各年高数上试题
大学高等数学上习题(附答案)
《高数》习题1(上)一.选择题1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭ (C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x ⎛⎫-+ ⎪⎝⎭10.设()f x 为连续函数,则()102f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.()21ln dxx x =+⎰.三.计算 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分xxe dx -⎰四.应用题(每题10分,共20分)1.求曲线22y x =和直线4y x =-所围图形的面积.《高数》习题1参考答案一.选择题1.B 4.C 7.D 10.C 二.填空题 1.2- 2.33- 3.arctan ln x c + 三.计算题 1①2e ②162.11xy x y '=+- 3. ()1x ex C --++四.应用题1. 18S =《高数》习题2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()2g x x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰③2xx e dx ⎰四.应用题(每题10分,共20分)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》习题2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=-3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》习题3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.《高数》习题3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰《高数》习题4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 9、⎰=+101dx e e xx( ). A 、21ln e + B 、22ln e + C 、31ln e + D 、221ln e +二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0 三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e- ; 四、1、38;《高数》习题5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e xcos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分⎰e edx x 1ln ;四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.参考答案一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e - ; 四、1、 29;。
高数试题库
高数(上)试题库一、判断题1、集合{}0为空集。
( )2、集合{}1,2A =,集合{}1,3,4B =,则{}1,2,3,4A B = 。
( )3、函数y x =与函数y =( )4、函数()cos f x x x =是奇函数。
( )5、函数arcsin y x =的定义域是(),-∞+∞。
( )6、函数arcsin y u =和22u x =+可以复合成函数2arcsin(2)y x =+。
( ) 7、函数()sin f x x =是有界函数。
( )8、函数()cos f x x =,()g x = ( ) 9、如果数列n x 发散,则n x 必是无界数列。
( ) 10、如果数列n x 无界,则n x 必是发散数列。
( ) 11、如果)(0x f =6,但00(0)(0)5,f x f x -=+=则)(lim 0x f x x →不存在。
( )12、)(x f 在0x x =处有定义是)(lim 0x f x x →存在的充分条件但非必要条件 。
( )13、0lim ()lim ()x x x x f x f x -+→→=是)(lim 0x f x x →存在的充分必要条件。
( )14、100000x是无穷大。
( )15、零是无穷小。
( ) 16、在自变量的同一变化过程中,两个无穷小的和仍为无穷小。
( )17、1sin lim=∞→xxx 。
( )18、当0x →时,sin ~~tan x x x ,则330tan sin lim lim 0sin x x x x x xx x→∞→--==。
( ) 19、)(x f 在0x 有定义,且0lim x x →)(x f 存在,则)(x f 在0x 连续。
( )20、)(x f 在0x x =无定义,则)(x f 在0x 处不连续。
( ) 21、)(x f 在[a,b]上连续,则在[a,b]上有界。
( ) 22、若)(x f 在0x 处不连续,则0()f x '必不存在。
完整)高等数学考试题库(附答案)
完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。
1.下列各组函数中,是相同的函数的是()。
A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。
A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。
A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。
A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。
A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。
A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。
A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。
A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。
A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。
A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。
高等数学往年经典试题总结及答案
高等数学经典试题总结及答案一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()002lim 1cos tt x x e e dt x -→+-=-⎰( )A .0B .1C .-1D .∞ 3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( ) A.不连续 B.连续但左、右导数不存在 C.连续但不可导 D. 可导5.设C +⎰2-x xf(x)dx=e,则f(x)=( ) 2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<= 8.arctan lim _________x x x→∞= 9.已知某产品产量为g 时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC 10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.11.函数3229129y x x x =-+-的单调减少区间是___________.12.微分方程3'1xy y x -=+的通解是___________.13.设2ln 2,6a a π==⎰则___________.14.设2cos x z y =则dz= _______. 15.设{}2(,)01,01y DD x y x y xe dxdy -=≤≤≤≤=⎰⎰,则_____________.三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设1x y x ⎛⎫= ⎪⎝⎭,求dy. 17.求极限0ln cot lim ln x x x+→18.求不定积分.19.计算定积分I=0.⎰ 20.设方程2z x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。
高等数学上数学试题及答案
高等数学上数学试题及答案一、选择题(每题5分,共20分)1. 极限的定义中,若函数f(x)在点x=a处的极限存在,则对于任意的正数ε,都存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<ε。
则以下哪个选项是正确的?A. ε和δ可以互换B. δ依赖于ε和函数f(x)C. δ依赖于ε和aD. ε依赖于δ和函数f(x)答案:B2. 函数f(x)=x^2在区间[0,1]上的定积分表示的是?A. 曲线y=x^2与x轴围成的面积B. 曲线y=x^2与y轴围成的面积C. 曲线y=x^2与x轴围成的体积D. 曲线y=x^2与y轴围成的体积答案:A3. 以下哪个函数是偶函数?A. f(x)=x^3B. f(x)=x^2C. f(x)=x^2+1D. f(x)=x^3-1答案:B4. 函数f(x)=sin(x)的导数是?A. cos(x)B. -sin(x)C. tan(x)D. -cos(x)答案:A二、填空题(每题5分,共20分)1. 函数f(x)=x^3-3x+2的导数是_________。
答案:3x^2-32. 函数f(x)=e^x的不定积分是_________。
答案:e^x+C3. 函数f(x)=ln(x)的导数是_________。
答案:1/x4. 函数f(x)=x^2+2x+1的极值点是_________。
答案:x=-1三、解答题(每题15分,共30分)1. 计算定积分∫[0,1] (2x+1)dx,并说明其几何意义。
解:∫[0,1] (2x+1)dx = [x^2+x] | [0,1] = (1^2+1) - (0^2+0) = 2几何意义:表示曲线y=2x+1与x轴在区间[0,1]上的面积。
2. 求函数f(x)=x^3-6x^2+9x+1在区间[0,3]上的单调区间。
解:首先求导数f'(x)=3x^2-12x+9,令f'(x)=0,解得x=1或x=3。
在区间[0,1)上,f'(x)>0,函数单调递增;在区间(1,3]上,f'(x)<0,函数单调递减。
高数上册期末试题及答案
高数上册期末试题及答案一、选择题1. 设函数f(x) = x^2 + 3x - 2,对于f(x)在区间[-2, 2]上的极值,以下说法正确的是()。
A. f(x)在x = 0处有极小值B. f(x)在x = 1处有极大值C. f(x)在x = -2处有极小值D. f(x)在x = 2处有极大值答案:C. f(x)在x = -2处有极小值2. 给定函数f(x) = x^3 + ax^2 + bx + c,若f(1) = 5,f'(1) = 3,f''(1) = 6,则a, b, c的值分别为()。
A. a = -3, b = -3, c = 4B. a = 2, b = -1, c = 4C. a = 3, b = 2, c = 1D. a = 1, b = -2, c = 3答案:C. a = 3, b = 2, c = 13. 设函数f(x) = x^3 - 3x^2 - 9x + 8,下面哪个集合是f(x)的定义域()。
A. RB. [-2, 1]C. [0, 3]D. [-∞, +∞]答案:A. R(实数集合)4. 函数f(x) = (x + 1) ln(x - 1)在(1, +∞)上的导函数为()。
A. ln(x - 1) + 1B. ln(x - 2) + 1C. q(x - 1) + 1D. ln(x - 1)答案:B. ln(x - 2) + 15. 函数y = f(x)的图像经过点(1, 2),且在点(1, 2)的切线的斜率为3,则f'(1)的值为()。
A. 1B. 2C. 3D. 4答案:C. 3二、计算题1. 求极限lim{x→0} [ (e^x - 1) / x ]。
答案:12. 求函数f(x) = x^4 - 4x^3的驻点和极值。
答案:驻点:x = 0, x = 3极小值:f(0) = 0极大值:f(3) = 273. 求不定积分∫(sin^3x + cos^3x)dx。
华东交大历年高数上册期末试题及答案10高数上复习题
