2014年中考数学专题检测试卷:分式方程
预测2014中考分式方程应用题专项训练及答案
1、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?2、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?3、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?4、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。
5、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?6、某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售,该公司的加工能力是:每天精加工6吨或者粗加工16吨,现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,那么该公司出售这些加工后的蔬菜共可获利多少元?7、某个体户向银行申请了甲、乙两种贷款,共计136万元,每一年需付利息16.84万元,甲种贷款的年利率是12%,乙种贷款的年利率是13%,问这两种贷款的数额各是多少?8、已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少元?9、“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折(按售价的70%销售)和九折(按售价的90%销售),共付款386元,这两种商品原售价之和为500元,问这两种商品的原销售价分别为多少元?10、某市场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进了多少件?11、某商场按定价销售某种电器时,每台可获利48元,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等。
2014年中考总题之分式与分式方程及答案
【答案】解:原式 4分
6分
当 时,原式 .9分
7.(2013湖南常德,19,6分)先化简,再求值.
【答案】解:
8.(2013湖南邵阳,18,8分)已知 ,求 的值。
【答案】解:∵ ,∴x-1=1.
故原式=2+1=3
9.(2013广东株洲,18,4分)当 时,求 的值.
【答案】解:原式=
=
解不等组得:-5≤x<6
选取的数字不为5,-5,0即可(答案不唯一)
13.(2013重庆江津,21(3),6分)先化简,再求值: ,其中 ·
【答案】(3)原式= = =1-x·
把 代入得原式=1- = ·
14.(2013江苏南京,18,6分)计算
【答案】
15.(2013贵州贵阳,16,8分)
其中a= -3.
【解析】先将各分式的分子、分母分解因式,再进行分式乘除法混合运算,后代入计算.
【答案】原式=
=
当 时,原式=
【点评】本题主要考察分式乘除法混合运算,注意解答的规范化,是基础题.
(2012南京市,18,9)化简代数式 ,并判断当x满足不等式 时该代数式的符号.
解析:先将分式化简,再解不等式组,在不等式的解集中选使分式有意义的数代入求值.
【答案】6,2
5.(2013浙江湖州,11,4)当x=2时,分式 的值是
【答案】1
6.(2013浙江省嘉兴,11,5分)当 时,分式 有意义.
【答案】
7.(2013福建泉州,14,4分)当 =时,分式 的值为零.
【答案】2;
8.(2013山东聊城,15,3分)化简: =__________________.
2014年中考高效复习 自主测评08 分式方程(含答案)
第8讲 分式方程(时间:45分钟 满分:60分)一、选择题(本大题共5小题,每小题4分,共20分)1.下面是四位同学解方程2x -1+x 1-x=1过程中去分母的一步,其中正确的是( ) A .2+x =x -1 B .2-x =1 C .2+x =1-xD .2-x =x -1 2.分式方程32x =1x -1的解为( )A. x =1 B .x =2 C .x =3D .x =4 3.分式方程1x =5x +4的解为( )A .1 B.23 C .-1D .无解 4.分式方程12x 2-9-2x -3=1x +3的解为( )A .3B .-3C .无解D .3或-3 5.解分式方程1x -1=3(x -1)(x +2)的结果为( )A .1B .-1C .-2D .无解 二、填空题(本大题共4小题,每小题5分,共20分)6.方程1x -1=32x +3的解是______.7.分式方程3x +4-1=0的解是______.8.若代数式2x -1-1的值为零,则x =________.9.分式方程2x =5x +3的解是________.三、解答题(共20分)10.(1)解方程:3x =2x +1.(2)解分式方程:3x +2+1x =4x 2+2x.(3)解方程:23x -1-1=36x -2.参考答案1. D 解析:方程的两边同乘以(x -1),得2-x =x -1.故选D.2. C 解析:去分母,得3(x -1)=2x ,解这个整式方程,得x =3,检验:当x =3时,2x (x -1)≠0,∴x =3是原方程的根.3. A 解析:方程的两边同乘x (x +4),得x +4=5x ,解得x =1.检验:把x =1代入x (x +4)=5≠0.∴原方程的解为:x =1.故选A.4.C 解析:方程的两边同乘以(x +3)(x -3),得12-2(x +3)=x -3,解得:x =3.检验:把x =3代入(x +3)(x -3)=0,即x =3不是原分式方程的解.故原方程无解.故选C.5.D 解析:方程的两边同乘(x -1)(x +2),得:x +2=3.解得:x =1.检验:把x =1代入(x -1)(x +2)=0,即x =1不是原分式方程的解.则原分式方程无解.故选D.6. x =6 解析:去分母得2x +3=3(x -1),解得x =6,经检验x =6是原方程的解.7. x =-1 解析:去分母得x +4=3,所以x =-1,经检验x =-1是原方程的解.8.3 解析:根据题意,得2x -1-1=0,方程两边同乘以x -1,得2-(x -1)=0,解得x =3,经检验x =3是原分式方程的解,故x =3.9.x =2 解析:方程两边同时乘以x (x +3),得2(x +3)=5x ,解得x =2.检验:当x =2时,x (x +3)≠0,∴原方程的解为x =2.10. 解:(1)去分母,得3(x +1)=2x ,解得x =-3.(3分)检验:当x =-3时,x (x +1)≠0,(4分)∴x =-3是原方程的解.(5分)(2)去分母,得:3x +x +2=4解得:x =12,(3分) 经检验:x =12是原方程的解,(4分)∴原分式方程的解是x =12.(5分) (3) 解:方程两边同时乘以2(3x -1),得4-2(3x -1)=3,化简,得-6x =-3,解得x =12,(3分) 检验:x =12时,2(3x -1)=2×(3×12-1)≠0.(4分) 所以,x =12是原方程的解.(5分)。
【2014中考数学分类】分式(分式方程,分式应用题)范文
1。
x ≠-2 2。
.-2 3. 3323a 2=+ 416. 解方程:xx x -=+--23123 答案:解:方程两边同乘以()2-x ,得:()323-=-+-x x合并:2x -5=-3 ∴ x =1经检验,x =1是原方程的解.解方程:123-=x x答案:解:x x 233=-3=x . ……………………………………………………………………3分经检验:3=x 是原方程的解.…………………………………………………………1分所以原方程的解是3=x . 2.(A )…………3分…………4分…………5分…………7分 17.720. 2222222:=()x y x y x yx y x y x y +-+÷---20.(本题 6分)解原式 ……………… 1分 =22222x y x y x y x y x y++--⨯- ………………………3分 =22x x y =2xy…………………………………4分a )1)(1(1)1)(1(12-+⋅⎥⎦⎤⎢⎣⎡++--+=a a a a a a a 解:原式.211,111.1622代入求值的值作为数中选一个你认为合适的和,再从)先化简(a a aa a a --÷+-+a )1)(1(1122-+⋅++-=a a a a a .a1-=a .2212-==时,原式当a 1,,2=y xy ==当时原式=2131=-18.答案 40% 19.计算:(2)221(2).1a a a a -+--- (2)原式=2(1)(2)1a a a ---- =12a a --+ =1 20.解方程:233x x =+; 答案解:(1)由原方程,得2(x+3)=3x,……(1分) ∴x=6.……………………………(3分) 经检验,x=6是原方程的解,∴原方程的解是x=6………………(4分)14.答案 2a +12.答案:x =3 2. C 18.先化简,再求值:2291()333x x x x x---+其中13x =. 解:原式=(3)(3)13(3)x x x x x +--+ ……………………………………………2分=1x ……………………………………………………………4分 当13x =时,原式=3 …………………………………………………6分18.答案:18.解:原式=1(1)(1)x x x x x --- …=1(1)x x x -- =1x当x =2时,原式=1x =1217.答案:200920104.答案:D 17.解:原式21(1)(1)a a a a a -=⨯+-1a a =+.当3a =-时,原式33312-==-+.19.(1)111n n -+ ·························································································· 1分 (2)证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n n n n +-+=)1(1+n n . ·················· 3分 (3)原式=1-12+12-31+31-41+…+20091-20101=12009120102010-=. 14.答案:620.解:2(1)(21)(1)x x x x x ++=++ ………………(2分) 解这个整式方程得:12x =- ………………(4分)经检验:12x =-是原方程的解.∴原方程的解为12x =-.……………………(6分)14.16. 3a +22. 解:)(2222y x y xy x y x -⋅+-+ )()(22y x y x y x -⋅-+= 2x yx y+=-.当30x y -=时,3x y =. 原式677322y y y y y y +===-.10. C 8. B21.解:原式=)1)(1()1(12-+-÷-x x x x x 2)1()1)(1(1--+⋅-=x x x x x =x x 1+.当x =2时, 原式=212+=23。
广西贵港市2014年中考数学真题试题(含解析)
广西贵港市 2014 年中考数学真题试题一、选择题(本大题共12 小题,每题的四个选项,此中只有一个是正确的.1.( 3 分)(2014?贵港) 5 的相反数是(A.B.﹣3 分,共 36 分)每题都给出标号为)C.5D.﹣5A、 B、C、 D考点:相反数.剖析:依据只有符号不一样的两数叫做互为相反数解答.解答:解: 5 的相反数是﹣5.应选 D.评论:本题考察了相反数的定义,是基础题,熟记观点是解题的重点.2.( 3 分)(2014?贵港)中国航母辽宁舰是中国人民海军第一艘能够搭载固定翼飞机的航空母舰,满载排水量为67500 吨,这个数据用科学记数法表示为()A. 6.75 ×10 4吨B. 6.75 ×10 3吨C. 6.75 ×10 5吨D. 6.75 ×10 ﹣4吨考点:科学记数法—表示较大的数.剖析:科学记数法的表示形式为 a×10 n的形式,此中 1≤|a|< 10,n 为整数.确立 n 的值是易错点,因为67500 有 5 位,所以能够确立n=5﹣ 1=4.解答:解:67 500=6.75 ×10 4.应选 A.评论:本题考察科学记数法表示较大的数的方法,正确确立 a 与 n 值是重点.3.( 3 分)(2014?贵港)某市 5 月份连续五天的日最高气温(单位:℃)分别为:33, 30,30, 32, 35.则这组数据的中位数和均匀数分别是()A. 32, 33B. 30, 32C. 30,31D. 32, 32考点:中位数;算术均匀数.剖析:先把这组数据从小到大摆列,找出最中间的数,即可得出这组数据的中位数,再依据均匀数的计算公式进行计算即可.解答:解:把这组数据从小到大摆列为30, 30, 32, 33, 35,最中间的数是 32,则中位数是 32;均匀数是:( 33+30+30+32+35)÷ 5=32,应选 D.评论:本题考察了中位数和均匀数,掌握中位数的定义和均匀数的计算公式是本题的重点;中位数是将一组数据从小到大(或从大到小)从头摆列后,最中间的那个数(最中间两个数的均匀数),叫做这组数据的中位数,假如中位数的观点掌握得不好,不把数据按要求从头摆列,就会犯错.4.( 3 分)(2014?贵港)以下运算正确的选项是(22 A. 2a﹣ a=1B.( a﹣ 1) =a ﹣ 1)C. a?a2 =a3D.( 2a)2 =2a2考点:完好平方公式;归并同类项;同底数幂的乘法;幂的乘方与积的乘方.剖析:依据归并同类项法例,完好平方公式,同底数幂的乘法,积的乘方求出每个式子的值,再判断即可.解答:解: A、2a﹣ a=a,故本选项错误;22B、( a﹣1) =a ﹣ 2a+1,故本选项错误;23C、a?a =a ,故本选项正确;D、( 2a)2=4a2,故本选项错误;应选 C.评论:本题考察了归并同类项法例,完好平方公式,同底数幂的乘法,积的乘方的应用,主要考察学生的计算能力.5.( 3 分)(2014?贵港)以下图形中,既是轴对称图形又是中心对称图形的是(A.正三角形B.平行四边形C.矩形D.正五边形)考点:中心对称图形;轴对称图形.剖析:依据轴对称图形与中心对称图形的观点求解.假如一个图形沿着一条直线对折后两部分完好重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.假如一个图形绕某一点旋转 180°后能够与自己重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解答:解:A、正三角形是轴对称图形,不是中心对称图形,故本选项错误;B、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;C、矩形是轴对称图形,也是中心对称图形,故本选项正确;D、正五边形是轴对称图形,不是中心对称图形,故本选项错误.应选: C.评论:本题主要考察了中心对称图形与轴对称的定义,依据定义得出图形形状是解决问题的重点.6.( 3 分)(2014?贵港)分式方程=的解是()A. x=﹣ 1B. x=1C. x=2D.无解考点:解分式方程.剖析:分式方程去分母转变为整式方程,求出整式方程的解获取x 的值,经查验即可获取分式方程的解.解答:解:去分母得: x+1=3,解得: x=2,经查验 x=2 是分式方程的解.应选 C评论:本题考察认识分式方程,解分式方程的基本思想是“转变思想”,把分式方程转变为整式方程求解.解分式方程必定注意要验根.7.( 3 分)(2014?贵港)以下命题中,属于真命题的是()A.同位角相等B.正比率函数是一次函数C.均分弦的直径垂直于弦D.对角线相等的四边形是矩形考点:命题与定理.剖析:利用平行线的性质、正比率函数的定义、垂径定理及矩形的判断对各个选项逐个判断后即可确立正确的选项.解答:解: A、两直线平行,同位角才相等,故错误,是假命题;B、正比率函数是一次函数,正确,是真命题;C、均分弦的直径垂直于弦,错误,是假命题;D、对角线相等的平行四边形才是矩形,错误,是假命题,应选 B.评论:本题考察了命题与定理,解题的重点是认识平行线的性质、正比率函数的定义、垂径定理及矩形的判断等知识,难度较小.8.( 3 分)(2014?贵港)若对于x 的一元二次方程 x2+bx+c=0 的两个实数根分别为 x1=﹣ 2,x2=4,则 b+c 的值是()A.﹣10B. 10C.﹣6D.﹣ 1考点:根与系数的关系.剖析:依据根与系数的关系获取﹣2+4=﹣ b,﹣ 2×4=c,而后可分别计算出b、c 的值,进一步求得答案即可.解答:解:∵对于 x 的一元二次方程2x =﹣ 2, x=4,x +bx+c=0 的两个实数根分别为12∴﹣ 2+4=﹣ b,﹣ 2×4=c,解得 b=﹣ 2, c=﹣8∴b+c=﹣ 10.应选: A.评论:本题考察根与系数的关系,解答本题的重点是熟知一元二次方程根与系数的关系:x1+x2=﹣,x1x2=.9.( 3 分)(2014?贵港)如图,AB 是⊙O的直径,= =,∠ COD=34°,则∠ AEO的度数是()A. 51°B. 56°C. 68°D. 78°考点:圆心角、弧、弦的关系.剖析:由= =,可求得∠ BOC=∠EOD=∠COD=34°,既而可求得∠ AOE的度数;而后再依据等腰三角形的性质和三角形内角和定理来求∠AEO的度数.解答:解:如图,∵= =,∠ COD=34°,∴∠ BOC=∠EOD=∠COD=34°,∴∠ AOE=180°﹣∠ EOD﹣∠ COD﹣∠ BOC=78°.又∵ OA=OE,∴∠ AEO=∠AOE,∴∠ AEO= ×( 180°﹣ 78°) =51°.应选: A.评论:本题考察了弧与圆心角的关系.本题比较简单,注意掌握数形联合思想的应用.10.( 3 分)(2014?贵港)如图,在平面直角坐标系中,反比率函数y1=的图象与一次函数y2=kx=b的图象交于A、B 两点.若y1< y2,则x 的取值范围是()A. 1< x< 3B. x< 0 或 1< x< 3C. 0<x< 1D. x> 3 或 0< x< 1考点:反比率函数与一次函数的交点问题.剖析:当一次函数的值>反比率函数的值时,直线在双曲线的下方,直接依据图象写出一次函数的值>反比率函数的值x 的取值范,可得答案.解答:解:由图象可知,当 x< 0 或 1< x< 3 时, y1<y2,应选: B.评论:本题考察了反比率函数与一函数的交点问题,反比率函数图象在下方的部分是不等的解.11.( 3 分)(2014?贵港)如图,在Rt△ABC中,∠ ACB=90°, AC=6, BC=8,AD是∠ BAC的均分线.若P, Q分别是 AD和 AC上的动点,则PC+PQ的最小值是()A.B.4C.D.5考点:轴对称 - 最短路线问题.剖析:过点 C作 CM⊥AB 交 AB于点 M,交 AD于点 P,过点 P 作 PQ⊥AC 于点 Q,由 AD是∠BAC 的均分线.得出 PQ=PM,这时 PC+PQ有最小值,即 CM的长度,运用勾股定理求出 AB,再运用 S△ABC= AB?CM= AC?BC,得出C M的值,即PC+PQ的最小值.解答:解:如图,过点C 作 CM⊥AB 交 AB于点 M,交 AD于点 P,过点 P 作 PQ⊥AC 于点 Q,∵AD 是∠ BAC的均分线.∴PQ=PM,这时P C+PQ有最小值,即CM的长度,∵A C=6, BC=8,∠ ACB=90°,∴AB===10.