三角恒等变换单元测试题一

合集下载

三角恒等变换》单元测试题

三角恒等变换》单元测试题

三角恒等变换》单元测试题必修④第三章《三角恒等变换》本单元测试题共包含12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1、已知cosα=−312π,α∈[π,π],sinβ=−2513,β是第三象限角,则cos(β−α)的值是()A、−xxxxxxxxB、无解C、无解D、−xxxxxxxx解析:1、由题意得sinα=−35π,又sinβ=−2513,β∈Ⅲ。

cosα=−4/5,∴cosβ=−3/52、∵cosα=−4/5,∴sinα=−3/5。

又cos(α+β)=−1。

sin(α+β)=−24/5π。

sinβ=sin[(α+β)−α]。

sin(β−α)=sin(α+β)cosα−cos(α+β)sinα=−xxxxxxxx2、已知α和β都是锐角,且sinα=54,cos(α+β)=−135,求sinβ的值。

A、xxxxxxxxB、无解C、无解D、xxxxxxxx解析:依题意,∵sinα=54,∴cosα=√21/4。

又cos(α+β)=−135。

sin(α+β)=−35π。

sinβ=sin[(α+β)−α]。

sinβ=sin(α+β)cosα−cos(α+β)sinα=xxxxxxxx3、已知x∈[2kπ−3π4,2kπ+3π4](k∈Z),且cos(−x)=−,则cos2x的值是()A、−B、−xxxxxxxxC、无解D、无解解析:x∈[2kπ−3π4,2kπ+3π4]。

cosx−sinx>0。

即sin(−x)=−sinx=cosx<0。

sin(−x)∈(−1,0]。

x∈[2kπ−π2,2kπ]。

x∈[2kπ,2kπ+π2]。

cos2x=2cos2x−1=2cos2(x/2)−1=2cos2(−x/2)−1=2sin2(−x/2)−1=−4、设cos(x+y)sinx−sin(x+y)cosx=12,且y是第四象限角,则y的值是()A、±2332B、±1212C、无解D、无解解析:由cos(x+y)sinx−sin(x+y)cosx=0得sin(x−y)=−cos(x+y)。

高一数学三角恒等变换单元测试题

高一数学三角恒等变换单元测试题

高一数学三角恒等变换测试题一、选择题(本大题共10小题,每小题5分,共50分) 1.sin 47°cos 43°+cos 47°sin 43°等于( ) A .0 B .1 C .-1D.122.log 2sinπ12+log 2cos π12的值为( ) A .-4 B .4 C .-2 D .2 3.已知tan(α+β)=3,tan(α-β)=5,则tan 2α的值为( ) A .-47B.47C.18D .-184.已知sin α=23,则cos(π-2α)等于( )A .-53B .-19 C.19D.535.(2011·福建高考)若tan α=3,则sin 2αcos 2α的值等于( ) A .2 B .3 C .4 D .6 6.若f (sin x )=2-cos 2x ,则f (cos x )等于( ) A .2-sin 2x B .2+sin 2x C .2-cos 2xD .2+cos 2x7.已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是( )A .-235B.235 C .-45D.458.(2012·江西高考)若tan θ+1tan θ=4,则sin 2θ=( ) A.15B.14C.13D.129.若sin(α-β)cos α-cos(α-β)sin α=45,且β∈(π,32π),则cos β2为( )A .-55B .±55C .-255D .±25510.若cos(π4-θ)cos(π4+θ)=26(0<θ<π2),则sin 2θ的值为( )A.23B.73 C.76D.346二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 11.函数y =1-2sin 2(x -π6)的最小正周期是________.12.已知α、β均为锐角,sin α=35,cos β=513,则tan(α-β)的值是________.13.已知sin α=35,α∈(π2,π),则cos(π4+α)sin(π4-α)的值为________.14.(2011·重庆高考)已知sin α=12+cos α,且α∈(0,π2),则cos 2αsin (α-π4)的值为________. 三、解答题(本大题共4小题,共50分).15.(本小题满分12分)证明下列恒等式. sin α=2tanα21+tan 2α2,cos α=1-tan 2α21+tan 2α2;16.(本小题满分12分)已知cos(α-β2)=-277,sin(α2-β)=12且α∈(π2,π),β∈(0,π2).求:(1)cos α+β2;(2)tan(α+β).17.(2012·天津高考)已知函数f (x )=sin(2x +π3)+sin(2x -π3)+2cos 2x -1,x ∈R.(1)求函数f (x )的最小正周期;(2)求函数f (x )在区间[-π4,π4]上的最大值和最小值.18.(本小题满分14分)已知f (x )=sin x +2sin(π4+x 2)cos(π4+x2).(1)若f (α)=22,α∈(-π2,0),求α的值; (2)若sin x 2=45,x ∈(π2,π),求f (x )的值.一、选择题 BCABD DCDA1.解析:原式=sin(47°+43°)=sin 90°=1. 2.解析:原式=log 2(sinπ12cos π12)=log 2(12sin π6)=log 214=-2. 3.解析:tan 2α=tan[(α+β)+(α-β)]=tan (α+β)+tan (α-β)1-tan (α+β)tan (α-β)=3+51-3×5=-47.4.解析:∵sin α=23,∴cos(π-2α)=-cos 2α=2sin 2α-1=2×(23)2-1=-19.5.解析:∵sin 2αcos 2α=2sin α·cos αcos 2α=2tan α=6. 6.解析:f (sin x )=2-cos 2x =2-(1-2sin 2x )=2sin 2x +1, ∴f (cos x )=2cos 2x +1=2cos 2x -1+2=cos 2x +2. 7.解析:由条件可知,32cos α+12sin α+sin α=45 3. ∴32(cos α+3sin α)=453. ∴sin(α+π6)=45, ∴sin(α+76π)=-sin(α+π6)=-45.8.解析:∵tan θ+1tan θ=4,∴sin θcos θ+cos θsin θ=4,∴sin 2θ+cos 2θcos θsin θ=4,即2sin 2θ=4,∴sin2θ=12.9.解析:由条件知sin[(α-β)-α]=45,即sin β=-45,∵β∈(π,32π),∴cos β=-35,又β2∈(π2,34π).且cos β=2cos 2β2-1=-35,∴cos β2=-55. 10.解析:∵(π4-θ)+(π4+θ)=π2, ∴cos(π4+θ)=sin(π4-θ).由已知得cos(π4-θ)sin(π4-θ)=26,∴sin(π2-2θ)=23,即cos 2θ=23,∵0<θ<π2,∴0<2θ<π,∴sin 2θ=73. 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 11.解析:y =1-2sin 2(x -π6)=cos(2x -π3),∴T =2π2=π. 答案:π12.解析:由α为锐角,sin α=35,得:cos α=45tan α=34,由β为锐角,cos β=513,得:sin β=1213tan β=125,故tan(α-β)=tan α-tan β1+tan αtan β=-3356. 答案:-3356 13.解析:cos(π4+α)sin(π4-α)=cos 2(π4+α)=1+cos (π2+2α)2=12-12sin 2α.∵sin α=35,α∈(π2,π), ∴cos α=-1-sin 2α=-45.∴原式=12-sin αcos α=12-35×(-45)=4950. 答案: 495014.解析:由题意知sin α-cos α=12,两边平方可得sin 2α=34,所以(sin α+cos α)2=1+sin 2α=74,又α∈(0,π2),所以sin α+cos α=72.cos 2αsin (α-π4)=cos 2α-sin 2α22(sin α-cos α)=-2(sin α+cos α)=-142. 答案:-142 三、解答题15.证明:sin α=2sin α2cos α2=2sin α2cos α2sin 2 α2+cos 2α2=2tanα21+tan2α2.16.解:(1)∵π2<α<π,0<β<π2,∴π4<α-β2<π,-π4<α2-β<π2,∴sin(α-β2)=1-cos 2(α-β2)=217, cos(α2-β)=1-sin 2(α2-β)=32.∴cosα+β2=cos[(α-β2)-(α2-β)] =cos(α-β2)·cos(α2-β)+sin(α-β2)·sin(α2-β)=(-277)×32+217×12=-2114.(2)∵π4<α+β2<34π,∴sin α+β2=1-cos 2α+β2=5714,∴tan α+β2=sinα+β2cos α+β2=-533,∴tan(α+β)=2tanα+β21-tan2α+β2=5311.17.解:(1)f (x )=sin 2x ·cos π3+cos 2x ·sin π3+sin 2x ·cos π3-cos 2x ·sin π3+cos 2x =sin 2x+cos 2x =2sin(2x +π4).所以,f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间[-π4,π8]上是增函数,在区间[π8,π4]上是减函数.又f (-π4)=-1,f (π8)=2,f (π4)=1,故函数f (x )在区间[-π4,π4]上的最大值为2,最小值为-1.18.解:(1)f (x )=sin x +2sin(π4+x 2)cos(π4+x 2)=sin x +sin(x +π2)=sin x +cos x =2sin(x+π4),由f (α)=22,得2sin(α+π4)=22.∴sin(α+π4)=12.∵α∈(-π2,0),∴α+π4∈(-π4,π4). ∴α+π4=π6.∴α=-π12.(2)∵x ∈(π2,π),∴x 2∈(π4,π2).又sin x 2=45,∴cos x 2=35.∴sin x =2sin x 2cos x 2=2425,cos x =-1-sin 2x =-725.∴f (x )=sin x +cos x =2425-725=1725.。

