桥式PWM逆变直流电动机控制

合集下载

三相逆变电路工作原理

三相逆变电路工作原理

三相逆变电路工作原理
三相逆变电路是一种将直流电转换为交流电的电路,其工作原理主要包括三相
桥式逆变电路、PWM控制技术和输出滤波等。

在三相逆变电路中,三相桥式逆变
电路是核心部分,它通过控制功率晶体管(IGBT)的导通与关断来实现对直流电
的逆变。

PWM控制技术则是通过对IGBT的开关信号进行调制,实现对输出交流
电的频率和幅值的精确控制。

而输出滤波则是通过滤波电感和电容来滤除逆变过程中产生的高频谐波,保证输出交流电的纯度和稳定性。

三相逆变电路的工作原理可以简单概括为,首先,直流电源通过整流电路将交
流电转换为直流电,然后直流电经过三相桥式逆变电路,通过控制IGBT的导通与
关断,实现对直流电的逆变,产生三相交流电。

接着,PWM控制技术对逆变电路
进行精确调制,控制输出交流电的频率和幅值。

最后,输出滤波电路对逆变过程中产生的高频谐波进行滤除,保证输出交流电的纯度和稳定性。

三相逆变电路的工作原理涉及到电力电子技术、控制技术和电路设计等多个领域。

在实际应用中,三相逆变电路被广泛应用于交流电动机驱动、电力电子变流器、风力发电系统、太阳能逆变器等领域。

其高效、稳定的特性使其成为现代工业和电力系统中不可或缺的重要组成部分。

总之,三相逆变电路通过三相桥式逆变电路、PWM控制技术和输出滤波等工
作原理,实现了对直流电的逆变,产生稳定、纯净的输出交流电。

其工作原理的深入理解对于电力电子领域的研究和应用具有重要意义,也为工业生产和电力系统的稳定运行提供了重要支撑。

《电力电子技术》(第六七八章)习题答案

《电力电子技术》(第六七八章)习题答案

第6章 PWM 控制技术1.试说明PWM 控制的基本原理。

答:PWM 控制就是对脉冲的宽度进行调制的技术。

即通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。

在采样控制理论中有一条重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,冲量即窄脉冲的面积。

效果基本相同是指环节的输出响应波形基本相同。

上述原理称为面积等效原理以正弦PWM 控制为例。

把正弦半波分成N 等份,就可把其看成是N 个彼此相连的脉冲列所组成的波形。

这些脉冲宽度相等,都等于π/N ,但幅值不等且脉冲顶部不是水平直线而是曲线,各脉冲幅值按正弦规律变化。

如果把上述脉冲列利用相同数量的等幅而不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,就得到PWM 波形。

各PWM 脉冲的幅值相等而宽度是按正弦规律变化的。

根据面积等效原理,PWM 波形和正弦半波是等效的。

对于正弦波的负半周,也可以用同样的方法得到PWM 波形。

可见,所得到的PWM 波形和期望得到的正弦波等效。

2.设图6-3中半周期的脉冲数是5,脉冲幅值是相应正弦波幅值的两倍,试按面积等效原理计算脉冲宽度。

解:将各脉冲的宽度用i(i =1, 2, 3, 4, 5)表示,根据面积等效原理可得1=m5m 2d sin U t t U ⎰πωω=502cos πωt - =0.09549(rad)=0.3040(ms)2=m525m 2d sin U t t U ωϖππ⎰=5252cos ππωt -=0.2500(rad)=0.7958(ms)3=m5352m 2d sin U t t U ωϖππ⎰=53522cos ππωt -=0.3090(rad)=0.9836(ms)4=m5453m 2d sin U t t U ωϖππ⎰=2=0.2500(rad)=0.7958(ms)5=m54m2d sin U tt Uωϖππ⎰=1=0.0955(rad)=0.3040(ms)3. 单极性和双极性PWM 调制有什么区别?三相桥式PWM 型逆变电路中,输出相电压(输出端相对于直流电源中点的电压)和线电压SPWM 波形各有几种电平?答:三角波载波在信号波正半周期或负半周期里只有单一的极性,所得的PWM 波形在半个周期中也只在单极性范围内变化,称为单极性PWM 控制方式。

PWM逆变电路及其控制方法

PWM逆变电路及其控制方法

PWM逆变电路及其控制方法PWM(Pulse Width Modulation)逆变电路是一种通过改变电压或电流波形的占空比来实现电能转换的技术。

它广泛应用于各种电源逆变器、交流电机驱动器、太阳能逆变器、UPS(不间断电源系统)等领域。

本文将介绍PWM逆变电路的基本原理、常见的控制方法以及应用实例。

PWM逆变电路的基本原理是通过将直流电压转换为交流电压,使得输出波形的频率和幅值可以根据需求进行调节。

其核心部件是逆变器,通常由开关元件(如功率开关管)和输出变压器组成。

逆变器通过快速开关开关闭合,产生一系列电压脉冲,然后经过输出变压器将直流电压转换为交流电压。

PWM逆变电路的控制方法有多种,常见的包括:固定频率脉宽调制(Fixed Frequency Pulse Width Modulation,FFPWM)、固定频率电压脉宽调制(Constant Frequency Voltage Pulse Width Modulation,CFVPWM)、固定频率电流脉宽调制(Constant Frequency Current Pulse Width Modulation,CFCPWM)以及多重脉冲脉宽调制(Multiple Pulse Width Modulation,MPWM)等。

固定频率脉宽调制是PWM逆变电路中最简单的控制方法之一,其特点是输出频率和开关频率固定,可以通过调节脉宽来实现输出波形的幅值控制。

固定频率电压脉宽调制在固定频率脉宽调制的基础上增加了电压控制环节,通过反馈控制使输出电压达到设定值。

固定频率电流脉宽调制则在固定频率脉宽调制的基础上增加了电流控制环节,通过反馈控制使输出电流达到设定值。

多重脉冲脉宽调制是在固定频率脉宽调制的基础上引入多个脉冲周期,通过交错控制来改善输出波形的谐波含量。

1.电力电子逆变器:将直流电能转换为交流电能。

通过控制PWM逆变电路的开关元件,可以实现交流电压的频率和幅值的调节,广泛应用于电力系统、电动机驱动器及电力调速系统等。

PWM型变频器的基本控制方式

PWM型变频器的基本控制方式

PWM型变频器的基本控制方式通用的PWM型变频器是一种交—直—交变频,通过整流器将工频交流电整流成直流电,经过中间环节再由逆变器将直流电逆变成频率可调的交流电,供给交流负载。