∵S△ABC=AB?CM=AC?BC,∴CM===,即 PC+PQ的最小值为.应选: C.P 和Q的位评论:本题主要考察了轴对称问题,解题的重点是找出知足PC+PQ有最小值时点置.12.( 3 分)(2014?贵港)已知二次函数y=ax 2+bx+c(a≠0)的图象如图,剖析以下四个结论:①a bc< 0;②b2﹣ 4ac >0;③ 3a+c> 0;④( a+c)2< b2,此中正确的结论有()A.1 个B.2 个C.3 个D.4 个考点:二次函数图象与系数的关系.剖析:① 由抛物线的张口方向,抛物线与y 轴交点的地点、对称轴即可确立a、b、c 的符号,即得 abc 的符号;②由抛物线与x 轴有两个交点判断即可;③f(﹣ 2) +2f (1) =6a+3c< 0,即 2a+c< 0;又因为 a< 0,所以 3a+c <0.故错误;④将 x=1 代入抛物线分析式获取a+b+c< 0,再将 x=﹣ 1 代入抛物线分析式获取a﹣ b+c>0,两个不等式相乘,依据两数相乘异号得负的取符号法例及平方差公式变形后,获取( a+c)2< b2,解答:解:①由张口向下,可得a< 0,又由抛物线与y 轴交于正半轴,可得c>0,而后由对称轴在y 轴左边,获取 b 与 a 同号,则可得b< 0,abc > 0,故①错误;②由抛物线与x 轴有两个交点,可得b2﹣ 4ac >0,故②正确;③当 x=﹣ 2 时, y< 0,即 4a﹣ 2b+c< 0 ( 1)当 x=1 时, y< 0,即 a+b+c< 0 ( 2)(1) +( 2)×2得: 6a+3c< 0,即 2a+c < 0又∵ a< 0,∴ a+( 2a+c)=3a+c< 0.故③错误;④∵ x=1 时, y=a+b+c< 0,x=﹣ 1 时, y=a﹣ b+c> 0,∴( a+b+c)( a﹣b+c)< 0,即 [ ( a+c) +b][ ( a+c)﹣ b]= ( a+c)2﹣ b2< 0,∴(a+c)2<b2,故④正确.综上所述,正确的结论有 2 个.应选: B.2物线张口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确立.二、填空题(本大题共 6 小题,每题 3 分,共 18 分)13.( 3 分)(2014?贵港)计算:﹣9+3=﹣6.考点:有理数的加法.专题:计算题.剖析:原式利用异号两数相加的法例计算即可获取结果.解答:解:﹣ 9+3=﹣( 9﹣ 3) =﹣6.故答案为:﹣6评论:本题考察了有理数的加法,娴熟掌握运算法例是解本题的重点.14.(3 分)( 2014?贵港)以下图, AB∥CD,∠D=27°,∠E=36°,则∠ ABE的度数是63°.考点:平行线的性质.专题:计算题.剖析:先依据三角形外角性质得∠BFD=∠E+∠D=63°,而后依据平行线的性质获取∠ABE=∠BFD=63°.解答:解:如图,∵∠ BFD=∠E+∠D,而∠ D=27°,∠ E=36°,∴∠BFD=36°+27°=63°,∵AB∥CD,∴∠ABE=∠BFD=63°.故答案为 63°.评论:本题考察了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.15.( 3 分)(2014?贵港)一组数据1,3, 0, 4 的方差是 2.5.考点:方差.剖析:先求出这组数据的均匀数,再依据方差公式S2=[ ( x1﹣)2+(x2﹣)2+ +(x n﹣)2],代数计算即可.解答:解:这组数据的均匀数是:(1+3+0+4)÷ 4=2,方差 = [ ( 1﹣ 2)2+( 3﹣ 2)2+( 0﹣ 2)2+( 4﹣2)2]=2.5 ;故答案为: 2.5 .评论:本题考察了方差,一般地设n 个数据,x1, x2, x n的均匀数为,则方差S2 = [ ( x1﹣)2+( x2﹣)2+ +( x n﹣)2] ,它反应了一组数据的颠簸大小,方差越大,颠簸性越大,反之也建立.16.( 3 分)(2014?贵港)如图,在等腰梯形 ABCD中, AD∥BC, AB=DC,AC⊥BD.若AD=4,BC=6,则梯形 ABCD的面积是 25 .考点:等腰梯形的性质.剖析:第一过点 D 作 DE∥AC,交 BC的延伸线于点E,可得四边形 ACED是平行四边形,又由在等腰梯形 ABCD中, AD∥BC, AB=DC,AC⊥BD,可得△ BDE 是等腰直角三角形,既而求得答案.解答:解:过点 D 作 DE∥AC,交 BC的延伸线于点E,∵AD∥BC,∴四边形ACED是平行四边形,∴AC=DE, CE=AD=4,∴BE=BC+CE=6+4=10,∵AC⊥BD,∴D E⊥BD,∵四边形 ABCD是等腰梯形,∴A C=BD,∴B D=DE,∴B D=DE= =5 ,∴S梯形 ABCD=×AC×BD=25.故答案为: 25.评论:本题考察了等腰三角形的性质、平行四边形的性质与判断以及等腰直角三角形性质.本题难度适中,注意掌握协助线的作法,注意掌握数形联合思想的应用.17.( 3 分)(2014?贵港)如图,在菱形 ABCD中, AB=2,∠ C=120°,以点C为圆心的与 AB, AD分别相切于点 G, H,与 BC,CD分别订交于点 E, F.若用扇形 CEF作一个圆锥的侧面,则这个圆锥的高是2.考点:切线的性质;菱形的性质;圆锥的计算.剖析:先连结 CG,设 CG=R,由勾股定理求得扇形的半径即圆锥的母线长,依据弧长公式l=,再由 2π ?r=,求出底面半径r ,则依据勾股定理即可求得圆锥的高.解答:解:如图:连结CG,∵∠ C=120°,∴∠ B=60°,∵AB 与相切,∴CG⊥AB,在直角△ CBG中CG=BC?sin60°=2×=3,即圆锥的母线长是3,设圆锥底面的半径为r ,则: 2π r=,∴r=1 .则圆锥的高是:=2.故答案是: 2 .评论:本题考察的是圆锥的计算,先利用直角三角形求出扇形的半径,运用弧长公式计算出弧长,而后依据底面圆的周长等于扇形的弧长求出底面圆的半径.18.(3 分)(2014?贵港)已知点 A1(a1, a2),A2( a2,a3),A3( a3,a4), A n( a n, a n+1)( n 为正整数)都在一次函数 y=x+3 的图象上.若 a1=2,则 a2014= 6041 .考点:一次函数图象上点的坐标特点.专题:规律型.剖析:将 a1=2 代入 a2=x+3,一次求出a1、 a2、 a3、 a4、 a5、a6的值,找到规律而后解答.解答:解:将 a1=2 代入 a2=x+3,得 a2=5,同理可求得,a3=8, a4=11, a5=14, a6=17,a n=2+3(n﹣ 1),a2014=2+3( 2014﹣ 1)=2+3×2013=2+6039=6041,故答案为6041 .评论:本题考察了一次函数图象上点的坐标特点,计算出结果,找到规律即可解答.三、解答题(本大题共8 小题,满分66 分,解答用写出文字说明,证明过程或演算步骤)19.(10 分)(2014?贵港)( 1)计算:﹣()﹣1+(π﹣)0﹣(﹣1)10;(2)已知 |a+1|+ ( b﹣ 3)2=0,求代数式(﹣)÷的值.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.剖析:( 1)原式第一项利用二次根式的化简公式计算,第二项利用负指数幂法例计算,第三项利用零指数幂法例计算,最后一项利用乘方的意义化简,计算即可获取结果;(2)利用非负数的性质求出a 与b 的值,原式通分并利用同分母分式的加法法例计算,将 a 与 b 的值代入计算即可求出值.解答:解:( 1)原式 =3﹣ 4+1﹣ 1=﹣ 1;(2)∵ |a+1|+ ( b﹣ 3)2=0,∴a+1=0, b﹣ 3=0,即 a=﹣1, b=3.则原式=÷=×===﹣.评论:本题考察了实数的运算,娴熟掌握运算法例是解本题的重点.20.( 5 分)(2014?贵港)如图,在△ ABC 中, AB=BC,点点 D 在 AB的延伸线上.(1)利用尺规按以下要求作图,并在图中注明相应的字母(保存作图印迹,不写作法).①作∠ CBD的均分线BM;②作边 BC上的中线AE,并延伸AE 交 BM于点 F.(2)由( 1)得: BF与边 AC的地点关系是BF∥AC.考点:作图—复杂作图.剖析:( 1)①利用角均分线的作法得出BM;②第一作出BC的垂直均分线,从而得出BC的中点,从而得出边BC上的中线AE;(2)利用三角形的外角的性质以及等腰三角形的性质得出即可.解答:解:( 1)①以下图: BM即为所求;②以下图: AF 即为所求;(2)∵ AB=BC,∴∠ CAB=∠C,∵∠ C+∠CAB=∠CBD,∠ CBM=∠MBD,∴∠ C=∠CBM,∴B F∥AC.评论:本题主要考察了复杂作图以及三角形的外角的性质以及等腰三角形的性质等知识,正确利用角均分线的性质得出是解题重点.21.( 6 分)(2014?贵港)以下图,直线ABx 轴交于点A,与y 轴交于点C( 0, 2),且与D, OD=2.与反比率函数y= ﹣的图象在第二象限内交于点B,过点 B 作BD⊥x轴于点(1)求直线 AB的分析式;(2)若点 P 是线段 BD上一点,且△ PBC 的面积等于 3,求点 P 的坐标.考点:反比率函数与一次函数的交点问题.剖析:( 1)依据图象上的点知足函数分析式,可得B 点坐标,依据待定系数法,可得函数分析式;(2)三角形的面积公式, BP的长,可得 P 点坐标.解答:解:( 1) OD=2,B 点的横坐标是﹣ 2,当 x=﹣2 时, y=﹣=4,∴B点坐标是(﹣ 2, 4),设直线 AB 的分析式是y=kx+b ,图象过(﹣2, 4)、( 0, 2),,解得,∴直线 AB 的分析式为y=﹣x+2;( 2)∵ OD=3,=3,∴B P=3,PD=BD﹣BP=4﹣ 3=1,∴P点坐标是(﹣ 2, 1).评论:本题考察了反比率函数与一函数的交点问题,待定系数法求函数分析式的重点.22.( 8 分)(2014?贵港)某学校举行“社会主义中心价值观”知识竞赛活动,全体学生都参加竞赛,学校正参赛学生均给与表彰,并设置一、二、三等奖和纪念奖共四个奖项,赛后将获奖状况绘制成以下所示的两幅不完好的统计图,请依据图中所给的信息,解答以下问题:(1)该校共有1260 名学生;(2)在图①中,“三等奖”随对应扇形的圆心角度数是108°;(3)将图②增补完好;(4)从该校参加本次竞赛活动的学生中随机抽查一名.求抽到获取一等奖的学生的概率.考点:条形统计图;扇形统计图;概率公式.剖析:( 1)用二等奖的人数除以对应的百分比求出该校共有学生数,( 2)先求出一等奖扇形对应的百分比,再求三等奖扇形对应的圆心角为:(1﹣20%﹣5%﹣ 45%)× 360°=108°,(3)求出三等奖的人数再画出条形统计图,(4)用一等奖的学生数除以总人数就是抽到一等奖的概率,解答:解:( 1)该校共有学生数为: 252÷20%=1260(名),故答案为: 1260.(2)一等奖扇形对应的百分比为: 63÷1260=5%,所以三等奖扇形对应的圆心角为:( 1﹣ 20%﹣ 5%﹣ 45%)× 360°=108°,故答案为: 108°.(3)三等奖的人数为: 1260×( 1﹣ 20%﹣ 5%﹣ 45%)=378 人,如图 2,( 4)抽到获取一等奖的学生的概率为:63÷1260=5%.评论:本题主要考察了条形统计图,扇形统计图及概率,读懂统计图,从不一样的统计图中获取必需的信息是解决问题的重点.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反应部分占整体的百分比大小.23.( 7 分)(2014?贵港)如图,在正方形ABCD中,点 E 是对角线AC上一点,且CE=CD,过点 E 作 EF⊥AC 交 AD于点 F,连结 BE.(1)求证: DF=AE;2(2)当 AB=2时,求 BE 的值.考点:正方形的性质;角均分线的性质;勾股定理.剖析:( 1)连结 CF,依据“ HL”证明Rt△CDF和 Rt△CEF 全等,依据全等三角形对应边相等可得 DF=EF,依据正方形的对角线均分一组对角可得∠EAF=45°,求出△ AEF是等腰直角三角形,再依据等腰直角三角形的性质可得AE=EF,而后等量代换即可得证;( 2)依据正方形的对角线等于边长的倍求出AC,而后求出AE,过点 E 作 EH⊥AB 于 H,判断出△ AEH 是等腰直角三角形,而后求出AE=AH=AE,再求出 BH,而后利用勾股定理列式计算即可得解.解答:( 1)证明:如图,连结CF,在 Rt△CDF和 Rt△CEF中,,∴R t△CDF≌Rt△CEF( HL),∴D F=EF,∵AC 是正方形ABCD的对角线,∴∠ EAF=45°,∴△ AEF 是等腰直角三角形,∴A E=EF,∴D F=AE;(2)解:∵AB=2,∴AC= AB=2 ,∵CE=CD,∴AE=2 ﹣ 2,过点 E 作 EH⊥AB 于 H,则△ AEH是等腰直角三角形,∴AE=AH= AE=×(2﹣2)=2﹣,∴BH=2﹣( 2﹣)=,在 Rt△BEH中, BE2=BH2+EH2=()2+( 2﹣)2=8﹣ 4 .评论:本题考察了正方形的性质,全等三角形的判断与性质,等腰直角三角形的判断与性质,勾股定理的应用,作协助线结构出全等三角形和直角三角形是解题的重点.24.(9 分)(2014?贵港)在展开“漂亮广西,洁净农村”的活动中某乡镇计划购置种树苗共100 棵,已知 A 种树苗每棵30 元, B 种树苗每棵90 元.(1)设购置 A 种树苗 x 棵,购置 A、B 两种树苗的总花费为y 元,请你写出y 与数关系式(不要求写出自变量x 的取值范围);(2)假如购置A、 B 两种树苗的总花费不超出7560 元,且 B 种树苗的棵树许多于棵树的 3 倍,那么有哪几种购置树苗的方案?(3)从节俭开销的角度考虑,你以为采纳哪一种方案更合算?A、B 两x 之间的函A 种树苗考点:一次函数的应用;一元一次不等式组的应用.剖析:( 1)设购置 A 种树苗 x 棵,购置 A、B 两种树苗的总花费为y 元,依据某乡镇计划购买 A、B 两种树苗共 100 棵,已知 A 种树苗每棵 30 元,B 种树苗每棵 90 元可列出函数关系式.( 2)依据购置A、 B 两种树苗的总花费不超出7560 元,且 B 种树苗的棵树许多于A 种树苗棵树的 3 倍,列出不等式组,解不等式组即可得出答案;(3)依据( 1)得出的 y 与 x 之间的函数关系式,利用一次函数的增减性联合自变量的取值即可得出更合算的方案.解答:解:( 1)设购置A 种树苗 x 棵,购置 A、 B 两种树苗的总花费为 y 元,y=30x+90 ( 100﹣x) =9000﹣ 60x ;(2)设购置 A 种树苗 x 棵,则 B 种树苗( 100﹣ x)棵,依据题意得:,解得: 24≤x≤25,因为 x 是正整数,所以 x 只好取 25, 24.有两种购置树苗的方案:方案一:购置A种树苗 25 棵时, B 种树苗 75 棵;方案二:购置A种树苗 24 棵时, B 种树苗 76 棵;(3)∵ y=9000﹣ 60x ,﹣ 60< 0,∴y随 x 的增大而减小,又 x=25 或 24,∴采纳购置 A 种树苗 25 棵, B 种树苗 75 棵时更合算.评论:本题考察的是一元一次不等式组及一次函数的应用,解决问题的重点是读懂题意,找到重点描绘语,从而找到所求的量的等量关系和不等关系.25.( 10 分)(2014?贵港)如图, AB 是大部分圆 O的直径, AO是小半圆 M的直径,点 P 是大部分圆 O上一点, PA与小半圆 M交于点 C,过点 C作 CD⊥OP于点 D.(1)求证: CD是小半圆M的切线;(2)若 AB=8,点 P在大部分圆 O上运动(点2P 不与 A, B 两点重合),设 PD=x, CD=y.①求 y 与 x 之间的函数关系式,并写出自变量x 的取值范围;②当 y=3 时,求 P,M两点之间的距离.考点:圆的综合题;平行线的判断与性质;等边三角形的判断与性质;勾股定理;切线的判定;相像三角形的判断与性质;特别角的三角函数值.专题:综合题.剖析:( 1)连结 CO、 CM,只要证到CD⊥CM.因为 CD⊥OP,只要证到 CM∥OP,只要证到CM 是△ AOP的中位线即可.2(2)①易证△ODC∽△CDP,从而获取CD=DP?OD,从而获取y 与x 之间的函数关系式.因为当点 P 与点 A 重合时 x=0,当点 P 与点 B 重合时 x=4,点 P 在大部分圆 O上运动(点 P 不与 A, B 两点重合),所以自变量 x 的取值范围为 0<x< 4.②当 y=3 时,获取﹣ x2+4x=3,求出 x.依据 x 的值可求出CD、PD的值,从而求出∠ CPD,运用勾股定理等知识便可求出P, M两点之间的距离.解答:解:( 1)连结 CO、 CM,如图 1 所示.∵AO是小半圆M的直径,∴∠ ACO=90°即CO⊥AP.∵OA=OP,∴AC=PC.∵AM=OM,∴CM∥PO.∴∠ MCD=∠PDC.∵CD⊥OP,∴∠ PDC=90°.∴∠ MCD=90°即CD⊥CM.∵CD经过半径CM的外端 C,且 CD⊥CM,∴直线 CD是小半圆M的切线.(2)①∵ CO⊥AP,CD⊥OP,∴∠ OCP=∠ODC=∠CDP=90°.∴∠ OCD=90°﹣∠ DCP=∠P.∴△ ODC∽△ CDP.∴.∴CD2=DP?OD.2∵PD=x, CD=y, OP= AB=4,∴y=x( 4﹣ x) =﹣ x2+4x.当点 P 与点 A 重合时, x=0;当点 P 与点 B 重合时, x=4;∵点 P 在大部分圆O上运动(点P 不与 A, B 两点重合),∴0< x< 4.2∴y与 x 之间的函数关系式为y= ﹣ x +4x,2②当 y=3 时,﹣ x +4x=3.Ⅰ.当 x=1 时,如图 2 所示.在 Rt△CDP中,∵P D=1, CD= .∴tan ∠CPD= =,∴∠C PD=60°.∵OA=OP,∴△ OAP是等边三角形.∵AM=OM,∴PM⊥AO.∴PM===2.Ⅱ.当 x=3 时,如图 3 所示.同理可得:∠ CPD=30°.∵OA=OP,∴∠ OAP=∠APO=30°.∴∠ POB=60°过点 P 作 PH⊥AB,垂足为H,连结 PM,如图 3 所示.∵sin ∠POH= = =,∴P H=2 .同理: OH=2.在 Rt△MHP中,∵MH=4, PH=2 ,∴PM===2.综上所述:当 y=3 时, P,M两点之间的距离为 2或 2 .评论:本题考察了切线的判断、平行线的判断与性质、等边三角形的判断与性质、相像三角形的判断与性质、特别角的三角函数值、勾股定理等知识,综合性比较强.26.( 11 分)(2014?贵港)如图,抛物线 y=ax 2+bx﹣3a(a≠0)与 x 轴交于点 A(﹣ 1, 0)和点 B,与 y 轴交于点 C( 0,2),连结 BC.(1)求该抛物线的分析式和对称轴,并写出线段BC的中点坐标;(2)将线段BC先向左平移 2 个单位长度,在向下平移m个单位长度,使点 C 的对应点C1恰巧落在该抛物线上,求此时点C1的坐标和m的值;(3)若点 P 是该抛物线上的动点,点Q是该抛物线对称轴上的动点,当以P,Q,B,C 四点为极点的四边形是平行四边形时,求此时点P 的坐标.考点:二次函数综合题.剖析:( 1)把点 A(﹣ 1, 0)和点 C( 0,2)的坐标代入所给抛物线可得a、 b 的值,从而获取该抛物线的分析式和对称轴,再求出点 B 的坐标,依据中点坐标公式求出线段 BC的中点坐标即可;( 2)依据平移的性质可知,点 C 的对应点C1的横坐标为﹣ 2,再代入抛物线可求点C1的坐标,进一步获取m的值;( 3)B、C 为定点,可分 BC为平行四边形的一边及对角线两种状况商讨获取点P的坐标.解答:解:( 1)∵抛物线y=ax 2+bx﹣ 3a(a≠0)与 x 轴交于点 A(﹣ 1, 0)和点 B,与 y 轴交于点 C( 0, 2),∴,解得.∴抛物线的分析式为y=﹣x2+ x+2=﹣(x﹣1)2+2,∴对称轴是x=1,∵1+( 1+1) =3,∴B点坐标为( 3, 0),∴BC 的中点坐标为( 1.5 ,1);( 2)∵线段 BC先向左平移 2 个单位长度,再向下平移m个单位长度,使点 C 的对应点 C1恰巧落在该抛物线上,∴点 C1的横坐标为﹣ 2,当 x=﹣2 时, y=﹣×(﹣2)2+×(﹣2) +2=﹣,∴点C1的坐标为(﹣2,﹣),m=2﹣(﹣)=5;(3)①若 BC为平行四边形的一边,∵BC 的横坐标的差为 3,∵点 Q的横坐标为 1,∴P的横坐标为 4 或﹣ 2,∵P在抛物线上,∴P的纵坐标为﹣ 3,∴P1(4,﹣3),P2(﹣2,﹣3);②若 BC为平行四边形的对角线,则 BC与 PQ相互均分,∵点 Q的横坐标为1, BC的中点坐标为( 1.5 , 1),∴P点的横坐标为 1.5+ (1.5 ﹣ 1)=2,2∴P的纵坐标为﹣×2+×2+2=2,∴P3(2,2).综上所述,点P的坐标为: P1( 4,﹣ 3),P2(﹣2,﹣3),P3(2,2).评论:考察了二次函数综合题,波及待定系数法求函数分析式,抛物线的对称轴,中点坐标公式,平移的性质,平行四边形的性质,注意分 BC为平行四边形的一边或为对角线两种状况进行商讨.。
