专题04 二次函数(真题演练)-从课本到高考之2019年高考数学高频考点全突破(原卷版)

合集下载

二次函数专题——含参二次函数完整版题型汇总

二次函数专题——含参二次函数完整版题型汇总

二次函数专题——含参二次函数完整版题型汇总含参的二次函数在高中阶段考试中经常出现,因为参数的存在使得函数形成一种动态,随着参数的变化,函数也会不同。

这就使得本来简单的二次函数变得复杂起来。

例如,考虑求解$f(x)=x-2ax$在$[2,4]$上的最大值和最小值。

由于参数的存在,这个函数是动态的。

为了解决这个问题,我们需要考虑动轴定区间问题,即对称轴随着参数的变化而变化,但是在给定区间上问最大值和最小值。

对于这个问题,需要分类讨论。

在$[2,4]$这个区间上,可能出现对称轴不在这个区间里面的情况,对称轴就在区间里面的情况,或者对称轴在区间右侧的情况。

因此,我们需要分别考虑这些情况。

具体来说,我们需要找到在整个函数的区间上,哪个数离对称轴最远。

这个分界线就应该在$2$和$4$中间的位置上,即$3$。

当对称轴在$x=3$这条线左边的时候,对称轴离$2$就比较近,离$4$就比较远;对称轴在右边的时候,离$2$就比较近,离$4$就比较远。

因此,这个函数的最大值可以表示为:f_{\max}(x)=\begin{cases}f(4)=16-8a& (a\leq 3)\\f(2)=4-4a&(a>3)\end{cases}$$当$a=3$时,放在哪边都可以。

代入上面的式子,得到$f_{\max}(x)=-8$。

因此,最大值为$-8$。

接下来,我们来讨论含参的二次函数的最大值和最小值问题。

这类问题的重点在于能否清晰地做分类讨论,得到一个分段函数的解析式。

我们可以按照对称轴的位置进行分类讨论。

首先,对于对称轴在区间左侧,且$a\leq 2$的情况,函数在$x=2$处取得最小值,即$f_{min}(x)=f(2)=4-4a$。

其次,对于对称轴在区间中间,即$24$的情况,函数在$x=4$处取得最小值,即$f_{min}(x)=f(4)=16-8a$。

另外,还有一类问题叫做定轴动区间的问题。

对于这类问题,我们同样需要进行分类讨论,只不过区间在变化。

备战2019年高考数学大一轮复习 热点聚焦与扩展 专题04 函数的定义域、值域的求法

备战2019年高考数学大一轮复习 热点聚焦与扩展 专题04 函数的定义域、值域的求法

专题04 函数的定义域、值域的求法【热点聚焦与扩展】函数的定义域作为函数的要素之一,是研究函数的基础,也是高考的热点.函数的值域也是高考中的一个重要考点,并且值域问题通常会渗透在各类题目之中,成为解题过程的一部分。

所以在掌握定义域求法的基础上,掌握一些求值域的基本方法,当需要求函数的取值范围时便可抓住解析式的特点,寻找对应的方法从容解决.(一)函数的定义域1。

求函数定义域的主要依据是:①分式的分母不能为零;②偶次方根的被开方式其值非负;③对数式中真数大于零,底数大于零且不等于1.2。

①若()y f x =的定义域为(),a b ,则不等式()a g x b <<的解集即为函数()()y f g x =的定义域;②若()()y f g x =的定义域为(),a b ,则函数()g x 在(),a b 上的的值域即为函数()y f x =的定义域.3。

对于分段函数知道自变量求函数值或者知道函数值求自变量的问题,应依据已知条件准确找出利用哪一段求解。

4.与定义域有关的几类问题第一类是给出函数的解析式,这时函数的定义域是使解析式有意义的自变量的取值范围;第二类是实际问题或几何问题,此时除要考虑解析式有意义外,还应考虑使实际问题或几何问题有意义;第三类是不给出函数的解析式,而由()f x 的定义域确定函数)]([x g f 的定义域或由)]([x g f 的定义域确定函数()f x 的定义域.第四类是已知函数的定义域,求参数范围问题,常转化为恒成立问题来解决.(二)函数的值域1.利用函数的单调性:若)(x f 是],[b a 上的单调增(减)函数,则)(a f ,)(b f 分别是)(x f 在区间],[b a 上取得最小(大)值,最大(小)值。

2。

利用配方法:形如2(0)y ax bx c a =++≠型,用此种方法,注意自变量x 的范围。

3。

利用三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-。

二次函数专题——含参二次函数

二次函数专题——含参二次函数

含参的二次函数二次函数在初中的时候就比较重要,那么在高中阶段二次函数的考点更加重要,难度也会加大。

高中阶段比较喜欢考含有参数的二次函数,参数就会让函数形成一种动态,随着参数不同,函数是不一样的,这就使得本来简单的二次函数变得复杂起来。

例1. 求2()2f x x ax =-在[2,4]上的最大值和最小值。

解析:这道题因为参数的存在使得函数的本身是动的,在动的情况下考虑这个函数最大值和最小值的问题,这就涉及到高中比较爱考的一类问题,动轴定区间问题。

这道题中对称轴正好是x a =,随着a 不同,这个对称轴在变化,但是在给定区间上问最大值和最小值,那么就会有下面几种情况,在[2,4]这个区间上,有可能(1)这个对称轴不在这个区间里面这个时候的最大值最小值;也有可能(2)这个对称轴就在区间里面,这个时候的最值,还可能(3)对称轴在区间右侧这几个图针对这个函数并不严谨,上面的是一般函数的示意图,这道题中的函数一定是过原点的。

可以感受,随着a 的不同,最大值和最小值是不一样的,所以这种含参的动态的问题往往需要我们做的一个工作就是分类讨论。

那么函数在什么时候取到最大值呢,比如说(1),就会在4的地方取得最大值,(2)在4的地方取得最大值,(3)就会在2的地方取得最大值。

那么在整个函数的区间上,什么时候能取得最大值呢,我们就要看在这个区间上,哪个数离对称轴最远。

那么就有两种情况了,有的时候是2离得比较远,有的时候是4离得比较远,是怎么分界的呢?这个分界线就应该在2和4中间的位置上是3,当对称轴在3x =这条线左边的时候,对称轴离2就比较近,离4就比较远,对称轴在右边的时候,离2就比较近,离4就比较远。

因此这个函数的最大值,经过分类讨论之后,就会得到一个分段函数:max (4)=168(3)()(2)44(3)f a a f x f a a -≤⎧=⎨=->⎩也就是如果这个对称轴在3的左侧,也就是3a ≤的时候,离4远,在4处取得最大值,如果在右侧的话,也就是3a >的时候,离2远,在2处取得最大值。

(完整版)二次函数知识点及经典例题详解最终

(完整版)二次函数知识点及经典例题详解最终

二次函数知识点总结及经典习题一、二次函数概念:1.二次函数的概念:一般地,形如y =ax2 +bx +c (a ,b,c是常数,a ≠ 0 )的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数a ≠ 0 ,而b ,c 可以为零.二次函数的定义域是全体实数.2. 二次函数y =ax2 +bx +c 的结构特征:⑴等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a ,b ,c 是常数, a 是二次项系数, b 是一次项系数, c 是常数项.二、二次函数的基本形式1.二次函数基本形式:y =ax2 的性质:a 的绝对值越大,抛物线的开口越小。

a 的符号开口方向顶点坐标对称轴性质a > 0向上(0,0)y 轴x > 0 时,y 随x 的增大而增大;x < 0 时,y 随x 的增大而减小;x = 0 时,y 有最小值0 .a < 0向下(0,0)y 轴x > 0 时,y 随x 的增大而减小;x < 0 时,y 随x 的增大而增大;x = 0 时,y 有最大值0 .2.y =ax2 +c 的性质:上加下减。

a 的符号开口方向顶点坐标对称轴性质a > 0向上(0,c)y 轴x > 0 时,y 随x 的增大而增大;x < 0 时,y 随x 的增大而减小;x = 0 时,y 有最小值c .a < 0向下(0,c)y 轴x > 0 时,y 随x 的增大而减小;x < 0 时,y 随x 的增大而增大;x = 0 时,y 有最大值c .3.y = a (x - h )2的性质:左加右减。

