2019年北京市各区九年级上册期末数学试卷分类汇编:几何综合

合集下载

(汇总3份试卷)2019年北京市九年级上学期数学期末考试试题

(汇总3份试卷)2019年北京市九年级上学期数学期末考试试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =41°,∠D =30°,斜边AB =4,CD =1.把三角板DCE 绕着点C 顺时针旋转11°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A 13B 5C .22D .4【答案】A 【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt △ABC 中,AB=4,则AO=OC=2.在Rt △AOD 1中,OD 1=CD 1-OC=3,由勾股定理得:AD 113故选A.考点: 1.旋转;2.勾股定理.2.在平面直角坐标系中,函数()()35y x x =+-的图象经过变换后得到()()53y x x =+-的图象,则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C .向上平移2个单位D .向下平移2个单位 【答案】A【分析】将两个二次函数均化为顶点式,根据两顶点坐标特征判断平移方向和平移距离.【详解】()()()2235215116y x x x x x =+-=--=--,顶点坐标为1,16,()()()2253215116y x x x x x =+-=+-=+-,顶点坐标为1,16,所以函数()()35y x x =+-的图象向左平移2个单位后得到()()53y x x =+-的图象.故选:A【点睛】本题考查二次函数图象的特征,根据顶点坐标确定变换方式是解答此题的关键.3.如图,过反比例函数1y x=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .大小关系不能确定【答案】B 【分析】根据反比例函数的几何意义,直接求出S 1、S 1的值即可进行比较.【详解】由于A 、B 均在反比例函数1y x =的图象上, 且AC ⊥x 轴,BD ⊥x 轴,则S 1=122k =; S 1=122k =. 故S 1=S 1. 故选:B .【点睛】此题考查了反比例函数k 的几何意义,找到相关三角形,求出k 的绝对值的一半即为三角形的面积.4.已知点()()()1232,,1,,1,y y y --都在反比例函数2(m y m x=-为常数,且0m ≠)的图象上,则12,y y 与3y 的大小关系是( )A .321y y y <<B .312y y y <<C .123y y y <<D .132y y y <<【答案】B【分析】由m2>0可得-m2<0,根据反比例函数的性质可得2myx=-的图象在二、四象限,在各象限内,y随x的增大而增大,根据各点所在象限及反比例函数的增减性即可得答案. 【详解】∵m为常数,0m≠,∴m2>0,∴-m2<0,∴反比例函数2myx=-的图象在二、四象限,在各象限内,y随x的增大而增大,∵-2<-1<0,1>0,∴0<y1<y2,y3<0,∴y3<y1<y2,故选:B.【点睛】本题考查反比例函数的性质,对于反比例函数y=kx(k≠0),当k>0时,函数图象在一、三象限,在各象限,y随x的增大而减小;当k<0时,函数图象在二、四象限,在各象限,y随x的增大而增大;熟练掌握反比例函数的性质是解题关键.5.顺次连结菱形各边中点所得到四边形一定是( )A.平行四边形B.正方形C.矩形D.菱形【答案】C【分析】根据三角形的中位线定理首先可以证明:顺次连接四边形各边中点所得四边形是平行四边形.再根据对角线互相垂直,即可证明平行四边形的一个角是直角,则有一个角是直角的平行四边形是矩形.【详解】如图,四边形ABCD是菱形,且E. F. G、H分别是AB、BC、CD、AD的中点,则EH∥FG∥BD,EF=FG=12BD;EF∥HG∥AC,EF=HG=12AC,AC⊥BD.故四边形EFGH是平行四边形,又∵AC⊥BD,∴EH⊥EF,∠HEF=90°,∴边形EFGH是矩形.故选:C.【点睛】本题考查平行四边形的判定和三角形中位线定理,解题的关键是掌握平行四边形的判定和三角形中位线定理.6.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A.55B.255C.5D.23【答案】B【详解】由格点可得∠ABC所在的直角三角形的两条直角边为2,4,∴斜边为222425+=.∴cos∠ABC=25525=.故选B.7.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n)B.3(m+n)C.4n D.4m【答案】D【详解】解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故选D.8.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>3【答案】B【解析】试题分析:观察图象可知,抛物线y=x2+bx+c与x轴的交点的横坐标分别为(﹣1,0)、(1,0), 所以当y<0时,x的取值范围正好在两交点之间,即﹣1<x<1.故选B.考点:二次函数的图象.1061449.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:3,则AC的长是( )A.10米B.53米C.15米D.103米【答案】B【解析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1:3;∴AC=BC÷tanA=53米;故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.10.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是( )A.4 B.6.25 C.7.5 D.9【答案】A【分析】先利用勾股定理判断△ABC 为直角三角形,且∠BAC=90°,继而证明四边形AEOF 为正方形,设⊙O 的半径为r ,利用面积法求出r 的值即可求得答案.【详解】∵AB=5,BC=13,CA=12,∴AB 2+AC 2=BC 2,∴△ABC 为直角三角形,且∠BAC=90°,∵⊙O 为△ABC 内切圆,∴∠AFO=∠AEO=90°,且AE=AF ,∴四边形AEOF 为正方形,设⊙O 的半径为r ,∴OE=OF=r ,∴S 四边形AEOF =r²,连接AO ,BO ,CO ,∴S △ABC =S △AOB +S △AOC +S △BOC , ∴11()22AB AC BC r AB AC ++=⋅, ∴r=2,∴S 四边形AEOF =r²=4,故选A.【点睛】本题考查了三角形的内切圆,勾股定理的逆定理,正方形判定与性质,面积法等,正确把握相关知识是解题的关键.11.已知34x y =,则x y y +=( ) A .47 B .74 C .37 D .73【答案】B 【分析】由34x y =得到x=34y ,再代入计算即可.【详解】∵34x y =, ∴x=34y , ∴x y y +=3744y y y +=. 故选B. 【点睛】考查了求代数式的值,解题关键是根据34x y =得到x=34y ,再代入计算即可. 12.如图,直线y =23x+2与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,PC+PD 值最小时点P 的坐标为( )A .(﹣34,0)B .(﹣12,0) C .(﹣32,0) D .(﹣52,0) 【答案】A 【分析】根据一次函数解析式可以求得()30A -,,()0,2B ,根据平面直角坐标系里线段中点坐标公式可得3,12C ⎛⎫- ⎪⎝⎭,()0,1D ,根据轴对称的性质和两点之间线段最短的公理求出D 点关于x 轴的对称点()0,1D '-,连接CD ',线段CD '的长度即是PC PD +的最小值,此时求出CD '解析式,再解其与x 轴的交点即可.【详解】解: 223y x =+, ∴()30A -,,()0,2B∴303222A B C x x x +-+===-, 02122A B C y y y ++===,∴3,12C ⎛⎫- ⎪⎝⎭ 同理可得()0,1D∴D 点关于x 轴的对称点()0,1D '-;连接CD ',设其解析式为y kx b =+,代入3,12C ⎛⎫-⎪⎝⎭与()0,1D '-可得CD ':413y x =--, 令0y =,解得34x =-. ∴3,04P ⎛⎫- ⎪⎝⎭. 【点睛】本题是结合了一次函数的动点最值问题,熟练掌握一次函数的图象与性质,把点的坐标与线段长度灵活转化为两点间的问题是解答关键.二、填空题(本题包括8个小题)13.若圆中一条弦长等于半径,则这条弦所对的圆周角的度数为______.【答案】30°或150°【解析】与半径相等的弦与两条半径可构成等边三角形,所以这条弦所对的圆心角为60,而弦所对的圆周角两个,根据圆内接四边形对角互补可知,这两个圆周角互补,其中一个圆周角的度数为 ,所以另一个圆周角的度数为150.故答案为30°或150°.14.若1x =为一元二次方程210x mx ++=的一个根,则m =__________.【答案】-2【分析】把x=1代入已知方程可得关于m 的方程,解方程即可求得答案.【详解】解:∵1x =为一元二次方程210x mx ++=的一个根,∴110m ++=,解得:m=-2.故答案为:-2.【点睛】本题考查了一元二次方程的解的定义,属于应知应会题型,熟练掌握一元二次方程的解的概念是解题关键.15.如图,AB CD ∥,AD 与BC 交于点O ,已知4AB =,3CD =,2OD =,那么线段OA 的长为__________.【答案】83 【分析】根据平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例得到OA :OD =AB :CD ,然后利用比例性质计算OA 的长.【详解】∵AB ∥CD ,∴OA :OD =AB :CD ,即OA :2=4:3,∴OA =83. 故答案为83. 【点睛】本题考查了平行线分线段成比例:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.16.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A 、B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为 ▲ .【答案】1.【分析】利用垂径定理和中位线的性质即可求解.【详解】∵OC ⊥AP ,OD ⊥PB ,∴由垂径定理得:AC=PC ,PD=BD ,∴CD 是△APB 的中位线,∴CD=12AB=12×8=1. 故答案为117.已知函数(31)5y k x =++(k 为常数),若从33k -中任取k 值,则得到的函数是具有性质“y 随x 增加而减小”的一次函数的概率为___________.【答案】49【分析】根据“y 随x 增加而减小”可知310+<k ,解出k 的取值范围,然后根据概率公式求解即可.【详解】由“y 随x 增加而减小”得310+<k , 解得13k <-, ∴具有性质“y 随x 增加而减小”的一次函数的概率为()()1343339-----= 故答案为:49. 【点睛】本题考查了一次函数的增减性,以及概率的计算,熟练掌握一次函数增减性与系数的关系和概率公式是解题的关键.18.已知关于x 的一元二次方程22(1)6320-++-+=k x x k k 的常数项为零,则k 的值为_____.【答案】1【分析】由一元二次方程(k ﹣1)x 1+6x+k 1﹣3k+1=0的常数项为零,即可得 2k 3k 20k 10⎧-+=⎨-≠⎩①②,继而求得答案.【详解】解:∵一元二次方程(k ﹣1)x 1+6x+k 1﹣3k+1=0的常数项为零,∴2k 3k 20k 10⎧-+=⎨-≠⎩①②,由①得:(k ﹣1)(k ﹣1)=0,解得:k =1或k =1,由②得:k≠1,∴k 的值为1,故答案为:1.【点睛】本题是对一元二次方程根的考查,熟练掌握一元二次方程知识是解决本题的关键.三、解答题(本题包括8个小题)19.求下列各式的值:(1)2sin30°﹣3cos60°(2)16cos 245°﹣21602tan ︒. 【答案】(1)12-;(2)132. 【分析】(1)直接把特殊角的三角函数值代入求出答案;(2)直接把特殊角的三角函数值代入求出答案.【详解】(1)2sin30︒﹣3cos60︒=2×12﹣3×12=1﹣3 2=﹣12;(2)16cos245︒﹣12tan260︒=16×(2)2﹣12×(3)2=8﹣3 2=132.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.20.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=mx(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=45,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函数的解析式;(2)请直接写出满足kx+b>mx的x的取值范围;(3)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.【答案】(1)y=﹣12x,y=﹣23x+1;(2)x<﹣3或0<x<6;(3)点P的坐标为P(0,5)或(0,﹣5)或(0,8)或(0,25 8)【分析】(1)先利用三角函数求出OD,得出点A坐标,进而求出反比例函数解析式,进而求出点B坐标,将点A,B坐标代入直线解析式中,建立方程组,求解即可得出结论;(2)根据图象直接得出结论;(3)设出点E坐标,进而表示出AE,OE,再分OA=OE,OA=AE,OE=AE三种情况,建立方程求解即可得出结论.【详解】∵AD⊥x轴,∴∠ADO=90°,在Rt△AOD中,AD=4,∴sin∠AOD=ADOA=4OA=45,∴OA=5,根据勾股定理得,OD=3,∵点A在第二象限,∴A(﹣3,4),∵点A在反比例函数y=mx的图象上,∴m=﹣3×4=﹣12,∴反比例函数解析式为y=﹣12x,∵点B(n,﹣2)在反比例函数y=﹣12x上,∴﹣2n=﹣12,∴n=6,∴B(6,﹣2),∵点A(﹣3,4),B(6,﹣2)在直线y=kx+b上,∴34 62k bk b-+=⎧⎨+=-⎩,∴2k3b1⎧=-⎪⎨⎪=⎩,∴一次函数的解析式为y=﹣23x+1;(2)由图象知,满足kx+b>mx的x的取值范围为x<﹣3或0<x<6;(3)设点E的坐标为(0,a),∵A(﹣3,4),O(0,0),∴OE=|a|,OA=5,AE∵△AOE是等腰三角形,∴①当OA=OE时,|a|=5,∴a=±5,∴P(0,5)或(0,﹣5),②当OA=AE时,5=∴a=8或a=0(舍),∴P(0,8),③当OE=AE时,|a|=29(4)a+-,∴a=25 8,∴P(0,258),即:满足条件的点P的坐标为P(0,5)或(0,﹣5)或(0,8)或(0,258).【点睛】此题是反比例函数综合题,主要考查了待定系数法,锐角三角函数,等腰三角形的性质,用方程的思想解决问题是解本题的关键.21.某运动会期间,甲、乙、丙三位同学参加乒乓球单打比赛,用抽签的方式确定第一场比赛的人选.(1)若已确定甲参加第一次比赛,求另一位选手恰好是乙同学的概率;(2)用画树状图或列表的方法,写出参加第一场比赛选手的所有可能,并求选中乙、丙两位同学参加第一场比赛的概率.【答案】(1)12;(2)13【分析】(1)根据概率公式求解可得;(2)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单,求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:(1)根据题意,甲参加第一场比赛时,有(甲,乙)、(甲,丙)两种可能,∴另一位选手恰好是乙同学的概率12;(2)画树状图如下:所有可能出现的情况有6种,其中乙丙两位同学参加第一场比赛的情况有2种,∴选中乙、丙两位同学参加第一场比赛的概率为26=13.【点睛】考核知识点:求概率.运用列举法求概率是关键.22.将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,若AD=4,则四边形BEGF的面积为_____.【答案】2【分析】设DG=CG=a,则AB=2a=OB,DG=OG=CG=a,BG=3a,BC=AD=4,由勾股定理得出()22243a a+=,解得a,证明△EDG∽△GCF,得出比例线段ED DGCG CF=,求出CF.则可求出EF.由四边形面积公式可求出答案.【详解】解:由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设DG=CG=a,则AB=2a=OB,DG=OG=CG=a,BG=3a,BC=AD=4,∵∠C=90°,∴Rt△BCG中,222CG BC BG+=,∴()22243a a+=,∴a,∴DG=CG,∴BG=OB+OG==,由折叠可得∠EGD=∠EGO,∠OGF=∠FGC,∴∠EGF=90°,∴∠EGD+∠FGC=90°,∵∠EGD+∠DEG=90°,∴∠FGC=∠DEG,∵∠EDG=∠GCF=90°,∴△EDG∽△GCF,∴ED DGCG CF=,∴CF=.∴CF=1,∴FO=1,∴EF=3,由折叠可得,∴∠BOE=∠A=90°,∵点B,O,G在同一条直线上,点E,O,F在另一条直线上,∴EF⊥BG,∴S 四边形EBFG =12×BG×EF =1322⨯×3=922. 故答案为:922. 【点睛】 本题考查了矩形折叠的性质,相似三角形的判定与性质,直角三角形的性质,勾股定理等知识,熟练掌握折叠的性质是解题的关键23.如图,已知抛物线 y =x 2+2x 的顶点为 A ,直线 y =x+2 与抛物线交于 B ,C 两点.(1)求 A ,B ,C 三点的坐标;(2)作 CD ⊥x 轴于点 D ,求证:△ODC ∽△ABC ;(3)若点 P 为抛物线上的一个动点,过点 P 作 PM ⊥x 轴于点 M ,则是否还存在除 C 点外的其他位置的点,使以 O ,P ,M 为顶点的三角形与△ABC 相似? 若存在,请求出这样的 P 点坐标;若不存在,请说明理由.【答案】(1)B (﹣2,0),C (1,3);(2)见解析;(3)存在这样的点 P ,坐标为(﹣53,﹣59)或(﹣73,79)或(﹣5,15). 【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C 点坐标;(2)根据勾股定理可得∠ABC =90°,进而可求△ODC ∽△ABC.(3)设出p 点坐标,可表示出M 点坐标,利用三角形相似可求得p 点的坐标.【详解】(1)解:y =x 2+2x =(x+1)2﹣1,∴顶点 A (﹣1,﹣1);由 222y x x y x ⎧=+⎨=+⎩,解得:20x y =-⎧⎨=⎩或13x y =⎧⎨=⎩ ∴B (﹣2,0),C (1,3);(2)证明:∵A (﹣1,﹣1),B (﹣2,0),C (1,3),∴AB ()()2221012-+++=,BC = ()()22210332--+-=, AC =()()22111325--+--=, ∴AB 2+BC 2=AC 2,21332AB BC ==, ∴∠ABC =90°, ∵OD =1,CD =3,∴OD CD =13, ∴AB OD BC CD =,∠ABC =∠ODC =90°, ∴△ODC ∽△ABC ;(3)存在这样的 P 点,设 M (x ,0),则 P (x ,x2+2x ),∴OM =|x|,PM =|x 2+2x|,当以 O ,P ,M 为顶点的三角形与△ABC 相似时,有PM AB OM BC =或 PM CB OM AB=, 由(2)知:AB =2,CB =32, ①当PM AB OM BC=时,则 =13, 当 P 在第二象限时,x <0,x 2+2x >0, ∴,解得:x1=0(舍),x2= -73, 当 P 在第三象限时,x <0,x 2+2x <0, ∴= ,解得:x1=0(舍),x2=-53, ②当PM CB OM AB =时,则 =3, 同理代入可得:x =﹣5 或 x =1(舍),综上所述,存在这样的点 P ,坐标为(-53,-59)或(-73,79)或(﹣5,15). 【点睛】 本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理、相似三角形的性质及分类讨论等.24.如图,一次函数3y x =-+的图象与反比例函数(0)k y k x=≠在第一象限的图象交于(1,)A a 和B 两点,与x 轴交于点C .(1)求反比例函数的解析式;(2)若点P 在x 轴上,且APC ∆的面积为5,求点P 的坐标.【答案】(1)2y x= (2)P 的坐标为(2,0)-或(8,0) 【分析】(1)利用点A 在3y x =-+上求a ,进而代入反比例函数()0k y k x =≠求k 即可; (2)设(),0P x ,求得C 点的坐标,则3PC x =-,然后根据三角形面积公式列出方程,解方程即可.【详解】(1)把点()1,A a 代入3y x =-+,得2a =,∴()1,2A把()1,2A 代入反比例函数k y x =, ∴122k =⨯=; ∴反比例函数的表达式为2y x=; (2)∵一次函数3y x =-+的图象与x 轴交于点C ,∴()3,0C ,设(),0P x , ∴3PC x =-, ∴13252APC S x ∆=-⨯=, ∴2x =-或8x =,∴P 的坐标为()2,0-或()8,0.【点睛】本题考查了反比例函数与一次函数的交点问题,用待定系数法求出反比例函数的解析式等知识点,能用待定系数法求出反比例函数的解析式是解此题的关键.25.解方程(1)x 2+4x ﹣3=0(用配方法)(2)3x (2x +3)=4x +6【答案】(1)x 1=﹣27,x 2=﹣27;(2)x 1=23,x 2=﹣32. 【解析】(1)原式利用配方法求出解即可;(2)原式整理后,利用因式分解法求出解即可.【详解】(1)方程整理得:x2+4x=3,配方得:x2+4x+4=7,即(x+2)2=7,开方得:x+2=±7,解得:x1=﹣2+7,x2=﹣2﹣7;(2)方程整理得:3x(2x+3)﹣2(2x+3)=0,分解因式得:(3x﹣2)(2x+3)=0,可得3x﹣2=0或2x+3=0,解得:x1=23,x2=﹣32.【点睛】此题考查了解一元二次方程﹣因式分解法,以及配方法,熟练掌握各种解法是解本题的关键.26.箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.【答案】解:(1)见解析(2)1 2【分析】(1)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A,画树状图可得所有等可能结果;(2)从所有等可能结果中找到抽出的2瓶牛奶中恰好抽到过期牛奶的结果数,再根据概率公式计算可得.【详解】解:(1)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A,画树状图如图所示,由图可知,共有12种等可能结果;(2)由树状图知,所抽取的12种等可能结果中,抽出的2瓶牛奶中恰好抽到过期牛奶的有6种结果,所以抽出的2瓶牛奶中恰好抽到过期牛奶的概率为61 122.【点睛】此题考查了列表法与树状图法,以及概率公式,用到的知识点为:概率=所求情况数与总情况数之比.27.如图,△ABC中,AB=AC,BE⊥AC于E,D是BC中点,连接AD与BE交于点F,求证:△AFE∽△BCE.【答案】证明详见解析.【解析】试题分析:根据等腰三角形的性质,由AB=AC,D是BC中点得到AD⊥BC,易得∠ADC=∠BEC=90°,再证明∠FAD=∠CBE,于是根据有两组角对应相等的两个三角形相似即可得到结论.试题解析:证明:∵AB=AC,D是BC中点,∴AD⊥BC,∴∠ADC=90°,∴∠FAE+∠AFE=90°,∵BE⊥AC,∴∠BEC=90°,∴∠CBE+∠BFD=90°,∵∠AFE=∠BFD,∴∠FAD=∠CBE,∴△AFE∽△BCE.考点:相似三角形的判定.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.方程20x =的解的个数为( )A .0B .1C .2D .1或2【答案】C【解析】根据一元二次方程根的判别式,求出△的值再进行判断即可.【详解】解:∵x 2=0,∴△=02-4×1×0=0,∴方程x 2=0有两个相等的实数根.故选C【点睛】本题考查的是一元二次方程根的判别式,当△>0时方程有两个不相等的实数根,△=0时方程有两个相等的实数根,△<0时方程没有实数根.2.如图,当刻度尺的一边与⊙O 相切时,另一边与⊙O 的两个交点处的读数如图所示(单位:cm),圆的半径是5,那么刻度尺的宽度为( )A .256cmB .4 cmC .3cmD .2 cm【答案】D【解析】连接OA ,过点O 作OD ⊥AB 于点D ,∵OD ⊥AB ,∴AD=12AB=12(9−1)=4cm ,∵OA=5,则OD=5−DE ,在Rt △OAD 中,222OA OD AD -=,即2225(5)4DE --=解得DE=2cm.故选D.3.如下图,以某点为位似中心,将△AOB 进行位似变换得到△CDE ,记△AOB 与△CDE 对应边的比为k ,则位似中心的坐标和k 的值分别为( )A .()0,0,2B .()12,2,2C .()2,2,2D .()2,2,3【答案】C 【解析】两对对应点的连线的交点即为位似中心,连接OD 、AC ,交点为(2,2,)即位似中心为(2,2,);k=OA :CD=6:3=2,故选C .4.学校要举行“读书月”活动,同学们设计了如下四种“读书月”活动标志图案,其中是中心对称图形的是( )A .B .C .D .【答案】C【分析】根据中心对称图形的概念作答.在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.【详解】解:A 、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意;B 、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意;C 、图形中心绕旋转180°以后,能够与它本身重合,故是中心对称图形,符合题意;D 、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意.故选:C .【点睛】本题考查了中心对称图形的概念.特别注意,中心对称图形是要寻找对称中心,旋转180°后两部分重合. 5.如图所示,河堤横断面迎水坡AB 的坡比是1:3,堤高BC=5m ,则坡面AB 的长度是( )A .10mB .103mC .15mD .53m【答案】A 【解析】试题分析:河堤横断面迎水坡AB 的坡比是1:3, 即BC 3tan BAC ?AC ∠==, ∴∠BAC=30°, ∴AB=2BC=2×5=10,故选A .考点:解直角三角形6.方差是刻画数据波动程度的量.对于一组数据1x ,2x ,3x ,…,n x ,可用如下算式计算方差:()()()()2222212315555n s x x x x n ⎡⎤=-+-+-+⋅⋅⋅-⎣⎦,其中“5”是这组数据的( ) A .最小值B .平均数C .中位数D .众数 【答案】B【分析】根据方差公式的定义即可求解.【详解】方差()()()()2222212315555n s x x x x n ⎡⎤=-+-+-+⋅⋅⋅-⎣⎦中“5”是这组数据的平均数. 故选B .【点睛】此题主要考查平均数与方差的关系,解题的关键是熟知方差公式的性质.7.如图所示,某同学拿着一把有刻度的尺子,站在距电线杆30m 的位置,把手臂向前伸直,将尺子竖直,看到尺子遮住电线杆时尺子的刻度为12cm ,已知臂长60cm ,则电线杆的高度为( )A .2.4mB .24mC .0.6mD .6m【答案】D 【解析】试题解析:作AN ⊥EF 于N ,交BC 于M ,∵BC ∥EF ,∴AM ⊥BC 于M ,∴△ABC∽△AEF,∴BC AM EF AN=,∵AM=0.6,AN=30,BC=0.12,∴EF=•0.12300.6BC ANAM⨯==6m.故选D.8.如图,平行四边形ABCD中,EF∥BC,AE:EB=2:3,EF=4,则AD的长为()A.B.8 C.10 D.16【答案】C【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,可证明△AEF∽△ABC,再根据相似三角形的对应边成比例可解得BC的长,而在▱ABCD中,AD=BC,问题得解.【详解】解:∵EF∥BC∴△AEF∽△ABC,∴EF:BC=AE:AB,∵AE:EB=2:3,∴AE:AB=2:5,∵EF=4,∴4:BC=2:5,∴BC=1,∵四边形ABCD是平行四边形,∴AD=BC=1.【点睛】本题考查(1)、相似三角形的判定与性质;(2)、平行四边形的性质.9.关于x的一元二次方程x2+bx+c=0的两个实数根分别为﹣2和3,则( )A.b=1,c=﹣6 B.b=﹣1,c=﹣6C.b=5,c=﹣6 D.b=﹣1,c=6【答案】B【分析】根据一元二次方程根与系数的关系得到﹣2+3=﹣b,﹣2×3=c,即可得到b与c的值.【详解】由一元二次方程根与系数的关系得:﹣2+3=﹣b,﹣2×3=c,∴b=﹣1,c=﹣6故选:B.本题主要考查一元二次方程根与系数的关系,掌握一元二次方程ax 2+bx+c =0的两个根12x x ,满足1212,b c x x x x a a+=-⋅= ,是解题的关键. 10.观察下列图形,既是轴对称图形又是中心对称图形的有A .1个B .2个C .3个D .4个【答案】C 【解析】试题分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,∵第一个图形不是轴对称图形,是中心对称图形;第二个图形既是轴对称图形又是中心对称图形;第三个图形既是轴对称图形又是中心对称图形;第四个图形既是轴对称图形又是中心对称图形;∴既是轴对称图形又是中心对称图形共有3个.故选C .11.下列事件属于必然事件的是( )A .篮球队员在罚球线上投篮一次,未投中B .掷一次骰子,向上一面的点数是6C .任意画一个五边形,其内角和是540°D .经过有交通信号灯的路口,遇到红灯【答案】C【分析】必然事件就是一定发生的事件,根据定义即可判断.【详解】解:A 、篮球队员在罚球线上投篮一次,未投中,是随机事件.B 、掷一次骰子,向上一面的点数是6,是随机事件.C 、任意画一个五边形,其内角和是540°,是必然事件.D 、经过有交通信号灯的路口,遇到红灯,是随机事件.故选:C .【点睛】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.二次函数y=-2(x+1)2+3的图象的顶点坐标是( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3)【解析】分析:据二次函数的顶点式,可直接得出其顶点坐标;解:∵二次函数的解析式为:y=-(x-1)2+3,∴其图象的顶点坐标是:(1,3);故选A .二、填空题(本题包括8个小题)13.设m 、n 是一元二次方程x 2+3x -7=0的两个根,则m 2+4m +n =_____.【答案】1.【分析】求代数式的值,一元二次方程的解,一元二次方程根与系数的关系.【详解】解:∵m 、n 是一元二次方程x 2+2x -7=0的两个根,∴m 2+2 m -7=0,即m 2+2 m =7;m +n =-2.∴m 2+1m +n =(m 2+2 m )+(m +n )=7-2=1.故答案为:114.布袋里有8个大小相同的乒乓球,其中2个为红色,1个为白色,5个为黄色,搅匀后从中随机摸出一个球是红色的概率是__________. 【答案】14 【分析】直接根据概率公式求解.【详解】解:随机摸出一个球是红色的概率=421125=++. 故答案为:14. 【点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数. 15.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.【答案】1【分析】连接AD ,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD ,∵AF 是⊙O 的直径,∴∠ADF=90°,∵五边形ABCDE 是⊙O 的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=1°,故答案为1.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.16.若正多边形的一个外角是45°,则该正多边形的边数是_________.【答案】1;【分析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用360°÷45°可求得边数.【详解】∵多边形外角和是360度,正多边形的一个外角是45°,∴360°÷45°=1即该正多边形的边数是1.【点睛】本题主要考查了多边形外角和是360度和正多边形的性质(正多边形的各个内角相等,各个外角也相等).17.已知1x ,2x 是方程2510x x --=的两个实根,则2212x x +=______.【答案】27【分析】根据根与系数的关系,由x 12+x 22=(x 1+x 2)2−2x 1x 2,即可得到答案.【详解】∵x 1,x 2是方程 x 2−5x−1=0 的两根,∴x 1+x 2=5,x 1∙x 2=−1,∴x 12+x 22=(x 1+x 2)2−2x 1x 2=52-2×(-1)=27;故答案为27.【点睛】本题考查了一元二次方程的根与系数的关系,解题的关键是熟练掌握根与系数的关系,并正确进行化简计算.18.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是_______.(填序号)【答案】③【分析】根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.【详解】①、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;②、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于12两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;③、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;④、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;故答案为:③.【点睛】此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.三、解答题(本题包括8个小题)19.如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作AC的垂线交AC于点E,交AB的延长线于点F.。

