x ,依题意,得5 000+3×5 000x =5 405. 解得x =0.027.0.027×100%=2.7%.答:这个三年期的教育储蓄的年利率为2.7%.活动1 小组讨论例1 某商店若将某型号彩电按标价的八折出售,则此时每台彩电的利润率是5%. 已知该型号彩电的进价为每台4 000元,求该型号彩电的标价.分析:本问题中涉及的等量关系有:售价-进价=利润. 解:设每台彩电标价为x 元,根据等量关系,得0.8x -4 000=4 000×5%. 解得x =5 250.答:该型号彩电标价为每台5 250元.例2 2016年10月1日,杨明将一笔钱存入某银行,定期3年,年利率是5%. 若到期后取出,他可得本息和23 000元,求杨明存入的本金是多少元.分析:顾客存入银行的钱叫本金,银行付给顾客的酬金叫利息.利息=本金×年利率×年数.本问题中涉及的等量关系有:本金 + 利息=本息和.解:设杨明存入的本金是 x 元,根据等量关系,得 x +3×5%x =23 000, 化简,得 1.15x =23 000.解得 x =20 000.答:杨明存入的本金是20 000元. 活动2 跟踪训练1.某人把2 000元作为教育储蓄存入银行,年利率为2.88%,到期时共得到利息345.6元(不扣税),他一共存了多少年?解:6年.2.某商品的进价是1 000元,售价为1 500元,由于情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么商店可降多少元出售此商品?解:最多可降价450元出售.3.某商场将某种DVD产品按进价提高35%,然后打出“九折酬宾,外送50元打的费”的广告,结果每台DVD 仍获利208元,则每台DVD的进价是多少元?解:每台DVD进价1 200元.活动3课堂小结谈谈这节课你有什么收获?第3课时行程问题1.通过探究,学会列一元一次方程解决行程问题中的相遇问题和追及问题.(重难点)2.通过列方程解应用题培养学生运用代数方法解决实际问题的能力,掌握解题技巧.(重难点)阅读教材P101~102,完成下列问题.(一)知识探究1.速度×时间=路程.2.相遇问题(甲、乙相向而行)的相等关系是:甲走的路程+乙走的路程=全路程.3.追及问题(甲、乙同向而行,同地不同时)的相等关系是:甲的时间=乙的时间-时间差;甲的路程=乙的路程.4.追及问题(同向而行,同时不同地)的相等关系是:甲的时间=乙的时间;甲走的路程-乙走的路程=原来甲、乙相距的路程.(二)自学反馈1.两地相距500米,小红和小明同时从两地相向而行,小红每分钟行60米,小明每分钟行65米,几分钟相遇?(B)A.3 B.4C.5 D.62.甲乙两人在相距12千米的A,B两地同时出发,同向而行.甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍.几小时后乙能追上甲?解:设x小时后乙追上甲,依题意,得3×4x-4x=12.解得x=1.5.答:1.5小时后乙追上甲.活动1小组讨论例小明与小红的家相距20 km,小明从家里出发骑自行车去小红家,两人商定小红到时候从家里出发骑自行车去接小明. 已知小明骑车的速度为13 km/h,小红骑车的速度是12 km/h.(1)如果两人同时出发,那么他们经过多少小时相遇?(2)如果小明先走30 min,那么小红骑车要走多少小时才能与小明相遇?分析:由于小明与小红都从家里出发,相向而行,所以相遇时,他们走的路程的和等于两家之间的距离.不管两人是同时出发,还是有一人先走,都有小明走的路程+小红走的路程=两家之间的距离(20 km).(1)如果两人同时出发,如图所示(2)如果小明先走30 m in,如图所示解:(1)设小明与小红骑车走了x h后相遇,则根据等量关系,得13x +12x=20 .解得x=0.8 .答:经过0.8 h他们两人相遇.(2)设小红骑车走了t h后与小明相遇,则根据等量关系,得13(0.5 +t)+12t=20 .解得t=0.54 .答:小红骑车走0.54 h后与小明相遇.活动2跟踪训练1.王丽要从自己家骑自行车到外婆家,如果她的速度为9 km/h,那么到预定时间离外婆家还有1 km,如果她的速度为12 km/h,那么比预定时间少用10 min就可到外婆家,求预定时间和王丽家到外婆家的路程.解:预定时间为60 min;到外婆家的路程为10 km.2.田径场周长为400米,小明跑步的速度是爷爷的53倍,他们从同一起点沿跑道的同一方向同时出发,5 min后小明第一次追上了爷爷,求小明和爷爷跑步的速度.解:小明跑步的速度为200米/分,爷爷跑步的速度为120米/分.活动3课堂小结谈谈这节课你有什么收获?第4课时分段计费问题和方案问题1.通过探究,学会列一元一次方程解决分段计费、间隔问题及方案决策问题.(重难点)2.培养运用代数方法解决实际问题的能力,掌握解题技巧.(重难点)3.增强节约用水、节约资源的意识.阅读教材P103~104,完成下列问题.自学反馈1.为了节约用电,某地规定用电不超过140度,按每度0.57元收费;如果超过140度,超过部分按每度0.68元收费.小李家7月份的电费平均每度为0.60元,求他家7月份用电多少度.解:192.5.2.某市乘公交车(非空调)每次需投币1.5元或者购买IC卡,每次刷卡扣款1.35元,但办理IC卡时需付工本费15元.问需乘坐公交车多少次时两种收费方式的收费一样?当超过这个次数后哪种收费方式较合算?解:100次,购买IC卡合算.活动1小组讨论例1为鼓励居民节约用水,某市出台了新的家庭用水收费标准,规定:所交水费分为标准内水费与超标部分水费两部分,其中标准内水费为1.96 元/t,超标部分水费为2.94元/t. 某家庭6月份用水12 t,需交水费27.44元.求该市规定的家庭月标准用水量.解:由于1.96×12=23.52(元),小于27.44元,因此所交水费中含有超标部分的水费,即月标准内水费+超标部分的水费=该月所交水费.设家庭月标准用水量为x t,根据等量关系,得1.96x +(12-x)×2.94=27.44.解得x=8 .因此,该市家庭月标准用水量为8 t.例2现有树苗若干棵,计划栽在一段公路的一侧,要求路的两端各栽1棵,并且每2棵树的间隔相等. 方案一:如果每隔5 m栽1棵,那么树苗缺21棵;方案二:如果每隔5.5 m栽1棵,则树苗正好栽完. 根据以上方案,请算出原有树苗的棵数和这段路的长度.分析:观察下面植树示意图,想一想:(1)相邻两树的间隔长与应植树的棵数有什么关系?(2)相邻两树的间隔长、应植树棵数与路长有怎样的数量关系?设原有树苗x 棵,由题意可得下表:方案间隔长应植树数路长一 5 x+21 5(x+21-1)二 5.5 x 5.5(x-1)本题中涉及的等量关系有:方案一的路长=方案二的路长解:设原有树苗x棵,根据等量关系,得5(x+21-1)=5.5(x-1) ,即5(x+20)=5.5(x-1).化简,得-0.5x=-105.5.解得x=211.因此,这段路长为5×(211+20)=1 155(m).答:原有树苗211棵,这段路的长度为1 155 m.活动2跟踪训练1.你坐过出租车吗?请你帮小明算一算.杭州市出租车收费标准是:起步价(3千米以内)10元,超过3千米的部分每千米1.20元,小明乘坐了x(x>3)千米的路程.(1)请写出他应付费用的表达式;解:10+1.2(x-3).(2)若他支付的费用是23.2元,你能算出他乘坐的路程吗?解:14.2.某厂招聘运输工,有两种方法来结算工资,一种是每月基本工资300元,每运1吨货给15元;另一种是没有基本工资,每运1吨货给20元.问每月运多少吨货时两种结算方法给的工资一样多?如果某工人每月可运货70吨,那么用哪种结算方法可多拿工资?解:60吨,用第二种结算方法可多拿工资.活动3课堂小结本课时主要学习了哪些知识与方法?有何收获和感悟?还有哪些疑惑?。