a 的符号开口方向顶点坐标对称轴性质a > 0向上(h ,0)X=hx > h 时, y 随 x 的增大而增大; x < h 时, y 随x 的增大而减小; x = h 时, y 有最小值0 .a < 0向下(h ,0)X=hx > h 时, y 随 x 的增大而减小; x < h 时, y 随x 的增大而增大; x = h 时, y 有最大值0 .4.y = a (x - h )2+ k 的性质:a 的符号开口方向顶点坐标对称轴性质a > 0向上(h ,k )X=h x > h 时, y 随 x 的增大而增大;x < h 时, y 随x 的增大而减小; x = h 时, y 有最小值 k .a < 0向下(h ,k )X=hx > h 时, y 随 x 的增大而减小;x < h 时, y 随x 的增大而增大; x = h 时, y 有最大值 k .三、二次函数图象的平移1.平移步骤:⑴ 将抛物线解析式转化成顶点式 y = a (x - h )2+ k ,确定其顶点坐标(h ,k );⑵ 保持抛物线 y = ax 2 的形状不变,将其顶点平移到(h ,k )处,具体平移方法如下:2.平移规律在原有函数的基础上“ h 值正右移,负左移; k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.四、二次函数 y = a (x - h )2+ k 与 y = ax 2 + bx + c 的比较从解析式上看, y = a (x - h )2+ k 与 y = ax 2 + bx + c 是两种不同的表达形式,后者通过配方可以得到前者,即 y = a +,其中h= - ,k=(b2a )24ac - b 24ab2a 4ac - b 24a 五、二次函数 y = ax 2 + bx + c 的性质当 a > 0 时,抛物线开口向上,对称轴为,顶点坐标为.b2a (‒b 2a ,4ac ‒ b 24a)当x < - 时,y 随x 的增大而减小;b2a当x > - 时,y 随x 的增大而增大;b2a 当x =- 时,y 有最小值 .b 2a 4ac ‒ b 24a 2. 当α<0时,抛物线开口向下,对称轴为x =- , 顶点坐标为.当b2a(‒b 2a ,4ac ‒ b 24a)x < -时, y 随 x 的大而增大y;当随 x > - 时,y 随 x 的增大而减小;当x =- 时 , y 有最大值.b2ab 2a b 2a 4ac ‒ b 24a六、二次函数解析式的表示方法1.一般式: y = ax 2 + bx + c ( a , b , c 为常数, a ≠ 0 );2.顶点式: y = a (x - h )2 + k ( a , h , k 为常数, a ≠ 0 );3.两根式(交点式): y = a (x - x 1 )(x - x 2 ) ( a ≠ 0 , x 1 , x 2 是抛物线与 x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式, 只有抛物线与 x 轴有交点,即b 2 - 4ac ≥ 0 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1.二次项系数 a ⑴ 当 a > 0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,开口越大;⑵ 当 a < 0 时,抛物线开口向下, a 的值越小,开口越小,反之 a 的值越大,开口越大.2.一次项系数b 在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴.(同左异右b 为 0 对称轴为 y 轴)3.常数项c⑴ 当c > 0 时,抛物线与 y 轴的交点在 x 轴上方,即抛物线与 y 轴交点的纵坐标为正;⑵ 当c = 0 时,抛物线与 y 轴的交点为坐标原点,即抛物线与 y 轴交点的纵坐标为0 ;⑶ 当c < 0 时,抛物线与 y 轴的交点在 x 轴下方,即抛物线与 y 轴交点的纵坐标为负. 总结起来, c 决定了抛物线与 y 轴交点的位置.八、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与 x 轴交点情况):一元二次方程 ax 2 + bx + c = 0 是二次函数 y = ax 2 + bx + c 当函数值 y = 0 时的特殊情况. 图象与 x 轴的交点个数:① 当 ∆ = b 2 - 4ac > 0 时,图象与 x 轴交于两点 A (x 1 ,0),B (x 2 ,0 ) (x 1 ≠ x 2 ) ,其中的 x 1 ,x 2是一元二次方程 ax 2 + bx + c = 0(a ≠ 0)的两根.②当∆= 0 时,图象与x 轴只有一个交点;③当∆< 0 时,图象与x 轴没有交点.1' 当a > 0 时,图象落在x 轴的上方,无论x 为任何实数,都有y > 0 ;2 ' 当a < 0 时,图象落在x 轴的下方,无论x 为任何实数,都有y < 0 .2.抛物线y =ax2 +bx +c 的图象与y 轴一定相交,交点坐标为(0 ,c) ;中考题型例析1.二次函数解析式的确定例 1求满足下列条件的二次函数的解析式(1)图象经过 A(-1,3)、B(1,3)、C(2,6);(2)图象经过 A(-1,0)、B(3,0),函数有最小值-8;(3)图象顶点坐标是(-1,9),与 x 轴两交点间的距离是 6.分析:此题主要考查用待定系数法来确定二次函数解析式.可根据已知条件中的不同条件分别设出函数解析式,列出方程或方程组来求解.(1)解:设解析式为 y=ax 2+bx+c,把 A(-1,3)、B(1,3)、C(2,6)各点代入上式得解得 {3=a ‒b +c 3=a +b +c 6=4a +2b +c {a =1b =0c =2∴解析式为 y=x 2+2.(2)解法1:由 A(-1,0)、B(3,0)得抛物线对称轴为 x=1,所以顶点为(1,-8). 设解析式为 y=a(x-h)2+k,即 y=a(x-1)2-8.把 x=-1,y=0 代入上式得 0=a(-2)2-8,∴a=2. 即解析式为 y=2(x-1)2-8,即 y=2x 2-4x-6.解法2:设解析式为 y=a(x+1)(x-3),确定顶点为(1,-8)同上, 把 x=1,y=-8 代入上式得-8=a(1+1)(1-3).解得 a=2,∴解析式为 y=2x 2-4x-6.解法 3:∵图象过 A(-1,0),B(3,0)两点,可设解析式为:y=a(x+1)(x-3)=ax 2-2ax-3a.∵函数有最小值-8.∴ =-8.4a (‒3a )‒(2a)24a又∵a≠0,∴a=2.⎬∴解析式为 y=2(x+1)(x-3)=2x 2-4x-6.(3)解:由顶点坐标(-1,9)可知抛物线对称轴方程是 x=-1, 又∵图象与 x 轴两交点的距离为 6,即 AB=6.由抛物线的对称性可得 A 、B 两点坐标分别为 A(-4,0),B(2,0), 设出两根式 y=a(x-x 1)·(x-x 2),将 A(-4,0),B(2,0)代入上式求得函数解析式为 y=-x 2-2x+8.点评:一般地,已知三个条件是抛物线上任意三点(或任意 3 对 x,y 的值)可设表达式为y=ax 2+bx+c,组成三元一次方程组来求解; 如果三个已知条件中有顶点坐标或对称轴或最值,可选用 y=a(x-h)2+k 来求解;若三个条件中已知抛物线与 x 轴两交点坐标,则一般设解析式为 y=a(x-x 1)(x-x 2).2.二次函数的图象例 2y=ax 2+bx+c(a≠0)的图象如图所示,则点 M(a,bc)在().A.第一象限B.第二象限C.第三象限D.第四象限分析:由图可知:抛物线开口向上⇒ a>0.抛物线与y 轴负半轴相交 ⇒ c < 0b ⇒ bc>0.对称轴x = - 2a 在y 轴右侧 ⇒ b < 0∴点 M(a,bc)在第一象限. 答案:A.点评:本题主要考查由抛物线图象会确定 a 、b 、c 的符号.例 3 已知一次函数 y=ax+c 二次函数 y=ax 2+bx+c(a≠0),它们在同一坐标o系中的大致图象是().分析:一次函数 y=ax+c,当 a>0 时,图象过一、三象限;当 a<0 时,图象过二、 四象限;c>0 时, 直线交 y 轴于正半轴; 当 c<0 时, 直线交 y 轴于负半轴; 对于二次函数y= ax 2+bx+c(a≠0)来讲:⎧开口上下决定a 的正负⎪左同右异(即对称轴在y 轴左侧,b 的符号⎪⎨与a 的符号相同;)来判别b 的符号⎪抛物线与y 轴的正半轴或负半轴相交确定⎪⎩c 的正负解:可用排除法,设当 a>0 时,二次函数 y=ax 2+bx+c 的开口向上,而一次函数 y= ax+c 应过一、三象限,故排除 C;当 a<0 时,用同样方法可排除 A;c 决定直线与 y 轴交点;也在抛物线中决定抛物线与y 轴交点,本题中c 相同则两函数图象在y 轴上有相同的交点,故排除B.答案:D.3.二次函数的性质例 4对于反比例函数 y=-与二次函数 y=-x 2+3, 请说出他们的两个相同点:2x ①, ②; 再说出它们的两个不同点:① ,②.分析:本小题是个开放性题目,可以从以下几点性质来考虑①增减性②图象的形状③ 最值④自变量取值范围⑤交点等.解:相同点:①图象都是曲线,②都经过(-1,2)或都经过(2,-1);不同点:①图象形状不同,②自变量取值范围不同,③一个有最大值,一个没有最大值. 点评:本题主要考查二次函数和反比例函数的性质,有关函2数开放性题目是近几年命题的热点.4.二次函数的应用例 5 已知抛物线 y=x 2+(2k+1)x-k 2+k,(1)求证:此抛物线与 x 轴总有两个不同的交点.(2)设 x 1、x 2 是此抛物线与 x 轴两个交点的横坐标,且满足 x 12+x 2=-2k 2+2k+1.①求抛物线的解析式.②设点 P (m 1,n 1)、Q(m 2,n 2)是抛物线上两个不同的点, 且关于此抛物线的对称轴对称. 求 m+m 的值.分析:(1)欲证抛物线与 x 轴有两个不同交点,可将问题转化为证一元二次方程有两个不相等实数根,故令 y=0,证△>0 即可.(2)①根据二次函数的图象与x 轴交点的横坐标即是一元二次方程的根.由根与系数的关系,求出 k 的值,可确定抛物线解析式;②由 P 、Q 关于此抛物线的对称轴对称得 n 1=n 2, 由 n 1=m 12+m 1,n 2=m 22+m 2得 m 12+m 1=m 22+m 2,即(m 1-m 2)(m 1+m 2+1)=0 可求得 m 1+m 2= - 1.解:(1)证明:△=(2k+1)2-4(-k 2+k)=4k 2+4k+1+4k 2-4k=8k 2+1.∵8k 2+1>0,即△>0,∴抛物线与 x 轴总有两个不同的交点.(2) ①由题意得 x 1+x 2=-(2k+1), x 1· x 2=-k 2+k.∵x 1 2+x 2 2=-2k 2+2k+1,∴(x 1+x 2)2-2x 1x 2=- 2k 2+2k+1, 即(2k+1)2-2(-k 2+k)=-2k 2+k+1, 4k 2+4k+1+2k 2-2k= - 2k 2+2k+1.∴8k 2=0, ∴k=0,∴抛物线的解析式是 y=x 2+x.22②∵点 P 、Q 关于此抛物线的对称轴对称,∴n 1=n 2.又 n 1=m 12+m 1,n 2=m 2+m 2.∴m 12+m 1=m 2+m 2,即(m 1-m 2)(m 1+m 2+1)=0.∵P 、Q 是抛物上不同的点,∴m 1≠m 2,即 m 1-m 2≠0.∴m 1+m 2+1=0 即 m 1+m 2=-1.点评:本题考查二次函数的图象(即抛物线)与 x 轴交点的坐标与一元二次方程根与系数的关系.二次函数经常与一元二次方程相联系并联合命题是中考的热点.二次函数对应练习试题一、选择题1.二次函数 y = x 2- 4x - 7 的顶点坐标是()A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3)2.把抛物线 y = -2x 2 向上平移 1 个单位,得到的抛物线是()A. y = -2(x +1)2B. y = -2(x -1)2C. y = -2x 2+1D. y = -2x 2-13.函数 y = kx 2- k 和 y = k(k ≠ 0) 在同一直角坐标系中图象可能是图中的()x4.已知二次函数 y = ax 2+ bx + c (a ≠ 0) 的图象如图所示,则下列结论: ①a,b同号;② 当 x = 1和 x = 3时,函数值相等;③ 4a + b = 0 ④当 y = -2时, x 的值只能取0.其中正确的个数是( )A.1 个B.2 个C. 3 个D.4 个5.已知二次函数 y = ax 2+ bx + c (a ≠ 0) 的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于 x 的一元二次方程ax 2+ bx + c = 0 的两个根分别是 x 1 = 1.3和x 2 =()A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数 y = ax 2 + bx + c 的图象如图所示,则点(ac , bc ) 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.方程 2x - x 2= 的正根的个数为()2xA.0 个B.1 个C.2 个.3个08.已知抛物线过点 A(2,0),B(-1,0),与 y 轴交于点 C,且 OC=2.则这条抛物线的解析式为A. y = x 2 - x - 2B. y = -x 2+ x + 2C. y = x 2- x - 2 或 y = -x 2+ x + 2 D. y = -x 2- x - 2 或 y = x 2+ x + 2二、填空题9.二次函数 y = x 2+ bx + 3 的对称轴是 x = 2 ,则b = 。

高考数学常考压轴题及答案:二次函数

高考数学常考压轴题及答案:二次函数

高考数学常考压轴题及答案:二次函数1500字二次函数是高考数学中的重要内容之一。

在高考中,常常会涉及到二次函数的基本概念、性质以及与其他知识点的联合运用。

本文将介绍高考数学中常考的二次函数压轴题及其答案,希望能对广大考生备战高考有所帮助。

1. 求二次函数 y = ax^2 + bx + c 的顶点坐标。

答案:二次函数 y = ax^2 + bx + c 的顶点坐标可以通过求导或者利用平移公式来求解。

求导法可以通过将二次函数转化为一次函数来求解,即 y' = 2ax + b,令y' = 0,解得 x = -b / (2a),代入原函数可得 y = c - b^2 / (4a)。

利用平移公式可以将二次函数表示为 y = a(x - h)^2 + k 的形式,其中 (h, k) 就是顶点坐标。

2. 已知二次函数 y = ax^2 + bx + c 过点 (1, 2) 和 (2, 3),求二次函数的解析式。

答案:由已知条件可得:2 = a + b + c (1)3 = 4a + 2b + c (2)由 (1) 式减去2倍的 (2) 式,得 -1 = -6a - 3b,即 6a + 3b = 1 (3)由 (1) 式减去 (2) 式,得 -1 = -3a - b,即 3a + b = 1 (4)解方程组 (3) 和 (4) 可得 a = 1/3,b = 2/3。

将 a 和 b 的值代入 (1) 式,可得 c =5/3。

所以二次函数的解析式为 y = (1/3)x^2 + (2/3)x + 5/3。

3. 设某个二次函数的图像过点 (1, 3) 和 (2, 7),与 y 轴交于点 A,与 x 轴交于点 B 和C,求 B、C 的坐标。

答案:已知二次函数过点 (1, 3) 和 (2, 7),可以得到两个方程:3 = a + b + c (1)7 = 4a + 2b + c (2)由 (2) 式减去4倍的 (1) 式,得 1 = -2a - b,即 2a + b = -1 (3)解方程组 (1) 和 (3) 可得 a = 1,b = -3。

考点12 二次函数(精练)(解析版)

考点12 二次函数(精练)(解析版)