三角恒等变换练习题一

三角恒等变换练习题一

三角恒等变换练习题一三角恒等变换练题一一、选择题1.已知sin(π/2+θ)=3/5,则cos(π-2θ)=()A。

-12/25B。

-5/25C。

-5/12D。

25/252.若cosα=-4/5,且α在第二象限内,则cos(2α+π/4)为() A。

-31/50B。

31/50C。

-172/50D。

50/503.已知α∈R,sinα+2cosα=10/2,则tan2α=() A。

4/3B。

3/4C。

-4/3D。

-3/44.已知sinα-cosα=2,α∈(0,π),则sin2α=() A。

-1B。

-2/2C。

2/2D。

15.已知sin(x-π/4)=3/5,则sin2x的值为()A。

-7/25B。

79/16C。

25D。

26.计算sin43°cos13°-cos43°sin13°的结果等于() A。

13√2/2B。

3C。

2D。

2√3/27.函数f(x)=sinx(cosx-sinx)的最小正周期是()A。

π/4B。

π/2C。

πD。

2π8.函数f(x)=2sin^2(π/4+x)-3cos^2x(π/4≤x≤2)的最大值为() A。

2B。

3C。

2+3D。

2-39.为了得到函数y=sin(2x-π/3)的图像,只需把函数y=sin(2x+π/6)的图像()A.向左平移π/4个长度单位B.向右平移π/4个长度单位C.向左平移π/2个长度单位D.向右平移π/2个长度单位10.函数y=sinxsin(x+π/3)+cosxcos2x的最大值和最小正周期分别为()A.1,πB.2,2πC.1+3√3/2,πD.2+2√3/3,2π11.函数y=sin2x+3cos2x-的最小正周期等于()A.πB.2πC.π/4D.π/212.若cos(3π-x)-3cos(x+π/4)=,则tan(x+π/4)等于()A.-B.-2C.D.213.将函数y=3cosx+sinx(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A.5π/2B.3π/5C.2π/5D.π/514.若sin(-α) = 1/3,则cos(2α)的值为 -43/3.15.若f(x) = 2tan(x/2) - 1,则f(π/4)的值为 4/3.16.已知α∈(π/2,π),sinα + cosα = -1,则tan(α+π/4)等于 -7.17.若cosθ = 2/5,sinθ = -2/5,则角θ的终边所在的直线为24x + 7y = 0.18.已知锐角α的终边上一点P(sin40°,1+cos40°),则锐角α的度数为 50°。

三角恒等变换(测试题及答案)

三角恒等变换(测试题及答案)

三角恒等变换(测试题及答案)三角恒等变换测试题第I卷一、选择题(本大题共12个小题,每小题5分,共60分)1.求cos24cos36-cos66cos54的值。

A。

0.B。

1/2.C。

1/4.D。

1/82.已知tan(α+β)=3,tan(α-β)=5,则tan(2α)的值为:A。

1/2.B。

2/3.C。

3/4.D。

4/53.函数y=sin(x)+cos(x)的最小正周期为:A。

π。

B。

2π。

C。

4π。

D。

π/24.已知等腰三角形顶角的余弦值等于4/5,则这个三角形底角的正弦值为:A。

3/5.B。

4/5.C。

5/6.D。

5/45.α,β都是锐角,且sin(α)=1/3,cos(α+β)=-1/2,则sin(β)的值是:A。

-2/3.B。

-1/3.C。

1/3.D。

2/36.已知-x<π/3且cos(-x)=-√3/2,则cos(2x)的值是:A。

-7/24.B。

-1/8.C。

1/8.D。

7/247.函数y=sin(x)+cos(x)的值域是:A。

[0,1]。

B。

[-1,1]。

C。

[-1/2,1/2]。

D。

[1/2,√2]8.将y=2sin(2x)的图像向左平移π/4个单位,得到y=3sin(2x)-cos(2x)的图像,只需将y=2sin(2x)的图像:A。

向右平移π/4个单位。

B。

向左平移π/4个单位C。

向右平移π/2个单位。

D。

向左平移π/2个单位9.已知等腰三角形顶角的正弦值等于4/5,则这个三角形底角的余弦值为:A。

3/5.B。

4/5.C。

5/6.D。

5/410.函数y=sin(x)+3cos(2x)的图像的一条对称轴方程是:A。

x=π/4.B。

x=π/6.C。

x=π/2.D。

x=π/3二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中的横线上)11.已知α,β为锐角,cosα=1/10,cosβ=1/5,则α+β的值为__ π/6 __。

12.在△ABC中,已知tanA,tanB是方程3x^2-7x+2=0的两个实根,则tanC=__ 1/2 __。

《三角恒等变换》经典单元测试题

《三角恒等变换》经典单元测试题

《三角恒等变换》单元练习题一、选择题(共10题,每题4分,共40分)1.已知(,0)2x π∈-,4cos 5x =,则=x 2tan ( )A .247B .247- C .724 D .724-2. 已知x 为第三象限角,化简=-x 2cos 1( ) A. x sin 2 B. x sin 2- C. x cos 2 D. x cos 2-3.在△A BC 中,cos cos sin sin A B A B >,则△ABC 为( )A .锐角三角形B .直角三角形C .钝角三角形D .无法判定4.设00sin14cos14a =+,00sin16cos16b =+,c =,则,,a b c 大小关系()A .a b c <<B .b a c <<C .c b a <<D .a c b <<5.函数)cos[2()]y x x ππ=-+是( )A.周期为4π的奇函数 B.周期为4π的偶函数C.周期为2π的奇函数 D.周期为2π的偶函数6.已知cos 23θ=,则44sin cos θθ+的值为( )A .1813B .1811C .97D .1-7. 已知θ是第三象限的角,若445sin cos 9θθ+=,则sin 2θ等于( )B. 23 D. 23-8.0000(1tan 21)(1tan 22)(1tan 23)(1tan 24)++++ 的值是( )A. 16B. 8C. 4D. 29.求值12cos 12sin 22ππ-=( )A .1B .21C .21- D .23-10.000016cos 46cos 46sin 16sin +=( ) A.23 B.22 C.21 D.1 二、填空题(共5题,每题4分,共20分)11.求值:0000tan 20tan 4020tan 40+=_____________。

12.当40π≤≤x 时,函数1cos 22sin 22)(++=x x x f 的最大值是 最小值是 ,13.函数x x x x f cos sin 32cos 21)(-=的最小正周期是___________。

三角恒等变换常考题(含答案)

三角恒等变换常考题(含答案)