异步电动机调速时,供电电源不但频率可变,而且电压大小也必须能随频率变化,即保持压频比基本恒定。

PWM型变频器一般采用电压型逆变器。

根据供给逆变器的直流电压是可变的还是恒定的,变频器可分成两种基本控制方式。

(1)变幅PWM型变频器这是一种对变频器输出电压和频率分别进行调节的控制方式,其基本电路如图3-3所示。

中间环节是滤波电容器。

图2-3 变幅PWM型变频器晶闸管整流器用来调压,与一般晶闸管调压系统一样,采用相位控制,通过改变触发脉冲的延迟角α来获得与逆变器输出频率相对应的不同大小的直流电压。

逆变器只作输出频率控制,它一般是由6个开关器件组成,按脉冲调制方式进行控制。

图3-4所示是另一种直流电压可调的PWM变频电路。

它采用二极管不可控整流桥,把三相交流电变换为恒定的直流电。

分立斩波器电路,来改变输出直流电压的大小,通过逆变器输出三相交流电。

图2-4 利用斩波器的变频电路图以上两种调压式变频电路,都需要两极可控功率级,相比较,采用晶闸管整流桥可以获得更大功率的直流电,由于可控整流桥采用相位控制,输入功率因数将随输出直流电压的减小而降低;而斩波式调压,输入功率变流级采用的是二级管整流桥,所以输入端有很高的功率因数,代价是多了一个斩波器。

另外,就动态响应的快速性来说后者比前者好。

(2)恒幅PWM型变频器恒幅脉宽调制PWM式变频电路如图3.3所示,它由二极管整流桥,滤波电容和逆变器组成。

逆变器的输入为恒定不变的直流电压,通过调节逆变器的脉冲宽度和输出交流电压的频率,既实现调压又实现调频,变频变压都是由逆变器承担。

此系统是目前使用较普遍的一种变频系统,其主电路简单,只要配上简单的控制电路即可。

它具有下列主要优点:1)简化了主电路和控制电路的结构。

第四章 可逆直流调速系统

第四章 可逆直流调速系统

使U df 增加;2ALR的输入信号也正向增加,但由于
2ALR是反相器,故其输出u c t 2由正值减小,甚至变
成负值。反组VR的触发脉冲由零位后移,甚至进入
逆变位置,但反组的逆变电压U d r 小于正组的整流
电由压正组U流df 向。反因组此的,直在流两环组流变I流c 装。置此之时间正仍组然变存流在装着置
由晶闸管供电的直流调速系统,直流电动机 的励磁功率约为电机额定功率的3%~5%。反接 励磁所需的两组晶闸管变流装置的容量,比在电 枢可逆系统中所用晶闸管变流装置要小得多,从 而可节省设备投资。但由于励磁回路电感大,时 间常数较大,系统的快速性很差。而且反转过程 中,当磁通减小时,应切断电枢电压,以免产生 原来方向的转矩阻碍反向,此外要避免发生飞车 现象。这样就增加了控制系统的复杂性。
依据实现无环流原理的不同,无环流可逆系
1.可逆运行的实现方法 可逆运行的实现方法多
种多样,不同的生产机械可
根据各自的要求去选择,在
要求频繁快速正反转的生产 图4-1两组晶闸管供电的可逆电路 机械,目前广泛采用的是两
组晶闸管整流装置构成的可逆线路,如图4-1所示。 一组供给正向电流,称之为VF组,另一组供给反 向电流,称之为VR组。
当电动机正转时,由正组VF供电;反转时 则由反组VR供电。两组晶闸管分别由两套触发 脉冲控制,灵活地控制直流电动机正、反转和 调速。但不允许两组晶闸管同时处于整流状态, 否则将造成电源短路。为此对控制电路提出了 严格的要求。对于由两组变流装置构成的可逆 线路,按接线方式不同又可分为反并联连接和 交叉连接两种线路。
4.1 晶闸管-电动机可逆调速系统(V-M可 逆系统)
4.1.1晶闸管-电动机可逆调速系统的基本结构 根据直流电动机的电磁转矩公式 Te CmΦd I d 可

第章PWM逆变器控制技术

第章PWM逆变器控制技术

PWM逆变器控制技术简介PWM逆变器是一种基于现代电力电子技术的调制器,它用直流电源来驱动交流电机等交流负载。

PWM逆变器的基本原理是采用可逆变器将直流电能转换成交流电能,并通过强制控制逆变电压和电流波形实现输出交流电能的调节。

PWM逆变器控制技术是实现PWM逆变器中电压和电流波形控制的关键。

其主要包括基于模拟电路的控制技术和基于数字信号处理器(DSP)的控制技术两种。

基于模拟电路的控制技术基于模拟电路的PWM逆变器控制技术主要是设计PWM逆变器模块的控制电路。

该模块包括直流母线电压检测模块、三相桥式逆变器驱动模块、输出滤波器模块和逆变保护模块等。

其中,直流母线电压检测模块用来检测逆变器所需的直流母线电压;三相桥式逆变器驱动模块负责将直流母线电压转换成交流电压;输出滤波器模块用于对交流电压进行滤波处理,降低输出电压的噪声和杂波;逆变保护模块用于对逆变器进行过流、过温、过压、欠压等的保护。