考点12.二次函数(精练)限时检测1:最新各地模拟试题(50分钟)A .B .C .D .【答案】D【分析】根据反比例函数的图象得出b <0,逐一分析四个选项,根据二次函数图象的开口以及对称轴与y 轴的关系,抛物线与y 轴的交点,即可得出a 、b 、c 的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.【详解】解:∵反比例函数的图象在二、四象限,∴b <0,A 、∵二次函数图象开口向上,对称轴在y 轴右侧,交y 轴的负半轴,∴a >0,b <0,c <0,∴一次函数图象应该过第一、二、四象限,A 错误;B 、∵二次函数图象开口向下,对称轴在y 轴右侧,∴a <0,b >0,∴与b <0矛盾,B 错误;C 、∵二次函数图象开口向下,对称轴在y 轴右侧,∴a <0,b >0,∴与b <0矛盾,C 错误;D 、∵二次函数图象开口向上,对称轴在y 轴右侧,交y 轴的负半轴,∴a <0,b <0,c <0,∴一次函数图象应该过第一、二、四象限,D 正确.故选:D .【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.4.(2023·山东·中考模拟)小嘉说:将二次函数2y x =的图象平移或翻折后经过点(2,0)有4种方法:①向右平移2个单位长度②向右平移1个单位长度,再向下平移1个单位长度③向下平移4个单位长度④沿x 轴翻折,再向上平移4个单位长度你认为小嘉说的方法中正确的个数有()A .1个B .2个C .3个D .4个【答案】D 【分析】根据二次函数图象的平移可依此进行求解问题.【详解】解:①将二次函数2y x =向右平移2个单位长度得到:()22y x =-,把点(2,0)代入得:()2220y =-=,所以该平移方式符合题意;②将二次函数2y x =向右平移1个单位长度,再向下平移1个单位长度得到:()211y x =--,把点(2,0)代入得:()22110y =--=,所以该平移方式符合题意;③将二次函数2y x =向下平移4个单位长度得到:24y x =-,把点(2,0)代入得:2240y =-=,所以该平移方式符合题意;④将二次函数2y x =沿x 轴翻折,再向上平移4个单位长度得到:24y x =-+,把点(2,0)代入得:2240y =-+=,所以该平移方式符合题意;综上所述:正确的个数为4个;故选D .【点睛】本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键.则点Q为满足图象上的点到轴距离的最大值为4的点,此时有【答案】2496572y x x =-+【分析】本题主要考查二次函数的实际应用,根据题意列出函数整理并求出【详解】解:根据题意,得【答案】34【分析】根据梯形面积求出CD 得到答案;【详解】四边形ABDC 是梯形,下底由()163152CD +⨯=,得4CD =∵214CD x x =-=,∴()212x x +又顶点纵坐标2344ac b a-=-②,【点睛】本题考查二次函数性质与几何图形应用,解题的关键是熟练掌握二次函数与一元二次方程之间的关系及二次函数的性质.13.(2023·四川成都·统考二模)在平面直角坐标系中,点上,若12y y =,则m =【答案】1213m <【分析】若12y y =,先求二次函数的对称轴,再利用二次函数的对称性对称两点的横坐标之和的一半等于【答案】①⑤/⑤①【分析】根据抛物线的对称轴是轴的交点位置得出,,a b c 为()2,0-,即可判断③39【答案】104 3x<<【分析】过A作AC⊥x轴于问题即可得到解答.由题意可得C x=103,所以当【点睛】本题考查函数图象应用,正确求解函数图象交点坐标及函数图象与坐标轴的交点坐标是解题关键.19.(2024·江苏无锡·校考模拟预测)②如图2,直线BM 过AC 中点,直线BM 解析式为1522y x =-+,AC 中点坐标为15,22a ⎛⎫⎪⎝⎭,待入直线求得910a =;③如图3,直线CM 过AB 中点,AB 中点坐标为()3,0,∴直线MB 与y 轴平行,必不成立;2)、当分成三角形和梯形时,过点M 的直线必与ABC 一边平行,所以必有“”A 所以相似比为1:2.④如图4,直线EM ∥AB ,∴CEN COA ∽∴12CE CN CO CA ==,∴51152a a -=,解得225a +=;⑤如图5,直线ME ∥AC ,MN CO ∥,则EMN ACO ∽∴12BE AB =,又4AB =,∴∵53222BN =-=<,∴不成立;⑥如图6,直线ME ∥BC ,同理可得12AE AB =,∴22AE =,222NE =-,tan tan MEN CBO ∠∠=,∴155222a =-,解得a =综上所述,910a =或225+或212+.【点睛】本题考查了二次函数的综合问题,解直角三角形,相似三角形的性质与判定,熟练掌握以上知识,并分类讨论是解题的关键.20.(2023·浙江杭州·校考二模)在平面直角坐标系中,当2x =-和4x =时,二次函数是常数,a ≠0)的函数值相等.(1)若该函数的最大值为1,求函数的表达式,并写出函数图象的顶点坐标.若该函数的图象与x 轴有且只有一个交点,求a ,b 的值.(3)记(2)中的抛物线为y 1移2个单位得到抛物线2y ,当2x m ≤≤-时,抛物线2y 的最大值与最小值之差为8,求限时检测2:最新各地中考真题(60分钟)1.(2023年江苏省南通市中考数学真题)若实数x ,y ,m 满足6x y m ++=,34x y m -+=,则代数式21xy -+5.(2023年甘肃省兰州市中考数学真题)已知二次函数()2323y x =---,下列说法正确的是()A .对称轴为2x =-B .顶点坐标为()2,3C .函数的最大值是-3D .函数的最小值是-3【答案】C【分析】根据二次函数的图象及性质进行判断即可.【详解】二次函数()2323y x =---的对称轴为2x =,顶点坐标为()2,3-∵30-<∴二次函数图象开口向下,函数有最大值,为=3y -∴A 、B 、D 选项错误,C 选项正确故选:C【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数图象和性质是解题的关键.6.(2022·浙江温州·中考真题)已知点(,2),(,2),(,7)A a B b C c 都在抛物线2(1)2y x =--上,点A 在点B 左侧,下列选项正确的是()A .若0c <,则a c b <<B .若0c <,则a b c<<C .若0c >,则a c b<<D .若0c >,则a b c<<【答案】D【分析】画出二次函数的图象,利用数形结合的思想即可求解.【详解】解:当0c >时,画出图象如图所示,根据二次函数的对称性和增减性可得a b c <<,故选项C 错误,选项D 正确;当0c <时,画出图象如图所示,根据二次函数的对称性和增减性可得c a b <<,故选项A 、B 都错误;故选:D【点睛】本题考查二次函数的图象和性质,借助图象,利用数形结合的思想解题的解决问题的关键.7.(2023年湖北省中考数学真题)拋物线2(0)y ax bx c a =++<与x 轴相交于点()()3010A B -,,,.下列结论:①0abc <;②240b ac ->;③320b c +=;④若点()()122P m y Q m y -,,,在抛物线上,且12y y <,则9.(2022·湖南岳阳·中考真题)已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是()A .m 1≥或0m <B .m 1≥C .1m ≤-或0m >D .1m ≤-【答案】A【分析】先求出抛物线的对称轴及抛物线与y 轴的交点坐标,再分两种情况:0m >或0m <,根据二次函数的性质求得m 的不同取值范围便可.【详解】解:∵二次函数2243y mx m x =--,∴对称轴为2x m =,抛物线与y 轴的交点为()0,3-,∵点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,∴①当0m >时,对称轴20x m =>,此时,当4x =时,3y ≤-,即2244433m m ⋅-⋅-≤-,解得m 1≥;②当0m <时,对称轴20x m =<,当04x ≤≤时,y 随x 增大而减小,则当04p x ≤≤时,3p y ≤-恒成立;综上,m 的取值范围是:m 1≥或0m <.故选:A .【点睛】本题考查了二次函数的性质,关键是分情况讨论.①124x x ⋅=-;②2124y y k +=+④若点(0,1)N -,则AN BN ⊥A .1B .2【答案】C【点睛】本题考查二次函数的知识,解题的关键是掌握二次函数的图象和性质,直角三角形的性质,两点间的距离公式.13.(2023年湖北省十堰市中考数学真题)已知点物线241y x x =+-上,若12y y =联立231941y x y x x =+⎧⎨=+-⎩解得:54x y =-⎧⎨=⎩或431x y =⎧⎨=⎩∴()5,4P -,由()224125y x x x =+-=+-,则()2,5Q --,对称轴为直线2x =-,设123m y y y ===,则点,,A B C 在y m =上,∵123y y y ==且123x x x <<,∴A 点在P 点的左侧,即15x <-,232x x <-<,当5m =-时,23x x =对于319y x =+,当5y =-,8x =-,此时18x =-,∴18x >-,∴185x -<<-∵对称轴为直线2x =-,则()23224x x +=⨯-=-,∴123x x x ++的取值范围是123129x x x -<++<-,故选:A .【点睛】本题考查了二次函数的性质,一次函数的性质,数形结合熟练掌握是解题的关键.14.(2023年广东广州中考数学真题)已知点()11,A x y ,()22,B x y 在抛物线23y x =-上,且120x x <<,则1y 2y .(填“<”或“>”或“=”)【答案】<【分析】先求出抛物线的对称轴,然后根据二次函数的性质解决问题.【详解】解:23y x =-的对称轴为y 轴,∵10a =>,∴开口向上,当0x >时,y 随x 的增大而增大,∵120x x <<,∴12y y <.故答案为:<.【点睛】本题主要考查了二次函数的增减性,解题的关键是根据抛物表达式得出函数的开口方向和对称轴,从而分析函数的增减性.【答案】4【分析】与抛物线2y ax bx c =++与x 轴相交于点由CD x ∥轴,可得C ,D 关于直线x 【详解】解:∵抛物线2y ax bx =++∴抛物线的对称轴为直线132x +==【答案】①③【分析】依据题意,根据所给图象可以得出从而由根与系数的关系,逐个判断可以得解.【详解】解:由图象可得,a >由题意,令2ax bx c kx ++=,∴又二次函数2y ax bx c =++的图象与正比例函数点B 的横坐标为2,2(ax b k ∴+-18.(2020·黑龙江大庆市·中考真题)已知关于x 的一元二次方程220x x a --=,有下列结论:①当1a >-时,方程有两个不相等的实根;②当0a >时,方程不可能有两个异号的实根;③当1a >-时,方程的两个实根不可能都小于1;④当3a >时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为_________.【答案】①③④【分析】由根的判别式,根与系数的关系进行判断,即可得到答案.【详解】解:根据题意,∵一元二次方程220x x a --=,∴2(2)41()44a a ∆=--⨯⨯-=+;∴当440a +>,即1a >-时,方程有两个不相等的实根;故①正确;当12440•0a x x a +>⎧⎨=->⎩,解得:10a -<<,方程有两个同号的实数根,则当0a >时,方程可能有两个异号的实根;故②错误;抛物线的对称轴为:212x -=-=,则当1a >-时,方程的两个实根不可能都小于1;故③正确;由3a >,则223a x x =->,解得:3x >或1x <-;故④正确;∴正确的结论有①③④;故答案为:①③④.【点睛】本题考查了二次函数的性质,一元二次方程根的判别式,根与系数的关系,解题的关键是掌握所学的知识进行解题.由图可知:当<<0y 5时,2<<1x --或34x <<;(2)∵2223324b b y x bx x ⎛⎫=+-=+-- ⎪⎝⎭,∴当2b x =-时,y 有最小值为234b --;∵对于一切实数x ,若函数值y t >总成立,∴234bt <--;(3)∵2223324b b y x bx x ⎛⎫=+-=+-- ⎪⎝⎭,∴抛物线的开口向上,对称轴为2b x =-,又当m y n <<时(其中m n 、为实数,m n <),自变量x 的取值范围是12x <<,20.(2022·贵州遵义·中考真题)新定义:我们把抛物线2y ax bx c =++(其中0ab ≠)与抛物线2y bx ax c =++称为“关联抛物线”.例如:抛物线2231y x x =++的“关联抛物线”为:2321y x x =++.已知抛物线()21:4430C y ax ax a a =++-≠的“关联抛物线”为2C .(1)写出2C 的解析式(用含a 的式子表示)及顶点坐标;(2)若0a >,过x 轴上一点P ,作x 轴的垂线分别交抛物线1C ,2C 于点M ,N .①当6MN a =时,求点P 的坐标;②当42a x a -≤≤-时,2C 的最大值与最小值的差为2a ,求a 的值.【答案】(1)()24430y ax ax a a =++-≠,顶点为()23--,(2)①()1,0P -或()2,0;②2a =或a =【分析】(1)根据定义将一次项系数与二次项系数互换即可求得解析式,化为顶点式即可求得顶点坐标;(2)①设(),0P p ,则()2,443M p ap ap a ++-,()2,443N p ap ap a ++-,根据题意建立方程解方程即可求解;②根据题意,分三种情形讨论,根据点距离对称轴的远近确定最值,然后建立方程,解方程求解即可.(1)解: 抛物线()21:4430C y ax ax a a =++-≠的“关联抛物线”为2C ,根据题意可得,2C 的解析式()24430y ax ax a a =++-≠()2244323y ax ax a a x =++-=+- 顶点为()23--,(2)解:①设(),0P p ,则()2,443M p ap ap a ++-,()2,443N p ap ap a ++-()22443443MN ap ap a ap ap a ∴=++--++-233ap ap=- 6MN a =2336ap ap a ∴-=0a ≠ ∴22p p -=±当22p p -=时,解得11p =-,22p =当22p p -=-时,方程无解()1,0P ∴-或()2,0② 2C 的解析式()24430y ax ax a a =++-≠()2244323y ax ax a a x =++-=+-顶点为()23--,,对称轴为2x =-0a > ,22a ∴->-当()()()2422a a --->---时,即1a <时,函数的最大值为()2423a a -+-,最小值为3- 2C 的最大值与最小值的差为2a ()222a a a∴-=0a ≠ 2a ∴-=1222a a ==(1a <,舍去)2a ∴=当()()()2422a a ---<---时,且42a -<-即12a <<时,函数的最大值为()2223a a -+-,最小值为3- 2C 的最大值与最小值的差为2a 32a a∴=0a ≠a ∴=解得12a a ==12a <<,舍去)a ∴=当42a ->-时,即2a >时,抛物线开向上,对称轴右侧y 随x 的增大而增大,函数的最大值为()2223a a -+-33a =-,最小值为()()2242323a a a a -+-=-- 2C 的最大值与最小值的差为2a ∴()233232a a a a ---+=即()23220a a a a ---=0a ≠ 即()22220a a ---=解得32a =(2a >舍去)综上所述,2a =或a =【点睛】本题考查了二次函数的性质,求顶点式,二次函数的最值问题,分类讨论是解题的关键.。

2019年人教版高考数学专题复习——二次函数Word版

2019年人教版高考数学专题复习——二次函数Word版

二次函数复习(附参考答案)1.二次函数f(x)=ax 2+bx+c(a 0)在给定区间上的值域若a 0,①当时. .②当时.③当时.在比较的大小时亦可以与对称轴的距离而比较。

若a0,可得类似的结论。

但无论如何的最值必在中取到。

2.二次函数与一元二次方的根、与一元二次不等式的关系二次函数 △情况一元二次方程一元二次不等式解集Y=ax 2+bx+c(a>0) △=b 2-4ac ax 2+bx+c=0 (a>0) ax 2+bx+c>0 (a>0)Ax 2+bx+c<0 (a>0)图象与解△>0△=0△<0方程无解R根oxym n xy om no xym n例1、(1)函数是单调函数的充要条件是()(2若函数)的图象关于对称则.(3)取何值时,方程的一根大于,一根小于.(4)方程的两根均大于1,则实数a的取值范围是___。

(5)设是关于m的方程的两个实根,则的最小值是()(A)(B)18 (C)8 (D)(6)若函数在区间上为减函数,则a的取值范围为()(A) (0,1) (B)((C)(D)(7)方程有正数解,则的取值范围为。

例2、已知函数在区间[0,2]上有最小值3,求a的值。

例3、若函数在上恒为正值,求实数的取值范围。

例4、已知二次函数为常数,且a≠0),满足条件:且方程有等根.⑴求的解析式;⑵问是否存在实数m,n(m<n),使的定义域和值域分别是[m,n]和[2m,2n].如果存在求出m,n的值;如果不存在,说明理由.例5、已知二次函数的二次项系数为a,且不等式的解集为(1,3).(1)若方程有两个相等的根,求的解析式;(2)若的最大值为正数,求a的取值范围.例6、设二次函数,方程的两根和满足.(1)求实数的取值范围;(2)试比较与的大小,并说明理由.例7、已知函数,且方程有实根.(1)求证:且;(2)若是方程的一个实根,判断的正负,并说明理由.例8、设,,.(Ⅰ)求证:函数与函数的图象有两个交点;(Ⅱ)设与的图象的交点、在轴上的射影为、,求的取值范围;(Ⅲ)求证:≤时,恒有.例9.设a为实数,记函数的最大值为g(a)。

专题04 二次函数与一元二次方程、不等式(原卷版)

专题04 二次函数与一元二次方程、不等式(原卷版)

