2018年浙江省中考数学《第27讲:图形与变换》课后练习含答案图形平移与旋转
2018届浙江省中考数学复习阶段测评(7)图形与变换(有答案)
阶段测评(七)图形与变换时间:90分钟满分:120分一、选择题(每小题3分,共30分)1.(2017武汉中考)点A(-3,2)关于y轴对称的点的坐标为( B)A.(3,-2) B.(3,2) C.(-3,-2) D.(2,-3)2.(2017自贡中考)下列图形中,是轴对称图形,但不是中心对称图形的是( A),A),B),C),D)3.(河北中考)一张菱形纸片按如图①、图②依次对折后,再按如图③打出一个圆形小孔,则展开铺平后的图案是( C),A),B) ,C),D)4.(2017黄冈中考)已知:如图,是一个几何体的三视图,则该几何体的名称为( D)A.长方体B.正三棱柱C.圆锥D.圆柱,(第4题图)),(第5题图)),(第6题图))5.如图,EF是△ABC的中位线,将△AEF沿中线AD的方向平移到△A1E1F1的位置,使E1F1与BC边重合.已知△AEF的面积为7,则图中阴影部分的面积为( B)A.7 B.14 C.21 D.286.如图,在平面直角坐标系中,点A(-1,m)在直线y=2x+3上,连结OA,将线段OA绕点O顺时针旋转90°,点A的对应点B恰好落在直线y=-x+b上,则b的值为( D)A .-2B .1C .32D .27.(2017益阳中考)如图,空心卷筒纸的高度为12 cm ,外径(直径)为10 cm ,内径为4 cm ,在比例尺为1∶4的三视图中,其主视图的面积是( D )A .21π4 cm 2B .21π16cm 2 C .30 cm 2 D .7.5 cm 2,(第7题图)),(第8题图)),(第9题图))8.如图,AB 是⊙O 的直径,弦CD 交AB 于点E ,且E 为OB 的中点,∠CDB =30°,CD =43,则阴影部分的面积为( D )A .πB .4πC .43πD .163π9.(2017枣庄中考)如图,直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,当PC +PD 的值最小时,点P 的坐标为( C )A .(-3,0)B .(-6,0)C .(-32,0)D .(-52,0)10.(2017荆州中考)如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 分别在x 轴的负半轴、y 轴的正半轴上,点B 在第二象限.将矩形OABC 绕点O 顺时针旋转,使点B 落在y 轴上,得到矩形ODEF ,BC与OD 相交于点M.若经过点M 的反比例函数y =k x (x <0)的图象交AB 于点N ,S 矩形OABC =32,tan ∠DOE =12,则BN 的长为( A )A .3B .4C .5D .6二、填空题(每小题4分,共24分)11.(威海中考)一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图,则搭成这个几何体的小正方体的个数是__4个__.,(第11题图)),(第12题图)),(第13题图))12.(荆门中考)两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8 cm,则CF=cm.13.(随州中考)(单位:cm),根据图中数据计算这个长方体的体积是__24__cm3.14.如图,在▱ABCD 中,对角线AC ,BD 交于点E ,∠AEB =45°,BD =2,将△ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B′,则DB′的长为.15.长为1,宽为a 的矩形纸片⎝ ⎛⎭⎪⎫12<a<1,如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n 次操作后,剩下的矩形为正方形,则操作终止.当n =3时,a 的值为__35或34__.,(第15题图)),(第16题图))16.如图,射线QN 与等边三角形ABC 的两边AB ,BC 分别交于点M ,N ,且AC∥QN,AM =MB =2 cm ,QM =4 cm .动点P 从点Q 出发,沿射线QN 以1 cm /s 的速度向右移动,经过t s ,以点P 为圆心, 3 cm 长为半径的圆与△ABC 的边相切(切点在边上),请写出t 可取的一切值:__t =2或3≤t≤7或t =8__.(单位:s )三、解答题(共66分)17.(8分)(龙东中考)如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为(-1,3),(-4,1),(-2,1),先将△ABC 沿一确定方向平移得到△A 1B 1C 1,点B 的对应点B 1的坐标是(1,2),再将△A 1B 1C 1绕原点O 顺时针旋转90°得到△A 2B 2C 2,点A 1的对应点为点A 2.(1)画出△A 1B 1C 1; (2)画出△A 2B 2C 2;(3)求出在这两次变换过程中,点A 经过点A 1到达点A 2的路径总长. 解:(1)如图,△A 1B 1C 1即为所求作图形;(2分) (2)如图,△A 2B 2C 2即为所求作图形;(4分)(3)OA 1=42+42=42,点A 经过点A 1到达点A 2的路径总长=52+12+90·π·42180=26+22π.(8分)18.(8分)(1)如图①,纸片▱ABCD 中,AD =5,S ▱ABCD =15.过点A 作AE⊥BC,垂足为E ,沿AE 剪下△ABE ,将它平移至△DCE′ 的位置,拼成四边形AEE′D,则四边形AEE′D 的形状为( )A .平行四边形B .菱形C .矩形D .正方形(2)如图②,在(1)中的四边形纸片AEE′D 中,在EE′上取一点F ,使EF =4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形;②求四边形AFF′D的两条对角线的长.解:(1)C;(2分)(2)①∵AD=5,S▱ABCD=15,∴AE=3.∵EF=4,∴在Rt△AEF中,AF=AE2+EF2=32+42=5,∴AF =AD=5.又∵AF∥DF′,AF=DF′,∴四边形AFF′D是平行四边形.又∵AF=AD,∴四边形AFF′D是菱形;(5分)②连结AF′,DF.在Rt△DE′F中,∵E′F=E′E-EF=5-4=1,DE′=3,∴DF=12+32=10.在Rt△AEF′中,∵EF′=EF+FF′=4+5=9,AE=3,∴AF′=32+92=310.(8分)19.(8分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G,连结AG.(1)求证:△ABG≌△AFG;(2)求BG的长.解:(1)∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=AB.由折叠的性质可知:AD=AF,∠AFE=∠D=90°,∴∠AFG=90°,AB=AF,∴∠AFG=∠B.又AG=AG,∴Rt△ABG≌Rt△AFG(HL);(4分)(2)∵△ABG≌△AFG,∴BG=FG.设BG=FG=x,则GC=6-x.∵E为CD的中点,∴CE=EF=DE=3,∴EG=x+3,∴32+(6-x)2=(x+3)2,解得x=2,∴BG=2.(8分)20.(8分)(巴中中考)如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.(1)画出将△ABC向右平移2个单位得到的△A1B1C1;(2)画出将△ABC 绕点O 顺时针方向旋转90°得到的△A 2B 2C 2; (3)求△A 1B 1C 1与△A 2B 2C 2重合部分的面积.解:(1)如图,△A 1B 1C 1即为所求作图形;(2分) (2)如图,△A 2B 2C 2即为所求作图形;(4分)(3)如图,设B 2C 2与A 1B 1相交于点F ,B 2A 2与A 1B 1相交于点E ,直线A 1B 1与直线y =1相交于点H.∵B 2(0,1),C 2(2,3),B 1(1,0),A 1(2,5),A 2(5,0),∴直线A 1B 1的表达式为y =5x -5,直线B 2C 2的表达式为y =x +1,直线A 2B 2的表达式为y =-15x +1,由⎩⎪⎨⎪⎧y =5x -5,y =x +1,解得⎩⎪⎨⎪⎧x =32,y =52,∴E (32,52).(6分)由⎩⎪⎨⎪⎧y =5x -5,y =-15x +1,解得⎩⎪⎨⎪⎧x =1513,y =1013,∴F(1513,1013).由⎩⎪⎨⎪⎧y =5x -5,y =1,解得⎩⎪⎨⎪⎧x =65,y =1,∴H(65,1).S 重合部分=S △B 2EF =S △B 2HE +S △B 2HF =12B 2H ·(y E -y H )+12B 2H ·(y H -y F )=12×65×⎝ ⎛⎭⎪⎫52-1+12×65×(1-1013)=2726.(8分)21.(8分)(天津中考)如图,在每个小正方形的边长为1的网格中,A ,E 为格点,B ,F 为小正方形边的中点,C 为AE ,BF 的延长线的交点.(1)AE 的长等于________;(2)若点P 在线段AC 上,点Q 在线段BC 上,且满足AP = PQ = QB ,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的.(不要求证明)解:(1)5;(3分)(2)如图,AC与网格线相交,得点P;取格点M,连结AM并延长与BC相交,得点Q.连结PQ,线段PQ 即为所求.(8分)22.(8分)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;…….依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图①,▱ABCD中,若AB=1,BC=2,则▱ABCD为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是________阶准菱形;②小明为了剪去一个菱形,进行如下操作:如图②,把▱ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F处,得到四边形ABFE,请证明四边形ABFE是菱形;(2)操作、探究与计算:①已知▱ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;②已知▱ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出▱ABCD是几阶准菱形.解:(1)①2;②证明:由折叠知,∠ABE=∠FBE,AB=BF.∵四边形ABCD是平行四边形,∴AE∥BF,∴∠AEB=∠FBE,∴∠AEB=∠ABE,∴AE=AB,∴AE=BF,∴四边形ABFE是平行四边形,∴四边形ABFE 是菱形;(4分)(2)①(6分)②10阶准菱形,理由略.(8分)23.(8分)(潍坊中考)如图,在菱形ABCD 中,AB =2,∠BAD =60°,过点D 作DE⊥AB 于点E ,DF ⊥BC 于点F.(1)如图①,连结AC 分别交DE ,DF 于点M ,N ,求证:MN =13AC ;(2)如图②,将∠EDF 以点D 为旋转中心旋转,其两边DE′,DF ′分别与直线AB ,BC 相交于点G ,P ,连结GP ,当△DGP 的面积等于33时,求旋转角的大小并指明旋转方向.解:(1)连结BD ,设BD 交AC 于点O ,∵在菱形ABCD 中,∠DAB =60°,AD =AB ,∴△ABD 为等边三角形.(1分)∵DE ⊥AB ,∴AE =EB.∵AE∥CD,∴AM CM =AE CD =12,(2分)同理,CN AN =12,∴M ,N 是线段AC 的三等分点,∴MN =13AC ;(3分)(2)∵AB∥CD,∠BAD =60°,∴∠ADC =120°. 又∵∠ADE=∠CDF =30°,∴∠EDF =60°.(4分)当∠EDF 顺时针旋转时,由旋转的性质知∠EDG=∠FDP,∠GDP =∠EDF=60°.∵DE =DF =3,∠DEG =∠DFP=90°,∴Rt △DEG ≌Rt △DFP ,∴DG =DP ,(5分)∵∠GDP =60°,∴△DGP 是等边三角形,则S △DGP =34DG 2,由34DG 2=33,又DG>0,解得DG =23,(6分)∴cos ∠EDG =DE DG =323=12,∴∠EDG =60°,∴当顺时针旋转60°时,△DGP 的面积是3 3.同理可得,当逆时针旋转60°时,△DGP 的面积是3 3.综上所述,将∠EDF 以点D 为旋转中心顺时针或逆时针旋转60°时,△DGP 的面积是3 3.(8分)24.(10分)(2017重庆中考)如图,在平面直角坐标系中,抛物线y =33x 2-233x -3与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E(4,n)在抛物线上.(1)求直线AE 的表达式;(2)点P 为直线CE 下方抛物线上的一点,连结PC ,PE.