基于模拟电路的PWM逆变器控制技术具有控制精度高、反应速度快等优点,但是电路复杂度高,稳定性较差。

基于数字信号处理器的控制技术基于数字信号处理器的PWM逆变器控制技术主要是基于现代信息技术和数字信号处理器的技术来实现PWM逆变器的电压和电流波形控制。

它可以通过控制DSP硬件平台或通过软件仿真实现。

该技术的优点是:可通过数字控制实现高度准确的波形控制和滤波功能,提高了逆变器的控制精度;DSP系统具有灵活性,可以实现各种传感器和控制策略的接口控制;DSP系统可通过程序算法进行修正,提高了系统稳定性和抗干扰性。

基于数字信号处理器的PWM逆变器控制技术已经得到广泛应用,尤其是在高档电力电子产品中,如交流电机驱动器、UPS电源、变频空调等。

PWM逆变器控制技术的应用PWM逆变器控制技术已广泛应用于各种电力电子产品中。

以下是其主要应用领域:交流电机驱动器交流电机驱动器是目前应用最广泛的PWM逆变器控制技术之一。

它是通过PWM逆变器实现对电机控制电压、频率等参数的调节,可以实现电机转速的可控,使得电动机具有更好的动态响应和启动能力。

基于PWM控制直流电机自动调速系统设计

基于PWM控制直流电机自动调速系统设计

1 绪论1.1 课题的研究背景和意义直流电动机是最早出现的电动机,也是最早能实现调速的电动机。

长期以来,直流电动机一直占据着调速控制的统治地位。

由于它具有良好的线性调速特性,简单的控制性能,高的效率,优异的动态特性;尽管近年来不断受到其他电动机(如交流变频电机、步进电机等)的挑战,但到目前为止,它仍然是大多数调速控制电动机的优先选择。

近年来,直流电动机的结构和控制方式都发生了很大变化。

随着计算机进入控制领域以及新型的电力电子功率元件的不断出现,使采用全控型的开关功率元件进行脉宽调制 (PulseWidthModulation,简称PWM)控制方式已成为绝对主流。

这种控制方式很容易在单片机控制中实现,从而为直流电动机控制数字化提供了契机。

五十多年来,直流电气传动经历了重大的变革。

首先,实现了整流器件的更新换代,从50年代的使用己久的直流发电机一电动机组(简称G-M系统)及水银整流装置,到60年代的晶闸管电动机调速系统(简称V-M系统),使得变流技术产生了根本的变革。

再到脉宽调制 (PulsewidthModulation)变换器的产生,不仅在经济性和可靠性上有所提高,而且在技术性能上也显示了很大的优越性,使电气传动完成了一次大的飞跃。

另外,集成运算放大器和众多的电子模块的出现,不断促进了控制系统结构的变化。

随着计算机技术和通信技术的发展,数字信号处理器单片机应用于控制系统,控制电路己实现高集成化,小型化,高可靠性及低成本。

以上技术的应用,使系统的性能指标大幅度提高,应用范围不断扩大。

由于系统的调速精度高,调速范围广,所以,在对调速性能要求较高的场合,一般都采用直流电气传动。

技术迅速发展,走向成熟化、完善化、系统化、标准化,在可逆、宽调速、高精度的电气传动领域中一直居于垄断地位[1]。

目前,国内各大专院校、科研单位和厂家也都在开发直流数字调速装置。

姚勇涛等人提出直流电动机及系统的参数辨识的方法。

该方法依据系统或环节的输入输出特性,应用最小二乘法,即可获得系统或环节的内部参数,所获的参数具有较高的精度,方法简便易行。

全数字控制的桥式可逆直流脉宽调速系统设计 [附图+中英文翻译]

全数字控制的桥式可逆直流脉宽调速系统设计 [附图+中英文翻译]

XXXXXXXX大学本科生毕业设计姓名:XXX 学号:XXXX学院:信息与电气工程学院专业:电气工程与自动化设计题目:全数字控制的桥式可逆直流脉宽调速系统设计专题:指导教师:XXXX 职称:XXXXXXXX年6月XXXXXXXX大学毕业设计任务书学院信息与电气工程学院专业年级电气02—3 学生姓名曹言敬任务下达日期:XXXX年2月20日毕业设计日期:XXXX 年 2 月20日至XXXX 年6月20日毕业设计题目:全数字控制的桥式可逆直流脉宽调速系统设计毕业设计专题题目:毕业设计主要内容和要求:1、直流电机的参数为15KW,电枢电压440V,电枢电流39.5A,励磁电压90V,励磁电流7A,转速为1510转/分。

2、制定主电路方案并进行选型设计计算。

3、用PROTEL设计全数字控制系统的电路原理图及PCB图。

4、编制控制软件。

5、基于MATLAB对桥式可逆直流脉宽调速系统进行仿真研究。

6、翻译与论文相关的电气自动化方面专业外文资料约5000字。

7、用OFFICE—WORD打印论文。

院长签字:指导教师签字:XXXXXXXX大学毕业设计指导教师评阅书指导教师评语(①基础理论及基本技能的掌握;②独立解决实际问题的能力;③研究内容的理论依据和技术方法;④取得的主要成果及创新点;⑤工作态度及工作量;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等):成绩:指导教师签字:年月日XXXXXXXX大学毕业设计评阅教师评阅书评阅教师评语(①选题的意义;②基础理论及基本技能的掌握;③综合运用所学知识解决实际问题的能力;③工作量的大小;④取得的主要成果及创新点;⑤写作的规范程度;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等):成绩:评阅教师签字:年月日XXXXXXXX大学毕业设计答辩及综合成绩摘要直流脉宽调速系统,是采用脉冲宽度调制的高频开关控制方式,形成的脉宽调制变换器——直流电动机调速系统,简称直流PWM调速系统。

PWM控制直流电机实验报告

PWM控制直流电机实验报告

PWM控制直流电机实验报告PWM 控制直流电机实验一、实验目的1、熟悉PWM调制的原理和运用。

2、熟悉直流电机的工作原理。

3、能够读懂和编写直流电机的控制程序。

二、实验原理:运动控制系统是以机械运动的驱动设备──电机为控制对象,以控制器为核心,以电力电子器件及功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统。