北京市各区九年级数学上学期期末试卷分类汇编(训练版)

北京市各区九年级数学上学期期末试卷分类汇编(训练版)

北京市各区九年级数学上学期期末试卷分类汇编目录:1.尺规作图2——72.解直角三角形应用8——153.解三角形16——214.几何综合22——315.特殊角三角函数值32——346.相似三角形推理证明35——427.相似三角形的性质与判定43——471.尺规作图1.(昌平16)阅读以下作图过程:第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB 为直径作半圆;第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为________.2.(门头沟16)下面是“作已知圆的内接正方形”的尺规作图过程.请回答:该尺规作图的依据是______________________________________________.3.(朝阳16)下面是“作顶角为120°的等腰三角形的外接圆”的尺规作图过程.请回答:该尺规作图的依据是_____________________________________.4.(石景山16)石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).请回答,CACCACABCSSS2211∆∆∆==成立的理由是:①;②.5.(燕山16)在数学课上,老师提出利用尺规作图完成下面问题:作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则CACCACABCSSS2211∆∆∆==.已知:∠ACB 是△ABC 的一个内角.求作:∠APB= ∠ACB.小路的作法如下:A B④在弧ACB 上取一点P,连结AP,BP.m所以∠APB= ∠ACB.老师说:“小路的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是;(2)∠APB=∠ACB的依据是.6.(怀柔16)阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:小明的作法如下:请回答:这样做的依据是.7.(丰台16、密云16)下面是“过圆外一点作圆的切线”的尺规作图过程.请回答以下问题:(1)连接OA ,OB ,可证∠OAP =∠OBP = 90°,理由是; (2)直线P A ,PB 是⊙O 的切线,依据是.8.(大兴16)下面是“作出所在的圆”的尺规作图过程.已知:⊙O 和⊙O 外一点P . 求作:过点P 的⊙O 的切线. 作法:如图, (1)连接OP ;(2)分别以点O 和点P 为圆心,大于12OP 的长为 半径作弧,两弧相交于M ,N 两点; (3)作直线MN ,交OP 于点C ;(4)以点C 为圆心,CO 的长为半径作圆,交⊙O 于A ,B 两点; (5)作直线P A ,PB .直线P A ,PB 即为所求作⊙O 的切线.如图,①取线段OB 的中点M ;以M 为圆心,MO 为 半径作⊙M ,与边AB 交于点C ; ②以O 为圆心,OC 为半径作⊙O ; 所以,⊙O 就是所求作的圆.请回答:该尺规作图的依据是. 9.(通州16)16. 阅读下面材料:在数学课上,老师提出如下问题: 小霞的作法如下:老师说:“小霞的作法正确.” 请回答:小霞的作图依据是.(1)如图,在平面内任取一点O ; (2)以点O 为圆心,AO 为半径作圆,交射线AB 于点D ,交射线AC 于点E ; (3)连接DE ,过点O 作射线OP 垂直线段DE ,交⊙O 于点P ; (4)连接AP .所以射线AP 为所求. 尺规作图:作已知角的角平分线.已知:如图,已知BAC ∠.求作: BAC ∠的角平分线AP .求作:所在的圆. 作法:如图,(1)在上任取三个点D ,C ,E ; (2)连接DC ,EC ;(3)分别作DC 和EC 的垂直平分线,两垂直平分线的交点为点O. (4)以O 为圆心,OC 长为半径作圆,所以⊙O 即为所求作的所在的圆..10.(海淀16、平谷16)下面是“作一个30°角”的尺规作图过程.,作射线AD.请回答:该尺规作图的依据是.11.(昌平21)尺规作图:如图,AC为⊙O的直径.(1)求作:⊙O的内接正方形ABCD.(要求:不写作法,保留作图痕迹);(2)当直径AC=4时,求这个正方形的边长.2.解直角三角形应用1.(门头沟14)如图,是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8 m,则乘电梯从点B到点C上升的高度h是_________m .2.(石景山12)“平改坡”是指在建筑结构许可条件下,将多层住宅的平屋顶改建成坡屋顶,并对外立面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为.如图是某小区对楼顶进行“平改坡”改造的示意图.根据图中的数据,如果要使坡面BC的坡度达到2.1:1,那么立柱AC 的长为_______米.3.(西城14)2017年9月热播的专题片《辉煌中国——圆梦工程》展示的中国桥、中国路等超级工程展现了中国现代化进程中的伟大成就,大家纷纷点赞“厉害了,我的国!”片中提到我国已成为拥有斜拉桥最多的国家,世界前十座斜拉桥中,中国占七座,其中苏通长江大桥(如图1所示)主桥的主跨长度在世界斜拉桥中排在前列.在图2的主桥示意图中,两座索塔及索塔两侧的斜拉索对称分布,大桥主跨BD的中点为E,最长的斜拉索CE长577 m,记CE与大桥主梁所夹的锐角CED∠为α,那么用CE的长和α的三角函数表示主跨BD长的表达式应为BD=(m) .4.(东城13)某校九年级的4位同学借助三根木棍和皮尺测量校园内旗杆的高度. 为了方便操作和观察,他们用三根木棍围成直角三角形并放在高1m的桌子上,且使旗杆的顶端和直角三角形的斜边在同一直线上(如图). 经测量,木棍围成的直角三角形的两直角边AB,OA的长分别为0.7m,0.3m,观测点O到旗杆的距离OE为6 m,则旗杆MN的高度为m .5.(怀柔14)数学实践课上,同学们分组测量教学楼前国旗杆的高度.小泽同学所在的组先设计了测量方案,然后开始测量了.他们全组分成两个测量队,分别负责室内测量和室外测量(如图).室内测量组来到教室内窗台旁,在点E 处测得旗杆顶部A的仰角α为45°,旗杆底部B的俯角β为60°. 室外测量组测得BF的长度为5米.则旗杆AB=______米.6.(燕山15)我国魏晋时期数学家刘徽编撰的最早一部测量数学著作《海岛算经》中有一题:今有望海岛,立两表齐高三丈,前后相去千步,令后表与前表参相直.从前表却行一百二十三步,人目着地,取望岛峰,与表末参合.从后表却行一百二十七步,人目着地,取望岛峰,亦与表末参合.问岛高几何? 译文:今要测量海岛上一座山峰AH 的高度,在B 处和D 处树立标杆BC 和DE ,标杆的高都是3丈,B 和D 两处相隔1000步(1丈=10尺,1步=6尺),并且AH ,CB 和DE 在同一平面内。

北京市2019届初三级上学期期末测试(九)

北京市2019届初三级上学期期末测试(九)

北京市2019届初三级上学期期末测试(九)数 学 试 卷学校 姓名 总得分:一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.已知反比例函数xm y 2-=,当x>0时,y 随x 的增大而增大,则m 的取值范围是 A.m<2 B.m>2 C.m ≤2 D.m ≥22.如图是某几何体的三视图,该几何体是A .圆锥B .圆柱C .长方体D .正方体(第2题图) k (第3题图) (第4题图) 3.如图,点B 是反比例函数ky x =(0k ≠)在第一象限内图象上的一点,过点B 作BA ⊥x 轴于点A ,BC ⊥y 轴于点C ,矩形AOCB 的面积为6,则k 的值为 A .3 B .6 C .-3 D .-64.如图,⊙O 是△ABC 的外接圆,∠A =50︒,则∠BOC 的大小为 A .40° B .30° C .80° D .100°5.将二次函数265y x x =-+用配方法化成2()y x h k =-+的形式,下列结果中正确的是 A .2(6)5y x =-+B .2(3)5y x =-+C .2(3)4y x =--D .2(3)9y x =+-6.如图,将ΔABC 绕点C 顺时针旋转,点B 的对应点为点E ,点A 的对应点为点D ,当点E 恰好落在边AC 上时,连接AD ,若∠ACB=30°,则∠DAC 的度数是(第6 题图) (第7 题图)A .60°B .65°C . 70°D .75°7.如图,AB 为⊙O 的直径,点C 为⊙O 上的一点,过点C 作⊙O 的切线,交直径AB 的延长线于点D ,若∠A =25°,则∠D 的度数是A .25°B .40°C .50°D .65° 8.小苏和小林在如图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y (单位:m )与跑步时间t (单位:s )的对应关系如下图所示.下列叙述正确的是A .两人从起跑线同时出发,同时到达终点.B .小苏跑全程的平均速度大于小林跑全程的平均速度. C. 小苏在跑最后100m 的过程中,与小林相遇2次. D .小苏前15s 跑过的路程小于小林前15s 跑过的路程. 二、填空题(本题共16分,每小题2分)9.请写出一个图象在第二,四象限的反比例函数的表达式 . 10.如图,在平面直角坐标系xOy 中,点A ,点B 的坐标分别为(0,2), (1 ,0),将线段AB 沿x 轴的正方向平移,若点B 的对应点的坐标为'B (2,0),则点A 的对应点'A 的坐标为 . (第10题图)ED CBA11.如图,PA ,PB 分别与⊙O 相切于A 、B 两点,点C 为劣弧AB 上任意一点,过点C 的切线分别交AP ,BP 于D ,E 两点.若AP=8,则△PDE 的周长为 .12.抛物线2y x bx c =++经过点A (0,3),B (2,3),抛物线的对称轴为 . (第11题图) 13.如图,⊙O 的半径为3,正六边形ABCDEF 内接于⊙O ,则劣弧AB 的长为 . 14.如图,在直角三角形ABC 中,∠C =90°,BC =6,AC =8,点D 是AC 边上一点,将△BCD 沿BD 折叠,使点C 落在AB 边的E 点,那么AE 的长度是 .15.如图,在平面直角坐标系xOy 中,△CDE 可以看作是△AOB 经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△AOB 得到△CDE 的过程: .(第13题图) (第14题图) (第15题图) 16.阅读以下作图过程:第一步:在数轴上,点O 表示数0,点A 表示数1,点B 表示数5,以AB 为直径作半圆(如图);第二步:以B 点为圆心,1为半径作弧交半圆于点C (如图); 第三步:以A 点为圆心,AC 为半径作弧交数轴的正半轴于点M .请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M 表示的数为________.(第16题图)FC三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程。

2019-2020北京市初三上数学期末考试几何压轴题汇总(含答案)

2019-2020北京市初三上数学期末考试几何压轴题汇总(含答案)

2019-2020初三上期末考试几何综合汇总1、(19-20朝阳期末)27.已知∠MON=120°,点A,B分别在ON,OM边上,且OA=OB,点C在线段OB 上(不与点O,B重合),连接CA. 将射线CA绕点C逆时针旋转120°得到射线CA´,将射线BO绕点B逆时针旋转150°与射线CA´交于点D.(1)根据题意补全图1;(2)求证:①∠OAC=∠DCB;②CD=CA(提示:可以在OA上截取OE=OC,连接CE);(3)点H在线段AO的延长线上,当线段OH,OC,OA满足什么等量关系时,对于任意的点C都有∠DCH=2∠DAH,写出你的猜想并证明.图1备用图2、(19-20东城期末)27.在△ABC中,∠BAC=45°,CD⊥AB于点D,AE⊥BC于点E,连接DE.(1)如图1,当△ABC为锐角三角形时,①依题意补全图形,猜想∠BAE与∠BCD之间的数量关系并证明;②用等式表示线段AE,CE,DE的数量关系,并证明;(2)如图2,当∠ABC为钝角时,依题意补全图形并直接写出线段AE,CE,DE的数量关系.图1图23、(19-20西城期末)27. △ABC是等边三角形,点P在BC的延长线上,以P为中心,将线段PC逆时针旋转n°(0<n<180)得线段PQ,连接AP,BO.(1)如图1,若PC=AC,画出当BQ∥AP时的图形,并写出此时n的值;AP,(2)M为线段BQ的中点,连接PM.写出一个n的值,使得对于BC延长线上任意一点P,总有MP=12并说明理由.4、(19-20海淀期末)27.在Rt △ABC 中,∠ACB =90°,AC =1, 记∠ABC =α,点D 为射线BC 上的动点,连接AD ,将射线DA 绕点D 顺时针旋转α角后得到射线DE ,过点A 作AD 的垂线,与射线DE 交于点P ,点B 关于点D 的对称点为Q ,连接PQ .(1)当△ABD 为等边三角形时,① 依题意补全图1; ② PQ 的长为_____________; (2)如图2,当α=45°,且43BD时, 求证:PD =PQ ; (3)设BC = t , 当PD =PQ 时,直接写出BD 的长.(用含t 的代数式表示)图 1图 2备用图N5、(19-20丰台期末)26.如图,∠90MAN =︒,B ,C 分别为射线AM ,AN 上的两个动点,将线段AC绕点A 逆时针...旋转30︒到AD ,连接BD 交AC 于点E . (1)当∠ACB =30°时,依题意补全图形,并直接写出DE BE的值;(2)写出一个∠ACB 的度数,使得12DE BE,并证明.6、(19-20石景山期末)27.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE .连接DE 并延长交射线AP 于点F ,连接BF .(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示); (2)求证:BF DF ⊥;(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.FEP DCBA7、(19-20大兴期末)27.已知:如图,B,C,D 三点在⨀A 上,︒=∠45BCD ,PA 是钝角△ABC 的高线,PA 的延长线与线段CD 交于点E. (1) 请在图中找出一个与∠CAP 相等的角,这个角是 ;(2) 用等式表示线段AC ,EC ,ED 之间的数量关系,并证明.8、(19-20房山期末)27.在△ABC 中,∠ACB =90°,AC =BC =2,以点B 为圆心、1为半径作圆,设点M 为⊙B 上一点,线段CM 绕着点C 顺时针旋转90°,得到线段CN ,连接BM 、AN .(1)在图27-1中,补全图形,并证明BM =AN .(2)连接MN,若MN与⊙B相切,则∠BMC的度数为________________. (3)连接BN,则BN的最小值为___________;BN的最大值为___________图27-1 备用图备用图9、(19-20门头沟期末)27.如图,∠MON=60°,OF平分∠MON,点A在射线OM上, P,Q是射线ON上的两动点,点P在点Q的左侧,且PQ=OA,作线段OQ的垂直平分线,分别交OM,OF,ON于点D,B,C,连接AB,PB.(1)依题意补全图形;(2)判断线段 AB,PB之间的数量关系,并证明;(3)连接AP,设APkOQ,当P和Q两点都在射线ON上移动时,k是否存在最小值?若存在,请直接写出k的最小值;若不存在,请说明理由.备用图10、(19-20密云期末)27. 已知:在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC边中点.点M为线段B C上的一个动点(不与点C,点D重合),连接AM,将线段AM绕点M顺时针旋转90°,得到线段ME,连接EC.(1)如图1,若点M在线段BD上.①依据题意补全图1;②求∠MCE的度数.图1(2)如图2,若点M在线段CD上,请你补全图形后,直接用等式表示线段AC、CE、CM之间的数量关系.图211、(19-20平谷期末)27.如图,正方形ABCD,将边BC绕点B逆时针旋转60°,得到线段BE,连接AE,CE.(1)求∠BAE的度数;(2)连结BD,延长AE交BD于点F.Array①求证:DF=EF;②直接用等式表示线段AB,CF,EF的数量关系.12、(19-20顺义期末)27.已知:如图,在正方形ABCD中,点E在AD边上运动,从点A出发向点D运动,到达D点停止运动.作射线CE,并将射线CE绕着点C逆时针旋转45°,旋转后的射线与AB边交于点F,连接EF.(1)依题意补全图形;(2)猜想线段DE,EF,BF的数量关系并证明;(3)过点C作CG⊥EF,垂足为点G,若正方形ABCD的边长是4,请直接写出点G运动的路线长.C C(备用图)13、(19-20通州期末)27.如图,MO⊥NO于点O,△OAB为等腰直角三角形,∠OAB=90°,当△OAB绕点O旋转时,记∠MOA=a(0°≤a≤90°)。