中考数学真题解析汇编分式与分式方程
2014年最新中考数学真题解析汇编:分式与分式方程一、选择题1.(2014•黑龙江龙东,第16题3分)已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3考点:分式方程的解.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的范围即可.解答:解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m=2且m≠3.故选C点评:此题考查了分式方程的解,时刻注意分母不为0这个条件.2.(2014•黑龙江绥化,第14题3分)分式方程的解是()3. (2014•莱芜,第7题3分)已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同B由题意得,=方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每.﹣=2 ﹣=2﹣=2 ﹣=2 由题意得,﹣=25.(2014•河北,第7题3分)化简:﹣=()=x6、(2014•无锡,第3题3分)分式可变形为().解:分式的分子分母都乘以﹣,吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x吨/小时,依题..由题意得,=.8.(2014•重庆A,第6题4分)关于x的方程=1的解是()A.x=4 B.x=3 C.x=2 D.x=1考点:解分式方程专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣1=2,解得:x=3,经检验x=3是分式方程的解.故选B点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.(2014年湖北荆门) (2014•湖北荆门,第10题3分)已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A. 5 B. 1 C. 3 D.不能确定考点:解分式方程;关于原点对称的点的坐标.专题:计算题.分析:根据P关于原点对称点在第一象限,得到P横纵坐标都小于0,求出a的范围,确定出a的值,代入方程计算即可求出解.解答:解:∵点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,∴,解得:<a<2,即a=1,当a=1时,所求方程化为=2,去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解,则方程的解为3.故选C点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.(2014•广西来宾,第8题3分)将分式方程=去分母后得到的整式方程,正确的是11.(2014•黔南州,第10题4分)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.考点:由实际问题抽象出分式方程.专题:应用题;压轴题.分析:题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解答:解:根据题意,得.故选C.点评:理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.12.二、填空题1.(2014•黑龙江绥化,第5题3分)化简﹣的结果是﹣.﹣..2.(2014•湖南衡阳,第19题3分)分式方程=的解为x=2.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x2=x2﹣x+2x﹣2,解得:x=2,经检验x=2是分式方程的解.故答案为:2点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3. (2014•山西,第12题3分)化简+的结果是.考点:分式的加减法.专题:计算题.分析:原式通分并利用同分母分式的加法法则计算即可得到结果.解答:解:原式=+==.故答案为:点评: 此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.4. (2014•乐山,第11题3分)当分式有意义时,x 的取值范围为 x≠2 .时,分式有意义. 5. (2014•丽水,第11题4分)若分式有意义,则实数x 的取值范围是 x ≠5 .解:∵分式有意义,6.(2014衡阳,第19题3分)分式方程2x x=+的解为x = 。
2014年山西省中考数学试卷(附答案与解析)
数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前山西省2014年高中阶段教育学校招生统一考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算23-+的结果是( )A .1B .1-C .5-D .6-2.如图,直线AB ,CD 被直线EF 所截,AB CD ∥,1110∠=,则2∠等于( )A .65B .70C .75D .80 3.下列运算正确的是( )A .224358a a a += B .6212aa a =C .222()a b a b +=+D .20(1)1a += 4.如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的 “弦图”,它解决的数学问题是( )A .黄金分割B .垂径定理C .勾股定理D .正弦定理5.下右图是由三个小正方体叠成的一个几何体,它的左视图是( )ABCD6.我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质.这种研究方法主要体现的数学思想是( )A .演绎B .数形结合C .抽象D .公理化7.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是 ( )A .频率就是概率B .频率与试验次数无关C .概率是随机的,与频率无关D .随着试验次数的增加,频率一般会越来越接近概率8.如图,O 是ABC △的外接圆,连接OA ,OB ,50OBA ∠=,则C ∠的度数为( )A .30B .40C .50D .809. 2.5PM 是指大气中直径小于或等于2.5μm 1μm=0.0000(01m)的颗粒物,也称为可入肺颗粒物.它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为( )A .52.510m -⨯B .70.2510m -⨯C .62.510m -⨯D .52510m -⨯10.如图,点E 在正方形ABCD 的对角线AC 上,且2EC AE =,Rt FEG △的两直角边EF ,EG 分别交BC ,DC 于点M ,N .若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A.223aB .214aC .259aD .249a 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上) 11.计算:23232a b a b = . 12.化简21639x x ++-的结果是 . 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)13.如图,已知一次函数4y kx =-的图象与x 轴、y 轴分别交于A ,B 两点,与反比例函数8y x=在第一象限内的图象交于点C ,且A 为BC 的中点,则k = .14.甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两人先打.规则如下:三人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打;若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是 .15.一走廊拐角的横截面如图所示,已知AB BC ⊥,AB DE ∥,BC FG ∥,且两组平行墙壁间的走廊宽度都是1m .EF 的圆心为O ,半径为1m ,且90EOF ∠=,DE ,FG 分别与O 相切于E ,F 两点.若水平放置的木棒MN 的两个端点M ,N 分别在AB 和BC 上,且MN 与O 相切于点P ,P 是EF 的中点,则木棒MN 的长度为m .16.如图,在ABC △中,30BAC ∠=,AB AC =,AD 是BC 边上的中线,12ACE BAC ∠=∠,CE 交AB 于点E ,交AD 于点F ,若2BC =,则EF 的长为 .三、解答题(本大题共8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分,每题5分)(1)计算:211(2)sin60()122---⨯;(2)分解因式:(1)(3)1x x --+.18.(本小题满分6分)解不等式组并求出它的正整数解.5229,12 3.x x x --⎧⎨--⎩>①≥②19.(本小题满分6分)阅读以下材料,并按要求完成相应的任务.几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉.生活中还有一种特殊的四边形——筝形.所谓筝形,它的形状与我们生活中风筝的骨架相似. 定义:两组邻边分别相等的四边形,称之为筝形.如图,四边形ABCD 是筝形,其中AB AD =,CB CD =.判定:①两组邻边分别相等的四边形是筝形.②有一条对角线垂直平分另一条对角线的四边形是筝形.显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点.如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:数学试卷 第5页(共28页) 数学试卷 第6页(共28页)(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的88⨯网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下: ①顶点都在格点上;②所设计的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都涂上阴影(建议用一系列平行斜线表示阴影).图1图220.(本小题满分10分)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用? (2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x 为8590x ≤<),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.21.(本小题满分7分)如图,点A ,B ,C 表示某旅游景区三个缆车站的位置,线段AB ,BC 表示连接缆车站的钢缆,已知A ,B ,C 三点在同一铅直平面内,它们的海拔高度'AA ,'BB ,'CC 分别为110米,310米,710米,钢缆AB 的坡度11:2i =,钢缆BC 的坡度21:1i =,景区因改造缆车线路,需要从A 到C 直线架设一条钢缆,那么钢缆AC 的长度是多少米?(注:坡度i 是指坡面的铅直高度与水平宽度的比)22.(本小题满分9分)某新建火车站站前广场需要绿化的面积为246000米,施工队在绿化了222000米后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程. (1)该项绿化工程原计划每天完成多少2米?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为562米,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.(本小题满分11分)课题学习:正方形折纸中的数学.动手操作:如图1,四边形ABCD 是一张正方形纸片,先将正方形ABCD 对折,使BC 与AD 重合,折痕为EF ,把这个正方形展平,然后沿直线CG 折叠,使B 点落在EF 上,对应点为'B .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--数学试卷 第7页(共28页) 数学试卷 第8页(共28页)图1图2图3数学思考:(1)求'CB F ∠的度数;(2)如图2,在图1的基础上,连接'AB ,试判断'B AE ∠与'GCB ∠的大小关系,并说明理由. 解决问题:(3)如图3,按以下步骤进行操作:第一步:先将正方形ABCD 对折,使BC 与AD 重合,折痕为EF ,把这个正方形展平,然后继续对折,使AB 与DC 重合,折痕为MN ,再把这个正方形展平,设EF 和MN 相交于点O ;第二步:沿直线CG 折叠,使B 点落在EF 上,对应点为'B ;再沿直线AH 折叠,使D 点落在EF 上,对应点为'D ;第三步:设CG ,AH 分别与MN 相交于点P ,Q ,连接'B P ,'PD ,'D Q ,'QB .试判断四边形''B PD Q 的形状,并证明你的结论.24.(本小题满分13分)综合与探究:如图,在平面直角坐标系xOy 中,四边形OABC 是平行四边形,A ,C 两点的坐标分别为(4,0),(2,3)-,抛物线W 经过O ,A ,C 三点,D 是抛物线W 的顶点.(1)求抛物线W 的解析式及顶点D 的坐标;(2)将抛物线W 和□OABC 一起先向右平移4个单位后,再向下平移(03)m m <<个单位,得到抛物线'W 和□O A B C ''''.在向下平移的过程中,设□O A B C ''''与□OABC 的重叠部分的面积为S ,试探究:当m 为何值时S 有最大值,并求出S 的最大值;(3)在(2)的条件下,当S 取最大值时,设此时抛物线W '的顶点为F ,若点M 是x 轴上的动点,点N 时抛物线W '上的动点,试判断是否存在这样的点M 和点N ,使得以D ,F ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.5 / 14山西省2014年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷(选择题)一、选择题 1.【答案】A【解析】23(32)1-+=+-=,故选A. 【考点】有理数的加法运算 2.【答案】B【解析】2∠的补角是1∠的内错角(同位角),根据“两直线平行,内错角(同位角)相等”可得2∠的补角1110=∠=︒,所以218011070∠=︒-︒=︒,故选A. 【考点】平行线的性质 3.【答案】D【解析】根据合并同类项法则,222358a a a +=,A 错;根据同底数幂的乘法法则,62628aa a a +==,B错;根据完全平方公式222()2a b a ab b +=++,C 错;因为210a +≠,根据非零数的零次幂等于1,D正确,故选D. 【考点】整式的计算 4.【答案】C【解析】根据勾股定理的证明方法可知应选C. 【考点】勾股定理 5.【答案】C【解析】从左边看只能看到上下两个小正方形,故选C. 【考点】几何体的三视图 6.【答案】B【解析】所谓演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程;所谓数形结合,就是根据数形之间的对应关系,通过数形的相互转化来解决数学问题的思想,实现数形结合;所谓抽象是从众多的事物中抽取出共同的、本质性的特征,而舍弃其非本质的特征;数学上所说的“公理”就是一些不加证明而公认的前提,然后以此为基础,推演出所讨论对象的进一步内容,故选B.数学试卷 第11页(共28页)数学试卷 第12页(共28页)【解析】OA OB =是圆心角的一半,【考点】等腰三角形的性质,圆周角定理【答案】C科学计数法是将一个数写成第Ⅱ卷(非选择题)222344232()()6a b a a b b a b =⨯=.【考点】整式的运算中单项式乘以单项式13- 1633(3)(3)(3)(3)(x x x x x x -=+=+++-+-分别于O相切于与O相切于点行墙壁间的走廊宽度相等,由对称性可知.连接OP,则OE于点H,则PH的延长线于点22MK=7/ 14数学试卷第15页(共28页)数学试卷第16页(共28页)(2)本小题是开放题,答案不唯一,参考答案如下:)93=x+甲=85(分)乙将被录用.)933865=3+5+2x⨯+⨯+'甲953+815+793+5+2⨯⨯x乙>,∴甲将被录用由直方图知成绩最高一组分数段【解析】解:9/ 14数学试卷 第19页(共28页)数学试卷 第20页(共28页)11:2i =,又FE BD =AE AF ∴=+∴在Rt AEC △2AC AE =答:钢缆AC 四边形30CB F '∴∠=︒.四边形.EF CD ⊥12CB D '=⨯GCB '∠,连接B D '为等边三角形,.四边形DB DA '=DAB '∴∠=B AE '∴∠=由(1)知EF BC ∥由折叠知,B AE '∴∠=证法二:如图四边形90.BKC=.又由折叠知,GCB GCB'∠=∠,B AE GCB''∴∠=∠.又四边形数学试卷第23页(共28页)PCN ∠=PCN GBC △.PN CN GB CB ∴=12PN ∴=以下同证法一)抛物线抛物线2 14y x=∴顶点D的坐标为(2)由OABC得又C点的坐标为∴B点的坐标为(2,3)如图,过点B作BE x⊥轴于点E,C B x BC G BEA'''∴∥轴,△△.BC C GBE EA''∴=,即32BC C G''=,2233C G BC m''∴==.由平移知,O A B C''''与OABC的重叠部分四边形222)3233)22G C E m mm mm'=-+-+23-<,且0m<<∴当32m=(3)点M【考点】求抛物线解析式,相似三角形的判定与性质,最值问题,点的存在性数学试卷第27页(共28页)。