湘教版七年级上册数学第3章 一元一次方程 利用去分母解一元一次方程

湘教版七年级上册数学第3章 一元一次方程 利用去分母解一元一次方程

10.解下列方程: (1)2x-3 1=x+4 2;
解:去分母,得 4(2x-1)=3(x+2).去括号,得 8x-4=3x+6. 移项,得 8x-3x=4+6.合并同类项,得 5x=10.系数化为 1,得 x=2.
(2)2x-2 1=x+4 2-1;
解:去分母,得 2(2x-1)=x+2-4.去括号,得 4x-2=x+2-4.移项,得 4x-x=2+2-4. 合并同类项,得 3x=0.系数化为 1,得 x=0.
17.先阅读,后解题: |-3|=3 表示-3 的绝对值为 3,|+3|=3 表示+3 的绝对值 为 3,如果|x|=3,那么 x=3 或 x=-3.若解方程|x+1|=3, 可将绝对值符号内的 x+1 看成一个整体,则可得 x+1=3 或 x+1=-3,分别解方程可得 x=2 或 x=-4. 利用上面的知识,解答下列问题:
12.当 x=___-__2___时,代数式 6+x2与x-2 8的值互为相反数.
【点拨】根据题意可列方程 6+x2+x-2 8=0,去分母, 得 12+x+x-8=0,移项、合并同类项,得 2x=-4, 两边都除以 2,得 x=-2,即当 x=-2 时, 代数式 6+x2与x-2 8的值互为相反数.
去括号,得 2|2x-3y| +4-5|2x-3y|+5=5-2|2x-3y|,
移项,得 2|2x-3y|-5|2x-3y|+ 2|2x-3y|=5-4-5,
合并同类项,得-|2x-3y|=-4, 两边都除以-1,得 |2x-3y|=4, 所以 2x-3y=4 或 2x-3y=-4, 当 2x-3y=4 时,6x-9y+3=3(2x-3y)+3=3×4+3=15; 当 2x-3y=-4 时, 6x-9y+3=3(2x-3y)+3=3×(-4)+3=-9. 所以代数式 6x-9y+3 的值为 15 或-9.