2023高考一轮复习讲与练04 二次函数与一元二次方程、不等式练高考 明方向1、【2022年新高考I 卷第15题】2、【2022年新高考II 卷第15题】3.(2020年高考数学课标Ⅰ卷理科)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a = ( )A .–4B .–2C .2D .44.【2019年高考天津卷理数】设,则“”是“”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 5.(2018全国卷Ⅰ)已知集合2{20}=-->A x x x ,则A =RA .{12}-<<x xB .{12}-≤≤x xC .{|1}{|2}<->x x x xD .{|1}{|2}-≤≥x x x x6.(2017山东)设函数24y x =-的定义域A ,函数ln(1)y x =-的定义域为B ,则A B ⋂=A .(1,2)B .(1,2]C .(2,1)-D .[2,1)-7.(2017江苏)记函数2()6f x x x =+-的定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 .8.(2015山东)已知集合2{|430}A x x x =-+<,{|24}B x x =<<,则AB =A .(1,3)B .(1,4)C .(2,3)D .(2,4) 9.(2014新课标Ⅰ)已知集合A={x |2230x x --≥},B={x |-2≤x <2},则AB =A .[-2, -1]B .[-1,1]C .[-1,2)D .[1,2)10.(2013重庆)关于的不等式()的解集为,且,则A .B .C .D .11.(2014江苏)已知函数若对于任意,都有成立,则实数的取值范围是 .12.(2013重庆)设0απ≤≤,不等式28(8sin )cos 20x x αα-+≥对恒成立,则的取值范x ∈R 250x x -<|1|1x -<x 22280x ax a --<0a >12(,)x x 2115x x -=a =5272154152,1)(2-+=mx x x f ]1,[+∈m m x 0)(<x f m x R ∈a围为 .13.(2012福建)已知关于x 的不等式220x ax a -+>在R 上恒成立,则实数a 的取值范围是_________.14.(2012江苏)已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 .15.(2010江苏)设实数,x y 满足3≤2xy ≤8,4≤y x 2≤9,则43yx 的最大值是 .16.(2010天津)设函数2()1f x x =-,对任意2,3x ⎡⎫∈+∞⎪⎢⎣⎭,24()x f m f x m ⎛⎫-⎪⎝⎭≤(1)4()f x f m -+ 恒成立,则实数m 的取值范围是 .讲典例 备高考类型一、一元二次方程、不等式 基础知识:1.一元二次不等式只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式. 2.三个“二次”间的关系 判别式Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0 (a >0)的根有两相异实根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b 2a没有实数根二次函数与一元二次方程、不等式一元二次不等式一元二次不等式恒成立一元二次方程根的分布三个二次之间的关系含参的一元二次不等式系注意:(1)记忆口诀:大于号取两边,小于号取中间.(2)解不等式ax 2+bx +c >0(<0)时不要忘记当a =0时的情形.基本题型:1.不等式(x -2)(3-2x )≥0的解集为( )A.⎝⎛⎭⎫32,+∞ B.⎣⎡⎦⎤32,2 C .[2,+∞)D .⎝⎛⎦⎤-∞,32 2.若a <0,则关于x 的不等式(ax -1)(x -2)>0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪2<x <1a B.⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <2 C .⎩⎨⎧⎭⎬⎫x ⎪⎪ x <1a 或x >2D .⎩⎨⎧⎭⎬⎫x ⎪⎪x <2或x >1a 3.(多选题)下列不等式解集为空集的有( )A .x 2+2x +2≤0B .x 2+2x +1≤0C .|x +1|+|x +2|<1D .|x +1x|<24.(多选题)与不等式2230x x --<的解集相等的不等式为( )A .()()3210x x --<B .1023x x +<-C .()32301x x -<+ D .()()22310x x x -+< 基本方法:解一元二次不等式的4个步骤类型二、一元二次不等式恒成立基础知识:1、不等式ax 2+bx +c >0(<0)恒成立的条件要结合其对应的函数图象决定.①不等式ax2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a =b =0,c >0或⎩⎪⎨⎪⎧ a >0,Δ<0.②不等式ax2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a =b =0,c <0或⎩⎪⎨⎪⎧a <0,Δ<0.2、对于二次不等式恒成立问题常见的类型有两种,一是在全集R 上恒成立,二是在某给定区间上恒成立.对第一种情况,恒大于0就是相应的二次函数的图象全部在x 轴上方,恒小于0就是相应的二次函数的图象全部在x 轴下方;对第二种情况,要充分结合函数图象进行分类讨论(也可采用分离参数的方法).基本题型:1.在R 上定义运算:a b ad bc c d ⎛⎫=- ⎪⎝⎭ ,若不等式1211x a a x --⎛⎫≥ ⎪+⎝⎭ 对任意实数x 恒成立,则实数a 的最大值为( )A .12-B .32-C .12D .322.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( )A .m ≤0B .0≤m <57C .m <0或0<m <57D .m <573.(多选题)下列条件中,为 “关于x 的不等式210mx mx -+>对R x ∀∈恒成立”的充分不必要条件的有( )A .04m ≤<B .02m <<C .14m <<D .16m -<<4.设函数2()6f x mx mx m =--+,若对于[]1,3x ∈,()0f x <恒成立,则实数m 的取值范围是( )A .67m >B .67m <C .67m ≤D .67m ≥5.已知函数()224f x x x k =+-,()22g x x x =-.(1)若对任意[]3,3x ∈-,都有()()f x g x ≤成立,求实数k 的取值范围; (2)若存在[]3,3x ∈-,使()()f x g x ≤成立,求实数k 的取值范围; (3)若对任意[]12,3,3x x ∈-,都有()()12f x g x ≤成立,求实数k 的取值范围. 【基本方法】1、一元二次不等式恒成立问题求解思路:(1)一元二次不等式在R 上恒成立确定参数的范围时,结合一元二次方程,利用判别式来求解。

二次函数专题训练(带答案)

二次函数专题训练(带答案)