第一章 复习题 1. 计算下列极限: (1)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n nn n n n n n . (2)35)3)(2)(1(limn n n n n +++∞→;解 515)3)(2)(1(lim3=+++∞→n n n n n (分子与分母的次数相同, 极限为最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n . (3))1311(lim 31x x x ---→; 解 112lim)1)(1()2)(1(lim )1)(1(31lim )1311(lim 212122131-=+++-=++-+--=++--++=---→→→→x x x x x x x x x x x x x x x x x x x . (4)xx x 1sin lim 20→; 解 01sin lim 20=→x x x (当x →0时, x 2是无穷小, 而x1sin 是有界变量).(5)xxx arctan lim∞→.解 0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x1是无穷小, 而arctan x 是有界变量).(6)145lim1---→x xx x ;解 )45)(1(44lim )45)(1()45)(45(lim 145lim111x x x x x x x x x x x x x x x x x +---=+--+---=---→→→ 214154454lim1=+-⋅=+-=→xx x .(7))(lim 22x x x x x --++∞→.解 )())((lim)(lim 22222222x x x x x x x x x x x x x x x x x x -++-++--+=--++∞→+∞→1)1111(2lim)(2lim22=-++=-++=+∞→+∞→xx x x x x xx x .(8)xxx sin lnlim 0→; 解 01ln )sin lim ln(sin lnlim 00===→→x xxx x x .(9)2)11(lim xx x+∞→;解[]e e xxx x xx ==+=+∞→∞→21212)11(lim )11(lim(10))1(lim 2x x x x -++∞→;解 )1()1)(1(lim )1(lim 2222x x x x x x x x x x x x ++++-+=-++∞→+∞→ 211111lim 1lim22=++=++=+∞→+∞→x x x x x x . (11)1)1232(lim +∞→++x x x x ;解 2121211)1221(lim )1221(lim )1232(lim ++∞→+∞→+∞→++=++=++x x x x x x x x x x21212)1221()1221(lim ++++=+∞→x x x x e x x x x x =++⋅++=∞→+∞→21212)1221(lim )1221(lim .(12)30sin tan lim x x x x -→; 解 xx x x x x x x x x x x x cos )cos 1(sin lim )1cos 1(sin lim sin tan lim 303030-=-=-→→→ 21)2(2lim cos 2sin 2sin lim320320=⋅=⋅=→→x x x x x x x x x (提示: 用等价无穷小换) . 2. 证明: 当x →0时, arctan x ~x ;证明 因为1tan lim arctan lim 00==→→y y x xy x (提示: 令y =arctan x , 则当x →0时, y →0),所以当x →0时, arctan x ~x .3. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x x y , x =1, x =2;(2)x xy tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅);解 (1))1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 2222x x x y x x , 所以x =2是函数的第二类间断点;因为2)2()1(limlim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处, 令y =-2, 则函数在x =1处成为连续的. (2)函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点. 因∞=→xxk x tan limπ(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim0=→xxx ,0tan lim2=+→x x k x ππ(k ∈Z), 所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的; 令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的. 4. 设函数⎩⎨⎧≥+<=0)(x x a x e x f x 应当如何选择数a , 使得f (x )成为在(-∞, +∞)内的连续函数?解 要使函数f (x )在(-∞, +∞)内连续, 只须f (x )在x =0处连续, 即只须 a f x f x f x x ===+→-→)0()(lim )(lim 0.因为1lim )(lim 0==-→-→x x x e x f , a x a x f x x =+=+→+→)(lim )(lim 00, 所以只须取a =1.5. 证明方程x =a sin x +b , 其中a >0, b >0, 至少有一个正根, 并且它不超过a +b . 证明 设f (x )=a sin x +b -x , 则f (x )是[0, a +b ]上的连续函数. f (0)=b , f (a +b )=a sin (a +b )+b -(a +b )=a [sin(a +b )-1]≤0.若f (a +b )=0, 则说明x =a +b 就是方程x =a sin x +b 的一个不超过a +b 的根;若f (a +b )<0, 则f (0)f (a +b )<0, 由零点定理, 至少存在一点ξ∈(0, a +b ), 使f (ξ)=0, 这说明x =ξ 也是方程x =a sin x +b 的一个不超过a +b 的根. 总之, 方程x =a sin x +b 至少有一个正根, 并且它不超过a +b .6. 证明()11 2111lim 222=++⋅⋅⋅++++∞→nn n n n . 证明 因为()11 211122222+≤++⋅⋅⋅++++≤+n n n n n n n n n , 且 1111lim lim 2=+=+∞→∞→nn n n n n , 1111lim 1lim 22=+=+∞→∞→n n n n n , 所以()11 2111lim 222=++⋅⋅⋅++++∞→nn n n n . 7. 已知f (x )=⎩⎨⎧≥<0 0sin x x x x , 求f '(x ) .解 当x <0时, f (x )=sin x , f '(x )=cos x ; 当x >0时, f (x )=x , f '(x )=1;因为 f -'(0)=10sin lim )0()(lim00=-=--→-→xx x f x f x x , f +'(0)=10lim )0()(lim00=-=-+→+→x x x f x f x x , 所以f '(0)=1, 从而 f '(x )=⎩⎨⎧≥<0 10cos x x x .8*、证明: 函数xx y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数xx y 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取 πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅), 当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M .第二章 复习题1. 求下列函数的导数:(1) y =ln(1+x 2);解 222212211)1(11x xx x x x y +=⋅+='+⋅+='.(2) y =sin 2x ;解 y '=2sin x ⋅(sin x )'=2sin x ⋅cos x =sin 2x .(3)22x a y -=;解[]22212222121222122)2()(21)()(21)(x a x x x a x a x a x a y --=-⋅-='-⋅-='-='--.(4)xx y ln 1ln 1+-=;解 22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x x y +-=+--+-='.(5)xxy 2sin =; 解 222sin 2cos 212sin 22cos xx x x x x x x y -=⋅-⋅⋅='.(6)x y arcsin =; 解 2222121)(11)()(11x x x x x x y -=⋅-='⋅-='.(7))ln(22x a x y ++=; 解 ])(211[1)(12222222222'+++⋅++='++⋅++='x a x a x a x x a x x a x y 2222221)]2(211[1x a x x a x a x +=++⋅++=. (8)x x y +-=11arcsin .解 )1(2)1(1)1()1()1(1111)11(11112x x x x x x x x x x x x y -+-=+--+-⋅+--='+-⋅+--='.(9)xx y -+=11arctan ; 解 222211)1()1()1()11(11)11()11(11x x x x xx x x x x y +=-++-⋅-++='-+⋅-++='. (10)x x x y tan ln cos 2tan ln ⋅-=; 解 )(tan tan 1cos tan ln sin )2(tan 2tan 1'⋅⋅-⋅+'⋅='x x x x x x x yx x x x x x x x x tan ln sin sec tan 1cos tan ln sin 212sec 2tan 122⋅=⋅⋅-⋅+⋅⋅.(11))1ln(2x x e e y ++=;解 xx x x x x x x x x x e e e e e e e e e e e y 2222221)122(11)1(11+=++⋅++='++⋅++='.2. 求下列函数的n 阶导数的一般表达式: (1) y =sin 2 x ;解y '=2sin x cos x =sin2x ,)22sin(22cos 2π+==''x x y , )222sin(2)22cos(222ππ⋅+=+='''x x y ,)232sin(2)222cos(233)4(ππ⋅+=⋅+=x x y ,⋅ ⋅ ⋅,]2)1(2sin[21)(π⋅-+=-n x y n n .(2) y =x ln x ;解 1ln +='x y , 11-==''x xy ,y '''=(-1)x -2, y (4)=(-1)(-2)x -3, ⋅ ⋅ ⋅,y (n )=(-1)(-2)(-3)⋅ ⋅ ⋅(-n +2)x -n +1112)!2()1()!2()1(-----=--=n n n n x n x n . (3) y =x e x .解 y '=e x +xe x ,y ''=e x +e x +xe x =2e x +xe x , y '''=2e x +e x +xe x =3e x +xe x , ⋅ ⋅ ⋅,y (n )=ne x +xe x =e x (n +x ) .3. 求方程y =1+xe y 所确定的隐函数的二阶导数22dx y d . 解 方程两边求导数得 y '=e y +x e y y ',ye y e xe e y yy y y -=--=-='2)1(11,3222)2()3()2()3()2()()2(y y e y y y e y y e y y e y y y y y --=-'-=-'---'=''. 4. 求参数方程⎩⎨⎧-=+=t t y t x arctan )1ln(2所确定的函数的三阶导数33dx y d : 解t t t t t t t dx dy 2112111])1[ln()arctan (222=++-='+'-=, t t t t t dx y d 4112)21(2222+=+'=,3422338112)41(t t t t t t dx y d -=+'+=. 5. 注水入深8m 上顶直径8m 的正圆锥形容器中, 其速率为4m 2/min . 当水深为5m 时, 其表面上升的速度为多少?解 水深为h 时, 水面半径为h r 21=, 水面面积为π241h S =,水的体积为3212413131h h h hS V ππ=⋅==,dt dh h dt dV ⋅⋅=2312π, dtdV h dt dh ⋅=24π.已知h =5(m ),4=dtdV (m 3/min), 因此 πππ2516425442=⋅=⋅=dt dV h dt dh (m/min).6. 求下列函数的微分: (1)21arcsin x y -=;解 dx x x x dx x x dx x dx y dy 22221||)12()1(11)1(arcsin --=--⋅--='-='=.(2) y =tan 2(1+2x 2);解 dy =d tan 2(1+2x 2)=2tan(1+2x 2)d tan(1+2x 2)=2tan(1+2x 2)⋅sec 2(1+2x 2)d (1+2x 2) =2tan(1+2x 2)⋅sec 2(1+2x 2)⋅4x dx =8x ⋅tan(1+2x 2)⋅sec 2(1+2x 2)dx .(3)2211arctan xx y +-=;解 )11()11(1111arctan 2222222x x d x x x x d dy +-+-+=+-= dx x x dx x x x x x xx 4222222214)1()1(2)1(2)11(11+-=+--+-⋅+-+=. 7. 讨论函数⎪⎩⎪⎨⎧=≠=0001sin )(x x xx x f 在x =0处的连续性与可导性.解 因为f (0)=0, )0(01sin lim )(lim 00f xx x f x x ===→→, 所以f (x )在x =0处连续; 因为极限xx x x x f x f x x x 1sin lim 01sin lim)0()(lim 000→→→=-=-不存在, 所以f (x )在x =0处不导数. 第三章 复习题1. 验证罗尔定理对函数y =ln sin x 在区间]65 ,6[ππ上的正确性.解 因为y =ln sin x 在区间]65 ,6[ππ上连续, 在)65 ,6(ππ内可导, 且)65()6(ππy y =, 所以由罗尔定理知, 至少存在一点)65 ,6(ππξ∈, 使得y '(ξ)=cot ξ=0. 由y '(x )=cot x =0得)65 ,6(2πππ∈. 因此确有)65 ,6(2πππξ∈=, 使y '(ξ)=cot ξ=0. 2. 证明: 若函数.f (x )在(-∞, +∞)内满足关系式f '(x )=f (x ), 且f (0)=1则f (x )=e x . 