人教版数学七年级上册第三章3.3解一元一次方程(二)——去括号与去分母

人教版数学七年级上册第三章3.3解一元一次方程(二)——去括号与去分母
方法总结:对于此类阶梯收费的题目,需要弄清楚 各阶段的收费标准,以及各节点的费用.然后根据缴 纳费用的金额,判断其处于哪个阶段,然后列方程 求解即可.
1. 对于方程 2( 2x-1 )-( x-3 ) =1 去括号正确的

(D)
A. 4x-1-x-3=1
B. 4x-1-x +3=1
C. 4x-2-x-3=1
2
10 5
去分母(方程两边同乘各分母的最小公倍数)
5(3x 1) 10 2 (3x 2) 4x
去括号 15x 5 20 3x 2 4x
移项
15x 3x 4x 2 5 20 合并同类项
16x 13
系数化为1
x 13 16
下列方程的解法对不对?如果不对,你能找出错在
解:设寺内有x个僧人,依题意得 1 x 1 x 364. 34
解得x=624.
答:寺内有624个僧人.
1. 方程 3 5x 7 x 17 去分母正确的是
(C)
2
4
A. 3-2(5x+7) = -(x+17)
B. 12-2(5x+7) = -x+17
C. 12-2(5x+7) = -(x+17)
七年级数学上(RJ)
第三章 一元一次方程
3.3 解一元一次方程(二) ——去括号与去分母
第1课时 利用去括号解一元一次方程
化简下列各式: (1) (-3a+2b) +3(a-b); (2) -5a+4b-(-3a+b).
解:(1) 原式=-b;(2) 原式=-2a+3b.
去括号法则: 去掉“+ ( )”,括号内各项的符号不变. 去掉“– ( )”,括号内各项的符号改变.

七年级数学上册第3章一元一次方程33一元一次方程的解法第3课时利用去分母解一元一次.docx

七年级数学上册第3章一元一次方程33一元一次方程的解法第3课时利用去分母解一元一次.docx

第3课时利用去分母解一元一次方程1.掌握含有以常数为分母的一元一次方程的解法;(重点)2.加深学生对一元一次方程概念的理解,并总结出解一元一次方程的步骤.(难点)一、情境导入1.等式的基本性质2是怎样叙述的呢?2.求下列儿组数的最小公倍数:(1)2, 3;(2)2, 4, 5.3.通过上几节课的探讨,总结一下解一元一次方程的一般步骤是什么?4.如果未知数的系数是分数时,怎样來解这种类型的方程呢?那么这一节课我们來共同解决这样的问题.二、合作探究探究点一:用去分母解一元一次方程【类型_]用去分母解力程解方程:x~22^—5~^~= 3 3;卄1 1=&•解析:(1)先方程两边同时乘以分母的最小公倍数15去分母,方程变为15x—3(x—2) =5(2/—5)—45,再去扌舌号,移项、合并同类项、化系数为1解方程;(2)先方程两边同「时乘以分母的最小公倍数6去分母,方程变为3(^-3) —2匕+1) =6, 再去括号,移项、合并同类项、化系数为1解方程.解:去分母得15/—3(x—2) =5(2x—5) — 45, 去括号得15 抹一3/+6=10/—25—45, 移项得15x—3x—10x=—25—45 —6, 合并同类项得2x=—76,把x的系数化为1得x=—38;3去分母得3a-3) -2U+1)=1,去括号得3^—9—2%—2= 1,移项得3x—2x= 1 +9 + 2,「合并同类项得:x=\2.方法总结:解方•程应注意以下两点:①去分母时,方程两边同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为.一个整体加上括号.②去括号,移项时要注意符号的变化. [类型二]两个方程解相同,求字母,的值 日的值.解析:求出第一个方程的解,把求出的x 的值代入第二个方•程,求出所得关于日的方 程的解即可.2^-142(1-2^)+4(^+1) =12-3 (2^-1)2—4卄 4卄 4=12 — 6卄 36^=9,— 3 八、、 ,6/—日 a把 x=-代入 x+—-—=-—3%,9 + 18-2a=a-27,—3 日=—54,日=1&方法总结:此类问题的思路是根据某数是方程的解,则可把已知解代入方程的未知数川, 使未知数转化为已知数,从而建立起未知系数的•方程求解.探究点二:•应用方程思想求值- 1 Q 心 1(1)当R 取何值时,代数式于的值比一^解析:根据题意列出方程,然后解方程即可.去分母得 3 (3A+1)-2 (&+1) =6, 去括号得9斤+3—2斤一2 = 6, 移项得9斤一2£=6+2 — 3,合并得7斤=5,系数化为1得k=〒去分母得 2(&+1) +3 (3A+1)=0, 去括号得2&+2+9斤+3 = 0, 移项得 2k~\~9k=—3—2, 合并得1必=一5,已知方程上尹+斗丄=1 与关于x 的方程 卄咛^=#—3%的解相同,求解: 的值小1? (2)当斤取何值时,代数式丁与亍的值互为相反数?解: - 1(1)根据题意可得1 (2)根据题意可得一l3A+1 3系数化为1得k=~—方法总结:先按要求列出方程,然后按照去分母,去括号,移项,合并同类项,最后把未知数的系数化为1得到原方程的解.探允点三:列一元一次方程解应用题某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.(1)该「单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如冇可能,两种车各租多少辆?(此问可只写结果,不写分析过程)解析:(1)先设该单位参加旅游的职工有*人,利用人数不变,车的辆数相差1,可列出一元一次方程求解;(2)可根据租用两种汽车时,利用假设一种车的数量,进而得出另一种车的数量求出即可.X x+ 4 0解:(1)设该单位参加旅游的职工有无人,由题意得方程:—=1,解得x=360.40 50答:该单位参加旅游的职工有360人;(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.方法总结:解题关键「是要读懂题FI的意思,根据题FI给出的条件,找出合适的等量关系,列出方程再求解.三、板书设计解含有分母的一元一次方程(1)去分母;(2)去括号;(3)移项,合并同类项;(4)系数化为1.本节课采用的教学方法是讲练结合,通过一个简单的实例让学生明白去分母是解一元一次方程的重要步骤,通过去分母可以把系数是分数的方程转化为系数是整数的方程,进而使方程的计算更加简便.在解方程屮去分母时,发现学生还存以下问题:①部分学生不会找各分母的最小公倍数, 这点要适当指导;②用各分母的最小公倍数乘以方程两边的项时,漏•乘不含分母的项;③ 当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易弄错符号.。