二次函数知识点第一节 二次函数的定义、图像、性质1.下列函数解析式中,一定为二次函数的是( ) A.13-=x yB.c bx ax y ++=2C.1222+-=t t sD.xx y 12+= 【解答】解:A 、y=3x ﹣1是一次函数,故A 错误;B 、y=ax 2+bx+c (a ≠0)是二次函数,故B 错误; C 、s=2t 2﹣2t+1是二次函数,故C 正确;D 、y=x 2+不是二次函数,故D 错误;故选:C .2.下列函数是二次函数的是( ) A.12+=x yB.12+-=x yC.22+=x yD.221-=x y 【解答】解:A 、y=2x+1,是一次函数,故此选项错误;B 、y=﹣2x+1,是一次函数,故此选项错误; D 、y=x 2+2是二次函数,故此选项正确;D 、y=x ﹣2,是一次函数,故此选项错误.故选:C .3.下列函数关系中,是二次函数的是( ) A.在弹性限度内,弹簧的长度y 与所挂物体质量x 之间的关系B.当距离一定时,火车行驶的时间t 与速度v 之间的关系C.等边三角形的周长C 与边长a 之间的关系D.圆心角为︒120的扇形面积S 与半径R 之间的关系【解答】解:A 、y=mx+b ,当m ≠0时(m 是常数),是一次函数,错误;B 、t=,当s ≠0时,是反比例函数,错误;C 、C=3a ,是正比例函数,错误;D 、S=πR 2,是二次函数,正确.故选:D .4.二次函数722-+=x x y 的函数值是8,那么对应的x 的值是( )A.3B.5C.-3和5D.3和-5【解答】解:根据题意,得x 2+2x ﹣7=8,即x 2+2x ﹣15=0,解得x=3或﹣5,故选:D .5.已知一次函数c x ab y +=的图象如图,则二次函数c bx ax y ++=2在平面直角坐标系中的图象可能是( )A. B. C.D.【解答】解:观察函数图象可知:<0、c >0,∴二次函数y=ax 2+bx+c 的图象对称轴x=﹣>0,与y 轴的交点在y 轴负正半轴.故选:A .6.如图,函数122+-=x ax y 和a ax y -=(a 是常数,且0≠a )在同一平面直角坐标系的图象可能是( )A. B. C. D.【解答】解:A 、由一次函数y=ax ﹣a 的图象可得:a <0,此时二次函数y=ax 2﹣2x+1的图象应该开口向下,故选项错误;B 、由一次函数y=ax ﹣a 的图象可得:a >0,此时二次函数y=ax 2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,故选项正确;C 、由一次函数y=ax ﹣a 的图象可得:a >0,此时二次函数y=ax 2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x 轴的正半轴相交,故选项错误;D 、由一次函数y=ax ﹣a 的图象可得:a >0,此时二次函数y=ax 2﹣2x+1的图象应该开口向上,故选项错误.故选:B .7.函数)(k x k y -=与2kx y =,)0(≠=k xky ,在同一坐标系上的图象正确的是( )A. B.C. D.【解答】解:一次函数y=k (x ﹣k )=kx ﹣k 2,∵k ≠0,∴﹣k 2<0,∴一次函数与y 轴的交点在y 轴负半轴. A 、一次函数图象与y 轴交点在y 轴正半轴,A 不正确;B 、一次函数图象与y 轴交点在y 轴正半轴,B 不正确;C 、一次函数图象与y 轴交点在y 轴负半轴,C 可以;D 、一次函数图象与y 轴交点在y 轴正半轴,D 不正确.故选:C .8.如图,二次函数bx ax y +=2的图象开口向下,且经过第三象限的点P .若点P 的横坐标为-1,则一次函数b x b a y +-=)(的图象大致是()A .B .C .D .【解答】解:由二次函数的图象可知,a <0,b <0,当x=﹣1时,y=a ﹣b <0, ∴y=(a ﹣b )x+b 的图象在第二、三、四象限,故选:D .9.已知二次函数33222+++=a ax ax y (其中x 是自变量),当2≥x 时,y 随x 的增大而增大,且12≤≤-x 时,y 的最大值为9,则a 的值为( )A.1或﹣2B.2-或2C.2D.1【解答】解:∵二次函数y=ax 2+2ax+3a 2+3(其中x 是自变量),∴对称轴是直线x=﹣=﹣1,∵当x ≥2时,y 随x 的增大而增大,∴a >0,∵﹣2≤x ≤1时,y 的最大值为9,∴x=1时,y=a+2a+3a 2+3=9, ∴3a 2+3a ﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D .10.抛物线5)2(32+-=x y 的顶点坐标是( )A.(-2,5)B.(-2,-5)C.(2,5)D.(2,-5)【解答】解:抛物线y=3(x ﹣2)2+5的顶点坐标为(2,5),故选:C .11.关于二次函数1422-+=x x y ,下列说法正确的是( )A.图象与y 轴的交点坐标为(0,1)B.图象的对称轴在y 轴的右侧C.当0<x 时,y 的值随x 值的增大而减小D.y 的最小值为-3【解答】解:∵y=2x 2+4x ﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A 错误,该函数的对称轴是直线x=﹣1,故选项B 错误,当x <﹣1时,y 随x 的增大而减小,故选项C 错误, 当x=﹣1时,y 取得最小值,此时y=﹣3,故选项D 正确,故选:D .12.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA ,O 恰为水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA 的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y (m)与水平距离x (m)之间的关系式是322++-=x x y ,则下列结论:(1)柱子OA 的高度为3m ;(2)喷出的水流距柱子1m 处达到最大高度;(3)喷出的水流距水平面的最大高度是4m ;(4)水池的半径至少要3m 才能使喷出的水流不至于落在池外.其中正确的有( )A.1个B.2个C.3个D.4【解答】解:∵y=﹣x 2+2x+3=﹣(x ﹣1)2+4,∴当x=0时,y=3,即OA=3m ,故(1)正确, 当x=1时,y 取得最大值,此时y=4,故(2)和(3)正确,当y=0时,x=3或x=﹣1(舍去),故(4)正确,故选:D . 13.如图,抛物线()02≠++=a c bx ax y 的对称轴为直线1=x ,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①ac b 42-;②方程02=++c bx ax 的两个根是11-=x ,32=x ;③3ca->;④当0>y 时,x 的取值范围是31≤<-x ;⑤当0>x 时,y 随x 增大而增大. 上述五个结论中正确的有 (填序号)【解答】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,即b 2>4ac ,所以①正确; ∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0), ∴方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x=﹣=1,即b=﹣2a ,而x=﹣1时,y=0,即a ﹣b+c=0,∴a+2a+c=0,∴3a+c=0,即a=﹣,所以③错误;∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误; ∵抛物线的对称轴为直线x=1,∴当x <1时,y 随x 增大而增大,所以⑤错误. 故答案为①②. 14.已知二次函数()()m x m x y ---=22(m 为常数).(1)求该二次函数图象与x 轴的交点坐标; (2)求该二次函数图象的顶点P 的坐标;(3)如将该函数的图象向左平移3个单位,再向上平移1个单位,得到函数2x y =的图象,直接写出m的值.【解答】解:(1)当y=0时,(x ﹣m )2﹣2(x ﹣m )=0,(x ﹣m )(x ﹣m ﹣2)=0,解得x 1=m ,x 2=m+2,∴该二次函数图象与x 轴的交点坐标为(m ,0),(m+2,0);(2)∵y=[x ﹣(m+1)]2﹣1,∴该二次函数图象的顶点P 的坐标为(m+1,﹣1);(3)∵该函数的图象向左平移3个单位,再向上平移1个单位,∴平移的顶点坐标为(m+1﹣3,﹣1+1),即顶点坐标为(m ﹣2,0),∵平移后的抛物线为y=x 2,即平移后的抛物线顶点坐标为(0,0), ∴m ﹣2=0,∴m=2.第二节 待定系数法、图像与系数关系1.已知二次函数的图象过(0,1),(2,4),(3,10)三点,求这个二次函数的解析式.2.已知二次函数的图象的顶点坐标为(-2,-3),且图象过点(-3,-2).求此二次函数的解析式.3.已知二次函数c bx ax y ++=2,当4=x 时,3=y ;当1-=x 时,8-=y ;当2=x 时,1=y .求这个二次函数的解析式.4.已知二次函数图象的顶点坐标为(1,-1),且过原点(0,0),求该二次函数的解析式.5.已知一个二次函数的图象与x 轴的两个交点的坐标分别为(-1,0)和(2,0),与y 轴的交点坐标为(0,-2),求这个二次函数的解析式.6.如图所示,已知二次函数c bx x y ++=2过点)0,1(A ,)3,0(-C .(1)求此二次函数的解析式;(2)在抛物线上存在一点P 使ABP ∆的面积为10,请直接写出点P 的坐标.7.如图,直线l 过点)0,4(A 和)4,0(B 两点,它与二次函数2ax y =的图象在第一象限内交于点P ,若29=∆AOPS ,求二次函数的解析式.8.抛物线c bx x y ++-=231经过点)0,33(A 和点)3,0(B ,且这个抛物线的对称轴为直线l ,顶点为C .(1)求抛物线的解析式; (2)连接AB 、AC 、BC ,求△ABC ABC ∆的面积.【解答】解:(1)∵抛物线经过A、B (0,3)∴由上两式解得∴抛物线的解析式为:;(2)由(1)抛物线对称轴为直线x=把x=代入,得y=4则点C 坐标为(,4)设线段AB 所在直线为:y=kx+b 解得AB 解析式为:∵线段AB 所在直线经过点A 、B (0,3)抛物线的对称轴l 于直线AB 交于点D∴设点D 的坐标为D 将点D代入,解得m=2∴点D 坐标为,∴CD=CE ﹣DE=2过点B 作BF ⊥l 于点F ∴BF=OE=∵BF+AE=OE+AE=OA=∴S △ABC =S △BCD +S △ACD =CD •BF+CD •AE∴S △ABC =CD (BF+AE )=×2×=9.已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,下列结论:①0>abc ;②02>+b a ;③042>-ac b;④0>+-c b a ,其中正确的个数是( )A.1B.2C.3D.4解:①∵抛物线对称轴是y 轴的右侧,∴ab <0,∵与y 轴交于负半轴,∴c <0,∴abc >0,故①正确; ②∵a >0,x=﹣<1,∴﹣b <2a ,∴2a+b >0,故②正确;③∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,故③正确; ④当x=﹣1时,y >0,∴a ﹣b+c >0,故④正确.故选:D . 10.如图,已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:①0>abc ;②c a b >-;③024>++c b a ;④c a ->3;⑤)(b am m b a +>+(1≠m 的实数).其中正确结论的有( )A.①②③B.②③⑤C.②③④D.③④⑤【解答】解:①∵对称轴在y 轴的右侧,∴ab <0,由图象可知:c >0,∴abc <0,故①不正确; ②当x=﹣1时,y=a ﹣b+c <0,∴b ﹣a >c ,故②正确;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c >0,故③正确; ④∵x=﹣=1,∴b=﹣2a ,∵a ﹣b+c <0,∴a+2a+c <0,3a <﹣c ,故④不正确;⑤当x=1时,y 的值最大.此时,y=a+b+c ,而当x=m 时,y=am 2+bm+c ,所以a+b+c >am 2+bm+c (m ≠1),故a+b >am 2+bm ,即a+b >m (am+b ),故⑤正确.故②③⑤正确.故选:B .11.已知二次函数c bx ax y ++=2的图象如图所示,则下列说法正确的是( )A.0<acB.0<bC.042<-ac bD.0<++c b a【解答】解:∵抛物线开口向上,∴a >0,∵抛物线交于y 轴的正半轴,∴c >0,∴ac >0,A 错误; ∵﹣>0,a >0,∴b <0,∴B 正确;∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,C 错误;当x=1时,y >0,∴a+b+c >0,D 错误;故选:B .12.已知二次函数c bx ax y ++=2的图象如图所示,OC OA =,则由抛物线的特征写出如下含有c b a ,,三个字母的等式或不等式:①1442-=-ab ac ;②01=++b ac ;③0>abc ;④0>+-c b a .其中正确的个数是( )A.4个B.3个C.2个D.1个【解答】解:①=﹣1,抛物线顶点纵坐标为﹣1,正确;②ac+b+1=0,设C (0,c ),则OC=|c|,∵OA=OC=|c|,∴A (c ,0)代入抛物线得ac 2+bc+c=0,又c ≠0,∴ac+b+1=0,故正确; ③abc >0,从图象中易知a >0,b <0,c <0,故正确;④a ﹣b+c >0,当x=﹣1时y=a ﹣b+c ,由图象知(﹣1,a ﹣b+c )在第二象限,∴a ﹣b+c >0,故正确.故选:A .13.若抛物线c bx x y ++-=2经过点(-2,3),则942--b c 的值是( )A.5B.-1C.4D.18【解答】解:∵抛物线y=﹣x 2+bx+c 经过点(﹣2,3),∴﹣(﹣2)2﹣2b+c=3,整理得,﹣2b+c=7, ∴2c ﹣4b ﹣9=2(c ﹣2b )﹣9=2×7﹣9=5,故选:A .14.已知抛物线)0(2>=a ax y 过),2(1y A -、),1(2y B 两点,则下列关系式一定正确的是( )A.210y y >> B.120y y >>C.021>>y yD.012>>y y【解答】解:∵抛物线y=ax 2(a >0),∴A (﹣2,y 1)关于y 轴对称点的坐标为(2,y 1). 又∵a >0,0<1<2,∴y 2<y 1.故选:C .15.将抛物线322++=x x y 向下平移3个单位长度后,所得到的抛物线与直线3=y 的交点坐标是( )A.(0,3)或(-2,3)B.(-3,0)或(1,0)C.(3,3)或(-1,3)D.(-3,3)或(1,3)【解答】解:将抛物线y=x 2+2x+3向下平移3个单位长度后,所得到的抛物线为y=x 2+2x当该抛物线与直线y=3相交时,x 2+2x=3解得:x 1=﹣3,x 2=1则交点坐标为:(﹣3,3)(1,3)故选:D .16.将抛物线2x y =向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( )A.5)2(2-+=x yB.5)2(2++=x yC.5)2(2--=x yD.5)2(2+-=x y【解答】解:抛物线y=x 2的顶点坐标为(0,0),先向左平移2个单位再向下平移5个单位后的抛物线的顶点坐标为(﹣2,﹣5),所以,平移后的抛物线的解析式为y=(x+2)2﹣5.故选:A .第三节 最值问题、一元二次方程、实际应用1.已知二次函数2)(h x y --=(h 为常数),当自变量x 的值满足52≤≤x 时,与其对应的函数值y 的最大值为-1,则h 的值为( ) A.3或6B.1或6C.1或3D.4或6【解答】解:当h <2时,有﹣(2﹣h )2=﹣1,解得:h 1=1,h 2=3(舍去);当2≤h ≤5时,y=﹣(x ﹣h )2的最大值为0,不符合题意;当h >5时,有﹣(5﹣h )2=﹣1, 解得:h 3=4(舍去),h 4=6.综上所述:h 的值为1或6.故选:B .2.当1+≤≤a x a 时,函数122+-=x x y 的最小值为1,则a 的值为( )A.-1B.2C.0或2D.-1或2【解答】解:当y=1时,有x 2﹣2x+1=1,解得:x 1=0,x 2=2.∵当a ≤x ≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D . 3.函数c bx ax y ++=2的图象如图所示,那么关于x 的一元二次方程032=-++c bx ax 的跟的情况是( )A.有两个不相等的实数根B.有两个异号的实数根C.有两个相等的实数根D.没有实数根4.在平面直角坐标系中,二次函数c bx x y ++=221的图像如图所示,关于x的方程m c bx x =++221有实数根,则m 的取值范围是5.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y (件)与销售单价x (元/件)之间的函数关系式为4404+-=x y ,要获得最大利润,该商品的售价应定为()A .60元B .70元C .80元D .90元【解答】解:设销售该商品每月所获总利润为w , 则w=(x ﹣50)(﹣4x+440) =﹣4x 2+640x ﹣22000 =﹣4(x ﹣80)2+3600,∴当x=80时,w 取得最大值,最大值为3600,即售价为80元/件时,销售该商品所获利润最大,故选:C .6.竖直向上发射的小球的高度)(m h 关于运动时间)(s t 的函数表达式为bt ath +=2,其图象如图,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( ) A.第3秒 B.第3.5秒 D.第4.2秒 D.第6.5秒7.如图,ABC ∆是直角三角形,︒=∠90A ,cm AB 8=,cm AC 6=点P 从点A 出发,沿AB 方向以s cm /2的速度向点B 运动;同时点Q 从点A 出发沿AC 方向以s cm /1的速度向点C 运动,其中一个动点到达终点,则另一个动点也停止运动,则三角形APQ 的最大面积是( )A.28cm B.216cm C.224cm D.232cm8.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系()02≠++=a c bx ax y .如图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离是多少?【解答】解:根据题意知,抛物线y=ax 2+bx+c (a ≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m ).9.已知二次函数c bx x y ++-=2163的图象经过()3,0A ,⎪⎭⎫ ⎝⎛--29,4B 两点.(1)求c b ,的值. (2)二次函数c bx x y ++-=2163的图象与x 轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.【解答】解:(1)把A (0,3),B (﹣4,﹣)分别代入y=﹣x 2+bx+c ,得,解得;(2)由(1)可得,该抛物线解析式为:y=﹣x 2+x+3.△=()2﹣4×(﹣)×3=>0,所以二次函数y=﹣x 2+bx+c 的图象与x 轴有公共点.∵﹣x 2+x+3=0的解为:x 1=﹣2,x 2=8∴公共点的坐标是(﹣2,0)或(8,0).10.设二次函数()b a bx ax y +-+=2(a ,b 是常数,0≠a ).(1)判断该二次函数图象与x 轴的交点的个数,说明理由. (2)若该二次函数图象经过()4,1-A ,()1,0-B ,()1,1C 三个点中的其中两个点,求该二次函数的表达式.(3)若0<+b a ,点()m P,2()0>m 在该二次函数图象上,求证:0>a .【解答】解:(1)设y=0∴0=ax 2+bx ﹣(a+b )∵△=b 2﹣4•a[﹣(a+b )]=b 2+4ab+4a 2=(2a+b )2≥0 ∴方程有两个不相等实数根或两个相等实根.∴二次函数图象与x 轴的交点的个数有两个或一个(2)当x=1时,y=a+b ﹣(a+b )=0∴抛物线不经过点C 把点A (﹣1,4),B (0,﹣1)分别代入得解得∴抛物线解析式为y=3x 2﹣2x ﹣1(3)当x=2时m=4a+2b ﹣(a+b )=3a+b >0①∵a+b <0∴﹣a ﹣b >0② ①②相加得:2a >0∴a >011.已知二次函数()()312---=m x x y (m 为常数).(1)求证:不论m 为何值,该函数的图象与x 轴总有公共点; (2)当m 取什么值时,该函数的图象与y 轴的交点在x 轴的上方?【解答】(1)证明:当y=0时,2(x ﹣1)(x ﹣m ﹣3)=0, 解得:x 1=1,x 2=m+3.当m+3=1,即m=﹣2时,方程有两个相等的实数根; 当m+3≠1,即m ≠﹣2时,方程有两个不相等的实数根. ∴不论m 为何值,该函数的图象与x 轴总有公共点; (2)解:当x=0时,y=2(x ﹣1)(x ﹣m ﹣3)=2m+6, ∴该函数的图象与y 轴交点的纵坐标为2m+6,∴当2m+6>0,即m >﹣3时,该函数的图象与y 轴的交点在x 轴的上方.。

高中数学-二次函数

高中数学-二次函数

二次函数专题专题必要性:高考中的很多题,往往最后都能转化为二次函数、一元二次方程和一元二次不等式问题,因此二次函数贯穿整个高考中,需深度掌握。

基础知识回顾1.给出函数表达式()2f x ax bx c =++,首先需要考虑a 是否等于0,若0a =,则函数不是二次函数. 2.二次函数的三种表现形式1)一般式:2(0)y ax bx c a =++¹2)顶点式:2()(0),)y a x h k a h k =-+¹此时二次函数的顶点坐标为此时二次函数的顶点坐标为((;3)分解式:12()()y a x x x x =-- 其中1x 、2x 是二次函数的与x 轴的两个交点的横坐标,此时二次函数的对称轴为直线122x x x +=. 3.二次函数的图像与性质①开口方向:当0a >,函数开口方向向上;当0a <,函数开口方向向下;,函数开口方向向下; ②对称轴:2bx a=-; ③顶点坐标:(2b a -,244ac b a-);若图象与x 轴有两个交点,分别为11(,0)M x ,22(,0)M x ,则12M M =12x x -=a D. ④增减性④增减性⑤最值()x R Î:当0a >时,函数有最小值,并且当2b x a =-,min y =244ac b a-;当0a <时,函数有最大值,并且当2bx a =-时,2max 44ac b y a-=;⑥与x 轴的交点个数:当24b ac D =->0时,函数与x 轴有两个不同的交点;D <0时,函数x 轴没有交点;D =0时,函数与x 轴有一个交点. 4.二次函数根的由来——配方法二次函数根的由来——配方法对20(0)ax bx c a ++=¹进行配方,变换为2b c xx++=,由于完全平方是:()2222a ab b a b ++=+即2222()x ax a x a ++=+,所以要变换为22222044b b b cx x a a aa ++-+=,变换的关键点:一次项系数除以2再整体平方.∴222224()244b b c b ac x a a a a -+=-=.从而得到,在240b ac -³时有解,242b b a c x a-±-=;若240b ac -£,此时无解. 5.有关一元二次方程判别式24b ac D =-,联系韦达定理1)D >0有两个不等实根;D =0表示有两个相等实根,D <0表示没有实数根,实际就是()2,0x a p p +=<的情况. 2)a 、c 异号,此方程一定有两个解,且一根为正一根为负. 3)a 、b 异号时,两根相加为正数,表明两根在数轴上的中点大于0. 4)a 、b 同号时,两根相加为负数,表明两根在数轴上的中点小于0. 6.对于2y x =的特点和图象(幂函数的一种)1)开口朝上的抛物线图形,从原点(0,0)开始,1x <时,曲线变化缓慢,比y x =要小(分数或小数相乘,越乘结果越小),当过(1,1)点之后,图象加速上升,越向上越陡峭,斜率随x 的绝对值增大而增加. 2)图象关于y 轴对称. 3)(0,0)是图象的拐点,(,0]-¥上是减函数,(0,)+¥上是增函数. 4)图象与x 轴只有一个交点(0,0)。