2019年北京市各区九年级上册期末试卷分类汇编:圆综合题-(数学)【标准版】

2019年北京市各区九年级上册期末试卷分类汇编:圆综合题-(数学)【标准版】

圆综合题1.(大兴18期末24)已知:如图,AB 是半圆O 的直径,D 是半圆上的一个动点(点D 不与点A ,B 重合), .∠=∠CAD B (1)求证:AC 是半圆O 的切线;(2)过点O 作BD 的平行线,交AC 于点E ,交AD 于点F ,且EF=4,AD=6,求BD 的长.24. (1)证明:∵AB 是半圆直径,∴∠BDA =90°. .………………………………………………………1分 ∴90B DAB ∠+∠=︒ 又DAC B ∠=∠∴90DAC DAB ∠+∠=︒……………………………………………2分 即∠CAB =90°∴AC 是半圆O 的切线. (2)解:由题意知,,90OE BD D ∠=︒∥∴∠D =∠AFO =∠AFE = 90° ∴OE AD ⊥.12AF AD =……………………………………………………3分又∵AD=6 ∴AF =3. 又B CAD ∠=∠∴△AEF ∽△BAD ……………………………………………4分 4369 (52)4EF AF AD BDBD BD EF ∴==∴==∴分2.(昌平18期末24)如图,AB 为⊙O 的直径,C 、F 为⊙O 上两点,且点C 为弧BF 的中点,过点C 作AF 的垂线,交AF 的延长线于点E ,交AB 的延长线于点D . (1)求证:DE 是⊙O 的切线; (2)如果半径的长为3,tan D=34,求AE 的长.24.(1)证明:连接OC ,∵点C 为弧BF 的中点, ∴弧BC =弧CF .∴BAC FAC ∠=∠.…………… 1分∵OA OC =, ∴OCA OAC ∠=∠.∴OCA FAC ∠=∠.……………………2分∵AE ⊥DE ,∴90CAE ACE ︒∠+∠=.∴90OCA ACE ︒∠+∠=. ∴OC ⊥DE .∴DE是⊙O的切线.…………………… 3分(2)解:∵tan D=OCCD=34,OC=3,∴CD=4.…………………………… 4分∴OD.∴AD= OD+ AO=8.…………………………… 5分∵sin D=OCOD=AEAD=35,∴AE=245.……………………………6分3.(朝阳18期末24)如图,在△ABC中,∠C=90°,以BC 为直径的⊙O交AB于点D,⊙O的切线DE交AC于点E.(1)求证:E是AC中点;(2)若AB=10,BC=6,连接CD,OE,交点为F,求OF的长.4.(东城18期末25)如图,在△ABC中,AB=AC,以AB为直径的O与边BC,AC分别交于点D,E.DF是O的切线,交AC于点F.(1)求证:DF⊥AC;(2)若AE=4,DF=3,求tan A.19、20、21、22、23、24、25、5.(海淀18期末24)如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB 交弦BC于点E,在BC的延长线上取一点F,使得EFDE.(1)求证:DF是⊙O的切线;(2)连接AF交DE于点M,若AD4,DE5,求DM的长.24.(1)证明:∵ BD 平分∠ABC , ∴ ∠ABD =∠CBD . ∵ DE ∥AB , ∴ ∠ABD =∠BDE .∴ ∠CBD =∠BDE . ………………1分 ∵ ED =EF ,∴ ∠EDF =∠EFD . ∵∠EDF +∠EFD +∠EDB +∠EBD =180°, ∴ ∠BDF =∠BDE +∠EDF =90°.∴ OD ⊥DF . ………………2分 ∵OD 是半径,∴ DF 是⊙O 的切线. ………………3分(2)解: 连接DC ,∵ BD 是⊙O 的直径,∴ ∠BAD =∠BCD =90°. ∵ ∠ABD =∠CBD ,BD =BD , ∴ △ABD ≌△CBD . ∴ CD =AD =4,AB =BC. ∵ DE =5,∴ 3CE ==,EF =DE =5. ∵ ∠CBD =∠BDE , ∴ BE =DE =5.∴ 10BF BE EF =+=,8BC BE EC =+=.∴ AB =8. ………………5分 ∵ DE ∥AB , ∴ △ABF ∽△MEF . ∴AB BFME EF=. ∴ ME =4.∴ 1DM DE EM =-=. ………………6分6.(石景山18期末25)如图,AC 是⊙O 的直径,点D 是⊙O 上一点,⊙O 的切线CB 与AD 的延长线交于点B ,点F 是直径AC 上一点,连接DF 并延长交⊙O 于点E ,连接AE . (1)求证:∠ABC =∠AED ; (2)连接BF ,若AD 532=,AF =6,tan 34=∠AED ,求BF 的长.25.(本小题满分6分) (1)证明:连接CD ∵AC 是⊙O 的直径∴∠A D C =90°………………………………………………………1分∴∠DAC+∠ACD =90° ∵BC 是⊙O 的切线 ∴∠ACB=90° ∴∠DAC+∠AB C=90°∴∠A B C =∠A C D …………………………………………………2分 ∵∠AED=∠ACD∴∠A B C =∠A E D …………………………………………………3分(2)解:连接BF ∵∠AED=∠ACD=ABC ∠∴tan ∠ACD = tan ∠AED =ABC ∠tan =34∴tan ∠ACD =34=CD AD 即34532=CD∴CD=524………………………………………………………………4分 ∴AC=8∵AF=6,∴F C=2∵ABC ∠tan =34=BC AC ,即348=BC ∴B C =6………………………………………………………..…….5分 ∴B F =102……………………………………………………… 6分7.(西城18期末24)如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上,=DCE B ∠∠.(1)求证:CE 是半圆的切线;(2)若CD=10,2tan 3B =,求半圆的半径.8.(丰台18期末24)如图,AB是⊙O的直径,点C是»AB的中点,连接AC并延长至点D,使CD AC=,点E是OB上一点,且23OEEB=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当2OB=时,求BH的长.24.(1)证明:连接OC ,∵AB 为⊙O 的直径,点C 是»AB 的中点,∴∠AOC =90°. ……1分∵OA OB =,CD AC =,∴OC 是ABD ∆的中位线. ∴OC ∥BD.∴∠ABD =∠AOC =90°. ……2分∴AB BD ⊥.∴BD 是⊙O 的切线. ……3分其他方法相应给分.(2)解:由(1)知OC ∥BD ,∴△OCE ∽△BFE. ∴OC OE BF EB=. ∵OB = 2,∴OC = OB = 2,AB = 4,∵23OE EB =,∴223BF =,∴BF =3. ……4分在Rt ABF ∆中,∠ABF =90°,5AF ==. ∵1122ABF S AB BF AF BH =⋅=⋅ ,∴AB BF AF BH ⋅=⋅.即435BH ⨯=. ∴BH =125. .……5分 其他方法相应给分.9.(怀柔18期末22)22. 如图,已知AB 是⊙O 的直径,点M 在BA 的延长线上,MD 切⊙O于点D ,过点B 作BN ⊥MD 于点C ,连接AD 并延长,交BN 于点N .(1)求证:AB =BN ;(2)若⊙O 半径的长为3,cosB =52,求MA 的长.22.(1)证明:连接OD ,…………………………1分∵MD 切⊙O 于点D ,∴OD ⊥MD ,∵BN ⊥MC ,∴OD ∥BN ,…………………………………2分∴∠ADO =∠N ,∵OA =OD ,∴∠OAD =∠ADO ,∴∠OAD =∠N ,∴AB =BN ;………………………………………………………………………………………3分(2)解:由(1)OD ∥BN ,∴∠MOD =∠B ,………………………………………………………………………………4分∴cos ∠MOD =cosB =52, 在Rt △MOD 中,cos ∠MOD ==OMOD , ∵OD =OA ,MO =MA +OA =3+MA ,∴AM 33=52, ∴MA =4.5………………………………………………………………………………………5分10.(平谷18期末25)25.如图,在Rt △ABC 中,∠ACB =90°,AD 平分∠BAC 交BC 于点D ,点O 是AB 边上一点,以O 为圆心作⊙O 且经过A ,D 两点,交AB 于点E .(1)求证:BC是⊙O的切线;(2)AC=2,AB=6,求BE的长.25.(1)证明:连结OD,∵OA=OD,∴∠OAD=∠ODA.∵AD平分∠BAC,∴∠CAD=∠OAD.∴∠CAD=∠ODA.∴OD∥AC. (1)∵∠ACB=90°,∴∠ODB=90°. (2)即OD⊥BC于D.∴BC是⊙O的切线. (3)(2)解:∵OD∥AC,∴△BDO∽△BCA.∴OD BOAC BA=. (4)∵AC=2,AB=6,∴设OD=r,则BO=6﹣r.∴626r r-=.解得r=32.∴AE=3.∴BE=3. (5)11.(密云18期末24)如图,AB是O的直径,C、D是O上两点,AC BC=.过点B作O 的切线,连接AC并延长交于点E,连接AD并延长交于点F.(1)求证:AC=CE.(2)若AE=,3sin5BAF∠=求DF长.24.(1)证明:连结BC.AB 是 的直径,C 在O 上90ACB ∠=︒AC BC =AC=BC45CAB ∠=︒AB 是O 的直径,EF 切O 于点B90ABE ∠=︒45AEB ∠=︒AB=BEAC=CE ……………………………………………2分(2)在Rt ABE ∆中,90ABE ∠=︒,AE=,AE=BE8AB = ………………………..3分在Rt ABF ∆中,AB=8,3sin 5BAF ∠= 解得:6BF = ………………………..4分连结BD ,则90ADB FDB ∠=∠=︒90BAF ABD ∠+∠=︒,90ABD DBF ∠+∠=︒,DBF BAF ∠=∠3sin 5BAF ∠= 3sin 5DBF ∠= 35DF BF = 185DF = …………………5分12.(顺义18期末26)已知:如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线交AB于点E,交AC的延长线于点F.(1)求证:DE⊥AB;(2)若tan∠BDE=12, CF=3,求DF的长.26.(1)证明:连接OD.………………………………………..1分∵EF切⊙O于点D,∴OD⊥EF.……………………………………….……..2分又∵OD=OC,∴∠ODC=∠OCD,∵AB=AC,∴∠ABC=∠OCD,∴∠ABC=∠ODC,∴AB∥OD,∴DE⊥AB.…………………………………….………..3分(2)解:连接AD.…………………………….…………….…4分∵AC为⊙O的直径,∴∠ADB=90°,…………………………………..…5分∴∠B+∠BDE=90°,∠B+∠1=90°,∴∠BDE =∠1,∵AB =AC ,∴∠1=∠2.又∵∠BDE =∠3,∴∠2=∠3.∴△FCD ∽△FDA …………………………………….6分 ∴FC CD FD DA=, ∵tan ∠BDE =12,∴tan ∠2=12, ∴1=2CD DA ,∴1=2FC FD , ∵CF =3,∴FD =6.……………………………….…7分13.(大兴18期末27)已知:如图,AB 为半圆O 的直径,C 是半圆O 上一点,过点C 作AB 的平行线交⊙O 于点E ,连接AC 、BC 、AE ,EB . 过点C 作CG ⊥AB 于点G ,交EB 于点H.(1)求证:∠BCG=∠E BG ;(2)若55sin =∠CAB ,求GB EC 的值.27. 证明:(1)∵AB 是直径,∴∠ACB =90°.………………………………………………..1分∵CG ⊥AB 于点G ,∴∠ACB=∠ CGB =90°.∴∠CAB =∠BCG . .………………………………………………..2分∵CE ∥AB ,∴∠CAB =∠ACE .∴∠BCG =∠ACE又∵∠ACE =∠EBG∴∠BCG =∠EBG . .………………………………………………..3分(2)解:∵sin 5CAB ∠=∴1tan 2CAB ∠=,………………………………………………..4分由(1)知,∠HBG =∠EBG =∠ACE =∠CAB∴在Rt △HGB 中,1tan 2GH HBG GB ∠==. 由(1)知,∠BCG =∠CAB在Rt △BCG 中,1tan 2GB BCG CG ∠==. 设GH=a ,则GB=2a ,CG=4a .CH =CG -HG =3a . ……………..6分∵EC ∥AB ,∴∠ECH =∠BGH ,∠CEH =∠GBH∴△ECH ∽△BGH .……………………………………………..7分 ∴33ECCHaGB GH a ===.…………………………………………8分14.(门头沟18期末24)如图,在Rt △ABC 中,∠ACB =90°,点D 是AB 边上一点,以BD为直径的⊙O 与边AC 相切于点 E ,连接DE 并延长DE 交BC 的延长线于点F .(1)求证:BD =BF ;(2)若CF =2,4tan 3B =,求⊙O 的半径.24.(本小题满分5分)(1)证明:连接OE ,∵AC 与圆O 相切,∴OE ⊥AC ,…………….1分∵BC ⊥AC ,∴OE ∥BC ,又∵O 为DB 的中点,∴E 为DF 的中点,即OE 为△DBF 的中位线,∴OE =BF ,又∵OE =BD ,∴BF =BD ;……………………………………….2分(2)设BC =3,4tan 3B ∠=可得:AB =5, 又∵CF =2,∴BF =3+2,由(1)得:BD =BF ,∴BD =3+2,∴OE =OB =322x +,AO =AB ﹣OB =3272522x x x +--= ∵OE ∥BF ,∴∠AOE =∠B , ……………………………………………………………………………………4分 ∴cos ∠AOE =cos B ,即32232725OE x AO x +=⋅=-, 解得: 83x =则圆O 的半径为3210522x +==………………………………………………………………………5分15.(通州18期末22)如图,ABC △是等腰三角形,AC AB =,以AC 为直径的⊙O 与BC交于点D ,DE AB ⊥,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为2,1BE =,求cos A 的值.16.(燕山18期末24)如图,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)如果⊙O的半径为5,sin∠ADE=45,求BF的长.24.如图,在△ABC 中,AB=AC ,以AB 为直径作半圆O ,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F.(1)证明:连结OD∵OD=OB ∴∠ODB=∠DBO又AB=AC∴∠DBO=∠C∴∠ODB =∠C∴OD ∥AC又DE ⊥AC∴DE ⊥OD∴EF 是⊙O 的切线. ……………………..…………….2′(2)∵AB 是直径 ∴∠ADB=90 °∴∠ADC=90 °即∠1+∠2=90 °又∠C+∠2=90 °∴∠1=∠C∴∠1 =∠3 ……………………..…………….3′∴ABAD ADE =∠==∠3sin 54sin ∴1054AD =∴AD=8 在Rt △ADB 中,AB=10∴BD=6在又Rt △AED 中,AD AE ADE ==∠54sin ∴532584=⨯=AE ……………………..…………….4′ 设BF=∵OD ∥AE∴ △ODF ∽△AEF ∴AF OF AE OD = x x ++=1055325 =790……………………..…………….5′。

【精品初三数学】2019北京初三数学期末分类汇编-几何综合+答案

【精品初三数学】2019北京初三数学期末分类汇编-几何综合+答案

如图,在△ABC 中,AC =BC ,∠ACB =90°,D 为AC 上一点(与点A ,C 不重合),连接BD ,过点A 作AE ⊥BD 的 延长线于E(1)①在图中作出△ABC 的外接圆⊙O ,并用文字描述 圆心O 的位置②连接OE ,求证:点E 在⊙O 上(2)①延长线段BD 至点F ,使EF =AE ,连接CF ,根据题 意补全图形②用等式表示线段CF 与AB 的数量关系,并证明 2 丰台如图,△ABC 是等边三角形,D ,E 分别是AC ,BC 边上的点,且AD = CE ,连接BD ,AE 相交于点F (1)∠BFE 的度数是(2)如果21=AC AD ,那么=BF AF (3)如果nAC AD 1=时,请用含n 的式子表示AF ,BF 的数量关系,并证明ABC DEADBF已知在△ABC 中,AB =AC ,∠BAC =α,直线l 经过点A (不经过点B 或点C ),点C 关于直线l 的对称点为点D ,连接BD ,CD(1)如图1 ①求证:点,,B C D 在以点A 为圆心,AB 为半径的圆上 ②直接写出∠BDC 的度数(用含α的式子表示)为___________(2)如图2,当α=60°时,过点D 作BD 的垂线与直线l 交于点E ,求证:AE =BD(3)如图3,当α=90°时,记直线l 与CD 的交点为F ,连接BF .将直线l 绕点A 旋转,当线段BF 的长取得最大值时,直接写出tan FBC ∠的值4 怀柔在菱形ABCD 中,∠ADC=60°,BD 是一条对角线,点P 在边CD 上(与点C ,D 不重合),连接AP ,平移ADP ∆,使点D 移动到点C ,得到BCQ ∆,在BD 上取一点H ,使HQ=HD ,连接HQ ,AH ,PH (1) 依题意补全图1 (2)判断AH 与PH 的数量关系及∠AHP 的度数,并加以证明 (3)若141AHQ ∠=︒,菱形ABCD 的边长为1,请写出求DP 长的思路(可以不写出计算结果.........)BBA BCDPA BCD如图1,在正方形ABCD 中,点F 在边BC 上,过点F 作EF ⊥BC ,且FE =FC (CE <CB ),连接CE 、AE ,点G 是AE 的中 点,连接FG(1)用等式表示线段BF 与FG 的数量关系是___________________(2)将图1中的△CEF 绕点C 按逆时针旋转,使△CEF 的顶点F 恰好在正方形ABCD 的对角线AC 上,点G 仍是AE 的中点,连接FG 、DF①在图2中,依据题意补全图形 ②求证:DF =6 燕山正方形ABCD 中,将边AB 所在直线绕点A 逆时针旋转一个角度α得到直线AM ,过点C 作CE ⊥AM ,垂足为E ,连接BE(1) 当045α︒<<︒时,设AM 交BC 于点F① 如图1,若α=35°,则∠BCE = ° ② 如图2,用等式表示线段AE ,BE ,CE 之间的数量关系,并证明 (2) 当4590α︒<<︒时(如图3),请直接用等式表示线段AE ,BE ,CE 之间的数量关系图2图1F 35°MBC DAEF AB EMC DαAB EMCD如图,Rt △ ABC 中,∠ACB =90°,AD 平分∠BAC , 作AD 的垂直平分线EF 交AD 于点E ,交BC 的延长线于点F ,交AB 于点G ,交AC 于点H(1)依题意补全图形8 门头沟如图,在△ABC 中,AC = BC ,∠ACB = 90°,D 是线段AC 延长线上一点,连接BD ,过点A 作AE ⊥BD 于E (1)求证:∠CAE =∠CBD(2)将射线AE 绕点A 顺时针旋转45°后,所得的射线与线段BD 的延长线交于点F ,连接CE ① 依题意补全图形② 用等式表示线段EF ,CE ,BE 之间的数量关系,并证明AABCDEM 是正方形ABCD 的边AB 上一动点(不与A ,B 重合)MC BP ⊥,垂足为P ,将CPB ∠绕点P 旋转,得到''PB C ∠,当射线'PC 经过点D 时,射线'PB 与BC 交于点N (1)依题意补全图形 (2)求证:CPD ∽∆∆BPN(3)在点M 的运动过程中,图中是否存在与BM 始终相等的线段?若存在,请写出这条线段并证明,若不存在,请说明理由10 西城如图,在△ABC 中,AB =AC .△ADE ∽△ABC ,连接BD ,CE (1)判断BD 与CE 的数量关系,并证明你的结论 (2)若AB =2,AD =22,∠BAC =105°,∠CAD =30° ①BD 的长为②点P ,Q 分别为BC ,DE 的中点,连接PQ ,写出求PQ 长的思路如图,在ABC Rt ∆中,BC AB ABC ==∠,090,点E 为线段AB 上一动点(不与点A ,B 重合),连接CE ,将ACE ∠的两边CE ,CA 分别绕点C 顺时针旋转090,得到射线''CA CE ,,过点A 作AB 的垂线AD ,分别交射线''CA CE ,于点F ,G(1)依题意补全图形(2)若α=∠ACE ,求AFC ∠的大小(用含α的式子表示) (3)用等式表示线段AE ,AF ,与BC 之间的数量关系,并证明 12 东城如图,M 为正方形ABCD 内一点,点N 在AD 边上,且MB MN BMN 2900==∠,,点E 为MN 的中点,点P 为DE 的中点,连接MP 并延长到点F ,使得PF=PM ,连接DF (1)依题意补全图形 (2)求证:DF=BM(3)连接AM ,用等式表示线段PM 和AM 的数量关系并证明如图,正方形ABCD ,将边CD 绕点C 顺时针旋转60°,得到线段CE ,连接DE ,AE ,BD 交于点F (1)求∠AFB 的度数 (2)求证:BF=EF(3)连接CF ,直接用等式表示线段AB ,CF ,EF 的数量关系14 石景山在Rt △ABC 中,90ACB ∠=︒,2AC =,BC =,过点B 作直线l ∥AC ,将△ABC 绕点C 逆时针旋转得到△A B C '',直线CA ',CB '分别交直线l 于点D E ,.(1)当点A ',D 首次重合时,①请在图1中,补全旋转后的图形; ②直接写出A CB '∠的度数; (2)如图2,若CD AB ⊥,求线段DE 的长;(3)求线段DE 长度的最小值.1(2019.1+++昌平+++初三上+++期末)(1)①圆心O 的位置在线段AB 的中点,正确画出图②∵AE ⊥BD ∴△AEB 为直角三角形 ∵点O 为线段AB 的中点 ∴OE =OA =OB =r ∴点E 在⊙O 上 (2)①补全图形=ABEA证明如下: ∵AC =BC ,∠ACB =90° ∴∠BAC =∠CBA = 45° ∵»»BCBC = ∴∠BEC =∠BAC = 45° ∵AE ⊥BD ∴∠BEA =90° ∴∠CEA =90°+ 45°= 135° ∵∠CEF =180°-∠CEB =135° ∴∠CEA =∠CEF ∵AE =EF ,∠CEA =∠CEF ,CE =C E ∴△CEA ≌△CEF ∴CF =CA ∵在等腰t ∆R ACB中,=AB∴=AB2(2019.1+++丰台+++初三上+++期末) (1)60° (2)1 (3)11AF BF n =- 证明:延长FE 至G ,使FG =FB 连接GB ,GC由(1)知,∠BFG=60° ∴△BFG 为等边三角形 ∴BF =BG ,∠FBG=∠FGB=60° ∵△ABC 是等边三角形 ∴AB=BC ,∠ABC=60°∴∠ABF=∠CBG ∴△ABF ≌△CBG∴∠BFA=∠BGC=120° ∴∠FGC=60° ∴∠FGC=∠BFG ∴FB ∥CG∴AF AD FG DC = ∵1AD AC n = ∴11AF FG n =- ∴11AF BF n =-3(2019.1+++海淀+++初三上+++期末) (1)①证明:连接AD ,如图1∵点C 与点D 关于直线l 对称 ∴AC AD = ∵AB AC = ∴AB AC AD ==∴点B C D ,,在以A 为圆心,AB 为半径的圆上CAE BD FlD A 图1②12α (2)证法一: 证明:连接CE ,如图2 ∵=60α°∴1302BDC α∠==° ∵DE BD ⊥ ∴90CDE ∠=°60BDC -∠=° ∵点C 与点D 关于直线l 对称 ∴EC ED = ∴CDE △是等边三角形∴CD CE =,60DCE ∠=° ∵AB AC =,60BAC ∠=° ∴ABC △是等边三角形 ∴CA CB =,60ACB ∠=° ∵ACE DCE ACD ∠=∠+∠,BCD ACB ACD ∠=∠+∠ ∴ACE BCD ∠=∠ ∴ACE BCD △≌△ ∴AE BD = 证法二:证明:连接AD ,如图2 ∵点C 与点D 关于直线l 对称∴AD AC AE CD =,⊥ ∴12DAE DAC ∠=∠∵12DBC DAC ∠=∠∴DBC DAE ∠=∠∵AE CD ⊥,BD DE ⊥∴90BDC CDE DEA CDE ∠+∠=∠+∠=°∴BDC DEA ∠=∠ ∵60AB AC BAC =∠=,° ∴ABC △是等边三角形 ∴CA CB AD == ∴BCD △≌ADE △ ∴AE BD = (3)134(2019.1+++怀柔+++初三上+++期末) (1)补全图形,如图所示(2)AH 与PH 的数量关系:AH =PH ,∠AHP =120° 证明:如图,由平移可知,PQ=DC ∵四边形ABCD 是菱形,∠ADC=60° ∴AD=DC ,∠ADB =∠BDQ =30° ∴AD=PQ∵HQ=HD ∴∠HQD =∠HDQ =30° ∴∠ADB =∠DQH ,∠D HQ=120°∴△ADH ≌△PQH ∴AH =PH ,∠A HD =∠P HQ ∴∠A HD+∠DHP =∠P HQ+∠DHP图2∴∠A HP=∠D HQ ∵∠D HQ=120° ∴∠A HP=120° (3)求解思路如下:由∠A HQ=141°,∠B HQ=60°解得∠A HB=81°a.在△ABH 中,由∠A HB=81°,∠A BD=30°,解得∠BA H=69°b.在△AHP 中,由∠A HP=120°,AH=PH ,解得∠PA H=30°c.在△ADB 中,由∠A DB=∠A BD= 30°,解得∠BAD =120° 由a 、b 、c 可得∠DAP =21°在△DAP 中,由∠A DP= 60°,∠DAP =21°,AD=1,可解△DAP ,从而求得DP 长5(2019.1+++通州+++初三上+++期末) (1)BF =(2)①依据题意补全图形 ②证明:如图,连接BF 、GB ∵四边形ABCD 是正方形∴AD =AB ,90ABC BAD ∠=∠=︒,AC 平分BAD ∠ ∴45BAC DAC ∠=∠=︒.在△ADF 和△ABF 中 AD AB DAC BAC AF AF =⎧⎪∠=∠⎨⎪=⎩,,,∴△ADF ≌△ABF ∴DF BF = ∵EF ⊥AC ,90ABC ∠=︒,点G 是AE 的中点 ∴AG EG BG FG === ∴点A 、F 、E 、B 在以点G 为圆心,AG 长为半径的圆上∵»»BFBF =,45BAC ∠=︒ ∴290BGF BAC ∠=∠=︒ ∴△BGF 是等腰直角三角形∴BF =∴DF =6(2019.1+++燕山+++初三上+++期末)(1) ① ∠BCE =35° ② AE =CEBE 证明:过点B 作BG ⊥BE ,交AM 于点G∴∠GBE =∠GBC +∠2=90° ∵正方形ABCD ∴AB =BC ,∠ABC =∠1+∠GBC =90° ∴∠1=∠2A BCDP HQ∵∠ABC =∠CEA =90°,∠4=∠5 ∴△ABF ∽△CEF∴∠α=∠3 ∴在△ABG 和△CBE 中 ∠1=∠2,AB =BC ,∠α=∠3∴△ABG ≌△CBE ∴AG =CE ,BG =BE ∵在△BEG 中,∠GBE =90°,BG =BE ∴GE =2BE ∴AE =AG +GE =CE +2BE (2) AE +CE =2BE7(2019.1+++房山+++初三上+++期末) (1)补全图形如图分(2)证明:∵AD 平分∠BAC∴∠BAD =∠CAD ∵FE ⊥AD , ∠ACF =90°, ∠AHE =∠CHF ∴∠CFH =∠CAD ∴∠BAD =∠CFH , 即∠BAD =∠BFG(3)猜想: 222AB FD FB += 证明:连接AF∵EF 为AD 的垂直平分线 ∴AF=FD ,∠ ∴∠DAC +∠CAF =∠B +∠BAD ∵AD 是角平分线 ∴∠BAD =∠CAD ∴∠CAF =∠B ∴∠BAF =∠BAC +∠CAF =∠BAC +∠B =90° ∴222AB AF FB += ∴222+=AB FD FB8(2019.1+++门头沟+++初三上+++期末) (1)证明:如图1,∵ ∠ACB = 90°,AE ⊥BD ∴ ∠ACB =∠AEB = 90° 又∵ ∠1=∠2 ∴ ∠CAE =∠CBD (2)① 补全图形如图2HG FEDABC图1②2=+EF CE BE证明:在AE上截取AM,使AM=BE又∵AC=CB,∠CAE =∠CBD ∴△ACM≌△BCE∴CM=CE,∠ACM=∠BCE 又∵∠ACB =∠ACM+∠MCB=90°∴∠MCE=∠BCE+∠MCB=90°∴2.=ME CE又∵射线AE绕点A顺时针旋转45°,后得到AF,且∠AEF=90°∴EF=AE=AM+ME=BE+2CE9(2019.1+++朝阳+++初三上+++期末)10(2019.1+++西城+++初三上+++期末)11(2019.1+++大兴+++初三上+++期末)(1)补全的图形如图所示(2)解:由题意可知,∠ECF=∠ACG=90°∴∠FCG=∠ACE=α∵过点A作AB的垂线AD ∴∠BAD=90°∵AB=BC,∠ABC=90°∴∠ACB=∠CAD= 45° ∵∠ACG=90° ∴∠AGC=45° ∴∠AFC =α+45°(3)AE ,AF 与BC 之间的数量关系为2AE AF BC += 由(2)可知∠DAC=∠AGC=45° ∴CA=CG ∵∠ACE =∠GCF ,∠CAE =∠CGF ∴△ACE ≌△GCF ∴AE =FG 在Rt △ACG 中∴AG =∴AE AF +=∵AC = ∴2AE AF BC +=12(2019.1+++东城+++初三上+++期末)无答案27.解:(1)…………………………………………………………1分(2)∵点P 为线段DE 的中点 ∴DP =EP在△MPE 和△FPD 中 MP FP MPE FPD EP DP =⎧⎪∠=∠⎨⎪=⎩∴△MPE ≌△FPD (SAS )…………………………………………………………2分 ∴DF =ME∵E 为MN 的中点 ∴MN =2ME ∵MN =2MB∴MB =ME=D F .…………………………………………………………3分(3)结论:AM = …………………………………………………………4分 连接AF由(2)可知:△MPE ≌△FPD ∴∠DFP =∠EMP. ∴DF ∥ME.∴∠FDN =∠MND.在正方形ABCD 中,AD =AB ,∠BAD =90° 又∵∠BMN =90°∴∠MBA +∠MNA =180° 又∵∠MNA +∠MND =180° ∴∠MBA =∠MND∴∠FDN =∠MBA …………………………………………………………5分 在△FAD 和△MAB 中 FD MB FDA MBA DA BA =⎧⎪∠=∠⎨⎪=⎩∴△F AD ≌△MAB (SAS ) ∴∠FAD =∠MAB FA =MA∴∠FAM=∠DAB =90°∴△FAM 为等腰直角三角形…………………………………………………………6分 ∴FM =又∵FM =2PM∴ AM = …………………………………………………………7分13(2019.1+++平谷+++初三上+++期末)。