天桥区十中七年级数学上册第3章一元一次方程3.3一元一次方程的解法第3课时解含有分母的一元一次方程教

天桥区十中七年级数学上册第3章一元一次方程3.3一元一次方程的解法第3课时解含有分母的一元一次方程教

第3课时解含有分母的一元一次方程【知识与技能】1.掌握解一元一次方程中“去分母”的方法,并能解此类型的方程.2.了解一元一次方程解法的一般步骤.【过程与方法】经历把实际问题抽象为方程的过程,发展用方程方法分析问题、解决问题的能力.【情感态度】通过具体情境引入新问题(如何去分母),激发学生的探究欲望.【教学重点】通过“去分母”的方法解一元一次方程.【教学难点】探究通过“去分母”的方法解一元一次方程.一、情景导入,初步认知1.判断.(1)若a=b,则ac=bc()(2)若a=b则a÷2=b÷2( )2.求下列几组数的最小公倍数.(1)2,3;(2)2,3,6解:(1)最小公倍数是6.(2)最小公倍数是6.3.解方程:2x=3(x-1)解:2x=3x-33=x即x=3【教学说明】通过复习以前学过的知识,为本节课做好铺垫.二、思考探究,获取新知1.刺绣一件作品,甲单独绣需要15天完成,乙单独绣需要12天完成,现在甲先单独绣1天,接着乙又绣4天,剩下的工作由甲、乙两人合绣,问再绣多少天可以完成这件作品?师生互动:学生审题后,教师提问:(1)题中涉及哪些相等关系?(2)应怎样设未知数?如何根据相等关系列出方程?教师展示问题,让学生思考,独立完成.分析并列方程解:设再绣x天可以完成.1 15(x+1)+112(x+4)=1【教学说明】由实际问题引出带有分数系数的一元一次方程,进而讨论用去分母解这类方程.同时利用方程思想解决实际问题,能再一次让学生感受方程的实用价值.2.这个方程与前面学过的一元一次方程有什么不同?怎么解这个方程呢?3.教师出示问题,学生思考、回答,学生代表将不同的解法在黑板上展示交流(用通分合并同类项,用去分母方法解).【教学说明】学生在已有经验基础上,努力尝试新的方法.4.不同的解法各有什么特点?通过比较你认为采用什么方法比较简便?【教学说明】通过对同一方程不同解法的探索过程,使学生感受去分母方法的简便,同时理解去分母的目的和依据,进而得出去分母的一般方法.5.学生讨论之后,教师通过以下问题明确去分母的方法和依据:(1)怎样去分母呢?(2)去分母的依据是什么?【归纳结论】去分母的方法:在方程两边同乘各分母的最小公倍数可以去分母.6.结合上两节课所学的内容,你能归纳解一元一次方程的步骤吗?【归纳结论】解一元一次方程的一般步骤为:去分母,去括号,移项,合并同类项,系数化为1.【教学说明】学生再次认识去分母解一元一次方程的方法,归纳解一元一次方程的一般步骤,进一步体会化归的数学思想.三、运用新知,深化理解1.教材P94例3.2.将方程x2-24x-=1去分母,得( A )A.2x-(x-2)=4B.2x-x-2=4C.2x-x+2=1D.2x-(x-2)=13.方程213x+-12x-=1去分母正确的是( D )A.2(2x+1)-3(x-1)=1B.6(2x+1)-6(x-1)=1C.2x+1-(x-1)=6D.2(2x+1)-3(x-1)=64.当3x-2与13互为倒数时,x 的值为( B ) A.13B.53 C.3 D.355.下面的方程变形中:①2x+6=-3变形为2x=-3+6; ②33x +-12x +=1变形为2x+6-3x+3=6; ③25x-23x=13变形为6x-10x=5; ④35x=2(x-1)+1变形为3x=10(x-1)+1. 正确的是 ③ (只填代号). 6.已知2是关于x 的方程32x-2a =0的一个解,则2a-1的值是 2 . 7.一队学生从学校出发去部队军训,以每小时5km 的速度行进4.5km 时,一名通讯员以每小时14km 的速度从学校出发追赶队伍,他在离部队6km 处追上了队伍,设学校到部队的距离是x km ,则可列方程6 4.55x --=614x -求x. 8.解方程:(1)3(m+3)=22.52m -10(m-7), (2)6x +30004x -=10×60. 解:(1)去分母,得6(m+3)=22.5m-20(m-7),去括号,得6m+18=22.5m-20m+140,移项,得6m-22.5m+20m =140-18,合并同类项,得3.5m =122,系数化1,得m=-2447. (2)去分母,得2x+3(3000-x)=10×60×12.去括号,得2x+9000-3x=7200,移项,得2x-3x=7200-9000,合并同类项,得-x=-1800,化系数为1,得x=1800.9.解方程:19112468753x ⎧⎫⎡+⎤⎛⎫+++⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭=1. 解:方程两边同乘以9,得112468753x ⎡+⎤⎛⎫+++ ⎪⎢⎥⎝⎭⎣⎦=9, 移项合并,得11246753x ⎡+⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦=1, 方程两边同乘以7,得12453x +⎛⎫+⎪⎝⎭+6=7, 移项合并,得12453x +⎛⎫+ ⎪⎝⎭=1, 方程两边同乘以5,得243x ++=5, 移项合并,得23x +=1, 去分母,得x+2=3,即x=1.10.小明沿公路前进,对面来了一辆汽车,他问司机:“后面有一辆自行车吗?”司机回答说:“10分钟前我超过一辆自行车”小明又问:“你的车速是多少?”司机回答:“75km/h ”小明又继续走了20分钟就遇到了这辆自行车,小明估计自己步行的速度是3km/h ,这样小明就算出了这辆自行车的速度.自行车的速度是多少?解:设自行车的速度是x千米/小时,由题意得12x+13×3=75×16,解之得x=23.答:自行车的速度是23千米/小时.【教学说明】及时巩固所学知识.让学生理解解方程的步骤不是固定不变的,而是可以根据一元一次方程的不同形式灵活改变解题顺序的.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题3.3”中第3、4、8题.通过本节课的教学我认识到一定要把更多的学习、探究机会给学生,学生能解决的老师绝不代办,充分体现学生的主体地位,还有课堂上必须给学生安排足够的练习巩固的时间,一方面:学生可以查漏补缺,另一方面:老师可以有效地把握学生的学习效果,以便进行因材施教.8.1二元一次方程组教材分析本节课是在学生对一元一次方程已有认识的基础上,学习二元一次方程与二元一次方程组的相关概念.由于求多个未知数的问题是普遍存在的,而方程组是解决这些问题的有力工具,因此有必要研究未知数多于一个的方程或方程组。