专题04 二次函数与幂函数-2019年高考提升之数学考点讲解与真题分析(二)(解析版)

专题04 二次函数与幂函数-2019年高考提升之数学考点讲解与真题分析(二)(解析版)

走进高考:1(2018年上海)已知α∈{-2,-1,-12,12,1,2,3},若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α= . 【答案】-12(2018年天津文科)己知a ∈R ,函数f (x )=⎩⎨⎧x 2+2x +a -2,x ≤0,-x 2+2x -2a ,x >0.若对任意x ∈[-3,+∞),f (x )≤|x |恒成立,则a 的取值范围是 . 【答案】[18,2]【解析】当x ≤0时,函数f (x )=x 2+2x +a -2的对称轴为x =-1,抛物线开口向上,要使x ≤0时,对任意x ∈[-3,+∞),f (x )≤|x |恒成立,则只需要f (-3)≤|-3|=3,即9-6+a -2≤3,得a ≤2,当x >0时,要使f (x )≤|x |恒成立,即f (x )=-x 2+2x -2a ,则直线y =x 的下方或在y =x 上,由-x 2+2x -2a =x ,即x 2-x +2a =0,由判别式Δ=1-8a ≤0,得a ≥18,综上18≤a ≤2.故答案为[18,2].3.(2018年浙江)已知λ∈R ,函数f (x )=⎩⎨⎧x -4,x ≥λ,x 2-4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是 .若函数f (x )恰有2个零点,则λ的取值范围是 . 【答案】{x |1<x <4} (1,3]∪(4,+∞)【解析】当λ=2时函数f (x )=⎩⎨⎧x -4,x ≥λ,x 2-4x +3,x <λ,显然x ≥2时,不等式x -4<0的解集{x |2≤x <4};x <2时,不等式f (x )<0化为x 2-4x +3<0,解得1<x <2,综上,不等式的解集为{x |1<x <4}.函数f (x )恰有2个零点,函数f (x )=⎩⎨⎧x -4,x ≥λ,x 2-4x +3,x <λ的草图如图.函数f (x )恰有2个零点,则1<λ≤3或λ>4.故答案为{x |1<x <4};(1,3]∪(4,+∞).4.(2018年天津理科)已知a >0,函数f (x )=⎩⎨⎧x 2+2ax +a ,x ≤0,-x 2+2ax -2a ,x >0.若关于x 的方程f (x )=ax 恰有2个互异的实数解,则a 的取值范围是 . 【答案】(4,8)【要求】【重难点】1. 二次函数的定义和形式(1)二次函数的定义:形如2()f x ax bx c =++(0)a ≠ 的函数叫做一元二次函数.(2)二次函数的三种表示形式2()f x ax bx c =++;224()()24b ac b f x a x a a-=++;12()()()f x a x x x x =--2.二次函数的图象与性质图象:二次函数2()f x ax bx c =++(0)a ≠的图象是以直线2bx a=-为对称轴的抛物线,其开口方向由a 的符号确定,顶点坐标为24(,)24b ac b a a--性质:二次函数2()f x ax bx c =++(0)a ≠的单调性以顶点的横坐标2bx a=-为界,当0a >时,x ∈,2b a ⎛⎤-∞-⎥⎝⎦时,f(x)单调递减,x ∈,2b a ⎡⎫-+∞⎪⎢⎣⎭时, f(x)单调递增;当a<0时, x ,∈,2b a ⎛⎤-∞- ⎥⎝⎦时,f(x)单调递增;x ∈,2b a ⎡⎫-+∞⎪⎢⎣⎭时, f(x)单调递减 (4)若二次函数y=f(x)恒满足()()f x m f x n +=-+,则其对称轴为2m n x +=3. 二次函数、一元二次方程、一元二次不等式三者之间的关系4. 二次方程根分布讨论问题. 2()(0)f x ax bx c a =++>5.二次函数在闭区间上的最值问题对于二次函数2()()(0)f x a x h k a =-+>在闭区间[,]m n 上的最值问题,有以下结论: ①若[,]h m n ∈,则min max (),max{(),()}y f h k y f m f n === ②若[,]h m n ∉,则min max min{(),()},max{(),()}y f m f n y f m f n ==6.一般地,函数y x α=叫做幂函数(power function ),其中x 是自变量,α是实常数。

2019年高考数学艺术类考生专用复习资料:二次函数

2019年高考数学艺术类考生专用复习资料:二次函数

2019年高考数学艺术类考生专用复习资料
二次函数
要点梳理
1.二次函数的三种表示方法
(1)一般式:;
(2)两点式:;
(3)顶点式:.
2.二次函数f(x)=ax2+bx+c(a≠0)图象的是处理二次函数问题的重要依据.
激活思维
1.(必修1P33习题13改编)已知函数f(x)=x2-6x+8,x∈[1,a],且函数f(x)的最小值为f(a),那么实数a的取值范围是.
2.(必修1P37习题3改编)已知函数y=x2+ax-1在区间[0,3]上有最小值-2,那么实数a=.
3.(必修1P47习题9改编)若函数y=x2+(a+2)x+3,x∈[a,b]的图象关于直线x=1对称,则b=.
4.(必修1P43习题3改编)已知函数f(x)=若f(-4)=f(0),f(-2)=0,则关于x 的不等式f(x)≤1的解集为.
真题演练
1.(2014·江苏卷)已知函数f(x)=x2+mx-1,若对于任意的x ∈都有f(x)<0,则实数m 的取值范围为.
2019年高考数学艺术类考生专用复习资料第1 页共4 页。

数学中考 考点16 二次函数(知识精讲)-2019年中考数学必备之考点精讲与真题演练(解析版)

数学中考 考点16 二次函数(知识精讲)-2019年中考数学必备之考点精讲与真题演练(解析版)

考点16 二次函数【知识梳理】知识点一、二次函数的定义一般地,如果2y ax bx c =++(a ,b ,c 是常数,a ≠0),那么y 叫做x 的二次函数. 备注:如果2y ax bx c =++(a ,b ,c 是常数,a ≠0),那么y 叫做x 的二次函数.这里,当a=0时就不是二次函数了,但b 、c 可分别为零,也可以同时都为零. a 的绝对值越大,抛物线的开口越小.知识点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①2y ax =;②2y ax k =+;③()2y a x h =-;④()2y a x h k =-+,其中2b h a =-,244ac b k a-=;⑤2y ax bx c =++.(以上式子a≠0)几种特殊的二次函数的图象特征如下:2.抛物线的三要素:开口方向、对称轴、顶点.(1) a 的符号决定抛物线的开口方向:当a>0时,开口向上;当a<0时,开口向下;(2)平行于y 轴(或重合)的直线记作x=h .特别地,y 轴记作直线x=0. 3.抛物线()20y ax bx c a =++≠中,a ,b ,c 的作用:(1) a 决定开口方向及开口大小;(2) b 和a 共同决定抛物线对称轴的位置.由于抛物线2y ax bx c =++的对称轴是直线2b x a=-, 故:①b=0时,对称轴为y 轴;② 0b a > (即a 、b 同号)时,对称轴在y 轴左侧;③ 0b a< (即a 、b 异号)时,对称轴在y 轴右侧.(3) c 的大小决定抛物线2y ax bx c =++与y 轴交点的位置.当x=0时,y=c ,∴抛物线2y ax bx c =++与y 轴有且只有一个交点(0,c): ①c=0,抛物线经过原点; ②c>0,与y 轴交于正半轴;③c<0,与y 轴交于负半轴.4.用待定系数法求二次函数的解析式:(1)一般式:2y ax bx c =++(a≠0).已知图象上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()2y a x h k =-+(a≠0).已知图象的顶点或对称轴,通常选择顶点式. (可以看成2y ax =的图象平移后所对应的函数.)(3)交点式:已知图象与x 轴的交点坐标x 1、x 2,通常选用交点式: ()()12y a x x x x =--(a≠0).(由此得根与系数的关系:12b x x a +=-,12cx x a⋅=).知识点三、二次函数与一元二次方程的关系函数2y ax bx c =++(a≠0),当y=0时,得到一元二次方程20ax bx c ++=(a≠0),那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时240b ac ∆=-> ,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时240b ac ∆=-= ,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时240b ac ∆=-<,则方程没有实根. 通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:知识点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题. 备注:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【例题精讲】1、(2018浙江宁波)如图,二次函数y =ax 2+bx 的图象开口向下,且经过第三象限的点P .若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A.B.C.D.【答案】D【点睛】本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.2、(2018四川广安)抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度【答案】D【解析】解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.故选:D.【点睛】本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.3、(2018湖北随州)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y 轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D 点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.其中正确的有()A.4个B.3个C.2个D.1个【答案】A∵抛物线与x轴的一个交点在点(3,0)左侧,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣1,0)右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,所以②正确;【点睛】本题考查了二次函数与不等式(组):利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解.也考查了二次函数图象与系数的关系.4、已知函数y使y=a成立的x的值恰好只有3个时,a的值为______.【答案】2【解析】解:函数y的图象如图:根据图象知道当y=2时,对应成立的x值恰好有三个,∴a=2.故答案:2.【点睛】此题主要考查了利用二次函数的图象解决交点问题,解题的关键是把解方程的问题转换为根据函数图象找交点的问题.5、(2018甘肃兰州A)如图,抛物线y x2﹣7x与x轴交于点A、B,把抛物线在x轴及其下方的部分记作C1,将C1向左平移得到C2,C2与x轴交于点B、D,若直线y x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.m B.m C.m D.m【答案】Cx2﹣7x+5﹣2m=0∵相切∴△=49﹣20+8m=0∴m如图∵若直线y x+m与C1、C2共有3个不同的交点,∴m故选:C.*网【点睛】本题主要考查抛物线与x轴交点以及二次函数图象与几何变换的知识,解答本题的关键是正确地画出图形,利用数形结合进行解题,此题有一定的难度.6、(2018四川绵阳)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m.【答案】4 4解得:x=±2,所以水面宽度增加到4米,比原先的宽度当然是增加了(44)米,故答案为:44.【点睛】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.7、(2018辽宁抚顺)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?【答案】见解析【解析】解:(1)y=300﹣10(x﹣44),即y=﹣10x+740(44≤x≤52);(2)根据题意得(x﹣40)(﹣10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;【点睛】本题考查了二次函数的应用:利用二次函数解决利润问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.也考查了一元二次方程的应用.@网8、(2018湖北潜江)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?【答案】见解析【解析】解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1x+168(0≤x≤180);②当50<x<130时,W=x[(x+168)﹣(x+80)](x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(x+168﹣54)(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.【点睛】本题考查了二次函数的应用,待定系数法求二次函数的解析式,解题的关键是从实际问题中抽象出二次函数模型.。