北京市各区县2019年初三数学期末试题分类汇编:几何综合

北京市各区县2019年初三数学期末试题分类汇编:几何综合

2019年1月期末试题分类汇编——几何综合(2018·石景山1月期末·25)将ABC △绕点A 按逆时针方向旋转,旋转角为)(︒<α<︒α900,旋转后使各边长变为原来的n 倍,得到C B A ''△,我们将这种变换记为[n ,α]. (1)如图①,对ABC △作变换[3,60 ]得C B A ''△,则C B A S ''△:ABC S △= ___;直线BC 与直线C B ''所夹的锐角为 __ °;(2)如图②,ABC △中,330,90==∠=∠AC BAC ACB , ,对ABC △ 作变换[n ,α]得C B A ''△,使得四边形C B AB ''为梯形,其中AB ∥C B '',且梯形C B AB ''的面积为312,求α和n 的值.25. 解:(1………………………………………2分 (2) 由题意可知:C B A ''△∽ABC △n BC C B AC C A C C =''='=∠='∠∴,90︒=∠∴90',''//BAC C B AB60-90=∠︒=α∴BAC ……………………………4分在ABC Rt △中,121230cos ====AB BC AC AB ,n C B n AC =''=∴,3'………………………………5分∴在直角梯形C B AB ''中,()C A C B AB S '''+=21()3123221=+=n n …………………………6分()舍去6,4-==∴n n ………………………………7分4,60==α∴n(2018·西城1月期末·24)已知:△ABC ,△DEF 都是等边三角形,M 是BC 与EF 的中点,连接AD ,BE. (1)如图1,当EF 与BC 在同一条直线上时,直接写出AD 与BE 的数量关系和位置关系;(2)△ABC 固定不动,将图1中的△DEF 绕点M 顺时针旋转α(o 0≤α≤o 90)角,如图2所示,判断(1)中的结论是否仍然成立,若成立,请加以证明;若不成立,说明理由;(3)△ABC 固定不动,将图1中的△DEF 绕点M 旋转α(o 0≤α≤o 90)角,作DH⊥BC 于点H .设BH =x ,线段AB ,BE ,ED ,DA 所围成的图形面积为S .当AB =6,DE =2时,求S 关于x 的函数关系式,并写出相应的x 的取值范围.24.(1)ADBE=,AD BE⊥............................................ 2分(2)证明:连接DM,AM.在等边三角形ABC中,M为BC的中点,∴ AM BC⊥,1302BAM BAC∠=∠=︒,AMBM∴ 90BME EMA∠+∠=︒.同理,DMEM,90AMD EMA∠+∠=︒.∴AM DMBM EM=,AM D BM E∠=∠.·3分∴ △ADM ∽△BEM.∴AD DMBE EM==...................................... 4分延长BE交AM于点G,交AD于点K.∴ M AD M BE∠=∠,BGM AGK∠=∠.∴ 90GKA AMB∠=∠=︒.∴ AD BE⊥............................................. 5分(3)解:(ⅰ)当△DEF绕点M顺时针旋转α(o0≤α≤∵ △ADM ∽△BEM,∴ 2()3ADMBEMS ADS BE∆∆==.∴13BEM ADMS S∆∆=∴ABM ADM BEM DEMS S S S S∆∆∆∆=+--23ABM ADM DEMS S S∆∆∆=+-121133)12322x=⨯⨯⨯⨯--⨯=∴ S=(3≤x≤3+)........................... 6分(ⅱ) 当△DEF绕点M逆时针旋转α(o0≤α≤o90)角时,可证△ADM∽△BEM,∴ 21()3BEMADMS BMS AM∆∆==.∴13BEM ADMS S∆∆=.∴ABM BEM ADM DEMS S S S S∆∆∆∆=+--23ABM ADM DEMS S S∆∆∆=--21)32x=⨯⨯-+=∴ S =3≤x ≤3).综上,S =(3≤x≤3+). .......................... 7分(2018·海淀1月期末·24)已知四边形ABCD 和四边形CEFG 都是正方形 ,且AB>CE . (1)如图1,连接BG 、DE .求证:BG=DE ;(2)如图2,如果正方形ABCDCEFG 绕着点C 旋转到某一位置时恰好使得C G//BD ,BG=BD.①求BDE ∠的度数;②请直接写出正方形CEFG 的边长的值.24. (本小题满分7分)解:(1)证明:∵四边形ABCD 和CEFG 为正方形,∴BC DC =,CG CE =,90BCD GCE ∠=∠=︒. ∴BCD DCG GCE DCG ∠+∠=∠+∠.BCG DCE ∠=∠即:. (1)分∴△BCG ≌△DCE .∴BG D E =.………………………………2分(2)①连接BE .由(1)可知:BG=DE. ∵//CG BD ,∴=45D CG BD C ∠∠=︒.∴9045135BCG BCD G CD ∠=∠+∠=︒+︒=︒. ∵90G CE ∠=︒,∴36036013590135BCE BCG G CE ∠=︒-∠-∠=︒-︒-︒=︒. ∴=BCG BCE ∠∠.…………………………3分 ∵BC BC CG CE ==,, ∴△BCG ≌△BCE .∴BG BE =.………………………………4分∵BG BD DE ==,∴BD BE DE ==. ∴△BDE 为等边三角形.∴60.BDE ∠=︒ …………………………5分②正方形CEFG1. ……………………………………………7分(2018·朝阳1月期末·25)将△ABC 绕点B 逆时针旋转α(0°<α<180°)得到△DBE,直线DE 与直线AC 相交于点F ,连接BF .(1)如图1,若α=60°,DF=2AF ,请直接写出BFAF等于 ; (2)若DF=mAF ,(m>0,且m≠1)①如图2,求BFAF;(用含α,m 的式子表示) ②如图3,依题意补全图形,请直接写出BFAF等于 .(用含α,m 的式子表示)GFEDCBA图2ABCDEFG图1ABCDFG图1 图2 图325.解:(1)1. ………………………………1分 (2)①如图2,在DF 上截取DG ,使得DG=AF ,连接BG .由旋转知,DB=AB ,∠D=∠A.∴△DBG≌△ABF.∴BG=BF,∠GBF=α. ………………3分 过点B 作BN⊥GF ∴点N 为GF 中点,∠FBN=2α. 在Rt△BNF 中,NF=2sin α⋅BF ,∴GF=sin2α⋅BF∵DF=DG+GF, ……………………4分∴mAF=AF+22αBF(m-1)AF=2BF 注明:以上各题的其它的正确解法,酌情给分.图3图2(2018·东城1月期末·24)如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中90,C ∠=︒30B E ∠=∠=︒.(1)操作发现如图2,固定△ABC ,使△DEC 绕点C 顺时针旋转.当点D 恰好落在AB 边上时,填空:图1 ① 线段DE 与AC 的位置关系是 ;② 设△BDC 的面积为1S ,△AEC 的面积为2S ,则1S 与2S 的数量关系是 ,证明你的结论; (2)猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中1S 与2S 的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC ,CE 边上的高,请你证明小明的猜想.图324.解:(1)①线段DE 与AC 的位置关系是 平行 . …………………..1分 ②S 1与S 2的数量关系是 相等 .证明:如图2,过D 作DN ⊥AC 交AC 于点N ,过E 作EM ⊥AC 交AC 延长线于M ,过C 作CF ⊥AB 交AB 于点F .由①可知 △ADC 是等边三角形,DE ∥AC , ∴DN=CF, DN=EM . ∴CF=EM .∵90,30ACB B ∠=︒∠=︒,∴2AB AC =. 又∵AD AC =,∴BD AC =. 图2∵112S CF BD =,212S AC EM =,∴1S =2S . …………………..3分(2)证明:如图3,作DG ⊥BC 于点G ,AH ⊥CE 交EC 延长线于点H.∵90,180DCE ACB DCG ACE ∠=∠=︒∴∠+∠=︒. 又∵180,ACH ACE ACH DCG ∠+∠=︒∴∠=∠.又∵90,CHA CGD AC CD ∠=∠=︒=,∴△AHC ≌△DGC .∴AH=DG .BDBD又∵CE=CB, 图3 ∴12S S =. ……………………..7分(2018·丰台1月期末·25)已知ABD ∆和CBD ∆关于直线BD 对称(点A 的对称点是点C ),点E 、F 分别是线段BC 和线段BD 上的点,且点F 在线段EC 的垂直平分线上,联结AF 、AE ,AE 交BD 于点G . (1)如图(1),求证:ABD EAF ∠=∠;(2)如图(2),当AD AB =时,M 是线段AG 上一点,联结BM 、ED 、MF ,MF 的延长线交ED 于点N ,BAF MBF ∠=∠21,AD AF 32=,试探究线段FM 和FN 之间的数量关系,并证明你的结论.图(1) 图(2)25. (1)证明:如图1 连接FE 、FC∵点F 在线段EC 的垂直平分线上,∴ FE=FC ∴∠l=∠2 ………………………1分∵△ABD 和△CBD 关于直线BD 对称. ∴AB=CB ,∠4=∠3,又BF=BF∴△ABF≌△CBF, ∴∠BAF=∠2,FA=FC∴FE=FA,∠1=∠BAF. …………………………2分 ∴∠5=∠6,∵ ∠l+∠BEF=1800,∴∠BAF+∠BEF=1800∵∠BAF+∠BEF+∠AFE+∠ABE=3600∴∠AFE+∠ABE=1800………………………………3分又∵∠AFE+∠5+∠6=1800, ∴∠5+∠6=∠3+∠4 ∴∠5=∠4,即∠EAF=∠ABD………………………4分(2)解:FM=72FN ……………………………………………5分 证明:如图2,由(1)可知∠EAF=∠ABD,又∵∠AFB=∠GFA ∴△AFG∽△BFA ∴∠AGF=∠BAF又∵∠MBF=12∠B AF ,∴∠MBF=12∠AGF 又∵∠AGF=∠MBG+∠BMG∴∠MBG=∠BMG∴BG=MG…………………………6分 ∵AB=AD ∴∠ADB=∠ABD=∠EAF又∵∠FGA=∠AGD.∴△AGF∽△DGA.GF AG AFGA DG DA∴==∵AF=23AD 23GF AG GA DG ∴== 图2 G FEDCBA NMGF EDBA设GF=2a ,则AG=3a , ∴GD=92a ,∴FD=DG -GF=922a a -=52a ∵∠CBD=∠ABD ,∠ABD=∠ADB,∴∠CBD=∠ADB. ∴//BE AD .∴BG EG GD AG =23EG AG BG GD ∴==,设EG=2k ,则MG=BG=3k 过点F 作FQ∥ED 交AE 于Q ,24552GQ GF a a QE FD ∴=== 45GQ QE ∴=……………………7分∴GQ=49EG=89k .∴QE=109k , MQ=MG+GQ=3k+89k =359k ∵FQ∥ED,35791029kMF MQ FN QE k ∴===.∴FM=72FN ……………8分(2018·昌平1月期末·25)已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD=120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'. (1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM ∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE=2,AE=ME 的长.25.解:(1) 30°. …………………………………………………… 1分(2)当点E 在线段CD 上时,2DE BF M E +=; ………………………………………… 2分 当点E 在CD 的延长线上,030EAD ︒<∠<︒时,2BF DE M E -=; ………………… 3分3090EAD ︒<∠≤︒时,2DE BF M E +=; 90120EAD ︒<∠<︒时,2DE BF M E -=. …………………………………………4分(3)作AG BC ⊥于点G, 作DH BC ⊥于点H.由AD ∥BC ,AD=AB=CD ,∠BAD=120°,得∠ABC=∠DCB=60°,易知四边形AGHD 是矩形和两个全等的直角三角形ABG DCH ∆∆,.则GH=AD , BG=CH. ∵120ABE ADC '∠=∠=︒,E'MF ED CBA E'ED BA图1图2E'MF ED BA 图3∴点E '、B 、C 在一条直线上.设AD=AB=CD=x,则GH=x,BG=CH=12x ,. 作EQ BC ⊥于Q.在Rt △EQC 中,CE=2, 60C ∠=︒, ∴1CQ =, EQ ∴E'Q=21233BC CQ BE x x x '-+=-+-=-.…………………………………5分 作AP EE '⊥于点P.∵△ADE 绕点A 顺时针旋转120°后,得到△ABE'.∴△A EE'是等腰三角形,30,AE E AE AE ''∠=︒==. ∴在Rt △AP E'中,∴EE'=2 E'P=……………………………………………………………………6分 ∴在Rt △EQ E'中,9=. ∴339x -=.∴4x =. ………………………………………………………… 7分 ∴2,8DE BE BC '===,2BG =. ∴4E G '=在Rt △E'AF 中,AG BC ⊥,∴Rt △AG E'∽Rt △FA E'. ∴AE E FE G AE ''=''∴7E F '=.∴5BF E F E B ''=-=. 由(2)知:2DE BF M E +=. ∴72ME =. ………………………………………………………… 8分 (2018·怀柔1月期末·24)(1)如图1,在等边△ABC 中,点M 是边BC 上的任意一点(不含端点B 、C ),联结AM ,以AM 为边作等边△AMN,联结CN .求证:∠ABC=∠ACN.[: 【类比探究】(2)如图2,在等边△ABC 中,点M 是边BC 延长线上的任意一点(不含端点C ),其它条件不变,(1)中结论∠ABC=∠ACN 还成立吗?请说明理由. 【拓展延伸】PQ ACDEF ME'H G图1B图2C图3B图1B 图2C图3B(3)如图3,在等腰△ABC 中,BA=BC ,点M 是边BC 上的任意一点(不含端点B 、C ),联结AM ,以AM 为边作等腰△AMN,使顶角∠AMN=∠ABC.联结CN .试探究∠ABC 与∠ACN 的数量关系,并说明理由.24.((本小题满分7分)(1)证明:∵△ABC、△AMN 是等边三角形,∴AB=AC,AM=AN ,∠BAC=∠MAN=60°,∴∠BAM=∠CAN, ∴△BAM≌△CAN(SAS ),………………………………1分 ∴∠ABC=∠ACN.………………………………2分(2)结论∠ABC=∠ACN 仍成立.………………………………3分 理由如下:∵△ABC、△AMN 是等边三角形,∴AB=AC,AM=AN , ∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∴△BAM≌△CAN(SAS ),………………………………4分 ∴∠ABC=∠ACN.………………………………5分 (3)∠ABC=∠ACN.理由如下:∵BA=BC,MA=MN ,顶角∠ABC=∠AMN,∴底角∠BAC=∠MAN,∴△ABC∽△AMN,……………………6分 ∴=,又∵∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,∴∠BAM=∠CAN,∴△BAM∽△CAN,∴∠ABC=∠ACN.………………………………7分(2018·顺义1月期末·24)如图,ABC △和ADE △都是以A 为直角顶点的等腰直角三角形,连结BD ,BE ,CE ,延长CE 交AB 于点F ,交BD 于点G .(1)求证:AFC GFB △∽△;(2)若ADE △是边长可变化的等腰直角三角形,并将ADE △绕点GF E DCBADGFE C B AD (G )FECB A D(G )(F)ECB AA 旋转,使CE 的延长线始终与线段BD (包括端点B 、D )相交.当BDE △为等腰直角三角形时,求出AB BE ∶的值.24.解:(1)证明:∵9090BAC DAE ∠=∠=°,°, ∴90DAB BAE BAE EAC ∠+∠=∠+∠=°.∴DAB EAC ∠=∠.…………………………………………………1分 ∵AD AE =,且AB AC =, ∴ADB AEC △≌△,∴DBA ECA ∠=∠.…………………………………………………2分 又GFB AFC ∠=∠, …………………………………………… 3分 ∴AFC GFB △∽△.………………………………………………4分(2)解:∵AFC GFB △∽△,∴90FGB FAC ∠=∠=°.①当90DEB ∠=°,DE=BE 时,如图①所示,设AD=AE=x,则DE =.∵BDE △为等腰直角三角形,∴BE DE ==.∴2BD x =.∵45ADB ADE EDB ∠=∠+∠=°+4590︒=°, 图①∴AB =.∴AB BE ∶= ……………………………………………5分 ②当90EDB ∠=°,DE=DB 时,如图②所示, 同理设AD=AE=x,则DE BD ==. ∴2BE x =. ∵90AEB ∠=°,∴AB ==.∴2AB BE ∶=. ……………… 6分图② ③当90DBE ∠=°,BD=BE 时,如图③所示,同理设AD=AE=x,则DE =.∴BD=BE=x .∴四边形ADBE 是正方形,∴AB DE =.∴ABBE ∶=1. …………7分 图③ (2018·延庆1月期末·24)如图①,已知点O 为菱形ABCD 的对称中心,∠A =60°,将等边△OEF 的顶点放在点O 处,OE ,OF 分别交AB ,BC 于点M ,N.(1)求证:OM=ON ;(2)写出线段BM ,BN 与AB 之间的数量关系,并进行证明;(3)将图①中的△OEF 绕O 点顺时针旋转至图②所示的位置,请写出线段BM ,BN与AB 之间的数量关系,并进行证明.24.(1)证明:取BC 的中点G ,连接OG ∵菱形ABCD,∠A =60°∴∠A =∠C=∠A BD=60°,AB=BC=CD=DA ……1分 ∵点O 为菱形ABCD 的对称中心 ∴OD=OB∴12OG CD =,OG//CD ………………2分 ∴∠BGO=∠C=60°, OG=OB∵等边△OEF ∴∠EOF=60° ∴∠1=∠2 ∵∠BGO=∠A BD=60° ∴△OBM ≌△OGN∴OM=ON ………………3分 (2)由(1)可知,BM=NG∵OB=OD ,BG=GC ∴12BG BC =∵BG=BN+NG ,AB=BC ∴12BN NG AB += ………………5分(3)取BC 中点G 同理可证:∴△OBM ≌△OGN ∴BM=GN ………………6分 ∴BG=BN-NG ∵12BG BC = ∴12BN NG AB -= ………………7分图②CA图① AC。

2018-2019学年度北京市各区初三上学期期末数学考试分类汇编-几何综合题(含详细解析)

2018-2019学年度北京市各区初三上学期期末数学考试分类汇编-几何综合题(含详细解析)