当△PCE 的面积最大时,连结CD ,CB ,点K 是线段CB 的中点,点M 是CP 上的一点,点N 是CD 上的一点,求KM +MN +NK 的最小值;(3)点G 是线段CE 的中点,将抛物线y =33x 2-233x -3沿x 轴正方向平移得到新抛物线y′,y′经过点D ,y ′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q ,使得△FGQ 为等腰三角形?若存在,直接写出点Q 的坐标,若不存在,请说明理由.解:(1)∵y=33x 2-233x -3,∴y =33(x +1)(x -3),∴A(-1,0),B(3,0).当x =4时,n =533,∴E(4,533).(2分) 设直线AE 的表达式为y =kx +b ,将点A 和点E 的坐标代入得:⎩⎪⎨⎪⎧-k +b =0,4k +b =533,解得⎩⎪⎨⎪⎧k =33,b =33.∴直线AE 的表达式为y =33x +33;(3分) (2)设直线CE 的表达式为y =mx -3,将点E 的坐标代入得:4m -3=533,解得m =233.∴直线CE 的表达式为y =233x - 3.如图①,过点P 作PF∥y 轴,交CE 于点F.设点P 的坐标为⎝ ⎛⎭⎪⎫x ,33x 2-233x -3,则点F(x ,233x -3),则FP =(233x -3)-(33x 2-233x -3)=-33x 2+433x.∴S △EPC =12×(-33x 2+433x)×4=-233x 2+833x ,∴当x =2时,△EPC 的面积最大,∴P(2,-3).(5分)如图②所示,作点K 关于CD 和CP 的对称点G ,H ,连结G ,H 交CD 和CP 于N ,M.∵点K 是CB 的中点,∴K(32,-32).∵点H 与点K 关于CP 对称,∴点H 的坐标为(32,-332).∵点G 与点K 关于CD 对称,∴点G(0,0),∴KM +MN +NK =MH +MN +GN.当点O ,N ,M ,H 在一条直线上时,KM +MN +NK 有最小值,最小值=GH ,∴GH =(32)2+(332)2=3,∴KM +MN +NK 的最小值为3;(6分) (3)存在,点Q 的坐标为⎝ ⎛⎭⎪⎫3,-43+2213或⎝ ⎛⎭⎪⎫3,-43-2213或(3,23)或⎝⎛⎭⎪⎫3,-235.(10分)。
2018年浙江省中考数学《第27讲:图形与变换》课后练习含答案图形平移与旋转
课后练习27 图形与变换第2课时图形平移与旋转A组1.(2015·哈尔滨)如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连结CC′.若∠CC′B′=32°,则∠B的大小是()A.32°B.64°C.77°D.87°第1题图2.将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为()A.(1,1)B.(2,2) C.(-1,1)D.(-2,2)第2题图3.一个长为2、宽为1的长方形以下面的四种“姿态”从直线l的左侧水平平移至右侧(下图中的虚线都是水平线).其中,所需平移的距离最短的是()4.(2015·东营模拟)如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连结AD、BD,则下列结论:①AB=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是()A.1 B.2 C.3 D.4第4题图5.如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为.第5题图6.如图,已知:BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE 可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法),并直接写出旋转角度是____________________.第6题图7.如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为A(-2,3)、B(-3,1).(1)画出△AOB绕点O顺时针旋转90°后的△A1OB1;(2)写出点A1的坐标;(3)求点A旋转到A1所经过的路线长.第7题8.(2017·湖州模拟)如图,正比例函数y=kx(k≠0)经过点A(2,4),AB⊥x轴于点B.第8题图(1)求该正比例函数的解析式;(2)将△ABO 绕点A 逆时针旋转90°得到△ADC ,写出点C 的坐标,试判断点C 是否在直线y =13x +1的图象上,并说明理由.9.如图,将矩形ABCD 绕点A 顺时针旋转,得到矩形AB ′C ′D ′,点C 的对应点C ′恰好落在CB 的延长线上,边AB 交边C ′D ′于点E .(1)求证:BC =BC ′;(2)若AB =2,BC =1,求AE 的长.第9题图B 组10.(2016·西宁)如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为.第10题图11.(2015·青岛)如图,平面直角坐标系的原点O是正方形ABCD的中心,顶点A,B 的坐标分别为(1,1),(-1,1),把正方形ABCD绕原点O逆时针旋转45°得正方形A′B′C′D′,则正方形ABCD与正方形A′B′C′D′重叠部分所形成的正八边形的边长为.第11题图12.如图,在平面直角坐标系中,以A(5,1)为圆心,2个单位长度为半径的⊙A交x 轴于点B,C,解答下列问题:第12题图(1)将⊙A向左平移____________________个单位长度与y轴首次相切,得到⊙A1,此时点A1的坐标为____________________,阴影部分的面积S=____________________;(2)BC的长为____________________.13.(2015·金华)在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB 绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是E、F.(1)若点B的坐标是(-4,0),请在图中画出△AEF,并写出点E、F的坐标;(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.第13题图C组14.(2016·东营)如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.①求证:BD⊥CF;②当AB=2,AD=32时,求线段DH的长.第14题图参考答案第2课时 图形平移与旋转A 组1.C 2.C 3.C 4.D 5.3 36.90°第6题图 7.(1)如图所示:第7题图 (2)A 1(3,2); (3)点A 旋转到A 1所经过的路线为以点O 为圆心,以OA 长为半径的四分之一圆弧.∵OA =22+32=13,∴点A 旋转到A 1所经过的路线的长为90π×13180=132π.8.(1)∵正比例函数y =kx (k ≠0)经过点A (2,4),∴4=2k .∴k =2,∴y =2x . (2)∵A (2,4),AB ⊥x 轴于点B ,∴OB =2,AB =4,∵△ABO 绕点A 逆时针旋转90°得到△ADC ,∴DC =OB =2,AD =AB =4,∴C (6,2).∵当x =6时,y =13×6+1=3≠2,∴点C 不在直线y =13x +1的图象上.第9题图9.(1)连结AC 、AC ′,如图.∵四边形ABCD 为矩形,∴∠ABC =90°,即AB ⊥CC ′,由旋转,得AC =AC ′,∴BC =BC ′.(2)∵四边形ABCD 为矩形,∴AD =BC ,∠D =∠ABC ′=90°.∵BC =BC ′,∴BC ′=AD .由旋转,得AD =AD ′,∠D =∠D ′,∴BC ′=AD ′,∠D ′=∠ABC ′.∵∠AED ′=∠C ′EB ,∴△AD ′E ≌△C ′BE .∴BE =D ′E .设AE =x ,则D ′E =2-x .在Rt △AD ′E 中,∠D ′=90°,由勾股定理,得x 2-(2-x )2=1.解得x =54,∴AE =54. B 组10.5211.22-2 12.(1)3 (2,1) 6 (2)2 3 13.(1)∵△AOB 绕点A 逆时针旋转90°后得到△AEF ,∴AO ⊥AE ,AB ⊥AF ,BO ⊥EF ,AO =AE ,AB =AF ,BO =EF ,∴△AEF 在图中表示为:第13题图∵AO ⊥AE ,AO =AE ,∴点E 的坐标是(3,3),∵EF =OB =4,∴点F 的坐标是(3,-1). (2)∵点F 落在x 轴的上方,∴EF <AO ,又∵EF =OB ,∴OB <AO ,AO =3,∴OB <3,∴一个符合条件的点B 的坐标是(-2,0).C 组14.(1)BD =CF 成立.证明:∵AC =AB ,∠CAF =∠BAD =θ,AF =AD ,∴△ABD ≌△ACF ,∴BD =CF . (2)①由(1)得,△ABD ≌△ACF ,∴∠HFN =∠ADN ,在△HFN 与△ADN 中,∵∠HFN =∠ADN ,∠HNF =∠AND ,∴∠NHF =∠NAD =90°,∴HD ⊥HF ,即BD ⊥CF .第14题图②如图,连结DF ,延长AB ,与DF 交于点M .在△MAD 中,∵∠MAD =∠MDA =45°,∴∠BMD =90°.在Rt △BMD 与Rt △FHD 中,∵∠MDB =∠HDF ,∴△BMD ∽△FHD .∴MD HD=BD FD .∵AB =2,AD =32,四边形ADEF 是正方形,∴MA =MD =322=3,FD =6.∴MB =3-2=1,DB =12+32=10.∴3HD =106.∴DH =9105.。
中考数学几何图形的变换历年真题解析
中考数学几何图形的变换历年真题解析几何图形的变换是中考数学中的重要内容,涉及平移、旋转、翻转等多种变换方式。
通过对历年真题的解析,我们可以更好地理解和掌握这些变换的方法和应用。
下面将对数学中考几何图形的变换部分进行详细解析。
一、平移变换平移变换是指将一个图形在平面上沿着一定方向移动一定的距离,保持图形形状和大小不变。
在中考中,常常要求计算平移后的图形坐标或者确定平移向量的特征等。
例题1:已知点A(3,4),将点A沿向量(2,-3)平移,记平移后的点为B。
求点B的坐标。
解析:根据平移的定义和向量的性质,我们知道平移后点的坐标等于原来点的坐标加上平移向量的坐标。
所以,点B的坐标为(3+2, 4-3),即B(5,1)。
例题2:如图,平行四边形ABCD经过平移变换得到新的平行四边形A'B'C'D',其中AB=3cm,CB=4cm,平移向量为v,求平移向量v的坐标。
解析:首先,我们可以利用平行四边形的性质推导出平移向量v的坐标与平行四边形的对应边的向量相等。
由于AB在变换前和变换后分别与A'B'、B'C'平行,所以v的坐标等于AB的坐标,即v=(3, 0)。
二、旋转变换旋转变换是指将一个图形绕着一定的旋转中心按一定的角度旋转。
在中考中,常常要求计算旋转后的图形坐标或者确定旋转角度的特征等。
例题3:如图,A、B、C三点在平面内,点A经过逆时针旋转90°得到点B,点B经过逆时针旋转90°得到点C,求点C的坐标。
解析:根据旋转的性质,我们可以得出旋转90°后,点的坐标分别等于原来点的y坐标、-x坐标。
所以,点C的坐标为(-2, 3)。
例题4:如图,正方形ABCD绕顶点A顺时针旋转90°得到新图形,求旋转后点C的坐标。
解析:根据旋转的性质,我们可以将旋转90°看作将原点逆时针旋转90°。
因此,旋转后点C的坐标为(-1, 1)。
最新中考数学专项复习图形的平移、旋转、对称与位似
22
考法1
考法2
考法3
考法4
考法5
考法1轴对称图形和中心对称图形的判定 例1(2017· 四川成都)下列图形中,既是轴对称图形又是中心对称 图形的是( )
答案:D 解析:只有D既是轴对称图形又是中心对称图形,故D符合题意. 方法总结判断轴对称图形的关键是寻找对称轴,使图形按照某条 直线折叠后,直线两旁的部分能够完全重合;中心对称图形是要寻 找对称中心,使图形绕该点旋转180°后与原图形重合.
(1)画出△A1B1C,直接写出点A1,B1的坐标; (2)求在旋转过程中,△ABC所扫过的面积.
4
考题·初做诊断
考点一
考点二
考点三
考点四
考点二图形的旋转(高频)
概 念 要 素
性 质
平面内,一个图形绕着一个定点,旋转一定的角度,得到另一个 图形的变换,叫做旋转 旋转中心、旋转角 、旋转方向(包括顺时针方向和逆时针 方向) (1)旋转前每一组对应点与旋转中心的连线段相等,两组对应点分别 与旋转中心的连线所成的角相等,都等于旋转角 ; (3)确定旋转中心的方法 :任意两组对应点连线段的垂直平分 线 的交点即旋转中心
(1)请画出△ABC关于原点O对称的△A1B1C1; (2)请写出点B关于y轴对称的点B2的坐标,若将点B2向上平移h个单 位,使其落在△A1B1C1内部,指出h的取值范围.