这类系统控制电机的转矩、转速和转角,将电能转换为机械能,实现运动控制的运动要求。

可以看出,控制技术的发展是通过电机实现系统的要求,电机的进步带来了对驱动和控制的要求。

电机的发展和控制、驱动技术的不断成熟,使运动控制经历了不同的发展阶段。

1、直流电机的工作原理:直流电机的原理图图中,固定部分有磁铁,这里称作主磁极;固定部分还有电刷。

转动部分有环形铁心和绕在环形铁心上的绕组。

(其中2个小圆圈是为了方便表示该位置上的导体电势或电流的方向而设置的)。

上图表示一台最简单的两极直流电机模型,它的固定部分(定子)上,装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)上装设电枢铁心。

定子与转子之间有一气隙。

在电枢铁心上放置了由A和X两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。

换向片之间互相绝缘,由换向片构成的整体称为换向器。

换向器固定在转轴上,换向片与转轴之间亦互相绝缘。

在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。

当给电刷加一直流电压,绕组线圈中就有电流流过,由电磁力定律可知for(i=5000;i>0;i--);}②键盘中断处理子程序:采用中断方式,按下键,完成延时去抖动、键码识别、按键功能执行。

要实现按住加/减速键不放时恒加或恒减速直到放开停止,就需在判断是否松开该按键时,每进行一次增加/减少一定的占空比。

③显示子程序:利用数组方式定义显示缓存区,缓存区有8位,分别存放各个数码管要显示的值。

运动控制系统复习考试

运动控制系统复习考试

运动控制系统复习考试(总8页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除运动控制整理一判断题1弱磁控制时电动机的电磁转矩属于恒功率性质只能拖动恒功率负载而不能拖动恒转矩负载。

(Ⅹ)2采用光电式旋转编码器的数字测速方法中,M法适用于测高速,T法适用于测低速。

(√)3只有一组桥式晶闸管变流器供电的直流电动机调速系统在位能式负载下能实现制动。

(√)4直流电动机变压调速和降磁调速都可做到无级调速。

(√)5静差率和机械特性硬度是一回事。

(Ⅹ)6带电流截止负反馈的转速闭环系统不是单闭环系统。

(Ⅹ)7电流—转速双闭环无静差可逆调速系统稳态时控制电压U的大小并非仅取决k*的大小。

(√)于速度定 Ug8双闭环调速系统在起动过程中,速度调节器总是处于饱和状态。

(Ⅹ)9逻辑无环流可逆调速系统任何时候都不会出现两组晶闸管同时封锁的情况。

(Ⅹ)10可逆脉宽调速系统中电动机的转动方向(正或反)由驱动脉冲的宽窄决定。

(√)11双闭环可逆系统中,电流调节器的作用之一是对负载扰动起抗扰作用。

(Ⅹ)与开环系统相比,单闭环调速系统的稳态速降减小了。

(Ⅹ)12α=β配合工作制的可逆调速系统的制动过程分为本组逆变和它组制动两阶段(√)13转速电流双闭环速度控制系统中转速调节为PID调节器时转速总有超调。

(Ⅹ)14 电压闭环相当于电流变化率闭环。

(√)15 闭环系统可以改造控制对象。

(√)16闭环系统电动机转速与负载电流(或转矩)的稳态关系,即静特性,它在形式上与开环机械特性相似,但本质上却有很大的不同。

17直流电动机弱磁升速的前提条件是恒定电动势反电势不变。

(√)18 直流电动机弱磁升速的前提条件是恒定电枢电压不变。

(Ⅹ)19电压闭环会给闭环系统带来谐波干扰,严重时会造成系统振荡。

(√)20对电网电压波动来说,电压环比电流环更快。

(√)21.交—交变频器的输出频率低于输入频率。

3.3--PWM整流电路及其控制方法

3.3--PWM整流电路及其控制方法
控制PWM整流电路,使其输入电流非常接近正弦波,且 和输入电压同相位,功率因数近似为1,也称单位功率 因数变流器,或高功率因数整流器。
3.3 PWM整流电路及其控制方法
❖ 3.3.1 PWM整流电路的工作原理 ❖ 3.3.2 PWM整流电路的控制方法
3.3.1 PWM整流电路的工作原理
PWM整流电路也可分为电压型和电流型两大类,目前
uab
o
Ud
uAB1
usபைடு நூலகம்
O
ωt
T2 D2 T4 D4 b)
Ls
Rs
is
uAB
- Ud
图 单相桥式PWM
图 AB两点的SPWM电压波形
整流电路的等值电路
3.3.1 PWM整流电路的工作原理

USAB

USAB
·Is
U·s
·UAB d
U·L U·R
a)整流运行
·Is U·s d
·UAB
U·L U·R
c)无功补偿运行
3.3 PWM整流电路及其控制方法
实用的整流电路几乎都是晶闸管整流或二极管整流。
晶闸管相控整流电路:输入电流滞后于电压,且其中谐 波分量大,因此功率因数很低。
二极管整流电路:虽位移因数接近1,但输入电流中谐 波分量很大,所以功率因数也很低。
把逆变电路中的SPWM控制技术用于整流电路,就形成 了PWM整流电路。
3.3.1 PWM整流电路的工作原理
(2)对单相全桥PWM整流电路工作原理的Ls进TR1s一步说D明1 +
整流状态下:
us
is
C1
负 载
ud
u组s成>两0个时升,压(斩T2波、电D路4、,D以1、(LTs2)、和D(4、TD3、T1、2DL1、s)D为D42、+例L。Cs2)分别

电力电子技术填空题(附录)

电力电子技术填空题(附录)