证明 令xe xf x )()(=ϕ, 则在(-∞, +∞)内有0)()()()()(2222≡-=-'='xx x x e e x f e x f e e x f e x f x ϕ,所以在(-∞, +∞)内ϕ(x )为常数.因此ϕ(x )=ϕ(0)=1, 从而f (x )=e x . 3. 用洛必达法则求下列极限: (1)xe e xx x sin lim 0-→-; 解 2cos lim sin lim 00=+=--→-→xe e x e e xx x x x x .(2)22)2(sin ln limx x x -→ππ;解 812csc lim 41)2()2(2cot lim )2(sin ln lim 22222-=---=-⋅-=-→→→x x x x xx x x πππππ.(3)xx x x cos sec )1ln(lim 20-+→;解 x x xx x x x x x x x 22022020cos 1lim cos 1)1ln(cos lim cos sec )1ln(lim -=-+=-+→→→(注: cos x ⋅ln(1+x 2)~x 2) 1sin lim )sin (cos 22lim 00==--=→→xxx x x x x .4. 证明不等式 :当x >0时, 221)1ln(1x x x x +>+++;解 设221)1ln(1)(x x x x x f +-+++=, 则f (x )在[0, +∞)内是连续的. 因为0)1ln(1)11(11)1ln()(22222>++=+-++⋅++⋅+++='x x x x x x x x x x x x f ,所以f (x )在(0, +∞)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01)1ln(122>+-+++x x x x , 也就是 221)1ln(1x x x x +>+++. 5. 判定曲线y =x arctan x 的凹凸性: 解 21arctan x x x y ++=',22)1(2x y +=''.因为在(-∞, +∞)内, y ''>0, 所以曲线y =x arctg x 在(-∞, +∞)内是凹的.6. 求下列函数图形的拐点及凹或凸的区间:(1) y =xe -x ;解 y '=e -x -x e -x , y ''=-e -x -e -x +x e -x =e -x (x -2). 令y ''=0, 得x =2.因为当x <2时, y ''<0; 当x >2时, y ''>0, 所以曲线在(-∞, 2]内是凸的, 在[2, +∞)内是凹的, 拐点为(2, 2e -2). (2) y =ln(x 2+1);解 122+='x xy , 22222)1()1)(1(2)1(22)1(2++--=+⋅-+=''x x x x x x x y . 令y ''=0, 得x 1=-1, x 2=1. 列表得可见曲线在(-∞, -1]和[1, +∞)内是凸的, 在[-1, 1]内是凹的, 拐点为(-1, ln2)和(1, ln2).7. 设f (x )在[0, a ]上连续, 在(0, a )内可导, 且f (a )=0, 证明存在一点ξ∈(0, a ), 使f (ξ)+ξf '(ξ)=0.证明 设F (x )=xf (x ), 则F (x )在[0, a ]上连续, 在(0, a )内可导, 且F (0)=F (a )=0. 由罗尔定理, 在(0, a )内至少有一个点ξ , 使F (ξ )=0. 而F (x )=f (x )+x f '(x ), 所以f (ξ)+ξf '(ξ)=0. 8. 求数列}{n n 的最大项. 解 令xxx x x f 1)(==(x >0), 则x x x f ln 1)(ln =,)ln 1(1ln 11)()(1222x x x x x x f x f -=-='⋅,)ln 1()(21x x x fx -='-.令f '(x )=0, 得唯一驻点x =e .因为当0<x <e 时, f '(x )>0; 当x >e 时, f '(x )<0, 所以唯一驻点x =e 为最大值点.因此所求最大项为333}3 ,2max{=. 第四、五、六章 复习题 1. 求下列不定积分: (1)⎰dx e x x 3;解 C e C e e dx e dx e xx x xxx++=+==⎰⎰13ln 3)3ln()3()3(3. (2)⎰+++dx x x x 1133224; 解 C x x dx x x dx x x x ++=++=+++⎰⎰arctan )113(1133322224. (3)⎰dt tt sin ;解⎰⎰+-==C t t d t dt tt cos 2sin 2sin .(4)⎰-+dx e e xx 1;解 ⎰-+dx e e xx 1C e de e dx e e xx xx x +=+=+=⎰⎰arctan 11122. (5)⎰--dx xx 2491;解dx xx dx xdx xx ⎰⎰⎰---=--22249491491)49(49181)32()32(1121222x d x x d x --+-=⎰⎰C x x +-+=2494132arcsin 21. (6)⎰-+dx x x )2)(1(1;解C x x C x x dx x x dx x x ++-=++--=+--=-+⎰⎰|12|ln 31|1|ln |2|(ln 31)1121(31)2)(1(1. (7)⎰-12x x dx ;解C x C t dt tdt t t t tx x x dx +=+==⋅⋅=-⎰⎰⎰1arccos tan sec tan sec 1sec 12令.或C x x d x dx xx x x dx +=--=-=-⎰⎰⎰1arccos 111111112222.(8)⎰-dx xx 92; 解⎰⎰⎰=-=-tdt t d tt t x dx x x 222tan 3)sec 3(sec 39sec 9sec 39令 C x x C t t dt t+--=+-=-=⎰3arccos 393tan 3)1cos 1(322.(9) ⎰-xdx e x cos ; 解 因为⎰⎰⎰⎰------+=-==xdx e x e xde x e x d e xdx e x x x x x x sin sin sin sin sin cos ⎰⎰-----+-=-=x x x x x xde x e x e x d e x e cos cos sin cos sin ⎰-----=xdx e x e x e x x x cos cos sin ,所以 C x x e C x e x e xdx e x x x x +-=+-=----⎰)cos (sin 21)cos sin (21cos .(10)⎰dx x 2)(arcsin ;解 ⎰⎰-⋅⋅-=dx xx x x x dx x 22211arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰--+=dx x x x x 2arcsin 12)(arcsin 22 C x x x x x +--+=2arcsin 12)(arcsin 22. (11)⎰xdx e x 2sin . 解 ⎰⎰⎰-=-=xdx e e dx x e xdx e x x x x 2cos 2121)2cos 1(21sin 2, 而 dx x e x e xde xdx e x x x x ⎰⎰⎰+==2sin 22cos 2cos 2cos⎰⎰-+=+=xdx e x e x e de x x e x x x x x 2cos 42sin 22cos 2sin 22cos ,C x x e xdx e x x ++=⎰)2sin 22(cos 512cos ,所以 C x x e e xdx e x x x ++-=⎰)2sin 22(cos 10121sin 2(12)dx x x )1(12+⎰;解 C x x dx x x x dx x x ++-=+-=+⎰⎰)1ln(21||ln )11()1(1222.2. 一曲线通过点(e 2, 3), 且在任一点处的切线的斜率等于该点横坐标的倒数, 求该曲线的方程.解 设该曲线的方程为y =f (x ), 则由题意得xx f y 1)(='=',所以 C x dx xy +==⎰||ln 1.又因为曲线通过点(e 2, 3), 所以有=3-2=1 3=f (e 2)=ln|e 2|+C =2+C , C =3-2=1. 于是所求曲线的方程为 y =ln|x |+1.3. 设f (x )在[a , b ]上连续, 在(a , b )内可导且f '(x )≤0, ⎰-=xa dt t f ax x F )(1)(. 证明在(a , b )内有F '(x )≤0.证明 根据积分中值定理, 存在ξ∈[a , x ], 使))(()(a x f dt t f xa -=⎰ξ. 于是有 ))(()(1)(1)(1)()(1)(22a x f a x x f a x x f a x dt t f a x x F xa----=-+--='⎰ξ)]()([1ξf x f ax --=. 由f '(x )≤0可知f (x )在[a , b ]上是单调减少的, 而a ≤ξ≤x , 所以f (x )-f (ξ)≤0. 又在(a , b )内, x -a >0, 所以在(a , b )内0)]()([1)(≤--='ξf x f ax x F . 4. 计算下列定积分:(1)⎰-πθθ03)sin 1(d ; 解⎰⎰⎰⎰-+=+=-πππππθθθθθθθθ02002003cos )cos 1(cos sin )sin 1(d d d d34)cos 31(cos 03-=-+=πθθππ.(2)dx x ⎰-2022;解dt t tdt t t x dx x ⎰⎰⎰+=⋅=-202022)2cos 1(cos 2cos 2sin 22ππ令 2)2sin 21(20ππ=+=t t .6. 求由摆线x =a (t -sin t ), y =a (1-cos t )的一拱(0≤t ≤2π)与横轴 所围成的图形的面积.解:所求的面积为 ⎰⎰⎰-=--==aa a dt t a dt t a t a ydx A 20222020)cos 1()cos 1()cos 1(ππ22023)2cos 1cos 21(a dt t t a a=++-=⎰.7. 证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为⎰=badx x xf V )(2π.证明 如图, 在x 处取一宽为dx 的小曲边梯形, 小曲边梯形绕y 轴旋转所得的旋转体的体积近似为2πx ⋅f (x )dx , 这就是体积元素, 即 dV =2πx ⋅f (x )dx ,于是平面图形绕y 轴旋转所成的旋转体的体积为 ⎰⎰==babadx x xf dx x xf V )(2)(2ππ.8. 利用题7的结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积. 解 2002)sin cos (2cos 2sin 2πππππππ=+-=-==⎰⎰x x x x xd xdx x V .9. 求心形线ρ=a (1+cos θ )的全长. 解 用极坐标的弧长公式. θθθθθρθρππd a a d s ⎰⎰-++='+=0222022)sin ()cos 1(2)()(2a d a82cos 40==⎰πθθ.第七章 复习题 1、设m =3i +5j +8k , n =2i -4j -7k 和p =5i +j -4k . 求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解 因为a =4m +3n -p =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k , 所以a =4m +3n -p 在x 轴上的投影为13, 在y 轴上的分向量7j .2. 设a =3i -j -2k , b =i +2j -k , 求(1)a ⋅b 及a ⨯b ; (2)(-2a )⋅3b 及a ⨯2b ; (3)a 、b 夹角的余弦.解 (1)a ⋅b =3⨯1+(-1)⨯2+(-2)⨯(-1)=3,k j i kj i b a 75121 213++=---=⨯.(2)(-2a )⋅3b =-6a ⋅b = -6⨯3=-18,a ⨯2b =2(a ⨯b )=2(5i +j +7k )=10i +2j +14k .(3)21236143||||||) ,cos(^==⋅=b a b a b a . 3. 设a 、b 、c 为单位向量, 且满足a +b +c =0, 求a ⋅b +b ⋅c +c ⋅a . 解 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0, 即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 23)111(21)(21-=++-=⋅+⋅+⋅-=⋅+⋅+⋅c c b b a a a c c b b a .4、设已知向量a =2i -3j +k , b =i -j +3k 和c =i -2j , 计算: (1)(a ⋅b )c -(a ⋅c )b ; (2)(a +b )⨯(b +c ); (3)(a ⨯b )⋅c .解 (1)a ⋅b =2⨯1+(-3)⨯(-1)+1⨯3=8, a ⋅c =2⨯1+(-3)⨯(-2)=8, (a ⋅b )c -(a ⋅c )b =8c -8b =8(c -b )=8[(i -2j )-(i -j +3k )]=-8j -24k . (2)a +b =3i -4j +4k , b +c =2i -3j +3k , k j kj i c b b a --=--=+⨯+332443)()(.(3)k j i kj i b a +--=--=⨯58311132,(a ⨯b )⋅c =-8⨯1+(-5)⨯(-2)+1⨯0=2.5、一平面过点(1, 0, -1)且平行于向量a =(2, 1, 1)和b =(1, -1, 0), 试求这平面方程. 解 所求平面的法线向量可取为 k j i kj i b a n 3011112-+=-=⨯=,所求平面的方程为(x -1)+(y -0)-3(z +1)=0, 即x +y -3z -4=0.6、用对称式方程及参数方程表示直线⎩⎨⎧=++=+-421z y x z y x .