人教版七年级上册第三章3.3解一元一次方程-去括号与去分母(教案)

人教版七年级上册第三章3.3解一元一次方程-去括号与去分母(教案)
去分母法则的教学也遇到了类似的挑战。学生们在处理含有变量的分母时,往往会忘记将等式两边的常数项也乘以分母的乘数。这表明他们在理解等式性质方面还存在一些盲点。我计划在下一节课中,通过更多的实际例题和小组讨论,帮助学生加深对这一概念的理解。
实践活动和小组讨论环节,我观察到学生们积极参与,乐于分享自己的解题思路。这让我感到欣慰,因为这说明学生们在学习过程中逐渐培养了解决问题的能力和团队合作意识。然而,我也注意到有些学生在讨论中较为沉默,可能是因为对自己的答案不够自信。在未来的教学中,我需要更加关注这部分学生,鼓励他们大胆表达,增强他们的自信心。
3.重点难点解析:在讲授过程中,我会特别强调去括号法则和去分母法则这两个重点。对于难点部分,我会通过举例和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与解一元一次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的方程求解操作。这个操作将演示如何应用去括号与去分母法则。
3.应用以上法则解决具体的一元一次方程,如2(x-3)+4=3x,以及3/4x+1=2x-1/2等。
4.分析和讨论去括号与去分母过程中可能出现的运算错误,提高解题正确率。
二、核心素养目标
1.理解与运用:使学生理解一元一次方程的基本概念和解题方法,培养他们在实际问题中建立方程模型的能力,提升对数学知识的应用意识。
人教版七年级上册第三章3.3解一元一次方程-去括号与去分母(教案)
一、教学内容
人教版七年级上册第三章3.3节,本节课主要围绕解一元一次方程展开,内容包括:
1.去括号法则:掌握如何将方程中的括号去掉,如a(b+c)=ab+ac。

湘教版数学七年级上册一元一次方程的解法第3课时含分母的一元一次方程的解法课件

湘教版数学七年级上册一元一次方程的解法第3课时含分母的一元一次方程的解法课件
合并同类项,得-4x=-3,

系数化为1,得x=.
合作探究
·学习小助手·
思考以下问题:若要使
. .−.