1、电子技术包括信息电子技术和电力电子技术两大分支,通常所说的模拟电子技术和数字电子技术就属于前者。

2、为减少自身损耗,提高效率,电力电子器件一般都工作在开关状态。

当器件的工作频率较高时,开关损耗会成为主要的损耗。

3、在PWM控制电路中,载波频率与调制信号频率之比称为载波比,当它为常数时的调制方式称为同步调制。

在逆变电路的输出频率范围划分成若干频段,每个频段内载波频率与调制信号频率之比为恒定的调制方式称为分段同步调制。

4、面积等效原理指的是,冲量相等而面积不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

5、在GTR、GTO、IGBT与MOSFET中,开关速度最快的是电力MOSFET,单管输出功率最大的是GTO ,应用最为广泛的是IGBT。

6、设三相电源的相电压为U2,三相半波可控整流电路接电阻负载时,晶闸管可能承受的最大反向电压为电源线电压的峰值,即6U2,其承受的最大正向电压为2U2。

7、逆变电路的负载如果接到电源,则称为有源逆变,如果接到负载,则称为无源逆变。

8、如下图,指出单相半桥电压型逆变电路工作过程中各时间段电流流经的通路(用V1,VD1,V2,VD2表示)。

(1) 0~t1时间段内,电流的通路为___VD1_;(2) t1~t2时间段内,电流的通路为__V1;(3) t2~t3时间段内,电流的通路为__VD2;(4) t3~t4时间段内,电流的通路为V2_;(5) t4~t5时间段内,电流的通路为__VD1;1、GTR存在二次击穿现象,IGBT存在擎住现象。

2、功率因数由基波电流移相和电流波形畸变这两个因素共同决定的。

3、晶闸管串联时,给每只管子并联相同阻值的电阻R是均压_措施。

4、同一晶闸管,维持电流I H与擎柱电流I L在数值大小上有I L_ =(2~4) I H。

125、电力变换通常可分为: AC 变DC (整流) 、 DC 变AC (逆变) 、 AC 变AC 和 DC 变DC (斩波) 。

PWM控制技术

PWM控制技术
10
*提高输出电压,减少开关次数
如各相迭加up =-(三相ur基波最小值)-um
--三倍次谐波+直流 基波可提高15% 使线电压幅值达Ud 线参考电压-仍为正弦 各相基波有120°为最小值 此时ur为-um 对应电源相压持续为-Ud/2 且下臂开关保持导通
--开关动作减少,损耗减小
11
7.3 PWM (闭环)跟踪控制技术 --主要是电流跟踪
SVPWM
三电平逆变器 电压向量us更多 按ΔΨ=Ψ* - Ψ --用最佳us控制 Ψ圆更准
22
7.4 PWM整流电路
晶闸管/二极管整流问题: 谐波分量大,功率因数低。 PWM整流可控制交流侧电流波形(近正弦)与相位
可调有功与无功----高功率因数整流器、无功补偿器
单相PWM整流电路
Ls=外接电感+交流源电感------交流功率缓冲 C(C1,C2) ------直流功率缓冲
/
dt
r us
r is R
由电机学:对称交流时三相合成磁场“圆转”:
(幅值=(3/2)相幅值,电角速度=ω)
因r 此s 代表r s实, ur际s , er磁s , ir场s ,都而是旋urs转, ers的, irs 是引用量
空间位置任选
常选正转方向 (ab)顺时针
SVPWM--用PWM电路有限个状态的空间向量 urn
Ud>峰值√2UAB1 = √2Es/cosδ>峰值Usm
26
电流闭环控制单相PWM整流
电流给定is* : 相位与电源us相同, 幅值可调 用i滞环控制: is<is*-δ uAB = -Ud is↑
is>is*+δ uAB = +Ud is↓ 电路简单响应快; 交流电流有波纹可滤 调节is*幅值可调节Ud

三相桥式PWM逆变电路解析

三相桥式PWM逆变电路解析

湘潭大学课程设计报告书题目:三相桥式PWM逆变电路设计学院信息工程学院专业自动化学生同组成员指导教师课程编号课程学分起始日期目录一、课题背景 (1)二、三相桥式SPWM逆变器的设计内容及要求 (2)三、SPWM逆变器的工作原理 (3)1.工作原理 (4)2.控制方式 (5)3.正弦脉宽调制的算法 (8)四、MATLAB仿真分析 (17)五、电路设计 (11)1.主电路设计 (11)2.控制电路设计 (12)3.保护电路设计 (14)4.驱动电路设计 (15)六、实验总结 (21)附录 (22)参考文献 (23)三相桥式SPWM逆变电路设计一、课题背景随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。

对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。

因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。

在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。

该调制方法的最大缺点是它的6个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高,损耗越大。

本实验针对正弦波输出变压变频电源SPWM 调制方式及数字化控制策略进行了研究,以SG3525为主控芯片,以期得到一种较理想的调制方法,实现逆变电源变压、变频输出。

正弦逆变电源作为一种可将直流电能有效地转换为交流电能的电能变换装置被广泛地应用于国民经济生产生活中 ,其中有:针对计算机等重要负载进行断电保护的交流不间断电源 UPS (Uninterruptle Power Supply) ;针对交流异步电动机变频调速控制的变频调速器;针对智能楼宇消防与安防的应急电源 EPS ( Emergence Power Supply) ;针对船舶工业用电的岸电电源 SPS(Shore Power Supply) ;还有针对风力发电、太阳能发电等而开发的特种逆变电源等等.随着控制理论的发展与电力电子器件的不断革新 ,特别是以绝缘栅极双极型晶体管 IGBT( Insulated Gate Bipolar Transistor)为代表的自关断可控型功率半导体器件出现 ,大大简化了正弦逆变电源的换相问题 ,为各种 PWM 型逆变控制技术的实现提供了新的实现方法 ,从而进一步简化了正弦逆变系统的结构与控制. 电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。

电力电子技术填空题

电力电子技术填空题

1、为减少自身损耗,提高效率,电力电子器件一般都工作在_________状态。

当器件的工作频率较高时,_________损耗会成为主要的损耗。

2、在PWM控制电路中,载波频率与调制信号频率之比称为_____________,当它为常数时的调制方式称为_________调制。

在逆变电路的输出频率范围划分成若干频段,每个频段内载波频率与调制信号频率之比为桓定的调制方式称为____________调制。

3、面积等效原理指的是,_________相等而_______不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