2018-2019学年度北京市各区初三上学期期末数学考试分类汇编-几何综合题(含详细解析)2019.11.如图,在△ABC 中,AC =BC ,∠ACB =90°,D 为AC 上一点(与点A ,C 不重合),连接BD ,过点A 作AE ⊥BD的延长线于E.(1)①在图中作出△ABC 的外接圆⊙O ,并用文字描述圆心O 的位置;②连接OE ,求证:点E 在⊙O 上.(2)①延长线段BD 至点F ,使EF =AE ,连接CF ,根据题意补全图形;②用等式表示线段CF 与AB 的数量关系,并证明.2.如图,△ABC 是等边三角形,D ,E 分别是AC ,BC 边上的点,且AD = CE ,连接BD ,AE 相交于点F (1)∠BFE 的度数是 ;(2)如果21=AC AD ,那么=BF AF ; (3)如果nAC AD 1=时,请用含n 的式子表示AF ,BF 的数量关系,并证明.3.已知在△ABC 中,AB =AC ,∠BAC =α,直线l 经过点A (不经过点B 或点C ),点C 关于直线l 的对称点为点D ,ABC D EADBF连接BD ,CD.(1)如图1,①求证:点,,B C D 在以点A 为圆心,AB 为半径的圆上; ②直接写出∠BDC 的度数(用含α的式子表示)为___________;(2)如图2,当α=60°时,过点D 作BD 的垂线与直线l 交于点E ,求证:AE =BD ;(3)如图3,当α=90°时,记直线l 与CD 的交点为F ,连接BF .将直线l 绕点A 旋转,当线段BF 的长取得最大值时,直接写出tan FBC ∠的值.4.在菱形ABCD 中,∠ADC=60°,BD 是一条对角线,点P 在边CD 上(与点C ,D 不重合),连接AP ,平移ADP ∆,使点D 移动到点C ,得到BCQ ∆,在BD 上取一点H ,使HQ=HD ,连接HQ ,AH ,PH. (1) 依题意补全图1;(2)判断AH 与PH 的数量关系及∠AHP 的度数,并加以证明;(3)若141AHQ ∠=︒,菱形ABCD 的边长为1,请写出求DP 长的思路(可以不写出计算结果.........).5.如图1,在正方形ABCD 中,点F 在边BC 上,过点F 作EF ⊥BC ,且FE =FC (CE <CB ),连接CE 、AE ,点G 是AE 的中点,连接FG.BBA BCDPA BCD(1)用等式表示线段BF 与FG 的数量关系是___________________;(2)将图1中的△CEF 绕点C 按逆时针旋转,使△CEF 的顶点F 恰好在正方形ABCD 的对角线AC 上,点G仍是AE 的中点,连接FG 、DF. ①在图2中,依据题意补全图形; ②求证:DF =.6.正方形ABCD 中,将边AB 所在直线绕点A 逆时针旋转一个角度α得到直线AM ,过点C 作CE ⊥AM ,垂足为E ,连接BE.(1) 当045α︒<<︒时,设AM 交BC 于点F ; ① 如图1,若α=35°,则∠BCE = ° ;② 如图2,用等式表示线段AE ,BE ,CE 之间的数量关系,并证明;(2) 当4590α︒<<︒时(如图3),请直接用等式表示线段AE ,BE ,CE 之间的数量关系.7.如图,Rt △ ABC 中,∠ACB =90°,AD 平分∠BAC , 作AD 的垂直平分线EF 交AD 于点E ,交BC 的延长线于点F ,交AB 于点G ,交AC 于点H.(1)依题意补全图形;图2图1F 35°MBC DAEF AB EMC DαAB EMCD A(2)求证:∠BAD =∠BFG ;(3)试猜想AB ,FB 和FD 之间的数量关系并进行证明.8.如图,在△ABC 中,AC = BC ,∠ACB = 90°,D 是线段AC 延长线上一点,连接BD ,过点A 作AE ⊥BD 于E (1)求证:∠CAE =∠CBD ;(2)将射线AE 绕点A 顺时针旋转45°后,所得的射线与线段BD 的延长线交于点F ,连接CE. ① 依题意补全图形;② 用等式表示线段EF ,CE ,BE 之间的数量关系,并证明;9.M 是正方形ABCD 的边AB 上一动点(不与A ,B 重合)MC BP ⊥,垂足为P ,将CPB ∠绕点P 旋转,得到''PB C ∠,当射线'PC 经过点D 时,射线'PB 与BC 交于点N.ABCDE(2)求证:CPD ∽∆∆BPN ;(3)在点M 的运动过程中,图中是否存在与BM 始终相等的线段?若存在,请写出这条线段并证明,若不存在,请说明理由.10.如图,在△ABC 中,AB =AC .△ADE ∽△ABC ,连接BD ,CE. (1)判断BD 与CE 的数量关系,并证明你的结论;(2)若AB =2,AD =22,∠BAC =105°,∠CAD =30°. ①BD 的长为 ; ②点P ,Q 分别为BC ,DE 的中点,连接PQ ,写出求PQ 长的思路;11.如图,在ABC Rt ∆中,BC AB ABC ==∠,090,点E 为线段AB 上一动点(不与点A ,B 重合),连接CE ,将ACE ∠的两边CE ,CA 分别绕点C 顺时针旋转090,得到射线''CA CE ,,过点A 作AB 的垂线AD ,分别交射线''CA CE ,于点F ,G.(2)若α=∠ACE ,求AFC ∠的大小(用含α的式子表示); (3)用等式表示线段AE ,AF ,与BC 之间的数量关系,并证明.12.如图,M 为正方形ABCD 内一点,点N 在AD 边上,且MB MN BMN 2900==∠,,点E 为MN 的中点,点P 为DE 的中点,连接MP 并延长到点F ,使得PF=PM ,连接DF. (1)依题意补全图形; (2)求证:DF=BM ;(3)连接AM ,用等式表示线段PM 和AM 的数量关系并证明.13.如图,正方形ABCD ,将边CD 绕点C 顺时针旋转60°,得到线段CE ,连接DE ,AE ,BD 交于点F . (1)求∠AFB 的度数; (2)求证:BF=EF ;(3)连接CF ,直接用等式表示线段AB ,CF ,EF 的数量关系.E参考答案1(2019.1+++昌平+++初三上+++期末)(1)①圆心O的位置在线段AB的中点,正确画出图②∵AE⊥BD ∴△AEB为直角三角形∵点O为线段AB的中点∴OE=OA=OB=r ∴点E在⊙O上(2)①补全图形=AB证明如下: ∵AC =BC ,∠ACB =90° ∴∠BAC =∠CBA = 45° ∵BC BC = ∴∠BEC =∠BAC = 45° ∵AE ⊥BD ∴∠BEA =90° ∴∠CEA =90°+ 45°= 135° ∵∠CEF =180°-∠CEB =135° ∴∠CEA =∠CEF ∵AE =EF ,∠CEA =∠CEF ,CE =C E ∴△CEA ≌△CEF ∴CF =CA ∵在等腰t ∆R ACB 中,=AB∴=AB2(2019.1+++丰台+++初三上+++期末)(1)60° (2)1 (3)11AF BF n =- 证明:延长FE 至G ,使FG =FB 连接GB ,GC由(1)知,∠BFG=60° ∴△BFG 为等边三角形∴BF =BG ,∠FBG=∠FGB=60° ∵△ABC 是等边三角形 ∴AB=BC ,∠ABC=60° ∴∠ABF=∠CBG∴△ABF ≌△CBG∴∠BF A=∠BGC=120° ∴∠FGC=60° ∴∠FGC=∠BFG ∴FB ∥CG ∴AF AD FG DC = ∵1AD AC n = ∴11AF FG n =- ∴11AF BF n =-3(2019.1+++海淀+++初三上+++期末) (1)①证明:连接AD ,如图1CAE BD FD∵点C 与点D 关于直线l 对称 ∴AC AD = ∵AB AC = ∴AB AC AD ==∴点B C D ,,在以A 为圆心,AB 为半径的圆上 ②12α (2)证法一: 证明:连接CE ,如图2 ∵=60α°∴1302BDC α∠==° ∵DE BD ⊥ ∴90CDE ∠=°60BDC -∠=° ∵点C 与点D 关于直线l 对称 ∴EC ED = ∴CDE △是等边三角形∴CD CE =,60DCE ∠=° ∵AB AC =,60BAC ∠=° ∴ABC △是等边三角形 ∴CA CB =,60ACB ∠=° ∵ACE DCE ACD ∠=∠+∠,BCD ACB ACD ∠=∠+∠ ∴ACE BCD ∠=∠ ∴ACE BCD △≌△ ∴AE BD = 证法二:证明:连接AD ,如图2 ∵点C 与点D 关于直线l 对称∴AD AC AE CD =,⊥ ∴12DAE DAC ∠=∠∵12DBC DAC ∠=∠∴DBC DAE ∠=∠∵AE CD ⊥,BD DE ⊥∴90BDC CDE DEA CDE ∠+∠=∠+∠=°∴BDC DEA ∠=∠ ∵60AB AC BAC =∠=,° ∴ABC △是等边三角形 ∴CA CB AD == ∴BCD △≌ADE △ ∴AE BD = (3)134(2019.1+++怀柔+++初三上+++期末) (1)补全图形,如图所示(2)AH 与PH 的数量关系:AH =PH ,∠AHP =120° 证明:如图,由平移可知,PQ=DC ∵四边形ABCD 是菱形,∠ADC=60° ∴AD=DC ,∠ADB =∠BDQ =30° ∴AD=PQ图2∵HQ=HD ∴∠HQD =∠HDQ =30° ∴∠ADB =∠DQH ,∠DHQ=120°∴△ADH ≌△PQH ∴AH =PH ,∠AHD =∠PHQ ∴∠AHD+∠DHP =∠PHQ+∠DHP ∴∠AHP=∠DHQ ∵∠DHQ=120° ∴∠AHP=120° (3)求解思路如下:由∠AHQ=141°,∠BHQ=60°解得∠AHB=81°a.在△ABH 中,由∠AHB=81°,∠ABD=30°,解得∠BAH=69°b.在△AHP 中,由∠AHP=120°,AH=PH ,解得∠P AH=30°c.在△ADB 中,由∠ADB=∠ABD= 30°,解得∠BAD=120° 由a 、b 、c 可得∠DAP=21°在△DAP 中,由∠ADP= 60°,∠DAP=21°,AD=1,可解△DAP ,从而求得DP 长5(2019.1+++通州+++初三上+++期末) (1)BF =(2)①依据题意补全图形 ②证明:如图,连接BF 、GB ∵四边形ABCD 是正方形∴AD =AB ,90ABC BAD ∠=∠=︒,AC 平分BAD ∠ ∴45BAC DAC ∠=∠=︒.在△ADF 和△ABF 中 AD AB DAC BAC AF AF =⎧⎪∠=∠⎨⎪=⎩,,,∴△ADF ≌△ABF ∴DF BF = ∵EF ⊥AC ,90ABC ∠=︒,点G 是AE 的中点 ∴AG EG BG FG === ∴点A 、F 、E 、B 在以点G 为圆心,AG 长为半径的圆上 ∵BF BF =,45BAC ∠=︒ ∴290BGF BAC ∠=∠=︒ ∴△BGF 是等腰直角三角形∴BF =∴DF =6(2019.1+++燕山+++初三上+++期末)(1) ① ∠BCE =35° ② AE =CE证明:过点B 作BG ⊥BE ,交AM 于点G ∴∠GBE =∠GBC +∠2=90° ∵正方形ABCDA BCDP HQ∴AB =BC ,∠ABC =∠1+∠GBC =90° ∴∠1=∠2 ∵∠ABC =∠CEA =90°,∠4=∠5 ∴△ABF ∽△CEF∴∠α=∠3 ∴在△ABG 和△CBE 中 ∠1=∠2,AB =BC ,∠α=∠3∴△ABG ≌△CBE ∴AG =CE ,BG =BE ∵在△BEG 中,∠GBE =90°,BG =BE ∴GEBE ∴AE =AG +GE =CEBE (2) AE +CEBE7(2019.1+++房山+++初三上+++期末) (1)补全图形如图分(2)证明:∵AD 平分∠BAC∴∠BAD =∠CAD ∵FE ⊥AD , ∠ACF∴∠CFH =∠CAD ∴∠BAD =∠CFH , (3)猜想: 222AB FD FB += 证明:连接AF∵EF 为AD 的垂直平分线 ∴AF=FD ,∠ ∴∠DAC +∠CAF =∠B +∠BAD ∵AD 是角平分线 ∴∠BAD =∠CAD ∴∠CAF =∠B ∴∠BAF =∠BAC +∠CAF =∠BAC +∠B =90° ∴222AB AF FB += ∴222+=AB FD FB8(2019.1+++门头沟+++初三上+++期末) (1)证明:如图1,∵ ∠ACB = 90°,AE ⊥BD ∴ ∠ACB =∠AEB = 90° 又∵ ∠1=∠2 ∴ ∠CAE =∠CBD②EF BE=+证明:在AE上截取AM,使AM=BE又∵AC=CB,∠CAE =∠CBD ∴△ACM≌△BCE∴CM=CE,∠ACM=∠BCE 又∵∠ACB =∠ACM+∠MCB=90°∴∠MCE=∠BCE+∠MCB=90°∴.ME=又∵射线AE绕点A顺时针旋转45°,后得到AF,且∠AEF=90°∴EF=AE=AM+ME=BE9(2019.1+++朝阳+++初三上+++期末)10(2019.1+++西城+++初三上+++期末)11(2019.1+++大兴+++初三上+++期末)(1)补全的图形如图所示 (2)解:由题意可知,∠ECF=∠ACG=90° ∴∠FCG=∠ACE=α∵过点A 作AB 的垂线AD ∴∠BAD=90° ∵AB=BC,∠ABC =90° ∴∠ACB=∠CAD= 45° ∵∠ACG=90° ∴∠AGC=45°∴∠AFC =α+45°(3)AE ,AF 与BC 之间的数量关系为2AE AF BC += 由(2)可知∠DAC=∠AGC=45° ∴CA=CG ∵∠ACE =∠GCF ,∠CAE =∠CGF ∴△ACE ≌△GCF∴AE =FG 在Rt △ACG 中 ∴AG =∴AE AF += ∵AC = ∴2AE AF BC +=12(2019.1+++东城+++初三上+++期末)无答案(2)∵点P 为线段DE 的中点 ∴DP =EP在△MPE 和△FPD 中 MP FP MPE FPD EP DP =⎧⎪∠=∠⎨⎪=⎩∴△MPE ≌△FPD (SAS )…………………………………………………………2分 ∴DF =ME ∵E 为MN 的中点 ∴MN =2ME ∵MN =2MB∴MB =ME=D F .…………………………………………………………3分(3)结论:AM = …………………………………………………………4分 连接AF由(2)可知:△MPE ≌△FPD ∴∠DFP =∠EMP . ∴DF ∥ME. ∴∠FDN =∠MND.在正方形ABCD 中,AD =AB ,∠BAD =90° 又∵∠BMN =90°∴∠MBA +∠MNA =180° 又∵∠MNA +∠MND =180° ∴∠MBA =∠MND∴∠FDN =∠MBA …………………………………………………………5分 在△F AD 和△MAB 中 FD MB FDA MBA DA BA =⎧⎪∠=∠⎨⎪=⎩∴△F AD ≌△MAB (SAS ) ∴∠F AD =∠MAB F A =MA∴∠F AM =∠DAB =90°∴△F AM 为等腰直角三角形…………………………………………………………6分∴FM = 又∵FM =2PM∴AM = …………………………………………………………7分13(2019.1+++平谷+++初三上+++期末)。

北京市各区2019届九年级上期末试卷分类汇编:圆综合题

北京市各区2019届九年级上期末试卷分类汇编:圆综合题

圆综合题1.(大兴18期末24)已知:如图,AB 是半圆0的直径, 点 A ,B 重合),• CAD B.(1)求证:AC 是半圆0的切线;的长.•••/ BDA=90° . . •…••• . B DAB =90又/ DAC Z B •乙DAC £DAB =90............................................................................................ 分……2即 / CAB=90°• AC 是半圆O 的切线. (2)解:由题意知,OE II BD, D =90•••/ D =/AFO = / AFE= 90°• OE _ AD .1 AF AD ................................................................... 分 (3)2 又••• AD=6• AF=3.又 B »CADD 是半圆上的一个动点(点D 不与(2)过点0作BD 的平行线,交 AC 于点E ,交AD 于点F ,且EF=4,AD=6,求BD 24.(1)证明:•/ AB 是半圆直径, 分 (1)C•••△ AEF ^A BAD 分 (4)4EF AF " ___ _ __AD - BD :EF =44 36 一 BD.BD =9 ............................................................................................ 5 分22.(昌平18期末24)如图,AB 为O O 的直径,C 、F 为O O 上两点,且点C 为弧BF 的中点, 过点C 作AF 的垂线,交AF 的延长线于点E ,交AB 的延长线于点D . 求证:DE 是O O 的切线; 3 3,tanD= 3,求 AE 的长. 4 (1) (2) 如果半径的长为 24. (1) 证明:连接OC , •••点C 为弧 (2) BF 的中点, CF . •弧 BC=< • . BAC 二.FAC . •/ OA =OC , • . OCA 二.OAC . • OCA 二 FAC . •/ AE 丄 DE , • OC 丄 DE . • DE 是O O 的切线. OC 3 解:T tanD= = , OC=3, CD 4 --CD =4 . • OD= OC 2 CD 2 =5. • AD= OD+ AO= 8. ••• sin D=OC = AE OD AD 5' I i'3- -4 -3 I O-I24••• AE=——•53. (朝阳18期末24)如图,在厶ABC中,/ C=90°以BC为直径的。