三角恒等变换基础题型一.选择题(共20小题,每小题5分)时间60分钟4.已知sin2α=,则cos2()=()A.﹣B.C.﹣ D.5.若,则cos(π﹣2α)=()A.B.C.D.6.已知sin(α+)+sinα=﹣,﹣<α<0,则cos(α+)等于()A.﹣ B.﹣ C.D.7.若,则=()A. B.C.D.8.已知cosα=,cos(α﹣β)=,且0<β<α<,那么β=()A.B.C.D.9.若α∈(,π),且3cos2α=sin(﹣α),则sin2α的值为()A.B.C.D.10.若α,β为锐角,且满足cosα=,cos(α+β)=,则sinβ的值为()A.B.C.D.12.已知sin(﹣α)﹣cosα=,则cos(2α+)=()A.B.﹣C.D.﹣13.已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣B.﹣7 C.D.715.已知,则sin2α的值为()A.B.C.D.16.cos15°•cos105°﹣cos75°•sin105°的值为()A.﹣ B.C.D.﹣17.若tanα=,则sin2α+cos2α的值是()A.﹣B.C.5 D.﹣519.cos43°cos77°+sin43°cos167°的值是()A. B.C.D.21.已知sinα+cosα=,则sin2α=()A.﹣B.﹣ C.D.23.若tanα=,则cos2α+2sin2α=()A.B.C.1 D.24.已知向量,且,则sin2θ+cos2θ的值为()A.1 B.2 C.D.325.已知tan(α﹣)=,则的值为()A.B.2 C.2 D.﹣226.已知,则tanα=()A.﹣1 B.0 C.D.1三角恒等变换基础题型组卷参考答案与试题解析一.选择题(共30小题)4.(2017•泉州模拟)已知sin2α=,则cos2()=()A.﹣ B.C.﹣ D.【解答】解:==,由于:,所以:=,故选:D.5.(2017•焦作二模)若,则cos(π﹣2α)=()A.B.C.D.【解答】解:由,可得:sinα=.∵cos(π﹣2α)=﹣cos2α=﹣(1﹣2sin2α)=2sin2α﹣1=.故选D6.(2017•衡水一模)已知sin(α+)+sinα=﹣,﹣<α<0,则cos(α+)等于()A.﹣ B.﹣ C.D.【解答】解:∵sin(α+)+sinα=﹣,∴,∴,∴cos(α﹣)=,∴cos(α+)=cos[π+(α﹣)]=﹣cos(α﹣)=.故选C.7.(2017•商丘三模)若,则=()A.B.C.D.【解答】解:∵=cos(α+),∴=cos[2(α+)]=2cos2(α+)﹣1=2×﹣1=﹣.故选:D.8.(2017•德州二模)已知cosα=,cos(α﹣β)=,且0<β<α<,那么β=()A.B.C.D.【解答】解:由0<α<β<,得到0<β﹣α<,又cosα=,cos(α﹣β)=cos(β﹣α)=,所以sinα==,sin(β﹣α)=﹣sin(α﹣β)=﹣=﹣,则cosβ=cos[(β﹣α)+α]=cos(β﹣α)cosα﹣sin(β﹣α)sinα=×﹣(﹣)×=,所以β=.故选:C.9.(2017•青海模拟)若α∈(,π),且3cos2α=sin(﹣α),则sin2α的值为()A.B.C.D.【解答】解:∵α∈(,π),∴sinα>0,cosα<0,∵3cos2α=sin(﹣α),∴3(cos2α﹣sin2α)=(cosα﹣sinα),∴co sα+sinα=,∴两边平方,可得:1+2sinαcosα=,∴sin2α=2sinαcosα=﹣.故选:D.10.(2017•大武口区校级四模)若α,β为锐角,且满足cosα=,cos(α+β)=,则sinβ的值为()A.B.C.D.【解答】解:α,β为锐角,且满足cosα=,∴sinα==,sin(α+β)==,则sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=﹣×=,故选:C.12.(2017•腾冲县校级二模)已知sin(﹣α)﹣cosα=,则cos(2α+)=()A.B.﹣C.D.﹣【解答】解:∵sin(﹣α)﹣cosα=cosα﹣sinα﹣cosα=﹣sin(α+)=,∴sin(α+)=﹣,则cos(2α+)=1﹣2sin2(α+)=,故选:C.13.(2017•榆林一模)已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣ B.﹣7 C.D.7【解答】解析:由cosα=﹣且α∈()得tanα=﹣,∴tan(α+)==,故选C.15.(2017•全国三模)已知,则sin2α的值为()A.B.C.D.【解答】解:∵已知,则平方可得1﹣sin2α=,∴sin2α=,故选:C.16.(2017•山西一模)cos15°•cos105°﹣cos75°•sin105°的值为()A.﹣ B.C.D.﹣【解答】解:cos15°•cos105°﹣cos75°•sin105°=cos15°•cos105°﹣sin15°•sin105°=cos(15°+105°)=cos120°=﹣.故选:A.17.(2017春•陆川县校级月考)若tanα=,则sin2α+cos2α的值是()A.﹣ B.C.5 D.﹣5【解答】解:原式=.故选B.19.(2017春•福州期末)cos43°cos77°+sin43°cos167°的值是()A.B.C.D.【解答】解:cos43°cos77°+sin43°cos167°=cos43°cos77°+sin43°cos(90°+77°)=cos43°cos77°﹣sin43°sin77°=cos(43°+77°)=cos120°=﹣cos60°=﹣.故选D.21.(2017春•荔城区校级期中)已知sinα+cosα=,则sin2α=()A.﹣ B.﹣ C.D.【解答】解:∵sina+cosa=,∴(sina+cosa)2=,∴1+2sinacosa=,∴sin2a=﹣.故选:A.23.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.24.(2016•肃南裕县校级模拟)已知向量,且,则sin2θ+cos2θ的值为()A.1 B.2 C.D.3【解答】解:由题意可得=sinθ﹣2cosθ=0,即tanθ=2.∴sin2θ+cos2θ===1,故选A.25.(2016•河南模拟)已知tan(α﹣)=,则的值为()A.B.2 C.2 D.﹣2【解答】解:由tan(α﹣)==,得tanα=3.则=.故选:B.26.(2016•全国二模)已知,则tanα=()A.﹣1 B.0 C.D.1【解答】解:∵,∴cosα﹣sinα=cosα﹣sinα,∴cosα=sinα,∴tanα===﹣1.故选:A.29.(2017•玉林一模)若3sinα+cosα=0,则的值为()A.B.C.D.﹣2【解答】解:∵3sinα+cosα=0,∴tanα=﹣,∴===,故选:A.30.(2017•成都模拟)已知函数f(x)=cos(x+)sinx,则函数f(x)的图象()A.最小正周期为T=2πB.关于点(,﹣)对称C.在区间(0,)上为减函数D.关于直线x=对称【解答】解:∵函数f(x)=cos(x+)sinx=(cosx﹣sinx)•sinx=sin2x﹣•=(sin2x+cos2x)﹣=sin(2x+)+,故它的最小正周期为=π,故A不正确;令x=,求得f(x)=+=,为函数f(x)的最大值,故函数f(x)的图象关于直线x=对称,且f(x)的图象不关于点(,)对称,故B不正确、D正确;在区间(0,)上,2x+∈(,),f(x)=sin(2x+)+为增函数,故C不正确,故选:D.。

三角恒等变换测试题

三角恒等变换测试题

三角恒等变换测试题一、选择题1. 下列哪个表达式是正确的三角恒等式?A. sin²x + cos²x = 1B. tan²x + sin²x = sec²xC. 1 + tan²x = sec²xD. sinx/cosx = tanx2. 已知 sin(A + B) = sinA * cosB + cosA * sinB,那么 sin(A -B) 等于什么?A. sinA * cosB - cosA * sinBB. sinA * sinB + cosA * cosBC. cosA * sinB - sinA * cosBD. cosA * cosB - sinA * sinB3. 根据三角恒等式,下列哪个表达式是错误的?A. cot²x - 1 = csc²x - 1B. 1 + cot²x = csc²xC. 1 + tan²x = sec²xD. 1 - cos²x = sin²x二、填空题4. 利用三角恒等式,将下列表达式化简:\[ \frac{1 - cos(2x)}{1 + cos(2x)} \] 化简后的结果为 ________。