2013-2014中考试题:分式方程应用题
分式方程应用题
1.(2014?山东威海,第21题9分)端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?
2.(2014?山东烟台,第23题8分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.
(1)今年A型车每辆售价多少元?(用列方程的方法解答)
(2)该车计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?
A,B
3、(2014?湖南张家界,第22题,8分)国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?
4.(2014?十堰19.(6分))甲、乙两人准备整理一批新到的图书,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?
5.(2014?娄底24.(8分))娄底到长沙的距离约为180km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比张晚出发1小时,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.5倍.
(1)求小轿车和大货车的速度各是多少?(列方程解答)
(2)当小刘出发时,求小张离长沙还有多远?。
完整word版,2014年中考数学总复习专题测试试卷(方程与不等式)
2014年中考数学总复习专题测试试卷(方程与不等式)一、选择题(本题共10 小题,每小题4 分,满分40分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。
1.点(412)A m m --,在第三象限,那么m 值是( )。
A.12m > B.4m < C.142m << D.4m >2.不等式组⎩⎨⎧>>a x x 3的解集是x>a ,则a 的取值范围是( )。
A.a ≥3 B .a =3 C.a >3 D.a <33.方程2x x 2-4 -1=1x +2的解是( )。
A.-1 B .2或-1 C.-2或3 D.34.方程2-x 3 - x-14= 5的解是( )。
A. 5 B . - 5 C. 7 D.- 75.一元二次方程x 2-2x-3=0的两个根分别为( )。
A .x 1=1,x 2=-3B .x 1=1,x 2=3C .x 1=-1,x 2=3D .x 1=-1,x 2=-36.已知a b ,满足方程组2324a b m a b m +=-⎧⎨+=-+⎩,,则a b -的值为( )。
A.1- B.1m -C.0 D.1 7. 若方程组35223x y m x y m+=+⎧⎨+=⎩的解x 与y 的和为0,则m 的值为( )。
A.-2 B .0 C.2 D.48.如果x 1,x 2是两个不相等实数,且满足x 12-2x 1=1,x 22-2x 2=1,那么x 1·x 2等于( )。
A.2 B .-1 C.1 D.-29.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形图.如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm , 那么x 满足的方程是( )。
2014中考数学分类汇编:分式方程
中考全国100份试卷分类汇编分式方程1、(2013年黄石)分式方程3121x x =-的解为 A.1x = B. 2x = C. 4x = D. 3x =答案:D解析:去分母,得:3(x -1)=2x ,即3x -3=2x ,解得:x =3,经检验x =3是原方程的根。
2、(2013•温州)若分式的值为0,则x 的值是( )3、(2013•莱芜)方程=0的解为( )4、(2013•滨州)把方程变形为x=2,其依据是( )解:把方程5、(2013•益阳)分式方程的解是( )6、(2013山西,6,2分)解分式方程22311x x x++=--时,去分母后变形为( ) A .2+(x+2)=3(x-1)B .2-x+2=3(x-1)C .2-(x+2)=3(1- x )D . 2-(x+2)=3(x-1)【答案】D【解析】原方程化为:22311x x x +-=--,去分母时,两边同乘以x -1,得:2-(x +2)=3(x -1),选D 。
7、(2013•白银)分式方程的解是( )8、(2013年河北)甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路x m.依题意,下面所列方程正确的是A .120x =100x -10B .120x =100x +10 C .120x -10=100xD .120x +10=100x 答案:A解析:甲队每天修路x m ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同,所以,120x =100x -10,选A 。
9、(2013•毕节地区)分式方程的解是( )C10、(2013•玉林)方程的解是( ) x=11、(德阳市2013年)已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围是____ 答案:m >-6且m ≠-4解析:去分母,得:2x +m =3x -6,解得:x =m +6,因为解为正数,所以,m +6>0,即m >-6,又x ≠2,所以,m ≠-4,因此,m 的取值范围为:m >-6且m ≠-412、(2013年潍坊市)方程012=++x x x 的根是_________________. 答案:x =0考点:分式方程与一元二次方程的解法.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13、(2013四川宜宾)分式方程的解为 x =1 .考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解答:解:去分母得:2x+1=3x,解得:x=1,经检验x=1是分式方程的解.故答案为:x=1点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14、(2013•绍兴)分式方程=3的解是x=3.15、(2013年临沂)分式方程21311xx x+=--的解是.答案:2x=解析:去分母,得:2x-1=3x-3,解得:x=2,经检验x=2是原方程的解。
2014年全国中考数学试题分类汇编07 分式与分式方程(含解析)
分式与分式方程一、选择题1. (2014•广西贺州,第2题3分)分式有意义,则x的取值范围是()A.x≠1B.x=1 C.x≠﹣1 D.x=﹣1考点:分式有意义的条件.分析:根据分式有意义的条件:分母不等于0,即可求解.解答:解:根据题意得:x﹣1≠0,解得:x≠1.故选A.点评:本题主要考查了分式有意义的条件,正确理解条件是解题的关键.2. (2014•广西贺州,第12题3分)张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=(0>0),解得x=1,这时矩形的周长2(x+)=4最小,因此x+(x>0)的最小值是2.模仿张华的推导,你求得式子(x>0)的最小值是()A.2B.1C.6D.10考点:分式的混合运算;完全平方公式.专题:计算题.分析:根据题意求出所求式子的最小值即可.解答:解:得到x>0,得到=x+≥2=6,则原式的最小值为6.故选C点评:此题考查了分式的混合运算,弄清题意是解本题的关键.3.(2014•温州,第4题4分)要使分式有意义,则x的取值应满足()A.x≠2B.x≠﹣1 C.x=2 D.x=﹣1考点:分式有意义的条件.分析:根据分式有意义,分母不等于0列式计算即可得解.解答:解:由题意得,x﹣2≠0,解得x≠2.故选A.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.(2014•毕节地区,第10题3分)若分式的值为零,则x的值为()A.0B.1C.﹣1 D.±1考点:分式的值为零的条件.专题:计算题.分析:分式的值是0的条件是:分子为0,分母不为0,由此条件解出x.解答:解:由x2﹣1=0,得x=±1.当x=1时,x﹣1=0,故x=1不合题意;当x=﹣1时,x﹣1=﹣2≠0,所以x=﹣1时分式的值为0.故选C.点评:分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.5.(2014•孝感,第6题3分)分式方程的解为()A.x=﹣B.x=C.x=D.考点:解分式方程专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:3x=2,解得:x=,经检验x=是分式方程的解.故选B点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.6.(2014·浙江金华,第5题4分)在式子11,,x2,x3x2x3----中,x可以取2和3的是【】A.1x2-B.1x3-C.x2-D.x3-【答案】C.【解析】试题分析:根据二次根式被开方数必须是非负数和分式分母不为0的条件,在式子11,x2x3--,7. (2014•湘潭,第4题,3分)分式方程的解为()A. 1 B.2C.3D.4考点:解分式方程.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:5x=3x+6,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解.故选C.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.(2014•呼和浩特,第8题3分)下列运算正确的是()A.•=B.=a3C.(+)2÷(﹣)=D.(﹣a)9÷a3=(﹣a)6考点:分式的混合运算;同底数幂的除法;二次根式的混合运算.分析:分别根据二次根式混合运算的法则、分式混合运算的法则、同底幂的除法法则对各选项进行逐一计算即可.解答:解:A、原式=3•=3,故本选项错误;B、原式=|a|3,故本选项错误;C、原式=÷=•=,故本选项正确;D、原式=﹣a9÷a3=﹣a6,故本选项错误.故选C.点评:本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键9.(2014•德州,第11题3分)分式方程﹣1=的解是()A.x=1 B.x=﹣1+C.x=2 D.无解考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x(x+2)﹣(x﹣1)(x+2)=3,去括号得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.二.填空题1. (2014•安徽省,第13题5分)方程=3的解是x=6.考点:解分式方程.菁优网专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:4x﹣12=3x﹣6,解得:x=6,经检验x=6是分式方程的解.故答案为:6.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.2. ( 2014•福建泉州,第10题4分)计算:+= 1 .考点:分式的加减法 分析: 根据同分母分式相加,分母不变分子相加,可得答案. 解答: 解:原式==1,故答案为:1.点评: 本题考查了分式的加减,同分母分式相加,分母不变分子相加.3.(2014·云南昆明,第13题3分)要使分式101-x 有意义,则x 的取值范围是 . 考点: 分式有意义的条件.分析: 根据分式有意义的条件可以求出x 的取值范围. 解答: 解:由分式有意义的条件得:010≠-x10≠x故填10≠x .点评: 本题考查了分式有意义的条件:分母不为0. 4.(2014·浙江金华,第12题4分)分式方程312x 1=-的解是 ▲ . 【答案】x 2=. 【解析】5.(2014•浙江宁波,第14题4分)方程=的根x = ﹣1 .考点: 解分式方程 专题: 计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解答:解:去分母得:x=﹣1,经检验x=﹣1是分式方程的解.故答案为:﹣1.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.6. (2014•益阳,第10题,4分)分式方程=的解为x=﹣9.考点:解分式方程.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:4x=3x﹣9,解得:x=﹣9,经检验x=﹣9是分式方程的解.故答案为:x=﹣9.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7. (2014•泰州,第14题,3分)已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣3.考点:分式的化简求值.分析:将a2+3ab+b2=0转化为a2+b2=﹣3ab,原式化为=,约分即可.解答:解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式===﹣3.故答案为﹣3.点评:本题考查了分式的化简求值,通分后整体代入是解题的关键.8.(2014年山东泰安,第21题4分)化简(1+)÷的结果为.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形约分即可得到结果.解:原式=•=•=x﹣1.故答案为:x﹣1点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.三.解答题1. (2014•广东,第18题6分)先化简,再求值:(+)•(x2﹣1),其中x=.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=•(x2﹣1)=2x+2+x﹣1=3x+1,当x=时,原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.2. (2014•广东,第21题7分)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?考点:分式方程的应用.分析:(1)利用利润率==这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.解答:解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.点评:本题考查了分式方程的应用,解题的关键是了解利润率的求法.3. (2014•珠海,第13题6分)化简:(a2+3a)÷.考点:分式的混合运算.专题:计算题.分析:原式第二项约分后,去括号合并即可得到结果.解答:解:原式=a(a+3)÷=a(a+3)×=a.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.4. (2014•广西贺州,第19题(2)4分)(2)先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.考点:分式的化简求值.专题:计算题.分析:原式利用除法法则变形,约分得到最简结果,将a与b的值代入计算即可求出值.解答:解:原式=ab(a+1)•=ab,当a=+1,b=﹣1时,原式=3﹣1=2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.5. (2014•广西贺州,第23题7分)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.考点:分式方程的应用.分析:设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依据等量关系:马小虎走600米的时间=爸爸走1600米的时间+10分钟.解答:解:设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依题意得=+10,解得x=80.经检验,x=80是原方程的根.答:马小虎的速度是80米/分.点评:本题考查了分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.6. (2014•广西玉林市、防城港市,第20题6分)先化简,再求值:﹣,其中x=﹣1.考点:分式的化简求值.专题:计算题.分析:原式通分并利用同分母分式的减法法则计算,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=﹣==,当x=﹣1时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.7.(2014年四川资阳,第17题7分)先化简,再求值:(a+)÷(a﹣2+),其中,a 满足a﹣2=0.考点:分式的化简求值.菁优网专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.解答:解:原式=÷=•=,当a﹣2=0,即a=2时,原式=3.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.8.(2014•新疆,第17题8分)解分式方程:+=1.考点:解分式方程.分析:根据解分式方程的一般步骤,可得分式方程的解.解答:解:方程两边都乘以(x+3)(x﹣3),得3+x(x+3)=x2﹣93+x2+3x=x2﹣9解得x=﹣4检验:把x=﹣4代入(x+3)(x﹣3)≠0,∴x=﹣4是原分式方程的解.点评:本题考查了解分式方程,先求出整式方程的解,检验后判定分式方程解的情况.9.(2014年云南省,第15题5分)化简求值:•(),其中x=.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,将x 的值代入计算即可求出值.解答:解:原式=•=x+1,当x=时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.10.(2014年云南省,第20题6分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?考点:分式方程的应用.分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.解答:解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.点评:本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.11.(2014•舟山,第18题6分)解方程:=1.考点:解分式方程专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x(x﹣1)﹣4=x2﹣1,去括号得:x2﹣x﹣4=x2﹣1,解得:x=﹣3,经检验x=﹣3是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.12.