21
考法·必研突破
命题点1
命题点2
命题点3
命题点4
解 (1)△A1B1C1如图所示; 4分 (2)点B2的坐标为(2,-1), 6分 由图可知,点B2到B1与A1C1的中点的距离分别为2,3.5, 所以h的取值范围为2<h<3.5. 8分
(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍, 得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1; (2)将线段A1B1,绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1; (3)以A、A1、B1、A2为顶点的四边形AA1B1A2的面积是20 个平方 单位. 14
2018年中考数学真题汇编 平移与旋转(含答案)
中考数学真题汇编:平移与旋转一、选择题1.下列图形中,可以看作是中心对称图形的是()A. B. C. D.【答案】A2.在平面直角坐标系中,点关于原点对称的点的坐标是()A. B. C. D.【答案】C3.在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为()A.(4,-3)B.(-4,3)C.(-3,4)D.(-3,-4)【答案】B4.如图,在平面直角坐标系中,的顶点在第一象限,点,的坐标分别为、,,,直线交轴于点,若与关于点成中心对称,则点的坐标为()A. B.C. D.【答案】A5.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC 的度数是()A. 55°B. 60°C. 65°D. 70°【答案】C6.下列图形中,既是轴对称又是中心对称图形的是()A. B.C. D.【答案】B7.在平面内由极点、极轴和极径组成的坐标系叫做极坐标系如图,在平面上取定一点称为极点;从点出发引一条射线称为极轴;线段的长度称为极径点的极坐标就可以用线段的长度以及从转动到的角度(规定逆时针方向转动角度为正)来确定,即或或等,则点关于点成中心对称的点的极坐标表示不正确的是( )A. B.C. D.【答案】D8.如图,点是正方形的边上一点,把绕点顺时针旋转到的位置,若四边形的面积为25,,则的长为()A. 5B.C. 7D.【答案】D9.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A. 主视图B. 左视图 C. 俯视图 D. 主视图和左视图【答案】C10.如图,将沿边上的中线平移到的位置,已知的面积为9,阴影部分三角形的面积为4.若,则等于()A. 2B. 3C.D.【答案】A11.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB’,则点B的对应点B’的坐标是()A. (1,0)B. (,) C. (1,) D. (-1,)【答案】C12.如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B.C. D.【答案】A二、填空题13.在平面直角坐标系中,将点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,则所得的点的坐标是________.【答案】(5,1)14.如图,将含有30°角的直角三角板ABC放入平面直角坐标系,顶点AB分别落在x、y轴的正半轴上,∠OAB=60°,点A的坐标为(1,0),将三角板ABC沿x轴右作无滑动的滚动(先绕点A按顺时针方向旋转60°,再绕点C按顺时针方向旋转90°,…)当点B第一次落在x轴上时,则点B运动的路径与坐标轴围成的图形面积是________.【答案】+ π15.如图,正方形的边长为1,点与原点重合,点在轴的正半轴上,点在轴的负半轴上将正方形绕点逆时针旋转至正方形的位置, 与相交于点,则的坐标为________.【答案】16.如图,正比例函数y=kx与反比例函数y= 的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是________ .【答案】y= x-317.如图,中,,,,将绕点顺时针旋转得到,为线段上的动点,以点为圆心,长为半径作,当与的边相切时,的半径为________.【答案】或18.设双曲线与直线交于,两点(点在第三象限),将双曲线在第一象限的一支沿射线的方向平移,使其经过点,将双曲线在第三象限的一支沿射线的方向平移,使其经过点,平移后的两条曲线相交于点,两点,此时我称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,为双曲线的“眸径”当双曲线的眸径为6时,的值为________.【答案】三、解答题19.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)①在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;②将线段绕点逆时针旋转90°得到线段.画出线段;(2)以为顶点的四边形的面积是________个平方单位.【答案】(1)解:如图所示:(2)2020.如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C 按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连结BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.【答案】(1)证明:∵线段CD绕点C按逆时针方向旋转90°得到线段CE,∴∠DCE=90°,CD=CE,又∵∠ACB=90°∴∠ACB=∠DCE.∴∠ACD=∠BCE.在△ACD和△BCE中,∵CD=CE,∠ACD=∠BCE,AC=BC,∴△ACD≌△BCE(SAS),(2)解:∵∠ACB=90°,AC=BC,∴∠A=45°由(1)知△ACD≌△BCE,∴AD=BE,∠CBE=∠A=45°,又∵AD=BF,∴BE=BF,∴∠BEF=∠BFE= =67.5°.21.在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:(1)①作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;②作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(2)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(-4,-2),请直接写出直线l的函数解析式. 【答案】(1)解:如图所示, C1的坐标C1(-1,2), C2的坐标C2(-3,-2)(2)解:∵A(2,4),A3(-4,-2),∴直线l的函数解析式:y=-x.22.如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为________(度);(2)在如图所示的网格中,是边上任意一点. 为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)【答案】(1)(2)解:如图,即为所求.23.在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点,,的对应点分别为,,.(1)如图①,当点落在边上时,求点的坐标;(2)如图②,当点落在线段上时,与交于点.①求证;②求点的坐标.(3)记为矩形对角线的交点,为的面积,求的取值范围(直接写出结果即可).【答案】(1)解:∵点,点,∴,.∵四边形是矩形,∴,,.∵矩形是由矩形旋转得到的,∴.在中,有,∴.∴.∴点的坐标为.(2)解:①由四边形是矩形,得.又点在线段上,得.由(Ⅰ)知,,又,,∴.②由,得.又在矩形中,,∴.∴.∴.设,则,.在中,有,∴.解得.∴.∴点的坐标为.(3)解:24.在中,,,,过点作直线,将绕点顺时针得到(点,的对应点分别为,)射线,分别交直线于点,.(1)如图1,当 与 重合时,求 的度数;(2)如图2,设与的交点为 ,当 为的中点时,求线段的长;(3)在旋转过程时,当点 分别在,的延长线上时,试探究四边形的面积是否存在最小值.若存在,求出四边形的最小面积;若不存在,请说明理由.【答案】(1)由旋转的性质得:.,,,,,.(2)为的中点,.由旋转的性质得:,., .,,.(3),最小,即最小,.法一:(几何法)取中点 ,则..当最小时,最小,,即与 重合时,最小.,,,.法二:(代数法)设 , .由射影定理得:,当最小,即最小,.当 时,“”成立,.。
2018版中考数学:6.2-轴对称、平移、旋转(含答案)
§6.2轴对称、平移、旋转一、选择题1.(原创题)永州的文化底蕴深厚,永州人民的生活健康向上,如瑶族长鼓舞,东安武术,宁远举重等,下面的四幅简笔画是从永州的文化活动中抽象出来的,其中是轴对称图形的是()解析由轴对称图形的定义可知选项C中图形是轴对称图形,故选C.答案C2.(原创题)如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长解析相邻电路的电线等距排列说明三条电线中水平部分是相等的,若将三条电线的铅直部分的下段都向右,使铅直部分在同一条直线上,可知这三条电线是相等的,故电线的总长相等,选D.答案D3.(改编题△)如图,在ABC中,AB=4,BC=6,∠B=60°,将△A BC沿射线BC的方向平移,得到△A′B′C△′,再将A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别A.4,30°()B.2,60°C.1,30°D.3,60°解析由平移的性质可得A′B′=AB=4,A′B′∥AB,∠A′B′C=∠B=60°.由旋转的性质可得A′C=A′B△′,∴A′B′C是等边三角形,∴B′C=A′B′=4.∴BB′=BC-B′C=2,即平移的距离为△2.∵A′B′C是等边三角形,∴∠B′A′C=60°,即旋转角的度数为60°.故选B.答案B4.(改编题△)如图,在ABC中,∠ACB=90°,∠A=△20°,若将ABC沿CD折叠,使B点落在AC边上的E处,则∠ADE的度数是()A.30°B.40°C.50°D.55°解析由折叠可知∠CED=∠B=90°-∠A=90°-20°=70°.又∵∠CED△是AED的外角,∴∠ADE=∠CED-∠A=70°-20°=50°,选C.答案C5.(原创题)在方格纸中,选择某一个白色小正方形涂黑,与图中阴影部分构成轴对称图形,则不同的涂法有()A.1种C.3种B.2种D.4种解析如图,可以有下面3种不同的涂法,分别涂黑①②③的位置.故选C.答案C6.(改编题)如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的F处,已知AB=6,AD=10,则CE等于()A.1B.1.58C.3D.2解析在矩形ABCD中,∠B=90°,AD=BC,AD=10,由勾股定理可得BF=8,∴CF=2.由折叠可知∠AFE=90°,∴∠EFC=AB BF FC·BF2×88∠BAF△.∴ABF∽△FCE,FC=CE.∴CE=AB=6=3.故选C.答案C二、填空题7.(原创题)使平行四边形ABCD是轴对称图形,只需添加一个条件,这个条件可以是________(只要填写一种情况).解析若平行四边形ABCD是矩形、菱形、正方形,就是轴对称图形,故可添加:∠A=90°(或其它角为直角)或AC=BD,使成为矩形;也可添加:AB =BC(或其它邻边相等),AC⊥BD,使成为菱形;因为添加一个条件不能成为正方形,故可添加的条件可以是∠A=90°,AC=BD,AB=BC,AC⊥BD等.答案答案不唯一,如∠A=90°(或AC=BD,AB=BC,AC⊥BD) 8.(改编题)矩形纸片ABCD,按如图所示的方式折叠,点A、点C恰好落在对角AD线BD上,若得到的四边形BEDF是菱形,则A B=________.解析由折叠与菱形的性质可知∠ABF=30°,∴∠ABD=60°.在Rt△ABDAD中,AB=tan60°= 3.答案3三、解答题9.(改编题)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2),B(1,△3).AOB绕点O逆时针旋转90°后得到△A1OB1.(1)点A关于点O成中心对称的点的坐标为________;(2)点A1的坐标为________;(3)在旋转过程中,求点B经过的路径的长.解(1)(-3,-2);(2)如图,在坐标系中画出将△AOB绕点O逆时针旋转△90°的A1OB1,点A1的坐标为(-2,3)︵︵(3)点B经过的路径为BB1,OB=12+32=10,BB1的长=90×π×1010180=2π.10.(改编题)实践与操作:如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形.(1)请你仿照图1,用两段相等的圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形.(2)以你在图3中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形.解答案不唯一,仅供参考:(1)在图3中设计出符合题目要求的图形如下图1.(2)在图4中画出符合题目要求的图形如下图2.。
【精品】2018版中考数学:6.2-轴对称、平移、旋转(含答案)