5. 已知 \( \sin(\theta) = \frac{3}{5} \),且 \( \theta \) 在第一象限,求 \( \cos(\theta) \) 的值。

根据恒等式\( \sin^2(\theta) + \cos^2(\theta) = 1 \),\( \cos(\theta) \)的值为 ________。

三、计算题6. 计算下列表达式的值:\[ \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \] 已知 \( \sin(\alpha) = 0.6 \) 和 \( \cos(\alpha) = 0.8 \),求 \( \tan(\alpha) \) 的值。

数学必修四第三章三角恒等变换单元检测题及答案

数学必修四第三章三角恒等变换单元检测题及答案

第三章 三角恒等变换一、选择题.1. sin 7°cos 37° - sin 83°sin 37° 的值为( ). A.23-B.21 -C.21D.232. sin 15° sin 30° sin 75° 的值等于( ).A.43B.83 C.81D.413. 函数y =⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+4πsin 4πsin x x 的周期为( ).A.4π B.2π C. π D. 2π4. 函数y = 2sin x (sin x + cos x )的最大值是( ). A.21+B.12-C.2D. 25. 化简2cot 2tan2cos 1ααα-+,其结果是( ).A.21-sin 2α B.21sin 2α C. - 2sin α D. 2sin 2α6. 若sin (α + β)=21,sin (α - β)=31,则βαtan tan 为( ).A. 5B. - 1C. 6D.617. 设tan θ和tan ⎪⎭⎫ ⎝⎛-θ4π是方程x 2+ px + q = 0的两个根,则p ,q 之间的关系是( ).A. p + q + 1 = 0B. p - q + 1 = 0C. p + q - 1 = 0D. p - q - 1 = 08. 若不等式4≤3sin 2 x - cos 2 x + 4cos x + a 2≤20对一切实数 x 都成立,则a 的取值范围是( ).A. -5≤a ≤-3,或3≤a ≤5B. -4≤a ≤4C. -3≤a ≤3D. -4≤a ≤-3,或3≤a ≤49. 若α∈⎥⎦⎤⎢⎣⎡2π3 ,π,则ααααsin 1sin 1sin 1sin 1-++--+等于( ). A.2tan αB. 2sin αC. 2cot αD. 2cos α二、填空题.1.︒+︒-15tan 3115tan 3 = ___________.2. y = 3sin (x + 20°) + 5sin (x + 80°)的最大值为___________,最小值为__________.3. 若tan (α + β)= 7,tan α tan β =32,则 cos (α - β)= ___________.4. 若θ为第二象限角,且sin ⎪⎭⎫ ⎝⎛+23π2θ>21,则2sin2cos sin 1θθθ--= __________. 5. 若α,β,γ都是锐角,tan α=21,tan β=51,tan γ=81,则α + β + γ = __________. 6. 若 A + B + C =(2n - 1)π,n ∈Z ,且A ,B ,C 均不为 0,则 2tan 2tan 2tan 2tan 2tan 2tan A C C B B A ++ = __________.三、解答题.1. 已知α,β为锐角,cos α =54,tan (α - β)= -31,求cos β的值.2. 已知α,β均为锐角,且sin α - sin β =-21,cos α + cos β =27,求cos (α + β), sin (α - β)的值.3. 已知tan A 与tan ⎪⎭⎫ ⎝⎛-A 4π是x 2 + px + q = 0的两个解,3tan A = 2tan ⎪⎭⎫⎝⎛-A 4π,求p 和q 的值.4. 证明:cos 8 α - sin 8 α - cos 2α = -41sin 4α sin 2α.参考答案一、选择题.1. B 【解析】sin 7°cos 37° - sin 83°sin 37° = cos 83°cos 37° - sin 83°sin 37° = cos (83° + 37°)= cos 120°= -21. 2. C 【解析】sin 15° sin 30° sin 75° = cos 75°sin 75°sin 30° =21sin 150°sin 30°=81. 3. C 【解析】y =⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+x x x x x x cos 22sin 22 cos 22sin 224πsin 4πsin =21sin 2 x -21cos 2 x = -21cos 2x . ∴ T =π22π=. 4. A 【解析】y = 2sin x (sin x + cos x )= 2sin 2 x + 2sin x cos x = 1 - cos 2x + sin 2x= 1 +⎪⎭⎫⎝⎛-4π2sin 2x .∴ y max = 1 +2. 5. A 【解析】αααααααααααα2sin 21cos sin cos 2sin2cos2cos 2sin cos 22cot 2tan 2cos 122-=-=-=-+6. A 【解析】sin αcos β + cos αsin β =21,sin αcos β - cos αsin β =31. ∴ 2sin αcos β =65, 2cos αsin β =61.∴ βαtan tan = 5. 7. B【解析】⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛--=⎪⎭⎫⎝⎛-+qp θθθθ4πtan tan 4πtan tanθθθπtan 1tan 14tan +-=⎪⎭⎫ ⎝⎛-. ∴ θθθθθp tan 1tan 1tan tan 1tan 12+--=⎪⎭⎫ ⎝⎛++--=,θθθq tan 1tan tan 2+-=.∴ q - p = 1, ∴ p - q + 1 = 0.8. D 【解析】设 f (x ) = 3sin 2x - cos 2x + 4cos x + a 2,4≤3 - 4cos 2 x + 4cos x + a 2≤20, 4≤- 4cos 2 x + 4cos x + a 2 + 3≤20. ∴ 当 cos x =21时,f (x )max =214414⨯+⨯-+ a 2 + 3≤20⇒-4≤a ≤4;当 cos x = - 1时,f (x )min = - 4 - 4 + a 2 + 3≥4⇒a ≥3,或a ≤-3.∴ -4≤a ≤-3,或3≤a ≤4. 9. C【解析】ααααsin 1sin 1sin 1sin 1-++--+2cos 2sin 22cos 2sin 2cos 2sin 22cos 2sin 2cos 2sin 22cos 2sin 2cos 2sin 22cos 2sin 22222222αααααααααααααααα-++++-+-++=2cos 2sin 2cos 2sin 2cos 2sin 2cos 2sinαααααααα-++--+=.∵ α∈⎥⎦⎤⎢⎣⎡23π π,,∴ 2α∈⎥⎦⎤⎢⎣⎡43π 2π,. ∴ 原式 =2cot 2cos 2sin 2cos 2sin 2cos2sin 2cos 2sinααααααααα=-+++-+.三、解答题.1. 【解】∵ cos α =54,∴ sin α =53.∵ α,β 为锐角, ∴ -2π<α - β<2π. ∵ tan (α - β)=31-,∴ cos (α - β)=10103,sin (α - β)=1010-cos β = cos [α -(α - β)]= cos α cos (α - β)+ sin αsin (α - β)=10509.2. 【解】② 27cos cos ①21sin sin =+-=-βαβα①2 + ②2,得 sin 2 α - 2sin α sin β + sin 2 β + cos 2 α + 2cos α cos β + cos 2 β = 2.∴ cos (α + β)= 0. 又 α,β 均为锐角, ∴ α + β =2π, ∴ sin α – sin β = sin α- cos α= -21. sin 2α + cos 2α - 2 sin α cos α = 1- 2 sin α cos α =41. 又sin 2α + cos 2α = 1,且sin α<cos α,α,β 均为锐角,∴ sin α =417-. ∴ sin (α - β)= sin ⎪⎭⎫⎝⎛+-αα2π= - cos 2α = 2sin 2α -1 = 47-. 3. 【解】∵ tan ⎪⎭⎫⎝⎛-A 4π=A A tan 1tan 1+-,∴ 3tan A =AA tan 1tan 22+-,∴ tan A =31,或 tan A = - 2.当tan A =31时,tan ⎪⎭⎫⎝⎛-A 4π=21,p = -⎪⎭⎫ ⎝⎛+3121 = -65,q =21×31=61.当tan A = - 2时,tan ⎪⎭⎫ ⎝⎛-A 4π= -3,p = -(-2 - 3) = 5,q = (-2)×(-3) = 6.4. 【证明】cos 8 α - sin 8 α - cos 2α = (cos 4 α + sin 4 α)(cos 2 α + sin 2 α)(cos 2 α - sin 2 α)- cos 2α= (cos 4 α + sin 4 α)cos 2α - cos 2α =(cos 4 α + sin 4 α - 1)cos 2α= [cos 4 α +(sin 2 α - 1)(sin 2 α + 1)] cos 2α = [cos 4 α - cos 2 α(sin 2 α + 1)]cos 2α = - 2cos 2 αsin 2 αcos 2α = -41sin 4αsin 2α.。