(2014年广东汕尾,第23题11分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?分析:(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设至少应安排甲队工作x天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=4,解得:x=50经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设至少应安排甲队工作x天,根据题意得:0.4x+×0.25≤8,解得:x≥10,答:至少应安排甲队工作10天.点评:此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程和不等式,解分式方程时要注意检验.13.(2014•毕节地区,第22题8分)先化简,再求值:(﹣)÷,其中a2+a ﹣2=0.考点:分式的化简求值;解一元二次方程-因式分解法分析:先把原分式进行化简,再求a2+a﹣2=0的解,代入求值即可.解答:解:解a2+a﹣2=0得a1=1,a2=﹣2,∵a﹣1≠0,∴a≠1,∴a=﹣2,∴原式=÷=•=,∴原式===﹣.点评:本题考查了分式的化简求值以及因式分解法求一元二次方程的解,是重点内容要熟练掌握.14.(2014•武汉,第17题6分)解方程:=.考点:解分式方程专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x=3x﹣6,解得:x=6,经检验x=6是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.(2014•襄阳,第13题3分)计算:÷=.考点:分式的乘除法专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=•=.故答案为:点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.16.(2014•襄阳,第19题6分)甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?考点:分式方程的应用专题:应用题.分析:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,等量关系:动车行驶360km与特快列车行驶(360﹣135)km所用的时间相同,列方程求解.解答:解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得:=,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:设特快列车的平均速度为90km/h,则动车的速度为144km/h.点评:本题考查了分式方程的应用,解答本题的关键是仔细审题,得到等量关系:动车行驶360km与特快列车行驶(360﹣135)km所用的时间相同.17.(2014•邵阳,第20题8分)先化简,再求值:(﹣)•(x﹣1),其中x=2.考点:分式的化简求值专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•(x﹣1)=,当x=2时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(2014•四川自贡,第21题10分)学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?考点:分式方程的应用;一元一次不等式的应用专题:应用题.分析:(1)设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为,根据李老师与工人王师傅共同整理20分钟的工作量+王师傅再单独整理了20分钟的工作量=1,可得方程,解出即可;(2)根据王师傅的工作时间不能超过30分钟,列出不等式求解.解答:解:(1)设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为,由题意,得:20(+)+20×=1,解得:x=80,经检验得:x=80是原方程的根.答:王师傅单独整理这批实验器材需要80分钟.(2)设李老师要工作y分钟,由题意,得:(1﹣)÷≤30,解得:y≥25.答:李老师至少要工作25分钟.点评:本题考查了分式方程的应用及一元一次不等式的应用,解答本题的关键是仔细审题,找到不等关系及等量关系.19.(2014·云南昆明,第17题5分)先化简,再求值:1)11(22-⋅+a a a ,其中3=a .考点: 分式的化简求值。
20120014年中考数学试卷分类汇编:07_分式与分式方程
一、选择题 1.化简x y x yy x x⎛⎫--÷⎪⎝⎭的结果是( ) A.1yB. x y y +C. x y y -D. y2.计算:211(1)1mm m+÷⋅--的结果是( ) A .221m m --- B .221m m -+-C .221m m --D .21m -3. 当分式21+-x x 的值为0时,x 的值是( ) (A )0 (B )1 (C )-1 (D )-2 4.计算1a -1 – aa -1的结果为( ) A. 1+aa -1B. -a a -1C. -1D.1-a5.已知2111=-b a ,则b a ab -的值是( ) A.21 B.-21C.2D.-2 6.下列式子是分式的是( )A.2x B.1+x x C. y x +2 D. 3x 8.)化简(x -x 1-x 2)÷(1-x 1)的结果是( )A .x 1B .x -1C .x1-xD .1-x x9.化简22a b a b a b---的结果是 A a b + B a b - C 22a b - D1 二、填空题1.当x 时,分式x-31有意义. 2.化简1(1)(1)1m m -++的结果是 .3.化简:(2x x+2-x x-2)÷xx 2-4的结果为 。
7.当x = 时,分式22+-x x 的值为零. 8.化简:2222222a b a ba ab b a b--÷+++=__________________.9.如果分式23273x x --的值为0,则x 的值应为 .11.若m 为正实数,且13m m -=,221m m-则= 12.化简a a a -+-111=________. 13. 化简:x 2 - 9x - 3 = .三、解答题 1.先化简,再求值:12112---x x ,其中x =-2. 2. xx x 1)11(2-÷+3.先化简,再求值:21x x -(xx 1--2),其中x =2. 4.化简:3a b a ba b a b-++--. 5.先化简,再求值:(x -1x -x -2x +1)÷2x 2-x x 2+2x +1,其中x 满足x 2-x -1=0.6.先化简,再求值2221xx x x x +⋅-,其中2x =. 7.先化简,再求值.221211, 2.111x x x x x x x ⎛⎫-+-+÷= ⎪+-+⎝⎭其中8.已知111x =-,求211x x +--的值。
2014年中考数学二轮精品复习试卷分式
2014年中考数学二轮精品复习试卷分式学校:___________姓名:___________班级:___________考号:___________一、选择题1x 的取值范围是 A .全体实数 B .x=1 C .x≠1 D .x=02x 的取值范围是 .3.若x=-1,y=2,则A 40,则x 的值是A . 1B .0C .-1D .±1 5.下列运算错误的是A .C 6.对于非零实数a b 、,规定,则x 的值为7 A. x +1 B. C.x - D. x8 】A .x 1≠B .x >1C .x <1D .x 1≠-9.化简分式A .2B .-210A11】A. 0B.1C. -1D. x12】A.﹣1 B.1 C13x的值为A.﹣1 B.0 C.±1 D.1140,你认为x可取得数是A.9 B.±3 C.﹣3 D.315.下列选项中,从左边到右边的变形正确的是()A.B.C.D.16x的取值范围是A.x≤3 B.x≥3 C.x≠3 D.x=317.若分式的值为0,则x的值为()A. 4 B.﹣4 C.±4 D. 318.下列从左到右的变形过程中,等式成立的是()A.=B.=C.=D.=19)A20.若分式的值为零,则的值是()A、0B、1C、D、-2二、填空题21有意义,则的取值范围是。
22.当x=时,分式23.当x= 时,分式的值是零.24.将分式约分时,分子和分母的公因式是.25.计算:=262728的取值范围是.2930.已知,分式的值为.31x= .32.(2013年四川资阳3分)已知直线上有n(n≥2的正整数)个点,每相邻两点间距离为1,从左边第1个点起跳,且同时满足以下三个条件:①每次跳跃均尽可能最大;②跳n次后必须回到第1个点;③这n次跳跃将每个点全部到达,设跳过的所有路程之和为S n33.当m=时,分式34.定义运算“*”为:a m m=.35x的取值范围是________.三、计算题++=的根.36m是方程2x3x1038x=﹣4.3940.(1(241 42.(1)已知2121632x x --=,求代数式4x的值;(243442,2,-1,1中选取一个恰当的数作为x 的值代入求值.45.(8分)已知12,4-=-=+xy y x ,求四、解答题 46.计算 ①(2﹣)2012(2+)2013﹣2﹣()0.②先化简,再求值:,其中x 满足x 2+x ﹣2=0.47.阅读下面材料,并解答问题.解:由分母为2x 1-+,可设()()4222x x 3x 1x a b --+=-+++则()()()()422242242x x 3x 1x a b x ax x a b x a 1x a b --+=-+++=--+++=---++∵对应任意x ,上述等式均成立,∴a 11a b 3-=⎧⎨+=⎩,∴a=2,b=1。
中考数学分式方程经典60题
本章学习内容由店主精心收集整理,请家长下载打印,祝学习顺利!其余系列请关注店铺或私信留言中考数学提分冲刺真题精析:分式方程一、解答题(共60小题)1.(2014•自贡)学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?2.(2014•舟山)解方程:=1.3.(2014•镇江)(1)解方程:﹣=0;(2)解不等式:2+≤x,并将它的解集在数轴上表示出来.4.(2014•长春)某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.5.(2014•漳州)杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价﹣进价)6.(2014•张家界)国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获得补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?7.(2014•云南)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?8.(2014•岳阳)解分式方程:=.9.(2014•永州)某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?10.(2014•营口)为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?11.(2014•扬州)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?12.(2014•徐州)几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.13.(2014•宿迁)解方程:.14.(2014•新疆)解分式方程:+=1.15.(2014•襄阳)甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B 站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?16.(2014•仙桃)解方程:.17.(2014•西宁)(1)解关于m的分式方程=﹣1;(2)若(1)中分式方程的解m满足不等式mx+3>0,求出此不等式的解集.18.(2014•武汉)解方程:=.19.(2014•梧州)某市修通一条与省会城市相连接的高速铁路,动车走高速铁路线到省会城市路程是500千米,普通列车走原铁路线路程是560千米.已知普通列车与动车的速度比是2:5,从该市到省会城市所用时间动车比普通列车少用4.5小时,求普通列车、动车的速度.20.(2014•威海)端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?21.(2014•泰安)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?22.(2014•随州)某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?23.(2014•苏州)解分式方程:+=3.24.(2014•十堰)甲、乙两人准备整理一批新到的图书,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?25.(2014•深圳)某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求由几种方案?26.(2014•上海)解方程:﹣=.27.(2014•汕头)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?28.(2014•日照)为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?29.(2014•曲靖)某校举行书法比赛,为奖励优胜学生,购买了一些钢笔和毛笔,毛笔单价是钢笔单价的1.5倍,购买钢笔用了1500元,购买毛笔用了1800元,购买的钢笔支数比毛笔多30支,钢笔、毛笔的单价分别为多少元?30.(2014•衢州)为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污污水处理设备A型B型价格(万元/台)m m﹣3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.31.(2014•盘锦)某城市的A商场和B商场都卖同一种电动玩具,A商场的单价与B商场的单价之比是5:4,用120元在A商场买这种电动玩具比在B商场少买2个,求这种电动玩具在A 商场和B商场的单价.32.(2014•攀枝花)解方程:.33.(2014•内江)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?34.(2014•南宁)解方程:﹣=1.35.(2014•牡丹江)学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?36.(2014•梅州)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?37.(2014•娄底)娄底到长沙的距离约为180km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比小张晚出发1小时,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答)(2)当小刘出发时,求小张离长沙还有多远?38.(2014•六盘水)某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?39.(2014•聊城)解分式方程:+=﹣1.41.(2014•辽阳)某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.42.(2014•连云港)解方程:+3=.43.(2014•嘉兴)解方程:=0.44.(2014•济宁)济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?45.(2014•贺州)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.46.(2014•哈尔滨)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?47.(2014•贵阳)2014年12月26日,西南真正意义上的第一条高铁﹣贵阳至广州高速铁路将开始试运行,从贵阳到广州,乘特快列车的行程约为1800km,高铁开通后,高铁列车的行程约为860km,运行时间比特快列车所用的时间减少了16h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.48.(2014•广州)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.49.(2014•佛山)解分式方程:=.50.(2014•丹东)某服装厂接到一份加工3000件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.原计划每天加工多少件服装?52.(2014•达州)某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?53.(2014•常德)解方程:=.54.(2014•北京)列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.55.(2013•资阳)解方程:.56.(2013•十堰)甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字.问:甲、乙两人每分钟各打多少字?57.(2013•昆明)某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本.(1)求打折前每本笔记本的售价是多少元?(2)由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?58.(2013•德阳)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x、y都是整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?59.(2013•崇左)我市新城区环形路的拓宽改造工程项目,经投标决定由甲、乙两个工程队共同完成这一工程项目.已知乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程如果由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.求甲、乙两队单独完成这项工程各需要多少天?60.(2012•天水)Ⅰ.解不等式组并把解集在数轴上表示出来.Ⅱ.解方程x2﹣2x+=8.中考数学提分冲刺真题精析:分式方程参考答案与试题解析一、解答题(共60小题)1.