解 平面x -y +z =1和2x +y +z =4的法线向量为n 1=(1, -1, 1), n 2=(2, 1, 1), 所求直线的方向向量为k j i kj i n n s 3211211121++-=-=⨯=.在方程组⎩⎨⎧=++=+-421z y x z y x 中, 令y =0, 得⎩⎨⎧=+=+421z x z x , 解得x =3, z =-2. 于是点(3, 0, -2)为所求直线上的点.所求直线的对称式方程为32123+==--z y x ;参数方程为x =3-2t , y =t , z =-2+3t .7、求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面4x -y +z =1上的投影直线的方程.解 过直线⎩⎨⎧=---=+-0923042z y x z y x 的平面束方程为(2+3λ)x +(-4-λ)y +(1-2λ)z -9λ=0.为在平面束中找出与已知平面垂直的平面, 令(4 -1, 1)⋅(2+3λ, -4-λ, 1-2λ)=0, 即4⋅(2+3λ)+(-1)⋅(-4-λ)+1⋅(1-2λ)=0.解之得1113-=λ. 将1113-=λ代入平面束方程中, 得17x +31y -37z -117=0.故投影直线的方程为⎩⎨⎧=--+=+-011737311714z y x z y x .8、设3||=a , |b |=1, 6) ,(^π=b a , 求向量a +b 与a -b 的夹角.解 |a +b |2=(a +b )⋅(a +b )=|a |2+|b |2+2a ⋅b =|a |2+|b |2+2|a |⋅|b |cos(a ,^ b )76cos 3213=++=π,|a -b |2=(a -b )⋅(a -b )=|a |2+|b |2-2a ⋅b =|a |2+|b |2-2|a |⋅|b |cos(a ,^ b )16cos 3213=-+=π.设向量a +b 与a -b 的夹角为θ, 则721713||||||||||||)()(cos 22=⋅-=-⋅+-=-⋅+-⋅+=b a b a b a b a b a b a b a θ, 72arccos =θ.。
高等数学上期末考试试题及参考答案
高等数学上期末考试试题及参考答案一、选择题(每题5分,共25分)1. 函数 \( f(x) = \frac{1}{x^2 + 1} \) 的反函数\( f^{-1}(x) \) 的定义域为()A. \( (-\infty, 1) \cup (1, +\infty) \)B. \( [0, +\infty) \)C. \( (-\infty, 0) \cup (0, +\infty) \)D. \( (-1, 1) \)答案:C2. 设函数 \( f(x) = \ln(2x - 1) \),则 \( f'(x) \) 的值为()A. \( \frac{2}{2x - 1} \)B. \( \frac{1}{2x - 1} \)C. \( \frac{2}{x - \frac{1}{2}} \)D. \( \frac{1}{x - \frac{1}{2}} \)答案:A3. 设 \( f(x) = e^x + e^{-x} \),则 \( f''(x) \) 的值为()A. \( e^x - e^{-x} \)B. \( e^x + e^{-x} \)C. \( 2e^x + 2e^{-x} \)D. \( 2e^x - 2e^{-x} \)答案:D4. 下列函数中,哪一个函数在 \( x = 0 \) 处可导但不可微?()A. \( f(x) = |x| \)B. \( f(x) = \sqrt{x} \)C. \( f(x) = \sin x \)D. \( f(x) = \cos x \)答案:A5. 设 \( \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 2 \),则 \( f'(0) \) 的值为()A. 1B. 2C. 0D. 无法确定答案:B二、填空题(每题5分,共25分)6. 函数 \( f(x) = \ln(x + \sqrt{x^2 + 1}) \) 的导数 \( f'(x) \) 为_________。
高等数学上册试题及参考答案3篇
高等数学上册试题及参考答案高等数学上册试题及参考答案第一篇:微积分1.已知函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$,求$f'(x)$和$f''(x)$。
参考答案:首先,根据对数函数的导数公式$[\lnf(x)]'=\frac{f'(x)}{f(x)}$,我们可以得到$f'(x)$的计算式为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}+x}\cdot\frac{\fra c{1}{2}\cdot2x}{\sqrt{(1+x^2)}}+\frac{1}{\sqrt{(1+x^2)}+x}$$ 将上式整理化简,得到:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$接下来,我们需要求$f''(x)$。
由于$f'(x)$是由$f(x)$求导得到的,因此$f''(x)$可以通过对$f'(x)$求导得到,即:$$f''(x)=\frac{d}{dx}\left[\frac{1}{\sqrt{(1+x^2) }\cdot(\sqrt{(1+x^2)}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}\r ight]$$通过链式法则和乘法法则,我们得到:$$f''(x)=\frac{-(1+x^2)^{-\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)-\frac{1}{2}(1+x^2)^{-\frac{1}{2}}\cdot\frac{2x}{\sqrt{(1+x^2)}}\cdot(\sqrt{ (1+x^2)}+x)^2}{(\sqrt{(1+x^2)}+x)^2}$$将上式整理化简,得到:$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $因此,函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$的导数$f'(x)$和二阶导数$f''(x)$分别为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $2.计算二重积分$\iint_D(x^2+y^2)*e^{-x^2-y^2}d\sigma$,其中$D$是圆域$x^2+y^2\leqslant 1$。
大学高等数学上考试题库及答案
大学高等数学上考试题库及答案一、选择题1. 若函数f(x) = x^2 - 2x - 3,则f(2)的值为:A) -3 B) -1 C) 1 D) 32. 设函数g(x) = (x + 3)^2 - 4,则g(-5)的值为:A) -7 B) -1 C) 3 D) 73. 已知直线L1的斜率为2,过点(3, 4),则直线L1的方程为:A) y = 2x + 4 B) y = 2x + 5 C) y = 3x + 1 D) y = 3x + 44. 若a·b = 0,且a ≠ 0,则b的值为:A) 0 B) 1 C) -1 D) 无法确定5. 设f(x) = 2x^2 - 3x + 1,g(x) = x - 2。
则f(g(2))的值为:A) -1 B) 1 C) 3 D) 7二、填空题1. 计算lim(x→2) [(x + 1)(x - 2)] / (x - 2)的值: ______2. 若h(x) = (x - 3)^2 - 4,则h(-1)的值为: ______3. 求方程x^2 + ax + b = 0的解,其中a = 2,b = -3。
解为 x = ______4. 设函数y = f(x)的反函数为y = f^(-1)(x),则f^(-1)(f(3))的值为:______5. 解方程3^x = 27的解为: ______三、解答题1. 计算lim(x→∞) (3x^2 - 2x + 1) / (4x^2 + 5x - 2)的值,并说明计算步骤。
2. 求函数f(x) = x^3 - 3x^2的导函数。
3. 求方程组:2x + 3y = 53x - 2y = -1的解,并验证解的正确性。
4. 求函数f(x) = x^3 - 6x^2 + 11x - 6的极值点,并判断其是极大值点还是极小值点。
5. 证明:若函数f(x) = a^x (a > 0, a ≠ 1)是增函数,则a的值范围为(______, ______)。
历年高数考研试题及答案
历年高数考研试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^3-3x,求f'(x)。
A. 3x^2-3B. x^3-3C. 3x^2+3D. x^3+3答案:A2. 已知数列{an}满足a1=1,an+1=2an+1,求a3。
A. 5B. 7C. 9D. 11答案:C3. 求定积分∫(0,1) x^2 dx。
A. 1/3B. 1/2C. 1/4D. 1/6答案:B4. 设函数f(x)=sin(x),求f'(x)。
A. cos(x)B. -sin(x)C. -cos(x)D. sin(x)答案:A二、填空题(每题5分,共20分)5. 设函数f(x)=x^2+3x+2,求f(-1)的值为____。
答案:16. 求极限lim(x→0) (sin(x)/x)的值为____。
答案:17. 设数列{an}满足a1=1,an+1=an+2,求a5的值为____。
答案:58. 求定积分∫(0,π) sin(x) dx的值为____。
答案:2三、解答题(每题10分,共60分)9. 求函数f(x)=x^3-6x^2+11x-6在x=2处的导数。
解:首先求出f(x)的导数f'(x)=3x^2-12x+11,然后将x=2代入,得到f'(2)=3*2^2-12*2+11=-1。
10. 求极限lim(x→∞) (1/x)。
解:由于x趋向于无穷大,1/x趋向于0,所以lim(x→∞)(1/x)=0。
11. 设数列{an}满足a1=2,an+1=an+3,求a10的值。
解:根据递推公式,可以依次计算出a2=5,a3=8,...,a10=29。
12. 求定积分∫(1,2) (x^2-4x+4) dx。
解:首先求出被积函数的原函数F(x)=1/3*x^3-2x^2+4x,然后计算F(2)-F(1)=1/3*2^3-2*2^2+4*2-(1/3*1^3-2*1^2+4*1)=4/3-4+8-1/3+2-4=4。
高数大一考试试题
高数大一考试试题一、选择题(每题3分,共30分)1. 下列函数中,哪一个不是基本初等函数?A. 指数函数B. 对数函数C. 分段函数D. 三角函数2. 函数f(x) = 2x^3 - 5x^2 + 3x + 1在区间(-∞,+∞)内的最大值是:A. 1B. -1C. 0D. 23. 设函数f(x) = x^2 + 3x + 2,求f(x)的最小值:A. -1B. 0C. 1D. 24. 以下哪个选项是极限lim (x->2) [(x^2 - 4)/(x - 2)]的值?A. 0B. 4C. 8D. 不存在5. 已知数列{an}是等差数列,且a1 = 3,a4 = 13,求此等差数列的A. 2B. 3C. 4D. 56. 以下哪个选项是不定积分∫1/(4+3x^2) dx的解?A. 1/3 arctan(x/2)B. 1/2 arctan(x/2)C. 1/3 arctan(x)D. 1/2 arctan(x)7. 设函数f(x) = sin(x) + cos(x),求f(x)的导数f'(x):A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) - cos(x)D. -sin(x) + cos(x)8. 以下哪个选项是定积分∫[0, π/2] x^2 dx的值?A. π^2/4B. π^2/3C. π^3/6D. π^3/39. 设随机变量X服从参数为λ的泊松分布,求E(X)的值:A. λB. λ^2C. 1/λD. 2λ10. 以下哪个选项是二元函数z = xy在区域D:x^2 + y^2 ≤ 1上的A. 1B. 0C. -1D. 不存在二、填空题(每题4分,共20分)11. 若函数f(x) = √x在区间[0, 4]上可导,则f'(x) = ________。
12. 设数列{bn}的通项公式为bn = 2n - 1,该数列的前n项和Sn =________。
大学高数上试题及答案
大学高数上试题及答案一、选择题(每题5分,共20分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:B2. 函数f(x) = 2x + 1在x=1处的导数是:A. 1B. 2C. 3D. 4答案:B3. 定积分∫(0到1) x dx的值是:A. 0B. 0.5C. 1D. 2答案:B4. 极限lim(x→0) (sin x)/x的值是:A. 0B. 1C. 2D. ∞答案:B二、填空题(每题5分,共20分)5. 如果函数f(x) = 3x^2 + 2x - 5,那么f'(x) = __________。
答案:6x + 26. 曲线y = x^3 - 2x + 1在点(1, 0)处的切线斜率是 __________。
答案:27. 函数y = ln(x)的不定积分是 __________。
答案:x ln(x) - x + C8. 级数∑(1到∞) (1/n^2)的和是 __________。
答案:π^2/6三、解答题(每题10分,共60分)9. 求函数f(x) = x^2 - 4x + 3的极值点。
答案:函数f(x)的导数为f'(x) = 2x - 4。
令f'(x) = 0,解得x = 2。
将x = 2代入原函数,得到f(2) = 3 - 8 + 3 = -2,所以x = 2是函数的极小值点。
10. 计算定积分∫(0到π/2) sin x dx。
答案:根据定积分的计算法则,∫(0到π/2) sin x dx = [-cos x](0到π/2) = 1。
11. 求极限lim(x→∞) (1 + 1/x)^x。