中的分子、分母都化
.
.
为整数,则这两个分数的分子、分母分别要同时乘以多少?
.
.−.
答:在分数 的分子、分母同时乘以10,在
的分
.
.
子、分母同时乘以100.
点:(1)分子如果是一个多项式,去掉分母后,要添上括号;(2)
注意整数项不要漏乘分母的最小公倍数.
预习导学
1.方程

+
=1+ 各分母的最小公倍数是


2.把方程3x+

+
=3- 去分母正确的是


A.18x+2(2x-1)=18-3(x+1)
B.3x+(2x-1)=3-(x+1)
根据
合并同类项
的法则
预习导学
变形名称
具体做法
根据
两边除以 在方程的两边都除以未知数的系数a,
等式性质
未知数的

2
得到方程的解x= (a≠0)

系数
预习导学
1.下面是解方程

(A
+ −
- =1的四步,其中产生错误的一步


)
A.去分母,得2(x+1)-x-1=4
B.去括号,得2x+2-x-1=4

的值比
的值大1,求x的值.

��
+ −
解:由题意,得 -
=1,去分母,得3(x+2)-2(2x-3)=


6已知多项式
12,去括号,得3x+6-4x+6=12,移项,合并同类项,得x=0.

人教版七年级数学上册第3章:3.3解一元一次方程----去括号、去分母同步练习(含答案)

人教版七年级数学上册第3章:3.3解一元一次方程----去括号、去分母同步练习(含答案)

3.3解一元一次方程----去括号、去分母知识要点:1.解一元一次方程——去括号去括号:把方程中含有的括号去掉的过程叫做去括号. (1)去括号的依据:分配律.(2)去括号的法则:将括号外的因数连同它前面的符号看成一个整体,按照分配律与括号内各项相乘.括号外的因数是正数,去括号后各项符号与原括号内相应的各项符号相同;括号外的因数是负数,去括号后各项符号与原括号内相应的各项符号相反.(3)对于多重括号的,可以先去小括号,再去中括号,若有大括号,最后去大括号,或由外向内去括号,有时也可用去分母的方法去括号 2.解一元一次方程——去分母(1)定义:一元一次方程中如果有分母,在方程的两边同时乘所有分母的最小公倍数,将分母去掉,这一变形过程叫做去分母.(2)去分母的依据:等式的性质2.(3)去分母的做法:方程两边同时乘所有分母的最小公倍数 一、单选题1.小亮在做作业时,不小心把方程中的一个常数污染了看不清,被污染的方程为:527x x -=+■,他翻看答案,解为5x =-,请你帮他补出这个常数是( ) A.32B.8C.72D.122.已知2342A x x =-+,2351B x x =+-且0A B -=,则满足条件的x 值为( ) A .1B .-1C .13D .13-3.如果(5126x --)的倒数是3,那么x 的值是( ) A .-3B .1C .3D .-14.下列变形中,正确的是( ) A. 变形为B.变形为C.变形为D.变形为5.解方程时,去分母正确的是()A. B. C. D.6.解方程的步骤如下:解:①去括号,得.②移项,得.③合并同类项,得.④两边同除以,得.经检验,不是方程的解.则上述解题过程中出错的步骤是()A.①B.②C.③D.④7.方程的解是()A. B. C. D.8.解方程时,去分母正确的是()A. B. C. D.9.若关于的方程的解与的解之和等于5,则的值是()A.-1 B.3 C.2 D.10.方程10515601260x x+=-的解是()A.15x =B.20x =C.25x =D.30x =二、填空题11.定义一种新运算:a b ab a b *=++,若327x *=,则x 的值是________. 12.关于x 的一元一次方程(2m-6)x │m│-2=m 2的解为___. 13.若x a =是关于x 的方程2152x b -+=的解,则+a b 的值为__________. 14.完成下列的解题过程: 用两种方法解方程:11(31)1(3)43x x -=-+. (1)解法一:去分母,得______________. 去括号,得_________________.移项、合并同类项,得________________. 系数化为1,得_____________.(2)解法二:去括号,得______________. 去分母,得________________. 移项、合并同类项,得____________. 系数化为1,得_______________.三、解答题 15.解方程:21534x x ---=- 16.解方程(1)7x ﹣4=4x+5 (2)2(10)52(1)x x x x -+=+-17.李娟同学在解方程21133x x a-+=-的过程中,去分母时,方程右边的1-没有乘3,因而求得方程的解为2x =,试求a 的值,并正确地解方程. 18.先看例子,再解类似的题目. 例:解方程:2(1)11x x -+=-.解:设1x y -=,则原方程化为21y y +=.解得1y =-. 所以11x -=-. 解得0x =.问题:用你发现的规律解方程:3(23)5(32)2x x -=-+.19.已知关于x 的方程2123x a x +--=. (1)当1a =时,求出方程的解; (2)当2a =时,求出方程的解.答案1.B 2.C 3.C 4.B5.D 6.B 7.B 8.B 9.C 10.A 11.6 12.x=34-13.11214.3(31)124(3)x x -=-+, 9312412x x -=--, 133x =, 313x =, 31111443x x -=--,9312412x x -=--, 133x =, 313x = 15.解:去分母得:4(x-2)-3(1-x)=-60 去括号得:4x-8-3+3x=-60, 移项、合并同类项,得7x=-49, 化未知数x 系数为1得:x=-7. 16.解:(1)7x ﹣4=4x+5 ∴3x 9= ∴x 3=;(2)2(10)52(1)x x x x -+=+- 去括号得:2x-x-10=5x+2x-2,移项合并得:-6x=8, ∴4x 3=-17.解:李娟同学的解法:21133x x a-+=-, 去分母,得211x x a -=+-. 移项、合并同类项,得x a =. 因为错解为2x =,所以2a =. 再将2a =代入到原方程中,解得0x =.18.解:设23x y -=,则原方程化为352y y =-+.解得14y =,所以1234x -=.解得138x =. 19.(1)将a=1代入方程得:12123x x +--=,去分母得:6−3(x+1)=2(x−2), 去括号得:6−3x−3=2x−4, 移项合并得:5x=7,解得:75x =;(2)将a=2代入方程得:22123x x +--=,去分母得:6−3(x+2)=2(x−2), 去括号得:6−3x−6=2x−4, 移项合并得:5x=4,解得:45x =。