三角恒等变换测试题

三角恒等变换测试题

三角恒等变换测试题1、下列哪个选项是正确的?A. sin(2π - α) = sinαB. cos(π - α) = - cosαC. tan(3π - α) = - tanαD. tan(4π - α) = - tanα答案:C. tan(3π - α) = - tanα2、下列哪个选项是正确的?A. sin(-π - α) = - sinαB. cos(-π - α) = - cosαC. tan(-π - α) = - tanαD. tan(-π - α) = tanα答案:A. sin(-π - α) = - sinα3、下列哪个选项是正确的?A. sin(π/2 + α) = cosαB. cos(π/2 + α) = sinαC. tan(π/2 + α) = secαD. tan(π/2 + α) = cscα答案:A. sin(π/2 + α) = cosα4、下列哪个选项是正确的?A. sin(3π/2 - α) = cosαB. cos(3π/2 - α) = sinαC. tan(3π/2 - α) = secαD. tan(3π/2 - α) = cscα答案:A. sin(3π/2 - α) = cosα二、填空题1、请填写下列空白:sin(π - α) = ______;cos(π - α) = ______;tan(π - α) =______。

答案:sinα;-cosα;-tanα2、请填写下列空白:sin(2π - α) = ______;cos(2π - α) = ______;tan(2π - α) = ______。

答案:sinα;cosα;-tanα一、选择题1、下列哪个选项正确描述了正弦函数的角度和其相对应的数值?A.当角度增加时,正弦函数的值也增加B.当角度增加时,正弦函数的值减少C.当角度减少时,正弦函数的值增加D.当角度减少时,正弦函数的值减少答案:D.当角度减少时,正弦函数的值减少。

三角恒等变换单元测试。

三角恒等变换单元测试。

三角恒等变换单元测试第Ⅰ卷(选择题,共60分)一.选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案代号填在答题卡上)1.已知)2,23(,1312cos ππαα∈=,则=+)4(c o sπα ( )A.1325 B. 1327 C. 26217 D. 2627 2.若均βα,为锐角,==+=ββααcos ,53)(sin ,552sin 则 ( )A. 552B. 2552C. 2552552或 D. 552-3.=+-)12sin12(cos)12sin12(cosππππ( )A. 23-B. 21- C. 21 D. 23 4.=-+0000tan50tan703tan50tan70( )A.3 B.33 C. 33- D. 3- 5.=⋅+ααααcos2cos cos212sin22( )A. αtanB. αtan2C. 1D. 21 6.已知x为第三象限角,化简=-x 2cos 1( )A.x sin 2 B. x sin 2- C. x cos 2 D. x cos 2-7. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为 ( )A .1010 B .1010- C .10103 D .10103-8.若).(),sin(32cos 3sin 3ππϕϕ-∈-=-x x x ,则=ϕ( )A. 6π-B. 6πC. 65πD. 65π- 9. 已知1s i n co s 3αα+=,则sin 2α=( )A .89- B .21- C . 21 D .8910. 已知cos 23θ=,则44cos sin θθ-的值为( )A .3-B .3C .49D .1 11. 求=115cos 114cos 113cos 112cos11cosπππππ( )A. 521B. 421 C. 1 D. 012. 函数sin 22x xy =+的图像的一条对称轴方程是 ( )A .x =113π B .x =53π C .53x π=- D .3x π=-第II 卷(非选择题,共72分)二.填空题(本大题共4小题,每小题4分,共16分)13.已知βα,为锐角,的值为则βαβα+==,51cos ,101cos .14.在ABC ∆中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C = .15.若542cos ,532sin-==αα,则角α的终边在 象限. 16.代数式sin15cos75cos15sin105o o o o += .三.解答题(共6个小题,满分56分)17.(本小题8分)△ABC 中,已知的值求sinC ,135B c ,53cosA ==os .18.(本小题8分)已知αβαβαπαβπsin2,53)(sin ,1312)(cos ,432求-=+=-<<<.19.(本小题10分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值.20. (本小题10分)已知71tan ,21)tan(),,0(),4,0(-==-∈∈ββαπβπα且,求)2tan(βα-的值及角βα-2.21、(本小题10分)已知函数⎥⎦⎤⎢⎣⎡∈-⎪⎭⎫⎝⎛+=πππ,2,cos 26sin 2)(x x x x f . (1)若54sin =x ,求函数)(x f 的值; (2)求函数)(x f 的值域.22.(本小题10分)已知(),cos a x x ωω=,()cos ,cos b x x ωω= ()0ω>,令函数()f x a b =,且()f x 的最小正周期为π. 求ω的值; (2)求()f x 的单调区间.参考答案二、填空题13、43π 14、 23- 15、第四 16、 3三、解答题(共6个小题,满分74分)6563135********sin cos cos sin )sin(sin ,1312cos ,180B A ,120,1312cos 6023sin ,1312sin 1cos ,135sin 54sin ,53cos ,:.170002=⨯+⨯=+=+=∴=>+>∴-=>∴>±=-±===∴=∆B A B A B A C B B B A A B B B A A ABC 故不合题意舍去这时若可得又由中在解 6556135)54(131253)sin()cos()cos()sin()]()sin[(2sin 54)cos(,135)sin(23,40432:.19-=⨯-+⨯-=-++-+=-++=∴-=+=-∴<+<<-<∴<<<βαβαβαβαβαβααβαβαπβαππβαπβαπ解 右边左边证明=-+=-+⨯+=-+=++-=+=+=xx x xx x x x x xx x x x x x x 4cos 1)4cos 3(24cos 1)24cos 122(224cos 12cos 222sin 41)22cos 1()22cos 1(cos sin cos sin sin cos cos sin :.20222222442222120.:tan ,020724tan(22)tan tan(2)tan[(22)]1tan(22)tan ππββπαπαβαββαβαββαββ=-∴<<<<∴-<-<-+∴-=-+=-- 解4133712414137παβ-==∴-=-+⨯ 21. (1)1()2cos 2cos 22f x x x x ⎛⎫=+- ⎪ ⎪⎝⎭x x cos sin 3-= 53c o s ,,2,54s i n -=∴⎥⎦⎤⎢⎣⎡∈=x x x ππ ,此时3()5f x =. (2)()2sin 6f x x π⎛⎫=- ⎪⎝⎭ ,ππ≤≤x 2 , 6563πππ≤-≤∴x , 16sin 21≤⎪⎭⎫ ⎝⎛-≤πx , ∴ 函数)(x f 的值域为]2,1[.22.解:(1)∵()f x a b =, ∴()2cos cos f x x x xωωω=+()11cos 2222x x ωω=-+1sin 262x πω⎛⎫=-+ ⎪⎝⎭,即()5sin 26f x x πω⎛⎫=+⎪⎝⎭12+,∴2221T ππωωπ==⇒=; (2)令5222,262k x k k Z πππππ-≤+≤+∈,解之()f x 在2,36k k ππππ⎡⎤--⎢⎥⎣⎦()k Z ∈上递增;同理可求递减区间为,63k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈.。