答案:lim(x→∞) (1 + 1/x)^x = e。
12. 求函数y = e^x - x^2的单调区间。
答案:函数y的导数为y' = e^x - 2x。
令y' = 0,解得x = ln(2)。
高数考试试题及答案
高数考试试题及答案一、选择题(每题3分,共30分)1. 函数\( f(x) = x^2 \)在区间[-1, 2]上的最大值是:A. 1B. 2C. 4D. 32. 微分方程\( y'' - y' - 6y = 0 \)的特征方程是:A. \( r^2 - r - 6 = 0 \)B. \( r^2 - 6 = 0 \)C.\( r^2 + r - 6 = 0 \) D. \( r^2 + 6 = 0 \)3. 若\( \lim_{x \to 0} \frac{f(x)}{x} = 1 \),则\( f(0) \)的值是:A. 0B. 1C. 无法确定D. 无穷大4. 曲线\( y = x^3 \)在点(1, 1)处的切线斜率是:A. 3B. 1C. 0D. -35. 函数\( f(x) = \ln(x) \)的原函数是:A. \( x^2 \)B. \( x^3 \)C. \( e^x \)D. \( x \ln(x) - x \)6. 定积分\( \int_{0}^{1} x^2 dx \)的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{4} \)C.\( \frac{1}{2} \) D. 17. 无穷级数\( \sum_{n=1}^{\infty} \frac{1}{n^2} \)的和是:A. \( \frac{\pi^2}{6} \)B. \( \frac{\pi^2}{4} \)C.\( e \) D. \( \ln(2) \)8. 若\( \lim_{n \to \infty} a_n = 0 \),则级数\( \sum_{n=1}^{\infty} a_n \):A. 一定收敛B. 一定发散C. 可能收敛也可能发散D. 无法判断9. 函数\( f(x) = \sin(x) + \cos(x) \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \frac{\pi}{2} \)D. \( \pi/4 \)10. 函数\( f(x) = x^3 - 3x \)的极值点是:A. \( x = 1 \)B. \( x = -1 \)C. \( x = 0 \)D.\( x = \pm 1 \)二、填空题(每题4分,共20分)1. 函数\( g(x) = 3x - 5 \)的反函数是 \( g^{-1}(x) = ______ \)。
高数上册期末考试试题及答案
高数上册期末考试试题及答案一、选择题(每题2分,共20分)1. 函数f(x)=x^2+1在x=0处的导数是:A. 0B. 1C. 2D. 3答案:B2. 曲线y=x^3-2x在点(1,-1)处的切线斜率是:A. 0B. 1C. -1D. 2答案:D3. 若f(x)=sin(x)+cos(x),则f'(x)为:A. cos(x)-sin(x)B. sin(x)+cos(x)C. sin(x)-cos(x)D. cos(x)+sin(x)答案:A4. 定积分∫(0,π)sin(x)dx的值是:A. 0B. 1C. 2D. π答案:C5. 函数f(x)=ln(x)的定义域是:A. (-∞, 0)B. (0, +∞)C. (-∞, +∞)D. [0, +∞)答案:B6. 函数y=x^2-4x+4的最小值是:A. 0B. 1C. 4D. 8答案:A7. 函数f(x)=x^3-6x^2+9x的拐点是:A. x=1B. x=3C. x=0D. x=2答案:D8. 函数y=e^x的导数是:A. e^xB. xC. 1D. 0答案:A9. 函数f(x)=x^3+2x^2-5x+6的极值点是:A. x=-1B. x=1C. x=-2D. x=2答案:D10. 函数y=ln(x)的泰勒展开式在x=0处的前三项是:A. x-x^2/2+x^3/3B. x+x^2/2+x^3/3C. x-x^2/2+x^3/6D. x+x^2/2-x^3/3答案:A二、填空题(每题2分,共20分)1. 函数f(x)=x^2-3x+2在x=2处的导数值是________。
答案:12. 微分方程dy/dx+2y=x^2的通解是y=________。
答案:(x^2-x+C)e^(-2x)3. 函数y=sin(x)的原函数是________。
答案:-cos(x)+C4. 函数f(x)=x^3在区间[-1,1]上的最大值是________。
(完整word版)大学高等数学上考试题库(附答案)
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰②()0a > ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2-2.33-3.24.arctan ln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰②)0a > ③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sinxB 、 2sin x -C 、 C x +2sinD 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ;4、C x x +++-+)11ln(212;5、)12(2e- ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。
高等数学上册试题及答案
高等数学上册试题及答案一、选择题(每题4分,共40分)1. 设函数f(x)=x^2-4x+c,若f(1)=0,则c的值为()。
A. -3B. 0C. 3D. 42. 函数y=x^3-3x+1的导数为()。
A. 3x^2-3B. x^2-3C. 3x^2-3xD. x^3-33. 极限lim(x→0) (sinx/x)的值为()。
A. 0B. 1C. -1D. 24. 函数y=e^x的不定积分为()。
A. e^x + CB. e^x - CC. x*e^x + CD. x*e^x - C5. 以下哪个选项是微分方程y''-y=0的通解()。
A. y=C1*cos(x)+C2*sin(x)B. y=C1*e^x+C2*e^(-x)C. y=C1*x+C2D. y=C1*x^2+C2*x6. 曲线y=x^2在点(1,1)处的切线斜率为()。
A. 0B. 1C. 2D. 47. 已知函数f(x)=x^3-6x^2+11x-6,求f'(x)=()。
A. 3x^2-12x+11B. 3x^2-12x+6C. 3x^2-6x+11D. 3x^2-6x+68. 函数y=ln(x)的导数为()。
A. 1/xB. xC. ln(x)D. 19. 已知函数f(x)=x^2-2x+1,求f(2)=()。
A. 1B. 3C. 5D. 710. 极限lim(x→∞) (1/x)的值为()。
A. 0B. 1C. ∞D. -∞二、填空题(每题4分,共20分)1. 若函数f(x)=x^3+2x^2-5x+1,则f'(x)=______。
2. 求定积分∫(0 to 1) (2x+3)dx的值,结果为______。
3. 函数y=x^2-4x+c在x=2处的极值点,当c=______时,该点为极大值点。
4. 函数y=e^(-x^2)的二阶导数为______。
5. 曲线y=x^3-3x^2+2在点(1,0)处的切线方程为y=______。
高数上学期题库及答案
高数上学期题库及答案一、选择题1. 函数f(x)=x^2+3x+2在区间[-2, 1]上的最大值是:A. 1B. 3C. 5D. 7答案:C2. 极限lim(x→∞) (1-1/x)^x的值是:A. 0B. 1C. e^-1D. e答案:D3. 曲线y=x^3-2x^2+x在点(1,0)处的切线斜率是:A. -1B. 0C. 1D. 2答案:C二、填空题4. 函数f(x)=sin(x)+cos(x)的周期是______。
答案:2π5. 若f(x)=x^3-6x^2+11x-6,则f'(x)=______。
答案:3x^2-12x+11三、解答题6. 求函数y=x^3-6x^2+11x-6在区间[1,3]上的最大值和最小值。
解:首先求导数y'=3x^2-12x+11,令y'=0,解得x=1和x=3(重根)。
由于是重根,需要计算二阶导数y''=6x-12,代入x=1和x=3,得到y''(1)=-6,y''(3)=6。
因此,x=1处为极大值点,x=3处为极小值点。
计算端点和极值点的函数值,得到y(1)=0,y(3)=-2,所以最大值为0,最小值为-2。
7. 求曲线y=x^2与直线y=4x在第一象限的交点坐标。
解:联立方程组:\[\begin{cases}y = x^2 \\y = 4x\end{cases}\]解得x=0(舍去,因为不在第一象限)和x=4,代入任一方程得y=16,所以交点坐标为(4,16)。
四、证明题8. 证明:若f(x)在[a,b]上连续,则f(x)在[a,b]上可积。
证明:由于f(x)在[a,b]上连续,根据连续函数的性质,f(x)在[a,b]上有界且只有有限个间断点。
根据达布定理,对于任意的ε>0,存在一个分割P:a=x_0<x_1<...<x_n=b,使得U(P,f)-L(P,f)<ε。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
01—08级高等数学(上)期末试题集2001级高等数学(上)期末试卷一、填空题(每小题3分、共24分)1、01lim sinx x x→=; 2、2 dx dx =;3、设)(x f 在[,]a a -连续并且为偶函数,则⎰-=aadx x f )(;4、⎰= nxdx;5、过点)1,2,3(1-M 和)2,0,1(2-M 的直线方程是 ;*6、已知级数1n n u S ∞==∑,则级数11()n n n u u ∞+=+∑的和是 ;*7、.曲线x x y ln 2-=在1=x 点处的曲率是 ;8、函数, 0(), 0x x f x x x ≥⎧=⎨-<⎩在点0=x 处的导数为 ;二、计算下列各题(每小题5分,共25分)1、240ln(13)lim ln(3)x x x →++ 2、)arcsin(ln x x y =求y '..3、求由方程sin ()0y x xcos x y -+=所确定的隐函数)(x y y =的导数y '.4、⎰++dx x x 1322 5、⎰三、计算下列各题(每小题5分,共25分) 1、dx x ⎰--)1(112、⎰-xedx1323、判别级数∑∞=+1311n n 的敛散性 4、求幂级数∑∞=+1212n nn n x 的收敛区间5、设点A,B,C 的坐标分别为A(2,3,-1),B(1,1,1)及C(0,4,-3)求23,,- 及C AB A ⋅.四、(7分)求幂级数∑∞=----112112)1(n n n n x 的收敛区间,并求和函数.五、(7分)求过点P(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742:z y x z y x L 垂直的平面方程.六、(6分)求由曲线b y x y ln ,ln ==及0(0)x b =>所围图形的面积.七、(6分)讨论x x x f ln )(=在其定义域上的最大值与最小值.2002级高等数学(上)期末试题一、填空题(3分×10=30分) 1、若s 2lim23x inax x →∞=,则a = .2、函数1,1,1x x y a x x -≥⎧=⎨-<⎩,当a = 时连续.3、设⎰=Φ,sin )(2dt t t x b x则=Φdxd . 4、曲线sint cos 2x y t=⎧⎨=⎩在4π=t 处的法线方程为 .5、当a 时,点(1, 3)为3232y x ax =-+的拐点. 6、设cosx 是)(x f 的一个原函数,则)('x f = .7、⎰=--dx xx221211arcsin .8、设+-=+-=2,53,则a b ⋅= .*9、级数∑∞=+1)1(1n pn 当p 时发散. 10、2332)(x x x f -=在[1-4]上的最小值为 . 二、试解下列各题(5分×3=15分)1、02sin limx x tdt x→⎰.2、设)()(x f x e e f y =,其中)(x f 可导,求dxdy. 3、设x x y cos =,(0x >),求dy . 三、求积分(5分×4=20分)1、⎰dx e e xx )sin( 2、3、⎰-221xxdx4、10arctan x xdx ⎰*四、[9分]设平面图由xy x y 1,2==及x=2所围成,求: 1)平面图形的面积A (要求作草图); 2)平面图形绕x 轴旋转的体积x V .五、[9分]一直线过点(0,2,4)且与两平面12=+z x 和23=-z y 平行,求直线方程.六、[5分]判断级数∑∞=12!n n n 的收敛性.七、[8分]设幂级数 ++++753753x x x x1)、写出它的一般项;2)、求收敛半径及收敛域.八、[4分]证明:当1>x 时ex e x>2003级高等数学(上)期末试卷一、填空题:(共10题,每题3分)1、数列6661,1010,10n n x n n ⎧ < ⎪=⎨⎪ ≥ ⎩,则lim n n x →∞=___________________________.2、()f x 在0x 的某去心邻域内无界是0lim ()x x f x →=∞的___________________条件.3、0x =是1()sinf x x xα=的可去间断点,则常数α的取值范围是____________________.4、()f x 可导, 0(1)(1)lim12x f f x x→--=-, 则曲线()y f x =在点[1,(1)]f 处的切线斜率是____________________.5、()(),(),y f x x f x dy f x x ∆=+∆-=∆′则y ∆与dy之间的关系是________________________.6、可导函数()f x 在点0x 处取得极值的必要条件是___________________________.7、使公式()()k f x dx k f x dx =⎰⎰成立的常数k 应满足的条件是 .8、设物体以速度()v t 做直线运动, 则[0,]T 上物体经过的路程是___________________.9、投影Pr 2,3,b j a b == 则a b⋅=______________________.10、a b +与a b -平行的充要条件是________________________. 