人教版七年级上册数学教案第三章3.3解一元一次方程-去分母(教案)

人教版七年级上册数学教案第三章3.3解一元一次方程-去分母(教案)
举例:解方程$\frac{1}{2}(x+3) - \frac{1}{3}(2x-1) = \frac{1}{4}$,重点讲解如何去括号、合并同类项等运算步骤。
(3)运用去分母解方程的方法解决实际问题,培养学生的数学建模素养。
举例:某物品的价格打八折后为64元,求原价。将问题转化为方程$\frac{8}{10}x = 64$,重点讲解如何建立方程。
1.加强对练掌握;
2.多设计一些与实际生活紧密相关的案例,提高学生建立数学模型的能力;
3.在小组讨论环节,注重引导学生从多角度分析问题,培养他们的发散性思维;
4.关注每个学生的学习进度,针对个体差异进行因材施教,确保每个学生都能跟上教学进度。
五、教学反思
在今天的课堂中,我尝试通过引入日常生活中的实际问题来激发学生对去分母解一元一次方程的兴趣。我发现,这种方法确实能够吸引学生的注意力,使他们更积极地参与到课堂讨论中来。然而,我也注意到,在讲授理论知识和案例分析时,部分学生对最小公倍数的确定和方程转化的步骤还不够熟练,这表明这些方面需要我进一步强调和解释。
1.教学重点
(1)理解一元一次方程去分母的基本原理,掌握等式两边同乘各分母的最小公倍数的方法;
举例:解方程$\frac{2}{3}x + \frac{5}{4} = \frac{1}{6}$,重点强调将等式两边同乘各分母的最小公倍数12,使方程转化为不含分母的形式。
(2)熟练运用去分母的方法求解一元一次方程,掌握求解过程中的运算步骤和技巧;
在学生小组讨论环节,我发现他们的思考角度多样化,能够从不同角度分析问题。然而,如何将实际问题抽象成数学方程这一环节,对部分学生来说仍然是一个挑战。这让我意识到,在今后的教学中,我需要更多地引导学生学会从实际问题中提炼关键信息,建立正确的数学模型。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3课时解含有分母的一元一次方程
【知识与技能】
1.掌握解一元一次方程中“去分母”的方法,并能解此类型的方程.
2.了解一元一次方程解法的一般步骤.
【过程与方法】
经历把实际问题抽象为方程的过程,发展用方程方法分析问题、解决问题的能力.
【情感态度】
通过具体情境引入新问题(如何去分母),激发学生的探究欲望.
【教学重点】
通过“去分母”的方法解一元一次方程.
【教学难点】
探究通过“去分母”的方法解一元一次方程.
一、情景导入,初步认知
1.判断.
(1)若a=b,则ac=bc()
(2)若a=b则a÷2=b÷2( )
2.求下列几组数的最小公倍数.
(1)2,3;
(2)2,3,6
解:(1)最小公倍数是6.
(2)最小公倍数是6.
3.解方程:2x=3(x-1)
解:2x=3x-3
3=x
即x=3
【教学说明】通过复习以前学过的知识,为本节课做好铺垫.
二、思考探究,获取新知
1.刺绣一件作品,甲单独绣需要15天完成,乙单独绣需要12天完成,现在甲先单独绣1天,接着乙又绣4天,剩下的工作由甲、乙两人合绣,问再绣多少天可以完成这件作品?
师生互动:
学生审题后,教师提问:
(1)题中涉及哪些相等关系?
(2)应怎样设未知数?如何根据相等关系列出方程?教师展示问题,让学生思考,独立完成.分析并列方程解:设再绣x天可以完成.
1 15(x+1)+
1
12
(x+4)=1
【教学说明】由实际问题引出带有分数系数的一元一次方程,进而讨论用去分母解这类方程.同时利用方程思想解决实际问题,能再一次让学生感受方程的实用价值.
2.这个方程与前面学过的一元一次方程有什么不同?怎么解这个方程呢?
3.教师出示问题,学生思考、回答,学生代表将不同的解法在黑板上展示交流(用通分合并同类项,用去分母方法解).
【教学说明】学生在已有经验基础上,努力尝试新的方法.
4.不同的解法各有什么特点?通过比较你认为采用什么方法比较简便?
【教学说明】通过对同一方程不同解法的探索过程,使学生感受去分母方法的简便,同时理解去分母的目的和依据,进而得出去分母的一般方法.
5.学生讨论之后,教师通过以下问题明确去分母的方法和依据:
(1)怎样去分母呢?
(2)去分母的依据是什么?