§6.2轴对称、平移、旋转A组2018年全国中考题组一、选择题1.(2018·浙江嘉兴,2,4分)下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()解析第一个和第三个属于中心对称图形,第二个和第四个属于轴对称图形.答案 B2.(2018·浙江温州,4,4分)下列选项中的图形,不属于中心对称图形的是() A.等边三角形B.正方形C.正六边形D.圆解析等边三角形是轴对称图形,正方形、正六边形、圆既是轴对称图形又是中心对称图形.答案 A3.(2018·福建福州,7,3分)如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A.A点B.B点C.C点D.D点解析当以点B为原点时,A(-1,-1),C(1,-1),则点A和点C关于y轴对称,符合条件.答案 B4.(2018·河北,3,3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()解析 严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论. 答案 C5.(2018·山东泰安,15,3分)如图,在平面直角坐标系中,正三角形OAB 的顶点B 的坐标为(2,0),点A 在第一象限内,将△OAB 沿直线OA 的方向平移至△O ′A ′B ′的位置,此时点A ′的横坐标为3,则点B ′的坐标为 ( ) A .(4,23) B .(3,33) C .(4,33)D .(3,23)解析 作AM ⊥x 轴于点M .根据等边三角形的性质得出OA =OB =2,∠AOB =60°,在直角△OAM 中利用含30°角的直角三角形的性质求出OM =12OA =1,AM =3OM =3,则A (1,3),直线OA 的解析式为y =3x ,将x =3代入,求出y =33,那么A ′(3,33),由一对对应点A 与A ′的坐标求出平移规律,再根据此平移规律即可求出点B ′的坐标. 答案 A6.(2018·湖南邵阳,10,3分)如图,在矩形ABCD 中,已知AB =4,BC =3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2 015次后,顶点A 在整个旋转过程中所经过的路程之和是( )A .2 015πB .3 019.5πC .3 018πD .3 024π解析 转动一次A 的路线长是:90π×4180=2π,转动第二次的路线长是:90π×5180=5π2,。
浙教版七年级数学平移变换(含答案)
2.3 平移变换【知识提要】1.认识平移变换(平移)的概念.•体验影响图形平移变换的主要因素是移动的方向和距离.2.理解平移变换的性质:(1)平移变换不改变图形的形状、大小和方向;(2)连结对应点的线段互相平行(或在同一条直线上)且相等.3.会按要求作出简单平面图形平移变换后的像.【学法指导】1.任何方向的平移变换都可以由左右平移和上下平移来完成.2.作平移图形的关键是找出几个关键点并作出这几个点的对应点.3.平移变换必须指出平移的方向和移动的距离.范例积累【例1】如图,△ABC的顶点A平移到了点D,请你作出△ABC经平移变换后所得的像.【分析】因为A与D是对应点,而平移时对应点的连线段平行且相等,所以平移方向──射线AD,平移距离──线段AD的长.【解】作法:(1)分别过点B、C沿AD方向作线段BE、CF,使它们与AD平行且相等;(2)顺次连结D、E、F,则△DEF即为所求经平移变换后所得的像.【注意】图形的平移可以看作是几个关键点的平移,这是一种“局部带整体”的平移作图方法.【例2】如图1,试问:由△ABC经平移变换后得到的三角形有几个?(1) (2)【分析】事实上,图中所有的小三角形均与三角形ABC形状、大小相同,•但根据平移变换的定义,方向相同的三角形只有5个.【解】一共有5个,如图2所示.【注意】平移变换前后的三角形一定全等,但两个全等的三角形经平移之后不一定重合.基础训练1.在平面内,•将一个图形沿某个方向移动一定的距离的图形运动叫做_________.2.•平移变换不改变图形的_______•、•_______•和________•,•只改变图形的______.3.小明把自己的左手手印和右手手印按在同一张白纸上,左手手印______•(填“能”或“不能”)通过平移与右手手印完全重合.4.下列说法正确的是()A.火车的铁轨上行驶,可看作火车在作平移变换B.•我们可以把“火车在一段笔直的铁轨上行驶了一段距离”看作“火车沿着铁轨方向作平移变换”C.小明第一次乘观光电梯,随着电梯的上升,他高兴地对同伴说:太棒了,•我现在比大楼还高呢,我长高了D.在图形平移变换过程中,图形上可能会有不动点5.如图,将四边形ABCD平移后,边AB移到线段EF,请作出平移交换后的四边形.6.如图,平移方格纸中的图形,使A点平移到A′点处,画出平移变换后的图形,并写上一句贴切、诙谐的解说词.解说词:_______________.7.如图,在Rt△ABC中,∠C=90°,BC=4,AC=4,现将△ABC沿CB方向平移到△A′B′C′的位置.(1)若平移距离为3,求△ABC与△A′B′C′的重叠部分的面积;(2)若平移距离为x(0≤x≤4),求△ABC与△A′B′C′的重叠部分的面积y,并写出y与x的关系式.8.一列长200米的火车在笔直的铁轨上做匀速直线运动,火车头在1•分钟内走了1200米,那么,坐在车尾的乘客的速度是多大?9.如图,直角三角形的周长为80,在其内部有五个小直角三角形,同一方向直角边都互相平行,求这五个小直角三角形的周长之和.提高训练10.如图,已知线段MN为正六边形ABCDEF平移后所得的一条边,请画出平移变换后的图形.11.一个矩形的长为a,宽为b,在图中将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1B1B2A2(即阴影部分).(1) (2)(3) (4)在图中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).(1)在图3中,请你类似地画出一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线表示出;(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:S1=•______,S2=_________,S3=________.(3)联想与探索.如图4,在一块草地上有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少?并请说明你的猜想是正确的.应用拓展12.“架桥风波”趣题:隔江相望两村庄,欲架桥梁通来往.万事俱备欠东风,选址何处费思量.都想桥离自家近,争吵不休和气伤.将军饮马来公断,皆大欢喜施工忙.题意:如图,A、B两村庄位于江之两岸(假定两岸笔直且平行,•现在在江上垂直于江岸建一座桥,如何选取桥的位置,使得由A村经过这座桥到B村的路程最短?13.我们知道,对一个图形进行平移,可按不同方向移动不同的距离.现有一个边长为a 的正方形,怎样平移,连续4次后可得正方形个数能超过15个?请画出草图,并说明平移的方向和距离.答案:1.平移变换(平移) 2.形状大小方向位置3.不能 4.B 5.略 6.•略 7.(1)12(2)y=12(4-x)28.1200米/分钟 9.80 10.有两种情况11.(1)略(2)•S1=ab-b,S2=ab-b,S3=ab-b(3)S=ab-b 12.略 13.略。
2020年中考数学考点总动员第27讲 图形的平移与旋转(含答案解析)
第27讲图形的平移与旋转1.图形的平移(1)定义:在平面内,将某一图形沿着某个方向移动一定的距离,这种图形运动称为平移;平移不改变图形的大小和形状.(2)平移的要素:平移方向、平移距离.(2)性质:①平移后的图形与原来的图形全等;②对应线段平行且相等,对应角相等;③对应点所连的线段平行且相等.2.图形的旋转(1)定义:把一个图形绕着某一个点O转动一定角度的图形变换叫做旋转,如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点;(2)要素:确定一个旋转运动的条件是要确定旋转中心、旋转方向和旋转角度;(3)性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.考点1:关于平移问题【例题1】在6×6方格中,将图①中的图形N平移后位置如图②所示,则图形N的平移方法中,正确的是() A.向下移动1格 B.向上移动1格C.向上移动2格 D.向下移动2格解析:结合图形按平移的定义判断.【同步练】在由相同的小正方形组成的3×4的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形中,其中两个可以由另外两个平移得到,则还需要涂黑的小正方形序号是(D)A.①或②B.③或④C.⑤或⑥D.①或⑨【解析】:根据题意可涂黑①和⑨,涂黑①时,可将左上和左下两个黑色正方形向右平移1个单位即可得;涂黑⑨时,可将左上和左下两个黑色正方形向右平移2个单位、再向下平移1个单位可得;故选:D.归纳:1.平移前后图形的形状、大小都不变,平移得到的对应线段与原线段平行且相等,对应角相等.2.判断时选择某一特殊点,验证其平移情况即可.考点2:关于旋转问题【例题2】(2016·娄底改编)如图,将等腰△ABC绕顶点B逆时针方向旋转角为α旋转到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别相交于点E、F.(1)试判断A1D和CF的数量关系;(2)当∠C=α时,判定四边形A1BCE的形状并说明理由.【分析】(1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根据全等三角形的判定及性质即可求解;(2)由旋转的性质得到∠A1=∠A,根据平角的定义得到∠DEC =180°-α,在四边形A 1BCE 中,根据四边形的内角和得到∠A 1BC =360°-∠A 1-∠C -∠A 1EC =180°-α,进而证得四边形A 1BCE 是平行四边形,由A 1B =BC 即邻边相等的平行四边形是菱形即可证明.【解析】:(1)∵△ABC 是等腰三角形,∴AB =BC ,∠A =∠C,∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,∴A 1B =AB =BC ,∠A =∠A 1=∠C,∠A 1BD =∠CBC 1,在△BCF 与△BA 1D 中,⎩⎪⎨⎪⎧∠A 1=∠C,A 1B =BC ∠A 1BD =∠CBF ,∴△BCF ≌△BA 1D(ASA ),∴A 1D =CF ;(2)四边形A 1BCE 是菱形,∵将等腰△ABC 绕顶点B 逆时针方向旋转到△A 1BC 1的位置, ∴∠A 1=∠A,∵∠ADE =∠A 1DB ,∴∠AED =∠A 1BD =α,∴∠DEC =180°-α,∵∠C =α,∴∠A 1=α,在四边形A 1BCE 中,∠A 1BC =360°-∠A 1-∠C-∠A 1EC =180°-α, ∴∠A 1=∠C,∠A 1BC =∠A 1EC , ∴四边形A 1BCE 是平行四边形, ∴A 1B =BC ,∴四边形A 1BCE 是菱形归纳:图形的旋转为背景的探究问题,常涉及的设问有:探究两条线段的数量关系、特殊四边形形状的判定,解决此类问题,需掌握如下方法:1.探究两条线段的数量关系一般指的是两条线段的倍数关系,常考虑利用特殊三角形、全等三角形、特殊四边形的性质或根据题中对应角的关系得到相似三角形,再根据相似三角形对应边成比例进行求解.2.探究特殊四边形的形状,通常先判定该四边形是否是平行四边形,再结合旋转的性质,根据其边或角的之间的等量关系进一步判定其为哪种特殊的平行四边形. 考点3:关于旋转的综合探究问题【例题3】(2018·湖北江汉·10分)问题:如图①,在Rt△ABC 中,AB=AC ,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC ,则线段BC ,DC ,EC 之间满足的等量关系式为 BC=DC+EC ; 探索:如图②,在Rt△ABC 与Rt△ADE 中,AB=AC ,AD=AE ,将△ADE 绕点A 旋转,使点D 落在BC 边上,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD 中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠ED C=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.一、选择题:1. (2017山东泰安)如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A 对应,则角α的大小为()A.30° B.60° C.90° D.120°【答案】C【解答】解:如图:显然,旋转角为90°,故选C.2. (2018·辽宁省抚顺市)(3.00分)已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)【答案】C【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1).故选:C.3. (2018·广西贺州·3分)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接BB',若∠A′B′B=20°,则∠A的度数是.A.60° B.65° C.70° D.80°【答案】B【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴BC=B′C,∴△BCB′是等腰直角三角形,∴∠CBB′=45°,∴∠B′A′C=∠A′B′B+∠CBB′=20°+45°=65°,由旋转的性质得∠A=∠B′A′C=65°.故答案为:65°.4. (2018·辽宁大连·3分)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α【答案】C【解析】解:由题意可得:∠CBD=α,∠ACB=∠EDB.∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°.∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°﹣α.故选C.5. 如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.【答案】D【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选D二、填空题:6. (2019•湖南常德•3分)如图,已知△ABC是等腰三角形,AB=AC,∠BAC=45°,点D在AC边上,将△ABD绕点A 逆时针旋转45°得到△ACD′,且点D′、D、B三点在同一条直线上,则∠A BD的度数是.【答案】22.5°.【解答】解:∵将△ABD绕点A逆时针旋转45°得到△ACD′,∴∠BAC=∠CAD'=45°,AD=AD',∴∠AD'D=67.5°,∠D'AB=90°,∴∠ABD=22.5°.故答案为22.5°.7. (2019湖北宜昌3分)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,∠AOB =∠B =30°,OA =2,将△AOB 绕点O 逆时针旋转90°,点B 的对应点B'的坐标是 .【答案】,3),【解答】解:如图,作B′H⊥y 轴于H .由题意:OA′=A′B′=2,∠B′A′H=60°,∴AH′=A′B′=1, ∴OH=3,3),8. (2019,山西,3分)如图,在△ABC 中,∠BAC=90°,AB=AC=10cm ,点D 为△ABC 内一点,∠BAD=15°,AD=6cm ,连接BD ,将△ABD 绕点A 逆时针方向旋转,使AB 与AC 重合,点D 的对应点E ,连接DE ,DE 交AC 于点F ,则CF 的长为 cm.【答案】6210-【解析】过点A 作AG⊥DE 于点G ,由旋转可知:AD=AE ,∠DAE=90°,∠CAE=∠BAD=15° ∴∠AED=45°;在△AEF 中:∠AFD=∠AED+∠CAE=60° 在Rt△ADG 中:AG=DG=232=AD在Rt△AFG 中:2GF AF FG ====∴10CF AC AF =-=- 故答案为:6210-三、解答题:9. 如图所示,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE =CG ,连接BG 并延长交DE 于F ,将△DCE 绕点D 顺时针旋转90°得到△DAE′.(1)判断四边形E′BGD 是什么特殊四边形,并说明理由;(2)由△BCG 经过怎样的变换可得到△DAE′?请说出具体的变换过程.解:(1)四边形E′BGD 是平行四边形.理由:∵四边形ABCD 是矩形,∴AB ∥CD ,AB =CD ,∵将△DCE 绕点D 顺时针旋转90°得到△DAE′,∴CE =AE′, ∵CE =CG ,∴AE ′=CG ,∴BE ′=DG , ∴四边形E′BGD 是平行四边形;(2)∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°.∵∠BCD +∠DCE=180°,∴∠BCD =∠DCE=90°.在△BCG 和△DCE,⎩⎪⎨⎪⎧∠BCG=∠DCE BC =DC ∠CBG=∠CD E ,∴△BCG ≌△DCE(ASA );∴由△BCG 绕点C 顺时针旋转90°可得到△DCE,再绕点D 顺时针旋转90°得到△DAE′10. (2018·浙江宁波·10分)如图,在△ABC 中,∠ACB=90°,AC=BC ,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,连结DE 交BC 于点F ,连接BE .(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.【考点】旋转的性质、全等三角形的判定与性质【分析】(1)由题意可知:CD=CE,∠DCE=90°,由于∠ACB=90°,所以∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,所以∠ACD=∠BCE,从而可证明△ACD≌△BCE(SAS)(2)由△ACD≌△BCE(SAS)可知:∠A=∠CBE=45°,BE=BF,从而可求出∠BEF的度数.【解答】解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB﹣∠D CB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD与△BCE中,∴△ACD≌△BCE(SAS)(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知:∠A=∠CBE=45°,∵AD=BF,∴BE=BF,∴∠BEF=67.5°11. (2018·浙江临安·3分)如图直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是()A.1 B.2 C.3 D.不能确定【考点】梯形的性质和旋转的性质【分析】如图作辅助线,利用旋转和三角形全等证明△DCG与△DEF全等,再根据全等三角形对应边相等可得EF的长,即△ADE的高,然后得出三角形的面积.【解答】解:如图所示,作EF⊥AD交AD延长线于F,作DG⊥BC,∵CD以D为中心逆时针旋转90°至ED,∴∠EDF+∠CDF=90°,DE=CD,又∵∠CDF+∠CDG=90°,∴∠CDG=∠EDF,在△DCG与△DEF中,,∴△DCG≌△DEF(AAS),∴EF=CG,∵AD=2,BC=3,∴CG=BC﹣AD=3﹣2=1,∴EF=1,∴△ADE的面积是:×AD×EF=×2×1=1.故选:A.12. (2019•江苏苏州•8分)如图,ABC=,将线段AC绕点A旋转到AF的位置,使△中,点E在BC边上,AE AB得CAF BAE∠=∠,连接EF,EF与AC交于点G(1)求证:EF BC=;(2)若65∠=︒,求FGC∠的度数.ACB∠=︒,28ABC(1)CAF BAE∠=∠∴∠=∠BAC EAFAE AB AC AF==又,()BAC EAF SAS∴△≌△EF BC∴=(2)65AB AE ABC=∠=︒,18065250BAE∴∠=︒-︒⨯=︒50FAG∴∠=︒BAC EAF又△≌△28F C∴∠=∠=︒502878FGC∴∠=︒+︒=︒13. (2019•湖北十堰•10分)如图1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α得到△CBE,点A,D的对应点分别为点B,E,且A,D,E三点在同一直线上.(1)填空:∠CDE=2(用含α的代数式表示);(2)如图2,若α=60°,请补全图形,再过点C作CF⊥AE于点F,然后探究线段CF,AE,BE之间的数量关系,并证明你的结论;(3)若α=90°,AC=,且点G满足∠AGB=90°,BG=6,直接写出点C到AG的距离.【分析】(1)由旋转的性质可得CD=CE,∠DCE=α,即可求解;(2)由旋转的性质可得AD=BE,CD=CE,∠DCE=60°,可证△CDE是等边三角形,由等边三角形的性质可得DF=EF,即可求解;(3)分点G在AB的上方和AB的下方两种情况讨论,利用勾股定理可求解.【解答】解:(1)∵将△CAD绕点C按逆时针方向旋转角α得到△CBE∴△ACD≌△BCE,∠DCE=α∴CD=CE∴∠CDE=1802α-故答案为:1802α-(2)AE=理由如下:如图,∵将△CAD绕点C按逆时针方向旋转角60°得到△CBE∴△ACD≌△BCE∴AD=BE,CD=CE,∠DCE=60°∴△CDE是等边三角形,且CF⊥DE∴DF=EF∵AE=AD+DF+EF∴AE=CF(3)如图,当点G在AB上方时,过点C作CE⊥AG于点E,∵∠ACB=90°,AC=BC=,∴∠CAB=∠ABC=45°,AB=10∵∠ACB=90°=∠AGB∴点C,点G,点B,点A四点共圆∴∠AGC=∠ABC=45°,且CE⊥AG∴∠AGC=∠ECG=45°∴CE=GE∵AB=10,GB=6,∠AGB=90°∴AG=8∵AC2=AE2+CE2,∴()2=(8﹣CE)2+CE2,∴CE=7(不合题意舍去),CE=1若点G在AB的下方,过点C作CF⊥AG,同理可得:CF=7∴点C到AG的距离为1或7.。
七年级数学图形变换专项练习题及答案
七年级数学图形变换专项练习题及答案[本文仅为示例,实际内容为机器人随机生成,仅供参考]七年级数学图形变换专项练习题及答案一、图形变换概念解析图形变换是数学中的重要概念,通过对图形的平移、旋转、翻转等操作,可以得到新的图形。
以下是对一些基本图形变换的解析:1. 平移:平移是指沿着某个方向将图形的每个点都按照相同的距离移动,保持形状不变。
平移可以用坐标的形式表示,如(x, y)→(x+a,y+b),其中(a, b)为平移的向量。
2. 旋转:旋转是指将图形绕着某个中心点按照一定的角度进行旋转,保持形状不变。
旋转可以用坐标的形式表示,如(x, y)→(xcosθ - ysinθ, xsinθ + ycosθ),其中(θ)为旋转的角度。
3. 翻转:翻转是指将图形按照某个轴进行对称,可以是水平轴、垂直轴或者某条斜线。
对于水平翻转,坐标的形式表示为(x, y)→(x, -y);对于垂直翻转,坐标的形式表示为(x, y)→(-x, y)。
二、图形变换练习题1. 平移练习题:将下列图形按照给定的向量进行平移,并写出新的坐标:(1) 图形ABCDEF,向量(2, 3)(2) 图形PQRST,向量(-1, 4)2. 旋转练习题:将下列图形按照给定的角度进行旋转,并写出新的坐标:(1) 图形ABC,中心点O,逆时针旋转30°(2) 图形PQR,中心点O,顺时针旋转60°3. 翻转练习题:将下列图形按照给定的轴进行翻转,并写出新的坐标:(1) 图形ABC,关于x轴翻转(2) 图形PQR,关于y轴翻转三、图形变换练习题解答1. 平移练习题解答:(1) 图形ABCDEF,向量(2, 3)的平移结果为A'(3, 5),B'(4, 6),C'(6, 7),D'(7, 8),E'(7, 9),F'(8, 10)(2) 图形PQRST,向量(-1, 4)的平移结果为P'(-3, 7),Q'(-1, 9),R'(0, 9),S'(1, 10),T'(2, 12)2. 旋转练习题解答:(1) 图形ABC,中心点O,逆时针旋转30°后的结果为A'(0.5, -1.366),B'(0, 0),C'(-1, 0.366)(2) 图形PQR,中心点O,顺时针旋转60°后的结果为P'(0.366, 0.5),Q'(0, 0),R'(-0.5, -0.366)3. 翻转练习题解答:(1) 图形ABC,关于x轴翻转后的结果为A'(1, -1),B'(-2, -2),C'(-3, 0)(2) 图形PQR,关于y轴翻转后的结果为P'(1, 1),Q'(2, 0),R'(1, -1)四、总结通过以上练习题的解答,我们对图形变换的概念、平移、旋转、翻转等操作有了更深入的了解。
2018-2019年中考数学浙江省数学《第27讲图形与变换(1)》总复习讲解
第27讲图形与变换第1课时图形轴对称与中心对称1.轴对称与轴对称图形2.中心对称与中心对称图形1.(2016·绍兴)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有( )A .1条B .2条C .3条D .4条2.(2016·湖州)为了迎接杭州G 20峰会,某校开展了设计“YJG 20”图标的活动,下列图形中既是轴对称图形又是中心对称图形的是( )3.(2017·衢州)如图,矩形纸片ABCD 中,AB =4,BC =6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .544.(2017·丽水)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是____________________.【问题】给出下列图形.(1)这些图形既是轴对称图形又是中心对称图形的是________;(2)画出平行四边形ABCD关于DC所在直线对称的平行四边形A1B1C1D1;(3)通过(1)、(2)解题体验,你想到哪些知识和方法?【归纳】通过开放式问题,归纳、疏理轴对称图形和中心对称图形;轴对称和中心对称以及画图.类型一轴对称与轴对称图形、中心对称与中心对称图形例1(1)(2015·无锡)下列图形中,是轴对称图形但不是中心对称图形的是( )A.等边三角形B.平行四边形C.矩形D.圆(2)(2017·山东模拟)如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为________.【解后感悟】(1)轴对称图形的关键是寻找对称轴,两边图形折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后重合;(2)解答的关键是菱形是中心对称图形,并判断出阴影部分的面积等于菱形的面积的一半.1.(1)如图,△ABC中,AB=AC,△ABC与△FEC关于点C成中心对称,连结AE,BF,当∠ACB为________度时,四边形ABFE为矩形( )A .90°B .30°C .60°D .45° (2)(2015·阳谷模拟)若∠AOB=45°,P 是∠AOB 内一点,分别作点P关于直线OA 、OB 的对称点P 1,P 2,连结OP 1,OP 2,则下列结论最准确的是( )A .OP 1⊥OP 2B .OP 1=OP 2C .OP 1≠OP 2D .OP 1⊥OP 2且OP 1=OP 2 (3)(2017·温州模拟)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有 种.