二.计算题(共8题,每题5分)1、求 2arctan lim 1ln(1)x x x x→∞+ 2、求 02lim 1cos x x x e e x -→+--3、ln (),()y f x f x ''=存在, 求y ''4、求2ln xxedx+⎰5、求2t an x x dx ⎰ 6、求11(1s i n )1x-+⎰7、求1010x y x y z ++=⎧⎨-++=⎩的对称式方程.8、求到220x y z ++=的距离为1的动点轨迹.三、设2,0()(1),0ax e x f x b x x ⎧ < ⎪=⎨- ≥⎪⎩,在0x =处可导,求11()f x dx -⎰.(8分)四、设0()(2)(),()0xF x t x f t dt f x =- >⎰′,试问点(0,0)是否是曲线()y F x =的拐点,为什么?(8分)*五、设抛物线20(01),y ax bx x =+≥ ≤≤ 试确定,a b 之值,使抛物线与直线1,0x y ==所围面积为13,并且绕x 轴旋转的体积最小.(8分)六、设()()()0xaF x f t dt F b =, ≠ , ⎰且()0F x ≠′,试证:方程()()x ba xf t dt f t dt =⎰⎰ 在(,)a b 内有且只有一根.(6分)2004级高等数学(上)期末试卷一、填空题(每题3分,共30分) 1、设x 1f (x)=,x 0,x 1,x-≠≠则1f[]f (x)= .2、若sin ax 3lim,x 0sin 5x 4=→则a = . 3、函数n x nf (x)=lim ()n 2n +=→∞- . 4、x 1=是函数1x-1f (x)=e的第 类间断点.5、函数32y 2x 3x 12x 1=+-+在(2,1)-内单调 .6、曲线2y ln(1x )=+在区间 上是凸的,在 上是凹的, 拐点是 .7、设函数f (x)在[a,a]-上连续,g(x)f (x)f (x)=--,则aa g(x)dx -⎰= . 8、当k 时,反常积分akdx x(ln x)⎰收敛.9、a (2,3,1),b (113)c (120)→→→-=-=-=,,,,,,则a b (b c )()→→→→=++ . 10、过点(3,0,-1)且与向量a 3i 7j 5k →→→→=-+垂直的平面方程为 .二、计算下列各题(每题6分,共48分)1、计算极限:x2limx (arctan t ⎰) 2、设x y x y e e =0-+,求dy3、设2x ln(1t y arctan t⎧=+⎨=⎩),求dy dx 和22d y dx 4、求 x1dx 1-e ⎰5、求 2dx x sin x⎰ 6、计算定积分20I x =⎰7、求过点(0,2,4) 且与两平面x 2z 1,y 3z 2+=-=平行直线方程.8、设x 220 F(x)tf(x t )dt -=⎰,求F (x)''三、(9分)设有位于曲线xy e =的下方,该曲线过原点的切线的左方以及x 轴上方之间的图形:(1)求切线方程;(2)求平面图形的面积;(3)求此平面图形围绕x 轴旋转的旋转体的体积.四、(8分)讨论a,b 为何值时,函数2f (x)ln(a+x ),x>1x b,x 1=⎧⎨+≤⎩在x 1=处可导.五、(5分)设f(x)在区间I 上可导,证明在f(x)的任意两个零点之间必有方程f (x)xf (x)0'+=的实根.2005级高等数学(上)期末试卷一、填空题(每题3分,共30分)1、3321lim 1x x x x →∞-++= .2、21lim()xx x x→∞+= . 3、0(),0,x e x f x a x x <=+≥⎧⎨⎩,若)(x f 在),(+∞-∞连续,则a = .4、曲线x y sin =在点)22,4(π的切线方程为___________________.5、函数()()820f x x x x =+>的单调增加区间为 .6、曲线3129223-+-x x x 的拐点为 .7、532425sin _________21x x dx x x -=++⎰. 8、⎰+∞+0211dx x = . 9、设()3,1,2a =--,()1,2,1b =-,则_______)(=⋅-b a32.*10、当_______a 时,级数11(0)1nn a a ∞=>+∑收敛. 二、计算下列各题(每题6分,共42分)1、计算极限()22220limxt xx t e dt te dt→⎰⎰. 2、21sin xy e-=,求y '.3、设函数)(x f y =由方程y x e xy +=确定,求dxdy .4、问函数()2540y x x x=-<在何处取得最小值.5、计算⎰-+dx e e x x 16、计算⎰1dx e x7、过点),,(420P 且与两平面2312=-=+z y z x ,垂直的平面方程.三、(8分)设 ⎩⎨⎧>+≤=11 ,2x b ax x x x f ,)(为了使()f x 在1x =连续可导函数,,a b 应取什么值?四、(8分)求幂级数2111(1)21n n n x n -∞-=--∑的收敛域,并求和函数.五、(8分)由直线y x =及抛物线2y x =围成一个平面图形1.求平面图形的面积A.2.求平面图形绕x 轴旋转的旋转体体积x V .六、(4分)设()0,(0)0f x f ''<=,证明:对于任意0021>>x x ,有 )()()(2121x f x f x x f +<+2006级高等数学(上)试卷一、填空题:(每小题3分,共30分) 1、使函数xxx f 32sin )(=在0=x 处连续,应补充定义 . 2、极限____________3lim 3=⎪⎭⎫⎝⎛+∞→x x x x . 3、)('0x f 存在,则极限________)()(lim000=--+→hh x f h x f h .4、线xe y =在点(1,e )处的切线方程为 .5、线x xe y -=的拐点是________________.6、用奇偶性计算定积分_______________11sin 11223=++⎰-dx x x x . 7、计算反常积分x xe dx +∞-⎰=__________________.8、向量(2,1,2),(1,,2),a b λ=-=且满足a b ⊥,则数____=λ. 9、过点(4,-1,3)且平行于直线51123+==-z y x 的直线方程是_____________. 10、级数⋅⋅⋅+++⋅⋅⋅++nn 1232的敛散性为______________.二、 计算下列各题:(每小题6分,共42分)1、求极限2arctan limx dt t t xx ⎰+∞→.2、求由参数方程⎩⎨⎧+==)1ln(arctan 2t y t x 确定的函数)(x y y =的导数22,dx yd dx dy .3、设函数)(x y y =由方程0333=-+axy y x 确定,求dy .4、7186223+--=x x x y 的极值.5、计算不定积分xdx x cos 2⎰. 6、计算定积分21e ⎰.7、证明:当1>x 时,不等式ex e x>成立.8、写出直线241312-=-=-z y x 的参数方程并求此直线与平面062=-++z y x 的交点.三、(8分)求幂级数∑∞=--11)1(n nn nx 的收敛半径、收敛区间与收敛域,并求其和函数.四、(8分)由曲线xy 1=与直线2,==x x y 及x 轴围成一个平面图形, 1、求此平面图形的面积A ;2、求此平面图形绕x 轴旋转一周所生成的旋转体的体积x V .五、(4分)设函数)(x f 在区间[0,1]上连续,且1)(<x f ,证明1)(20=-⎰dt t f x x在区间(0,1)内仅有唯一实根.2007级高等数学(上)试卷一、填空题:(每小题3分,共30分)1、22lim()kxx x e x→∞-=,则 k = 2、点1x =是函数1,13,1x x y x x - ≤⎧=⎨- >⎩的第一类间断点中的 间断点3、设(sin )y f x =,f 可导,则dy = 4、定积分=⎰5、曲线y =的拐点坐标是6、设sin x 是()f x 的一个原函数,则()xf x dx '=⎰7、设22,410,,a i j k b i j k c b a c a λ=++ =-+ =- ⊥,则λ= 8、xoz 面上的曲线:2z x =绕z 轴旋转一周所得旋转曲面的方程为9、正项级数211n n n ∞=+∑的敛散性为 10、幂级数nn ∞=的收敛区间为二、计算下列各题:(每小题6分,共48分)1、计算极限3113lim()11x x x →---.2、设3ln x tx y e dt =⎰,求dy dx.3、设函数()y f x =由方程0x y xy e e -+=确定,求dy .4、求32()23f x x x =-的极值.5、计算不定积分11cos dx x+⎰. 6、计算41⎰. 7、计算21(1)x x dx -+⎰.8、求过点(1,2,4)P 且与两平面23x y +=,42y z -=平行的直线方程.三 (9分)、(1)、求曲线3y x =在点(2,8) 处的切线方程;(*2)、求曲线3y x = 与直线2,0x y = =所围成平面图形A 的面积; (*3)、求(2)中的平面图形A 绕y 轴旋转一周所得旋转体的体积.四 (9分)、利用x e 幂级数的展开式:(2)、写出e 的无穷级数展开式;(3)、再利用数e 的无穷级数的展开式,求数项级数21!n n n ∞=∑的和.五(4分)、设()f x 可导,(0)0f =,10()(),xn n n F x t f x t dt -=-⎰n 为正整数,证明:20()1lim(0)2n x F x f x n→'=.2008级高等数学(上)试卷一、填空题(每题3分,共30分) 1.2.(1)(23)lim6n kn n n →∞+-=则k = .2. 10lim(1-sin2)xx x →= .3. 曲线3y x =上经过点0-2(,)的切线方程为 .4.arctan cot x arc x += . 5. 已知()f x的一个原函数为ln(x ,则'()xf x dx =⎰ .6.-((0aa x dx a >⎰为常数)= .7.设()y x 由方程2201y t e dt x y +=⎰所确定,则'y = .8. 设向量,(3,5,),(2,1,4)a x b ==且2a b+与z 轴垂直,则x = .9.经过点(0,3,0)且与平面0y =垂直的直线方程是 .*10. 设22ln y x u +=,则du = .二、计算下列各题(每题7分,共14分)1. 设221x t y t ⎧⎪⎨⎪⎩==-求22,dx y d dx dy . 2.已知()f x 连续,求lim ().xx a a x f t dt x a →-⎰三、计算下列各题(每题7分,共28分)1.求函数2y x =-. 2.x ⎰.3.12arcsin xdx ⎰. 4设23222.,,xz u v u e v x y ===+求2.,z zx x y∂∂∂∂∂四、计算下列各题(每题9分,共18分)1.(1)求过点(0,1,1)M -且与直线20,:270y L x z ⎧⎪⎨⎪⎩+=+-=垂直的平面方程, (2)求点M 到直线L 的距离.2.将已知正数a 分解为三个正数之和,并使它们的倒数之和为最小.五、(6分)已知()f x 连续,1.()()(),lim x f x x f xt dt A xϕ→==⎰(A 为常数) 求(1)(0),(0)f ϕ;(2)'()x ϕ;(3)讨论'()x ϕ在0x =处的连续性.六、(4分)设()f x 在0,1⎡⎤⎣⎦上可微,且120(1)2().f xf x dx =⎰证明:存在(0,1)ξ∈,使得'()()0.f f ξξξ+=2009级高等数学(上)期末试题答案一、填空题(每题3分,共30分)1、向量(2,1,2),(1,,2)a b λ=-=满足a b ⊥,则数λ= .2、过点(1,2,3且与两平面1x y z -+=和3232x y z ++=平行的直线方程为 . 3、极限11lim sin 3sin 2x x x x x →∞⎛⎫+=⎪⎝⎭ . 4、已知函数()⎪⎩⎪⎨⎧=≠+=0,0,sin 2x A x xx xx f 在0=x 处连续,则=A . 5、已知()32='f ,则极限()()01lim 22x f x f x x →++-=⎡⎤⎣⎦ . 6、曲线x e y =过点()0,0的切线方程为 .7、当a = 时,点1x =为2y x ax =-+的极值点. 8、积分0=⎰.9、积分21212sin 1x xdx x -+=+⎰ . 10、已知级数∑∞=+111n na 收敛,则a 的取值范围为 . 二、计算下列各题(每题6分,共12分) 1、已知直线421321:1-=-=-z y x L 和112432:2--=+=+z y x L ,求经过1L 且与2L 平行的平面方程. 2、2(arctan )lim x x t dt .三、计算下列各题(每题6分,共18分)1、ln 1x x →-.2、设方程arctan y x=)(x y y =,求dy .3、已知 2ln cot tan x ty t=⎧⎨=⎩ , 求622π=t dx y d .四、计算下列各题(每题6分,共12分)1、设()2ln 1,0()11,101x x x f x x x-+≥⎧⎪=⎨--<<⎪+⎩ , 求(1)()x f 的单调区间;(2)求()x f 的极值.2、设()f x 的一个原函数是()21ln x x ++, 求()xf x dx '⎰.五、计算下列各题(每题6分,共18分) 1、1⎰、41⎰. 3、0x xdxe e +∞-+⎰.六、计算下列各题(共10分)1、 求幂级数12nnn x n ∞=⋅∑的收敛域及其和函数(6分).2、设()()()0xa Fx f td t Fb =, ≠, ⎰且'()0F x >,试证:方程()()x baxf t dt f t dt =⎰⎰ 在(,)a b 内有且只有一根.