三角恒等变换常考题(含答案)

三角恒等变换常考题(含答案)

三角恒等变换基础题型一.选择题(共20小题,每小题5分)时间60分钟4.已知sin2α=,则cos2()=()A.﹣B.C.﹣ D.5.若,则cos(π﹣2α)=()A.B.C.D.6.已知sin(α+)+sinα=﹣,﹣<α<0,则cos(α+)等于()A.﹣ B.﹣ C.D.7.若,则=()A. B.C.D.8.已知cosα=,cos(α﹣β)=,且0<β<α<,那么β=()A.B.C.D.9.若α∈(,π),且3cos2α=sin(﹣α),则sin2α的值为()A.B.C.D.10.若α,β为锐角,且满足cosα=,cos(α+β)=,则sinβ的值为()A.B.C.D.12.已知sin(﹣α)﹣cosα=,则cos(2α+)=()A.B.﹣C.D.﹣13.已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣B.﹣7 C.D.715.已知,则sin2α的值为()A.B.C.D.16.cos15°•cos105°﹣cos75°•sin105°的值为()A.﹣ B.C.D.﹣17.若tanα=,则sin2α+cos2α的值是()A.﹣B.C.5 D.﹣519.cos43°cos77°+sin43°cos167°的值是()A. B.C.D.21.已知sinα+cosα=,则sin2α=()A.﹣B.﹣ C.D.23.若tanα=,则cos2α+2sin2α=()A.B.C.1 D.24.已知向量,且,则sin2θ+cos2θ的值为()A.1 B.2 C.D.325.已知tan(α﹣)=,则的值为()A.B.2 C.2 D.﹣226.已知,则tanα=()A.﹣1 B.0 C.D.1三角恒等变换基础题型组卷参考答案与试题解析一.选择题(共30小题)4.(2017•泉州模拟)已知sin2α=,则cos2()=()A.﹣ B.C.﹣ D.【解答】解:==,由于:,所以:=,故选:D.5.(2017•焦作二模)若,则cos(π﹣2α)=()A.B.C.D.【解答】解:由,可得:sinα=.∵cos(π﹣2α)=﹣cos2α=﹣(1﹣2sin2α)=2sin2α﹣1=.故选D6.(2017•衡水一模)已知sin(α+)+sinα=﹣,﹣<α<0,则cos(α+)等于()A.﹣ B.﹣ C.D.【解答】解:∵sin(α+)+sinα=﹣,∴,∴,∴cos(α﹣)=,∴cos(α+)=cos[π+(α﹣)]=﹣cos(α﹣)=.故选C.7.(2017•商丘三模)若,则=()A.B.C.D.【解答】解:∵=cos(α+),∴=cos[2(α+)]=2cos2(α+)﹣1=2×﹣1=﹣.故选:D.8.(2017•德州二模)已知cosα=,cos(α﹣β)=,且0<β<α<,那么β=()A.B.C.D.【解答】解:由0<α<β<,得到0<β﹣α<,又cosα=,cos(α﹣β)=cos(β﹣α)=,所以sinα==,sin(β﹣α)=﹣sin(α﹣β)=﹣=﹣,则cosβ=cos[(β﹣α)+α]=cos(β﹣α)cosα﹣sin(β﹣α)sinα=×﹣(﹣)×=,所以β=.故选:C.9.(2017•青海模拟)若α∈(,π),且3cos2α=sin(﹣α),则sin2α的值为()A.B.C.D.【解答】解:∵α∈(,π),∴sinα>0,cosα<0,∵3cos2α=sin(﹣α),∴3(cos2α﹣sin2α)=(cosα﹣sinα),∴co sα+sinα=,∴两边平方,可得:1+2sinαcosα=,∴sin2α=2sinαcosα=﹣.故选:D.10.(2017•大武口区校级四模)若α,β为锐角,且满足cosα=,cos(α+β)=,则sinβ的值为()A.B.C.D.【解答】解:α,β为锐角,且满足cosα=,∴sinα==,sin(α+β)==,则sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=﹣×=,故选:C.12.(2017•腾冲县校级二模)已知sin(﹣α)﹣cosα=,则cos(2α+)=()A.B.﹣C.D.﹣【解答】解:∵sin(﹣α)﹣cosα=cosα﹣sinα﹣cosα=﹣sin(α+)=,∴sin(α+)=﹣,则cos(2α+)=1﹣2sin2(α+)=,故选:C.13.(2017•榆林一模)已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣ B.﹣7 C.D.7【解答】解析:由cosα=﹣且α∈()得tanα=﹣,∴tan(α+)==,故选C.15.(2017•全国三模)已知,则sin2α的值为()A.B.C.D.【解答】解:∵已知,则平方可得1﹣sin2α=,∴sin2α=,故选:C.16.(2017•山西一模)cos15°•cos105°﹣cos75°•sin105°的值为()A.﹣ B.C.D.﹣【解答】解:cos15°•cos105°﹣cos75°•sin105°=cos15°•cos105°﹣sin15°•sin105°=cos(15°+105°)=cos120°=﹣.故选:A.17.(2017春•陆川县校级月考)若tanα=,则sin2α+cos2α的值是()A.﹣ B.C.5 D.﹣5【解答】解:原式=.故选B.19.(2017春•福州期末)cos43°cos77°+sin43°cos167°的值是()A.B.C.D.【解答】解:cos43°cos77°+sin43°cos167°=cos43°cos77°+sin43°cos(90°+77°)=cos43°cos77°﹣sin43°sin77°=cos(43°+77°)=cos120°=﹣cos60°=﹣.故选D.21.(2017春•荔城区校级期中)已知sinα+cosα=,则sin2α=()A.﹣ B.﹣ C.D.【解答】解:∵sina+cosa=,∴(sina+cosa)2=,∴1+2sinacosa=,∴sin2a=﹣.故选:A.23.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.24.(2016•肃南裕县校级模拟)已知向量,且,则sin2θ+cos2θ的值为()A.1 B.2 C.D.3【解答】解:由题意可得=sinθ﹣2cosθ=0,即tanθ=2.∴sin2θ+cos2θ===1,故选A.25.(2016•河南模拟)已知tan(α﹣)=,则的值为()A.B.2 C.2 D.﹣2【解答】解:由tan(α﹣)==,得tanα=3.则=.故选:B.26.(2016•全国二模)已知,则tanα=()A.﹣1 B.0 C.D.1【解答】解:∵,∴cosα﹣sinα=cosα﹣sinα,∴cosα=sinα,∴tanα===﹣1.故选:A.29.(2017•玉林一模)若3sinα+cosα=0,则的值为()A.B.C.D.﹣2【解答】解:∵3sinα+cosα=0,∴tanα=﹣,∴===,故选:A.30.(2017•成都模拟)已知函数f(x)=cos(x+)sinx,则函数f(x)的图象()A.最小正周期为T=2πB.关于点(,﹣)对称C.在区间(0,)上为减函数D.关于直线x=对称【解答】解:∵函数f(x)=cos(x+)sinx=(cosx﹣sinx)•sinx=sin2x﹣•=(sin2x+cos2x)﹣=sin(2x+)+,故它的最小正周期为=π,故A不正确;令x=,求得f(x)=+=,为函数f(x)的最大值,故函数f(x)的图象关于直线x=对称,且f(x)的图象不关于点(,)对称,故B不正确、D正确;在区间(0,)上,2x+∈(,),f(x)=sin(2x+)+为增函数,故C不正确,故选:D.。

三角恒等变换(测重要试题及问题详解)