二次函数与二次方程(检测)-2019年高考数学(理)名师揭秘之一轮总复习+Word版含解析

二次函数与二次方程(检测)-2019年高考数学(理)名师揭秘之一轮总复习+Word版含解析

本专题特别注意: 1.二次函数中定于域陷阱; 2.最值得应用陷阱; 3.隐含条件陷阱; 4.数形结合和陷阱; 5.参数讨论陷阱;【学习目标】1.理解并掌握二次函数的定义、图象及性质; 2.会求二次函数的值域与最值;3.运用二次函数、一元二次方程及一元二次不等式“三个二次”之间的联系去解决有关问题. 【知识要点】1.函数y =ax 2+bx +c (a ≠0)叫做二次函数,它的定义域是R ,这是二次函数的一般形式.另外,还有顶点式:y =a(x -h)2+k(a≠0),其中(h ,k )是抛物线顶点的坐标;两根式:y =a (x -x 1)(x -x 2)(a ≠0),其中x 1,x 2是抛物线与x 轴交点的横坐标. 2.二次函数的图象和性质上单调递增3.二次函数在闭区间上的最值若a>0,二次函数f(x)在闭区间[p,q]上的最大值为M,最小值为N.令x0=12(p+q),②若-b2a<p,则M=f(q),N=f(p);②若-b2a>q,则M=f(p),N=f(q);③若p≤-b2a≤x0,则M=f(q),N=f⎝⎛⎭⎪⎫-b2a;④若x0<-b2a≤q,则M=f(p),N=f⎝⎛⎭⎫-b2a4.根与系数的关系二次函数f(x)=ax2+bx+c(a≠0),当Δ=b2-4ac>0时,图象与x轴有两个交点M1(x1,0),M2(x2,0),这里的x1,x2是方程f(x)=0的两根,且⎩⎨⎧x1+x2=-b a,x1·x2=ca,|M1M2|=|x1-x2|=Δ|a|.考点训练:一、单选题1.【海南省2018届高三第二次联合考试】已知为偶函数,对任意,恒成立,且当时,.设函数,则的零点的个数为()A. 6B. 7C. 8D. 9【答案】C【解析】由为偶函数,对任意,恒成立,知,所以函数的周期,又知,所以函数关于对称,当时,做出其图象.并做关于的对称图象,得到函数在一个周期上的图象,其值域为,令,得,在同一直角坐标系内作函数在上的图象,由图象可知共有8个交点,所以函数的零点的个数为8个.解题思路:涉及函数的周期性及对称性问题,一般要关注条件中的以及函数的奇偶性,通过变形处理都可以转化为函数的对称性及周期性问题,结合对称性及周期性可研究函数零点个数及图像交点个数问题. 2.【浙江省温州市十五校联合体联考数学试题】在等差数列中,,那么方程的根的情况是( )A. 没有实根B. 两个相等实根C. 两个不等的负根D. 两个不等的正根 【答案】C3.【安徽省池州市贵池区2018期中检测 】已知函数在区间上是增函数,则实数的取值范围是( )A.B.C.D.【答案】B 【解析】二次函数的对称轴为;∵该函数在上是增函数;∴,∴,∴实数的取值范围是,故选B.4. 【衡水金卷】已知函数()2110sin 10sin 2f x x x =---, ,2x m π⎡⎤∈-⎢⎥⎣⎦的值域为1,22⎡⎤-⎢⎥⎣⎦,则实数m 的取值范围是( ) A. ,03π⎡⎤-⎢⎥⎣⎦ B. ,06π⎡⎤-⎢⎥⎣⎦ C. ,36ππ⎡⎤-⎢⎥⎣⎦ D. ,63ππ⎡⎤-⎢⎥⎣⎦【答案】B【解析】由题得()2110sin sin 2,,,,42f x x x x m t sinx π⎛⎫⎡⎤=-+++∈-= ⎪⎢⎥⎝⎭⎣⎦令则 ()()()211102,,1022f x g t t g t t t ⎛⎫==-++=-=-= ⎪⎝⎭令得或,由g(t)的图像,可知当 102t -≤≤时,f(x)的值域为1,22⎡⎤-⎢⎥⎣⎦,所以0.6m π-≤≤故选B.5.(2017湖北荆州)规定:如果关于x 的一元二次方程()200ax bx c a ++=≠有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程2280x x +-= 2280x x +-=是倍根方程;②若关于x 的方程220x ax ++= 2x ax 20++=是倍根方程,则a=±3;③若关于x 的方程()2600ax ax c a -+=≠ ()260?ax ax c a?-+=是倍根方程,则抛物线26y ax ax c =-+ 26y ax ax c =-+与x 轴的公共点的坐标是(2,0)和(4,0); ④若点(m ,n )在反比例函数4y x = 4y x=的图象上,则关于x x 的方程250mx x n ++= 250mx x n ++=是倍根方程上述结论中正确的有( )A. ①②B. ③④C. ②③D. ②④ 【答案】C当x1=﹣1时,x2=﹣2,∴x1+x2=﹣a=±3,∴a=±3,故②正确;④∵点(m,n)在反比例函数4yx的图象上,∴mn=4,解mx2+5x+n=0得x1=﹣2m,x2=﹣8m,∴x2=4x1,∴关于x 的方程mx 2+5x+n=0不是倍根方程; 故选:C .6.【海南省2018届高三第二次联合考试】已知()f x 为偶函数,对任意x R ∈, ()()2f x f x =-恒成立,且当01x ≤≤时, ()222f x x =-.设函数()()3log g x f x x =-,则()g x 的零点的个数为( )A. 6B. 7C. 8D. 9 【答案】C【解析】由()f x 为偶函数,对任意x R ∈, ()()2f x f x =-恒成立,知()()()2f x f x f x =-=+,所以函数的周期2T =,又()()2f x f x =-知()()11f x f x +=-,所以函数关于1x =对称,当01x ≤≤时, ()222f x x =-做出其图象.并做关于1x =的对称图象,得到函数在一个周期上的图象,其值域为[]0,2,令3log 2x =,得9x =,在同一直角坐标系内作函数()3,log y f x y x ==在[]0,9x ∈上的图象,由图象可知共有8个交点,所以函数()g x 的零点的个数为8个.7.【衡水金卷】已知函数()()2211f x x a x =---(其中0a >,且1a ≠)在区间1,2⎛⎫+∞⎪⎝⎭上单调递增,则函数()g x =的定义域为( )A. (),a -∞B. ()0,aC. (]0,a D. (),a +∞ 【答案】B8.【河北省保定市2018届高三第一次模拟】令11t x dx -=⎰,函数()()12241332{1log 2x x f x x t x ⎛⎫+≤- ⎪⎝⎭=⎛⎫+>- ⎪⎝⎭,()()()21422{ 12xx ax a x g x x -+≤=->满足以下两个条件:①当0x ≤时, ()0f x <或()0g x <;②(){}0A f x x =, (){}0B g x x =, A B R ⋃=,则实数a 的取值范围是( )A. 11,23⎡⎤--⎢⎥⎣⎦ B. 11,23⎡⎫--⎪⎢⎣⎭ C. 1,3⎛⎫-∞- ⎪⎝⎭ D.1,3⎛⎤-∞- ⎥⎝⎦【答案】B【解析】11t x dx -=⎰ ()1022100101| | 122x x xdx x dx --=+-=-=⎰⎰,当20x -≤≤时, ()0f x ≥,所以当20x -≤≤时, ()0g x <,21402x ax a -+<,所以()401{ ,1322402a a a a <∴<-⨯-++<因为(){}()0,0A f x x ==-∞, A B R ⋃=,所以当02x <≤时, 21y 42x ax a =-+值域包含[]0,1,所以()2401111{ 0,1232322412a a a a a a ≤∴-≤≤<-∴-≤<-⨯-+≥,选B. 解题思路:研究二次函数单调性的思路(1)二次函数的单调性在其图象对称轴的两侧不同,因此研究二次函数的单调性时要依据其图象的对称轴进行分类讨论.(2)若已知f(x)=ax 2+bx +c(a>0)在区间A 上单调递减(单调递增),则A ⊆,2b a ⎛⎤-∞-⎥⎝⎦(A ⊆,2b a ⎡⎫-+∞⎪⎢⎣⎭)即区间A 一定在函数对称轴的左侧(右侧). 9.【云南省昆明市2018届高三教学质量检查(二统)】设函数()24,1{ 1,1x x a x f x lnx x -+<=+≥的最小值是1,则实数a 的取值范围是( )A. (],4-∞B. [)4,+∞C. (],5-∞D. [)5,+∞ 【答案】B10.【北京市人大附中2017-2018学年高三十月月考】已知函数()()ln ln 2,f x x x =+-则 A. ()f x 在()0,2单调递增 B. ()f x 在()0,2单调递减C. ()y f x =的图像关于直线1x =对称D. ()y f x =的图像关于点()1,0对称 【答案】C【解析】f (x )的定义域为(0,2),f (x )=ln (2x ﹣2x ), 令y=2x ﹣2x =﹣()21x -+1,则y=2x ﹣2x 关于直线x=1对称, ∴y=f (x )的图象关于直线x=1对称,故A 错误,C 正确; ∴y=f (x )在(0,1)和(1,2)上单调性相反,故B ,D 错误; 故选C .11.若在定义域内存在实数,满足,则称为“有点奇函数”,若为定义域上的“有点奇函数”,则实数的取值范围是( ).A. B.C. D.【答案】B②若,要使在时有解,则,即,解得,综上:.选B.思路:研究二次函数最值或单调性,一般根据对称轴与定义区间位置关系进行分类讨论;研究二次方程在定义区间有解,一般从开口方向,对称轴位置,判别式正负,以及区间端点函数值正负四个方面进行考虑.12.【湖北省武汉市2018届高中毕业生二月调研测试】如果函数在区间上单调递减,那么的最大值为()A. 16B. 18C. 25D. 30【答案】B【解析】因为,所以抛物线开口向下,所以,也即是,也即是,故,当且仅当等号成立,故选B.解题思路:处理多变量函数最值问题的方法有:(1)消元法:把多变量问题转化单变量问题,消元时可以用等量消元,也可以用不等量消元.(2)基本不等式:即给出的条件是和为定值或积为定值等,此时可以利用基本不等式来处理,用这个方法时要关注代数式和积关系的转化. (3)线性规划:如果题设给出的是二元一次不等式组,而目标函数也是二次一次的,那么我们可以用线性规划来处理.13.【山西省联考】在区间上任取一个数,则函数在上的最大值是3的概率为()A. B. C. D.【答案】A【解题思路】本题主要考查几何概型概率公式、函数的最值以及分类讨论思想. 属于难题.分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.14.已知集合A={t | t2–4 ≤ 0},对于满足集合A的所有实数t, 则使不等式x2 +tx- t>2x-1恒成立的x的取值范围是().A.B.C.D.【答案】A【解析】由t2–4 ≤ 0解得,即时,恒成立,即恒成立,故只需即恒成立,因为,所以,故选A.二、填空题15.【山东师范大学附属中学2018学年下学期期中考试】已知,函数,若在上是单调减函数,则实数的取值范围是_________________.【答案】【解析】分析:先求导,得到在上恒成立,再列出a满足的不等式组,解不等式组即可.故填.点睛:本题考查了导数研究函数的性质,考查了二次函数的图像和性质,属于中档题.16.【云南省曲靖市第一中学2018届高三4月高考复习质量监测卷】若,,,则的取值范围是__________.【答案】【解析】由题意,,则,由,则,即函数在上单调递增,则恒有,所以,又,所以,即,从而问题可得解.17.函数()2122cos 2sin f x a a x x =---的最小值为()()g a a R ∈.(1)求()g a ; (2)若()12g a =,求a 及此时()f x 的最大值. 【答案】(1) ()()21(2){2122 214(2)a a g a a a a a <-=----≤≤->;(2)答案见解析.【解析】试题分析:(1)利用同角三角函数间的基本关系化简函数解析式后,分三种情况:①2a小于﹣1时②2a 大于﹣1而小于1时③2a大于1时,根据二次函数求最小值的方法求出f (x )的最小值g (a )的值即可;(2)把12代入到第一问的g (a )的第二和第三个解析式中,求出a 的值,代入f (x )中得到f (x )的解析式,利用配方可得f (x )的最大值.(2)()1.2g a =∴①若2a >,则有114,2a -=得18a =,矛盾; ②若22a -≤≤,则有2121,22a a ---=即2430,1a a a ++=∴=-或3a =-(舍). ∴ ()12g a =时, 1.a =-此时()2112cos ,22f x x ⎛⎫=++ ⎪⎝⎭当cos 1x =时, ()f x 取得最大值为5.解题思路:二次函数在闭区间上必有最大值和最小值,它只能在区间的端点或二次函数图象的顶点处取到;常见题型有:(1)轴固定区间也固定;(2)轴动(轴含参数),区间固定;(3)轴固定,区间动(区间含参数). 找最值的关键是:(1)图象的开口方向;(2)对称轴与区间的位置关系;(3)结合图象及单调性确定函数最值.18.【德阳市2018届高三二诊】如图,在三角形中,、分别是边、的中点,点在直线上,且,则代数式的最小值为__________.【答案】【点睛】本题主要考查了平面向量的应用,解题的关键是向量共线定理的应用及结论“点共线,由,有”的应用19.【北京海淀北京19中期中考试数学试题】已知函数y =R ,求参数k 的取值范围__________. 【答案】[]0,1【解析】∵函数y =的定义域为R ,∴2680kx kx k -++≥,对一切实数x 恒成立,若0k =,不等式显然恒成立, 若0k ≠,则必有()20{36480k k k k >∆=-+≤,解得01k <≤,综上, 01k ≤≤. 即k 的取值范围是[]0,1. 故答案为: []0,1.20.【北京市西城13中2018期中考试数学试题】已知函数()()22435f x mx m x =+-+是在区间(),3-∞上的减函数,在区间()3,+∞上的增函数,则m 的值是__________. 【答案】34解题思路:本题主要考查了二次函数的单调性的应用.二次函数的单调性以对称轴为分界线,易错点:忽视抛物线的开口方向,本题中抛物线开口向上,对称轴左侧区间对应的为函数的减区间,对称轴右侧区间对应函数的增区间.21.已知函数()42f x x x x =-+,存在3210x x x >>≥,使得()()()123f x f x f x ==,则()123x x f x ⋅⋅的取值范围是__________. 【答案】()64,81【解析】根据题意, ()222,442{6,4x x x f x x x x x x x -≥=-+=-+<,由图象可知, 126,x x +=()()()1231116x x f x x x f x ∴⋅⋅=⋅-⋅ ()()2111166x x x x =⋅-⋅-+= ()22116x x -+=()22139x ⎡⎤--+⎣⎦, ()()21123,398,9x x <<∴--+∈, ()()12364,81x x f x ∴⋅⋅∈,故答案为()64,81.22.【浙江省嵊州市2018学年高三第一学期期末教学】已知函数()()22411f x x a x x ax =+-++-+的最小值为12,则实数a 的值为__________. 【答案】52三、解答题23.已知函数,其中,记函数的定义域为.(1)求函数的定义域;(2)若函数的最大值为2,求的值;(3)若对于内的任意实数,不等式恒成立,求实数的取值范围.【答案】(1)定义域为;(2) ;(3) .【解析】试题分析:(1)根据函数的解析式,列出不等式组,即可求解函数的定义域;(2)根据对数的运算,得,再利用二次函数的性质,即可得到函数的最大值,进而求解实数的值;(3)由题意在恒成立,转化为在恒成立,设,再利用换元法和基本不等式,即可求解函数的最小值,进而得到实数的取值范围.(3)由在恒成立,得因为,所以所以在恒成立设,令则即,因为,所以(当且仅当时,取等号所以所以.解题思路:本题主要考查了对数函数的图象与性质的综合应用,不等式的恒成立问题的求解,及基本不等式求最值,着重考查考生对概念的理解能力与应用能力、数形结合能力,解答中牢记对数函数的图象与性质,以及不等式的恒成立问题的处理方法是解答的关键.24.已知函数()()2210g x ax ax b a =-++>在区间[]2,3上有最大值4和最小值1,设()()g x f x x=.(1)求,a b 的值;(2)若不等式()220x x f k -⋅≥在区间[]1,1-上恒成立,求实数k 的取值范围.【答案】(1) 1{a b == (2) 0k ≤ 【解析】试题分析:(1)由()()211g x a x b a =-+--,得()g x 在[]2,3上为增函数,由题意,列出方程组,即可求得,a b 的值;(2)化简不等式,分离参数得2112122x x k ⎛⎫≤-⋅+ ⎪⎝⎭,设12x t =,利用换元法得出()221h t t t =-+在1,22⎡⎤⎢⎥⎣⎦上的最小值,即可求解k 的取值范围.(2)由(1)知()221g x x x =-+,∴()12f x x x=+- ∴不等式()220x xf k -≥可化为12222x x x k +-≥,解题思路:本题考查了函数的最值问题及不等式的恒成立问题的求解,其中解答中涉及到二次函数的图象与性质的综合应用,着重考查了恒成立问题中分类参数思想和换元思想的考查,对于恒成立问题的求解,利用分离参数法,转化为函数的最值问题是解答的关键,考查了学生分析问题和解答问题的能力,属于中档试题.25.已知函数,x∈[-1,1],函数,a∈R的最小值为h(a).(1)求h(a)的解析式;(2)是否存在实数m,n同时满足下列两个条件:①m>n>3;②当h(a)的定义域为[n,m]时,值域为[n2,m2]?若存在,求出m,n的值;若不存在,请说明理由.【答案】(1);(2)答案见解析.【解析】试题分析:(1)为关于的二次函数,可用换元法,转化为二次函数在特定区间上的最值问题,定区间动轴;(2)由(1)可知时,为一次函数且为减函数,求值域,找关系即可.试题解析:(1)由,知, 令,设,则,则的对称轴为,故有:当时,的最小值,②当时,的最小值,③当时, 的最小值,综上所述, h (a )=26.已知()()4log 41xf x mx =++是偶函数.(1)求m 的值; (2)已知不等式()()41log 22x f x x a +≥⋅对x R ∈恒成立,求实数a 的取值范围. 【答案】(1)12m =-;(2)(]0,2. 【解析】试题分析:(1)根据偶函数定义得()()f x f x =-,利用对数性质以及指数性质化简可得m 的值;(2)先根据函数单调性化简不等式为412x xa +≥⋅,再变量分离得122x xa ≤+,最后根据基本不等式求122x x+最小值,即得实数a 的取值范围. 试题解析:(1)x ∀, ()()f x f x =-,即()()44log 41log 41x xmx mx -++=+-,所以44412log log 441x xx mx x --⎛⎫+===- ⎪+⎝⎭对R 恒成立,所以12m =-. (2)由题意得()()44log 41log 2x xa +≥⋅对R 恒成立,因为4log x 单调递增,所以412x x a +≥⋅对R 恒成立,即122x x a ≤+对R 恒成立, 因为1222x x +≥,当且仅当122x x =,即0x =时等号成立,所以2a ≤, 又因为20x a ⋅>,所以0a >,即a 的取值范围是(]0,2.27.对于区间[],()a b a b <,若函数()y f x =同时满足:①()f x 在[],a b 上是单调函数;②函数()y f x =, [],x a b ∈的值域是[],a b ,则称区间[],a b 为函数()f x 的“保值”区间.(1)求函数2y x =的所有“保值”区间.(2)函数()20y x m m =+≠是否存在“保值”区间?若存在,求出m 的取值范围;若不存在,说明理由. 【答案】(1)[]0,1;(2)311,0,44⎡⎫⎛⎫--⋃⎪ ⎪⎢⎣⎭⎝⎭. 【解析】试题分析:(1)2y x =在[],a b 的值域是[],a b ,且20x ≥,所以0a >,所以[][),0,a b ⊆+∞,从而结合单调性列方程求解即可;(2)分0a b <≤和0b a >≥两种情况分别在定义域上求值域列方程求解即可.(2)若函数()20y x m m =+≠存在“保值”区间,则有: ①若0a b <≤,此时函数2y x m =+在区间[],a b 上单调递减,所以 22{ a m bb m a +=+=,消去m 得22a b b a -=-,整理得()()10a b a b -++=.因为a b <,所以10a b ++=,即1a b =--.又0{ 1b b b≤--<, 所以102b -<≤. 因为22213110242m b a b b b b ⎛⎫⎛⎫=-+=---=-+--<≤ ⎪ ⎪⎝⎭⎝⎭, 所以314m -≤<-.28.定义域为R 的函数()f x 满足:对任意实数x y 、均有()()()=2f x y f x f y +++,且()22f =,又当1x >时, ()0f x >.(1)求()0f 、()1f -的值,并证明:当1x <时, ()0f x <;(2)若不等式()()()222221240f a a x a x ----++<对任意[]1,3x ∈恒成立,求实数a 的取值范围. 【答案】(1)见解析;(2)0a <或1a >。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题04 二 次 函 数二次函数是中学代数的基本内容之一,它既简单又丰富。