(4分)试题参考解答2001级高等数学(上)期末试卷解答一、填空题(每小题3分、共24分) 1.0; 2.2x ; 3. 02()af x dx ⎰; 4.11n nn x n --; 5.12421x y z +-==--; 6.2S ;7.略; 8.不存在.二. 计算下列各题(每小题5分,共25分)1、[解]:240ln(13)0lim 0ln(3)ln 3x x x →+==+.2、[解]:1arcsin(ln )arcsin(ln )y x x x x '=+= . 3、[解]:sin cos ()sin()(1)0y x y x cos x y x x y y ''+-++++=()sin()cos sin()sin cos x y x x y y xy x x y x+-+-'=++.4、[解]:2232arctan 1x dx x x c x +=+++⎰. 5、 [解]t =,2sin 2cos 2(cos cos )t tdt td t t t tdt ==-=--⎰⎰⎰⎰2(cos sin )t t t c =--=-+.三.计算下列各题(每小题5分,共25分) 1、[解]:111(1)221x dx xdx --=-=⎰⎰.2、[解]:23332232(1)1ln(1)ln 111x xx x dx d e e e e e e -------=-=--=---⎰⎰. 3、[解]:3321,1n n+故∑∞=+1311n n 收敛.4、[解]:12221(1)1lim 2,221n n n n R n ρ+→∞++==∴=+,收敛区间为11(,)22-. 5、[解]{1,2,2},{2,1,2},32{1,8,10}AB AC AB AC =--=---=-,4AB AC ⋅=-四、解:令2111222111()(1),()(1)211n n n n n n x S x S x x n x -∞∞---=='=-=-=-+∑∑, 21()arctan 1xS x dx x x ∴==+⎰,收敛区间为(-1,1). 五、解:平面,0742:1=-+-z y x π法向量{}4,2,11-=n ,平面,01253:2=+-+z y x π法向量{}2,5,32-=n..取所求平面的法向量 {}1212424,14,11352ij kn s n n ==⨯=-=--....由点法式方程可得所求平面方程为 24(2)14(0)11(3)x y z --+-++=,即241411810x y z ---=.六、解:曲线b y x y ln ,ln ==及0(0)x b =>所围图形为无界区域,其面积为(ln ln )ln ln bbS b x dx b b x x b b +=-=-+=⎰.七、解:x x x f ln )(=的定义域为0x >,令()l n 10,f x x '=+=得驻点1x e =,当1x e< 时,()ln 10,f x x '=+<当1x e>时,()ln 10,f x x '=+>故x x x f ln )(=在其定义域上的最小值为111()ln f x e e e==-,无最大值.2002级高等数学(上)期末试卷解答一、填空题(每小题3分、共24分) 1.34 ;2.1;3.2sin x x -;4.)22(221-=x y ;5.29;6.x cos -;7.0;8.12;9.≤1;10.(1)5f -=-二、试解下列各题(每小题5分,共15分)1.解:原式0sin lim 2x x x →=21=.2.解:()()[()]'()[]x f x x f x dyf e e f e e dx'=+ )()()()(')('x f x x f xxe ef x f ee f e +=.3.解:取对数 cos ln lny x x =,两边关于x 求导得1cos .sin dy xxlnx y dx x=-+, 故 cos cos (sin )xxdy x xlnx dx x=-+. 三、求积分(每小题5分,共20分)1、解:原式⎰=xx de e )sin(c e x +-=)cos(.2、解:原式=⎰2)(arcsin )(arcsin x x d c x+-=arcsin 1. 3、解:令sin x t =,cos dx tdt =,原式2cos c sin cos tdttgt c t t ==-+⎰c xx +--=21. 4、解:原式21arctan ()2x xd =⎰21122001[c tan ]221x dxar x x x=-+⎰. 120111.(1)2421dx x π=--+⎰101[c tan ]82x ar x π=-- 2148218-=+-=πππ.四、解:1)2211()dx A x x =-⎰2311[ln ]3x x =-7ln 23=-. 2)24211()dx x V x x π=-⎰521157[]5100x x ππ=+=.五、解:设求直线的方向向量为,由于{}2,0,1⊥且{}3,1,0-⊥,则j 1 0 2 2 i 3 j k 0 1 -3i ks ==-++,故直线方程为 143220-=-=--z y x . 六、解:用比值法 10)1()1(lim lim 221<=++=∞→+∞→n n n U U n nn n ,故原级数收敛.七、解:1)一般项为121n a n =-. 2)121limlim 12(1)1n n n na n a n ρ+→∞→∞-===+-,收敛半径11==ρR ,当1x =时,幂级数为1121n n ∞=-∑发散,1x =-时,幂级数为1121n n ∞=--∑发散,故收敛域为(-1,1).八、证明:设ex e x f x -=)(,e e x f x -=)(',故当1>x 时0)('>x f ,即1>x 时)(x f单增,故当1>x 时,0)1()(=>f x f ,从而1>x ,ex e x>.2003级高等数学(上)期末试卷解答一、填空题(每小题3分、共30分)1、610 ; 2、必要; 3、0a >; 4、2- ; 5、()y dy x ο∆=+∆6、0()0f x '= ;7、0k ≠;8、0()Tt dt ν⎰; 9、6; 10、//a b .二、计算题(共8题,每题5分) 1、因为arctan 2x π<,11ln(1)~x x+(2分) 故原式=arctan lim0x xx→∞= (5分) 2、原式=0lim sin x xx e e x -→- (2分)= 0lim2cos x xx e e x-→+= (5分) 3、()()f x y f x ''=(2分) 22()()()()f x f x f x y f x '''-''= (5分) 4、原式 = 2xe xdx ⎰ (2分)= 212x ec + (5分)5、原式 = 2sec x xdx xdx -⎰⎰(2分)= 2tan ln cos 2x x x x c +-+ (5分)6、因为11sin 0x -=⎰(2分) 12-=⎰⎰sin x t =2202cos 2tdt ππ=⎰ (4分)故原式022ππ=+=(5分)7、直线过点(1,0,0)- (2分)其方向向量 1{1,1,2}1i j k s= 1 0=-- -1 1(4分)故所求的对称式方程为 112x y +=-=-(5分) 8、解法一:由于动点平行于平面220x y z ++=,故可设所求的 动点轨迹方程为220x y z D +++= (2分)又220x y z ++=过点(0,0,0),故有 (3分)13D =⇒=±⇒动点轨迹方程为2230x y z ++±= (5分)解法二:动点(,,)x y z 到平面220x y z ++=,即1= (3分)故动点轨迹方程为 2230x y z ++±= (5分) 三、解:0lim ()lim ()1x x f x f x b +-→→=⇒= (2分)(0)(0)2f f a +-''=⇒=-,22,0()(1),0x e x f x x x -⎧ < ⎪=⎨- ≥⎪⎩ (4分) 1012211()(1)x f x dx e dx x dx ---=+-⎰⎰⎰ (6分)21126e =- (8分) 四、解:0()2()()xxF x tf t dt x f t dt =-⎰⎰ (2分)()()()x F x xf x f t dt '=-⎰ (4分)()()F x xf x '''= (6分) 0()0()x F x F x ''>⇒>⇒凹,0()0(x F x F x ''<⇒<⇒凸,故(0,0)是()y F x =的拐点. (8分)五、解:1201a b 2(ax +bx)dx b (1a)3323==+⇒=-⎰ (4分) 122220111V (ax +bx)dx (a ab b )523ππ==++⎰ (6分)25(2a 5a 20),V 0a 1354π'=+-=⇒=-令,5V ()04''>,所以5V()4最小.故 53,42a b =-=. (8分)六、证明:存在性:令xb axG(x)f (t)dt-f (t)dt =⎰⎰,则baG(a)f (t)dt=-F(b)=-⎰,baG(b)f (t)dt=F(b)=⎰,2G(a)G(b)F (b)0⋅=-<,由零点存在定理,G(x)在(a,b)内有存在零点; (3分)唯一性:如若G(x)在(a,b)内必有两个零点12,ξξ,由罗尔定理,存在12(,)ξξξ∈,使得()2()2()0G f F ξξξ''===,此与题设矛盾.因此G(x)在(a,b)内仅有一零点. (3分)2004级高等数学(上)期末试卷解答一、填空题(每小题3分、共30分)1.1x ;2.154; 3.x 2e +; 4. 二; 5.减少;6.11111ln2∞∞±(-,-)(,+),(-,+),(,);7. 0 ;8.>19.30;10.3x 7y 5z-40-+=.二、计算下列各题(每题6分,共48分)1.原式=222lim x (arctan ()24x ππ→∞==). 2.xyydx xdy e dx e dy 0+-+=,所以x ye ydy dx e x-=+. 3.221dy 11t 2t dx 2t 1t +==+; 222223d y 11t 1t dx 2t 2t 4t ++=-=- 4.原式=x x x x x x1e e d(1-e )dx x x ln 1e c 1e 1e-+=-=--+--⎰⎰5.原式=ln sin xdctgx xctgx ctgxdx xctgx x c =-=-+=-++⎰⎰6令x=2sint .dx=2costdt,当x 0,t 0;x 2,t=2π===,22222200I=4sin t 4cos tdt=16sin t(1sin t)dt ππ⋅-⎰⎰2420131=16(sin t sin t)dt=16()2422πππ⨯--⋅=⎰⨯.7.取12ij ks n n 122i 3j k 013→→→→→→→→→=⨯==-++-,所求直线方程为x y 2z 4231--==-. 8.令221u x t .du 2tdt.dt du 2t=-=-∴=-,当2t 0u x =⇒=,当t=x u=0⇒,220x x 011F(x)t f(u)()du f(u)du 2t 2∴=⋅-=⎰⎰,221F (x)f (x )2x xf (x )2'∴=⋅=.三、解:.(1)、x y e '=,设00p(x ,y )为切点,切线方程为:00x x 0y e =e (x x )--,切线过原点(0,0)得:00x 1,y e ==, ∴切线方程为: y e=e(x 1)--,即y ex =. (2)、面积1111x x 200e e A e dx exdx=e x 22-∞-∞⎡⎤⎡⎤=--=⎣⎦⎣⎦⎰⎰. (3)、体积221111x2x 232x 00V (e )dx (ex)dx=e e x e 236πππππ-∞-∞⎡⎤⎡⎤=--=⎣⎦⎣⎦⎰⎰. 四、解:由连续性+f (1)1b=f (1)ln(1a),b ln(1a)-1=+=+∴=+,又'x 1x 1f (x)f (1)x b 1b(1)lim lim 1x 1x 1f ---→→-+--===--,+22'x 1x 1x 12xf (x)f (1)ln(a+x )-(1+b)2a x (1)lim lim lim x 1x 11a 1f +++→→→-+====--+ 由''2(1)(1)1,a 1,b ln 21a 1f f -+=⇒=∴==-+. 五、证明:令F(x)xf (x)=,设12x ,x 为f (x)的任意两个零点.即12f (x )0,f (x )0,==则F(x) 在[]12x ,x 上连续,在()12x ,x 内可导,且12F(x )F(x )0,==由Rolle 定理可知至少存在一点12(x ,x )ξ∈使得F ()0ξ'=,即F ()F ()0ξξξ''+=,因此,在()f x 的任意两个零点之间必须有方程f (x)xf (x)0'+=的实根.2005级高等数学(上)期末试卷解答一、填空题(每小题3分、共30分)1.2; 2. 2e 3. 1; 4. )4y x π=-, 5.2x >; 6.32;7.0; 8. 2π;9. 18-; 10.1a >.二、计算下列各题(每题6分,共42分)1.解:原式()222222022limlimxxt xt x x x x e dt e e dxxexe→→==⎰⎰222202lim2xx xx e e x e →=+=202lim212x x →=+.2.解:21sin 2111(2sin )(cos )()xy ex x x-'=⋅-⋅⋅- 21sin 212sin x ex x -= 3.解:两边对x 求导得 (1)x yy xy ey +''+=+ ,解得xe e y y yx yx --=++' 4.解:232272542xx x x y )('+=+=,令0y '= 得驻点3x =-,当3x <-时0<'y ,当30x -<<时0>'y ,故3x =-为极小点,极小值为(3)27y -=.5.解:⎰-+dx e e x x 1=⎰+dx e e x x 12=⎰+21)(x x e de =arctan x e c + 6.解:令tdt dx t x 2,==原式:=⎰12dt te t=)(21010dt e tett ⎰-=1220t e e -=2.7.解:所求直线的方向向量s垂直于两已知平面的法向量21n n, ,故取21n n s⨯=310201-=kj i =k j i132++-所求直线方程为:14322-=-=-z y x . 三.