(2014•自贡)学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?考点:分式方程的应用;一元一次不等式的应用.专题:应用题.分析:(1)设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为,根据李老师与工人王师傅共同整理20分钟的工作量+王师傅再单独整理了20分钟的工作量=1,可得方程,解出即可;(2)根据王师傅的工作时间不能超过30分钟,列出不等式求解.解答:解:(1)设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为,由题意,得:20(+)+20×=1,解得:x=80,经检验得:x=80是原方程的根.答:王师傅单独整理这批实验器材需要80分钟.(2)设李老师要工作y分钟,由题意,得:(1﹣)÷≤30,解得:y≥25.答:李老师至少要工作25分钟.点评:本题考查了分式方程的应用及一元一次不等式的应用,解答本题的关键是仔细审题,找到不等关系及等量关系.2.(2014•舟山)解方程:=1.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x(x﹣1)﹣4=x2﹣1,去括号得:x2﹣x﹣4=x2﹣1,解得:x=﹣3,经检验x=﹣3是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.3.(2014•镇江)(1)解方程:﹣=0;(2)解不等式:2+≤x,并将它的解集在数轴上表示出来.考点:解分式方程;在数轴上表示不等式的解集;解一元一次不等式.专题:计算题.分析:(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)不等式去分母,去括号,移项合并,将x系数化为1,求出解集,表示在数轴上即可.解答:解:(1)去分母得:3x+6﹣2x=0,移项合并得:x=﹣6,经检验x=﹣6是分式方程的解;(2)去分母得:6+2x﹣1≤3x,解得:x≥5,解集在数轴上表示出来为:点评:此题考查了解分式方程,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.4.(2014•长春)某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.考点:分式方程的应用.专题:工程问题.分析:根据题意设出该文具厂原计划每天加工x套这种画图工具,再根据已知条件列出方程即可求出答案.解答:解:设文具厂原计划每天加工x套这种画图工具.根据题意,得﹣=4.解得x=125.经检验,x=125是原方程的解,且符合题意.答:文具厂原计划每天加工125套这种画图工具.点评:本题主要考查了如何由实际问题抽象出分式方程,在解题时要能根据题意找出等量关系列出方程是本题的关键.5.(2014•漳州)杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价﹣进价)考点:分式方程的应用;一元一次不等式的应用.专题:销售问题.分析:(1)设第一批杨梅每件进价是x元,则第二批每件进价是(x+5)元,再根据等量关系:第二批杨梅所购件数是第一批的2倍;(2)设剩余的杨梅每件售价y元,由利润=售价﹣进价,根据第二批的销售利润不低于320元,可列不等式求解.解答:解:(1)设第一批杨梅每件进价x元,则×2=,解得x=120.经检验,x=120是原方程的根.答:第一批杨梅每件进价为120元;(2)设剩余的杨梅每件售价打y折.则:×150×80%+×150×(1﹣80%)×0.1y﹣2500≥320,解得y≥7.答:剩余的杨梅每件售价至少打7折.点评:本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为不等关系列出不等式求解.6.(2014•张家界)国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获得补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?考点:分式方程的应用.专题:应用题.分析:设该款空调补贴前的售价为每台x元,根据补贴后可购买的台数比补贴前前多20%,可建立方程,解出即可.解答:解:设该款空调补贴前的售价为每台x元,由题意,得:×(1+20%)=,解得:x=3000.经检验得:x=3000是原方程的根.答:该款空调补贴前的售价为每台3000元.点评:本题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.7.(2014•云南)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?考点:分式方程的应用.专题:应用题.分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.解答:解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.点评:本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.8.(2014•岳阳)解分式方程:=.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:5x=3x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.(2014•永州)某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?考点:分式方程的应用.专题:应用题.。
2014年全国中考数学试卷分类汇编:分式与分式方程【含解析】
分式与分式方程一、选择题1. (2014•四川巴中,第4题3分)要使式子有意义,则m 的取值范围是( ) A .m >﹣1B . m ≥﹣1C . m >﹣1且m ≠1D . m ≥﹣1且m ≠1考点:二次根式及分式的意义.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围. 解答:根据题意得:,解得:m ≥﹣1且m ≠1.故选D .点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数. 2. (2014•山东潍坊,第5题3分)若代数式2)3(1-+x x 有意义,则实数x 的取值范围是( ) A.x ≥一1 B .x ≥一1且x ≠3 C .x >-l D .x >-1且x ≠3 考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.解答:根据题意得:⎩⎨⎧≠-≥+0301x x 解得x ≥-1且x ≠3.故选B .点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数. 3.(2014山东济南,第7题,3分)化简211mm m m -÷- 的结果是 A .m B .m 1 C .1-m D .11-m 【解析】m m m m m m m m m =-⨯-=-÷-111122,故选 A .4. (2014•浙江杭州,第7题,3分)若(+)•w=1,则w=( )W==0÷(﹣÷•,==C==由题意得,=.分)分式)))【分析】二、填空题1. (2014•上海,第8题4分)函数y=的定义域是x≠1.2. (2014•四川巴中,第12题3分)若分式方程﹣=2有增根,则这个增根是.考点:分式方程的增根.分析:分式方程变形后,去分母转化为整式方程,根据分式方程有增根,得到x﹣1=0,求出x的值,代入整式方程即可求出m的值.解答:根据分式方程有增根,得到x﹣1=0,即x=1,则方程的增根为x=1.故答案为:x=1 点评:此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.3. (2014•山东烟台,第14题3分)在函数中,自变量x的取值范围是.考点:二次根式及分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.4.(2014•湖南怀化,第12题,3分)分式方程=的解为x=1.5. (2014山东济南,第19题,3分)若代数式21-x 和123+x 的值相等,则=x . 【解析】解方程12321+=-x x ,的7=x ,应填7. 6.(2014•遵义13.(4分))计算:+的结果是 ﹣1 .==.7. (2014•年山东东营,第15题4分)如果实数x ,y 满足方程组,那么代数式(+2)÷的值为 1 .考点: 分式的化简求值;解二元一次方程组. 专题: 计算题.分析: 原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程组的解得到x 与y 的值,代入计算即可求出值. 解答: 解:原式=•(x+y )=xy+2x+2y ,方程组,解得:,当x=3,y=﹣1时,原式=﹣3+6﹣2=1. 故答案为:1点评: 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.8. (2014•江苏盐城,第13题3分)化简:﹣= 1 .9.(2014•四川宜宾,第10题,3分)分式方程﹣=1的解是x=﹣1.5 .10.(2014•四川南充,第11题,3分)分式方程=0的解是.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:x+1+2=0,解得:x=﹣3经检验x=﹣3是分式方程的解.故答案为:x=﹣3点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.11.(2014•四川凉山州,第25题,5分)关于x的方程=﹣1的解是正数,则a的取值范围是a>﹣1 .解:=12.(2014•四川内江,第22题,6分)已知+=3,则代数式的值为﹣.=3+13.(2014•甘肃白银、临夏,第12题4分)化简:=.+﹣14.(2014•广州,第13题3分)代数式有意义时,应满足的条件为______.【考点】分式成立的意义,绝对值的考察【分析】由题意知分母不能为0,即,则【答案】三、解答题1. (2014•上海,第20题10分)解方程:﹣=.2. (2014•四川巴中,第23题5分)先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.考点:分式的化简,一元二次的解法,分式的意义.分析:通分相加,因式分解后将除法转化为乘法,再将方程的解代入化简后的分式解答.解答:原式=÷=÷=•=﹣,解方程x2﹣4x+3=0得,(x﹣1)(x﹣3)=0,x1=1,x2=3.当x=1时,原式无意义;当x=3时,原式=﹣=﹣.点评:本题综合考查了分式的混合运算及因式分解同时考查了一元二次方程的解法.在代入求值时,要使分式的值有意义.3. (2014•山东威海,第21题9分)端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子由题意得,+=260则买甲粽子为:个,乙粽子为:4. (2014•山东枣庄,第19题4分)(2)化简:(﹣)÷.•(. 5. (2014•山东烟台,第19题6分)先化简,再求值:÷(x ﹣),其中x 为数据0,﹣1,﹣3,1,2的极差.考点:分式的化简,极差.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出数据的极差确定出x ,代入计算即可求出值. 解答:原式=÷=•=,当x =2﹣(﹣3)=5时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.6. (2014•山东烟台,第23题8分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A 型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A 型车每辆售价多少元?(用列方程的方法解答)(2)该车计划新进一批A 型车和新款B 型车共60辆,且B 型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多? A ,B考点:分式方程的应用,一次函数的应用.分析: (1)设今年A 型车每辆售价x 元,则去年售价每辆为(x +400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A 行车a 辆,则B 型车(60﹣x )辆,获利y 元,由条件表示出y 与a 之间的关系式,由a 的取值范围就可以求出y 的最大值. 解答:(1)设今年A 型车每辆售价x 元,则去年售价每辆为(x +400)元,由题意,得,解得:x =1600.经检验,x =1600是元方程的根.答:今年A 型车每辆售价1600元;(2)设今年新进A 行车a 辆,则B 型车(60﹣x )辆,获利y 元,由题意,得 y =(1600﹣1100)a +(2000﹣1400)(60﹣a ), y =﹣100a +36000.∵B 型车的进货数量不超过A 型车数量的两倍,∴60﹣a ≤2a , ∴a ≥20.∵y =﹣100a +36000.∴k =﹣100<0,∴y 随a 的增大而减小.∴a =20时,y 最大=34000元.∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.点评:本题考查了列分式方程解实际问题的运,分式方程的解法的运用,一次函数的解析式的运用,解答时由销售问题的数量关系求出一次函数的解析式是关键.7.(2014•湖南张家界,第18题,6分)先化简,再求值:(1﹣)+,其中a=.÷•,时,原式.8.(2014•湖南张家界,第22题,8分)国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?×,9. (2014•江西抚州,第16题,5分)先化简:34211x x x x x ---÷--() ,再任选一个你喜欢的数x 代入求值.解析:原式=x x x x x x x ⎛⎫---- ⎪---⎝⎭2341112=x x x x x -+-⋅--244112=()x x --222=x -2 取x =10 代入,原式=8(注:x 不能取1和2)10.(2014•山东聊城,第18题,7分)解分式方程:+=﹣1.11. (2014年贵州黔东南18.(8分))先化简,再求值:÷﹣,其中x=﹣4.考点: 分式的化简求值. 专题: 计算题.分析: 原式第一项利用除法法则变形,约分后利用同分母分式的减法法则计算得到最简结果,将x 的值代入计算即可求出值. 解答: 解:原式=•﹣=﹣=,当x=﹣4时,原式==.点评: 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.12.(2014•十堰17.(6分))化简:(x 2﹣2x )÷.•完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?+=114.(2014•娄底21.(8分))先化简÷(1﹣),再从不等式2x﹣3<7的正整数解中选一个使原式有意义的数代入求值.=÷=•=货车,都从娄底去长沙,小刘比张晚出发1小时,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答)(2)当小刘出发时,求小张离长沙还有多远?﹣=116. (2014年湖北咸宁17.(8分))(1)计算:(﹣2)2+4×2﹣1﹣|﹣8|; (2)化简:﹣.考点: 实数的运算;分式的加减法;负整数指数幂.分析: (1)本题涉及负整指数幂、乘方、绝对值化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据分式的性质,可化成同分母的分式,根据分式的加减,可得答案. 解答: 解:(1)原式=4+2﹣8=﹣2;(2)原式=.点评: 本题考查了实数的运算,本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.17. ( ( 2014年河南) 16.8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中x -1 解:原式=()()()2x 1x 12x x 1x x 1x+-++÷-…………………4分 =()2x 1xx x 1++ =1x 1+…………………………………………………………………6分当x -1时,原式=2……………………………8分18.(2014•江苏苏州,第21题5分)先化简,再求值:,其中.统一为乘法运算,注意化简后,将解:÷()÷×,=19.(2014•江苏苏州,第22题6分)解分式方程:+=3.20. (2014•山东淄博,第18题5分)计算:•.考点:分式的乘除法.专题:计算题.分析:原式约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.21. (2014•江苏徐州,第24题8分)几个小伙伴打算去音乐厅观看演出,他们准备用360元购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.考点:分式方程的应用.分析:设票价为x元,根据图中所给的信息可得小伙伴的人数为:,根据小伙伴的人数不变,列方程求解.解答:解:设票价为x元,由题意得,=+2,解得:x=60,则小伙伴的人数为:=8.答:小伙伴们的人数为8人.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.22. (2014•江苏盐城,第19题4分)(2)解方程:=.23. (2014•年山东东营,第23题8分)为顺利通过“国家文明城市”验收,东营市政府拟对称取部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.考点:一次函数的应用;分式方程的应用.分析:(1)如果设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.解答:解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天,由题意得=解得:x=15,经检验,x=15是原分式方程的解,2x=30答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.(2)方案一:由甲工程队单独完成需要4.5×15=67.5万元;方案二:由乙工程队单独完成需要2.5×30=75万元;方案三:由甲乙两队合作完成4.5×10+2.5×10=70万元.所以选择甲工程队,既能按时完工,又能使工程费用最少.点评:本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24. (2014•江苏徐州,第19题5分)(2)计算:(a+)÷(1+).考点:分式的混合运算.专题:计算题.分析:(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(2)原式=÷=•=a﹣1.点评:此题考查了分式的混合运算,熟练掌握运算法则解本题的关键.25.(2014•四川遂宁,第18题,7分)先化简,再求值:(+)÷,其中x=﹣1.•=•,﹣.26.(2014•四川宜宾,第17题,10分)(1)计算:|﹣2|﹣(﹣)0+()﹣1(2)化简:(﹣)•.•••27.(2014•四川凉山州,第19题,6分)先化简,再求值:÷(a+2﹣),其中a2+3a﹣1=0.÷•= 28.(2014•四川泸州,第18题,6分)计算(﹣)÷.﹣•﹣)•,.29.(2014•四川内江,第27题,12分)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【考点】行程问题的应用【分析】路程=速度×时间,分式方程的实际应用考察【解析】(1)依题意可得,普通列车的行驶路程为400×1.3=520(千米)(2)设普通列车的平均速度为千米/时,则高铁平均速度为千米/时.答:高铁平均速度为2.5×120=300千米/时.31.(2014•广东梅州,第20题8分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.'.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?﹣×0.25≤8;..。