4、在GTR、GTO、IGBT与MOSFET中,开关速度最快的是_________,单管输出功率最大的是_____________,应用最为广泛的是___________。

5、设三相电源的相电压为U2,三相半波可控整流电路接电阻负载时,晶闸管可能承受的最大反向电压为电源线电压的峰值,即,其承受的最大正向电压为。

6、逆变电路的负载如果接到电源,则称为逆变,如果接到负载,则称为逆变。

7、_________存在二次击穿现象,____________存在擎住现象。

8、功率因数由和这两个因素共同决定的。

9、晶闸管串联时,给每只管子并联相同阻值的电阻R是_措施。

10、同一晶闸管,维持电流I H与掣住电流I L在数值大小上有I L_ I H。

11、电力变换通常可分为:、、和。

12、在下图中,_______和________构成降压斩波电路使直流电动机电动运行,工作于第1象限;___和_______构成升压斩波电路,把直流电动机的动能转变成为电能反馈到电源,使电动机作再生制动运行,工作于____象限。

13、请在正确的空格内标出下面元件的简称:电力晶体管;可关断晶闸管;功率场效应晶体管;绝缘栅双极型晶体管;IGBT是和的复合管。

14、晶闸管对触发脉冲的要求是、和。

15、多个晶闸管相并联时必须考虑的问题,解决的方是。

电力电子技术填空题

电力电子技术填空题

1、电子技术包括____微电子电力_____和电力电子技术两大分支,通常所说的模拟电子技术和数字电子技术就属于前者。

2、为减少自身损耗,提高效率,电力电子器件一般都工作在___开关__状态。

当器件的工作频率较高时,____开关_____损耗会成为主要的损耗。

4、面积等效原理指的是,__冲量_______相等而__形状_____不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

5、在GTR、GTO、IGBT与MOSFET中,开关速度最快的是_MOSFET________,单管输出功率最大的是____GTO_________,应用最为广泛的是__IGBT_________。

6、设三相电源的相电压为U2,三相半波可控整流电路接电阻负载时,晶闸管可能承受的最大反向电压为电源线电压的峰值,即,其承受的最大正向电压为。

8、如下图,指出单相半桥电压型逆变电路工作过程中各时间段电流流经的通路(用V1,VD1,V2,VD2表示)。

(1) 0~t1时间段内,电流的通路为_VD1_______;(2) t1~t2时间段内,电流的通路为___V1____;(3) t2~t3时间段内,电流的通路为____VD2___;(4) t3~t4时间段内,电流的通路为___V2____;(5) t4~t5时间段内,电流的通路为__VD1_____;一、填空题(本题共6小题,每空1分,共15分)1、____GTR_____存在二次击穿现象,___IGBT_________存在擎住现象。

2、功率因数由基波电流相移和电流波形畸变这两个因素共同决定的。

6、在下图中,_ V1______和___ VD1_____构成降压斩波电路使直流电动机电动运行,工作于第1象限;____ V2___和__ VD2_____构成升压斩波电路,把直流电动机的动能转变成为电能反馈到电源,使电动机作再生制动运行,工作于__第2__象限。

1、请在正确的空格内标出下面元件的简称:电力晶体管GTR;可关断晶闸管GTO ;功率场效应晶体管MOSFET ;绝缘栅双极型晶体管IGBT ;IGBT 是 MOSFET 和 GTR 的复合管。