(8分)解:11=)(f ,1(10)lim x f ax b a b +→+=+=+, 故当 1=+b a 时,)(x f 在 1=x处连续.又2'1111(0)lim lim 211x x x x f x ---→→-+===-'11(0)lim 1x ax b f x ++→+-==-1(1)1lim 1x ax a a x +→+--=- 故当2=a 时,)()()('''111f f f ⇒=+-存在,即当 12-==b a , 时,)(x f 在 1=x 处连续可导.四.(8分)解:221n n 12(1)1 lim lim x 121n nu n x u n ρ+→+∞→+∞+-===- 当12<x ,即11<<-x 时原级数收敛,当12>x ,即11>-<x x 或时原级数发散,故收敛半径1R =,当1±=x 原级数为收敛的交错级数,收敛域为],[11-.设2111()(1)21n n n x s x n -∞-==--∑ ∑∞=---'-='1121121n n n n x x s )()()(=∑∞=---12211n n n x )( 246221111()1x x x x x=-+-==--+ 故 dx x s x s x⎰'=0)()(=dx x x⎰+0211=arctan x . 五.(8分)解:求交点得),(),,(11001.A=⎰-102dx x x )(=61321032=⎥⎦⎤⎢⎣⎡-x x . 2.1525310105342πππ=⎥⎦⎤⎢⎣⎡-=-=⎰x x dx x x V x )(. 六.(4分)证明:不妨设210x x ≤<,分别在区间1112[0,],[,]x x x x +上使用拉格朗日中值定理存在),(110x ∈ξ,2112(,)x x x ξ∈+使:=11x x f )()(')()(11100ξf x f x f =-- )(')()()()(22221221221ξf x x f x x f x x x x f x x f =-+=-+-+因为12ξξ<,又"()0f x <,故'()f x 单调减,所以)(')('21ξξf f >,故)()()()()()(2211122111x f x x f x f x x f x x f x x f -+>⇒-+> 即 1212()()()f x f x f x x +>+.2006级高等数学(上)期末试题答案及评分细则一、填空题:(每小题3分,共30分)1. 2/3;2. e ;3. )('20x f ;4. y ex =;5. )2,2(2e; 6.2π; 7. 1; 8. 2; 9. 531124-=+=-z y x ; 10. 发散. 二、计算下列各题:(每小题6分,共48分) 1、解:原式=)'2......(42arctan lim )'4........(2arctan limπ==+∞→+∞→x x x x x x2、解: )'2)....(1(2112);.....'4.......(21112222222t tdx y d t t t tdx dy +=+==++= 3、解:在方程两端求微分得:)'4......(0)(33322=+-+xdy ydx a dy y dx x ,)'2......(22dx axy x ay dy --=.4、解:令0)3)(1(6)32(6'2=-+=--=x x x x y 得)'2......(3,1=-=x x , )'2......(0)3('',0)1(''),1(12''><--=y y x y , 极大值,17)1(=-y 极小值)'2......(47)3(-=y . 5、解:原式22sin sin 2sin .......(3')x d x x x x xdx ==-⎰⎰22sin 2cos sin 2cos 2cos x x xd x x x x x xdx =+=+-⎰⎰2sin 2cos 2sin .......(3')x x x x x c =+-+6、解:原式=[])'3).......(13(2ln 12)'3.........(ln 1)ln 1(2211-=+=++⎰e e xxx d7.证明:令)1(0)(',)(>>-=-=x e e x f ex e x f xx……(4’))(x f 单调增加, 当1>x 时, 0)1()(=>f x f 成立 …..(2’)即当1>x 时,不等式ex e x>成立.8、解:直线的参数方程为2342x t y t z t =+⎧⎪=+⎨⎪=+⎩........(4')代入平面方程解出 )'2......(1-=t , 所求交点为(1,2,2) (2’). 三、解: 11lim lim1=+=∞→+∞→n na a n nn n ,收敛半径1R =,收敛区间为(-1,1) (3’);1-=x 时,原级数为∑∞=-11n n,发散, 1=x 时,原级数为111(1)!n n n ∞-=-∑收敛,故收敛域为(]1,1-….. (2’);由级数xx n n n +=-∑∞=--11)1(111两端积分得:)1ln(11)1(101x dx x n x n x n n +=+=-∑⎰∞=-为所求的和函数 (3’). 四、解:(1) )'4......(2ln 2111021+=+=⎰⎰dx x xdx A ; (2) 12220115()......(4')6x V x dx dx x πππ=+=⎰⎰. 五、证明:令1)(2)(0--=⎰dt t f x x F x,则)(x F 在区间[0,1]上连续,0)(11)(2)1(,01)0(10>-=--=<-=⎰ξf dt t f F F ,由零点定理知存在),1,0(0∈x 使0)(0=x F ……. (2’) 又0)(2)('>-=x f x F ,)(x F 在区间[0,1]上是严格单调增加的,从而零点唯一.(2’).2007级高等数学(上)期末试题答案二、填空题:(每小题3分,共30分)1. 1- ; 2. 跳跃 ; 3.(sin )cos f x xdx '; 4. π; 5.(0,0) ;6.cos sin x x x C -+; 7. 3 ; 8.22z x y =+; 9. 收敛 ;10.(0,2) ;二、计算下列各题:(每小题6分,共48分)1、[解]:原式=2321113(2)limlim 111x x x x x x x x →→++--+==--++ 2、[解]:33321()()31x lnx x dy e x e x e dx x'=⋅-=- 3、[解]:两边对x 求导得0x x xyyy e y e yy xy e e y y dy dx e x e x--'''+-+= ⇒ = ∴=++ 4、[解]:2()666(1)f x x x x x '=-=-,()1266(21)f x x x ''=-=-由(0)0f '=得驻点0,1x = ,(0)60f ''=-<,(1)60f ''=>,所以 极大值:(0)0f =,极小值(1)1f =- 5、[解]:法一:2211sec tan 1cos 222cos2x x dx dx dx C x x ===++⎰⎰⎰ 法二:原积分2221cos 1cos 1cot 1cos sin sin sin x x dx dx dx x C x x x x-==-=-++-⎰⎰⎰ 6、[解]:原式=4141113ln 4ln 21222x x x dx x -=-⎰7、[解]:原式=323202221002()()()()103232x x x x x x dx x x dx --+++=-+++-⎰⎰629456== 8、[解]:所求直线的方向向量s 垂直于已知平面的法向量12,n n ,所以:1224//{2,4,1}0i j s n n i j κ=⨯ = 1 0=- +8 + 2κ - 1 -4所求直线的方程为:124241x y z ---==- 三、(9分)[解]:(1)23y x '=,12k =,则切线方程为:812(2)y x -=-即:12160y x -+=; (2)42302404x S x dx ===⎰;(3)258233083642832055y V y dy y πππππ=⋅⋅-=-=⎰四、(9分)[解]: (1)0!nxn x e n ∞==∑,所以:01!n e n ∞==∑;(2)2012101111122!(1)!(2)!(1)!!n n n n k n n e n n n n k ∞∞∞∞∞=====-+==+==---∑∑∑∑∑五、(4分)[证明]: 记0011,()()()nn x nnx x t u F x f u du f u du n n -= ⇒ =-=⎰⎰,12212100001()()()11()lim lim lim lim 222n n n n n n n x x x x f x nxF x F x f x n x nx n x n x ---→→→→'=== 01()(0)1lim (0)202n t f t f x t f n t n→-'==-2008级高等数学(上)期末试题答案一、填空题(每题3分)1.k =3;2.-2e ;3..320y x -+=;4.2π;ln(x c +;6.22a π;7.2'22y xyy e x -=+;8. 2x =-;9. 00x z ⎧⎪⎨⎪⎩==;10.22xdx ydy du x y +=+ 二、1解:1,dy dx t=- 4分 222311dy d y dt t dx t dx t dt'=== 7分 2.解:原式=lim(()())xx aaf t dt xf x →+⎰ 5分()af a = 7分三、1. 解: 1'322yx -=- 3分得驻点1x =及0x =为不可导点 5分(0)0y =(极大值) 1=-1y ()(极小值) 7分2. 解:令2sin x t =原式2sin 2=4tdt ⎰2分2=4sin 2(1cos4)2tdt t dt =-⎰⎰ 5分12sin42t t c =-+ 6分12arcsin sin4arcsin 222x xc =-+ 7分3.解:原式11220[arcsin ]x x =-⎰4分120]11212ππ=+= 7分4. 解:4223222(4()6())xz e x y x x y x∂=+++∂ 4分 422222422222(24()24())24()()x x e y x y xy x y ye x y x y x z x y=+++=+++∂∂∂ 7分 四、 1. 解:(1)直线L 的方向向量010102ij ks = 2分(2,0,1)=- 4分过点(0,1,1)M -且与直线L 垂直的平面方程为:2(0)0(1)1(1)0210x y z x z -++-+=⇔-+= 5分(2)联立20,270210y x z x z ⎧⎪⎨⎪⎩+=+-=-+=得垂足(1,2,3)N - 7分所以,d MN =分2.解:设,(,,0)x y z a x y z ++=> 111(,,)f x y z x y z=++ (,,)(,,)()F x y z f x y z x y z a λ=+++- 4分222000xy z F x F y F z x y z aλλλ---⎧⎪⎪⎪⎨⎪⎪⎪⎩=-==-==-=++= 7分 得3ax y z ===9分 五、解:由已知及0()lim x f x A x→=得(0)0,f =(0)0ϕ= 2分10()(0)()()xf u du x xx f xt dt ϕ≠==⎰⎰ 4分'02'020()()()(0)lim 2(0)()xxx xf x f u duxf u du A x x x ϕϕ→-==≠=⎰⎰ 5分又'0lim ()2x Ax ϕ→=故()x ϕ连续 6分 六、证明:设()()x xf x ϕ= 1分 则11111(1)(1)()()(0,)2f f ϕξξϕξξ===∈ 3分故在1[,1]ξ上由罗尔定理得至少有一点ξ使'1()0(,1)(0,1)ϕξξξ=∈⊂ 即存在(0,1)ξ∈使得'()()0.f f ξξξ+= 4分昆明理工大学2009级高等数学A(1)参考解答及评分标准一1.=2λ; 2.23101y z x ---==-; 3.12; 4.1; 5.6; 6.ex ; 7.2; 8.π; 9.π; 101a >. 二1.111(9,14,1)323ij kn =-=-9(1)14(3x y --+-+)(z-2)=091435x y z -++=2.原式22(arctan )lim 16x x x π→+∞==三1.原式01x →==-2. 解:等式两端对x 求导得:2''22222x y x y xy y x y x x y++⋅=++''y x y x yy -=+ '()x yy x y x y+=≠- x ydy dx x y+=-3.22sec 1tan 2tan csc 2dy t t dx t t ==-- 22221sec 12tan 2tan csc 4td y t dx t t -==-2612t d y dx π==四1.'2101()110(1)x x x f x x x -⎧>⎪+⎪=⎨-⎪-<<+⎪⎩,'(0)1f =-令'()0f x =得1x =单增区间[1,)+∞,单减区间(1,1]-; 极小值(1)12ln 2f =-.2.'()()xf x dx xdf x =⎰⎰()()xf x f x dx =-⎰()ln(xf x x c =-+(又'()(ln(f x x ==)ln(x c ==+五1.原式211(1)12+-=21(1x =-+= 2.原式41arctan1xx d x=-+⎰4arctan 2arctan 4π=--+5arctan 212π=--3. 原式201xx de e +∞=+⎰arctan 4xe π+∞==六1.112lim 1(122n nn n n x x n n x ++→∞⋅=<+)2R =,2x =发散,2x =-收敛, 收敛域为[2,2)-令1()2n nn x s x n ∞==∑1'1112()2212n n n x s x x -∞====--∑ 001()ln(2)ln 2ln(2)2xxs x dx x x x==--=---⎰2.设()()-()xbaxx f t dt f t dt ϕ=⎰⎰2()()(())0baa b f t dt ϕϕ=-<⎰ 故由零点定理至少有一ξ使()0ϕξ=而''()2()2()0x f x F x ϕ==>,()x ϕ单调, 故仅有一根.。