中考数学复习《分式方程》测试题(含答案)
中考数学复习《分式方程》测试题(含答案)一、选择题(每题4分,共20分)1.解分式方程2x -1+x +21-x =3时,去分母后变形为(D) A .2+(x +2)=3(x -1) B .2-x +2=3(x -1)C .2-(x +2)=3(1-x )D .2-(x +2)=3(x -1)2.[2015·天津]分式方程2x -3=3x 的解为(D) A .x =0 B .x =5C .x =3D .x =9【解析】 去分母得2x =3x -9,解得x =9,经检验x =9是分式方程的解.3.[2015·常德]分式方程2x -2+3x2-x =1的解为(A)A .x =1B .x =2C .x =13D .x =0【解析】 去分母得2-3x =x -2,解得x =1,经检验x =1是分式方程的解.4.[2015·遵义]若x =3是分式方程a -2x -1x -2=0的根,则a 的值是(A)A .5B .-5C .3D .-3【解析】 ∵x =3是分式方程a -2x -1x -2=0的根,∴a -23-13-2=0,∴a -23=1,∴a -2=3,∴a =5.5.[2014·福州]某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是(A)A.600x +50=450x B.600x -50=450x C.600x =450x +50 D.600x =450x -50 【解析】 根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器所需时间=原计划生产450台所需时间.二、填空题(每题4分,共20分)6.[2015·淮安]方程1x -3=0的解是__x =13__.7.[2015·巴中]分式方程3x +2=2x的解x =__4__. 8.[2015·江西样卷]小明周三在超市花10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多花了2元钱,却比上次多买了2袋牛奶.若设他上周三买了x 袋牛奶,则根据题意列得方程为__10x =12x +2+0.5__. 9.[2015·河南模拟]若关于未知数x 的分式方程a x -2+3=x +12-x有增根,则a 的值为__-3__.【解析】 分式方程去分母,得a +3x -6=-x -1,解得x =-a +54,∵分式方程有增根,∴x =2,∴-a +54=2,解得a =-3.10.[2015·黄冈中学自主招生]若关于x 的方程ax +1x -1-1=0的解为正数,则a 的取值范围是__a <1且a ≠-1__.【解析】 解方程得x =21-a ,即21-a>0,解得a <1, 当x -1=0时,x =1,代入得a =-1,此为增根,∴a ≠-1,∴a <1且a ≠-1.三、解答题(共26分)11.(10分)(1)[2014·黔西南]解方程:1x -2=4x 2-4; (2)[2014·滨州]解方程:2-2x +13=1+x 2.解:(1)x +2=4,x =2,把x =2代入x 2-4,x 2-4=0,所以方程无解;(2)去分母,得12-2(2x +1)=3(1+x ),去括号,得12-4x -2=3+3x ,移项、合并同类项,得-7x =-7,系数化为1,得x =1.12.(8分)[2015·济南]济南与北京两地相距480 km ,乘坐高铁列车比乘坐普通快车能提前4 h 到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.解:设普通快车的速度为x km/h ,由题意得480x -4803x =4,解得x =80,经检验,x =80是原分式方程的解,3x =3×80=240.答:高铁列车的平均行驶速度是240 km/h.13.(8分)[2015·扬州]扬州建城2 500年之际,为了继续美化城市,计划在路旁栽树1 200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,求原计划每天栽树多少棵?解:设原计划每天种树x 棵,则实际每天栽树的棵数为(1+20%)x ,由题意得1 200x - 1 200(1+20%)x=2, 解得x =100,经检验,x =100是原分式方程的解,且符合题意.答:原计划每天种树100棵.14.(10分)[2015·连云港]在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6 000元购买的门票张数,现在只花费了4 800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.解:(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x -80)元,根据题意,得6 000x =4 800x -80,解得x =400.经检验,x =400是原方程的根.答:每张门票的原定票价为400元;(2)设平均每次降价的百分率为y ,根据题意,得400(1-y )2=324,解得:y 1=0.1,y 2=1.9(不合题意,舍去).答:平均每次降价10%.15.(12分)[2015·泰安]某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7 800元,乙种款型共用了6 400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店按进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元?解:(1)设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,依题意有7 8001.5x +30=6 400x ,解得x =40,经检验,x =40是原分式方程的解,且符合题意,1.5x =60.答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)6 40040=160,160-30=130(元),130×60%×60+160×60%×(40÷2)+160×[(1+60%)×0.5-1]×(40÷2) =4 680+1 920-640=5 960(元).答:售完这批T 恤衫商店共获利5 960元.16.(12分)[2015·宁波]宁波火车站北广场将于2015年底投入使用,计划在广场内种植A ,B 两种花木共6 600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?【解析】 (1)首先设B 花木数量为x 棵,则A 花木数量是(2x -600)棵,由题意得等量关系:种植A ,B 两种花木共6 600棵,根据等量关系列出方程;(2)首先设安排a 人种植A 花木,由题意得等量关系:a 人种植A 花木所用时间=(26-a )人种植B 花木所用时间,根据等量关系列出方程.解:(1)设B 花木数量为x 棵,则A 花木数量是(2x -600)棵,由题意得 x +2x -600=6 600,解得x =2 400,2x -600=4 200,答:B 花木数量为2 400棵,则A 花木数量是4 200棵;(2)设安排a 人种植A 花木,由题意得4 20060a = 2 40040(26-a ),解得a =14,经检验,a =14是原分式方程的解,26-a=26-14=12,答:安排14人种植A花木,12人种植B花木.。
2014年中考数学二轮精品复习试卷分式含答案解析
2014年中考数学二轮精品复习试卷:分式学校:___________姓名:___________班级:___________考号:___________一、选择题1x 的取值范围是 A .全体实数 B .x=1 C .x≠1D .x=02x 的取值范围是 .3.若x=-1,y=2,则A 40,则x 的值是A . 1B .0C .-1D .±1 5.下列运算错误的是A .C 6.对于非零实数a b 、,规定,则x 的值为7 A. x +1 B. C.x - D. x8 】A .x 1≠B .x >1C .x <1D .x 1≠-9.化简分式A .2B .-210A11】 A. 0 B.1 C. -1 D. x12】 A .﹣1 B .1 C13x 的值为A .﹣1B .0C .±1 D.114,你认为x 可取得数是A.9 B .±3 C.﹣3 D .315.下列选项中,从左边到右边的变形正确的是( )A .B .C .D .16x 的取值范围是 A .x≤3 B.x≥3 C.x≠3 D.x=3 17.若分式的值为0,则x 的值为( )A . 4B . ﹣4 C . ±4 D . 318.下列从左到右的变形过程中,等式成立的是( )A .=B .=C .=D .=19) A 20.若分式的值为零,则的值是( )A 、0B 、1C 、D 、-2二、填空题 21有意义,则的取值范围是 。
22.当x= 时,分式23.当x= 时,分式的值是零.24.将分式约分时,分子和分母的公因式是.25.计算:=262728的取值范围是.2930.已知,分式的值为.31x= .32.(2013年四川资阳3分)已知直线上有n(n≥2的正整数)个点,每相邻两点间距离为1,从左边第1个点起跳,且同时满足以下三个条件:①每次跳跃均尽可能最大;②跳n次后必须回到第1个点;③这n次跳跃将每个点全部到达,设跳过的所有路程之和为S n33.当m=时,分式34.定义运算“*”为:a m m=.35x的取值范围是________.三、计算题++=的根.36m是方程2x3x1038x=﹣4.3940.(1(24142.(1)已知2121632x x --=,求代数式4x 的值;(243221)a a a++ 441+,再从-2,2,-1,1中选取一个恰当的数作为x 的值代入求值.45.(8分)已知12,4-=-=+xy y x ,求四、解答题 46.计算 ①(2﹣)2012(2+)2013﹣2﹣()0.②先化简,再求值:,其中x 满足x 2+x ﹣2=0.47.阅读下面材料,并解答问题.解:由分母为2x 1-+,可设()()4222x x 3x 1x a b --+=-+++则()()()()422242242x x 3x 1x a b x ax x a b x a 1x a b --+=-+++=--+++=---++∵对应任意x ,上述等式均成立,∴a 11a b 3-=⎧⎨+=⎩,∴a=2,b=1。
全国中考数学试题分类解析汇编(170套75专题)专题10:分式方程
2014年全国中考数学试题分类解析汇编(170套75专题)专题10:分式方程江苏泰州鸣午数学工作室 编辑一、选择题1. (2014年广西贵港3分)分式方程213x 1x 1=--的解是【 】 A .x=﹣1 B .x=1 C .x=2 D .无解 【答案】C.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.去分母得:x+1=3,解得:x=2. 经检验x=2是分式方程的解. 故选C.2.(2014年广西来宾3分)将分式方程12x x 2=-去分母后得到的整式方程,正确的是【 】 A .x ﹣2=2x B .x 2﹣2x=2x C .x ﹣2=x D .x=2x ﹣4 【答案】A.【考点】解分式方程的去分母法则.【分析】分式方程两边乘以最简公分母x (x ﹣2)即可得到结果:去分母得:x ﹣2=2x ,故选A.3.(2014年贵州黔西南4分)在一个不透明的盒子中装有12个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是13,则黄球的个数为【 】A. 18B. 20C. 24D. 28 【答案】C .【考点】1.概率公式;2.分式方程的应用. 【分析】设黄球的个数为x 个,根据题意得:12112x 3=+, 解得:x=24,经检验:x=24是原分式方程的解;∴黄球的个数为24.故选C.4.(2014年黑龙江龙东地区3分)已知关于x的分式方程m31x11x+=--的解是非负数,则m的取值范围是【】A.m>2 B.m≥2C.m≥2且m≠3D.m>2且m≠3【答案】C.【考点】1. 解分式方程;2.解一元一次不等式..【分析】分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2.根据分式分母不为0的条件,有m﹣2≠1,即m≠3.∵方程的解为非负数,∴m﹣2≥0,解得:m≥2.∴m的取值范围是m≥2且m≠3.故选C.5.(2014年黑龙江齐齐哈尔、大兴安岭地区、黑河3分)关于x的分式方程2x a1x1-=+的解为正数,则字母a的取值范围为【】A. a≥﹣1B. a>﹣1C. a≤﹣1D. a<﹣1【答案】B.【考点】1. 解分式方程;2.解一元一次不等式.【分析】分式方程去分母得:2x﹣a=x+1,解得:x=a+1,根据题意得:a+1>0且a+1+1≠0,解得:a>﹣1且a≠﹣2.∴字母a的取值范围为a>﹣1.故选B.6.(2014年黑龙江绥化3分)分式方程2x53x22x-=--的解是【】A. x=﹣2B. x=2C. x=1D. x=1或x=2【答案】C.【考点】解分式方程.【分析】观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解:方程的两边同乘(x﹣2),得2x﹣5=﹣3,解得x=1.检验:当x=1时,(x ﹣2)=﹣1≠0. ∴原方程的解为:x=1. 故选C .7.(2014年湖北孝感3分)分式方程x 2x 13x 3=--的解为【 】 A .1x 6=- B .2x 3= C .1x 3= D .5x 6=【答案】B . 【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是()3x 1-,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解去分母,得3x 2=, 化x 的系数为1,得2x 3=, 经检验,2x 3=是原方程的根, ∴原方程的解为2x 3=.故选B .8.(2014年湖南湘潭3分)分式方程53x 2x=+的解为【 】 A. 1 B. 2 C. 3 D. 4 【答案】C .【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是x (x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:去分母得:5x=3x+6, 移项合并得:2x=6, 解得:x=3,经检验x=3是分式方程的解. 故选C .9.(2014年辽宁鞍山3分)分式方程312x x 1=-的解为【 】A. x 1=B. x 2=C. x 3=D. x 4= 【答案】C . 【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是2x (x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:去分母,得()3x 12x -=, 解得x 3=,经检验,x 3=是原方程的解. 故选C .10. (2014年山东德州3分)分式方程()()x 31x 1x 1x 2-=--+的解是【 】A. x=1B. x 15=-+C. x=2D. 无解【答案】D .【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解:去分母得:x (x+2)﹣(x ﹣1)(x+2)=3, 去括号得:x 2+2x ﹣x 2﹣x+2=3, 解得:x=1,经检验x=1是增根,分式方程无解. 故选D .11.(2014年山东淄博4分)方程370x x 1-=+解是【 】 A. 1x 4= B. 3x 4= C. 4x 3= D. x 1=- 【答案】B .【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是x (x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:去分母得:3x+3﹣7x=0,解得:3x 4=, 经检验3x 4=是分式方程的解.故选B .12.(2014年重庆市A4分)关于x 的方程21x 1=-的解是【 】 A. x 4= B. x 3= C. x 2= D. x 1= 【答案】B. 【考点】方程的解.【分析】根据方程两边左右相等的未知数的值叫做方程的解的概念,只要将各选项分别代入方程,能使两边左右相等的值即为方程的解,所以关于x 的方程21x 1=-的解是x 3=.故选B. 13. (2014年重庆市B4分)分式方程43x 1x=+的解是【 】 A 、x 1= B 、x 1=- C 、x 3= D 、x 3=- 【答案】C.【考点】解分式方程.【分析】先去掉分母,观察可得最简公分母是x (x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:434x 3x 3x 3x 1x=⇒=+⇒=+,经检验,x 3=是原方程的解. 故选C.14. (2014年浙江台州4分)将分式方程2x 31x 1x 1-=--去分母,得到正确的整式方程是【 】 A. 12x 3-= B. x 12x 3--= C. 12x 3+= D. x 12x 3-+= 【答案】B . 【考点】去分母法则.【分析】去掉分母,观察可得最简公分母是x ﹣21,方程两边乘最简公分母,可以把分式方程转化为整式方程:()()()2x 31x 1x 1x 1x 12x 3x 1x 1⋅--⋅-=⋅-⇒--=--. 故选B .二、填空题1. (2014年甘肃天水4分)若关于x的方程ax110x1+-=-有增根,则a的值为▲ .【答案】﹣1.【考点】分式方程的增根.【分析】方程两边都乘(x﹣1),得ax+1﹣(x﹣1)=0,∵原方程有增根∴最简公分母x﹣1=0,即增根为x=1,把x=1代入整式方程,解得a=﹣1.2.(2014年广西柳州3分)方程210x-=的解是x= ▲ .【答案】2.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解:去分母得:2﹣x=0,解得:x=2,经检验x=2是分式方程的解.3.