【归纳结论】去分母的方法:在方程两边同乘各分母的最小公倍数可以去分母.
6.结合上两节课所学的内容,你能归纳解一元一次方程的步骤吗?
【归纳结论】解一元一次方程的一般步骤为:去分母,去括号,移项,合并同类项,系数化为1.
【教学说明】学生再次认识去分母解一元一次方程的方法,归纳解一元一次方程的一般步骤,进一步体会化归的数学思想.
三、运用新知,深化理解
1.教材P94例3.
2.将方程x
2
-
2
4
x-
=1去分母,得( A )
A.2x-(x-2)=4
B.2x-x-2=4
C.2x-x+2=1
D.2x-(x-2)=1
3.方程21
3
x+
-
1
2
x-
=1去分母正确的是( D )
A.2(2x+1)-3(x-1)=1
B.6(2x+1)-6(x-1)=1
C.2x+1-(x-1)=6
D.2(2x+1)-3(x-1)=6
4.当3x-2与13互为倒数时,x 的值为( B ) A.13
B.53
C.3
D.
35 5.下面的方程变形中:
①2x+6=-3变形为2x=-3+6; ②33
x +-12x +=1变形为2x+6-3x+3=6; ③25x-23x=13
变形为6x-10x=5; ④35
x=2(x-1)+1变形为3x=10(x-1)+1. 正确的是 ③ (只填代号). 6.已知2是关于x 的方程
32x-2a =0的一个解,则2a-1的值是 2 . 7.一队学生从学校出发去部队军训,以每小时5km 的速度行进4.5km 时,一名通讯员以每小时14km 的速度从学校出发追赶队伍,他在离部队6km 处追上了队伍,设学校到部队的距离是x km ,则可列方程
6 4.55x --=614x -求x. 8.解方程:
(1)3(m+3)=22.52
m -10(m-7), (2)6
x +30004x -=10×60. 解:(1)去分母,得
6(m+3)=22.5m-20(m-7),
去括号,得
6m+18=22.5m-20m+140,
移项,得
6m-22.5m+20m =140-18,
合并同类项,得
3.5m =122,
系数化1,得m=-2447
. (2)去分母,得2x+3(3000-x)=10×60×12.
去括号,得2x+9000-3x=7200,
移项,得2x-3x=7200-9000,
合并同类项,得-x=-1800,
化系数为1,得x=1800.
9.解方程:19112468753x ⎧⎫⎡+⎤⎛⎫+++⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭
=1. 解:方程两边同乘以9,得
112468753x ⎡+⎤⎛⎫+++ ⎪⎢⎥⎝⎭⎣⎦
=9, 移项合并,得
11246753x ⎡+⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦
=1, 方程两边同乘以7,得12453x +⎛⎫+
⎪⎝⎭+6=7, 移项合并,得12453x +⎛⎫+ ⎪⎝⎭
=1, 方程两边同乘以5,得243
x ++=5, 移项合并,得23
x +=1, 去分母,得x+2=3,
即x=1.
10.小明沿公路前进,对面来了一辆汽车,他问司机:“后面有一辆自行车吗?”司机回答说:“10分钟前我超过一辆自行车”小明又问:“你的车速是多少?”司机回答:“75km/h ”小明又继续走了20分钟就遇到了这辆自行车,小明估计自己步行的速度是3km/h ,这样小明就算出了这辆自行车的速度.自行车的速度是多少?
解:设自行车的速度是x 千米/小时,由题意得12x+13
×3=75×16,
解之得x=23.
答:自行车的速度是23千米/小时.
【教学说明】及时巩固所学知识.让学生理解解方程的步骤不是固定不变的,而是可以根据一元一次方程的不同形式灵活改变解题顺序的.
四、师生互动、课堂小结
先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.
布置作业:教材“习题3.3”中第3、4、8题.
通过本节课的教学我认识到一定要把更多的学习、探究机会给学生,学生能解决的老师绝不代办,充分体现学生的主体地位,还有课堂上必须给学生安排足够的练习巩固的时间,一方面:学生可以查漏补缺,另一方面:老师可以有效地把握学生的学习效果,以便进行因材施教.。

相关文档
最新文档