可以以它为素材来研究函数的解析式、定义域、值域、单调性、奇偶性等性质,还可建立起函数、方程、不等式之间的有机联系;这些纵横联系,使得围绕二次函数可以编制灵活多变的数学题,自然成为高考与各类数学考试中的热点与难点。

研究二次函数可从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行代数推理、论证,可反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合。

知识点1:二次函数的概念与表示1.概念:形如:2f(x)=ax +bx+c (0)a ≠函数叫二次函数; 2.表达形式有:(1)一般式:2f(x)=ax +bx+c (0)a ≠.(2)顶点式:若(,)m n 为抛物线的顶点坐标.,2()()f x a x m n =-+(3)截距式:设12,x x 为抛物线与x 轴交点的横坐标,则12()()()f x a x x x x =--. 点评:求二次函数解析式的方法:待定系数法 ①已知三个点的坐标时,宜用一般式.②已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③已知二次函数与x 轴有两个交点,且横坐标已知时,选用零点式求f (x )更方便. 知识点2:二次函数图象与性质a <0点评:二次函数f (x )=ax 2+bx +c (a ≠0),当Δ=b 2-4ac >0时,图象与x 轴有两个交点M 1(x 1,0)、M 2(x 2,0),|M 1M 2|=|x 1-x 2|=Δ|a |. 知识点3 二次函数、一元二次方程及一元二次不等式之间的关系(1)当0∆<⇔()f x =2ax bx c ++的图像与x 轴无交点⇔20ax bx c ++=无实根⇔20(0)ax bx c ++><的解集为∅或者是R;(2)当0∆=⇔()f x =2ax bx c ++的图像与x 轴相切⇔20ax bx c ++=有两个相等的实根⇔20(0)ax bx c ++><的解集为∅或者是R;(3)当0∆>⇔()f x =2ax bx c ++的图像与x 轴有两个不同的交点⇔20ax bx c ++=有两个不等的实根⇔ 20(0)ax bx c ++><的解集为(,)αβ()αβ<或者是(,)(,)αβ-∞+∞。

知识点4 一元二次方程20ax bx c ++=实根分布的充要条件一般地对于含有字母的一元二次方程20ax bx c ++=的实根分布问题,用图象求解,有如下结论: 令()f x =2ax bx c ++(0a >)(同理讨论0a <的结论)(1) x 1<α, x 2<α ,则0/(2)()0b a f αα∆≥⎧⎪-<⎨⎪>⎩; (2) x 1>α, x 2>α,则0/(2)()0b a f αα∆≥⎧⎪->⎨⎪>⎩(3) α<x 1<β, α<x 2<β,则⎪⎪⎩⎪⎪⎨⎧<-<>>≥∆βαβα)2/(0)(0)(0a b f f (4) x 1<α, x 2>β (α<β),则()0()0f f αβ<⎧⎨<⎩(5)若f(x)=0在区间( α,β)内只有一个实根,则有0))(<(βαf f 点评:(1)讨论二次函数的区间根的分布情况一般需从三方面考虑:①判别式; ②区间端点的函数值的符号; ③对称轴与区间的相对位置. 在讨论过程中,注意应用数形结合的思想.知识点5 二次函数()02≠++=a c bx ax y 在闭区间[]q p ,上的最值二次函数()02≠++=a c bx ax y 在闭区间[]q p ,上的最值一般分为三种情况讨论:(1)若对称轴2bx a=-在区间左边,则函数在此区间上具有单调性,只需比较(),()f p f q 的大小即可决定函数的最大(小)值;(或利用函数的单调性直接决定函数的最大(小)值) (2)若对称轴2bx a=-在区间右边,则函数在此区间上具有单调性,只需比较(),()f p f q 的大小即可决定函数的最大(小)值; (3)若对称轴2b x a =-在区间内,则()2b f a-是函数的最小值(0a >)或最大值(0a <),再比 较(),()f p f q 的大小决定函数的最大(小)值。

点评:(1)两个重要的结论:连续函数在闭区间上一定存在最大值和最小值;单调连续函数在闭区间的两个端点处取得最值。

(2)二次函数()02≠++=a c bx ax y 在闭区间[]q p ,上的最值的讨论的基点是对称轴abx 2-=与区间[]q p ,的相对位置的讨论,尤其当顶点横坐标是字母时,则应抓住讨论的基点进行讨论。

特别要注意二次项系数a 的符号对抛物线开口及结论的影响。

1.【2014北京高考】加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系2p at bt c =++(a 、b 、c 是常数),下图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟O 5430.80.70.5t p2.【2014天津高考】函数212()log (4)f x x =-的单调递增区间是A .(0,)+¥B .(,0)-?C .(2,)+¥D .(),2-? 3.【2013湖南高考】函数()2ln f x x =的图像与函数()245g x x x =-+的图象的交点个数为A .3B .2C .1D .04.【2011福建高考】若关于x 的方程210x mx ++=有两个不相等的实数根,则实数m 的取值范围是 A .(-1,1) B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 5.【2010广东高考】“14m <”是“一元二次方程20x x m ++=有实数解”的 A .充分非必要条件 B .充分必要条件 C .必要非充分条件 D .非充分非必要条件6.【2014湖北高考】已知()f x 是定义在R 上的奇函数,当0x ≥时,2()=3f x x x -.则函数()()+3g x f x x =-的零点的集合为A .{1,3}B .{3,1,1,3}-- C.{23}- D.{21,3}-7.【2013安徽文高考】已知函数32()f x x ax bx c =+++有两个极值点12,x x ,若112()f x x x =<,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数为(A )3 (B) 4 (C) 5 (D) 68.【2013福建高考】满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .109.【2014浙江卷】设θ为两个非零向量a 、b 的夹角,已知对任意实数t ,||t +b a 的最小值为1( )A.若θ确定,则|a |唯一确定B.若θ确定,则|b |唯一确定C.若|a |确定,则θ唯一确定 D.若|b |确定,则 θ唯一确定10.【2015福建高考】若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于 A .6 B .7 C .8 D .911. 【2013辽宁高考】已知函数()()2222f x x a x a =-++,()()22228g x x a x a =-+--+.设()()(){}1max H x f x g x =,,()()(){}2min H x f x g x =,,{}max p q ,表示p q ,中的较大值,{}min p q ,表示p q ,中的较小值,记()1H x 得最大值为A ,()2H x 得最小值为B ,则A B -=.A. 2216a a --B. 2216a a +-C. 16-D. 1612.【2013全国新课标Ⅰ】已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]-13. 【2017浙江理5】若函数()2f x x ax b =++在区间[]01,上的最大值是M ,最小值是m ,则M m -( ).A. 与a 有关,且与b 有关B. 与a 有关,但与b 无关C. 与a 无关,且与b 无关D. 与a 无关,但与b 有关 14.【 2011天津高考】对实数a 与b ,定义新运算“⊗”:,1,, 1.a ab a b b a b -≤⎧⊗=⎨->⎩ 设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是 A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪⎪⎝⎭⎝⎭ D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭15.【 2014湖北高考】已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x-2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为A.⎣⎡⎦⎤-16,16 B .⎣⎡⎦⎤-66,66 C.⎣⎡⎦⎤-13,13 D.⎣⎡⎦⎤-33,3316.【2015高考天津卷】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩函数()()2g x b f x =--,其中b R ∈,若函数()()y f x g x =-恰有4个零点,则b 的取值范围是( )(A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫⎪⎝⎭17. 【2015天津高考】已知函数()()22,22,2x x f x x x ⎧-⎪=⎨->⎪⎩… ,函数()()2g x b f x =-- , 其中b ∈R ,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是A.7,4⎛⎫+∞⎪⎝⎭ B.7,4⎛⎫-∞ ⎪⎝⎭ C.70,4⎛⎫ ⎪⎝⎭ D.7,24⎛⎫⎪⎝⎭18. 【2017山东高考】已知当[]0,1x ∈时,函数()21y mx =-的图像与y m =+的图像有且只有一个交点,则正实数m 的取值范围是( ). A.(])0,123,⎡+∞⎣B.(][)0,13,+∞C.()23,⎡+∞⎣D.([)3,+∞19. 【2015四川高考】如果函数()()()()212810,02f x m x n x m n =-+-+厖在区间1,22⎡⎤⎢⎥⎣⎦上单调递减,那么mn 的最大值为A. 16B. 18C. 25D.81220.【2017天津理8】已知函数()23,12,1x x x f x x x x ⎧-+⎪=⎨+>⎪⎩…,设a ∈R ,若关于x 的不等式()2x f x a +…在R 上恒成立,则a 的取值范围是A.47,216⎡⎤-⎢⎥⎣⎦B.4739,1616⎡⎤-⎢⎥⎣⎦C.⎡⎤-⎣⎦D.3916⎡⎤-⎢⎥⎣⎦21. 【2015陕西高考】对二次函数2()f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是A .1-是()f x 的零点B .1是()f x 的极值点C .3是()f x 的极值 D. 点(2,8)在曲线()y f x =上22. 【2015江苏高考】不等式224x x-<的解集为 .23. 【2016江苏高考】函数y =的定义域是 .24.【2015高考湖北卷】a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()g a .当a =_________时,()g a 的值最小.25.【2017课标II 理】函数()23sin 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 。

相关文档
最新文档