(2014年贵州铜仁4分)分式方程:x13x21+-=的解是▲ .【答案】2x3 =.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解:去分母,得:2x+1=3﹣x,移项,合并同类项,得:3x=2,化x的系数为1,得:2x3 =,经检验:2x3=是分式方程的解.4.(2014年湖南衡阳3分)分式方程x x1x2x-=+的解为x= ▲ .【答案】2.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解:去分母得:x2=x2﹣x+2x﹣2,解得:x=2,经检验x=2是分式方程的解.5.(2014年湖南怀化3分)如图,D、E分别是△ABC的边AB、AC上的中点,则S△ADE:S△ABC= ▲ .【答案】1:4.【考点】1.三角形中位线定理;2.相似三角形的判定和性质.【分析】∵D、E是边AB、AC上的中点,∴DE是△ABC的中位线.∴DE∥BC且DE=12 BC.∴△ADE∽△ABC.∴S△ADE:S△ABC=(1:2)2=1:4.6.(2014年湖南益阳4分)分式方程23x32x=-的解为▲ .【答案】x=﹣9.【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是2x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:去分母得:4x=3x﹣9,解得:x=﹣9,经检验x=﹣9是分式方程的解.7.(2014年江苏无锡2分)方程21x2x=+的解是▲ .【答案】x=2.【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是x(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:方程的两边同乘x(x+2),得2x=x+2,解得x=2.检验:把x=2代入x(x+2)=8≠0.∴原方程的解为:x=2.8. (2014年辽宁锦州3分)方程13x14x x 4+-=--的解是 ▲ . 【答案】x=0. 【考点】解分式方程.【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解:去分母得:﹣1﹣3﹣x=x ﹣4, 移项合并得:2x=0, 解得:x=0,经检验x=0是分式方程的解.9. (2014年内蒙古包头、乌兰察布3分)方程22310x x x x-=+-的解为x= ▲ . 【答案】x=2.【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是()()x x 1x 1+-,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:去分母得:3x ﹣3﹣x ﹣1=0, 解得:x=2,经检验x=2是分式方程的解. 10. (2014年山东济南3分)若代数式1x 2-和32x 1+的值相等,则x= ▲ . 【答案】7.【考点】解分式方程.【分析】根据题意得分式方程,,观察可得最简公分母是(x ﹣2)(2x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:根据题意得13x 22x 1=-+, 去分母,得()2x 13x 2+=-, 解得x 7=,经检验,x 7=是原方程的解.11.(2014年四川巴中3分)若分式方程x m2x 11x-=--有增根,则这个增根是 ▲ _. 【答案】x=1.【考点】分式方程的增根.【分析】分式方程的增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.因此,根据分式方程有增根,得到x 10-=,即x=1,则方程的增根为x=1. 12. (2014年四川成都4分)已知关于x 的分式方程x k k1x 1x 1+-=+-的解为负数,则k 的取值范围是 ▲ . 【答案】1k >2且k 1≠. 【考点】1.分式方程的解;2.分式有意义的条件;3.解不等式;4.分类思想的应用. 【分析】分式方程去分母得:()()()()2x k x 1k x 1x 1x 2k 12k 11+--+=-⇒=-+-+≠±.∵分式方程解为负数,∴12k 1<0k >2-+⇒. 由2k 11-+≠±得k 0≠和k 1≠ ∴k 的取值范围是1k >2且k 1≠. 13. (2014年四川凉山5分)关于x 的方程ax 21x 2+=--的解是正数,则a 的取值范围是 ▲ . 【答案】a >﹣1.【考点】1.分式方程的解;2.解不等式..【分析】根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数列不等式求解即可得答案:解关于x 的方程ax 21x 2+=--,得1x a 1=+. ∵ax 21x 2+=--的解是正数,∴1>0a 1+,解得a >﹣1. 14. (2014年四川南充3分)分式方程2x 1x 1201+--=的解是 ▲ .【答案】x=﹣3. 【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是2x 1-,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:去分母得:x+1+2=0,解得:x=﹣3. 经检验x=﹣3是分式方程的根. ∴原方程的解为x=﹣3.15. (2014年四川宜宾3分)分式方程2111x 2x 4-=--的解是 ▲ . 【答案】x=﹣1.5. 【考点】解分式方程【分析】首先去掉分母,观察可得最简公分母是(x+2)(x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:去分母得:x (x+2)﹣1=x 2﹣4, 解得:x=﹣1.5,经检验x=﹣1.5是分式方程的根. ∴原方程的解为:x=﹣1.5.16. (2014年安徽省4分)方程4x 123x 2-=-的解是x= ▲ . 【答案】6.【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是(x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:()4x 1234x 123x 24x 123x 6x 6x 2-=−−−−→-=-−−−−→-=-−−−−−−→=-去分母,得去括号,得移项合并同类项,得, 经检验,x 6=是原方程的解,∴原方程的解为x 6=.17. (2014年浙江金华4分)分式方程312x 1=-的解是 ▲ . 【答案】x 2=. 【考点】解分式方程.【分析】先去掉分母,观察可得最简公分母是2x ﹣1,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:3132x 12x 132x 4x 22x 1=⇒=-⇒-=--⇒-=-⇒=-,经检验,x 2=是原方程的解. 18. (2014年浙江宁波4分)方程x 1x 22x=--的根是x = ▲ . 【答案】1-.【考点】解分式方程. 【分析】去分母得:x 1=-,经检验,x 1=-是原方程的根. ∴原方程的解为x 1=-.19. (2014年浙江义乌4分)分式方程312x 1=-的解是 ▲ . 【答案】x 2=. 【考点】解分式方程.【分析】先去掉分母,观察可得最简公分母是2x ﹣1,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:3132x 12x 132x 4x 22x 1=⇒=-⇒-=--⇒-=-⇒=-,经检验,x 2=是原方程的解. 三、解答题1.(2014年福建龙岩5分)解方程:2x 31x 22x+=--. 【答案】解:方程两边都乘以(x ﹣2)得2x+(x ﹣2)=﹣3,解得x=13-. 经检验x=13-是原分式方程的根. ∴原方程的解为x=13-.【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是(x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解. 2.(2014年广东佛山6分)解分式方程:22a 4a 11a +=--. 【答案】解:去分母得:2a+2=﹣a ﹣4,解得:a=﹣2,经检验a=﹣2是分式方程的根. ∴原方程的解为a=﹣2.【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是(1+a )(1﹣a ),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解. 3.(2014年广西南宁6分)解方程:2x 21x 2x 4-=--. 【答案】解:去分母得:()2x x 22x 4+-=-,解得:x 1=-.经检验x 1=-是分式方程的根. ∴原方程的解为x 1=-.【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是(x+2)(x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解. 4.(2014年贵州黔西南6分)解方程:214x 2x 4=--. 【答案】解:方程两边都乘以(x+2)(x ﹣2),得x+2=4,解得x=2,经检验x=2不是分式方程的解, ∴原分式方程无解.【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是(x+2)(x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解 5.(2014年湖北江汉油田、潜江、天门、仙桃6分)解方程:x 2x1x 13x 3=+++. 【答案】解:方程两边都乘3(x+1),得:3x ﹣2x=3(x+1),解得:3x 2=-, 经检验3x 2=-是方程的解,∴原方程的解为3x 2=-.【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是3(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解. 6.(2014年湖北天门学业6分)解分式方程:2x 11x 2x 4-=--.【答案】解:去分母,得()2x x 21x 4+-=-,解得3x 2=-, 经检验: 3x 2=-是原方程的根, ∴原方程的解为3x 2=-. 【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是(x+2)(x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解. 7.(2014年湖北武汉6分)解方程:23x 2x=-. 【答案】解:去分母,得()2x 3x 2=-,去括号,得2x 3x 6=-, 移项,合并同类项,得x 6-=-, 化x 的系数为1,得x 6=, 经检验,x 6=是原方程的根, ∴原方程的解为x 6=.【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是x (x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解. 8.(2014年湖南岳阳6分)解分式方程:53x 2x=-. 【答案】解:去分母得:5x=3x ﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的根. ∴原方程的解为x=﹣3.【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是x (x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解.9. (2014年湖南常德5分)解方程:212x 2x 4=--. 【答案】解:去分母得:x+2=2,解得:x=0,经检验x=0是分式方程的根. ∴原方程的解为x=0.【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是(x+2)(x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解. 10. (2014年江苏常州5分)解分式方程:3x 21x 11x-=-- 【答案】解:去分母,得3x 2x 1+=-, 解得3x 2=-. 经检验,3x 2=-是原方程的根. ∴原方程的的解为3x 2=-.【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是(x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解. 11. (2014年江苏连云港6分)解分式方程21x3x 22x-+=--. 【答案】解:去分母,得:23x 6x 1+-=-,移项,合并同类项,得:2x=3, 化x 的系数为1,得x=1.5, 经检验x=1.5是分式方程的解. ∴原方程的解为x=1.5.【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是(x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解. 12. (2014年江苏苏州6分)解分式方程:x 23x 11x+=--.【答案】解:去分母,得()x 23x 1-=-,解得,x=12. 检验:当x=12时,x 1-≠0.∴原方程的解为x=12.【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是x 1-,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解. 13. (2014年江苏宿迁6分)解方程:11x3x 22x-=---. 【答案】解:方程两边同乘以x ﹣2得:1=x ﹣1﹣3(x ﹣2)整理得:2x=4,解得:x=2.检验:当x=2时,x ﹣2=0,故x=2不是原方程的根, ∴此方程无解.【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是(x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解. 14. (2014年江苏盐城4分)解方程:32x 1x 1=-+. 【答案】解:去分母得:3x+3=2x ﹣2,解得:x=﹣5,经检验x=﹣5是分式方程的根. ∴原方程的解为x=﹣5.【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是(x+1)(x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解. 15. (2014年江苏镇江5分)解方程:320x x 2-=+ 【答案】解:去分母得:3x+6﹣2x=0,解得:x=6-,经检验,x=6-是分式方程的根. ∴原方程的解为x=6-.【考点】解分式方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程综合检测
(40分钟60分)
一、选择题(每小题5分,共20分)
1.下面是四位同学解方程+=1过程中去分母的一步,其中正确的是( )
A.2+x=x-1
B.2-x=1
C.2+x=1-x
D.2-x=x-1
2.(2013·襄阳中考)分式方程=的解是( )
A.x=3
B.x=2
C.x=1
D.x=-1
3.对于非零的两个实数a,b,规定a⊕b=-,若2⊕(2x-1)=1,则x的值为( )
A. B. C. D.-
4.(2013·日照中考)甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是( )
A.8
B.7
C.6
D.5
二、填空题(每小题5分,共15分)
5.(2013·牡丹江中考)若关于x的分式方程=1的解为正数,那么字母a的取值范围是.
6.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m-2]的一次函数是正比例函数,则关于x的方程+=1的解为 .
7.2012年6月1日起,国家实施了中央财政补贴条例支持高效节能电器的推广使用,某款定速空调在条例实施后,每购买一台,客户可获财政补贴200元,若同样用11万元所购买的此款空调的台数,条例实施后比实施前多10%,则条例实施前此款空调的售价为元.
三、解答题(共25分)
8.(12分)(1)解分式方程:x-3+=0.
(2)(2013·安顺中考)某市为进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路.实际施工时,每月的工效比原计划提高了20%,结果提前5个月完成这一工程.求原计划完成这一工程的时间是多少个月?
【探究创新】
9.(13分)关于x的方程:
x+=C+的解是x1=C,x2=,
x-=C-(即x+=C+)
的解是x1=C,x2=-,
x+=C+的解是x1=C,x2=,
x+=C+的解是x1=C,x2=,
…
(1)请观察上述方程与解的特征,猜想方程x+=C+(m≠0)的解是什么?并用“方程的解”的概念进行验证.
(2)请用上面的规律解关于x的方程:
x+=a+.
答案解析
1.【解析】选D.方程两边同乘最简公分母(x-1)得2-x=x-1.
2.【解析】选C.去分母得x+1=2x,解得x=1.
经检验x=1是原方程的解.∴分式方程的解为x=1.
3.【解析】选A.∵a⊕b=-,所以2⊕(2x-1)=- ,故有- =1,所以=,解之得:x=,经检验,x=是原方程的根,故选A.
【拓展提高】分式方程无解的两种情形
1.分式方程化为整式方程后,所得整式方程无解,则原分式方程无解.
2.分式方程化为整式方程后,整式方程有解,但所求得的解经检验是增根,此时,分式方程无解.
4.【解析】选A.设甲计划完成此项工作的天数为x天,根据题意得+=1,解得x=8,检验知x=8是原分式方程的解.所以甲计划完成此项工作的天数是8天.
5.【解析】∵=1,解得:x=a-1.
∵方程解为正数,分式的分母不为0,即x≠1.
∴解得:a>1且a≠2.
答案:a>1且a≠2
6.【解析】依题意,“关联数”[1,m-2]表示的一次函数是y=x+m-2.∵它是正比例函数,∴m-2=0,即m=2.于是原方程变为+=1.解之得x=3.
答案:x=3
7.【解析】设条例实施前此款空调的售价为x元,
则×(1+10%)=.
解之,得x=2 200.经检验,x=2 200是原方程的解.
答案:2 200
8.【解析】(1)原方程可化为:x2-9+6x-x2=0,
解得:x=,经检验:x=是原方程的解﹒
(2)设原计划完成这一工程的时间为x个月,则
(1+20%)·=.解这个方程,得x=30.
经检验,所列方程的根为x=30.
答:原计划完成这一工程的时间是30个月.
9.【解析】(1)猜想方程x+=C+(m≠0)的解是x1=C,x2=.
当x=C时,左边=C+=右边,
所以x=C是原方程的解.
当x=时,左边=+=C+=右边,
所以x=是原方程的解.
(2)原方程化为x-1+=a-1+,根据以上结论知,x-1=a-1或x-1=. ∴x1=a,x2=.
经检验x1=a,x2=都是原方程的解.。