三相电压型逆变电路中变频变压的控制方式

三相电压型逆变电路中变频变压的控制方式

三相电压型逆变电路中变频变压的控制方式1.引言1.1 概述随着现代电力系统及电子技术的发展,逆变电路在工业和家庭领域的应用越来越广泛。

三相电压型逆变电路是一种常见的逆变电路类型,可以将直流电源转换为交流电源,用于驱动交流电动机或供电给交流负载。

三相电压型逆变电路的基本原理是利用逆变器将直流电源的电压转换为三相交流电压。

这种逆变电路由三相桥式逆变器、LC滤波器和负载组成。

逆变器通过控制开关管的开关动作,将直流电源的电压逆变为可控制的三相交流电压。

LC滤波器用于平滑交流输出电压,提高电路的稳定性和纹波滤波效果。

变频变压则是指逆变电路通过改变交流输出电压的频率和幅值,实现对交流电机速度和转矩的精确控制。

变频变压的控制方式有多种,包括PWM(脉宽调制)控制、SPWM(正弦PWM)控制、SVPWM(空间矢量PWM)控制等。

这些控制方式通过调整逆变器中开关管的开关时间和频率,以及调节控制信号的幅值,实现对输出交流电压的精确控制。

本文将重点探讨三相电压型逆变电路中变频变压的控制方式。

通过深入分析这些控制方式的原理和特点,我们可以更好地理解逆变电路的工作原理,为逆变电路的设计和应用提供参考。

同时,本文将对当前变频变压控制方式的研究进展和未来发展方向进行展望,以为相关领域的研究者提供参考和启示。

1.2 文章结构文章结构决定了文章的布局和组织方式,对读者理解文章内容和观点的逻辑顺序起到重要的指导作用。

本文将按照以下结构进行阐述和探讨三相电压型逆变电路中变频变压的控制方式。

首先,我们将在引言部分概述本文的目的和主要内容,并简要介绍三相电压型逆变电路的基本原理,为后续的内容奠定基础。

通过引言的概述,读者可以对本文的主题和结构有一个整体的把握。

接下来,正文部分将分为两个主要章节展开讨论。

第一章节将详细阐述三相电压型逆变电路的基本原理,包括其工作原理、电路组成和工作状态等方面的内容。

通过对三相电压型逆变电路的基本原理的介绍,读者可以全面了解这种电路的特点和原理,为后续的控制方式讨论提供理论基础和背景知识。

三相桥式pwm逆变电路工作原理

三相桥式pwm逆变电路工作原理

三相桥式pwm逆变电路工作原理三相桥式PWM逆变电路,听起来有点高深对吧?它就像一个乐队,乐器齐全,各种音色交织,奏出美妙的旋律。

想象一下,你在家里放着你最爱的音乐,电流也在努力地给你带来快乐。

咱们先从最基础的说起,逆变器其实就是把直流电转换成交流电的魔法师,直流电就像一条死水,静止不动,而交流电则像活泼的小鱼,在水中欢快地游来游去。

咱们说的三相,就是把这种电流分成三条腿,每条腿负责一部分。

这样一来,整个电路的效率就高了,真是有智慧的安排。

想象一下,三个人一起搬家,比一个人轻松多了,大家分工合作,不累。

这种方式特别适合大型设备,比如电动机,动力十足,噪音小,真是好得不得了。

PWM嘛,就是脉宽调制,听起来很复杂,但其实是把电流的开关打开和关闭来控制电量的多少。

就像调音量,轻轻一转,声音就大了,小了,真是简单明了。

通过改变开关的时间,咱们就能调节输出的电压和频率,真是聪明的办法。

电流的调节,就像我们调节心情,想高兴就高兴,想放松就放松。

再来聊聊桥式,想象一下,一个小桥把三条腿连接在一起,这样一来,电流就能在桥上自由流动。

桥的设计简直妙不可言,三个开关,搭配得天衣无缝,让电流在不同的相位之间跳跃,轻松自如。

就像舞者在舞台上翩翩起舞,各种姿态,各种风格,真是让人看得眼花缭乱。

工作原理是什么呢?其实就是通过不断切换这些开关,形成一个个短小的脉冲,把直流电转变为交流电。

咱们的逆变器就像个精明的厨师,火候掌握得恰到好处,煮出美味的菜肴。

每个开关的开和关,就像是调料的放入,恰到好处,才不会腥,也不会太咸。

太厉害了,简直是逆变界的顶流!你可能会问,这种电路有什么优点呢?嘿,优点可多了,它高效,能量损耗少,真是一举多得。

控制简单,调节方便,像开车一样,轻松自如。

还有就是它的可靠性强,稳定性高,咱们用电的时候可不希望来个“突然失联”。

这种逆变器还可以应用在很多地方,像电动汽车、风能发电,甚至是家里的太阳能板,真是各显神通。

simulink h桥 pwm控制

simulink h桥 pwm控制

Simulink H桥PWM控制一、简介在电力电子技术中,H桥是一种常用的电路拓扑结构,用于实现电机驱动、电源逆变和开关电源等应用。

而PWM(脉冲宽度调制)技术则是一种通过改变信号的脉冲宽度来控制电路输出的方法。

本文将结合Simulink软件,探讨如何使用H桥和PWM技术来实现电路的控制。

二、Simulink简介Simulink是一种基于模型的设计和仿真环境,可以用于各种工程领域的系统建模和仿真。

它提供了一个直观的图形界面,使得用户可以通过拖拽和连接不同的模块来构建系统模型,并通过仿真来验证模型的性能。

Simulink支持多种仿真方法,包括连续时间仿真、离散时间仿真和混合仿真等。

三、H桥PWM控制原理H桥是一种由四个开关器件组成的电路结构,可以实现正、反向电流流动。

其中两个开关器件组成上半桥,另外两个开关器件组成下半桥。

通过控制上下半桥的开关状态,可以实现不同方向的电流流动。

PWM技术通过改变信号的脉冲宽度来控制电路输出。

在H桥PWM控制中,通过控制上下半桥的开关器件的开关状态和脉冲宽度,可以控制电机的转速和方向。

具体来说,当上半桥开启,下半桥关闭时,电流从电源正极流向电机;当上半桥关闭,下半桥开启时,电流从电机流向电源负极。

通过不断交替切换开关状态,可以实现电机的正、反向转动,并通过调整脉冲宽度来控制电机的转速。

四、Simulink建模步骤1. 创建模型首先,在Simulink中创建一个新的模型。

可以通过单击菜单栏中的“File”->“New”->“Model”来创建一个空模型。

2. 添加H桥和PWM模块在Simulink库浏览器中,可以找到H桥和PWM相关的模块。

将这些模块拖拽到模型中,以构建电路结构。

3. 连接模块将H桥和PWM模块连接起来,以建立电路的控制路径。

确保连接正确,信号能够正确地流动。

4. 设置参数对H桥和PWM模块的参数进行设置,以满足具体的需求。

参数设置包括脉冲宽度、频率、工作模式等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计报告
课程设计名称:桥式PWM逆变电动机控制仿真
院系班级:机电工程学院机电一班
姓名:吴增昊
目录
第一部分:课程设计介绍 (3)
H桥式可逆PWM变换器的工作原理: (3)
第二部分:电路设计 (4)
第三部分:参数设置和调节器设计 (5)
调节器参数计算: (5)
电流调节器参数计算 (5)
转速调节器参数计算 (6)
最终的调节器计算结果如下 (7)
第四部分:输出结果 (7)
第五部分:结果分析 (10)
第一部分:课程设计介绍
可逆轧机,龙门刨床等生产机械要求运动控制系统能够快速的正、反转,以及提高产量及质量;开卷机,卷取机等虽然不要求正反转运行,却需要快速制动。

将上述生产工艺要求归纳成运动控制系统的性能,就是电动机转矩还需要产生制动转矩,实现生产机械快速的减速,停车与正,反向运行的功能。

H桥式可逆PWM变换器的工作原理:
PWM控制的示意图如图1所示:可控开关S以一定的时间间隔重复地接通和断开,当S接通时,供电电源Us通过开关S施加到电动机两端,电源向电机提供能量,电动机储能:当开关S断开时,中断了供电电源Us向电动机电流继续流通。

图1:PWM控制示意图
这样,电动机得到的电压平均值Uas为:
Uas=ton·Us/T=aUs
在系统主电路部分,采用的是大功率GTR为开关元件、H桥电路为功率放大电路所构成的电路结构,如图2所示。

图中,四只GTR分为两组,VT1和VT4为一组,VT2和VT3为另一组。

同一组中的两只GTR同时导通,同时关断,且两组晶体管之间可以是交替的导通和关断。

脉宽调制器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定宽度可变的脉冲电压序列,从而平均输出电压的大小,以调节电机转速。