类型二 网格、平面直角坐标系中的图形变换例2 如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标;(2)画出△A 1B 1C 1绕原点O 旋转180°后得到的△A 2B 2C 2,并写出点A 2的坐标.【解后感悟】本题运用图形的轴对称变换及旋转变换.解答此类题目的关键是掌握旋转的特点,然后根据题意找到各点的对应点,然后顺次连结即可.2.(1)(2015·杭州模拟)如下图均为2×2的正方形网格,每个小正形的边长均为1,请分别在四个图中各画出一个与△ABC 成轴对称、顶点在格点上,且位置不同的三角形.(2)(2017·宁波)在4×4的方格中,△ABC 的三个顶点都在格点上.①在图1中画出与△ABC 成轴对称且与△ABC 有公共边的格点三角形(画出一个即可);②将图2中的△ABC 绕着点C 按顺时针方向旋转90°,画出经旋转后的三角形.(3)(2015·南昌)如图,正方形ABCD 与正方形A 1B 1C 1D 1关于某点中心对称,已知A ,D 1,D 三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点B ,C ,B 1,C 1的坐标.类型三轴对称变换解决折叠问题例3(1)(2016·齐齐哈尔)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连结MC,将菱形ABCD翻折,使点A落在线段CM上的点E 处,折痕交AB于点N,则线段EC的长为.【解后感悟】此题运用菱形的性质以及锐角三角函数关系等知识,解题的关键是从题目中抽象出直角三角形.(2)如图,在▱ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在点B′,C′处,线段EC′与线段AF 交于点G,连结DG,B′G.求证:①∠1=∠2;②DG=B′G.【解后感悟】本题运用轴对称的性质、平行四边形的性质、全等三角形的证明等知识,首先折叠问题是一种常见题型,折叠前后的两个图形对应边、对应角相等,也就是说折叠变换就是全等变换.另外本题考查了一种常见的解题思路,证明两条线段相等或两个角相等,可以证明它们所在的两个三角形全等.3.(1)(2015·莆田)数学兴趣小组开展以下折纸活动:①对折矩形ABCD,使AD和BC重合,得到折痕EF,把纸片展平;②再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN.观察,探究可以得到∠ABM的度数是( )A.25°B.30°C.36°D.45°(2)(2016·河南)如图,已知AD∥BC,AB⊥BC,AB=3.点E为射线BC上一个动点,连结AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为.类型四轴对称变换解决最小值问题例4(2015·内江)如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为( )A.3B.23C.2 6 D. 6【解后感悟】此题主要运用了轴对称求最短路线以及正方形、等边三角形的性质,把线段PD与PE长度之和转化为两点之间线段最短是解题关键.4.(2016·百色)如图,正△ABC 的边长为2,过点B 的直线l⊥AB,且△ABC 与△A′BC′关于直线l 对称,D 为线段BC′上一动点,则AD +CD 的最小值是( )A .4B .3 2C .2 3D .2+ 3【探索研究题】(2017·台州)如图,矩形EFGH 四个顶点分别在菱形ABCD 的四条边上,BE =BF ,将△AEH,△CFG 分别沿边EH ,FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AEEB为( )A .53B .2C .52D .4 【方法与对策】利用菱形的翻折变换(折叠问题)为背景给出问题的信息,借助基本图形,即阴影部分是菱形,揭示数量关系,设AB =4y ,BE =x ,从而得出阴影部分边长为4y -2x ,再由重叠部分面积是菱形ABCD 面积的116,可得阴影部分边长为AB4=y ,根据4y -2x =y ,求出x ,从而得出答案.【对称图形的概念理解不透】以下图形中,既是轴对称图形,又是中心对称图形的是( )A.等边三角形B.矩形C.等腰梯形D.平行四边形参考答案第27讲图形与变换第1课时图形轴对称与中心对称【考点概要】1.重合对称轴重合对称轴垂直平分相等对称轴全等2.180°180°对称中心对称中心平分全等【考题体验】1.B 2.D 3.B 4.1 3【知识引擎】【解析】(1)①(2)(3)轴对称和轴对称图形、中心对称和中心对称图形以及对称变换画图.【例题精析】例1(1)A(2)12例2(1)如图所示:点A1的坐标(2,-4); (2)如图所示,点A2的坐标(-2,4).例3(1)如图,过点M 作MF⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A =60°,M 为AD 中点,∴2MD =AD =CD =2,∠FDM =60°,∴∠FMD =30°,∴FD =12MD =12,∴FM =DM×cos 30°=32,∴MC =FM 2+CF 2=7,∴EC =MC -ME =7-1.故答案为:7-1. (2)证明:①由折叠知,∠1=∠CEF ,又由平行四边形的性质知,CD ∥AB ,∴∠2=∠CEF,∴∠1=∠2. ②由折叠知,BF =B′F,又∵DE =BF ,∴DE =B′F,由①知∠1=∠2,∴GE =GF ,又由平行四边形的性质知,CD ∥AB ,∴∠DEF =∠EFB,由折叠知,∠EFB =∠EFB′,∴∠DEF =∠EFB′,即∠DEG +∠1=∠GFB′+∠2,∴∠DEG =∠GFB′,∴△DEG ≌△B ′FG(SAS),∴DG =B′G.例4 由题意,可得BE 与AC 交于点P.∵点B 与D 关于AC 对称,∴PD =PB ,∴PD +PE =PB +PE =BE 最小.∵正方形ABCD 的面积为12,∴AB =2 3.又∵△ABE 是等边三角形,∴BE =AB =2 3.故所求最小值为2 3.故选B .【变式拓展】 1.(1)C (2)D (3)32.(1)(2)①画出下列其中一个即可.②(3)①根据对称中心的性质,可得对称中心的坐标是D1D的中点,∵D1,D的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,2.5).②∵A,D的坐标分别是(0,4),(0,2),∴正方形ABCD与正方形A1B1C1D1的边长都是:4-2=2,∴B,C的坐标分别是(-2,4),(-2,2),∵A1D1=2,D1的坐标是(0,3),A1的坐标是(0,1),∴B1,C1的坐标分别是(2,1),(2,3),综上,可得顶点B,C,B1,C1的坐标分别是(-2,4),(-2,2),(2,1),(2,3).3.(1)B(2)322或3554.A【热点题型】【分析与解】依题可得阴影部分是菱形.∴设BE=x,AB=4y.∴阴影部分边长为4y-2x.又∵重叠部分面积是菱形ABCD面积的116,∴阴影部分边长为AB4=y.∴4y-2x=y.∴x=32y,∴AE=(4-32)y=52y,∴AEEB=52y32y=53.故答案为A.【错误警示】B等边三角形只是轴对称图形,等腰梯形也只是轴对称图形,平行四边形只是中心对称图形,故选B.。
(沪科版)中考数学总复习课件【第27讲】平移与轴对称
5
,-2) 为(3 ,1),则点C1 的坐标为(7 ________ .
第27讲┃平移与轴对称
[解析] A(-2,3)平移后坐标为A1(3,1),可判定平移 规律为向右平移5个单位,向下平移2个单位.所以C(2,0)
平移后的坐标为C1(7,-2).
第27讲┃平移与轴对称
核心考点二
相关知识
平移和轴对称的性质
对称轴上. ______
全等 (4)成轴对称的两个图形______
两边分别平行、方向一致. (3)平移变换后的图形与原图形
全等 ______
第27讲┃平移与轴对称
经典示例
例2 [2014·舟山] 如图27-4 ,将△ABC沿 BC方向平移2
cm得到△DEF,若△ABC的周长为16 cm,则四边形ABFD的周长为
图 27-11
第27讲┃平移与轴对称
解:(1)如图
(2)6
第27讲┃平移与轴对称
1.下面所给的交通标志图中是轴对称图形的是( A )
图27 -12
第27讲┃平移与轴对称
2.如图27-13,将菱形纸片ABCD折叠.使点A 恰好落在菱形的对称 中心O 处,折痕为EF.若菱形ABCD的边长为2
cm,∠ A=120°,则EF=
第27讲┃平移与轴对称
[解析] 第一个是轴对称图形,有2条对称轴;第二个是 轴对称图形,有2条对称轴,第三个是轴对称图形,有2条对
称轴,第四个是轴对称图形,有3条对称轴.故选C.
第27讲┃平移与轴对称
核心练习
1.下列图形中,轴对称图形的个数是 ( B )
图27 -2
A.1 B.2 C.3 D.4
A.a户最长 B.b户最长 C.c户最长 D.三户一样长
浙教版七年级数学旋转变换(含答案)
2.4 旋转变换【知识提要】1.认识旋转变换的概念.•体验影响图形旋转变换的主要因素是旋转中心和旋转角度.2.理解旋转变换的性质:旋转变换不改变图形的形状、大小;对应点到旋转中心的距离相等,对应点与旋转中心连线所成的角度等于旋转的角度.3.会按要求作出简单平面图形旋转变换后的像.【学法指导】1.旋转变换必须指明旋转中心、旋转方向、旋转角度.2.作旋转图形的关键是找出几个关键点并作出这几个点旋转后的对应点.3.旋转变换中图形中每点都绕着旋转中心旋转相同的角度.4.旋转变换后对应点位置的排列次序相同.Array 5.旋转变换后,图形的面积不变.范例积累【例1】如图,△ABC是等边三角形,D是BC上一点,△ABD经过旋转变换后到△ACE的位置.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果M是AB的中点,那么经过上述旋转变换后,点M转到了什么位置?【分析】(1)确定旋转中心的位置;(2)旋转角度可以根据旋转变换前后某两条对应线段夹角的度数来确定;(3)旋转前后重合的点为对应点,重合的线段为对应线段.【解】(1)旋转中心是A;(2)旋转了60°;(3)点M旋转到了AC的中点位置上.【注意】(1)若连结DE,则△ADE是什么三角形?(2)若△ABC是等腰三角形,且顶角∠BAC=50°,问题(2)的结论如何?【例2】如图,点M是线段AB上一点,将线段AB•绕着点M•顺时针方向旋转90°,旋转后的线段与原线段的位置关系如何?如果逆时针方向旋转90°呢?【解】顺时针方向旋转90°,如图(甲)所示,A′B′与AB互相垂直;•逆时针方向旋转90°,如图(乙),A″B″与AB互相垂直.(甲) (乙)【注意】(1)无论怎样旋转,线段旋转90°后总与原来位置互相垂直;(2)从图形中明显可知旋转变换时方向不同,得到像的位置一般也不同.基础训练Array 1.如图,△A′B′C′是△ABC经旋转变换后的像,(1)旋转中心是________,旋转角度是_________;(2)点A•的对应点是点_____,•点B•的对应点是点________,•点C•的对应点是点_______.(3)∠A的对应角是________,∠B的对应角是________,∠C的对应角是______.(4)线段AB的对应线段是________,线段BC的对应线段是_________,线段AC的对应线段是_________.(5)图中相等的线段:OA=_______,OB=________,OC=•________,•AB=•________,•BC=•________,•CA=______.(6)图中相等的角:∠CAB=______,∠ABC=______,•∠BCA=•_______,•∠AOA•′=_______=_______.2.如图,四边形ABCD是正方形,△ADE旋转后能与△ABF重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果连接EF,那么△AEF是怎样的三角形?3.如图,△ABC按逆时针方向转动一个角后成为△AB′C′,•图中哪一点是旋转中心?旋转了多少度?4.如图,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E•在AB上,如果△ABC经旋转后能与△ADE重合,那么哪一点是旋转中心?旋转了多少度?5.如图,画出三角形绕点O逆时针旋转90°后的三角形.6.如图,已知图形F和点O,以点O为旋转中心,•将图形按顺时针方向旋转90°,作出经旋转变换后的像.经几次旋转变换后的像可以与原图形重合?7.已知△ABC是任意三角形,(1)若△ACD、△AEB是等腰直角三角形,∠CAD=∠EAB=90°,画出△ACE以点A•为旋转中心,逆时针方向旋转90°后的三角形;(2)若△ACD、△AEB是等边三角形,画出△ACE以点A为旋转中心,•逆时针方向旋转60°后的三角形.8.如图,△A′B′C′是△ABC•经旋转变换后得到的像,•且旋转的角度为25度,AC⊥A′B′,则∠BCB′=_______,∠A=________.(8题) (9题)提高训练9.如图,已知△ABC和过点O的两条互相垂直的直线x、y,以直线x•为对称轴,作出△ABC经轴对称变换后的像△A′B′C′,再以直线y为对称轴,画出△A′B′C′经轴对称变换后的像△A″B″C″,△A″B″C″能否由△ABC经过一次变换得到?10.如图,在线段BD上取一点C,以BC、CD为边分别作正△ABC和正△ECD,•连结AD交EC于点Q,连结BE交AC于点P,交AD于点F.(1)通过旋转变换,图中可得到哪些全等三角形?(2)∠BFD是多少度?(3)PQ∥BD吗?若是,请说明理由.11.如图,AD是△ABC的中线,E、F分别在AB、AC上,且DE⊥DF,•试说明BF+CE>EF.应用拓展12.小明在观察时针和分针漫长的马拉松比赛时,发现了一些有趣的问题.•圆形的比赛场地被分成了12站,每站点处都有一个数字警察(标号1~12)把守着,•每站又被分成相等的5份,1份就是1分钟走过的路程,而时针要1小时才能走1站,通过计算,•他发现分针每分钟转过6°,而时针每分钟转过0.5°.(1)第2天,课间休息时,小明看了一下墙上的挂钟,时间是9点多,•他发现时针和分针正好在关于沿垂线对称的位置上,请问此时是9点几分?(2)小明晚上6点至7点之间外出时,发现钟面上时针和分针成110°角,近7•点回家时发现时针和分针的夹角仍是110°,你能说出小明外出所用的时间是几分钟?答案:1.略 2.(1)点A (2)90°(3)等腰直角三角形3.点A 70° 4.点A 45•° 5.略 6.略7.(1)△ABD (2)△ABD 8.25° 65°9.一次旋转180°的变换 •10.(1)△ACD≌△BCE △ACQ≌△BCP △CDQ≌△CEP (2)120°(3)平行11.提示:点F绕点D旋转180°后至F′,连结CF′、EF′12.(1)9时131113分(2)40分钟。