三角恒等变换(测重要试题及问题详解)
A、 B、 C、 D、
6., 且 则cos2x的值是( )
A、 B、 C、 D、
7. 函数 的值域是( )
A B C D
8. 已知等腰三角形顶角的余弦值等于 ,则这个三角形底角的正弦值为( )
A B C D
9.要得到函数 的图像,只需将 的图像( )
A、向右平移 个单位 B、向右平移 个单位 C、向左平移 个单位 D、向左平移 个单位
19.(12分)已知 ቤተ መጻሕፍቲ ባይዱ求 的值及角 .
20.已知函数 ,求
(1)函数的最小值及此时的 的集合。
(2)函数的单调减区间
(3)此函数的图像可以由函数 的图像经过怎样变换而得到。(12分)
21.(12分)已知函数 , .
(1)求证 的小正周期和最值;(2)求这个函数的单调递增区间.
22.(14分)已知A、B、C是 三角,向量
15. 的值为
16. 已知函数 ,给出下列四个命题:
①若 ,则
② 是函数 的一条对称轴.
③在区间 上函数 是增函数.
④函数 的图像向左平移 个单位长度得到 的图像.
其中正确命题的序号是
三、计算题:
17.已知 ,求 的值及角 .
18.求值:
(1)
19.已知 ,且 ,
(1)求 的值;(2)求 的值.
20. 已知函数 ,求
(2) 单调减区间为
(3)先将 的图像向左平移 个单位得到 的图像,然后将 的图像向上平移2个单位得到 +2的图像。
21.等腰三角形
22.最小值为950米2,最大值为 米2
《三角恒等变换》测试题
一、选择题:
1.函数 的最小正周期为( )
A. B. C. D.

简单的三角恒等变换专题及答案

简单的三角恒等变换专题及答案

简单的三角恒等变换专题及答案简单的三角恒等变换专题一、选择题1.已知sinα=5115,则cos(π-2α)=()。

答案:B。

通过sinα和cos(π-2α)的关系,可以得到cos(π-2α)=-sinα=-(1/5115)。

2.sin70°/(2cos10°-sin20°)的值是()。

答案:C。

通过三角函数的恒等变换,可以将sin70°/(2cos10°-sin20°)化简为sin70°/cos80°,再使用tan的定义式,得到tan70°=sin70°/cos70°=sin70°/sin10°cos80°=sin70°/sin10°sin10°=1/sin10°=3.3.若sin76°=m,用含m的式子表示cos7°为()。

答案:B。

通过三角函数的恒等变换,可以得到cos(π/2-76°)=sin76°=m,即cos14°=m,再通过三角函数的恒等变换,可以得到cos7°=2cos2(7°)-1=2cos2(14°)cos(π/2-14°)-1=2(1-sin2(14°))-1=1-2sin2(14°)=1-2(cos14°)2=1-2m2.4.若cos2α=-2,则sinα+cosα的值为sin(7π/4)()。

答案:B。

通过cos2α的值可以得到sin2α=1-cos2α=3,再通过三角函数的恒等变换,可以得到sinα+cosα=√2sin(π/4+α)=√2sin(π/4+α-2π)=√2sin(7π/4-α)。

5.已知f(x)=2tanx-2/(x+π/12),则f(π/6)的值为()。

答案:D。

单元测试练习 三角恒等变换

单元测试练习  三角恒等变换

单元测试练习 三角恒等变换一、选择题1.式子26cos 34cos 26sin 34sin -的值为( ) A.21 B. 8cos C. -21 D. - 8cos 2.在△ABC 中,已知sin A cos A =sin B cos B ,则△ABC 是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形3.下列函数中,周期为2π的是( ) A .12sin 2+=x y B .y =sin x cos x C .4cosx y =D .y =cos 22x -sin 22x4.下列各式中,值为23的是( ) A .2sin15°-cos15° B .cos 215°-sin 215° C .2sin 215°-1D .sin 215°+cos 215°5.函数y =sin x +cos x +2的最小值是( ) A .22-B .22+C .0D .16.若sin 2x >cos 2x ,则x 的取值范围是( )A .},4ππ2π43π2|{Z ∈+<<-k k x k x B .},π45π24ππ2|{Z ∈+<<+k k x k xC .},4ππ4ππ|{Z ∈+<<-k k x k xD .},π43π4ππ|{Z ∈+<<+k k x k x7.若22)4π(n si 2cos -=-αα,则cos α +sin α 的值为( )A .27-B .21-C .21 D .278.若f (x )·sin x 是周期为π的奇函数,则f (x )可以是( ) A .sin x B .cos x C .sin2x D .cos2x二、填空题9.若51cos sin =+θθ,则sin2θ 的值是______. 10.已知tan 2x =,则3sin 22cos 2cos 23sin 2x xx x +-的值为 .11.如果1312cos -=θ,其中)2π3,π(∈θ,那么)4πcos(+θ的值等于______.12.若tan α=3,tan β=34,则tan (α-β)等于______.13.若51)cos(=+βα,53)cos(=-βα,则tan α tan β =______.14.若角α 的终边经过点P (1,-2),则sin2α 的值为______.三、解答题 15.、已知0<α<2π,sin α=541) 求αααα2cos cos 2sin sin 22++的值;2) 求tan (α-45π)的值。

高一数学三角恒等变换单元测试题1

高一数学三角恒等变换单元测试题1

三角恒等变换A 组1.已知(,0)2x π∈-,4cos 5x =,则=x 2tan ( ) A .247 B .247- C .724 D .724- 2.函数3sin 4cos 5y x x =++的最小正周期是( ) A.5π B.2π C.π D.2π 3.在△ABC 中,cos cos sin sin A B A B >,则△ABC 为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法判定4.设00sin14cos14a =+,00sin16cos16b =+,c =, 则,,a b c 大小关系( )A .a b c <<B .b a c <<C .c b a <<D .a c b <<5.函数)cos[2()]y x x ππ=-+是( )4π4π的偶函数 2π2π的偶函数6.已知cos 2θ=,则44sin cos θθ+的值为( ) A .1813 B .1811 C .97 D .1- 二、填空题1.求值:0000tan 20tan 4020tan 40++=_____________。

2.若1tan 2008,1tan αα+=-则1tan 2cos 2αα+= 。

3.函数f x x x x ()cos sin cos =-223的最小正周期是___________。

4.已知sin cos 223θθ+=那么sin θ的值为 ,cos2θ的值为 。

5.ABC ∆的三个内角为A 、B 、C ,当A 为 时,cos 2cos2B C A ++取得最大值,且这个最大值为 。

三、解答题1.已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值.2.若,22sin sin =+βα求βαcos cos +的取值范围。

3.求值:0010001cos 20sin10(tan 5tan 5)2sin 20-+--4.已知函数.,2cos 32sin R x x x y ∈+= (1)求y 取最大值时相应的x 的集合;(2)该函数的图象经过怎样的平移和伸变换可以得到)(sin R x x y ∈=的图象.参考答案一、选择题4.D 059a =,061b =,060c =5.C 2cos 242y x x x ==-,为奇函数,242T ππ== 6.B 442222221sin cos (sin cos )2sin cos 1sin 22θθθθθθθ+=+-=-21111(1cos 2)218θ=--= 二、填空题0000000tan 20tan 40tan 60tan(2040)1tan 20tan 40+=+==-000020tan 40tan 20tan 40=+2.2008 11sin 21sin 2tan 2cos 2cos 2cos 2cos 2ααααααα++=+= 222(cos sin )cos sin 1tan 2008cos sin cos sin 1tan αααααααααα+++====---3.π ()cos 222cos(2)3f x x x x π==+,22T ππ==4.17,39 22417(sin cos )1sin ,sin ,cos 212sin 22339θθθθθθ+=+===-= 5.0360,2 2cos 2cos cos 2sin 12sin 2sin 2222B C A A A A A ++=+=-+ 22132sin 2sin 12(sin )22222A A A =-+-=--+ 当1sin 22A =,即060A =时,得max 3(cos 2cos )22B C A ++= 三、解答题1.解:sin sin sin ,cos cos cos ,βγαβγα+=-+=-22(sin sin )(cos cos )1,βγβγ+++=122cos()1,cos()2βγβγ+-=-=-。