图2:H桥式可逆PWM变换器
正向运行(如图a )所示:
第1阶段,在0≤t ≤ton 期间,Ub1、Ub4为正,VT1、VT4导通,Ub2、Ub3为负,VT2、VT3截止,电流id 沿回路1流通,电动机M 两端电压UAB=+Us ;
第2阶段,在ton ≤t ≤T 期间,Ub1、Ub4为负,VT1、VT4截止,VD2、VD3续流,并使VT2、VT3保持截止,电流id 沿回路2流通,电动机M 两端电压UAB=-Us;
反向运行(如图b )所示:
第1阶段,在0≤t ≤ton 期间,Ub2、Ub3为负,VT2、VT3截止,VD1、VD4续流,并使VT1、VT4截止,电流-id 沿回路4流通,电动机M 两端电压UAB=+Us;
第2阶段,在ton ≤t ≤T 期间,Ub2、Ub3为正,VT2、VT3导通,Ub1、Ub4为负,使VT1、VT4保持截止,电流-id 沿回路3流通,电动机M 两端电压UAB=-Us 。

双极式控制的桥式可逆PWM 变换器的优点:
(1)电流一定连续;(2)可使电机在四象运行;(3)电机停止时有微振电流,能消除静摩擦死区;(4)低速平稳性好,系统的调速范围可达1:20000左右;(5)低速时,每个开关器件的驱动脉冲仍较宽,
有利于保证器件的可靠导通。

a.正向电动运行波行
b.反向电动运行波形 双极式控制可逆PWM 变换器的输出平均电压为:
s on on s on d U T
t T t T U T t U )12(-=--= 第二部分:电路设计
第三部分:参数设置和调节器设计
电动机参数:
调节器参数计算:
电流调节器参数计算
按典型Ⅰ型设计电流调节器。

电流环控制对象是双惯性型的,所以把电流调节器设计成PI 型的,其传递函数为
1()i ACR i i s W s K s ττ+=
要求得具体参数,则需要知道i K 及i τ,为了让调节器零点与控制对象的大时间常数极点对消,选择
s T l i 003.0==τ
则可得到电流环放大系数β
τs i K R K K I i =,要求i σ<5%即可取I K i ΣT =0.5有i
ci 21ΣωT K I ==,则可得到)(22i l s i s l i T T K R T K R T K ∑∑==ββ 其中oi s i T T T +=∑,oi T =0.005s ,选取时间常数s T s 0004.0=,则有s T i 0034.0=∑; 83.0=β
则可求得6.35≈i K 则有电流环传递函数为:s
s s W ACR 003.0)1003.0(6.35)(+= 此时电流超调量i σ=4.3%,小于5%,符合系统要求。

转速调节器参数计算 由公式可知转速调节器的传递函数为s s K s W ASR n n n )1()(ττ+=
,又可求得 )1(
on I n T K h +=τ 选取5=h ,已知Ton=0.01s ,则可得s n 52.0=τ
由公式(1-24)及(1-25)可求转速环开环增益K 及转速调节器ASR 的比例系数n K ,其中
37.2772122≈+=∑n
T h h K n m e n RT h T C h K ∑+=
αβ2)1( 其中Tm=0.2s ;83.0=β;Ce=0.18 ;00417.0=α
则可求得5.23≈n K ,则求得转速调节器闭环传递函数为:
s
s s W ASR 52.0)152.0(5.23)(+=
在退饱和的情况下,计算转速超调有m n N b b b n
T T n n z C C n n C C ∑**∆-∆=∆∆=))((2)(
max max λσ 在h=5时有b
C C m ax ∆=81.2%;λ=2;m T =0.2s ;n T ∑ =0.0208s ;e C =0.18;空载启动时有0=z ;
即可求得%135.0%1002
.00208.0190018.05
.621.02%2.812≈⨯⨯⨯⨯⨯⨯=n σ 由此可见转速超调量小于要求的10%,
最终的调节器计算结果如下
参数
转速调节器ASR 电流调节器ACR 放大倍数
23.5 35.6 积分时间常数
0.52 0.003 调节器输出限幅
±10 ±0.98 转速反馈系数
0.00417 电流反馈系数
0.83
在matlab 的simulink 中搭建电路,电源采用270v 直流电源,逆变桥采用matlab 的默认值
第四部分:输出结果
空载启动,在t=4s 时加上m N T l ⋅=3.1转速图如下:
转矩波形
电枢电流:
设置带载起动后在t=3.5s 左右使电动机反转,负载m N T l ⋅=3.1
电枢电流
转矩波形
从途中可以看到,系统从正传启动至反转运行的过程中转速和电枢电流对转速给定的影响波形,仿真中电流的过载倍数3
λ,因此电动机
=
的正转启动和制动、反转启动的过程中始终保持着最大电流12A左右。

在达到最大转速2400r/min后,电枢电流下降到4A左右
第五部分:结果分析
设计的驱动电路如图所示 1Out1Selector
Signal(s)Pulses PWM Generator1
Signal(s)Pulses PWM Generator
Mux 0.0011
In1
图中输入端In1接脉宽调制信号,输出端Out1输出四路MOSFET 的驱动信号。

脉宽调制由两个PWM 发生器(PWM Generator )模块进行,其中上方的PWM 发生器产生VF1和VF2的驱动信号,下方的PWM 发生器产生VF3和VF4的驱动信号,为了使PWM 发生器输出的驱动信号顺序与多功能桥的顺序一致,模块中加入一个选择器模块(Selector ),调整了脉冲序列。

因为MOSFET 有导通和关断时间,为了避免上下桥臂的两个管子同时导通和关断,造成桥臂的直通现象,需要有“死时”限制,这里采取的办法是使下方的PWM 发生器输入的控制信号为ct u +0.001,即将ct u 略为抬
高,使下方的PWM 发生器输出信号变窄一些,这样上下桥臂的两个管子就不会同时导通和关断了。

相关文档
最新文档