[试卷合集3套]北京市2019年九年级上学期数学期末检测试题

[试卷合集3套]北京市2019年九年级上学期数学期末检测试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴的交点A、B的横坐标分别为﹣1和3,则函数值y 随x值的增大而减小时,x的取值范围是()A.x<1 B.x>1 C.x<2 D.x>2【答案】A【分析】首先根据抛物线与坐标轴的交点确定对称轴,然后根据其开口方向确定当x满足什么条件数值y 随x值的增大而减小即可.【详解】∵二次函数的图象与x轴的交点A、B的横坐标分别为﹣1、3,∴AB中点坐标为(1,0),而点A与点B是抛物线上的对称点,∴抛物线的对称轴为直线x=1,∵开口向上,∴当x<1时,y随着x的增大而减小,故选:A.【点睛】本题考查了二次函数的性质,掌握二次函数的性质以及判断方法是解题的关键.2.已知线段1AB=,C是线段AB的黄金分割点,则AC的长度为()A.512B.352C.512或352D.以上都不对【答案】C【分析】根据黄金分割公式即可求出.【详解】∵线段1AB=,C是线段AB的黄金分割点,当AC BC>,∴5151 AC AB--==当AC BC<,∴515122BC AB --==, ∴51351AC AB BC --=-=-=. 故选:C .【点睛】此题考查黄金分割的公式,熟记公式是解题的关键.3.三角形两边的长分别是8和6,第三边的长是一元二次方程216600x x -+=的一个实数根,则该三角形的面积是( )A .24B .24或85C .48或165D .85【答案】B【分析】由216600x x -+=,可利用因式分解法求得x 的值,然后分别从x=6时,是等腰三角形;与x=10时,是直角三角形去分析求解即可求得答案.【详解】∵216600x x -+=,∴(x−6)(x−10)=0,解得:x 1=6,x 2=10,当x=6时,则三角形是等腰三角形,如图①,AB=AC=6,BC=8,AD 是高,∴22=25AB BD -,∴S △ABC =12 BC ⋅AD=1255 当x=10时,如图②,AC=6,BC=8,AB=10,∵AC 2+BC 2=AB 2,∴△ABC 是直角三角形,∠C=90°,S △ABC =12BC ⋅AC=12×8×6=24. ∴该三角形的面积是:24或5故选B.【点睛】此题考查勾股定理的逆定理,解一元二次方程-因式分解法,勾股定理,解题关键在于利用勾股定理进行计算.4.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,AE =AF ,AC 与EF 相交于点G ,下列结论:①AC 垂直平分EF ;②BE +DF =EF ;③当∠DAF =15°时,△AEF 为等边三角形;④当∠EAF =60°时,S △ABE =12S △CEF ,其中正确的是( )A .①③B .②④C .①③④D .②③④【答案】C 【解析】①通过条件可以得出△ABE ≌△ADF ,从而得出∠BAE=∠DAF ,BE=DF ,由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,②设BC=a ,CE=y ,由勾股定理就可以得出EF 与x 、y 的关系,表示出BE 与EF ,即可判断BE+DF 与EF 关系不确定;③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF 为等边三角形,④当∠EAF=60°时,设EC=x ,BE=y ,由勾股定理就可以得出x 与y 的关系,表示出BE 与EF ,利用三角形的面积公式分别表示出S △CEF 和S △ABE ,再通过比较大小就可以得出结论.【详解】①四边形ABCD 是正方形,∴AB ═AD ,∠B=∠D=90°.在Rt △ABE 和Rt △ADF 中,AE AF AB AD=⎧⎨=⎩, ∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF∵BC=CD ,∴BC-BE=CD-DF ,即CE=CF ,∵AE=AF ,∴AC 垂直平分EF .(故①正确).②设BC=a ,CE=y ,∴BE+DF=2(a-y )2y ,∴BE+DF 与EF 关系不确定,只有当y=(2−2)a 时成立,(故②错误).③当∠DAF=15°时,∵Rt △ABE ≌Rt △ADF ,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF 为等边三角形.(故③正确).④当∠EAF=60°时,设EC=x ,BE=y ,由勾股定理就可以得出:(x+y)2+y 2=(2x)2∴x 2=2y (x+y )∵S △CEF =12x 2,S △ABE =12y(x+y), ∴S △ABE =12S △CEF .(故④正确). 综上所述,正确的有①③④,故选C .【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.5.已知二次函数()20y ax bx c a =++≠的图象如图所示,下列结论:①0abc >,②20a b +<,③420a b c -+<,④20a b c ++>,其中正确结论的个数为( )A .4个B .3个C .2个D .1个【答案】B 【分析】由抛物线的开口方向、对称轴、与y 轴的交点位置,可判断a 、b 、c 的符号,可判断①,利用对称轴可判断②,由当x=-2时的函数值可判断③,当x=1时的函数值可判断④,从而得出答案.【详解】解:∵抛物线开口向下,与y 轴的交点在x 轴上方,∴a <0,c >0,∵0<-2b a<1,∴b >0,且b <-2a ,∴abc <0,2a+b <0,故①不正确,②正确; ∵当x=-2时,y <0,∴4a-2b+c <0,故③正确;∵当x=1时,y >0,∴a+b+c >0,又c >0,∴a+b+2c >0,故④正确;综上可知正确的有②③④,故选:B.【点睛】本题主要考查二次函数图象与系数之间的关系,解题关键是注意掌握数形结合思想的应用.6.下列函数是二次函数的是( ).A.y=2x B.y=1x+xC.y=x+5 D.y=(x+1)(x﹣3) 【答案】D【分析】直接利用二次函数的定义进而分析得出答案.【详解】解:A、y=2x,是一次函数,故此选项错误;B、y=1x+x,不是整式,故此选项错误;C、y=x+5,是一次函数,故此选项错误;D、y=(x+1)(x﹣3),是二次函数,故此选项正确.故选D.【点睛】此题主要考查了二次函数的定义,正确把握函数的定义是解题关键.7.已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A.6 B.5 C.4 D.3【答案】D【解析】解:根据题意可得当0<x<8时,其中有一个x的值满足y=2,则对称轴所在的位置为0<h<4故选:D【点睛】本题考查二次函数的性质,利用数形结合思想解题是关键.8.在平面直角坐标系中,点P(﹣1,2)关于原点的对称点的坐标为()A.(﹣1,﹣2)B.(1,﹣2)C.(2,﹣1)D.(﹣2,1)【答案】B【解析】用关于原点的对称点的坐标特征进行判断即可.【详解】点P(-1,2)关于原点的对称点的坐标为(1,-2),故选: B.【点睛】根据两个点关于原点对称时, 它们的坐标符号相反.9.已知⊙O的半径为3cm,P到圆心O的距离为4cm,则点P在⊙O()A .内部B .外部C .圆上D .不能确定【答案】B 【解析】平面内,设⊙O 的半径为r ,点P 到圆心的距离为d ,则有d>r 点P 在⊙O 外;d=r 点P 在⊙O 上;d<r 点P 在⊙O 内.【详解】∵⊙O 的半径为3cm ,点P 到圆心O 的距离为4cm ,4cm >3cm ,∴点P 在圆外.故选:B .【点睛】本题考查平面上的点距离圆心的位置关系的问题.10.如图,A 、B 、C 、D 四个点均在O 上,∠AOD=40°,弦DC 的长等于半径,则∠B 的度数为( )A .40°B .45°C .50°D .55°【答案】C 【分析】如图(见解析),先根据等边三角形的判定与性质可得60COD ∠=︒,从而可得100AOC ∠=︒,再根据圆周角定理即可得.【详解】如图,连接OC ,由圆的半径得:OC OD =,弦DC 的长等于半径,OC OD DC ∴==,COD ∴是等边三角形,60COD ∴∠=︒,40AOD ∠=︒,100AOD AOC COD ∴∠+∠=∠=︒, 由圆周角定理得:110050212A C B O ∠⨯∠=︒==︒, 故选:C .【点睛】本题考查了圆周角定理、等边三角形的判定与性质等知识点,熟练掌握圆周角定理是解题关键. 11.如图,点D 是ABC 中BC 边的中点,DE AC ⊥于E ,以AB 为直径的O 经过D ,连接AD ,有下列结论:①AD BC ⊥;②EDA B ∠=∠;③12OA AC =;④DE 是O 的切线.其中正确的结论是( )A .①②B .①②③C .②③D .①②③④【答案】D 【分析】由直径所对的圆周角是直角,即可判断出选项①正确;由O 为AB 的中点,得出AO 为AB 的一半,故AO 为AC 的一半,选项③正确;由OD 为三角形ABC 的中位线,根据中位线定理得到OD 与AC 平行,由AC 与DE 垂直得出OD 与DE 垂直,ODE 90∠=︒,选项④正确;由切线性质可判断②正确. 【详解】解:∵AB 是圆的直径,∴ADB 90∠=︒,∴AD BC ⊥,选项①正确;连接OD,如图,∵D 为BC 的中点,O 为AB 的中点,∴DO 为ABC 的中位线,∴OD AC ,又∵DE AC ⊥,∴DEA 90∠=︒,∴ODE 90∠=︒,∴DE 为圆O 的切线,选项④正确;又OB=OD,∴ODB B ∠∠=,∵AB 为圆的直径,∴ADB 90∠=︒∵EDA ADO 90∠∠+=︒∴BDO ADO 90∠∠+=︒∴EDA B ∠∠=,选项②正确;∴AD 垂直平方BC ,∵AC=AB,2OA=AB ∴1OA 2AC =,选项③正确 故答案为:D.【点睛】本题考查的知识点主要是圆的切线的判定及其性质,圆周角定理及其推论,充分理解各知识点并能熟练运用是解题的关键.12.下列方程中不是一元二次方程的是( )A .2449x =B .2523x x -=C .()()21819123y y y +=-+ D .20.012t t = 【答案】C【分析】根据一元二次方程的定义进行排除选择即可,一元二次方程的关键是 方程中只包含一个未知数,且未知数的指数为2.【详解】根据一元二次方程的定义可知含有一个未知数且未知数的指数是2的方程为一元二次方程,所以A ,B ,D 均符合一元二次方程的定义,C 选项展开移项整理后不含有未知数,不符合一元二次方程的定义,所以错误,故选C.【点睛】本题考查的是一元二次方程的定义,熟知此定义是解题的关键.二、填空题(本题包括8个小题)13.如图,小杨沿着有一定坡度的坡面前进了5米,这个坡面的坡度为1:2,此时他与水平地面的垂直距离为____米.5【分析】设BC =x ,则AB =2x ,再根据勾股定理得到x 2+(2x )2=52,再方程的解即可.【详解】如图所示:设BC=x,则AB=2x,依题意得:x2+(2x)2=52解得x=5或x=-5(舍去).5【点睛】考查了解直角三角形,解决本题的关键是构造直角三角形利用勾股定理得出.14.若xy=2,则-xx y=_____.【答案】1【分析】根据xy=1,得出x=1y,再代入要求的式子进行计算即可.【详解】∵xy=1,∴x=1y,∴222x yx y y y==--;故答案为:1.【点睛】本题主要考查了比例的基本性质.解答此题的关键是根据比例的基本性质求得x=1y.15.庆“元旦”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,求这次有多少队参加比赛?若设这次有x队参加比赛,则根据题意可列方程为_____.【答案】(1)2x x-=45【分析】设这次有x队参加比赛,由于赛制为单循环形式(每两队之间都赛一场),则此次比赛的总场数为:(1)2x x-场.根据题意可知:此次比赛的总场数=45场,依此等量关系列出方程.【详解】解:设这次有x队参加比赛,则此次比赛的总场数为(1)2x x-场,根据题意列出方程得:(1)2x x -=45, 故答案是:(1)452x x -=. 【点睛】 考查了由实际问题抽象出一元二次方程,本题的关键在于理解清楚题意,找出合适的等量关系,列出方程,再求解.需注意赛制是“单循环形式”,需使两两之间比赛的总场数除以1.16.关于x 的一元二次方程2310ax x -+=有两个不相等实数根,则a 的取值范围是________. 【答案】94a <且0a ≠ 【解析】一元二次方程的定义及判别式的意义可得a≠1且△=b 2-4ac=(-3)2-4×a×1=9-4a >1,解不等式组即可求出a 的取值范围.【详解】∵关于x 的一元二次方程ax 2-3x+1=1有两个不相等的实数根,∴a≠1且△=b 2-4ac=(-3)2-4×a×1=9-4a >1,解得:a <94且a≠1. 故答案是:a <94且a≠1. 【点睛】考查了根的判别式.一元二次方程ax 2+bx+c=1(a≠1)的根与△=b 2-4ac 有如下关系:(1)△>1⇔方程有两个不相等的实数根;(2)△=1⇔方程有两个相等的实数根;(3)△<1⇔方程没有实数根.17.已知1x =是关于x 的方程2230ax bx --=的一个根,则243a b -+=______.【答案】9【分析】根据一元二次方程根的定义得23a b -=,整体代入计算即可.【详解】∵1x =是关于x 的方程2230ax bx --=的一个根,∴230a b --=,即23a b -=,∴243a b -+()223a b =-+233=⨯+9=故答案为:9.【点睛】考查了一元二次方程的解的定义以及整体思想的运用.18.如图,二次函数y =x (x ﹣3)(0≤x ≤3)的图象,记为C 1,它与x 轴交于点O ,A 1;将C 1点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……若P (2020,m )在这个图象连续旋转后的所得图象上,则m =_____.【答案】1.【分析】x (x ﹣3)=0得A 1(3,0),再根据旋转的性质得OA 1=A 1A 1=A 1A 3=…=A 673A 674=3,所以抛物线C 764的解析式为y =﹣(x ﹣1019)(x ﹣1011),然后计算自变量为1010对应的函数值即可.【详解】当y =0时,x (x ﹣3)=0,解得x 1=0,x 1=3,则A 1(3,0),∵将C 1点A 1旋转180°得C 1,交x 轴于点A 1;将C 1绕点A 1旋转180°得C 3,交x 轴于点A 3;…… ∴OA 1=A 1A 1=A 1A 3=…=A 673A 674=3,∴抛物线C 764的解析式为y =﹣(x ﹣1019)(x ﹣1011),把P (1010,m )代入得m =﹣(1010﹣1019)(1010﹣1011)=1.故答案为1.【点睛】本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.三、解答题(本题包括8个小题)19.如图,直线y =k 1x+b 与双曲线y =2k x交于点A(1,4),点B(3,m). (1)求k 1与k 2的值;(2)求△AOB 的面积.【答案】(1)k 1与k 2的值分别为﹣43,4;(2)163【分析】(1)先把A 点坐标代入y =2k x 中可求出k 2得到反比例函数解析式为y =4x,再利用反比例函数解析式确定B(3,43),然后利用待定系数法求一次函数解析式得到k 1的值; (2)设直线AB 与x 轴交于C 点,如图,利用x 轴上点的坐标特征求出C 点坐标,然后根据三角形面积公式,利用S △AOB =S △AOC ﹣S △BOC 计算.【详解】解:(1)把A(1,4)代入y =2k x 得k 2=1×4=4, ∴反比例函数解析式为y =4x,把B(3,m)代入y =4x 得3m =4,解得m =43,则B(3,43), 把A(1,4),B(3,43)代入y =k 1x+b 得114433k b k b +=⎧⎪⎨+=⎪⎩,解得143163k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴一次函数解析式为y =﹣43x+163, ∴k 1与k 2的值分别为﹣43,4; (2)设直线AB 与x 轴交于C 点,如图,当y =0时,﹣43x+163=0,解得x =4,则C(4,0), ∴S △AOB =S △AOC ﹣S △BOC =12×4×4﹣12×4×43=163.【点睛】本题考查了反比例函数与一次函数的综合,待定系数法求函数解析式,以及三角形的面积,熟练掌握待定系数法是解答本题的关键.203x ,小数部分为y ;(1)直接写出x =_________,y =__________;(2)计算)231y y +的值.【答案】(1)1x =,31y =;(2)623-. 【分析】先根据算术平方根的定义得到132,则x=1,3-1,然后把x 、y 的值代入()231y y +,再进行二次根式的混合运算即可.【详解】解: 解:∵1<3<4,∴132,∴x=1,3-1,(2)当31y =-时,原式))2313131=+ 22231331=-+-623=-【点睛】本题考查估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查二次根式的混合运算.21.如图,在△ABC 中,AB=10,AC =8,D 、E 分别是AB 、AC 上的点,且AD =4,∠BDE+∠C=180°.求AE 的长.【答案】AE=5【分析】根据∠BDE+∠C=180°可得出C=ADE ,继而可证明△ADE ∽△ACB ,再利用相似三角形的性质求解即可. 【详解】解:∵BDE+C=180° BDE+ADE=180° ∴C=ADE ∵A= A∴ADE ACB ∴AE AD AB AC= ∴4108AE = ∴AE=5【点睛】本题考查的知识点是相似三角形的判定及性质,利用已知条件得出C=ADE ,是解此题的关键. 22.有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.(1)设x 天后每千克苹果的价格为p 元,写出p 与x 的函数关系式;(2)若存放x 天后将苹果一次性售出,设销售总金额为y 元,求出y 与x 的函数关系式;(3)该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?【答案】()1?0.14p x =+;()22580040000y x x =-++;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【分析】(1)根据按每千克4元的市场价收购了这种苹果10000千克,此后每天每千克苹果价格会上涨0.1元,进而得出x 天后每千克苹果的价格为p 元与x 的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【详解】()1根据题意知,0.14p x =+;()()()220.141000050580040000y x x x x =+-=-++.()3300410000w y x =--⨯25500x x =-+25(50)12500x =--+∴当50x =时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出w 与x 的函数关系是解题关键.23.如图,在△ABC 中,AB =AC ,点D 为BC 的中点,经过AD 两点的圆分别与AB ,AC 交于点E 、F ,连接DE ,DF .(1)求证:DE =DF ;(2)求证:以线段BE+CF ,BD ,DC 为边围成的三角形与△ABC 相似,【答案】(1)详见解析;(2)详见解析【分析】(1)连接AD ,证明∠BAD =∠CAD 即可得出DE DF =,则结论得出;(2)在AE 上截取EG =CF ,连接DG ,证明△GED ≌△CFD ,得出DG =CD ,∠EGD =∠C ,则可得出结论△DBG ∽△ABC .【详解】(1)证明:连接AD ,∵AB =AC ,BD =DC ,∴∠BAD =∠CAD ,∴DE DF =,∴DE =DF .(2)证明:在AE 上截取EG =CF ,连接DG ,∵四边形AEDF 内接于圆,∴∠DFC =∠DEG ,∵DE =DF ,∴△GED ≌△CFD (SAS ),∴DG =CD ,∠EGD =∠C ,∵AB =AC ,∴∠B =∠C ,∴△DBG ∽△ABC ,即以线段BE+CF ,BD ,DC 为边围成的三角形与△ABC 相似.【点睛】本题考查了圆的综合问题,熟练掌握圆的内接四边形性质与相似三角形的判定是解题的关键. 24.若关于x 的一元二次方程2(1)410m x x --+=方有两个不相等的实数根.⑴求m 的取值范围.⑵若m 为小于10的整数,且该方程的根都是有理数,求m 的值.【答案】(1)3m >-且1m ≠.(2)2m =-或6【分析】(1)根据一元二次方程根的判别式,即可求出答案;(2)结合(1),得到m 的整数解,由该方程的根都是有理数,即可得到答案.【详解】解:(1)∵方程2(1)410m x x --+=有两个不相等的实数根, 2(4)4(1)11240m m ∴∆=--⨯-⨯=+>,解得:3m >-又10m -≠,1m ∴≠m ∴的取值范围为:3m >-且1m ≠;(2)m 为小于10的整数,又3m >-且1m ≠.m ∴可以取:2-,1-,0,2,3,4,5,6,7,8,9.当2m =-或6时,4∆=或36为平方数,此时该方程的根都是有理数.∴m 的值为:2-或6.【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式,利用根的判别式求参数的值. 25.如图,AB 为O 的直径,直线BM AB ⊥于点B .点C 在O 上,分别连接BC ,AC ,且AC 的延长线交BM 于点D ,CF 为O 的切线交BM 于点F .(1)求证:DF BF =;(2)连接OF ,若10AB =,6BC =,求线段OF 的长.【答案】(1)详见解析;(2)254OF = 【分析】(1)根据切线的性质得90CDB DBC ∠+∠=︒,由切线长定理可证FC FB =,从而FCB FBC ∠=∠,然后根据等角的余角相等得到CDB DCF ∠=∠,从而根据等腰三角形的判定定理得到结论;(2)根据勾股定理计算出AC=8,再证明△ABC ∽△ABD ,利用相似比得到AD=252,然后证明OF 为△ABD 的中位线,从而根据三角形中位线性质求出OF 的长.【详解】(1)证明:∵AB 是O 的直径,∴90ACB ∠=︒(直径所对的圆周角是90︒),∴90DCB ∠=︒,∴90CDB DBC ∠+∠=︒, ∵AB 是O 的直径,MB AB ⊥于点B ,∴MB 是O 的切线(经过半径外端且与半径垂直的直线是圆的切线),∵CF 是O 的切线, ∴FC FB =(切线长定理),∴FCB FBC ∠=∠,∵90FCB DCF ∠+∠=︒,90CDB CBD ∠+∠=︒,∴CDB DCF ∠=∠,∴CF DF =,∵BF DF =.(2)由(1)可知,ABC ∆是直角三角形,在Rt ABC ∆中,10AB =,6BC =,根据勾股定理求得8AC =,在ABC ∆和ADB ∆中90A A ACB ABD ∠=∠⎧⎨∠=∠=︒⎩, ∴ABC ADB ∆∆∽(两个角对应相等的两个三角形相似), ∴AB AC AD AB =, ∴10810AD =, ∴252AD =, ∵DF BF =,AO BO =,∴OF 是ADB ∆的中位线,∴12524OF AD ==(三角形的中位线平行于第三边并且等于第三边的一半).【点睛】本题考查了切线的判定与性质,等腰三角形的判定与性质,勾股定理,相似三角形得判定与性质,余角的性质,以及三角形的中位线等知识.熟练掌握切线的判定与性质、相似三角形得判定与性质是解答本题的关键.26.已知抛物线y =ax 2+bx+3经过点A (﹣1,0)、B (3,0),且与y 轴交于点C ,抛物线的对称轴与x 轴交于点D .(1)求抛物线的解析式;(2)点P 是y 轴正半轴上的一个动点,连结DP ,将线段DP 绕着点D 顺时针旋转90°得到线段DE ,点P 的对应点E 恰好落在抛物线上,求出此时点P 的坐标;(3)点M (m ,n )是抛物线上的一个动点,连接MD ,把MD 2表示成自变量n 的函数,并求出MD 2取得最小值时点M 的坐标.【答案】(2)y=﹣x2+2x+2;(2)点P的坐标为(0,2+3);(2)MD2=n2﹣n+3;点M的坐标为(214-,1 2)或(2142+,12).【分析】(2)根据点A,B的坐标,利用待定系数法即可求出抛物线的解析式;(2)过点E作EF⊥x轴于点F,根据旋转的性质及同角的余角相等,可证出△ODP≌△FED(AAS),由抛物线的解析式可得出点D的坐标,进而可得出OD的长度,利用全等三角形的性质可得出EF的长度,再利用二次函数图象上点的坐标特征可求出DF,OP的长,结合点P在y轴正半轴即可得出点P的坐标;(2)利用二次函数图象上点的坐标特征可得出m2﹣2m=2﹣n,根据点D,M的坐标,利用两点间的距离公式可得出MD2=n2﹣n+3,利用配方法可得出当MD2取得最小值时n的值,再利用二次函数图象上点的坐标特征即可求出当MD2取得最小值时点M的坐标.【详解】(2)将A(﹣2,0),B(2,0)代入y=ax2+bx+2,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+2.(2)过点E作EF⊥x轴于点F,如图所示.∵∠OPD+∠ODP=90°,∠ODP+∠FDE=90°,∴∠OPD=∠FDE.在△ODP和△FED中,,∴△ODP≌△FED(AAS),∴DF=OP,EF=DO.∵抛物线的解析式为y=﹣x2+2x+2=﹣(x﹣2)2+3,∴点D的坐标为(2,0),∴EF=DO =2.当y =2时,﹣x 2+2x+2=2,解得:x 2=2﹣(舍去),x 2=2+, ∴DF=OP =2+,∴点P 的坐标为(0,2+). (2)∵点M (m ,n )是抛物线上的一个动点,∴n=﹣m 2+2m+2,∴m 2﹣2m =2﹣n .∵点D 的坐标为(2,0),∴MD 2=(m ﹣2)2+(n ﹣0)2=m 2﹣2m+2+n 2=2﹣n+2+n 2=n 2﹣n+3.∵n 2﹣n+3=(n ﹣)2+, ∴当n =时,MD 2取得最小值,此时﹣m 2+2m+2=, 解得:m 2=,m 2=.∴MD 2=n 2﹣n+3, 当MD 2取得最小值时,点M 的坐标为(,)或(,).【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、全等三角形的判定与性质、二次函数的最值以及两点间的距离公式,解题的关键是:(2)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用全等三角形的性质及二次函数图象上点的坐标特征求出OP 的长;(2)利用两点间的距离公式结合二次函数图象上点的坐标特征,找出MD 2=n 2﹣n+3.27.如图,在ABC ∆中, 13AB AC ==,10BC =,AG BC ⊥于G 点, D 是BC 上的点, DE AB ⊥于E 点, //DF AB ,交AC 于点F .(1)求证: DBE ABG ∆∆;(2)当DEF ∆的面积最大时,求BD 的长.【答案】(1)见解析;(2)5【分析】(1)根据相似三角形的判定方法即可求;(2)设BD x =,DEF ∆的面积为y ,由等腰三角形性质和平行线分线段成比例,可求出13(10)10DF x =-,再根据DEF ∆的面积12ED DF =可以得出y 关于x 的函数关系式,由二次函数性质可得DEF ∆的面积y 为最大时x 的值即可.【详解】解:(1)证明: DE AB ∵⊥,AG BC ⊥, 90BED AGB ∴∠=∠=︒,B B ∠∠=,DBE ABG ∴∆∆. (2)解:设BD x =,则10CD x =-, ∵13AB AC ==,10BC =,AG BC ⊥, ∴152BG BC ==, 在Rt △ABG 中,2212AG AB BG =-=, ∵DBEABG ∆∆ ∴ED AG BD AB =,即1213ED x =, ∴1213ED x =, //DF AB ,DF CD AB CB ∴=,即101310DF x -= 13(10)10DF x ∴=-, DEF ∴∆的面积112133(10)(10)213105S x x x x =⨯⨯-=-23(5)155x =--+∴当DEF ∆的面积最大时,5x =,即BD 的长为5.【点睛】本题考查相似三角形的判定和性质,三角形的面积公式,可利用数形结合思想根据题目提供的条件转化为函数关系式.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在一个不透明的布袋中装有9个白球和若干个黑球,它们除颜色不同外,其余均相同。