三角恒等变换测试题

三角恒等变换测试题

三角恒等变换测试题高一数学试题——三角恒等变换测试题一、选择题(本大题共12个小题,每小题5分,共60分)1、计算cos24cos36-cos66cos54的值。

A、1/2B、1/4C、-1/2D、-1/42、已知cosα=-31/32,α∈(π/2,π),sinβ=-1/2,β∈第三象限,则cos(β-α)=?A、-25/13B、-3/4C、-5/13D、-3/53、计算tan20+tan40+3tan20tan40的值。

A、3B、-3C、1/3D、-1/34、已知tan(α+β)=3,tan(α-β)=5,则tan2α=?A、4/11B、7/8C、-7/8D、-4/115、已知sinα=1/3,cos(α+β)=-1/2,α、β均为锐角,则sinβ=?A、-1/2B、-1/3C、1/2D、1/36、已知x∈(-π/3,π/3),且cos(-x)=-1/2,则cos2x=?A、-7/24B、-1/8C、1/8D、7/247、函数y=sinx+cosx的值域为?A、[0,1]B、[-1,1]C、(0,1]D、[-1,0)8、已知等腰三角形顶角的余弦值为4/5,则这个三角形底角的正弦值为?A、3/5B、4/5C、1/5D、2/59、函数y=3sin2x-cos2x的图像向右平移π/4个单位后,得到的函数为?A、y=3cos2(x-π/4)-sin2(x-π/4)B、y=3cos2(x+π/4)-sin2(x+π/4)C、y=3cos2(x-π/4)+sin2(x-π/4)D、y=3cos2(x+π/4)+sin2(x+π/4)10、函数y=1-cosx+sinx的图像的一条对称轴方程为?A、x=π/2B、x=-π/2C、x=πD、x=-π11、已知cot(α-β)=-2,则tanα=?A、-3/4B、-4/3C、3/4D、4/312、函数y=sin(2x+π/6)的振幅为?A、1B、2C、1/2D、无穷大二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中的横线上)13、在△ABC中,已知tanA,tanB是方程3x-7x+2=0的两个实根,则tanC=__________。

精选高中数学单元测试试题-三角恒等变换专题考试题库(含标准答案)

精选高中数学单元测试试题-三角恒等变换专题考试题库(含标准答案)

2019年高中数学单元测试试题 三角恒等变换专题(含答案)学校:__________第I 卷(选择题) 请点击修改第I 卷的文字说明一、选择题1.已知cos (α-6π)+sin α=的值是则)67sin(,354πα-( ) (A )-532 (B )532 (C)-54 (D) 54(2008山东理) 2.如题(15)图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等.设第i 段弧所对的圆心角为(1,2,3)i i α=,则232311cos cos sin sin 3333αααααα++-=____________ . (2010重庆文15)3.已知α为第二象限角,3sin 5α=,则sin 2α= (A )2524-(B )2512- (C )2512 (D )25244.设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为 (A )-3 (B )-1 (C )1 (D )35.若0<α<β<4π,sin α+cos α=a ,sin β+cos β=b ,则( )(2001全国8)A .a <bB .a >bC .ab <1D .ab >26.已知角θ的顶点与原点重合,始边与横轴的正半轴重合,终边在直线x y 2=上,则,=θ2cos ( ) A 54- B 53- C 32 D 43(2011年高考全国新课标卷理科5)7.已知函数()cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是( )(2009安徽理)A .51212k k k Z ππππ-+∈[,], B .5111212k k k Z ππππ++∈[,], C .[],36k k k Z ππππ-+∈, D .2[]63k k k Z ππππ++∈,, [解析]:()2sin()6f x x πω=+,由题设()f x 的周期为T π=,∴2ω=, 由222262k x k πππππ-++剟得,,36k x k k z ππππ-+∈剟,故选C 第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题8.若x x x f sin 2)(+=,则)0('f = .9.已知,αβ为锐角,sin ,cos x y αβ==,3cos()5αβ+=-,则y 与x 的函数关系为______ .10.化简ii 2131-+ 11.已知21sin =α,其中⎪⎭⎫ ⎝⎛∈2,0πα,则=+)6cos(πα .3.21 12.函数()lg(sin cos )f x x x =-的单调递减区间为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随县二中2015-2016学年度下学期训练题
高 一 数 学
命题人: 晏海洋 审题人: 陈京京 班级: 学生:
训练范围: 三角恒等变换单元测试题(一) 2016.3
一、选择题(本大题共12个小题,每小题5分,共60分.)
1.在△ABC 中,已知2sinAcosB =sinC ,则△ABC 一定是
( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形 2.2cos10°-sin20°sin70°
的值是 ( ) A .12 B .32 C . 3 D . 2
3.已知x ∈(-π2,0),cosx =45,则tan2x 等于 ( )
A .724
B .-724
C .247
D .-247
4.已知1sin cos 3
αα+=,则sin 2α=( ) A .21 B .21- C .89 D .89- 5.等式sinα+3cosα=4m -64-m
有意义,则m 的取值范围是 ( ) A .(-1,73) B .[-1,73] C .[-1,73] D .*―73,―1+ 6.221tan 1tan αα
--+= ( ) A. 2tan 2α- B. 2tan 2α C. cos 2α D. tan 2α
7.已知α∈(0,π),且sinα+cosα=15,则tanα的值为 ( )
A .-43
B .-43 或-34
C .-34
D .43 或-34
8.函数)cos (sin sin 2x x x y +=的最大值为( )
A.21+
B.12-
C.2
D.2
9.函数2sin(2)cos[2()]y x x ππ=-+是( )
A .周期为4π的奇函数
B .周期为4
π的偶函数 C .周期为2π的奇函数 D .周期为2π的偶函数 10. 某物体受到恒力是()
1,3F = ,产生的位移为()sin ,cos s t t =- ,则恒力对物体所做的最大功是( ) A .31+ B.2 C.22 D.3
11. 若-2π<α<-2
3π,则2)cos(1πα--等于( ) A .sin 2α B .cos 2α C .-sin 2α D .-cos 2
α 12.在△ABC 中,已知tan A +B 2=sinC ,则以下四个命题中正确的是 ( )
(1)tanA ÷tanB =1.(2)1<sinA +sinB≤2.(3)sin 2A +cos 2B =1.(4)cos 2A +cos 2B =sin 2C .A .①③ B .②④ C .①④ D .②③
二.填空题(本大题共4小题,每小题5分,共20分.)
13.f(x)=sinx cosx 1+sinx +cosx
的值域为 14.已知cosθ+cos 2θ=1,则sin 2θ+sin 6θ+sin 8θ=
15.函数y =5sin(x +20°)-5sin(x +80°)的最大值是 。

16.若圆内接四边形的四个顶点A 、B 、C 、D 把圆周分成AB ︵∶BC ︵∶CD ︵∶DA ︵=
4∶3∶8∶5,则四边形四个内角A 、B 、C 、D 的弧度数为 。

三.解答题(本大题共6个小题,共70分.)
17.设cos(α-β2)=-19,sin(α2-β)=23,且π2<α<π,0<β<π2,求cos (α+β).
18.已知6sin 2α+sinαcosα-2cos 2α=0,α∈[π2,π+,求sin(2α+π3)的值.
19.在矩形ABCD 中,AB =a ,BC =2a ,在BC 上取一点P ,使得AB +BP =PD ,求tan ∠APD 的值.
20.是否存在锐角α和β,使α+2β=2π3①,且tan α2tanβ=2-3②,同时成立?
若存在,求出α和β的值;若不存在,请说明理由.
21.已知sinα+sinβ=m,cosα+cosβ=2.(1)求实数m的范围.(2)当m取最小值时,求sin(α+β)的值.
22.已知AB=2a,在以AB为直径的半圆上有一点C,设AB中点为O,∠AOC=60°.
(1)在
BC上取一点P,若∠BOP=2θ,把PA+PB+PC表示成θ的函数;
(2)设f(θ)=PA+PB+PC,当θ为何值时f(θ)有最大值,最大值是多少?。

相关文档
最新文档