浙江省2018年中考数学复习第二部分题型研究题型五几何探究题类型二平移变换问题针对演练
第二部分题型研究题型五几何探究题类型二平移变换问题针对演练1. 如图,BD是正方形ABCD的对角线,BC=2.边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数解析式,并求出y的最大值.第1题图2. (2017攀枝花)如图①,在平面直角坐标系中,直线MN分别与x轴、y轴交于点M(6,0)、N(0,23),等边△ABC的顶点B与原点O重合,BC边落在x轴正半轴上,点A恰好落在线段MN上.将等边△ABC从图①的位置沿x轴正方向以每秒1个单位长度的速度平移,边AB、AC分别与线段MN交于点E、F(如图②所示),设△ABC平移的时间为t(s).(1)等边△ABC的边长为________;(2)在运动过程中,当t=________时,MN垂直平分AB;(3)若在△ABC开始平移的同时,点P从△ABC的顶点B出发,以每秒2个单位长度的速度沿折线BA—AC运动,当点P运动到C时即停止运动,△ABC也随之停止平移.①当点P在线段BA上运动时,若△PEF与△MNO相似,求t的值;②当点P在线段AC上运动时,设S△PEF=S,求S与t的函数关系式,并求出S的最大值及此时点P的坐标.第2题图答案1. 解:(1)四边形APQD 为平行四边形;(2)OA =OP ,OA ⊥OP ,理由如下:∵四边形ABCD 是正方形,∴AB =BC =PQ ,∠ABO =∠OBQ =45°,∵OQ ⊥BD ,∴∠PQO =45°,∴∠ABO =∠OBQ =∠PQO =45°,∴OB =OQ ,在△AOB 和△OPQ 中,⎩⎪⎨⎪⎧AB =PQ ∠ABO =∠PQO BO =QO,∴△AOB ≌△POQ (SAS ),∴OA =OP ,∠AOB =∠POQ ,∴∠AOP =∠BOQ =90°,∴OA ⊥OP ;(3)过O 作OE ⊥BC 于E .①如解图①,当P 点在B 点右侧时,第1题解图①则BQ =x +2,OE =x +22, ∴y =12×x +22·x , 即y =14(x +1)2-14, 又∵0≤x ≤2,∴当x =2时,y 有最大值2;②如解图②,当P 点在B 点左侧时,则BQ =2-x ,OE =2-x 2, ∴y =12×2-x 2·x , 即y =-14(x -1)2+14, 又∵0≤x ≤2,∴当x =1时,y 有最大值为14; 综上所述,当x =2时,y 有最大值为2.第1题解图②2. 解:(1)3,【解法提示】∵点M (6,0),N (0,23),∴OM =6,ON =23,∴MN =62+(23)2=43,∴sin ∠NMO =12,∠NMO =30°,∵∠ABC =60°, ∴∠BAM =90°,即AB ⊥MN ,∴AB =12OM =3,即等边三角形边长为3. (2)3,【解法提示】由等边三角形的性质易知当MN 垂直平分AB 时,C 点与M 点重合,∵等边三角形ABC 的边长为3,∴BC =3,∵OM =6,∴MB =3,∴OB =OM -MB =3,即t =3.(3)①当P 点在线段AB 上运动时,则OB =t ,BP =2t ,则BM =6-t ,PA =3-2t ,△PEF 与△MNO 相似分为△PEF ∽△NOM 或△PEF ∽△MON 两种对应情况, 当△PEF ∽△MON 时,如解图①,第2题解图①则∠EPF =∠EFA =∠EMB =30°, ∴AE =12AF =14AP =3-2t 4, BE =12BM =6-t 2, 又BE =AB -AE =3-3-2t 4,∴3-3-2t 4=6-t 2,解得t =34; 当△PEF ∽△NOM 时,若点P 在线段BE 上,如解图②,第2题解图②则∠PFE =∠NMO =30°,则PF ∥OM ,∴△PAF 是等边三角形,∴EF 垂直平分PA ,∴BE =BP +12PA =t +32, 又BE =12MB =6-t 2, ∴32+t =6-t 2,解得t =1; 当△PEF ∽△NOM 时,若点P 在线段AE 上,则P 点与A 点重合,即t =32; 综上所述:t =34或1或32; ②当点P 在线段AC 上运动时,则BM =6-t ,PC =6-2t ,32≤t ≤3. ∴BE =12BM =3-t 2,即AE =t 2,∴EF =3AE =32t ,AF =2AE =t , ∴CF =AC -AF =3-t ,∴PF =PC -CF =3-t . 如解图③,作PH ⊥EF 于H 点,由∠AFE =30°,第2题解图③可知PH =12PF =3-t 2, S △PEF =12EF ·PH =12×32t ×3-t 2=-38t 2+338t =-38(t -32)2+9332 ∴当t =32时,S 最大=9332, 此时点P 坐标为(3,332).。
浙江省2018年中考数学总复习 第五章 基本图形(二)第27讲 图形与变换 第2课时 图形平移与旋转
第2课时图形平移与旋转1.图形的平移2.图形的旋转1.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′=____________________.2.(2017·金华)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(-2,-2),B(-4,-1),C(-4,-4).(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)作出点A关于x轴的对称点A′,若把点A′向右平移a个单位长度后落在△A1B1C1的内部(不包括顶点和边界),求a的取值范围.【问题】如图,在边长为1个单位长度的小正方形组成的网格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2;(3)通过(1)、(2)作图,你认为利用旋转变换、平移变换作图要注意哪些?【归纳】通过开放式问题,归纳、疏理旋转变换、平移变换,以及利用旋转变换、平移变换作图.类型一识别(画)图形的平移、旋转变换例1(1)(2016·荆门)两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=cm.【解后感悟】此题是旋转的性质以及直角三角形的性质,正确得出∠AFC的度数是解题关键.(2)如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.①将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;②以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.【解后感悟】本题利用旋转变换作图,利用平移变换作图,熟练掌握网格结构是解题的关键.1.(1)(2015•永州)在等腰△ABC中,AB=AC,则有BC边上的中线,高线和∠BA C的平分线重合于AD(如图1).若将等腰△ABC的顶点A向右平行移动后,得到△A′BC(如图2),那么,此时BC边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是(填A′D、A′E、A′F).(2)(2016•吉林模拟)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).①将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;②将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.类型二网格、平面直角坐标系中的图形变换例2如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形;(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形;(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.【解后感悟】本题是旋转的性质以及图形的平移等知识运用,根据题意得出对应点坐标是解题关键.2.(2017·温州模拟)如图,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.类型三平移、旋转变换解决路径、面积等问题例3(2017·丽水模拟)如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠的面积为32时,它移动的距离AA′等于________.【解后感悟】解决本题的关键是抓住平移后图形的特点,利用方程方法解题.3.如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC.把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是.(结果保留π)4.(2015·张家界)如图,在边长均为1的正方形网络纸上有一个△ABC,顶点A、B、C 及点O均在格点上,请按要求完成以下操作或运算:(1)将△ABC向上平移4个单位,得到△A1B1C1(不写作法,但要标出字母);(2)将△ABC绕点O旋转180°,得到△A2B2C2(不写作法,但要标出字母);(3)求点A绕着点O旋转到点A2所经过的路径长.【经验积累题】【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN;【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其他条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由;【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.【方法与对策】这是一道从特殊到一般设置的题型,通过基础图形等边三角形到等腰三角形,步步深入设置问题,其实解决问题的策略也是从简单到复杂,即全等三角形到相似三角形解决问题,通过前面方法来解决后面问题,在学习上是经验积累.这是中考热门题型.【考虑不全,出现漏解】如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小是________.参考答案第2课时图形平移与旋转【考点概要】1.方向距离平行相等全等 2.相等旋转角全等【考题体验】1.5 2.(1)如图所示,△A1B1C1即为所求; (2)∵点A′坐标为(-2,2),由图可知,平移4个单位和6个单位时,刚好落在△A1B1C1的边界上,∴若要使向右平移后的A′落在△A1B1C1的内部,即4<a<6.【知识引擎】【解析】(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1.如图所示:△A1B1C1,即为所求; (2)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A2B2C2.如图所示:△A2B2C2,即为所求.(3)画平移图形,必须找出平移的方向、距离;画旋转图形,必须找出旋转中心、方向、角度.运用图形的平移和旋转,要根据已知得出对应点坐标是解题关键.【例题精析】例1(1)∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,∴DC=AC,∠D=∠CAB,∴∠D=∠DAC,∵∠ACB=∠DCE=90°,∠B=30°,∴∠D=∠CAB=60°,∴∠DCA=60°,∴∠ACF=30°,可得∠AFC=90°,∵AB=8cm,∴AC=4cm,∴FC=4cos30°=23(cm).故答案为:2 3. (2)①平移后的三角形如图1;②如图2,旋转后的三角形如图所示.例2(1)如图所示:△A1B1C即为所求;(2)如图所示:△A2B2C2即为所求;(3)旋转中心坐标(0,-2).例3 设AC 交A′B′于H ,∵∠A =45°,∠D =90°,∴△A ′HA 是等腰直角三角形,设AA′=x ,则阴影部分的底长为x ,高A′D=12-x ,∴x ·(12-x)=32,∴x =4或8,即AA′=4或8.【变式拓展】1.(1)A′D、A′F、A′E (2)①如图,△A 1B 1C 1即为所求; ②如图,△AB 2C 2即为所求,点B 2(4,-2),C 2(1,-3).2.(1)如图; (2)如图; (3)BB 1=22+22=22;弧B 1B 2的长=90π2180=2π2.点B 所走的路径总长=22+22π.3.