2019年北京市各区九年级上册期末数学试卷分类汇编:几何综合

2019年北京市各区九年级上册期末数学试卷分类汇编:几何综合

几何综合1.(昌平18期末27)已知,△ABC 中,∠ACB =90°,AC =BC ,点D 为BC 边上的一点. (1)以点C 为旋转中心,将△ACD 逆时针旋转90°,得到△BCE ,请你画出旋转后的图形;(2)延长AD 交BE 于点F ,求证:AF ⊥BE ;(3)若,BF =1,连接CF ,则CF 的长度为 .27.(1)补全图形…………………… 2分 (2)证明:∵ΔCBE 由ΔCAD 旋转得到,∴ΔCBE ≌ΔCAD ,……………… 3分∴∠CBE =∠CAD ,∠BCE =∠ACD =90°,……………4分 ∴∠CBE +∠E =∠CAD +∠E , ∴∠BCE =∠AFE =90°,∴AF ⊥BE .……………………………………5分(37分2.(朝阳18期末25)△ACB 中,∠C =90°,以点A 为中心,分别将线段AB ,AC 逆时针旋转60°得到线段AD ,AE ,连接DE ,延长DE 交CB 于点F . (1)如图1,若∠B =30°,∠CFE 的度数为 ;(2)如图2,当30°<∠B <60°时,①依题意补全图2;②猜想CF 与AC 的数量关系,并加以证明.图1 图23.(西城18期末27)如图1,在Rt △AOB 中,∠AOB =90°,∠OAB =30°,点C 在线段OB上,OC =2BC ,AO 边上的一点D 满足∠OCD =30°.将△OCD 绕点O 逆时针旋转α度(90°<α<180°)得到△OC D '',C ,D 两点的对应点分别为点C ',D ',连接AC ',BD ',取AC'的中点M,连接OM.(1)如图2,当C D''∥AB时,α=°,此时OM 和BD'之间的位置关系为;(2)画图探究线段OM和BD'之间的位置关系和数量关系,并加以证明.4.(丰台18期末27)如图,∠BAD=90°,AB=AD ,CB=CD ,一个以点C 为顶点的45°角绕点C 旋转,角两边与BA ,DA 交于点M ,N ,与BA ,DA 延长线交于点E ,F ,连接AC . (1)在∠FCE 旋转的过程中,当∠FCA =∠ECA 时,如图1,求证:AE =AF ; (2)在∠FCE 旋转的过程中,当∠FCA ≠∠ECA 时,如图2,如果∠B=30°,CB=2,用等式表示线段AE ,AF 之间的数量关系,并证明.27.解:(1)证明:∵AB=AD ,BC=CD ,AC=AC ,∴△ABC ≌△ADC . …1分∴∠BAC =∠DAC =45°,可证∠FAC =∠EAC =135°. ……2分 又∵∠FCA =∠ECA ,∴△ACF ≌△ACE . ∴AE =AF . ……3分 其他方法相应给分.(2)过点C 作CG ⊥AB 于点G ,求得AC =2.……4分∵∠FAC =∠EAC =135°,∴∠ACF +∠F =45°. 又∵∠ACF +∠ACE =45°,∴∠F =∠ACE . ∴△ACF ∽△AEC. ……5分 ∴ACAF AE AC =,即AF AE AC ⋅=2. ……6分 ∴2=⋅AF AE . ……7分5.(怀柔18期末27)在等腰△ABC 中,AB =AC ,将线段BA 绕点B 顺时针旋转到BD,使图1图2BD⊥AC于H,连结AD并延长交BC的延长线于点P.(1)依题意补全图形;(2)若∠BAC=2α,求∠BDA的大小(用含α的式子表示);(3)小明作了点D关于直线BC的对称点点E,从而用等式表示线段DP与BC之间的数量关系.请你用小明的思路补全图形并证明线段DP与BC之间的数量关系.27.解:(1)如图……………………………………………1分(2) ∵∠BAC=2α,∠AHB=90°∴∠ABH=90°-2α…………………………………………………………………………… 2分∵BA=BD∴∠BDA=45°+α………………………………………………………………………………3分(3)补全图形,如图………………4分证明过程如下:∵D关于BC的对称点为E,且DE交BP于G∴DE⊥BP,DG=GE,∠DBP=∠EBP,BD=BE;…………………………………………5分∵AB=AC,∠BAC=2α∴∠ABC=90°-α由(2)知∠ABH=90°-2α∠DBP=90°-α-(90°-2α)=α∴∠DBP=∠EBP=α∴∠BDE=2α∵AB=BD∴△ABC ≌△BDE ………………………………………………………………………………6分 ∴BC =DE∴∠DPB =∠ADB -∠DBP =45°+α-α=45° ∴DP DG =21, ∴DP DE=2, ∴DPBC=2, ∴BC =2DP .………………………………………………………………………………7分6.(平谷18期末27)如图,在Rt △ABC 中,∠BAC =90°,AB=AC .在平面内任取一点D ,连结AD (AD <AB ),将线段AD 绕点A 逆时针旋转90°得到线段AE ,连结DE ,CE ,BD .(1)请根据题意补全图1;(2)猜测BD 和CE 的数量关系并证明;(3)作射线BD ,CE 交于点P ,把△ADE 绕点A 旋转,当∠EAC =90°,AB =2,AD =1时,补全图形,直接写出PB 的长.27.解:(1)如图 (1)(2)BD 和CE 的数量是:BD =CE ; ················································································2B图1B备用图∵∠DAB +∠BAE =∠CAE +∠BAE =90°,∴∠DAB=∠CAE . ················································································································· 3 ∵AD=AE ,AB=AC , ∴△ABD ≌△ACE .∴BD =CE . (4)(3)PB . (7)7.(密云18期末27)如图,已知Rt ABC ∆中,90ACB ∠=︒,AC=BC ,D 是线段AB 上的一点(不与A 、B 重合). 过点B 作BE ⊥CD ,垂足为E.将线段CE 绕点C 顺时针旋转90︒,得到线段CF ,连结EF.设BCE ∠度数为α.(1)①补全图形; ②试用含α的代数式表示CDA ∠.(2)若EF AB = ,求α的大小. (3)直接写出线段AB 、BE 、CF 之间的数量关系.27.(1)①补全图形.……………………………..1分②45α︒+ ……………………………..3分 (2)在FCE ∆和ACB ∆中,45CFE CAB ∠=∠=︒ ,90FCE ACB ∠=∠=︒ F C E ∆∽ ACB ∆CF EFAC AB =EF AB =2CF AC = ………………………………..5分 连结FA.90,ECB 90FCA ACE ACE ∠=︒-∠∠=︒-∠ECB FCA ∠=∠=α在Rt CFA ∆中,90CFA ∠=︒,cos FCA ∠=30FCA ∠=︒即30α=︒. ………………………………6分(3)22222AB CF BE =+ …………………………………………8分8.(石景山18期末27)在正方形ABCD中,点P在射线AC上,作点P关于直线CD的对称点Q,作射线BQ交射线DC于点E,连接BP.(1)当点P在线段AC上时,如图1.①依题意补全图1;②若EQ=BP,则∠PBE的度数为,并证明;(2)当点P在线段AC的延长线上时,如图2.若EQ=BP,正方形ABCD的边长为1,请写出求BE长的思路.(可以不写出计算结果)27.(本小题满分7分)(1)解:①正确作图………………………1分②45°………………………2分连接PD,PE易证△CPD≌△CPB∴DP=BP,∠CDP=∠CBP∵P、Q关于直线CD对称∴EQ=EP∵EQ=BP∴DP=EP∴∠C D P=∠D E P………………………………………………3分∵∠CEP+∠DEP=180°∴∠CEP+∠CBP=180°∵∠BCD=90°∴∠BPE=90°∵BP=EP∴∠PBE =45°. …………………………………………………………4分 (2)解:连接PD ,PE易证△CPD ≌△CPB ∴DP =BP ,∠1=∠2 ∵P 、Q 关于直线CD 对称, ∴EQ =EP ,∠3=∠4 ∵EQ =BP , ∴DP =EP ∴∠3=∠1, ∴∠3=∠2 ∴∠5=∠BCE =90° ∵BP =EP , ∴∠PEB =45° ∴∠3=∠4=22.5°,在△BCE 中,已知∠4=22.5°,BC =1,可求BE 长. ……………7分9.(东城18期末27)如图1,在△ABC 中,∠ACB =90°,AC =2,BC =以点B 为圆心,P 为B 上的动点,连接PC ,作P C PC '⊥,使点P '落在直线BC的上方,且满足:P C PC '=BP ,AP '. (1)求∠BAC 的度数,并证明△AP C '∽△BPC ; (2)若点P 在AB 上时,①在图2中画出△AP’C ; ②连接BP ',求BP '的长;图1图2(3)点P 在运动过程中,BP '是否有最大值或最小值?若有,请直接写出BP '取得最大值或最小值时∠PBC 的度数;若没有,请说明理由.备用图10.(顺义18期末27)综合实践课上,某小组同学将直角三角形纸片放到横线纸上(所有横线都平行,且相邻两条平行线的距离为1),使直角三角形纸片的顶点恰巧在横线上,发现这样能求出三角形的边长.(1)如图1,已知等腰直角三角形纸片△ABC,∠ACB=90°,AC=BC,同学们通过构造直角三角形的办法求出三角形三边的长,则AB= ;(2)如图2,已知直角三角形纸片△DEF,∠DEF=90°,EF=2DE,求出DF的长;(3)在(2)的条件下,若橫格纸上过点E的横线与DF相交于点G,直接写出EG的长.27.(1)AB ;……………………….2分(2)解:过点E 作横线的垂线,交l 1,l 2于点M ,N ,……………………………..….3分∴∠DME =∠EDF = 90°,∵∠DEF =90°,∴∠2+∠3=90°,∵∠1+∠3=90°,∴∠1=∠2,∴△DME ∽△ENF ,………….…….4分 ∴DM ME DE EN NF EF==, ∵EF =2DE , ∴12DM ME DE EN NF EF ===, ∵ME =2,EN =3,∴NF =4,DM =1.5,根据勾股定理得DE =2.5,EF =5,DF =……………………….5分 (3)EG=2.5.…………………………………………………………..…….7分11.(门头沟18期末27)如图1有两条长度相等的相交线段AB 、CD ,它们相交的锐角中有一个角为60°,为了探究AD 、CB 与CD (或AB )之间的关系,小亮进行了如下尝试:(1)在其他条件不变的情况下使得AD BC ∥,如图2,将线段AB 沿AD 方向平移AD 的长度,得到线段DE ,然后联结BE ,进而利用所学知识得到AD 、CB 与CD (或AB )之间的关系:____________________;(直接写出结果)(2)根据小亮的经验,请对图27-1的情况(AD 与CB 不平行)进行尝试,写出AD 、CB 与CD (或AB )之间的关系,并进行证明;(3)综合(1)、(2)的证明结果,请写出完整的结论 __________________________.27.(本小题满分7分)(1) AD CB AB += ……………………………………………1分(2)补全图形正确 ………………………………………2分结论:AD CB AB +>………………………………………3分理由:如图:将线段AB 沿AD 方向平移AD 的长度,得到线段DE ,联结BE 、CE ,且可得AB DE ∥且AB DE =∴四边形A 、B 、E 、D 是平行四边形………………………4分∴AD BE =∵AB CD =∴DE CD =∵AB DE ∥,60AOD ∠=︒∴DCE △是等边三角形……………………………………5分∴CE AB =由于AD 与CB 不平行,所以C 、B 、E 构成三角形∴BE CB CE +>……………………………………………6分∴AD CB AB +>(3)AD CB AB +≥ …………………………………………7分12.(通州18期末24)如图1,在矩形ABCD 中,点E 为AD 边中点,点F 为BC边中点;图1 图2点G ,H 为AB 边三等分点,I ,J 为CD 边三等分点.小瑞分别用不同的方式连接矩形对边上的点,如图2,图3所示.那么,图2中四边形GKLH 的面积与图3中四边形KPOL 的面积相等吗?(1)小瑞的探究过程如下在图2中,小瑞发现, ABCD GKLH S S _______=;在图3中,小瑞对四边形KPOL 面积的探究如下. 请你将小瑞的思路填写完整: 设a S DEP =△,b S AKG =△∵AF EC ∥∴DAK DEP ∽△△,且相似比为2:1,得到a S DAK 4=△∵BI GD ∥∴ABM AGK ∽△△,且相似比为3:1,得到b S ABM 9=△ 又∵ABCD DAG S b a S 614=+=△,ABCD ABF S a b S 419=+=△ ∴a b b a S ABCD 436624+=+=∴b a ____=,b S ABCD _____=,b S KPOL _____=∴ABCD KPOL S S _____=,则GKLH KPOL S S ____(填写“”,“”或“”)(2)小瑞又按照图4的方式连接矩形ABCD 对边上的点.则ABCD ANML S S _____=.13.(海淀18期末28)在△ABC 中,∠A 90°,ABAC .(1)如图1,△ABC 的角平分线BD ,CE 交于点Q ,请判断“QB =”是否正确:_______(填“是”或“否”);(2)点P 是△ABC 所在平面内的一点,连接P A ,PB ,且P A .①如图2,点P 在△ABC 内,∠ABP 30°,求∠P AB 的大小;②如图3,点P 在△ABC 外,连接PC ,设∠APCα,∠BPCβ,用等式表示α,β之间的数量关系,并证明你的结论.图1 图2图3 28.解:(1)否. ………………1分(2)① 作PD ⊥AB 于D ,则∠PDB =∠PDA =90°,∵ ∠ABP =30°,∴ 12PD BP =. ………………2分∵ PB =,∴ 2PD PA =.∴ sin PD PAB PA ∠==. 由∠P AB 是锐角,得∠P AB =45°. ………………3分 另证:作点P 关于直线AB 的对称点'P ,连接',',B P P A P P ,则',',','P B A P B A P A B P A B B P B P A P A P∠=∠∠=∠==.∵∠ABP =30°,∴'60P BP ∠=︒.∴△'P BP 是等边三角形.∴'P P BP =.∵PB =,∴'P P =. ………………2分 ∴222''P P PA P A =+.∴'90PAP ∠=︒.∴45PAB ∠=︒. ………………3分② 45αβ+=︒,证明如下: ………………4分 作AD ⊥AP ,并取AD =AP ,连接DC ,DP .∴ ∠DAP =90°.∵ ∠BAC =90°,∴ ∠BAC +∠CAP =∠DAP +∠CAP ,即 ∠BAP =∠CAD .∵ AB =AC ,AD =AP ,∴ △BAP ≌△CAD .∴ ∠1=∠2,PB =CD . ………………5分 ∵ ∠DAP =90°,AD =AP ,∴ PD =,∠ADP =∠APD =45°.∵ PB =,∴ PD =PB =CD .∴ ∠DCP =∠DPC .∵ ∠APCα,∠BPCβ,∴ 45DPC α∠=+︒,12αβ∠=∠=-.∴ 31802902DPC α∠=︒-∠=︒-.∴ 139045ADP αβ∠=∠+∠=︒--=︒.∴45αβ+=︒. ………………7分。

[推荐]2019年北京市东城区九年级上册期末考试数学试题(有答案)

[推荐]2019年北京市东城区九年级上册期末考试数学试题(有答案)

北京市东城区九年级上学期期末考试数学试题一、选择题(本题共16 分,每小题2 分)1.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.解:A、是中心对称图形但不是轴对称图形,故正确;B、是中心对称图形,是轴对称图形,故错误;C、不是中心对称图形,是轴对称图形,故错误;D、不是中心对称图形,不是轴对称图形,故错误.故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180 度后两部分重合.2.边长为2的正方形内接于⊙M,则⊙M的半径是()A.1 B.2 C.D.【分析】连接OB,CO,在Rt△BOC 中,根据勾股定理即可求解.解:连接OB,OC,则OC=OB,BC=2,∠BOC=90°,在Rt△BOC中,OC=.故选:C.【点评】此题主要考查了正多边形和圆,本题需仔细分析图形,利用勾股定理即可解决问题.3.若要得到函数y=(+1)2+2的图象,只需将函数y=2的图象()A.先向右平移1个单位长度,再向上平移2个单位长度B.先向左平移1个单位长度,再向上平移2个单位长度C.先向左平移1个单位长度,再向下平移2个单位长度D.先向右平移1个单位长度,再向下平移2个单位长度【分析】找出两抛物线的顶点坐标,由a 值不变即可找出结论.解:∵抛物线y=(+1)2+2的顶点坐标为(﹣1,2),抛物线y=2的顶点坐标为(0,0),∴将抛物线y=2 先向左平移1 个单位长度,再向上平移2 个单位长度即可得出抛物线y=(+1)2+2.故选:B.【点评】本题考查了二次函数图象与几何变换,通过平移顶点找出结论是解题的关键.4.点A(1,y1),B(2,y2)都在反比例函数的图象上,若1<2<0,则()A.y2>y1>0 B.y1>y2>0 C.y2<y1<0 D.y1<y2<0【分析】由=2>0,可得反比例函数图象在第一,三象限,根据函数图象的增减性可得结果.解:∵=2>0,∴此函数图象的两个分支分别位于一、三象限,且在每一象限内y 随的增大而减小,∵1<2<0,∴点A(1,y1),B(2,y2)位于第三象限,∴y2<y1<0,故选:C.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.A,B是⊙O上的两点,OA=1,的长是,则∠AOB的度数是()A.30 B.60°C.90°D.120°【分析】直接利用已知条件通过弧长公式求出圆心角的度数即可.解:∵OA=1,的长是,∴,解得:n=60°,∴∠AOB=60°,故选:B.【点评】本题考查扇形的弧长公式的应用,关键是通过弧长公式求出圆心角的度数.6.△DEF和△ABC是位似图形,点O是位似中心,点D,E,F分别是OA,OB,OC的中点,若△DEF的面积是2,则△ABC的面积是()A.2 B.4 C.6 D.8【分析】根据点D,E,F分别是OA,OB,OC的中点知=,由位似图形性质得=()2,即=,据此可得答案.解:∵点D,E,F 分别是OA,OB,OC 的中点,∴=,∴△DEF 与△ABC 的相似比是1:2,∴=()2,即=,解得:S △ABC =8,故选:D .【点评】本题主要考查了三角形中位线定理、位似的定义及性质,掌握面积的比等于相似比的平方是解题的关键.7. 已知函数y=﹣2+b +c ,其中b >0,c <0,此函数的图象可以是()A .B .C .D .【分析】根据已知条件“a <0、b >0、c <0”判断出该函数图象的开口方向、与和y 轴的交点、对称轴所在的位置,然后据此判断它的图象.解:∵a=﹣1<0,b >0,c <0,∴该函数图象的开口向下,对称轴是=﹣>0,与y 轴的交点在y 轴的负半轴上;故选:D .【点评】本题考查了二次函数图象与系数的关系.根据二次函数y=a 2+b +c 系数符号判断抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与 轴交点的个数.8. 小张承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示:下面有四个推断:①当移植的树数是1 500 时,表格记录成活数是1 335,所以这种树苗成活的概率是0.890;②随着移植棵数的增加,树苗成活的频率总在0.900 附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;③若小张移植10 000 棵这种树苗,则可能成活9 000 棵;④若小张移植20000棵这种树苗,则一定成活18000棵.其中合理的是()A.①③B.①④C.②③D.②④【分析】随着移植棵数的增加,树苗成活的频率总在0.900 附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900,据此进行判断即可.解:①当移植的树数是1 500 时,表格记录成活数是1 335,这种树苗成活的概率不一定是0.890,故错误;②随着移植棵数的增加,树苗成活的频率总在0.900 附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900,故正确;③若小张移植10 000 棵这种树苗,则可能成活9 000 棵,故正确;④若小张移植20 000 棵这种树苗,则不一定成活18 000 棵,故错误.故选:C.【点评】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越越小,根据这个频率稳定性定理,可以用频率的集中趋势估计概率,这个固定的近似值就是这个事件的概率.二、填空题(本题共16 分,每小题2 分)9.已知在△ABC中,∠C=90°,cosA=,AB=6,那么AC=2.【分析】根据三角函数的定义,在直角三角形ABC中,cosA=,即可求得AC的长.解:在△ABC 中,∠C=90°,∵cosA=,∵cosA=,AB=6,∴AC=AB=2,故答案为2.【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.10.若抛物线y=2+2+c与轴没有交点,写出一个满足条件的c的值:2 .【分析】根据抛物线y=2+2+c 与轴没有交点得出b2﹣4ac=22﹣4×1×c<0,求出不等式的解集,再取一个范围内的数即可.解:因为要使抛物线y=2+2+c 与轴没有交点,必须b2﹣4ac=22﹣4×1×c<0,解得:c>1,取c=2,故答案为:2.【点评】本题考查了抛物线与轴的交点,能根据已知得出关于c 的不等式是解此题的关键.11.如图,在平面直角坐标系Oy中,若点B与点A关于点O中心对称,则点B的坐标为(2,﹣1).【分析】根据中心对称定义结合坐标系确定B 点位置即可.解:∵A(﹣2,1),点B 与点A 关于点O 中心对称,∴点B的坐标为(2,﹣1),故答案为:(2,﹣1).【点评】此题主要考查了中心对称,关键是掌握把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.12.如图,AB是⊙O的弦,C是AB的中点,连接OC并延长交⊙O于点D.若CD=1,AB=4,则⊙O的半径是.【分析】连接OA,根据垂径定理求出AC 的长,由勾股定理可得出OA 的长.解:连接OA,∵C 是AB 的中点,∴AC=AB=2,OC⊥AB,∴OA2=OC2+AC2,即OA2=(OA﹣1)2+22,解得,OA=,故答案为:.【点评】本题考查的是垂径定理及勾股定理,根据垂径定理判断出OC 是AB 的垂直平分线是解答此题的关键.13.某校九年级的4位同学借助三根木棍和皮尺测量校园内旗杆的高度.为了方便操作和观察,他们用三根木棍围成直角三角形并放在高1m的桌子上,且使旗杆的顶端和直角三角形的斜边在同一直线上(如图).经测量,木棍围成的直角三角形的两直角边AB,OA的长分别为0.7m,0.3m,观测点O到旗杆的距离OE为6m,则旗杆MN的高度为15m.【分析】由平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似可得△ABO∽△NEO,利用对应边成比例可得旗杆MN 的高度.解:∵AB∥NE,∴△ABO∽△NEO,∴,即,解得:NE=14,∴MN=14+1=15,故答案为:15【点评】考查相似三角形的应用;用到的知识点为:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;相似三角形的对应边成比例.14.⊙O是四边形ABCD的外接圆,AC平分∠BAD,则正确结论的序号是②⑤ .①AB=AD;②BC=CD;③ ;④∠BCA=∠DCA;⑤ .【分析】根据圆心角、弧、弦的关系对结论进行逐一判断即可.解:①∵∠ACB 与∠ACD 的大小关系不确定,∴AB 与AD 不一定相等,故本结论错误;②∵AC 平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本结论正确;③∵∠ACB 与∠ACD的大小关系不确定,∴与不一定相等,故本结论错误;④∠BCA 与∠DCA 的大小关系不确定,故本结论错误;⑤∵AC平分∠BAD,∴∠BAC=∠DAC,∴,故本结论正确.故答案为②⑤.【点评】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.15.已知函数y=2﹣2﹣3,当﹣1≤≤a时,函数的最小值是﹣4,则实数a的取值范围是a≥1 .【分析】结合函数y=2﹣2﹣3 的图象和性质,及已知中当﹣1≤≤a 时函数的最小值为﹣4,可得实数a 的取值范围.解:函数y=2﹣2﹣3=(﹣1)2﹣4 的图象是开口朝上且以=1 为对称轴的抛物线,当且仅当=1 时,函数取最小值﹣4,∵函数y=2﹣2﹣3,当﹣1≤≤a 时,函数的最小值是﹣4,∴a≥1,故答案为:a≥1【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.16.如图,在平面直角坐标系Oy中,已知A(8,0),C(0,6),矩形OABC的对角线交于点P,点M在经过点P的函数y= 的图象上运动,的值为12 ,OM长的最小值为.【分析】先根据P(4,3),求得=4×3=12,进而得出y=,再根据双曲线的对称性可得,当点M在第一象限角平分线上时,O M最短,即当=y时,=,解得=±2,进而得到OM 的最小值.解:∵A(8,0),C(0,6),矩形OABC的对角线交于点P,∴P(4,3),代入函数y=可得,=4×3=12,∴y=,∵点M在经过点P的函数y=的图象上运动,∴根据双曲线的对称性可得,当点M 在第一象限角平分线上时,OM 最短,当=y时,=,解得=±2,又∵>0,∴=2,∴M(2,2),∴OM==2 ,故答案为:12,2.【点评】本题主要考查了反比例函数图象上点的坐标特征以及矩形的性质,解题时注意:矩形是轴对称图形,又是中心对称图形.它有2 条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.三、解答题(本题共68 分,第17-24 题,每小题5 分,第25 题6 分,第26-27,每小题5 分,第28 题8 分)17.(5分)计算:2cos30°﹣2sin45°+3tan60°+|1﹣|.【分析】首先代入特殊角的三角函数值,然后再计算即可.解:原式=2×﹣2×+3+﹣1,=﹣+3+﹣1,=4﹣1.【点评】此题主要考查了实数运算,关键是掌握特殊角的三角函数值.18.(5 分)已知等腰△ABC 内接于⊙O,AB=AC,∠BOC=100°,求△ABC 的顶角和底角的度数.【分析】画出相应图形,分△ABC 为锐角三角形和钝角三角形2 种情况解答即可.解:(1)圆心O 在△ABC 外部,在优弧BC 上任选一点D,连接BD,CD.∴∠BDC=∠BOC=50°,∴∠BAC=180°﹣∠BDC=130°;∵AB=AC,∴∠ABC=(180°﹣∠BAC)÷2=25°;(2)圆心O在△ABC内部.∠BAC=∠BOC=50°,∵AB=AC,∴∠ABC=(180°﹣∠BAC)÷2=65°.【点评】本题考查的是三角形圆周角定理及等腰三角形的性质,分情况探讨是解决本题的易错点;用到的知识点为:同弧所对的圆周角等于圆心角的一半;圆内接四边形的对角互补.19.(5分)如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,∠DEC=90°.(1)求证:△ADE∽△BEC.(2)若AD=1,BC=3,AE=2,求AB的长.【分析】(1)由AD∥BC、AB⊥BC 可得出∠A=∠B=90°,由等角的余角相等可得出∠ADE=∠BEC,进而即可证出△ADE∽△BEC;(2)根据相似三角形的性质即可求出BE 的长度,结合AB=AE+BE 即可求出AB的长度.(1)证明:∵AD∥BC,AB⊥BC,∴AB⊥AD,∠A=∠B=90°,∴∠ADE+∠AED=90°.∵∠DEC=90°,∴∠AED+∠BEC=90°,∴∠ADE=∠BEC,∴△ADE∽△BEC.(2)解:∵△ADE∽△BEC,∴=,即=,∴BE=,∴AB=AE+BE=.【点评】本题考查了相似三角形的判定与性质以及平行线的性质,解题的关键是:(1)利用相似三角形的判定定理找出△ADE∽△BEC;(2)利用相似三角形的性质求出BE 的长度.20.(5分)在△ABC中,∠B=135°,AB=,BC=1.(1)求△ABC的面积;(2)求AC的长.【分析】(1)延长CB,过点A作AD⊥BC,利用三角函数求出AD,根据三角形的面积公式计算即可;(2)等腰直角三角形的判定与性质得到AD=DB=2,进一步得到DC,再根据勾股定理即可求解.解:(1)延长CB,过点A作AD⊥BC,∵∠ABC=135°,∴∠ABD=45°,在Rt△ABD中,AB=,∠ABD=45°,∴AD=AB×sin45°=2,∴△ABC的面积=×BC×AD=1;(2)∵∠ABD=45°,∠D=90°,∴△ABD 是等腰直角三角形,∵AD=2,∴DB=2,DC=DB+BC=2+1=3,在Rt△ACD中,AC==.【点评】本题考查了解直角三角形,正确的作出辅助线构造直角三角形是解题的关键.21.(5 分)北京2018 新中考方案规定,考试科目为语文、数学、外语、历史、地理、思想品德、物理、生化(生物和化学)、体育九门课程.语文、数学、外语、体育为必考科目.历史、地理、思想品德、物理、生化(生物和化学)五科为选考科目,考生可以从中选择三个科目参加考试,其中物理、生化须至少选择一门.(1)写出所有选考方案(只写选考科目);(2)从(1)的结果中随机选择一种方案,求该方案同时包含物理和历史的概率.【分析】(1)根据题意可以写出所有的可能性;(2)根据(1)中的所有可能即可求得从(1)的结果中随机选择一种方案,该方案同时包含物理和历史的概率.解:(1)由题意可得,所有的可能性是:(物理、历史、地理)、(物理、历史、思想品德)、(物理、历史、生化)、(物理、地理、思想品德)、(物理、地理、生化)、(物理、思想品德、生化)、(历史、地理、生化)、(历史、思想品德、生化)、(地理、思想品德、生化);(2)从(1)的结果中随机选择一种方案,该方案同时包含物理和历史的概率是,即从(1)的结果中随机选择一种方案,该方案同时包含物理和历史的概率是.【点评】本题考查列表法与树状图法,解答本题的关键是明确题意,写出所有的可能性,求出相应的概率.22.(5 分)如图,在Rt△ABC 中,∠A=90°,∠C=30°.将△ABC 绕点B 顺时针旋转60°得到△A'BC',其中点A',C'分别是点A,C 的对应点.(1)作出△A'BC'(要求尺规作图,不写作法,保留作图痕迹);(2)连接AA',求∠C'A'A的度数.【分析】(1)直接利用等边三角形的性质得出对应点位置进而得出答案;(2)直接利用等边三角形的判定方法△ABA′为等边三角形,得出进而得出答案.解:(1)如图所示:△A'BC'即为所求;(2)在Rt△ABC 中,∵∠C=30°,∠A=90°,∴∠B=60°,∵△A′B′C′由△ABC 旋转所得,∴△A′B′C′≌△ABC,∴BA=BA′,∠BA′C′=∠BAC=90°,∴△ABA′为等腰三角形,又∵∠ABC=60°,∴△ABA′为等边三角形,∴∠BA′A=60°,∴∠C′A′A=∠BA′C′+∠BA′A=150°.【点评】此题主要考查了旋转变换以及等边三角形的判定与性质,正确得出对应点位置是解题关键.23.(5 分)如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2.(1)小球飞行时间是多少时,小球最高?最大高度是多少?(2)小球飞行时间t在什么范围时,飞行高度不低于15m?【分析】(1)将函数解析式配方成顶点式可得最值;(2)画图象可得t 的取值.解:(1)∵h=﹣5t2+20t=﹣5(t﹣2)2+20,∴当t=2 时,h 取得最大值20 米;答:小球飞行时间是2s 时,小球最高为20m;(2)由题意得:15=20t﹣5t2,解得:t1=1,t2=3,由图象得:当1≤t≤3 时,h≥15,则小球飞行时间1≤t≤3 时,飞行高度不低于15m.【点评】本题考查了二次函数的应用,主要考查了二次函数的最值问题,以及利用二次函数图象求不等式,并熟练掌握二次函数的性质是解题的关键.24.(5分)在平面直角坐标系Oy中,直线y=2+4与反比例函数y=(≠0)的图象交于点A(﹣3,a)和点B.(1)求反比例函数的表达式和点B的坐标;(2)直接写出不等式<2+4的解集.【分析】(1)把A(﹣3,a)代入y=2+4,可得A(﹣3,﹣2),把A(﹣3,﹣2)代入y=,可得反比例函数的表达式为y=,再联立两个函数的解析式,解方程组即可得到B的坐标;(2)在平面直角坐标系中画出两个函数的图象,反比例函数落在一次函数图象下方的部分对应的自变量的取值范围就是不等式<2+4的解集.解:(1)把A(﹣3,a)代入y=2+4,可得a=﹣2,∴A(﹣3,﹣2),把A(﹣3,﹣2)代入y=,可得=6,∴反比例函数的表达式为y=.解方程组,得或,∴B(1,6);(2)在平面直角坐标系中画出直线y=2+4与双曲线y=,如图.由图象可知,不等式<2+4的解集为﹣3<<0或>1.【点评】此题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.由函数图象比较函数大小,利用数形结合是解题的关键.25.(6 分)如图,在△ABC 中,AB=AC,以AB 为直径的⊙O 与边BC,AC 分别交于点D,E.DF 是⊙O 的切线,交AC 于点F.(1)求证:DF⊥AC;(2)若AE=4,DF=3,求tanA.【分析】(1)连接OD,作OG⊥AC 于点G,推出∠ODB=∠C;然后根据DF⊥AC,∠DFC=90°,推出∠ODF=∠DFC=90°,即可证明;(2)过O 作OG⊥AC,利用垂径定理和矩形的性质解答即可.(1)证明:如图,连接OD,作OG⊥AC于点G,,∵OB=OD,∴∠ODB=∠B,又∵AB=AC,∴∠C=∠B,∴∠ODB=∠C,∵DF⊥AC,∴∠DFC=90°,∴∠ODF=∠DFC=90°,∴DF⊥AC;(2)过O作OG⊥AC,由垂径定理可知:OG 垂直平分AE,∴∠AGO=90°,AG=2,由(1)可知:四边形ODFG 为矩形,∴OG=DF=3,在Rt△AGO中,tanA=.【点评】此题主要考查了切线的性质和应用,等腰三角形的性质和应用,以及解直角三角形的应用,要熟练掌握.26.(7分)在平面直角坐标系Oy中,抛物线y=m2﹣2m+n(m≠0)与轴交于点A,B,点A的坐标为(﹣2,0).(1)写出抛物线的对称轴;(2)直线y=﹣4m﹣n过点B,且与抛物线的另一个交点为C.①分别求直线和抛物线所对应的函数表达式;②点P 为抛物线对称轴上的动点,过点P 的两条直线l1:y=+a 和l2:y=﹣+b 组成图形G.当图形G与线段BC 有公共点时,直接写出点P 的纵坐标t 的取值范围.【分析】(1)由给定的抛物线的表达式,利用二次函数的性质即可找出抛物线的对称轴;(2)①根据抛物线的对称性可得出点B 的坐标,再利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征,即可求出m、n 的值,此问得解;②联立直线及抛物线的函数关系式成方程组,通过解方程组可求出点C 的坐标,利用一次函数图象上点的坐标特征求出直线l2过点B、C 时b 的值,进而可得出点P 的坐标,再结合函数图象即可找出当图形G 与线段BC 有公共点时,点P的纵坐标t 的取值范围.解:(1)∵抛物线所对应的函数表达式为y=m2﹣2m+n,∴抛物线的对称轴为直线=﹣=1.(2)①∵抛物线是轴对称图形,∴点A、B 关于直线=1 对称.∵点A的坐标为(﹣2,0),∴点B的坐标为(4,0).∵抛物线y=m2﹣2m+n过点B,直线y=﹣4m﹣n过点B,,∴直线所对应的函数表达式为y=﹣2,抛物线所对应的函数表达式为y=﹣2++4.②联立两函数表达式成方程组,,解得:,.∵点B的坐标为(4,0),∴点C的坐标为(﹣3,﹣).当直线l2:y=﹣+b1过点B 时,0=﹣4+b1,解得:b1=4,∴此时直线l2所对应的函数表达式为y=﹣+4,当=1 时,y=﹣+4=3,∴点P1的坐标为(1,3);当直线l2:y=﹣+b2过点C时,﹣=3+b2,解得:b2=﹣,∴此时直线l2所对应的函数表达式为y=﹣﹣,当=1时,y=﹣﹣=﹣,∴点P2的坐标为(1,﹣).∴当图形G与线段BC有公共点时,点P的纵坐标t的取值范围为﹣≤t≤3.【点评】本题考查了二次函数的性质、一次(二次)函数图象上点的坐标特征以及抛物线与轴的交点,解题的关键是:(1)利用二次函数的性质找出抛物线的对称轴;(2)①利用一次函数图象上点的坐标特征及二次函数图象上点的坐标特征,找出关于m、n 的二元一次方程组;②利用一次函数图象上点的坐标特征求出直线l2过点B、C 时点P 的坐标.27.(7分)如图1,在△ABC中,∠ACB=90°,AC=2,BC=2,以点B为圆心,为半径作圆.点P为⊙B上的动点,连接PC,作P'C⊥PC,使点P'落在直线BC的上方,且满足P'C:PC=1:,连接BP,AP'.(1)求∠BAC的度数,并证明△AP'C∽△BPC;(2)若点P在AB上时,①在图2 中画出△AP′C;②连接BP',求BP'的长;(3)点P在运动过程中,BP'是否有最大值或最小值?若有,请直接写出BP'取得最大值或最小值时∠PBC的度数;若没有,请说明理由.【分析】(1)①利用锐角三角函数求出∠BAC,②先判断出= ,再判断出∠P'CA=PCB,即可得出结论;(2)①利用垂直和线段的关系即可画出图形;②先求出∠P'AC,进而得出∠P'AB=90°,再利用相似求出AP',即可得出结论;(3)先求出AP'=1是定值,判断出点P'在以点A为圆心,1为半径的圆上,即可得出结论.解:(1)①在Rt△ABC中,AC=2,BC=2,∴tan∠BAC= =,∴∠BAC=60°;②∵∴,==,,∵P'C⊥PC,∴∠PCP'=∠ACB=90°,∴∠P'CA=PCB,∴△AP'C∽△BPC;(2)①如图1 所示;②如图2,由(1)知,∠BAC=60°,∴∠ABC=90°﹣∠BAC=30°,∴AB=2AC=4,∵△AP'C∽△BPC,∴∠P'AC=∠PBC=30°,,∵点P 在AB 上,∴BP=,∴AP'=1;连接P'B,∠P'AB=∠CAP'+∠BAC=30°+60°=90°,在Rt△P'AB中,AP'=1,AB=4,根据勾股定理得,BP'= =;(3)由(1)知,△AP'C∽△BPC,∴,∴∴AP'=1 是定值,∴点P'是在以点A 为圆心,半径为AP'=1 的圆上,①如图3,点P'在BA 的延长线上,此时,BP'取得最大值,∴∠P'AC=180°﹣∠BAC=60°,∵△AP'C∽△BPC,∴∠P'AC=PBC=120°,∴BP'取得最大值时,∠PBC=120°;②如图4,点P'在线段AB 上时,BP'取得最小值,∵△AP'C∽△BPC,∴∠PBC=∠BAC=60°,∴BP'取得最小值时,∠PBC=60°.【点评】此题是圆的综合题,主要考查了相似三角形的判定和性质,锐角三角函数,直角三角形的判定和性质,圆的性质,判断出△AP'C∽△BPC 是解本题的关键.28.(8 分)对于平面直角坐标系Oy 中的点M 和图形G,若在图形G 上存在一点N,使M,N 两点间的距离等于1,则称M 为图形G 的和睦点.(1)当⊙O的半径为3时,在点P1(1,0),P2(,1),P3(,0),P4(5,0)中,⊙O的和睦点是P2、P3;(2)若点P(4,3)为⊙O的和睦点,求⊙O的半径r的取值范围;(3)点A在直线y=﹣1上,将点A向上平移4个单位长度得到点B,以AB为边构造正方形ABCD,且C,D两点都在AB右侧.已知点E(,),若线段OE上的所有点都是正方形ABCD的和睦点,直接写出点A的横坐标A的取值范围.【分析】(1)分别以点P1,P2,P3,P4为圆心,1 为半径画圆,若与⊙O 有交点,则P 是,⊙O 的和睦点;(2)如图2中,连接OP.直线OP交以P为圆心半径为1的圆于A、B.满足条件的⊙O必须与以P 为圆心半径为1的圆相交或相切,当OA=4时,得到r 的最小值为4,当OB=6时,得到r的最大值为6;(3)分两种情形画出图形分别求解即可解决问题;解:(1)如图1 中,分别以点P1,P2,P3,P4为圆心,1 为半径画圆,若与⊙O有交点,则P 是,⊙O 的和睦点,观察图象可知,⊙O 的和睦点是P2、P3.故答案为:P2、P3.(2)如图2中,连接OP.直线OP交以P为圆心半径为1的圆于A、B.∵P(4,3),∴OP=5,满足条件的⊙O必须与以P为圆心半径为1的圆相交或相切,当OA=4时,得到r的最小值为4,当OB=6时,得到r的最大值为6,∴4≤r≤6.(3)①如图3中,当点O到C′D′的距离OM=1时,此时点A′的横坐标为﹣3.当点E到CD的距离EN=1时,此时点A的横坐标为﹣5,∴﹣5≤A≤﹣3时,满足条件;②)①如图3 中,当点O 到A′B′的距离OM=1 时,此时点A′的横坐标为1当点E到AB的距离EN=1时,点A的横坐标为﹣1,∴﹣1≤A≤1时,满足条件;综上所述,满足条件的当A的横坐标的取值范围为:﹣5≤A≤﹣3或﹣1≤A≤1.【点评】本题考查一次函数综合题、圆、正方形的有关性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何综合1.(昌平18期末27)已知,△ABC 中,∠ACB =90°,AC =BC ,点D 为BC 边上的一点. (1)以点C 为旋转中心,将△ACD 逆时针旋转90°,得到△BCE ,请你画出旋转后的图形;(2)延长AD 交BE 于点F ,求证:AF ⊥BE ;(3)若,BF =1,连接CF ,则CF 的长度为 .27.(1)补全图形…………………… 2分 (2)证明:∵ΔCBE 由ΔCAD 旋转得到,∴ΔCBE ≌ΔCAD ,……………… 3分∴∠CBE =∠CAD ,∠BCE =∠ACD =90°,……………4分 ∴∠CBE +∠E =∠CAD +∠E , ∴∠BCE =∠AFE =90°,∴AF ⊥BE .……………………………………5分(3………………………………………………7分2.(朝阳18期末25)△ACB 中,∠C =90°,以点A 为中心,分别将线段AB ,AC 逆时针旋转60°得到线段AD ,AE ,连接DE ,延长DE 交CB 于点F . (1)如图1,若∠B =30°,∠CFE 的度数为 ;(2)如图2,当30°<∠B <60°时,①依题意补全图2;②猜想CF 与AC 的数量关系,并加以证明.图1 图23.(西城18期末27)如图1,在Rt △AOB 中,∠AOB =90°,∠OAB =30°,点C 在线段OB上,OC =2BC ,AO 边上的一点D 满足∠OCD =30°.将△OCD 绕点O 逆时针旋转α度(90°<α<180°)得到△OC D '',C ,D 两点的对应点分别为点C ',D ',连接AC ',BD ',取AC'的中点M,连接OM.(1)如图2,当C D''∥AB时,α=°,此时OM 和BD'之间的位置关系为;(2)画图探究线段OM和BD'之间的位置关系和数量关系,并加以证明.4.(丰台18期末27)如图,∠BAD=90°,AB=AD ,CB=CD ,一个以点C 为顶点的45°角绕点C 旋转,角两边与BA ,DA 交于点M ,N ,与BA ,DA 延长线交于点E ,F ,连接AC . (1)在∠FCE 旋转的过程中,当∠FCA =∠ECA 时,如图1,求证:AE =AF ; (2)在∠FCE 旋转的过程中,当∠FCA ≠∠ECA 时,如图2,如果∠B=30°,CB=2,用等式表示线段AE ,AF 之间的数量关系,并证明.27.解:(1)证明:∵AB=AD ,BC=CD ,AC=AC ,∴△ABC ≌△ADC . …1分∴∠BAC =∠DAC =45°,可证∠FAC =∠EAC =135°. ……2分 又∵∠FCA =∠ECA ,∴△ACF ≌△ACE . ∴AE =AF . ……3分 其他方法相应给分.(2)过点C 作CG ⊥AB 于点G ,求得AC =2.……4分∵∠FAC =∠EAC =135°,∴∠ACF +∠F =45°. 又∵∠ACF +∠ACE =45°,∴∠F =∠ACE . ∴△ACF ∽△AEC. ……5分 ∴ACAF AE AC =,即AF AE AC ⋅=2. ……6分 ∴2=⋅AF AE . ……7分5.(怀柔18期末27)在等腰△ABC 中,AB =AC ,将线段BA 绕点B 顺时针旋转到BD,使图1图2BD⊥AC于H,连结AD并延长交BC的延长线于点P.(1)依题意补全图形;(2)若∠BAC=2α,求∠BDA的大小(用含α的式子表示);(3)小明作了点D关于直线BC的对称点点E,从而用等式表示线段DP与BC之间的数量关系.请你用小明的思路补全图形并证明线段DP与BC之间的数量关系.27.解:(1)如图……………………………………………1分(2) ∵∠BAC=2α,∠AHB=90°∴∠ABH=90°-2α…………………………………………………………………………… 2分∵BA=BD∴∠BDA=45°+α………………………………………………………………………………3分(3)补全图形,如图………………4分证明过程如下:∵D关于BC的对称点为E,且DE交BP于G∴DE⊥BP,DG=GE,∠DBP=∠EBP,BD=BE;…………………………………………5分∵AB=AC,∠BAC=2α∴∠ABC=90°-α由(2)知∠ABH=90°-2α∠DBP=90°-α-(90°-2α)=α∴∠DBP=∠EBP=α∴∠BDE=2α∵AB=BD∴△ABC ≌△BDE ………………………………………………………………………………6分 ∴BC =DE∴∠DPB =∠ADB -∠DBP =45°+α-α=45° ∴DP DG =21, ∴DP DE=2, ∴DPBC=2, ∴BC =2DP .………………………………………………………………………………7分6.(平谷18期末27)如图,在Rt △ABC 中,∠BAC =90°,AB=AC .在平面内任取一点D ,连结AD (AD <AB ),将线段AD 绕点A 逆时针旋转90°得到线段AE ,连结DE ,CE ,BD .(1)请根据题意补全图1;(2)猜测BD 和CE 的数量关系并证明;(3)作射线BD ,CE 交于点P ,把△ADE 绕点A 旋转,当∠EAC =90°,AB =2,AD =1时,补全图形,直接写出PB 的长.27.解:(1)如图 (1)(2)BD 和CE 的数量是:BD =CE ;·················································································2B图1B备用图∵∠DAB +∠BAE =∠CAE +∠BAE =90°,∴∠DAB=∠CAE . ················································································································· 3 ∵AD=AE ,AB=AC , ∴△ABD ≌△ACE .∴BD =CE . (4)(3)PB . (7)7.(密云18期末27)如图,已知Rt ABC ∆中,90ACB ∠=︒,AC=BC ,D 是线段AB 上的一点(不与A 、B 重合). 过点B 作BE ⊥CD ,垂足为E.将线段CE 绕点C 顺时针旋转90︒,得到线段CF ,连结EF.设BCE ∠度数为α.(1)①补全图形; ②试用含α的代数式表示CDA ∠.(2)若EF AB = ,求α的大小. (3)直接写出线段AB 、BE 、CF 之间的数量关系.27.(1)①补全图形.……………………………..1分②45α︒+ ……………………………..3分 (2)在FCE ∆和ACB ∆中,45CFE CAB ∠=∠=︒ ,90FCE ACB ∠=∠=︒ F C E ∆∽ ACB ∆CF EFAC AB =EF AB =2CF AC = ………………………………..5分 连结FA.90,ECB 90FCA ACE ACE ∠=︒-∠∠=︒-∠ECB FCA ∠=∠=α在Rt CFA ∆中,90CFA ∠=︒,cos FCA ∠=30FCA ∠=︒即30α=︒. ………………………………6分(3)22222AB CF BE =+ …………………………………………8分8.(石景山18期末27)在正方形ABCD中,点P在射线AC上,作点P关于直线CD的对称点Q,作射线BQ交射线DC于点E,连接BP.(1)当点P在线段AC上时,如图1.①依题意补全图1;②若EQ=BP,则∠PBE的度数为,并证明;(2)当点P在线段AC的延长线上时,如图2.若EQ=BP,正方形ABCD的边长为1,请写出求BE长的思路.(可以不写出计算结果)27.(本小题满分7分)(1)解:①正确作图………………………1分②45°………………………2分连接PD,PE易证△CPD≌△CPB∴DP=BP,∠CDP=∠CBP∵P、Q关于直线CD对称∴EQ=EP∵EQ=BP∴DP=EP∴∠C D P=∠D E P………………………………………………3分∵∠CEP+∠DEP=180°∴∠CEP+∠CBP=180°∵∠BCD=90°∴∠BPE=90°∵BP=EP∴∠PBE =45°. …………………………………………………………4分 (2)解:连接PD ,PE易证△CPD ≌△CPB ∴DP =BP ,∠1=∠2 ∵P 、Q 关于直线CD 对称, ∴EQ =EP ,∠3=∠4 ∵EQ =BP , ∴DP =EP ∴∠3=∠1, ∴∠3=∠2 ∴∠5=∠BCE =90° ∵BP =EP , ∴∠PEB =45° ∴∠3=∠4=22.5°,在△BCE 中,已知∠4=22.5°,BC =1,可求BE 长. ……………7分9.(东城18期末27)如图1,在△ABC 中,∠ACB =90°,AC =2,BC =以点B 为圆心,为半径作圆.点P 为B 上的动点,连接PC ,作P C PC '⊥,使点P '落在直线BC的上方,且满足:P C PC '=BP ,AP '. (1)求∠BAC 的度数,并证明△AP C '∽△BPC ; (2)若点P 在AB 上时,①在图2中画出△AP’C ; ②连接BP ',求BP '的长;图1图2(3)点P 在运动过程中,BP '是否有最大值或最小值?若有,请直接写出BP '取得最大值或最小值时∠PBC 的度数;若没有,请说明理由.备用图10.(顺义18期末27)综合实践课上,某小组同学将直角三角形纸片放到横线纸上(所有横线都平行,且相邻两条平行线的距离为1),使直角三角形纸片的顶点恰巧在横线上,发现这样能求出三角形的边长.(1)如图1,已知等腰直角三角形纸片△ABC,∠ACB=90°,AC=BC,同学们通过构造直角三角形的办法求出三角形三边的长,则AB= ;(2)如图2,已知直角三角形纸片△DEF,∠DEF=90°,EF=2DE,求出DF的长;(3)在(2)的条件下,若橫格纸上过点E的横线与DF相交于点G,直接写出EG的长.27.(1)AB ;……………………….2分(2)解:过点E 作横线的垂线,交l 1,l 2于点M ,N ,……………………………..….3分∴∠DME =∠EDF = 90°,∵∠DEF =90°,∴∠2+∠3=90°,∵∠1+∠3=90°,∴∠1=∠2,∴△DME ∽△ENF ,………….…….4分 ∴DM ME DE EN NF EF==, ∵EF =2DE , ∴12DM ME DE EN NF EF ===, ∵ME =2,EN =3,∴NF =4,DM =1.5,根据勾股定理得DE =2.5,EF =5,DF =……………………….5分 (3)EG=2.5.…………………………………………………………..…….7分11.(门头沟18期末27)如图1有两条长度相等的相交线段AB 、CD ,它们相交的锐角中有一个角为60°,为了探究AD 、CB 与CD (或AB )之间的关系,小亮进行了如下尝试:(1)在其他条件不变的情况下使得AD BC ∥,如图2,将线段AB 沿AD 方向平移AD 的长度,得到线段DE ,然后联结BE ,进而利用所学知识得到AD 、CB 与CD (或AB )之间的关系:____________________;(直接写出结果)(2)根据小亮的经验,请对图27-1的情况(AD 与CB 不平行)进行尝试,写出AD 、CB 与CD (或AB )之间的关系,并进行证明;(3)综合(1)、(2)的证明结果,请写出完整的结论 __________________________.27.(本小题满分7分)(1) AD CB AB += ……………………………………………1分(2)补全图形正确 ………………………………………2分结论:AD CB AB +>………………………………………3分理由:如图:将线段AB 沿AD 方向平移AD 的长度,得到线段DE ,联结BE 、CE ,且可得AB DE ∥且AB DE =∴四边形A 、B 、E 、D 是平行四边形………………………4分∴AD BE =∵AB CD =∴DE CD =∵AB DE ∥,60AOD ∠=︒∴DCE △是等边三角形……………………………………5分∴CE AB =由于AD 与CB 不平行,所以C 、B 、E 构成三角形∴BE CB CE +>……………………………………………6分∴AD CB AB +>(3)AD CB AB +≥ …………………………………………7分12.(通州18期末24)如图1,在矩形ABCD 中,点E 为AD 边中点,点F 为BC边中点;图1 图2点G ,H 为AB 边三等分点,I ,J 为CD 边三等分点.小瑞分别用不同的方式连接矩形对边上的点,如图2,图3所示.那么,图2中四边形GKLH 的面积与图3中四边形KPOL 的面积相等吗?(1)小瑞的探究过程如下在图2中,小瑞发现, ABCD GKLH S S _______=;在图3中,小瑞对四边形KPOL 面积的探究如下. 请你将小瑞的思路填写完整: 设a S DEP =△,b S AKG =△∵AF EC ∥∴DAK DEP ∽△△,且相似比为2:1,得到a S DAK 4=△∵BI GD ∥∴ABM AGK ∽△△,且相似比为3:1,得到b S ABM 9=△ 又∵ABCD DAG S b a S 614=+=△,ABCD ABF S a b S 419=+=△ ∴a b b a S ABCD 436624+=+=∴b a ____=,b S ABCD _____=,b S KPOL _____=∴ABCD KPOL S S _____=,则GKLH KPOL S S ____(填写“”,“”或“”)(2)小瑞又按照图4的方式连接矩形ABCD 对边上的点.则ABCD ANML S S _____=.13.(海淀18期末28)在△ABC 中,∠A 90°,ABAC .(1)如图1,△ABC 的角平分线BD ,CE 交于点Q ,请判断“QB =”是否正确:_______(填“是”或“否”);(2)点P 是△ABC 所在平面内的一点,连接P A ,PB ,且P A .①如图2,点P 在△ABC 内,∠ABP 30°,求∠P AB 的大小;②如图3,点P 在△ABC 外,连接PC ,设∠APCα,∠BPCβ,用等式表示α,β之间的数量关系,并证明你的结论.图1 图2图3 28.解:(1)否. ………………1分(2)① 作PD ⊥AB 于D ,则∠PDB =∠PDA =90°,∵ ∠ABP =30°,∴ 12PD BP =. ………………2分∵ PB =,∴ 2PD PA =.∴ sin PD PAB PA ∠== 由∠P AB 是锐角,得∠P AB =45°. ………………3分 另证:作点P 关于直线AB 的对称点'P ,连接',',B P P A P P ,则',',','P B A P B A P A B P A B B P B P A P A P∠=∠∠=∠==.∵∠ABP =30°,∴'60P BP ∠=︒.∴△'P BP 是等边三角形.∴'P P BP =.∵PB =,∴'P P =. ………………2分 ∴222''P P PA P A =+.∴'90PAP ∠=︒.∴45PAB ∠=︒. ………………3分② 45αβ+=︒,证明如下: ………………4分 作AD ⊥AP ,并取AD =AP ,连接DC ,DP .∴ ∠DAP =90°.∵ ∠BAC =90°,∴ ∠BAC +∠CAP =∠DAP +∠CAP ,即 ∠BAP =∠CAD .∵ AB =AC ,AD =AP ,∴ △BAP ≌△CAD .∴ ∠1=∠2,PB =CD . ………………5分 ∵ ∠DAP =90°,AD =AP ,∴ PD =,∠ADP =∠APD =45°.∵ PB =,∴ PD =PB =CD .∴ ∠DCP =∠DPC .∵ ∠APCα,∠BPCβ,∴ 45DPC α∠=+︒,12αβ∠=∠=-.∴ 31802902DPC α∠=︒-∠=︒-.∴ 139045ADP αβ∠=∠+∠=︒--=︒.∴45αβ+=︒. ………………7分。

相关文档
最新文档