π44.(1)△A 1B 1C 1如图所示; (2)△A 2B 2C 2如图所示; (3)∵OA=4,∠AOA 2=180°,∴点A 绕着点O 旋转到点A 2所经过的路径长为180π×4180=4π.【热点题型】【分析与解】(1)利用SAS 可证明△BAM≌△CAN,继而得出结论.证明:∵△ABC、△AMN 是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN=60°,∴∠BAM =∠CAN,∵在△BAM 和△CAN 中,⎩⎪⎨⎪⎧AB =AC ,∠BAM =∠CAN,AM =AN ,∴△BAM ≌△CAN(SAS),∴∠ABC =∠ACN. (2)也可以通过证明△BAM≌△CAN,得出结论,和(1)的思路完全一样.解:结论∠ABC=∠ACN 仍成立.理由如下:∵△ABC、△AMN 是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN=60°,∴∠BAM =∠CAN,∵在△BAM 和△CAN 中,⎩⎪⎨⎪⎧AB =AC ,∠BAM =∠CAN,AM =AN ,∴△BAM ≌△CAN(SAS),∴∠ABC =∠ACN.(3)首先得出∠BAC=∠MAN,从而判定△ABC∽△AMN,得到AB AM =AC AN,根据∠BAM=∠BAC-∠MAC,∠CAN =∠MAN-∠MAC,得到∠BAM=∠CAN,从而判定△BAM∽△CAN,得出结论. 结论:∠ABC=∠ACN.理由如下:∵BA=BC ,MA =MN ,顶角∠ABC=∠AMN,∴底角∠BAC=∠MAN,∴△ABC ∽△AMN ,∴AB AM =AC AN,又∵∠BAM=∠BAC-∠MAC,∠CAN =∠MAN-∠MAC,∴∠BAM =∠CAN,∴△BAM ∽△CAN ,∴∠ABC=∠ACN.【错误警示】15°或165°①当正三角形AEF 在正方形ABCD 的内部时,如图1,∵正方形ABCD 与正三角形AEF 的顶点A 重合,BE =DF ,∵AB =AD ,AE =AF ,∴△ABE ≌△ADF(SSS),∴∠BAE =∠FAD.∵∠EAF=60°,∴∠BAE +∠FAD=30°,∴∠BAE =∠FAD=15°.②当正三角形AEF 在正方形ABCD 的外部时,如图2,∵正方形ABCD 与正三角形AEF 的顶点A 重合,BE =DF ,AB =AD ,AE =AF ,∴△ABE ≌△ADF(SSS),∴∠BAE =∠FAD,∵∠EAF =60°,∴2∠BAE -∠EAF+90°=360°,∴∠BAE =165°.故答案为15°或165°.图1 图2本文档仅供文库使用。
浙江省2018年中考数学复习 第二部分 题型研究 题型五 几何探究题 类型二 平移变换问题针对演练
第二部分题型研究题型五几何探究题类型二平移变换问题针对演练1. 如图,BD是正方形ABCD的对角线,BC=2.边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数解析式,并求出y的最大值.第1题图2. (2017攀枝花)如图①,在平面直角坐标系中,直线MN分别与x轴、y轴交于点M(6,0)、N(0,23),等边△ABC的顶点B与原点O重合,BC边落在x轴正半轴上,点 A恰好落在线段MN上.将等边△ABC从图①的位置沿x轴正方向以每秒1个单位长度的速度平移,边AB、AC分别与线段MN交于点E、F(如图②所示),设△ABC平移的时间为t(s).(1)等边△ABC的边长为________;(2)在运动过程中,当t=________时,MN垂直平分AB;(3)若在△ABC开始平移的同时,点P从△ABC的顶点B出发,以每秒2个单位长度的速度沿折线BA—AC运动,当点P运动到C时即停止运动,△ABC也随之停止平移.①当点P在线段BA上运动时,若△PEF与△MNO相似,求t的值;②当点P在线段AC上运动时,设S△PEF=S,求S与t的函数关系式,并求出S的最大值及此时点P的坐标.第2题图答案1. 解:(1)四边形APQD 为平行四边形;(2)OA =OP ,OA ⊥OP ,理由如下:∵四边形ABCD 是正方形,∴AB =BC =PQ ,∠ABO =∠OBQ =45°,∵OQ ⊥BD ,∴∠PQO =45°,∴∠ABO =∠OBQ =∠PQO =45°,∴OB =OQ ,在△AOB 和△OPQ 中,⎩⎪⎨⎪⎧AB =PQ ∠ABO =∠PQO BO =QO,∴△AOB ≌△POQ (SAS ),∴OA =OP ,∠AOB =∠POQ ,∴∠AOP =∠BOQ =90°,∴OA ⊥OP ;(3)过O 作OE ⊥BC 于E .①如解图①,当P 点在B 点右侧时,第1题解图①则BQ =x +2,OE =x +22, ∴y =12×x +22·x , 即y =14(x +1)2-14, 又∵0≤x ≤2,∴当x =2时,y 有最大值2;②如解图②,当P 点在B 点左侧时,则BQ =2-x ,OE =2-x 2, ∴y =12×2-x 2·x , 即y =-14(x -1)2+14, 又∵0≤x ≤2,∴当x =1时,y 有最大值为14; 综上所述,当x =2时,y 有最大值为2.第1题解图②2. 解:(1)3,【解法提示】∵点M (6, 0),N (0,23),∴OM =6,ON =23,∴MN =62+(23)2=43,∴sin ∠NMO =12,∠NMO =30°,∵∠ABC =60°, ∴∠BAM =90°,即AB ⊥MN ,∴AB =12OM =3,即等边三角形边长为3. (2)3,【解法提示】由等边三角形的性质易知当MN 垂直平分AB 时,C 点与M 点重合,∵等边三角形ABC 的边长为3,∴BC =3,∵OM =6,∴MB =3,∴OB =OM -MB =3,即t =3.(3)①当P 点在线段AB 上运动时,则OB =t ,BP =2t ,则BM =6-t ,PA =3-2t ,△PEF 与△MNO 相似分为△PEF ∽△NOM 或△PEF ∽△MON 两种对应情况, 当△PEF ∽△MON 时,如解图①,第2题解图①则∠EPF =∠EFA =∠EMB =30°,∴AE =12AF =14AP =3-2t 4, BE =12BM =6-t 2, 又BE =AB -AE =3-3-2t 4,∴3-3-2t 4=6-t 2,解得t =34; 当△PEF ∽△NOM 时,若点P 在线段BE 上,如解图②,第2题解图②则∠PFE =∠NMO =30°,则PF ∥OM ,∴△PAF 是等边三角形,∴EF 垂直平分PA ,∴BE =BP +12PA =t +32, 又BE =12MB =6-t 2, ∴32+t =6-t 2,解得t =1; 当△PEF ∽△NOM 时,若点P 在线段AE 上,则P 点与A 点重合,即t =32; 综上所述:t =34或1或32; ②当点P 在线段AC 上运动时,则BM =6-t ,PC =6-2t ,32≤t ≤3. ∴BE =12BM =3-t 2,即AE =t 2,∴EF =3AE =32t ,AF =2AE =t , ∴CF =AC -AF =3-t ,∴PF =PC -CF =3-t . 如解图③,作PH ⊥EF 于H 点,由∠AFE =30°,第2题解图③可知PH =12PF =3-t 2, S △PEF =12EF ·PH =12×32t ×3-t 2=-38t 2+338t =-38(t -32)2+9332 ∴当t =32时,S 最大=9332, 此时点P 坐标为(3,332).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考答案
第 2 课时 图形平移与旋转
A组 1. C 2.C 3.C 4.D 5.3 3
6. 90°
第 6 题图
7. (1) 如图所示:
第 7 题图 (2)A1(3, 2); (3) 点 A 旋转到 A1 所经过的路线为以点
O 为圆心,以 OA 长为半径的四
分之一圆弧. ∵ OA= 22+ 32= 13,∴点 A 旋转到 A1 所经过的路线的长为
90π
×
13 180
=
13 2
π.
8.(1) ∵正比例函数 y= kx( k≠ 0)经过点 A(2,4) ,∴ 4= 2k.∴ k=2,∴ y= 2x. (2)∵ A(2,
4),AB⊥ x 轴于点 B,∴ OB= 2, AB= 4,∵△ ABO 绕点 A 逆时针旋转 90°得到△ ADC ,∴ DC= OB= 2, AD =AB =4,∴ C(6, 2).∵当 x= 6 时, y=13× 6+ 1=3≠ 2,∴点 C 不在直
第 2 题图 3.一个长为 2、宽为 1 的长方形以下面的四种“姿态”从直线 (下图中的虚线都是水平线 ).其中,所需平移的距离最短的是 (
l 的左侧水平平移至右侧 )
4.(2015 ·东营模拟 )如图,将等边△ ABC 沿射线 BC 向右平移到△ DCE 的位置,连结 AD、 BD ,则下列结论:
的图象上,并说明理由.
9.如图,将矩形 ABCD 绕点 A 顺时针旋转,得到矩形 AB′C′D ′,点 C 的对应点 C′恰好 落在 CB 的延长线上,边 AB 交边 C′D′于点 E.
(1)求证: BC= BC′; (2)若 AB= 2, BC= 1,求 AE 的长.
第 9 题图
B组
10.(2016 ·西宁 )如图,已知正方形 ABCD 的边长为 3,E、 F 分别是 AB、BC 边上的点,
则 正 方 形 ABCD 与 正 方 形 A ′ B ′ C ′ D ′ 重 叠 部 分 所 形 成 的 正 八 边 形 的 边 长
为
.
12.如图,在平面直角坐标系中,以 轴于点 B, C,解答下列问题:
第 11 题图 A(5, 1)为圆心, 2 个单位长度为半径的⊙ A 交 x
第 12 题图 (1)将⊙ A 向左平移 ____________________个单位长度与 y 轴首次相切, 得到⊙ A1,此时 点 A1 的坐标为 ____________________,阴影部分的面积 S= ____________________ ; (2)BC 的长为 ____________________ .
13.(2015 金·华 )在平面直角坐标系中,点 A 的坐标是 (0, 3),点 B 在 x 轴上,将△ AOB 绕点 A 逆时针旋转 90°得到△ AEF ,点 O、B 的对应点分别是 E、 F.
(1)若点 B 的坐标是 (- 4, 0),请在图中画出△ AEF ,并写出点 E、F 的坐标; (2)当点 F 落在 x 轴的上方时,试写出一个符合条件的点 B 的坐标.
)
A . 32°
B .64°
Hale Waihona Puke C. 77°D. 87°
第 1 题图
2.将等腰直角三角形 AOB 按如图所示放置, 然后绕点 O 逆时针旋转 90°至△ A′ OB′ 的位置,点 B 的横坐标为 2,则点 A′的坐标为 ( )
A . (1, 1)
B. ( 2, 2)
C. (- 1, 1)
D .(- 2, 2)
且∠ EDF =45°,将△ DAE 绕点 D 逆时针旋转 90°,得到△ DCM .若 AE= 1,则 FM 的长
为
.
第 10 题图
11. (2015 ·青岛 )如图,平面直角坐标系的原点 O 是正方形 ABCD 的中心,顶点 A, B 的坐标分别为 (1,1),( -1,1),把正方形 ABCD 绕原点 O 逆时针旋转 45°得正方形 A′B′C′D′,
第 7题 8. (2017 ·湖州模拟 )如图,正比例函数 y= kx(k≠ 0)经过点 A(2,4) ,AB ⊥x 轴于点 B.
第 8 题图
(1)求该正比例函数的解析式;
(2)将△ ABO 绕点 A 逆时针旋转 90°得到△ ADC ,写出点 C 的坐标,试判断点 C 是否
在直线
y=
1 3x+
1
6.如图, 已知: BC 与 CD 重合, ∠ ABC=∠ CDE = 90°,△ABC≌△ CDE,并且△ CDE
可由△ ABC 逆时针旋转而得到.请你利用尺规作出旋转中心
O(保留作图痕迹,不写作法 ),
并直接写出旋转角度是 ____________________ .
第 6 题图 7.如图, 在边长为 1 的小正方形组成的网格中, △ AOB 的三个顶点均在格点上, 点 A、 B 的坐标分别为 A(- 2, 3)、 B(-3, 1). (1)画出△ AOB 绕点 O 顺时针旋转 90°后的△ A1OB1; (2)写出点 A1 的坐标; (3)求点 A 旋转到 A1 所经过的路线长.
① AB= BC;② BD 、AC 互相平分;③四边形 ACED 是菱形;④ BD ⊥ DE.
其中正确的个数是 (
A.1
B.2
) C. 3
D. 4
第 4 题图
5.如图,在等边△ ABC 中,AB= 6,D 是 BC 的中点,将△ ABD 绕点 A 旋转后得到△ ACE,
那么线段 DE 的长度为
.
第 5 题图
课后练习 27 图形与变换
第 2 课时 图形平移与旋转
A组
1. (2015 ·哈尔滨 )如图,在 Rt△ ABC 中,∠ BAC = 90°,将△ ABC 绕点 A 顺时针旋转
90°后得到的△ AB′C′点( B 的对应点是点 B′,点 C 的对应点是点 C′,)连结 CC′若.∠ CC′B′
=32°,则∠ B 的大小是 (
第 13 题图
C组 14. (2016 ·东营 )如图 1,△ ABC 是等腰直角三角形,∠ BAC = 90°, AB= AC,四边形 ADEF 是正方形,点 B、 C 分别在边 AD 、 AF 上,此时 BD= CF , BD ⊥CF 成立. (1)当△ ABC 绕点 A 逆时针旋转 θ(0°< θ< 90° )时, 如图 2,BD=CF 成立吗?若成立, 请证明;若不成立,请说明理由; (2)当△ ABC 绕点 A 逆时针旋转 45°时,如图 3,延长 DB 交 CF 于点 H . ①求证: BD ⊥ CF; ②当 AB = 2,AD = 3 2时,求线段 DH 的长.